WO2021042191A1 - Modal de transporte rodoviário autônomo de alta velocidade - Google Patents

Modal de transporte rodoviário autônomo de alta velocidade Download PDF

Info

Publication number
WO2021042191A1
WO2021042191A1 PCT/BR2020/050079 BR2020050079W WO2021042191A1 WO 2021042191 A1 WO2021042191 A1 WO 2021042191A1 BR 2020050079 W BR2020050079 W BR 2020050079W WO 2021042191 A1 WO2021042191 A1 WO 2021042191A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicles
speed
wheels
unloading
Prior art date
Application number
PCT/BR2020/050079
Other languages
English (en)
French (fr)
Inventor
Manoel RODRIGUES DE LIMA NETO
Original Assignee
Rodrigues De Lima Neto Manoel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rodrigues De Lima Neto Manoel filed Critical Rodrigues De Lima Neto Manoel
Publication of WO2021042191A1 publication Critical patent/WO2021042191A1/pt

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • B60M1/13Trolley wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present patent application refers to a “HIGH SPEED AUTONOMOUS ROAD TRANSPORT MODAL”, deals with a road transport system applied to cargo and passenger transport, which uses individual, autonomous electric vehicles (without driver), aerodynamic, traveling at an average speed of 200 km / h, cruising speed of 250 km / h and a maximum speed of 300 km / h.
  • This system due to its technical design, has a number of advantages over traditional logistical modes, as will be explained.
  • the rail and road modes are basically derived from the concept of ‘wagon’.
  • These systems have high operating costs, as well as significant limitations on speed, practicality, costs, efficiency and safety.
  • the present system is an evolution that solves most of these problems.
  • This invention was developed.
  • the purpose of this System is to transport passengers and cargo of the most diverse natures, including solid, liquid and gaseous bulk, dry cargo, refrigerated cargo, containers, among others.
  • This invention will be significantly superior in the following aspects: operational efficiency, speed, aerodynamics, maintenance costs, operating costs, emission of pollutants, noise, vibrations, operational safety, energy savings, fuel / energy costs, steep traffic, speed regime 'nonstop' work (24 hours a day, with no stops for supply for a purely electric version), loading and unloading times, time the products remain in the yard, logistical times, reduction to near zero of human error.
  • the system is composed of trolleys self propelled by electric motors, which travel by the thousands at high speed.
  • Each wheel has a tread set that includes tire / wheel, electric motor, brakes, suspension and steering in 1 set. There are 12 sets in total.
  • the vehicle has differentials in aspects: Aerodynamic - Low height (1.80 m), very low loading and unloading height (50 cm), ability to overcome climbs of up to 25 °, traveling on dedicated (exclusive) tracks on high speed, without intersections with other roads, which allows a constant traffic, without constant stops, typical of traditional road vehicles, Nonstop operation regime 24 hours. Maintenance every 3 months or 500 thousand km, They take advantage of the kinetic / potential energy of the descents, loading and unloading system of solid bulk and ultra-fast dry loads.
  • This invention will be superior in the following aspects: operational efficiency, speed, maintenance, operational and fuel costs, emission of pollutants, noise, vibrations, safety, traffic on steep roads, track wear, 'nonstop' regime, time loading and unloading.
  • FIGURE 1 there is an overview of the System, in which individual and autonomous vehicles (without a driver) travel on dedicated lanes in the center of the highway separated from other lanes by means of fenders.
  • FIGURE 2 we have an overview of the system, in which the self-propelled carts transit in the center of the highway.
  • the vehicles are autonomous and move guided by an automated supervisory system composed of GPS sub-systems, sensors on the track and in vehicles, cameras, commanded by radio, internet and electronic hardware signals (the mechatronic, electrical and electro-electronic part is not part of this patent).
  • Vehicles will travel at an average speed of 200 km / h, cruising speed of 250 km / h, with a maximum speed of 300 km / h.
  • FIGURE 3 we have the vehicles (1) moving on tracks in both directions of the highway, the structure (2) that supports the energized cables (3) that drive the vehicles. On this highway, trucks, heavy vehicles in general (4) and automobiles (5) also transit on contiguous lanes. It is a conventional highway, however vehicles circulate in its central portion (1).
  • FIGURE 4 we have a frontal view of the highway, in which we have the vehicles (1) passing through the center, divided by fenders (12) from the rest of the vehicles. You can also see the structure (2) that supports the electric cables, as well as the rod (6) that connects the vehicles to the cables.
  • FIGURE 5 we can have a closer view of the system, where it is possible to see again the vehicles (1) and the structure (2) that supports the cables (3).
  • the vehicle has 6 axles divided into sets of 3 axles with 1 set of wheels on each end.
  • the System uses the concept of harnessing potential / kinetic energy.
  • the System will operate at the maximum operational speed. It will take advantage of the descents to reach even greater speeds, being part of this energy amortized in the ascents.
  • our system as it is of high speed and operates without the need to reduce speed in passages, intersections, viaducts, etc., accumulating an enormous amount of kinetic energy, as well as taking advantage of potential energy (higher points). ) to gain speed on the subsequent descent. This results in significant cost and energy savings in the logistics transportation process.
  • FIGURE 6 we have two versions of the vehicle, one hybrid (A) and the other purely electric (B). Both vehicles have 12 wheels, as exposed. Each wheel (8) has a tire and an electric motor (7). All wheels are driven and steered.
  • the hybrid vehicle (A) we have a motor-generator set (9) and (10) diesel, which feeds the system together with the energy collected from the suspended cables, as well as the batteries (11).
  • the purely electric vehicle (B) there are battery packs (11) that store charge to power the system where there are no suspended cables.
  • FIGURE 7.A we have illustrated the wheels of the vehicle and the Integrated Running Systems (I) as the name designates, integrates all systems in a set.
  • tread systems tires and bearings
  • traction electric motor
  • braking disc brakes
  • suspension traction and compression springs
  • electric steering pinion and sliding circular rack
  • FIGURE 7.B we have the front view of the Integrated Running System, with emphasis on the Disc Braking System (II).
  • FIGURE 7.C the central suspension system with traction and compression springs (III), the Bearing (IV) and the electric steering system of pinion and sliding circular rack (V) are highlighted.
  • FIGURE 7.D there is a sectional view of the Integrated Running System, in which it is possible to check the Disc Braking System (II), the suspension system with traction and compression springs (III ), the bearings, one on each side of the wheels (IV), the electric pinion steering system and circular sliding rack (V), the fixed part of the electric motor (internal stator) (VI), the movable part of the electric motor (external rotor) (VII), the internal tire (VIII), the external tire (IX), the internal (fixed) wheel (XI) and the external (rolling) wheel (X).
  • FIGURE 7.E there is an exploded view of the Shooting System Integrated, where there is, from left to right, the electric pinion steering system and circular sliding rack (V), the central suspension system with traction springs (upper spring) and compression (lower spring) ( III), the disc brake system (II), the inner wheel (XI), the stators of the electric motor (VI), the rotors of the electric motor (VII), the large bearings (IV), the outer wheel (X), the inner tire (VIII) and the outer tire
  • FIGURE 8 there is a top view, showing the vehicles (1) traveling on the central track in both directions. You can also see the suspended electrical cables (2) and the structures (3) that support these cables. You can also see the fenders (12) between the vehicles (1) and the rest of the vehicles passing on the highway.
  • FIGURE 9 the vehicle (1) is verified in a descent.
  • This vehicle by traveling on a dedicated road and without intersections, is able to develop speeds of up to 300 km / h.
  • An intrinsic characteristic of this is the ability to take advantage of the kinetic energy of the descents to gain speed, increasing energy and logistics efficiency, unlike the current heavy road vehicles.
  • FIGURE 9.1 the vehicle (1) has been illustrated, showing that it has a high capacity to overcome steep climbs of up to 25 °, far beyond the current heavy road vehicles, due to the tare / capacity ratio more advantageous than traditional vehicles.
  • FIGURE 10 we have a sectional view of the fast loading system of the vehicle (1) in its version for transporting solid bulk and the loading system through a hopper (15).
  • the sliding lid opens (14)
  • the solid bulk (16) is poured into the vehicle and is homogeneously distributed through baffles (13).
  • the vehicle (1) is also equipped with these baffles (13) in order to distribute it evenly bulk when unloading, when the bottom cover (17) is opened.
  • FIGURE 11 shows the hopper (15) and the vehicle (1).
  • FIGURE 12 there is the process of quick unloading, in which the sliding door (14) of the vehicle (1) opens and the material flows through the baffles (which aim to make the unloading process more homogeneous) and finally unloads the solid bulk in the pile or in an appropriate place.
  • FIGURE 13 we have the passenger version of the vehicle (18) where we can see the electrical cables (3) to which the rod and bus (19) are connected.
  • the vehicle's headlights (20) can be viewed.
  • the vehicle will travel in both directions, and the headlights can be turned into lanterns (alternating red and white LED headlights). That is, it arrives at the destination, and can reverse the direction, with the headlights simply changing the color and traffic starts in the opposite direction.
  • lanterns In order to improve the visualization of the vehicle, it may have rods with lanterns at its end (21).
  • lanterns (24) along the upper side portions of the vehicle, as well as retro reflectors (23), adapting to the demands of traffic on highways.
  • FIGURE 14 we have the vehicle in its passenger version (18), where we have the seats (25) in an x-ray view.
  • the passenger capacity can be up to 80 seats, depending on the layout and classes and dimensions of the seats.
  • FIGURE 15 we have again the vehicle in ‘x-ray’ view in its passenger version (18), in which the seats (25) are visualized.
  • FIGURE 16 we have a side view in 'x-ray' of the vehicle in its passenger version, in which we check the electrical cable (3) for energization of the system, the rod for electrical connection (19), the vehicle headlights (20) (may change in white / red, depending on the direction of the vehicle (transits in both directions, without the need for maneuver to reverse direction)) , lanterns at the ends of rods (21) for viewing the vehicle by other heavy vehicles.
  • the aerodynamic profile of the vehicle is also noted (26).
  • FIGURE 17 we have the vehicle in its liquid bulk transport version (27), in which there are the filling nozzles / caps (28). Any products in liquid form may be transported, including food, petrochemicals, fuels, among others.
  • FIGURE 18 we have a side view of the vehicle in its liquid bulk transport version (27), in which there are the filling nozzles / caps (28). The wheels of the vehicle have also been shown laterally. There are 12 independent running sets, all of which, in a single module, have an electric motor, brakes, suspension and steering.
  • FIGURE 19 we have a frontal view of the vehicle in its liquid bulk transport version (27.
  • FIGURE 20 we have the vehicle in its version of dry cargo / containers (containers similar to those used in aviation) (29), in which we can check the 'gull wing' doors (30), for the operations of Loading (C) and Unloading (D) of containers (31).
  • This vehicle will also be able to transport refrigerated loads, through the installation of a thermal insulation and refrigeration system.
  • a thermal insulation and refrigeration system Depending on the distances and travel times (it travels at an average of 200 km / h), there will be no need for a compressor / cooling system, given that only thermal insulation could maintain the temperature until the destination. In this way the savings would be significant, in due to high refrigeration costs in transport.
  • FIGURE 21 we have a top view of the vehicle in its dry cargo / container version (29), in which we can check the 'gull wing' type doors (30), for Cargo operations (C) and Unloading (D) of containers (31).
  • FIGURE 21 we have a top view of the vehicle in its dry cargo / container version (29), in which we can check the 'gull wing' type doors (30), for Cargo operations (C) and Unloading (D) of containers (31).
  • FIGURE 22 we have a front view of the vehicle in its dry cargo / container version (29), in which we can check the 'gull wing' type doors (30), for Cargo operations (C) and Unloading (D) of containers
  • FIGURE 23 we have a right front perspective view of the vehicle in its dry cargo / container version (29), in which we can check the 'gull wing' doors (30) and those of containers already inside of the same (31).
  • FIGURE 24 we have the vehicle's navigation and control system, in which it is possible to verify the presence of 06 (six) distance sensors (32), located 03 (three) on each side of the vehicle. These sensors are used to constantly measure the distance to the fenders, keeping the vehicle centered on the track. You can also see the front distance sensor (33) which measures the distance to vehicles or obstacles ahead. There is also the presence of a front camera (34), which constantly records the images ahead. Also serving as support for navigation and object detection through an artificial intelligence system. Finally, a GPS system (35) is installed in the vehicle. This system has the function of maintaining a predetermined distance between vehicles that pass on the road. Vehicles will transit at a minimum distance of 100 meters between them, this distance may increase depending on the application and the situation.
  • FIGURE 25 vehicles on the traffic routes can be seen in frontal view, properly separated by the fenders (guides) (36).
  • These guides have the main function of serving as a beacon for the lateral steering sensors and also, in the last case, due to their physical configuration, they launch the vehicle back onto the track (37) in case it for some reason deviates from the correct path. .
  • the presence of the rod / bus (40) for the vehicle's electrical supply is also verified.
  • the system shown in this image is the one that transits in an 'open' way, without cloistering then, unlike the system that will be shown in FIGURE 26.
  • FIGURE 26 shows the frontal view of the Enclosed system, in which the concrete fenders (36) are visualized, which are used as guides for the lateral sensing of the vehicle, together with an automated system, if the vehicle is always maintained centralized on the track, as well as a physical barrier to the crossing of vehicles. They also serve to launch the vehicle back to the center of the road if it deviates for any reason.
  • the version illustrated in this image has an Enclosure system (38) composed of sections of plastic cover installed.
  • This enclosure has several advantages, such as reducing physical and noise pollution, thermoacoustic insulation, as well as a barrier that prevents other vehicles or pedestrians from crossing.
  • This enclosure also supports the wiring and busbars that feed the system (40) and (41). In its upper portion, this enclosure has Photovoltaic cells (39). These are used to generate energy that feeds the emergency systems and, when they are not being used, feeds the engines and other vehicle systems (capacity to supply 3% of the energy required for the system).
  • FIGURE 27 there is again the enclosed version, which has plastic covers (38) that have photovoltaic cells (39) in their upper portion. Also shown are the guides / fenders (36) used in the system for the goal of lateral sensing, as well as the physical guide and guide for returning the vehicle to the track.
  • FIGURE 28 the Rotational Differential System Between Wheels on Curves has been explained. It is known that in a curve, a vehicle develops higher angular speeds on the external wheels (ai) and lower on the internal wheels (012). In this Figure, a frontal view of the vehicle can be identified, making a curve to the left (right of the one who looks in the front). In this curve, the angular speed of the external wheel (ai) is higher than that developed by the internal wheels (012). To solve this issue, electronic wheel rotation control is launched. The system identifies the angle of the curve by sensing and proportionally reduces the speed of the inner wheel by decreasing the rotation of the electric motor of the inner wheel (43) and proportionally increasing the rotation of the outer wheel (42).
  • FIGURE 29 we have the top view of the vehicle making a right turn, with curve angle 'a'. All the running sets (44) are checked to be sterile. It is shown in this image that all wheels are sterile. In other words, unlike a conventional vehicle, which has only 1 or 2 directional axles (trucks and buses with 2 directional axles), the vehicle object of this report turns ALL wheels on when making a curve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Operations Research (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

.A Trata de um sistema de transporte rodoviário aplicado ao transporte de cargas e passageiros, que utiliza veículos elétricos (todas rodas tem motores elétricos para tração e também são esterçantes – giram para direção), individuais (não conectados a outros), autônomos (sem condutor), aerodinâmicos, de baixo peso relativo, trafegando em velocidade média de 200 km/h (cruzeiro de 250 km/h, máxima de 300 km/h) em rodovias dedicadas (ao lado de rodovias onde transitam outros veículos). Este sistema, devido à sua concepção técnica, apresenta uma série de vantagens em relação aos modais logísticos tradicionais, conforme será explanado no projeto conceptivo do mesmo a seguir.

Description

“MODAL DE TRANSPORTE RODOVIÁRIO AUTÓNOMO DE ALTA VELOCIDADE”.
[0001] Refere-se o presente pedido de patente de invenção a um “MODAL DE TRANSPORTE RODOVIÁRIO AUTÓNOMO DE ALTA VELOCIDADE”, trata de um sistema de transporte rodoviário aplicado ao transporte de cargas e passageiros, que utiliza veículos elétricos, individuais, autónomos (sem condutor), aerodinâmicos, trafegando em velocidade média de 200 km/h, velocidade cruzeiro de 250 km/h e velocidade máxima de 300 km/h. Este sistema, devido à sua concepção técnica, apresenta uma série de vantagens em relação aos modais logísticos tradicionais, conforme será explanado.
Estado da técnica
[0002] Há uma demanda por logística que cresce exponencialmente. Até 2.050 teremos que dobrar a velocidade com que as coisas são transportadas. A questão da segurança também é emergente. Milhões de vidas são ceifadas todos os anos nas Rodovias, por acidentes causados, em sua arrasadora maioria, por falha humana.
[0003] Hoje os caminhões, ônibus e veículos pesados em geral, precisam trafegar em velocidades reduzidas, principalmente por questões de segurança e limitações das diferentes velocidades desenvolvidas por veículos diversos no tráfego, o que impõe constantes acelerações e frenagens, reduzindo muito a eficiência do tráfego dos veículos. Os veículos pesados não podem, por exemplo, aproveitar a energia cinética das descidas para ganhar velocidade e assim aumentar a eficiência logística. Seja por limitações aerodinâmicas, por questão de segurança ou por veículos atrapalhando o ganho de velocidade, bem como legislações, as velocidades que podem ser desenvolvidas são muito limitadas.
[0004] A área frontal aerodinâmica de caminhões, ônibus e demais veículos pesados é extremamente elevada, o que impõe alto arrasto aerodinâmico, reduzindo a eficiência de tráfego, aumentando consumo de combustível e reduzindo as velocidades desenvolvidas.
[0005] Somente um eixo direcional, somente 1 ou 2 eixos tratores e o restante dos eixos rígidos e não direcionais impõe arraste excessivo, o que também reduz drasticamente a eficiência de tráfego, aumentando o consumo de combustível, o consumo de pneus e desgaste prematuro de componentes de suspensão.
[0006] As elevadas alturas para carregamento em caminhões geram gastos elevados com energia para elevação estas cargas até o nível das carrocerias, normalmente na faixa de 1,70 m a 2,00 m de altura. Este consumo de energia, seja motriz (pás carregadeiras, empilhadeiras, guindastes, muncks...) ou energia humana, poderia ser economizada , haja vista que se esta altura de carga fosse menor, seria drasticamente reduzido o consumo de energia para estas operações de carga e descarga.
[0007] Atualmente os processos de carga e descarga de veículos rodoviários e ferroviários é excessivamente lento, o que reduz muito a eficiência do processo logístico, e por consequência aumentando significativamente o tempo para realização das transações comerciais.
[0008] Hoje um caminhão desenvolve velocidades médias em tomo de 50 km/h, sendo que contando as paradas estas velocidades médias são até menores. Modais ferroviários desenvolvem velocidades nesta faixa também. Trata-se de velocidades excessivamente baixas, o que reduz muito a eficiência global do processo logístico.
[0009] Veículos pesados com motores a combustão, suspensão, transmissão e pneus convencionais necessitam de paradas constantes para abastecimento, bem como revisões a cada 10 mil quilómetros, por exemplo. Tudo isso onera o processo logístico, reduzindo sua eficiência.
[0010] Veículos pesados conduzidos por motoristas demandam condutores diferentes a cada 8 horas e estão altamente suscetíveis a falhas humanas. Caminhoneiros normalmente transitam por até 12 horas e depois os veículos ficam ociosos por determinado período até o retorno da operação, o que onera significativamente o processo logístico.
[0011] Atualmente os tempos de carga e descarga de veículos rodoviários ainda são muito elevados, o que reduz a eficiência do processo logístico.
[0012] O peso dos veículos pesados tradicionais é relativamente elevado, o que reduz a eficiência energética logística do processo. Ademais, a relação desvantajosa de tara / capacidade de carga apresenta limitações para se vencer subidas íngremes.
[0013] Os modais ferroviário e rodoviário, em maior ou menor grau, são basicamente advindos do conceito de ‘carroça’. Um chassi com rodas puxado por um cavalo mecânico (rodoviário) ou locomotiva (ferroviário). Estes sistemas apresentam elevados custos operacionais, bem como significativas limitações de velocidade, praticidade, custos, eficiência e segurança. O presente sistema é uma evolução que resolve grande parte destes problemas.
[0014] A questão da segurança também é ‘chave’, pois o sistema rodoviário, seja por qualidade das vias, por falhas de manutenção ou por falha humana, está altamente suscetível a acidentes, que infelizmente ocorrem diariamente, vitimando centenas de milhares de pessoas no mundo todos os anos.
[0015] Com o intuito de solucionar tais problemas desenvolveu-se a presente invenção. A proposta do presente Sistema é o de se transportar passageiros e cargas das mais diversas naturezas, dentre elas granéis sólidos, líquidos e gasosos, cargas secas, cargas refrigeradas, contêineres, dentre outros. Este invento será significativamente superior nos seguintes aspectos: eficiência operacional, velocidade, aerodinâmica, custos de manutenção, custos operacionais, emissão de poluentes, ruídos, vibrações, segurança operacional, economia energética, custos com combustível/energia, trânsito em vias íngremes, regime de trabalho ‘nonstop’ (24 horas por dia, sem paradas para abastecimento para versão puramente elétrica), tempos de carga e descarga, tempo de permanência de produtos no pátio, tempos logísticos, redução a próximo de zero de falha humana.
[0016] O sistema é composto por vagonetas auto propelidas por motores elétricos, que transitam aos milhares em alta velocidade. Cada roda possui um conjunto de rodagem que engloba pneumático/roda, motor elétrico, freios, suspensão e direção em 1 conjunto. São 12 conjuntos no total.
[0017] O veículo apresenta diferenciais nos aspectos: Aerodinâmico - Baixa altura (1,80 m), baixíssima altura de carga e descarga (50 cm), capacidade de vencer subidas de até 25°, transitam em pistas dedicadas (exclusivas) em alta velocidade, sem cruzamentos com outras vias, o que permite um tráfego constante, sem paradas constantes, típicas dos veículos rodoviários tradicionais, regime de operação Nonstop 24 horas. Manutenção a cada 3 meses ou 500 mil km, Aproveitam a energia cinética / potencial das descidas, sistema de carga e descarga de granéis sólidos e cargas secas ultra-rápido.
[0018] Este invento será superior nos seguintes aspectos: eficiência operacional, velocidade, custos de manutenção, operacionais e com combustível, emissão de poluentes, ruídos, vibrações, segurança, trânsito em vias íngremes, desgaste da via, regime ‘nonstop’, tempo de carga e descarga.
[0019] A invenção poderá ser melhor compreendida através da seguinte descrição detalhada, em consonância com as figuras em anexo, onde:
[0020] Na FIGURA 1 tem-se uma visão geral do Sistema, no qual os veículos individuais e autónomos (sem condutor) transitam em vias dedicadas no centro da rodovia separados das outras vias através de defensas.
[0021] Na FIGURA 2 tem-se uma vista geral do sistema, no qual as vagonetas auto propelidas transitam no centro da rodovia. Os veículos são autónomos e se movem guiados por sistema automatizado supervisório composto pelos sub-sistemas de GPS, sensores na pista e nos veículos, câmeras, comandados por sinais de rádio, de internet e hardwares eletroeletrônicos (a parte mecatrônica, elétrica e eletroeletrônica não faz parte da presente patente). Os veículos se deslocarão a uma velocidade média de 200 km/h, velocidade cruzeiro de 250 km/h, sendo a máxima de 300 km/h.
[0022] Na FIGURA 3 temos os veículos (1) transitando em pistas nos dois sentidos da rodovia, a estrutura (2) que suporta os cabos (3) energizados que acionam os veículos. Nesta rodovia também transitam, em pistas contíguas, caminhões, veículos pesados em geral (4) e automóveis (5). Trata-se de uma rodovia convencional, contudo em sua porção central circulam os veículos (1). [0023] Na FIGURA 4 temos uma visão frontal da rodovia, na qual temos os veículos (1) transitando ao centro, divididos por defensas (12) do restante dos veículos. Pode-se ver também a estrutura (2) que suporta os cabos elétricos, bem como a haste (6) que conecta os veículos aos cabos.
[0024] Na FIGURA 5 podemos ter uma vista mais em close do sistema, onde se pode constatar novamente os veículos (1) e a estrutura (2) que suporta os cabos (3). O veículo possui 6 eixos divididos em conjuntos de 3 eixos com 1 conjunto de rodagem em cada extremidade. O Sistema utiliza o conceito de aproveitamento da energia potencial / cinética. O Sistema irá operar na velocidade máxima operacional. Aproveitará as descidas para atingir ainda maiores velocidades, sendo parte desta energia amortizada nas subidas. Contudo, reside crucial diferença que o nosso sistema, por ser de elevada velocidade e operar sem necessidade de redução da velocidade em passagens, cruzamentos, viadutos, etc, acumulando uma enorme quantidade de energia cinética, bem como aproveitando a energia potencial (pontos mais elevados) para ganhar velocidade na descida subsequente. Isto resulta em uma economia de custos e energia significativa no processo de transporte logístico.
[0025] Na FIGURA 6 temos duas versões do veículo, uma híbrida (A) e outra puramente elétrica (B). Ambos veículos possuem 12 rodas, conforme exposto. Cada roda (8) é dotada de um pneumático e um motor elétrico (7). Todas rodas são motrizes e direcionais. No veículo híbrido (A) temos um conjunto moto-gerador (9) e (10) a diesel, que alimenta o sistema juntamente com a energia coletada dos cabos suspensos, bem como alimenta as baterias (11). No veículo puramente elétrico (B) tem-se os conjuntos de baterias (11) que armazenam carga para alimentar o sistema onde não houver cabos suspensos. [0026] Na FIGURA 7.A temos ilustradas as rodas do veículo e os Sistemas de Rodagem Integrados (I) como o próprio nome designa, integra todos os sistemas em um conjunto. Constitui-se dos sistemas de rodagem (pneus e rolamentos), tração (motor elétrico), frenagem (freios a disco), suspensão (molas de tração e compressão) e direção elétrica (pinhão e cremalheira circular deslizante). Este Sistema de Rodagem Integrado também será explanado de forma básica neste relatório, mas sua solicitação atende pelo número de protocolo supracitado.
[0027] Na FIGURA 7.B tem-se a vista frontal do Sistema de Rodagem Integrado, com destaque para o Sistema de Frenagem a Disco (II).
[0028] Na FIGURA 7.C tem-se no destaque o sistema de suspensão central com molas de tração e compressão (III), o Rolamento (IV) e o sistema de direção elétrica de pinhão e cremalheira circular deslizante (V).
[0029] Na FIGURA 7.D tem-se uma vista em corte do Sistema de Rodagem Integrado, na qual pode-se verificar o Sistema de Frenagem a Disco (II), o sistema de suspensão com molas de tração e de compressão (III), os rolamentos, um em cada lado das rodas (IV), o sistema de direção elétrica de pinhão e cremalheira circular deslizante (V), a parte Fixa do motor elétrico (estator interno) (VI), a parte móvel do motor elétrico (rotor externo) (VII), o pneu interno (VIII), o pneu externo (IX), a roda interna (fixa) (XI) e a roda externa (rodante) (X).
[0030] Na FIGURA 7.E tem-se uma vista explodida do Sistema de Rodagem Integrado, onde tem-se na sequência, da esquerda para a direita, o sistema de direção elétrica de pinhão e cremalheira circular deslizante (V), o sistema de suspensão central com molas de tração (mola superior) e compressão (mola inferior) (III), o sistema de freio a disco (II), a roda interna (XI), os estatores do motor elétrico (VI), os rotores do motor elétrico (VII), os rolamentos de grandes dimensões (IV), a roda externa (X), o pneu interno (VIII) e o pneu externo
(IX).
[0031] Na FIGURA 8 tem-se uma visão superior, mostrando os veículos (1) transitando na via central nos dois sentidos. Visualiza-se também os cabos elétricos suspensos (2) e as estruturas (3) que sustentam estes cabos. Pode-se ver também as defensas (12) entre os veículos (1) e o restante dos veículos transitando na rodovia.
[0032] Na FIGURA 9 verifica-se o veículo (1) em uma descida. Este veículo, por transitar em via dedicada e sem cruzamentos, consegue desenvolver velocidades de até 300 km/h. Uma característica intrínseca deste é a capacidade de se aproveitar a energia cinética das descidas para ganhar velocidade, aumentando a eficiência energética e logística, ao contrário dos atuais veículos rodoviários pesados.
[0033] Na FIGURA 9.1 tem-se ilustrado o veículo (1), na qual se constata que este possui uma elevada capacidade de se vencer subidas íngremes de até 25°, muito além dos veículos pesados rodoviários atuais, devido à relação tara/capacidade mais vantajosa que os veículos tradicionais.
[0034] Na FIGURA 10 temos uma vista em corte do sistema de carga rápida do veículo (1) em sua versão de transporte de granéis sólidos e o sistema de carregamento através de uma moega de carga (15). Quando a tampa deslizante se abre (14), os granéis sólidos (16) são despejados no interior do veículo e são homogeneamente distribuídos através de chicanas (13). O veículo (1) também é dotado destas chicanas (13) visando se distribuir homogeneamente os granéis na descarga, quando a tampo inferior (17) é aberta. Há tampas deslizantes tanto na porção superior quanto na inferior do veículo.
[0035] Na FIGURA 11 visualiza-se a moega de carga (15) e o veículo (1). [0036] Na FIGURA 12 verifica-se o processo de descarga rápida, no qual a porta deslizante (14) do veículo (1) se abre e o material escoa pelas chicanas (que visam dar mais homogeneidade ao processo de descarga) e finalmente descarrega o granel sólido na pilha ou em local apropriado.
[0037] Na FIGURA 13 temos a versão de passageiros do veículo (18) onde se constata os cabos elétricos (3) no qual se conecta a haste e o barramento (19). Os faróis (20) do veículo podem ser visualizados. Importante Frisar que o veículo transitará em ambos sentidos, sendo que os faróis podem se converter em lanternas (faróis de led vermelhos e brancos alternados). Ou seja, ele chega ao destino, e pode inverter a direção, sendo que os faróis simplesmente mudam a cor e se inicia o tráfego no sentido contrário. Visando se aprimorar a visualização do veículo, este pode possuir hastes com lanternas em sua extremidade (21). Há lanternas delimitadoras (24) ao longo das porções laterais superiores do veículo, bem como retro refletivos (23), adequando-se às exigências de tráfego em rodovias. E possível se visualizar as rodas (22) do veículo. São 12 rodas no total, uma em cada extremidade, divididos em conjuntos de 6, como exposto.
[0038] Na FIGURA 14 temos o veículo em sua versão de passageiros (18), onde tem-se as poltronas (25) em uma visão em raio x. A capacidade de passageiros poderá ser de até 80 lugares, a depender da disposição e classes e dimensões das poltronas.
[0039] Na FIGURA 15 temos novamente o veículo em visão ‘raio-x’ em sua versão de passageiros (18), no qual se visualiza as poltronas (25).
[0040] Na FIGURA 16 temos uma vista lateral em ‘raio-x’ do veículo em sua versão de passageiros, na qual verificamos o cabo elétrico (3) para energização do sistema, a haste para conexão elétrica (19), os faróis do veículo (20) (podem mudar de cor branca / vermelha, conforme o sentido do veículo (transita em ambos sentidos, sem necessidade de manobra para inversão de sentido)), lanternas em extremidades de hastes (21) para visualização do veículo por outros veículos pesados. Podemos visualizar também os conjuntos de rodagem (22), os retro refletivos (23) dispostos nas laterais, as lanternas delimitadoras laterais (24), bem como as poltronas (25) em sua vista lateral. Constata-se também o perfil aerodinâmico do veículo (26).
[0041] Na FIGURA 17 temos o veículo em sua versão de transporte de granéis líquidos (27), na qual verifica-se aí os bocais / tampas de abastecimento (28). Poderão ser transportados quaisquer produtos em sua forma líquida, dentre estes alimentícios, petroquímicos, combustíveis, dentre outros.
[0042] Na FIGURA 18 temos uma vista lateral do veículo em sua versão de transporte de granéis líquidos (27), na qual verifica-se aí os bocais / tampas de abastecimento (28). Tem-se mostrado lateralmente também as rodas do veículo. São 12 conjuntos de rodagem independentes, possuindo em todos, em um único módulo, motor elétrico, freios, suspensão e direção.
[0043] Na FIGURA 19 temos uma vista frontal do veículo em sua versão de transporte de granéis líquidos (27.
[0044] Na FIGURA 20 temos o veículo em sua versão de cargas secas / containers (containers similares aos utilizados na aviação) (29), na qual podemos verificar as portas do tipo ‘asa de gaivota’ (30), para as operações de Carga (C) e Descarga (D) de containers (31). Este veículo também poderá transportar cargas refrigeradas, através da instalação de sistema de isolamento térmico e refrigeração. A depender das distâncias e tempos de viagem (viaja a média de 200 km/h), não haverá necessidade de compressor / sistema de refrigeração, haja vista que somente o isolamento térmico poderia manter a temperatura até o destino. Desta forma a economia seria significativa, em virtude dos elevados custos com refrigeração no transporte.
[0045] Na FIGURA 21 temos uma vista superior do veículo em sua versão de cargas secas / containers (29), na qual podemos verificar as portas do tipo ‘asa de gaivota’ (30), para as operações de Carga (C) e Descarga (D) de containers (31).
[0046] Na FIGURA 21 temos uma vista superior do veículo em sua versão de cargas secas / containers (29), na qual podemos verificar as portas do tipo ‘asa de gaivota’ (30), para as operações de Carga (C) e Descarga (D) de containers (31).
[0047] Na FIGURA 22 temos uma vista frontal do veículo em sua versão de cargas secas / containers (29), na qual podemos verificar as portas do tipo ‘asa de gaivota’ (30), para as operações de Carga (C) e Descarga (D) de containers
(31).
[0048] Na FIGURA 23 temos uma vista em perspectiva frontal direita do veículo em sua versão de cargas secas / containers (29), na qual podemos verificar as portas do tipo ‘asa de gaivota’ (30) e os de containers já no interior do mesmo (31).
[0049] Na FIGURA 24 temos o sistema de navegação e controle do veículo, no qual pode-se verificar a presença de 06 (seis) sensores de distância (32), localizados 03 (três) em cada lado do veículo. Estes sensores são usados para se medir constantemente a distância até as defensas, mantendo o veículo centralizado na via. Também pode-se constatar o sensor de distância frontal (33) que mede a distância para veículos ou obstáculos a frente. Também constata-se a presença de uma câmera frontal (34), que registra constantemente as imagens a frente. Também servindo como apoio à navegação e detecção de objetos através de sistema de inteligência artificial. Finalmente tem-se um sistema de GPS (35) instalado no veículo. Este sistema tem como função se manter uma distância pré-determinada entre os veículos que transitam na via. Os veículos transitarão em uma distância mínima de 100 metros entre eles, podendo esta distância aumentar a depender da aplicação e da situação. Tal como na aviação, todos estes sistemas serão redundantes. Ou seja, 12 sensores de distância laterais (32), 2 sensores de distância frontal (33), 2 câmeras frontais (34) e 2 sistemas de GPS (35). Ademais, o sistema sempre optará pela segurança. Sempre o sinal mais conservador será considerado, visando a segurança quase que absoluta do sistema.
[0050] Na FIGURA 25 pode-se visualizar os veículos nas vias de trânsito em vista frontal, devidamente separados pelas defensas (guias) (36). Estas guias têm como função principal servir de baliza para os sensores laterais de direção e também, em último caso, devido à sua configuração física, estas lançam o veículo de volta para a via (37) caso este por alguma razão se desvie do trajeto correto. Também se constata a presença da haste/barramento (40) para alimentação elétrica do veículo. O Sistema mostrado nesta imagem é o que transita de forma ‘aberta’, sem enclausuram ento, diferentemente do sistema que será mostrado na FIGURA 26.
[0051] Na FIGURA 26 tem-se ilustrada vista frontal do sistema Enclausurado, na qual visualizam-se as defensas de concreto (36) que são usadas como guias para a sensorização lateral do veículo, junto a sistema automatizado, se manter o veículo sempre centralizado na via, bem como barreira física à travessia dos veículos. Também servem para lançar o veículo de volta ao centro da via caso este se desvie por qualquer razão. A versão ilustrada nesta imagem possui um sistema de Enclausuram ento (38) composto de trechos de cobertura plástica instalados. Este enclausuramento apresenta diversas vantagens, tais quais redução poluição física e sonora, isolamento termoacústico, bem como uma barreira que impede a travessia de outros veículos ou pedestres. Este enclausuramento também suporta a fiação e barramentos que alimentam o sistema (40) e (41). Em sua porção superior este enclausuramento conta com Células Fotovoltaicas (39). Estas são utilizadas para geração de energia que alimenta os sistemas de emergência e, quando estes não estiverem sendo utilizados, alimenta os motores e demais sistemas dos veículos (capacidade de alimentar 3% da energia necessária para o sistema).
[0052] Na FIGURA 27 tem-se novamente a versão enclausurada, que conta com coberturas plásticas (38) que possuem células fotovoltaicas (39) em sua porção superior. Também se visualiza as guias/defensas (36) utilizadas no sistema para baliza da sensorização lateral, bem como guia física e guia de retomo do veículo à pista.
[0053] Na FIGURA 28 tem-se explanado o Sistema de Diferencial de Rotação Entre As Rodas Nas Curvas. Sabe-se que em uma curva, um veículo desenvolve velocidades angulares maiores nas rodas externas (ai) e menores nas rodas internas (012). Nesta Figura pode-se identificar uma vista frontal do veículo realizando uma curva para sua esquerda (direita de quem olha de frente). Nesta curva, a velocidade angular da roda externa (ai) é superior à desenvolvida pelas rodas internas (012). Para solucionar esta questão, lança-se uso de controle eletrónico de rotação das rodas. O sistema identifica através de sensorização o ângulo da curva e reduz proporcionalmente a velocidade da roda interna através de diminuição de rotação do motor elétrico da roda interna (43) e aumenta proporcionalmente a rotação na roda externa (42).
[0054] Na FIGURA 29 tem-se a vista superior do veículo realizando uma curva à direita, com ângulo de curva ‘a’. Verifica-se que todos os conjuntos de rodagem (44) esterçam. Mostra-se nesta imagem que todas as rodas são esterçantes. Ou seja, diferentemente de um veículo convencional, que possui somente 1 ou 2 eixos direcionais (caminhões e ônibus com 2 eixos direcionais), o veículo objeto deste relatório esterça TODAS as rodas quando se realiza uma curva.

Claims

REIVINDICAÇÃO
1 - “MODAL DE TRANSPORTE RODOVIÁRIO AUTÓNOMO DE ALTA VELOCIDADE” compreendido por ser aplicado no transporte rodoviário de alta velocidade de cargas nas categorias granéis sólidos, líquidos e gasosos, cargas secas e cargas refrigeradas, containers e passageiros utilizando veículos (vagonetas) elétricos autónomos, caracterizado pelo conjunto do veículo ser: a. Autónomos (dispensam operador), b. Individuais (não são conectados a outros), c. Auto-Propelidos por 12 motores elétricos, um para cada roda principal; d. Trânsito em vias dedicadas; e. Alimentados por barramentos elétricos ou versões eletro-diesel (moto gerador alimenta de energia elétrica o sistema); f. Todas rodas tratoras (motores em todas rodas) e esterçantes (todas rodas esterçam); g. Sistema de Rodagem Integrado com solicitação de patente; h. Tampas deslizantes superiores e inferiores para carga e descarga de granéis (na versão granéis); i. Tampas do tipo ‘asa de gaivota’ para as versões de transporte de contêineres; j. Cada roda possui um Sistema de Rodagem Integrado que engloba pneumático/roda, motor elétrico, freios, suspensão e direção em 1 conjunto. São 12 conjuntos no total; k. Aerodinâmicos - Baixa altura (1,80 m); l. Baixíssima altura de carga e descarga (50 cm); m. Capacidade de vencer subidas de até 25°; n. Transitam em pistas dedicadas (exclusivas) em alta velocidade, sem cruzamentos com outras vias, o que permite um tráfego constante, sem paradas constantes, típicas dos veículos rodoviários tradicionais; o. Transitam em alta e constante velocidade (média de 200 km/h, cruzeiro de 250 km/h e máxima de 300 km/h); p. Regime de operação Nonstop 24 horas; q. Aproveitam a energia cinética / potencial das descidas; r. Sistema de carga e descarga de granéis sólidos e cargas secas ultra- rápido;
PCT/BR2020/050079 2019-09-05 2020-03-11 Modal de transporte rodoviário autônomo de alta velocidade WO2021042191A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102019018467-1 2019-09-05
BR102019018467-1A BR102019018467A2 (pt) 2019-09-05 2019-09-05 Modal de transporte rodoviário autônomo de alta velocidade

Publications (1)

Publication Number Publication Date
WO2021042191A1 true WO2021042191A1 (pt) 2021-03-11

Family

ID=74851922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2020/050079 WO2021042191A1 (pt) 2019-09-05 2020-03-11 Modal de transporte rodoviário autônomo de alta velocidade

Country Status (2)

Country Link
BR (1) BR102019018467A2 (pt)
WO (1) WO2021042191A1 (pt)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361202A (en) * 1979-06-15 1982-11-30 Michael Minovitch Automated road transportation system
US8371230B2 (en) * 2001-03-27 2013-02-12 General Electric Company Rail vehicle system
DE202013104224U1 (de) * 2013-03-22 2013-10-18 Indo Consulting & Trading Ltd. Fahrzeug mit Elektroantrieb
US20190232796A1 (en) * 2018-01-30 2019-08-01 Robert Applegate Autonomous networked transportation system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361202A (en) * 1979-06-15 1982-11-30 Michael Minovitch Automated road transportation system
US8371230B2 (en) * 2001-03-27 2013-02-12 General Electric Company Rail vehicle system
DE202013104224U1 (de) * 2013-03-22 2013-10-18 Indo Consulting & Trading Ltd. Fahrzeug mit Elektroantrieb
US20190232796A1 (en) * 2018-01-30 2019-08-01 Robert Applegate Autonomous networked transportation system and method

Also Published As

Publication number Publication date
BR102019018467A2 (pt) 2021-03-16

Similar Documents

Publication Publication Date Title
US9096236B2 (en) Transitional mode high speed rail systems
US7147070B2 (en) Motorized semi-trailer
CN100408401C (zh) 大量运输系统
ES2637231T3 (es) Sistema y método de transporte de mercancías
EP2284635A1 (en) Autonomously and independently controlling transport system
CA2457216C (en) Motorized semi-trailer
CN1718457A (zh) 动力道路电动轿车
WO2006122260A1 (en) Dual-mode vehicle and system for high speed surface transportation
US5199358A (en) Vehicle guideway and system for mass transportation
US20240025456A1 (en) Intelligent transportation system and method
CN101574931A (zh) 高效动力公路和电动汽车行驶充电方法
JP2014008945A (ja) 車両の輸送システム
Ulrich et al. Technologies for a modular vehicle concept used in passenger and goods transport
CN105620549A (zh) 用于无轨导向电车的胶轮铰接式转向架及无轨导向电车
WO2021042191A1 (pt) Modal de transporte rodoviário autônomo de alta velocidade
WO2022000439A1 (zh) 一种多轨道变轨系统及其变轨方法、可变轨车辆
AU2020289849A1 (en) Vehicle control system
CN103832441A (zh) 轨道车辆和列车
CN203793414U (zh) 一种车辆
JP3698930B2 (ja) 環境保全大幹線鉄道
CN103818494A (zh) 一种车辆
WO2020198821A1 (pt) "muvver velotrain" – modal de transporte ferroviário autônomo de alta velocidade
CN203727380U (zh) 轨道车辆和列车
WO2021108874A1 (pt) Aperfeiçoamento em modal de transporte ferroviário autônomo de alta velocidade em trilhos tubulares
CN211764873U (zh) 胶轮电车及其动力转向架结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861178

Country of ref document: EP

Kind code of ref document: A1