WO2021040376A1 - 유연 구동 장치 - Google Patents

유연 구동 장치 Download PDF

Info

Publication number
WO2021040376A1
WO2021040376A1 PCT/KR2020/011310 KR2020011310W WO2021040376A1 WO 2021040376 A1 WO2021040376 A1 WO 2021040376A1 KR 2020011310 W KR2020011310 W KR 2020011310W WO 2021040376 A1 WO2021040376 A1 WO 2021040376A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
pair
joints
driving
fixed
Prior art date
Application number
PCT/KR2020/011310
Other languages
English (en)
French (fr)
Inventor
권동수
유재민
김준환
안정도
김한솔
백동훈
이동걸
이예성
양운제
Original Assignee
한국과학기술원
주식회사 이지엔도서지컬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200106401A external-priority patent/KR102349030B1/ko
Application filed by 한국과학기술원, 주식회사 이지엔도서지컬 filed Critical 한국과학기술원
Priority to US17/056,763 priority Critical patent/US11433558B2/en
Priority to EP20806915.3A priority patent/EP4023395A4/en
Priority to CN202080002872.5A priority patent/CN112770878A/zh
Publication of WO2021040376A1 publication Critical patent/WO2021040376A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements

Definitions

  • the following description relates to a flexible drive device.
  • a hyper-redundant manipulator and one variant form an actuator in which a number of joints are connected in a row to form one actuator with the number of degrees of freedom greater than the number of actuators.
  • it includes a flexible manipulator with an infinite number of degrees of freedom.
  • continuous actuators operate with a gentle curvature, unlike actuators formed by single joints, medical equipment such as medical catheters, endoscopes, or surgical instruments that must be inserted along a flexible path, water and sewer pipes, toilet passages, inside the engine or It can be mainly used for industrial equipment that needs to enter a narrow and curved space such as a switchboard.
  • a position control method using a wire inserted along the longitudinal axis of the actuator can be used.
  • excitation induction occurs due to the tension of the wire to form a desired configuration.
  • the posture since the posture is adjusted through the tension of the wire, there may be a problem in that the posture can be easily deformed by an external force in a direction different from the direction of the wire of the tension.
  • An object of an embodiment is to provide a flexible drive device.
  • a flexible drive device includes a proximal portion; A plurality of joints connected to be driveably connected from the end of the proximal part with respect to the longitudinal axis; A distal portion connected to the ends of the plurality of joints; A pair of driving wires passing through the plurality of joints in parallel along the vertical axis to drive the plurality of joints in a rotational direction to rotate about a horizontal axis perpendicular to the vertical axis; And a fixed wire that passes through the plurality of joints in a form converging along the longitudinal axis to adjust the stiffness of the plurality of joints.
  • the joint portion may include a pair of contact portions in which both edge portions are recessed along the vertical axis along a horizontal axis perpendicular to the central axis of the joint portion parallel to the vertical axis;
  • the fixed wire passes through, and includes a pair of fixed wire passages having a shape inclined to converge symmetrically with respect to the longitudinal axis, and among the plurality of joints, the more joint portions connected adjacent to the distal portion, each joint portion
  • the spacing between the pair of fixed wire passages is sequentially decreased, and a portion of the fixed wire passing between the plurality of joint portions may be parallel to the longitudinal axis.
  • the fixed wire passage may include a front opening exposed toward the proximal portion; And a rear opening exposed toward the distal portion, and among a pair of joint portions adjacent to each other, the rear opening of the joint portion relatively adjacent to the proximal portion and the front opening of the joint portion relatively adjacent to the distal portion, the longitudinal axis It can be located on the same line parallel to.
  • the contact portions of each of the plurality of joints are rotated so as to be in close contact with the connected joints, and among a pair of joints that are in close contact with each other, the joints relatively adjacent to the proximal portion are the The rear opening and the front opening of the joint portion relatively adjacent to the distal portion may be in close contact so that the shapes of the respective openings engage with each other.
  • a portion of the plurality of joints passing through the fixed wire passage has an inclination that converges toward the central axis of each of the plurality of joints, and a portion passing between the plurality of joints is a joint portion that has passed beforehand. It can be parallel to the central axis.
  • the flexible driving device further comprises a central wire passing through the central axis of the plurality of joints and fixed to the distal portion, the joint portion is formed to be spaced apart along the horizontal axis with respect to the central axis, and the one A pair of drive wire passages through which the pair of drive wires pass; And a central wire passage through which the central wire passes along the central axis.
  • the pair of driving wire passages, the pair of fixed wire passages, and the central wire passage of the joint portion may be located on the same line along a horizontal axis orthogonal to the central axis of the joint portion.
  • the flexible driving apparatus of an embodiment since it is possible to individually adjust the driving and rigidity through two types of wire configurations of a driving wire and a fixed wire, it is structurally simple and has the advantage of maintaining miniaturization.
  • variable stiffness can be implemented by adjusting the tension applied to the fixed wire.
  • the flexible driving apparatus it is possible to prevent a bending phenomenon that occurs due to an excess degree of freedom when only a conventional balanced wire is used.
  • a fixed wire connected between both joint portions in the process of rolling contact portions adjacent to each other, can maintain an angle between the central axes of each joint portion, so that the fixed wire is formed for each section of the fixed wire.
  • the amount and direction of the tension can be prevented from being dispersed, and it is possible to prevent the phenomenon of being pinched between the joints.
  • FIG. 1 is a perspective view of a flexible driving device according to an embodiment.
  • FIG. 2 is a perspective view of a joint according to an embodiment.
  • FIG 3 is a perspective view of a joint according to an embodiment.
  • FIG. 4 is an exploded perspective view illustrating a coupling relationship between a distal portion and a wire gripping portion according to an exemplary embodiment.
  • FIG. 5 is a cross-sectional view of a flexible drive device according to an exemplary embodiment.
  • FIG. 6 is a perspective view illustrating a state in which the flexible driving device is driven in one direction according to an exemplary embodiment.
  • FIG. 7 is a cross-sectional view illustrating a state in which the flexible driving device is driven in one direction according to an exemplary embodiment.
  • FIG. 8 is a cross-sectional view of a flexible drive device according to an exemplary embodiment.
  • FIG. 9 is a perspective view of a flexible drive device according to an embodiment.
  • FIG. 10 is a front view of a flexible driving device according to an embodiment.
  • FIG. 11 is a perspective view of a joint according to an embodiment.
  • FIG. 12 is a bottom perspective view of a wire gripping unit according to an exemplary embodiment.
  • FIG. 13 is a cross-sectional view of a flexible drive device according to an exemplary embodiment.
  • FIG. 14 is a cross-sectional view of a flexible driving device according to an exemplary embodiment.
  • FIG. 15 is an enlarged cross-sectional view of a region A of FIG. 14.
  • first, second, A, B, (a), and (b) may be used. These terms are for distinguishing the constituent element from other constituent elements, and the nature, order, or order of the constituent element is not limited by the term.
  • FIG. 1 is a perspective view of a flexible drive device according to an embodiment
  • FIG. 2 is a perspective view of a joint according to an embodiment
  • FIG. 3 is a perspective view of a joint according to an embodiment
  • FIG. 4 is a distal part according to an embodiment Is an exploded perspective view showing a coupling relationship between a wire gripping unit and
  • FIG. 5 is a cross-sectional view of a flexible driving device according to an embodiment
  • FIG. 6 is a perspective view of a flexible driving device according to an embodiment driven in one direction
  • 7 is a cross-sectional view illustrating a state in which the flexible driving device is driven in one direction according to an exemplary embodiment.
  • the flexible drive device 1 is a continuous actuator operated through tensioning of a wire.
  • the flexible drive device 1 is in a state in which tension is not applied to the driving wire 16 as shown in FIG. 1, that is, along a longitudinal axis (z-axis in the drawing) based on a neutral state that is not driven. It has an elongated shape.
  • the flexible drive device 1 includes a proximal portion 11 serving as a reference for driving, a plurality of joint portions 12 that are movably connected from the end of the proximal portion 11 with respect to the longitudinal axis, and a plurality of joint portions.
  • the distal portion 13 connected to the end of (12) and a driving wire that passes through the plurality of joints 12 in parallel along the longitudinal axis to drive the plurality of joints 12 in a rotational direction about an axis perpendicular to the longitudinal axis (16), a fixed wire 17 for adjusting the rigidity of the plurality of joints 12 by passing through the plurality of joints 12 in a form converging along the longitudinal axis, and a driving wire 17 connected to the driving wire 16 16) a driving actuator 18 for adjusting the tension of the fixed wire 17, a fixed actuator 19 connected to the fixed wire 17 to adjust the tension of the fixed wire 17, a driving actuator 18 and a fixed actuator 19 It may include a control unit 15 to control.
  • the proximal part 11 is a member that serves as a relative reference for a rotational motion in a rotational direction in which a plurality of joints 12 rotate about an axis (y-axis or x-axis in the drawing) perpendicular to the longitudinal axis (z-axis in the drawing).
  • a plurality of joints 12 rotate about an axis (y-axis or x-axis in the drawing) perpendicular to the longitudinal axis (z-axis in the drawing).
  • the central axis of the proximal portion 11 may have a fixed position to coincide with the longitudinal axis.
  • the proximal portion 11 may include a driving wire inlet passage 111 through which the driving wire 16 passes along a longitudinal axis and a fixed wire inlet passage 112 through which the fixed wire 17 passes.
  • the driving wire inflow passage 111 may be a pair of passages formed through both edge portions spaced apart from the central axis of the proximal portion 11 along the rotation direction as shown in FIG. 5.
  • the driving wire inlet passage 111 may be formed at a position spaced apart from the longitudinal axis of the flexible driving device 1.
  • the fixed wire inlet passage 112 may be formed as a pair of passages that are formed through a portion spaced parallel from the central axis of the proximal portion 11 along a direction perpendicular to the vertical axis as shown in FIG. 5.
  • the fixed wire inlet passage 112 may be formed at a position spaced apart at a symmetrical interval with respect to the longitudinal axis of the flexible driving device 1.
  • the pair of fixed wire inlet passages 112 may be formed inside from each of the pair of driving wire inlet passages 111.
  • the fixed wire inlet passage 112 may be formed in a position closer than the drive wire inlet passage 111.
  • the plurality of joint portions 12 may be a set of a plurality of continuous bodies continuously connected from the proximal portion 11 through the driving wire 16 and the fixed wire 17.
  • the plurality of joint portions 12 may perform flexion or extension movements with respect to the proximal portion 11 in a rotational direction about an axis perpendicular to the longitudinal axis.
  • each of the plurality of joint portions 12 may have different angles with respect to the joint portions 12 adjacent to each other.
  • the plurality of joints 12 may be connected in at least one of a rolling contact method, a gear method, and a hinge method.
  • the joint part 12 closest to the proximal part 11 among the plurality of joint parts 12 may be referred to as a proximal joint part 12a, and the joint part 12 closest to the distal part 13 is a distal joint part 12b. It can be said.
  • each of the joints 12 may include a pair of contact portions 124, a pair of driving wire passages 122, a pair of fixed wire passages 123, and an internal passage 121.
  • the contact portions 124 formed on the joint portions 12 are in contact with each other, thereby limiting the bending angle.
  • the contact portion 124 may have a concave shape to allow a relative angle change between the joint portions 12 adjacent to each other. As shown in FIG. 1, when the flexible drive device 1 is in a neutral posture, from one side of the joint portion 12 facing the other adjacent joint portion 12, the protruding height of the portion in contact with the other adjacent joint portion 12, The protruding height of the contact portion 124 is formed to be lower.
  • the angle at which the joint portions 12 are connected to each other is changed so that the plurality of joint portions 12 can be bent toward the rotation direction as shown in FIGS. 6 and 7
  • the configuration of the driving device 1 may be changed.
  • a pair of contact portions 124 may be formed on both surfaces facing the adjacent joint portion 12 along the longitudinal axis as shown in FIG. 5, but it should be noted that it may be formed only on one surface.
  • the pair of driving wire passages 122 are formed at the edge portions of each of the pair of contact portions 124 along a direction perpendicular to the central axis of the joint portion 12, and the driving wire 16 can pass. .
  • a pair of driving wire passages 122 formed in each of the plurality of joints 12 are parallel to the vertical axis and , Have positions that overlap each other along a direction parallel to each other's longitudinal axis.
  • the pair of fixed wire passages 123 may be a pair of passages formed through a portion spaced parallel from the central axis of the proximal portion 11 along a direction perpendicular to the central axis of the joint portion 12.
  • the pair of fixed wire passages 123 may have a structure symmetrical to the central axis of the joint portion 12.
  • the pair of fixed wire passages 123 may have a shape inclined so as to converge to the central axis of the joint portion 12 toward a distal direction.
  • a pair of fixed wire passages 123 formed in each of the plurality of joints 12 are relatively centered on the joints 12 as they go from the proximal part 11 to the joint part 12 adjacent to the distal part 13 It can be formed in a position adjacent to the axis.
  • the distance between the pair of fixed wire passages 123 of the plurality of joint portions 12 is sequentially decreased along the longitudinal axis, and at the same time, a pair of fixed wires of each of the plurality of joint portions 12
  • the passages 123 may form an oblique inclination in a form that converges with each other along the longitudinal axis.
  • a pair of fixed wire passages 123 are formed at positions close to the pair of driving wire passages 122, respectively, while shown in FIG. 3
  • the pair of fixed wire passages 123 are formed at positions spaced inwardly from the pair of driving wire passages 122, respectively.
  • a fixed wire 17 passing through a plurality of joint portions 12 as shown in FIG. 5 As goes toward the vertical axis, it can pass in a form that converges toward the center.
  • the fixed wire passage 123 and the driving wire passage 122 may be located in the same radial direction. According to such a structure, the lateral rigidity can be improved more efficiently.
  • the fixed wire passage 123 and the driving wire passage 122 may not be located in the same radial direction, and unless there is an opposite description, the scope of the present invention must be located in the same radial direction. It should be noted that it is not limited to this.
  • the inner passage 121 may be formed through the longitudinal axis.
  • the inner passage 121 may be inserted into a variety of end effectors depending on the purpose, including surgical instruments such as a camera, forceps or laser from the proximal portion 11 toward the distal portion 13, and simultaneously manipulate and drive them. It is possible to form a wire or a channel through which the wire passes.
  • a plurality of internal passages 121 may be formed.
  • the plurality of inner passages 121 when viewed from the vertical axis, are in a virtual straight line connecting the pair of driving wire passages 122 and the pair of fixed wire passages 123 along an axis perpendicular to the central axis. It can be formed in a non-overlapping position.
  • the distal portion 13 is a member corresponding to the driving end of the plurality of joint portions 12, and may be connected to a distal joint portion 12b that is finally connected from the proximal portion 11 of the plurality of joint portions 12.
  • the distal portion 13 may form the distal end of the flexible drive device 1, but the proximal portion 11 and the distal portion 13 described herein are relative positional relationships of members connected to a plurality of joint portions 12. It should be noted that it is only a configuration for imparting a, and a structure in which a plurality of flexible driving devices 1 are connected in series is possible, respectively, or connected to an additional external component.
  • the distal portion 13 includes a pair of driving wire receiving holes 133, a pair of fixed wire receiving holes 134, a central groove 132, a wire gripping portion 14, and an inner passage 131.
  • Can include.
  • the pair of driving wire receiving holes 133 may be a pair of holes into which the driving wire 16 passing through the plurality of joint portions 12 along the longitudinal axis is inserted.
  • a pair of driving wire receiving holes 133 may be formed at a position overlapping with a pair of driving wire passages 122 formed in the plurality of joints 12 when viewed from the longitudinal axis. I can.
  • the ends of the driving wires 16 formed as a pair as shown in FIG. 5 may be inserted into and fixed to the pair of driving wire receiving holes 133, respectively.
  • the pair of driving wire receiving holes 133 may be formed as one passage in communication with each other, so that one fixed wire 17 passes sequentially, as a result, the fixed wire 17 is a flexible driving device. It should be noted that it is possible to form a structure that circulates (1).
  • the driving wire 16 passing through the plurality of joints 12 along the longitudinal axis may be inserted into the pair of fixed wire receiving holes 134.
  • the pair of fixed wire receiving holes 134 may be formed in a portion spaced parallel from the central axis of the distal portion 13 along a direction perpendicular to the longitudinal axis.
  • a pair of fixed wire receiving holes 134 corresponding to having a shape in which the pair of fixed wire passages 123 of the plurality of joint portions 12 converge along the longitudinal axis, as shown in FIG.
  • a passage having the same angle as the pair of fixed wire passages 123 and converging may be formed.
  • the wire gripping portion 14 may be accommodated in the distal portion 13.
  • the central groove 132 may be formed in the center of the distal portion 13 to communicate with the pair of fixed wire receiving holes 134.
  • the central groove 132 may be a groove recessed from the upper side with respect to the vertical axis as shown in FIG. 4. Accordingly, the wire gripping portion 14 may be detachably inserted from the upper side of the distal portion 13.
  • the central groove 132 may communicate with the pair of fixed wire receiving holes 134 from the lower side based on the longitudinal axis.
  • the wire gripping part 14 may grip the fixed wire 17 inserted into the central groove 132 and inserted into the distal part 13.
  • the wire gripping portion 14 may be formed of a material that is relatively more flexible than the distal portion 13.
  • the wire gripping portion 14 may include a conical shape whose cross-sectional width decreases toward a vertical axis.
  • the wire gripping part 14 may include a fixed passage 141 through which the fixed wire 17 passes.
  • the fixed passage 141 corresponds to a shape in which a pair of fixed wire passages 123 of a plurality of joint portions 12 converge along the longitudinal axis, and as shown in FIG. 5, a pair of fixed wire passages 123 and one A passage having the same angle as the pair of fixed wire receiving holes 134 and converging may be formed.
  • the fixed passage 141 may communicate with a pair of fixed wire receiving holes 134 having an accurate position and angle as shown in FIG. 5.
  • the fixed wire 17 passing through the fixed passage 141 may be exposed to the upper side of the wire gripping portion 14 as shown in FIG. 5, and the fixed wire 17 based on the exposed point is each It can be branched to both sides along the transverse direction perpendicular to the central axis of the joint portion 12 of the joint portion 12 to pass through the plurality of joint portions 12.
  • the fixed passage 141 may be formed as a pair of passages passing through the wire gripping portion 14, but may be formed as a single passage passing through the fixed passage 141.
  • the wire gripping portion 14 can have flexibility and margin that the shape of the fixing wire 17 can change within the central groove 132, It is possible to reduce the possibility of damage caused by sudden driving of the wires 16 and 17 and the damage of the wires 16 and 17 itself.
  • the inner passage 131 may be a passage formed through the distal portion 13 along the longitudinal axis.
  • the inner passages 121 of the plurality of joint portions 12 and the inner passages 131 of the distal portion 13 may overlap each other. Accordingly, a surgical tool inserted through the inner passage 121 of the plurality of joint portions 12 may be supplied in the distal direction through the inner passage 131 of the distal portion 13.
  • the driving wire 16 may have one end connected to the driving actuator 18, and the other end may be fixed to the distal portion 13 after passing through the proximal portion 11 and a plurality of joint portions 12 in sequence.
  • the driving wire 16 may be formed of a pair of wires extending away from each other facing each other along a direction perpendicular to the vertical axis.
  • a pair of driving wires 16 include a pair of driving wire inflow passages 111 of the proximal portion 11, a pair of driving wire passages 122 of a plurality of joint portions 12, and a distal portion ( 13) may be inserted into each of the pair of driving wire receiving holes 133.
  • the pair of driving wires 16 passing through the opposite edge portions of the flexible driving device 1 are It can extend parallel to the longitudinal axis.
  • the fixed wire 17 is connected to the fixed actuator 19 at one end, and the other end may be fixed to the distal portion 13 after passing through the proximal portion 11 and the plurality of joint portions 12 in a convergent manner.
  • the fixing wire 17 has a structure of a wire passing through the proximal portion 11 and a plurality of joint portions 12 in a state spaced side by side along the transverse direction perpendicular to the central axis, but 2 in the distal portion 13
  • the fixed wires 17 of the strands may be connected to each other.
  • the two-stranded fixed wire 17 includes a pair of fixed wire inflow passages 112 of the proximal portion 11, a pair of fixed wire passages 123 of the plurality of joint portions 12, and the distal portion ( After passing through the pair of fixed wire receiving holes 134 of 13), they may be connected to each other in the fixed passage 141 of the wire gripping portion 14.
  • the two fixed wires 17 may not be connected to each other, but may be formed of a pair of wires connecting the fixed actuator 19 and the wire gripping portion 14 along an independent path.
  • the two ends of the fixed wire 17 connected to the fixed actuator 19 are a plurality of joints 12 It may have a structure that symmetrically converges so as to have oblique angles toward each other while passing through.
  • the driving actuator 18 may be connected to each of the pair of driving wires 16 to apply tension to each of the driving wires 16.
  • the fixed actuator 19 may be connected to both ends of the fixed wire 17 passing through the plurality of joint portions 12 and the distal portion 13 to apply tension to the fixed wire 17.
  • the control unit 15 may drive the plurality of joints 12 by adjusting the tension applied to the driving wire 16 through the driving actuator 18.
  • control unit 15 passes through a pair of driving wire passages 122 of each of the plurality of joints 12 in a state spaced side by side along the transverse direction perpendicular to the central axis of each of the plurality of joints 12
  • the plurality of joints 12 may perform a bending motion toward one of the rotational directions as shown in FIGS. 6 and 7.
  • the control unit 15 may adjust the stiffness to maintain the driving posture of the plurality of joints 12 by adjusting the tension applied to the fixed wire 17 through the fixed actuator 19.
  • the flexible drive device 1 it is possible to provide a joint structure that is robust to lateral load and torque.
  • the flexible driving device 1 further comprises a driving wire 16 parallel to the longitudinal axis and a fixing wire 17 in a form that converges toward the end, so that a pair of parallel inserted Rigidity against a lateral load that cannot be supported by the drive wire 16 alone can be improved.
  • the flexible drive device 1 by applying tension to the fixing wire 17 even in a neutral state in which the plurality of joints 12 are not bent, a plurality of lateral loads and torques are generated. It is possible to improve the rigidity so that the joint portion 12 can maintain the extended state.
  • the fixed wire 17 it can be easy to align the neutral axis (that is, the longitudinal axis of the flexible drive device 1) between the plurality of joints 12, due to the asymmetry of each of the plurality of joints 12 It is possible to prevent the problem that the excitation induction occurs.
  • FIG. 8 is a cross-sectional view of a flexible drive device according to an exemplary embodiment.
  • FIG. 8 a configuration of a flexible driving device 1 ′ having a configuration different from that of the embodiment illustrated in FIGS. 1 to 7 can be confirmed.
  • the flexible driving device 1 ′ may be understood as adding a configuration of a central wire 3 passing through a part of the center in the flexible driving device 1 of FIGS. 1 to 7.
  • the flexible driving device 1 ′ includes a proximal portion 11 serving as a driving standard, a plurality of joint portions 12 that are driveably connected from the end of the proximal portion 11 with respect to the longitudinal axis, and a plurality of joint portions.
  • the distal portion 13 connected to the end of (12) and a driving wire that passes through the plurality of joints 12 in parallel along the longitudinal axis to drive the plurality of joints 12 in a rotational direction about an axis perpendicular to the longitudinal axis (16) And, a fixed wire 17 that adjusts the stiffness of the plurality of joints 12 by passing through the plurality of joints 12 in a form converging along the longitudinal axis, and the center of the plurality of joints 12 along the longitudinal axis
  • the central wire 3 fixed to the distal portion 13 through the passage, the driving actuator 18 connected to the driving wire 16 to adjust the tension of the driving wire 16, and connected to the fixed wire 17
  • a fixed actuator 19 for adjusting the tension of the fixed wire 17 and a control unit 15 for controlling the driving actuator 18 and the fixed actuator 19 may be included.
  • the center wire 3 may be fixed to the distal portion 13 after passing along the neutral axis of the plurality of joint portions 12 based on the neutral state in which the plurality of joint portions 12 are not driven as shown in FIG. 8.
  • the central wire 3 may be connected to and fixed to the wire gripping portion 14.
  • the tension of the central wire 3 can be adjusted and an auxiliary actuator that can be controlled through the control unit 15 may be additionally provided.
  • each of the plurality of joints 12 is a central wire passage formed through the central portion along the longitudinal axis so that the central wire 3 passes. It may further include (125).
  • the neutral axis of each of the plurality of joints 12 can be stably aligned. Through this, it is possible to prevent a problem in which excitation induction occurs due to asymmetry of each of the plurality of joints 12.
  • FIG. 9 is a perspective view of a flexible driving device according to an embodiment
  • FIG. 10 is a front view of a flexible driving device according to an embodiment
  • FIG. 11 is a perspective view of a joint according to an embodiment
  • FIG. 12 is It is a bottom perspective view of the wire gripping part according to the.
  • FIGS. 9 to 12 a configuration of a flexible driving device 2 having a configuration different from that of the embodiment illustrated in FIGS. 1 to 7 can be confirmed.
  • a configuration of a joint portion and a wire configuration may be added to enable two degrees of freedom driving in the flexible drive device 1 of the one-degree of freedom driving method shown in FIGS. 1 to 7. It can be understood as being modified.
  • a proximal portion 21, a plurality of joints 22, a distal portion 23, a first driving wire 261, a second driving wire 262, a first fixed wire (271), a second fixed wire 272, a driving operation unit 28, a fixed operation unit 29, and a control unit 25 may be included.
  • the proximal portion 21 is a first rotational direction in which a plurality of joint portions 22 rotate about a first horizontal axis (x-axis in the drawing) orthogonal to the vertical axis, and a second horizontal axis perpendicular to the vertical axis and the first horizontal axis (Fig. It may be a member that serves as a relative reference for driving in the second rotation direction rotating about the y-axis).
  • the plurality of joints 22 are continuously connected from the proximal portion 21 through a first driving wire 261, a second driving wire 262, a first fixing wire 271 and a second fixing wire 272. It may be a set of a plurality of continuums.
  • the plurality of joints 22 may perform flexion or extension motion with respect to the proximal part 21 with 2 degrees of freedom along the first and second rotation directions.
  • the plurality of joint portions 22 may include portions in which the two types of joint portions 22 are alternately arranged with each other according to the order in which they are connected from the proximal portion 21.
  • the plurality of joint portions 22 may be divided into a first joint portion 22a and a second joint portion 22b according to the type.
  • first joint portion 22a and the second joint portion 22b may be distinguished according to an angle in which the joint portion 22 having the same shape is rotated about a central axis parallel to the vertical axis. For example, if the angle is 0 degrees, it may be referred to as a first joint part 22a, and if the angle is 90 degrees, it may be referred to as a second joint part 22b. It should be noted that the description of each of the first joint portion 22a and the second joint portion 22b will be replaced with a description of one joint portion 22 below.
  • the joint portion 22 includes a pair of first contact portions 224, a pair of second contact portions 225, a pair of first driving wire passages 222a, and a pair of second driving wire passages ( 222b), a pair of first fixed wire passages 223a, a pair of second fixed wire passages 223b, and an inner passage 221.
  • the pair of first contact portions 224 may be formed on one of both surfaces of the joint portion 22.
  • the pair of first contact portions 224 may be formed in opposite directions to each other based on a first virtual line (y-axis in the drawing) orthogonal to the central axis of the joint portion 22.
  • the pair of first contact portions 224 may have a protrusion height lower than a maximum protrusion height of a portion of the one surface corresponding to the first virtual line.
  • the pair of first contact portions 224 are in a direction in which any one surface portion of both surfaces facing the joint portions 22 adjacent to each other is perpendicular to the central axis ( It may be a portion that is depressed in the vertical axis direction toward both edges along the y-axis direction).
  • the pair of second contact portions 225 may be formed on the other surface of both surfaces of the joint portion 22.
  • the pair of second contact portions 225 may be formed in opposite directions to each other based on a central axis of the joint portion 22 and a second virtual line (x-axis in the drawing) that is orthogonal to the first virtual line at the same time. .
  • the pair of second contact portions 225 may have a protrusion height lower than a maximum protrusion height of a portion of the other surface corresponding to the second virtual line.
  • the pair of second contact portions 225 is in a direction in which the other surface portion of both surfaces facing the joint portions 22 adjacent to each other is perpendicular to the central axis ( The x-axis direction) may be a portion that is depressed in the vertical axis direction toward both edges.
  • a first contact portion 224 may be formed on an upper surface of the first joint portion 22a, and a second contact portion 225 may be formed on the lower surface thereof.
  • the second joint portion 22b may have a second contact portion 225 formed on an upper surface thereof and a first contact portion 224 formed on the lower surface thereof.
  • the second joint portion 22b positioned closer to the upper side than the first joint portion 22a is capable of bending motion in the first rotation direction perpendicular to the vertical axis (rotation direction around the x-axis),
  • the first joint portion 22a positioned closer to the upper side than the second joint portion 22b is capable of bending motion in the second rotation direction (rotation direction around the y-axis).
  • the plurality of joint portions 22 can be driven with two degrees of freedom in the first rotation direction and the second rotation direction.
  • the first driving wire passage 222a is formed at an edge portion of the first contact portion 224 and may pass the first driving wire 261.
  • the second driving wire passage 222b may be formed at an edge portion of the second contact portion 225 and may pass the second driving wire 262.
  • first driving wire passages 222a and a pair of second driving wire passages 222b are radially spaced apart from each other at an angle perpendicular to each other along the edge of the joint 22 as shown in FIG. 11. Can be formed in position.
  • the first fixed wire passage 223a is formed in the first contact portion 224 and can pass the first fixed wire 271.
  • the pair of first fixed wire passages 223a may be formed through at a point spaced inward from each of the pair of first driving wire passages 222a along a first virtual line orthogonal to the central axis. I can.
  • the second fixed wire passage 223b is formed in the second contact portion 225 and can pass the second fixed wire 272.
  • the pair of second fixed wire passages 223b are spaced inwardly from each of the pair of second driving wire passages 222b along a central axis and a second virtual line orthogonal to the first virtual line. It can be formed through the point.
  • the pair of first fixed wire passages 223a and the pair of second fixed wire passages 223b may have a shape that converges obliquely inward, respectively, in an order away from the proximal portion 21.
  • a pair of first fixed wire passages 223a and a pair of second fixed wire passages 223b are radially spaced apart from each other at an angle perpendicular to the circumference of the joint 22 as shown in FIG. Can be formed in
  • the distal portion 23 is a member corresponding to the driving end of the plurality of joint portions 22 and may be connected to the joint portion 22 that is connected last from the proximal portion 21 among the plurality of joint portions 22.
  • the distal portion 23 includes a pair of first driving wire receiving holes 233a, a pair of second driving wire receiving holes 233b, a pair of first fixed wire receiving holes (not shown), and one A pair of second fixed wire receiving holes (not shown), a central groove 242, a wire gripping portion 24, and an inner passage 231 may be included.
  • the pair of first driving wire receiving holes 233a may be a pair of holes into which the first driving wires 261 passing through the plurality of joints 22 are inserted along the longitudinal axis.
  • the pair of second driving wire receiving holes 233b may be a pair of holes into which the second driving wires 262 passing through the plurality of joints 22 are inserted along the longitudinal axis.
  • a pair of first driving wire receiving holes 233a and a pair of second driving wire receiving holes 233b are each formed in a plurality of joints 22 when viewed from the longitudinal axis. It may be formed at a position overlapping the first driving wire passage 222a and the pair of second driving wire passages 222b.
  • a pair of first fixed wire receiving holes may be formed in a portion spaced parallel from the center along a first virtual line orthogonal to the central axis.
  • a pair of second fixed wire receiving holes may be formed in a portion spaced apart from the center by a second virtual line orthogonal to the central axis.
  • a pair of first fixed wire receiving holes (not shown) and a pair of second fixed wire receiving holes (not shown) are each a pair of first fixed wire passages of the plurality of joints 22 A passage having the same angle as each of the 223a and the pair of second fixed wire passages 223b and converging may be formed.
  • the wire gripping part 24 may grip the first fixing wire 271 and the second fixing wire 272 inserted into the central groove 242 and inserted into the distal part 23.
  • the wire gripping portion 24 may be formed of a material that is relatively more flexible than the distal portion 23.
  • the wire gripping portion 24 may include a conical shape whose cross-sectional width decreases toward a vertical axis.
  • the wire gripping part 24 may include a first fixed passage 241a through which the first fixed wire 271 passes, and a second fixed passage 241b through which the second fixed wire 272 passes. I can.
  • the first fixed passages 241a may be a pair of passages formed on a point spaced parallel from the center along a first virtual line orthogonal to the central axis.
  • the second fixed passages 241b may be a pair of passages formed on a point spaced parallel from the center along a second imaginary line orthogonal to the central axis.
  • the first fixed passage 241a and the second fixed passage 241b each have a pair of first fixed wire passages 223a and a pair of second fixed wire passages 223b of the plurality of joint portions 22, respectively. It is possible to form a converging path with the same angle.
  • first fixing wire 271 passing through the pair of first fixing passages 241a along the longitudinal axis is perpendicular to the second fixing wire 272 passing through the pair of second fixing passages 241b. Can cross.
  • the first driving wire 261 may have one end connected to the first driving actuator 281, and the other end may be fixed to the distal part 23 after passing through the proximal part 21 and a plurality of joint parts 22 in sequence.
  • the first driving wire 261 may be formed of a pair of wires that are spaced apart from each other along the first virtual line and extend.
  • the second driving wire 262 may have one end connected to the second driving actuator 282, and the other end may be fixed to the distal part 23 after passing through the proximal part 21 and a plurality of joint parts 22 in sequence.
  • the second driving wire 262 may be formed of a pair of wires that are spaced apart from each other along the second virtual line and extend.
  • the first driving wire 261 and the second driving wire 262 are four points spaced radially at equal intervals along the circumference of the plurality of joints 22 as shown in FIGS. 9 and 10. It can pass through the phases parallel to each other.
  • the first fixed wire 271 passes through the first fixed wire passages 223a formed on one side of the pair of first fixed wire passages 223a with respect to the first virtual line, and then the wire gripping portion 24 As a result, both ends protrude in the proximal direction and are connected to the first fixed actuator 291 by passing through the first fixed wire passages 223a on the other side that are changed while passing through the first fixed passage 241a of It can have a structure that becomes.
  • the second fixed wire 272 passes through the second fixed wire passages 223b formed on one side of the pair of second fixed wire passages 223b based on the second virtual line, and then the wire gripping portion 24 As a result, both ends protrude in the proximal direction and are connected to the second fixed actuator 292 by passing through the second fixed wire passages 223b on the other side that are changed while passing through the second fixed passage 241b of It can have a structure that becomes.
  • each of the two ends is connected to the first and second fixed actuators 291 and 292, respectively.
  • the fixing wire 271 and the second fixing wire 272 may have a structure that symmetrically converges so as to have oblique angles toward each other while passing through the plurality of joint portions 22.
  • the drive operation unit 28 includes a first drive actuator 281 for applying tension to the first drive wire 261 and a second drive actuator 282 for applying tension to the second drive wire 262. I can.
  • the fixed operation unit 29 includes a first fixed actuator 291 for applying tension to the first fixed wire 271 and a second fixed actuator 292 for applying tension to the second fixed wire 272. I can.
  • the controller 25 may drive the plurality of joints 22 along the first rotation direction by adjusting the tension applied to the first driving wire 261 through the first driving actuator 281.
  • the controller 25 may drive the plurality of joints 22 along the second rotation direction by adjusting the tension applied to the second driving wire 262 through the second driving actuator 282.
  • the control unit 25 may adjust the support rigidity of the plurality of joints 22 according to the first rotation direction by adjusting the tension applied to the first fixing wire 271 through the first fixing actuator 291.
  • the controller 25 may adjust the support rigidity of the plurality of joints 22 in the second rotation direction by adjusting the tension applied to the second fixing wire 272 through the second fixing actuator 292.
  • the flexible drive device 2 it is possible to drive the plurality of joints 22 with two degrees of freedom in the first rotation direction and the second rotation direction, and at the same time, in the first rotation direction and the second rotation direction. It is possible to add stiffness to maintain the driving posture.
  • the flexible driving device 2 since it is possible to individually adjust the driving and rigidity through two types of wire configurations of a driving wire and a fixed wire, it is structurally simple and has the advantage of maintaining miniaturization.
  • variable stiffness can be implemented by adjusting the tension applied to the fixed wire.
  • the flexible drive devices 1 and 2 it is possible to stably support the work of the end effector by increasing the rigidity of the continuous actuator.
  • the flexible drive devices 1 and 2 When the flexible drive devices 1 and 2 according to an embodiment are applied to the surgical endoscope, even if the endoscope is bent in various positions, a channel through which the surgical tool can pass through each of the plurality of joints can be secured. And, even if a load and moment are applied to the endoscope, it may not sag easily.
  • FIG. 13 is a cross-sectional view of a flexible drive device according to an exemplary embodiment.
  • the flexible drive device 4 has a flexible body 41 extending along a vertical axis (z-axis direction in FIG. 13) and having flexibility, and parallelizing the edge portion of the flexible body 41 along the vertical axis.
  • a pair of driving wires 46 that drive the flexible body 41 in a rotational direction that rotates around an axis perpendicular to the longitudinal axis, and a flexible body ( 41), a fixed wire 47 connected to the driving wire 46 to adjust the tension of the driving wire 46, and a fixed wire 47 connected to the fixed wire 47 It may include a fixed actuator 49 for adjusting the tension of 47), and a control unit 45 for controlling the driving actuator 48 and the fixed actuator 49.
  • the flexible body 41 may extend along the longitudinal axis and be flexibly curved.
  • the flexible body 41 has a pair of drive wire passages 411 in which both edge portions spaced along an axis perpendicular to the central axis are recessed along the longitudinal axis, and a point spaced apart from each other along an axis perpendicular to the central axis. It is formed as a pair of passages passing through, but the distance between them decreases toward the longitudinal axis and may include a fixed wire passage 412 through which the fixed wire 47 passes.
  • the pair of driving wire passages 411 may be formed in which both edge portions of the flexible body 41 are in equilibrium with each other based on a state in which the flexible driving device 4 is upright along the vertical axis as shown in FIG. 13.
  • the fixed wire passage 412 is recessed along the longitudinal axis at two points spaced inwardly from each of the pair of driving wire passages 411 along an axis perpendicular to the central axis as shown in FIG. It may have a shape that converges obliquely toward and obliquely.
  • the pair of driving wires 46 may bend or extend the flexible body 41 in the rotation direction according to the driving of the driving actuator 48.
  • the fixed wire 47 can adjust the rigidity of the flexible body 41 by driving the fixed actuator 49.
  • the flexible drive device 1, 2, 4 when the flexible drive device 1, 2, 4 is to move inside a narrow and curved tube, the flexible drive device 1, 2, 4 When the end effector reaches the driving position afterwards, the flexible driving devices (1, 2, 4) are made to be in a high rigid state to drive the end effector. Can be stably supported.
  • the flexible driving devices 1, 2, and 4 it is possible to prevent a bending phenomenon that occurs due to an excess degree of freedom when only the existing balanced wire is used.
  • FIG. 14 is a cross-sectional view of a flexible driving device according to an exemplary embodiment
  • FIG. 15 is an enlarged cross-sectional view of area A of FIG. 14.
  • the configuration of the flexible driving device 5 having a configuration different from that of the flexible driving devices 1, 1', 2, 4 of the embodiment shown in FIGS. 1 to 13 can be confirmed. .
  • the flexible drive device 5 includes a proximal portion 51 serving as a reference for driving, a plurality of joint portions 52 that are driveably connected from the end of the proximal portion 51 with respect to the longitudinal axis, and a plurality of The distal part 53 connected to the end of the joint part 52 and the plurality of joint parts 52 are passed in parallel along the longitudinal axis, and the plurality of joint parts 52 are passed along the vertical axis (the x-axis in FIG. 14).
  • the driving wire 56 for driving in the rotation direction of the, and the fixed wire 57 for adjusting the stiffness of the plurality of joints 52 by passing through the plurality of joints 52 in a form converging along the longitudinal axis, and the longitudinal axis Accordingly, it may include a central wire 54 that passes through the center of the plurality of joints 52 and is fixed to the distal portion 53.
  • a portion of the driving wire 56 passing between the plurality of joints 52 may be parallel to the vertical axis (z-axis in FIGS. 14 and 15 ).
  • the plurality of joints 52 includes a pair of contact portions 524 in which both edge portions are recessed along the vertical axis along a transverse direction perpendicular to the central axis of the joint portion 52 parallel to the vertical axis, and the joint portion A pair of driving wire passages 522 through which the driving wire 56 passes parallel to the central axis of 52, and an inclination that converges with respect to the central axis of each joint portion 52 as it approaches the distal portion 53 It may include a pair of fixed wire passages 523 and a central wire passage 525 through which the central wire 54 passes along the central axis.
  • the pair of fixed wire passages 523 may be inclined with respect to the central axis of the joint portion 52 and may be formed symmetrically with respect to the central axis.
  • pair of contact portions 524 may be formed only on any one surface, unlike those formed on both sides of the joint portion 52 as shown in FIGS. 14 and 15.
  • a pair of driving wire passages 522, a pair of fixed wire passages 523, and a central wire passage 525 formed in the joint portion 52 are along the central axis (z-axis in the drawing) of the joint portion 52. It can be located on the same line.
  • the distance between the pair of fixed wire passages 523 of each of the joints 52 may be sequentially decreased.
  • the fixed wire passage 523 may include a front opening 523b exposed toward the distal portion 53 and a rear opening 523a exposed toward the proximal portion 51.
  • the position of the front opening 523b of the joint portion 52 is the rear opening 523a of the joint portion 52 It can be formed in a position closer to the center than the position of ). That is, the front opening 523b may be formed at a position closer to the central axis of the joint portion 52 than the rear opening 523a.
  • the rear opening 523a of the joint portion 52 relatively adjacent to the proximal portion 51 and the front opening 523b of the joint portion 52 relatively adjacent to the distal portion 53 Can be located on the same line parallel to the longitudinal axis.
  • Each of the front opening 523b and the rear opening 523a may accurately overlap along a direction parallel to the vertical axis.
  • a virtual straight line connecting between the openings of the fixed wire passages 523 of the two joint portions 52 connected adjacent to each other may be parallel to the vertical axis or the central axis of the joint portion 52. have.
  • the fixed wires 17, 271, 272 of the flexible drive devices 1, 1', 2 shown in FIGS. 5, 8 and 10 decrease symmetrically and linearly as they go proximally along the longitudinal axis.
  • the passage path of the fixed wire 57 of the flexible drive device 5 is only in the section passing through the fixed wire passage 523 of the joint part 52.
  • a slope converging to a central axis is formed, and in a section connected between the plurality of joint portions 52, it may be parallel to the central axis of the joint portion 52 that has passed previously.
  • the contact portions 524 of each of the joints 52 adjacent to each other As is rotated so as to be in close contact with the joint portion 52 to be connected to each other, the shapes of the openings 523a and 523b of the fixed wire passages 523 on both joint portions 52 may be in close contact with each other while being engaged with each other.
  • the angle formed by the fixed wire 57 connected between the fixed wire passages 523 of each of the joints 52 is, respectively, Since it can be maintained to have a value between the angles formed by the central axis of, it is possible to prevent dispersion of the magnitude and direction of the tension formed for each section of the fixing wire 57.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

일 실시 예에 따른 유연 구동 장치는 근위부; 종축을 기준으로 상기 근위부의 단부로부터 구동 가능하게 연결되는 복수개의 관절부; 상기 복수개의 관절부의 단부에 연결되는 원위부; 상기 복수개의 관절부를 상기 종축을 따라서 평행하게 통과하여 상기 복수개의 관절부를 상기 종축에 수직한 횡축을 중심으로 회전시키는 회동 방향으로 구동하는 한 쌍의 구동 와이어; 및 상기 복수개의 관절부를 상기 종축을 따라서 수렴하는 형태로 통과하여 상기 복수개의 관절부의 강성을 조절하는 고정 와이어를 포함할 수 있다.

Description

유연 구동 장치
이하의 설명은 유연 구동 장치에 관한 것이다.
연속체 작동기(continuum manipulator)는 다수의 관절(joint)들이 연속적으로 연결되어 자유도의 개수가 구동기의 개수보다 많은 하나의 작동기를 형성하는 초잉여 작동기(hyper-redundant manipulator)와 하나의 변형체가 작동기를 형성하여 자유도의 개수가 무한한 유연 작동기(flexible manipulator)를 포함한다.
연속체 작동기는 단일 관절로 형성되는 작동기와 다르게 완만한 곡률을 가지며 작동하기 때문에 유연한 경로를 따라서 삽입되어야 하는 의료용 카테터, 내시경 또는 수술 도구와 같은 의료 장비와, 상/하수도관, 변기 통로, 엔진 내부 또는 배전반 등 좁고 굴곡진 공간으로 들어가야하는 산업용 장비에 주로 활용될 수 있다.
연속체 작동기를 구동하는 방식으로는 작동기의 종축을 따라 삽입되는 와이어를 이용한 위치제어 방식이 사용될 수 있는데, 와이어 구동 방식을 사용할 경우, 와이어의 인장에 의해 여자유도가 발생하여 원하는 자세(configuration)를 형성하는데 문제를 야기할 있다. 또한, 와이어의 장력을 통해 자세를 조절하는 구조인 만큼 장력의 와이어의 방향과 다른 방향으로의 외력에 의해 쉽게 자세가 변형될 수 있는 문제가 발생할 수 있다.
특히 연속체 작동기의 엔드 이펙터를 통해 작업을 수행하는 경우, 연속체 작동기는 횡 방향의 하중과 토크에 지속적으로 노출되기 때문에, 원하는 자세를 형성하거나 자세를 유지하는데 취약하다는 문제점이 존재하였다.
따라서, 와이어 구동 방식으로 연속체 작동기를 구동하더라도, 원하지 않는 여자유도가 발생하지 않고 횡 방향의 하중과 토크에 강인한 와이어 구동식 연속체 작동기의 필요성이 증대되고 있는 실정이다.
전술한 배경기술은 발명자가 본 발명의 도출과정에서 보유하거나 습득한 것으로서, 반드시 본 발명의 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다.
일 실시 예의 목적은 유연 구동 장치를 제공하는 것이다.
일 실시 예에 따른 유연 구동 장치는 근위부; 종축을 기준으로 상기 근위부의 단부로부터 구동 가능하게 연결되는 복수개의 관절부; 상기 복수개의 관절부의 단부에 연결되는 원위부; 상기 복수개의 관절부를 상기 종축을 따라서 평행하게 통과하여 상기 복수개의 관절부를 상기 종축에 수직한 횡축을 중심으로 회전시키는 회동 방향으로 구동하는 한 쌍의 구동 와이어; 및 상기 복수개의 관절부를 상기 종축을 따라서 수렴하는 형태로 통과하여 상기 복수개의 관절부의 강성을 조절하는 고정 와이어를 포함할 수 있다.
상기 관절부는, 상기 종축에 평행한 상기 관절부의 중심축에 직교하는 횡축을 따라서 양 가장자리 부분이 상기 종축을 따라 함몰 형성되는 한 쌍의 접촉부; 상기 고정 와이어가 통과하고, 상기 종축에 대해 서로 대칭적으로 수렴하도록 경사진 형태를 갖는 한 쌍의 고정 와이어 통로를 포함하고, 상기 복수개의 관절부 중, 상기 원위부에 인접하게 연결되는 관절부 일수록, 관절부 각각의 상기 한 쌍의 고정 와이어 통로 사이의 간격은 순차적으로 감소하고, 상기 고정 와이어 중 상기 복수개의 관절부의 사이를 통과하는 부분은 상기 종축에 평행할 수 있다.
상기 고정 와이어 통로는, 상기 근위부를 향해 노출되는 전방 개구; 및 상기 원위부를 향해 노출되는 후방 개구를 포함하고, 서로 인접하게 연결된 한 쌍의 관절부 중, 상대적으로 상기 근위부에 인접한 관절부의 상기 후방 개구 및 상대적으로 상기 원위부에 인접한 관절부의 상기 전방 개구는, 상기 종축에 평행한 동일한 선 상에 위치할 수 있다.
상기 한 쌍의 구동 와이어에 인가되는 장력에 의해 복수개의 관절부 각각의 접촉부는 마주보며 연결되는 관절부에 밀착되도록 회동하고, 서로 인접하게 접촉하는 한 쌍의 관절부 중, 상대적으로 상기 근위부에 인접한 관절부의 상기 후방 개구 및 상대적으로 상기 원위부에 인접한 관절부의 상기 전방 개구는, 각각의 개구의 형상이 서로 맞물리도록 밀착될 수 있다.
상기 고정 와이어 중, 상기 복수개의 관절부의 상기 고정 와이어 통로를 통과하는 부분은 상기 복수개의 관절부 각각의 중심축을 향해 수렴하는 경사를 갖되, 상기 복수개의 관절부 사이를 통과하는 부분은 선행하여 통과한 관절부의 중심축에 평행할 수 있다.
일 실시 예에 따른 유연 구동 장치는 상기 복수개의 관절부의 중심축을 통과하고 상기 원위부에 고정되는 중앙 와이어를 더 포함하고, 상기 관절부는, 상기 중심축을 기준으로 상기 횡축을 따라서 이격되어 형성되고, 상기 한 쌍의 구동 와이어가 통과하는 한 쌍의 구동 와이어 통로; 및 상기 중심축을 따라서 상기 중앙 와이어가 통과하는 중앙 와이어 통로를 더 포함할 수 있다.
상기 관절부의 상기 한 쌍의 구동 와이어 통로, 한 쌍의 고정 와이어 통로 및 중앙 와이어 통로는, 상기 관절부의 상기 중심축에 직교하는 횡축을 따라서 동일한 선상에 위치할 수 있다.
일 실시 예의 유연 구동 장치에 의하면, 구동 와이어 및 고정 와이어의 2 종류의 와이어 구성을 통해 구동과 강성을 개별적으로 조절하는 것이 가능하므로 구조적으로 단순하며 소형화가 유지한 장점을 갖는다.
일 실시 예의 유연 구동 장치에 의하면, 고정 와이어에 인가되는 장력을 조절함으로써 가변 강성을 구현할 수 있다.
일 실시 예의 유연 구동 장치에 의하면, 기존의 평형 와이어만을 사용할 경우에 잉여 자유도로 인해 발생하는 굴곡 현상을 방지할 수 있다.
일 실시 예의 유연 구동 장치에 의하면, 서로 인접한 관절부가 구름 접촉하는 동작 과정에서, 양 관절부 사이에서 연결되는 고정 와이어가 관절부 각각의 중심축들 사이의 각도를 유지할 수 있어서, 고정 와이어의 구간별로 형성되는 장력의 크기 및 방향이 분산되는 것을 방지할 수 있고, 관절부사이에 끼이는 현상을 방지할 수 있다.
도 1은 일 실시 예에 따른 유연 구동 장치의 사시도이다.
도 2는 일 실시 예에 따른 관절부의 사시도이다.
도 3은 일 실시 예에 따른 관절부의 사시도이다.
도 4는 일 실시 예에 따른 원위부와 와이어 파지부의 결합 관계를 나타내는 분해 사시도이다.
도 5는 일 실시 예에 따른 유연 구동 장치의 단면도이다.
도 6은 일 실시 예에 따른 유연 구동 장치가 일 방향으로 구동된 상태의 사시도이다.
도 7은 일 실시 예에 따른 유연 구동 장치가 일 방향으로 구동된 상태의 단면도이다.
도 8은 일 실시 예에 따른 유연 구동 장치의 단면도이다.
도 9는 일 실시 예에 따른 유연 구동 장치의 사시도이다.
도 10은 일 실시 예에 따른 유연 구동 장치의 정면도이다.
도 11은 일 실시 예에 따른 관절부의 사시도이다.
도 12는 일 실시 예에 따른 와이어 파지부의 저면 사시도이다.
도 13은 일 실시 예에 따른 유연 구동 장치의 단면도이다.
도 14는 일 실시 예에 따른 유연 구동 장치의 단면도이다.
도 15는 도 14의 영역 A의 확대 단면도이다.
이하, 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
도 1은 일 실시 예에 따른 유연 구동 장치의 사시도이고, 도 2는 일 실시 예에 따른 관절부의 사시도이고, 도 3은 일 실시 예에 따른 관절부의 사시도이고, 도 4는 일 실시 예에 따른 원위부와 와이어 파지부의 결합 관계를 나타내는 분해 사시도이고, 도 5는 일 실시 예에 따른 유연 구동 장치의 단면도이고, 도 6은 일 실시 예에 따른 유연 구동 장치가 일 방향으로 구동된 상태의 사시도이고, 도 7은 일 실시 예에 따른 유연 구동 장치가 일 방향으로 구동된 상태의 단면도이다.
도 1 내지 도 7을 참조하면, 일 실시 예에 따른 유연 구동 장치(1)는 와이어의 인장을 통해 작동하는 연속체 작동기이다.
예를 들어, 유연 구동 장치(1)는 도 1과 같이 구동 와이어(16)에 장력이 인가되지 않은 상태, 즉 구동되지 않은 중립 상태를 기준으로 종축(longitudinal axis)(도면의 z축)을 따라서 연장된 형상을 갖는다.
이하, 유연 구동 장치(1)의 구성의 설명에 있어서, 달리 언급하지 않은 한, 도 1 과 같이 구동되지 상태를 기준으로 설명될 것이라는 점을 밝혀둔다.
일 실시 예에 따른 유연 구동 장치(1)는 구동의 기준이 되는 근위부(11)와, 종축을 기준으로 근위부(11)의 단부로부터 구동 가능하게 연결되는 복수개의 관절부(12)와, 복수개의 관절부(12)의 단부에 연결되는 원위부(13)와, 복수개의 관절부(12)를 종축을 따라서 평행하게 통과하여 복수개의 관절부(12)를 종축에 수직한 축을 중심으로 하는 회동 방향으로 구동시키는 구동 와이어(16)와, 복수개의 관절부(12)를 종축을 따라서 수렴하는 형태로 통과하여 복수개의 관절부(12)의 강성을 조절하는 고정 와이어(17)와, 구동 와이어(16)에 연결되어 구동 와이어(16)의 장력을 조절하는 구동 액추에이터(18)와, 고정 와이어(17)에 연결되어 고정 와이어(17)의 장력을 조절하는 고정 액추에이터(19)와, 구동 액추에이터(18) 및 고정 액추에이터(19)를 제어하는 제어부(15)를 포함할 수 있다.
근위부(11)는, 복수개의 관절부(12)가 종축(도면의 z축)에 수직한 축(도면의 y축 또는 x축)에 대해 회동되는 회동 방향으로의 회동 운동의 상대적인 기준이 되는 부재일 수 있다. 예를 들어, 근위부(11)의 중심축은 종축과 일치하도록 고정된 위치를 가질 수 있다.
예를 들어, 근위부(11)는 종축을 따라서 구동 와이어(16)가 통과하는 구동 와이어 유입 통로(111)와, 고정 와이어(17)가 통과하는 고정 와이어 유입 통로(112)를 포함할 수 있다.
예를 들어, 구동 와이어 유입 통로(111)는, 도 5와 같이 회동 방향을 따라서 근위부(11)의 중심축으로부터 이격된 양 가장자리 부분에 관통 형성된 한 쌍의 통로일 수 있다. 다시 말하면, 구동 와이어 유입 통로(111)는, 유연 구동 장치(1)의 종축을 기준으로 이격된 위치에 형성될 수 있다.
예를 들어, 고정 와이어 유입 통로(112)는, 도 5와 같이 종축에 수직한 방향을 따라서 근위부(11)의 중심축으로부터 나란히 이격된 부분에 관통 형성되는 한 쌍의 통로로 형성될 수 있다. 다시 말하면, 고정 와이어 유입 통로(112)는, 유연 구동 장치(1)의 종축을 기준으로 대칭되는 간격으로 이격된 위치에 형성될 수 있다.
예를 들어, 한 쌍의 고정 와이어 유입 통로(112)는 한 쌍의 구동 와이어 유입 통로(111) 각각으로부터 내측에 형성될 수 있다. 다시 말하면, 유연 구동 장치(1)의 종축을 기준으로, 고정 와이어 유입 통로(112)는 구동 와이어 유입 통로(111) 보다 가까운 위치에 형성될 수 있다.
복수개의 관절부(12)는, 근위부(11)로부터 구동 와이어(16) 및 고정 와이어(17)를 통해 연속적으로 연결되는 복수개의 연속체의 집합일 수 있다.
예를 들어, 복수개의 관절부(12)는 근위부(11)에 대해서 종축에 수직한 축을 중심으로 하는 회동 방향으로 굴곡 또는 신전 운동을 수행할 수 있다.
예를 들어, 복수개의 관절부(12)는 각각은, 서로 인접한 관절부(12)에 대해 각도가 변화될 수 있다. 예를 들어, 복수개의 관절부(12)는 구름 접촉(rolling contact) 방식, 기어(gear) 방식, 및 힌지(hinge) 방식 중 적어도 하나 이상의 방식으로 연결될 수 있다.
이하의 설명에서, 복수개의 관절부(12)가 구름 접촉 방식으로 연결된 경우를 예시적으로 설명하기로 하지만, 반드시 이와 같이 한정되는 것은 아님을 밝혀 둔다.
예를 들어, 복수개의 관절부(12) 중 근위부(11)에 가장 인접한 관절부(12)를 근위 관절부(12a)라 할 수 있고, 원위부(13)에 가장 인접한 관절부(12)를 원위 관절부(12b)라 할 수 있다.
예를 들어, 각각의 관절부(12)는 한 쌍의 접촉부(124), 한 쌍의 구동 와이어 통로(122), 한 쌍의 고정 와이어 통로(123) 및 내부 통로(121)를 포함할 수 있다.
서로 인접한 관절부(12)가 특정 각도 이상으로 굴곡되면 각 관절부(12)에 형성된 접촉부(124)가 상호 접촉되어, 굴곡 각도를 제한할 수 있다. 접촉부(124)는, 서로 인접한 관절부(12)간에 상대적인 각도 변화를 허용할 수 있도록 함몰된 형상을 가질 수 있다. 도 1과 같이 유연 구동 장치(1)가 중립 자세인 경우를 기준으로, 인접한 다른 관절부(12)를 향한 관절부(12)의 일면에서, 인접한 다른 관절부(12)에 접촉한 부분의 돌출 높이보다, 접촉부(124)의 돌출 높이는 더 낮게 형성된다.
한 쌍의 접촉부(124)에 의하면, 도 6 및 도 7과 같이 복수개의 관절부(12)가 회동 방향을 향해 굴곡될 수 있도록 각각의 관절부(12)들이 서로에 대해 연결되는 각도가 변화됨으로써, 유연 구동 장치(1)의 자세(configuration)가 변경될 수 있다.
예를 들어, 한 쌍의 접촉부(124)는 도 5와 같이 종축을 따라서 인접한 관절부(12)를 마주보는 양 표면 모두에 형성될 수 있지만, 한 쪽 표면에만 형성되어도 무방하다는 점을 밝혀둔다.
한 쌍의 구동 와이어 통로(122)는, 관절부(12)의 중심축에 수직한 방향을 따라서, 한 쌍의 접촉부(124) 각각의 가장자리 부분에 형성되고, 구동 와이어(16)가 통과할 수 있다.
예를 들어, 도 3 내지 도 5와 같이 복수개의 관절부(12)가 굴곡되지 않은 중립 상태를 기준으로, 복수개의 관절부(12) 각각에 형성된 한 쌍의 구동 와이어 통로(122)는 종축에 평행하고, 서로 종축과 평행한 방향을 따라서 서로 오버랩되는 위치를 갖는다.
한 쌍의 고정 와이어 통로(123)는, 관절부(12)의 중심축에 수직한 방향을 따라서 근위부(11)의 중심축으로부터 나란히 이격된 부분에 관통 형성되는 한 쌍의 통로일 수 있다. 예를 들어, 한 쌍의 고정 와이어 통로(123)는 관절부(12)의 중심축에 대칭되는 구조를 가질 수 있다.
예를 들어, 한 쌍의 고정 와이어 통로(123)는 원위 방향으로 갈수록 관절부(12)의 중심축에 수렴하도록 경사진 형태를 가질 수 있다.
예를 들어, 복수개의 관절부(12) 각각에 형성된 한 쌍의 고정 와이어 통로(123)는, 근위부(11)로부터 원위부(13)에 인접한 관절부(12)로 갈수록, 상대적으로 관절부(12)의 중심축에 인접하는 위치에 형성될 수 있다.
다시 말하면, 도 5와 같이 복수개의 관절부(12)의 한 쌍의 고정 와이어 통로(123) 사이의 간격은, 종축을 따라서 순차적으로 감소하는 동시에, 복수개의 관절부(12) 각각의 한 쌍의 고정 와이어 통로(123)는 종축을 따라서 서로 수렴하는 형태로 비스듬한 경사를 형성할 수 있다.
예를 들어, 도 2에 도시된 근위 관절부(12a)의 경우, 한 쌍의 고정 와이어 통로(123)는 각각 한 쌍의 구동 와이어 통로(122)에 근접한 위치에 형성되어 있는 반면, 도 3에 도시된 원위 관절부(12b)의 경우, 한 쌍의 고정 와이어 통로(123)는 각각 한 쌍의 구동 와이어 통로(122)로부터 내측으로 이격된 위치에 형성되어 있다는 점을 확인할 수 있다.
근위부(11)로부터 멀어질수록 관절부(12)의 중심축을 향해 수렴하는 형태를 갖는 한 쌍의 고정 와이어 통로(123)에 의하면, 도 5와 같이 복수개의 관절부(12)를 통과하는 고정 와이어(17)가 종축으로 갈수록 중앙을 향해 수렴하는 형태로 통과할 수 있다.
예를 들어, 도면에 개시되는 것처럼, 관절부(12)의 중심을 기준으로, 고정 와이어 통로(123) 및 구동 와이어 통로(122)는, 동일한 반경 방향 상에 위치할 수 있다. 이와 같은 구조에 의하면, 횡강성을 보다 효율적으로 향상시킬 수 있다.
한편, 이와 달리, 고정 와이어 통로(123) 및 구동 와이어 통로(122)는 동일한 반경 방향 상에 위치하지 않을 수도 있으며, 반대되는 기재가 없는 이상 본 발명의 권리범위가 반드시 동일한 반경 방향 상에 위치하는 것으로 제한되는 것은 아님을 밝혀 둔다.
내부 통로(121)는, 종축을 따라서 관통 형성될 수 있다. 예를 들어, 내부 통로(121)는 근위부(11)로부터 원위부(13)를 향해 카메라, 겸자 또는 레이저와 같은 수술 도구를 비롯하여 목적에 따라 다양한 엔드 이펙터가 삽입될 수 있고, 동시에 이들을 조작하고 구동하기 위한 전선이나 와이어가 통과하는 채널을 형성할 수 있다.
예를 들어, 내부 통로(121)가 복수개로 형성될 수 있다. 이 경우, 종축에서 바라볼 때, 복수개의 내부 통로(121)는 중심축에 수직한 축을 따라서 한 쌍의 구동 와이어 통로(122)와 한 쌍의 고정 와이어 통로(123)를 연결하는 가상의 직선에 오버랩되지 않는 위치에 형성될 수 있다.
원위부(13)는, 복수개의 관절부(12)의 구동 단부에 해당하는 부재로서, 복수개의 관절부(12) 중 근위부(11)로부터 마지막으로 연결되는 원위 관절부(12b)에 연결될 수 있다.
도시된 바와 같이, 원위부(13)는 유연 구동 장치(1)의 말단을 형성할 수 있지만, 본원에서 기재된 근위부(11) 및 원위부(13)는 복수개의 관절부(12)에 연결된 부재의 상대적인 위치 관계를 부여하기 위한 구성일 뿐, 각각 추가적인 외부 구성물에 연결되거나, 복수개의 유연 구동 장치(1)가 직렬로 연결되는 구조가 가능하다는 점을 밝혀둔다.
예를 들어, 원위부(13)는 한 쌍의 구동 와이어 수용 구멍(133), 한 쌍의 고정 와이어 수용 구멍(134), 중앙 홈(132), 와이어 파지부(14) 및 내부 통로(131)를 포함할 수 있다.
한 쌍의 구동 와이어 수용 구멍(133)은, 종축을 따라서 복수개의 관절부(12)를 통과한 구동 와이어(16)가 삽입되는 한 쌍의 구멍일 수 있다.
예를 들어, 한 쌍의 구동 와이어 수용 구멍(133)은 도 5와 같이, 종축에 바라볼 때, 복수개의 관절부(12)에 형성된 한 쌍의 구동 와이어 통로(122)와 오버랩되는 위치에 형성될 수 있다.
예를 들어, 도 5와 같이 한 쌍으로 형성된 구동 와이어(16)의 단부는 각각, 한 쌍의 구동 와이어 수용 구멍(133)로 삽입되어 고정될 수 있다.
다른 예로, 한 쌍의 구동 와이어 수용 구멍(133)은 서로 연통되는 하나의 통로로 형성될 수 있어서, 하나의 고정 와이어(17)가 순차적으로 통과함으로써, 결과적으로 고정 와이어(17)가 유연 구동 장치(1)를 순환하는 구조를 형성할 수도 있다는 점을 밝혀둔다.
한 쌍의 고정 와이어 수용 구멍(134)에는, 종축을 따라서 복수개의 관절부(12)를 통과하는 구동 와이어(16)가 삽입될 수 있다.
예를 들어, 한 쌍의 고정 와이어 수용 구멍(134)은, 종축에 수직한 방향을 따라서 원위부(13)의 중심축으로부터 나란히 이격된 부분에 형성될 수 있다.
예를 들어, 한 쌍의 고정 와이어 수용 구멍(134)은, 종축을 따라서 복수개의 관절부(12)의 한 쌍의 고정 와이어 통로(123)가 수렴하는 형태를 가지는 것에 상응하여, 도 5와 같이 한 쌍의 고정 와이어 통로(123)와 동일한 각도를 가지며 수렴하는 형태의 통로를 형성할 수 있다.
중앙 홈(132)에는, 원위부(13) 내부에 와이어 파지부(14)가 수용될 수 있다. 예를 들어, 중앙 홈(132)은 원위부(13) 중앙에 형성되어 한 쌍의 고정 와이어 수용 구멍(134)에 연통될 수 있다.
예를 들어, 중앙 홈(132)은 도 4와 같이 종축을 기준으로 상측으로부터 함몰 형성된 홈일 수 있다. 이에 따라, 와이어 파지부(14)는 원위부(13)의 상측으로부터 탈착 가능하게 삽입될 수 있다.
도 5와 같이, 중앙 홈(132)은 종축을 기준으로 하측으로부터 한 쌍의 고정 와이어 수용 구멍(134)에 연통될 수 있다.
와이어 파지부(14)는, 중앙 홈(132)에 삽입되어 원위부(13)에 삽입된 고정 와이어(17)를 파지할 수 있다.
예를 들어, 와이어 파지부(14)는 원위부(13)보다 상대적으로 유연한 소재로 형성될 수 있다. 예를 들어, 와이어 파지부(14)는 종축으로 갈수록 단면폭이 감소하는 원추형 형상을 포함할 수 있다.
예를 들어, 와이어 파지부(14)는 고정 와이어(17)가 통과하는 고정 통로(141)를 포함할 수 있다.
고정 통로(141)는 종축을 따라서 복수개의 관절부(12)의 한 쌍의 고정 와이어 통로(123)가 수렴하는 형태를 가지는 것에 상응하여, 도 5와 같이 한 쌍의 고정 와이어 통로(123) 및 한 쌍의 고정 와이어 수용 구멍(134)과 동일한 각도를 가지며 수렴하는 형태의 통로를 형성할 수 있다.
예를 들어, 고정 통로(141)가 한 쌍의 고정 와이어 수용 구멍(134)은 도 5와 같이 정확한 위치 및 각도를 가지며 연통될 수 있다.
예를 들어, 고정 통로(141)를 통과하는 고정 와이어(17)는 도 5와 같이 와이어 파지부(14)의 상측으로 노출될 수 있고, 해당 노출된 지점을 기점으로 고정 와이어(17)는 각각의 관절부(12)의 중심축에 수직한 횡 방향을 따라서 양측으로 분지되어 복수개의 관절부(12)를 통과할 수 있다.
예를 들어, 고정 통로(141)는 와이어 파지부(14)를 통과하는 한 쌍의 통로로 형성될 수 있지만, 고정 통로(141) 내부를 통과하는 하나의 통로로 형성될 수도 있다.
이상의 구조에 의하면, 도 7과 같이 유연 구동 장치(1)가 일 방향을 따라서 굴곡되는 경우, 고정 와이어(17)에 급격한 장력이 형성되거나 중심축에 수직한 횡 방향을을 따라서 2 가닥으로 분지되는 고정 와이어(17) 각각에 형성된 인장력이 불균형하게 형성되더라도, 와이어 파지부(14)는, 중앙 홈(132) 내부에서 고정 와이어(17)의 형상이 변화할 수 있는 유연성과 여유를 가질 수 있어서, 급격한 와이어(16, 17)의 구동에 의한 파손과, 와이어(16, 17) 자체의 파손의 가능성을 줄일 수 있다.
내부 통로(131)는, 종축을 따라서 원위부(13)에 관통 형성된 통로일 수 있다. 종축에서 바라볼 때, 복수개의 관절부(12)의 내부 통로(121)와 원위부(13)의 내부 통로(131)는 서로 오버랩될 수 있다. 따라서, 복수개의 관절부(12)의 내부 통로(121)를 통해 삽입되는 수술 도구가 원위부(13)의 내부 통로(131)를 통해 원위 방향으로 공급될 수 있다.
구동 와이어(16)는, 일단은 구동 액추에이터(18)에 연결되고, 타단은 근위부(11), 복수개의 관절부(12)를 순차적으로 통과한 이후 원위부(13)에 고정될 수 있다. 예를 들어, 구동 와이어(16)는 종축에 수직한 방향을 따라서 서로 마주보며 이격되어 연장되는 한 쌍의 와이어로 형성될 수 있다.
예를 들어, 한 쌍의 구동 와이어(16)는 근위부(11)의 한 쌍의 구동 와이어 유입 통로(111)와, 복수개의 관절부(12)의 한 쌍의 구동 와이어 통로(122)와, 원위부(13)의 한 쌍의 구동 와이어 수용 구멍(133) 각각에 삽입될 수 있다.
위의 구조에 의하면, 도 5와 같이 유연 구동 장치(1)가 구동되지 않은 중립 상태를 기준으로, 유연 구동 장치(1)의 대향하는 가장자리 부분을 통과하는 한 쌍의 구동 와이어(16)는 서로 종축을 향해 평행한 상태로 연장될 수 있다.
고정 와이어(17)는, 일단은 고정 액추에이터(19)에 연결되고, 타단은 근위부(11), 복수개의 관절부(12)를 수렴하는 형태로 순차적으로 통과한 이후 원위부(13)에 고정될 수 있다. 예를 들어, 고정 와이어(17)는 중심축에 수직한 횡 방향을 따라 나란히 이격된 상태로 근위부(11) 및 복수개의 관절부(12)를 통과하는 와이어의 구조를 갖되, 원위부(13)에서 2 가닥의 고정 와이어(17)는 서로 연결될 수 있다.
예를 들어, 2 가닥의 고정 와이어(17)는 근위부(11)의 한 쌍의 고정 와이어 유입 통로(112)와, 복수개의 관절부(12)의 한 쌍의 고정 와이어 통로(123)와, 원위부(13)의 한 쌍의 고정 와이어 수용 구멍(134)을 통과한 이후 와이어 파지부(14)의 고정 통로(141)에서 서로 연결될 수 있다.
다시 말하면, 하나의 고정 와이어(17)는 한 쌍의 고정 와이어 통로(123) 중심축에 수직한 횡방향을 기준으로 일측에 형성된 고정 와이어 통로(123)들을 통과한 이후, 와이어 파지부(14)의 고정 통로(141)를 통과하면서 방향이 전환되어 통과하지 않은 타측의 고정 와이어 통로(123)들을 통과함으로써, 결과적으로 양단이 근위 방향으로 돌출되어 고정 액추에이터(19)에 연결되는 구조를 가질 수 있다.
다른 예로, 2 가닥의 고정 와이어(17)는 서로 연결되지 않고 각각 독립적인 경로를 따라서 고정 액추에이터(19) 및 와이어 파지부(14) 사이를 연결하는 한 쌍의 와이어로 형성될 수도 있다.
위의 구조에 의하면, 도 5와 같이 유연 구동 장치(1)가 구동되지 않은 중립 상태를 기준으로, 양단이 고정 액추에이터(19)에 연결된 2 가닥의 고정 와이어(17)는 복수개의 관절부(12)를 통과하는 동시에 서로를 향해 비스듬한 각도를 가지도록 대칭적으로 수렴하는 구조를 가질 수 있다.
구동 액추에이터(18)는, 한 쌍의 구동 와이어(16) 각각에 연결되어 각각의 구동 와이어(16)에 장력을 인가할 수 있다.
고정 액추에이터(19)는, 복수개의 관절부(12) 및 원위부(13)를 순환하여 통과한 고정 와이어(17)의 양 단부에 연결되어 고정 와이어(17)에 장력을 인가할 수 있다.
제어부(15)는, 구동 액추에이터(18)를 통해 구동 와이어(16)에 인가되는 장력을 조절함으로써, 복수개의 관절부(12)를 구동시킬 수 있다.
예를 들어, 제어부(15)는 복수개의 관절부(12) 각각의 중심축에 수직한 횡 방향 따라서 나란히 이격된 상태로 복수개의 관절부(12) 각각의 한 쌍의 구동 와이어 통로(122)를 통과하는 한 쌍의 구동 와이어(16) 중 하나의 와이어에 상대적으로 큰 장력을 인가함으로써, 도 6 및 도 7과 같이 복수개의 관절부(12)가 회동 방향 중 일 방향을 향해 굴곡 운동을 수행할 수 있다.
제어부(15)는 고정 액추에이터(19)를 통해 고정 와이어(17)에 인가되는 장력을 조절함으로써, 복수개의 관절부(12)의 구동 자세를 유지하도록 하는 강성을 조절할 수 있다.
일 실시 예에 따른 유연 구동 장치(1)에 의하면, 횡하중과 토크에 강인한 관절 구조를 제공할 수 있다.
연속체 작동기에서 종축을 따라서 서로 평행하게 이격되어 삽입되는 와이어만을 사용할 경우, 종축에 수직한 횡 방향 하중에 취약하므로, 외력 및 자중에 의해 여자유도가 쉽게 발생하거나 자세가 쉽게 무너질 수 있는 문제가 존재할 수 있다.
하지만, 일 실시 예에 따른 유연 구동 장치(1)는 종축에 평행한 구동 와이어(16)와 더불어, 말단으로 갈수록 수렴하는 형태의 고정 와이어(17)를 추가적으로 구성함으로써, 평행하게 삽입되는 한 쌍의 구동 와이어(16)만으로는 지탱하지 못할 횡 하중에 대한 강성을 향상시킬 수 있다.
일 실시 예에 따른 유연 구동 장치(1)에 의하면, 도 5와 같이 복수개의 관절부(12)가 굴곡되지 않은 중립 상태에서도 고정 와이어(17)에 장력을 인가함으로써, 횡하중과 토크가 발생하더라도 복수개의 관절부(12)가 신전된 상태를 유지할 수 있도록 강성을 향상시킬 수 있다.
마찬가지로, 도 6 및 도 7과 같이 구동 와이어(16)의 인장을 통해 복수개의 관절부(12)가 굴곡된 상태에서도 고정 와이어(17)에 장력이 인가함으로써, 횡하중과 토크가 발생하더라도 복수개의 관절부(12)가 굴곡된 자세를 유지할 수 있도록 강성을 향상시킬 수 있다.
또한, 고정 와이어(17)에 의하면, 복수개의 관절부(12) 사이의 중립축(즉, 유연 구동 장치(1)의 종축)을 정렬시키는데 용이할 수 있어서, 복수개의 관절부(12) 각각의 비대칭성에 의한 여자유도가 발생하는 문제점을 방지할 수 있다.
도 8은 일 실시 예에 따른 유연 구동 장치의 단면도이다.
도 8을 참조하면, 도 1 내지 도 7에 도시된 실시 예와 상이한 구성을 갖는 유연 구동 장치(1')의 구성을 확인할 수 있다.
일 실시 예에 따른 유연 구동 장치(1')는 도 1 내지 도 7의 유연 구동 장치(1)에서 중앙의 일부를 통과하는 중앙 와이어(3)의 구성이 추가된 것으로 이해될 수 있다.
예를 들어, 유연 구동 장치(1')는 구동의 기준이 되는 근위부(11)와, 종축을 기준으로 근위부(11)의 단부로부터 구동 가능하게 연결되는 복수개의 관절부(12)와, 복수개의 관절부(12)의 단부에 연결되는 원위부(13)와, 복수개의 관절부(12)를 종축을 따라서 평행하게 통과하여 복수개의 관절부(12)를 종축에 수직한 축을 중심으로 하는 회동 방향으로 구동시키는 구동 와이어(16)와, 복수개의 관절부(12)를 종축을 따라서 수렴하는 형태로 통과하여 복수개의 관절부(12)의 강성을 조절하는 고정 와이어(17)와, 종축을 따라서 복수개의 관절부(12)의 중앙을 통과하여 원위부(13)에 고정되는 중앙 와이어(3)와, 구동 와이어(16)에 연결되어 구동 와이어(16)의 장력을 조절하는 구동 액추에이터(18)와, 고정 와이어(17)에 연결되어 고정 와이어(17)의 장력을 조절하는 고정 액추에이터(19)와, 구동 액추에이터(18) 및 고정 액추에이터(19)를 제어하는 제어부(15)를 포함할 수 있다.
중앙 와이어(3)는, 도 8과 같이 복수개의 관절부(12)가 구동되지 않은 중립 상태를 기준으로 복수개의 관절부(12)들의 중립축을 따라서 통과한 이후, 원위부(13)에 고정될 수 있다. 예를 들어, 중앙 와이어(3)는 와이어 파지부(14)에 연결되어 고정될 수 있다. 도시는 생략하였으나, 중앙 와이어(3)의 장력을 조절할 수 있고, 제어부(15)를 통하여 제어 가능한 보조 액추에이터가 추가로 마련될 수도 있다는 점을 밝혀 둔다.
중앙 와이어(3)가 복수개의 관절부(12)의 중앙을 통과하는 구성을 가짐에 따라서, 복수개의 관절부(12) 각각은 중앙 와이어(3)가 통과하도록 종축을 따라서 중앙 부분에 관통 형성된 중앙 와이어 통로(125)를 더 포함할 수 있다.
복수개의 관절부(12) 각각의 중립축을 통과하는 중앙 와이어(3)에 의하면, 복수개의 관절부(12) 각각의 중립축을 안정적으로 정렬시킬 수 있다. 이를 통해 복수개의 관절부(12) 각각의 비대칭성에 의한 여자유도가 발생하는 문제점을 방지할 수 있다.
도 9는 일 실시 예에 따른 유연 구동 장치의 사시도이고, 도 10은 일 실시 예에 따른 유연 구동 장치의 정면도이고, 도 11은 일 실시 예에 따른 관절부의 사시도이고, 도 12는 일 실시 예에 따른 와이어 파지부의 저면 사시도이다.
도 9 내지 도 12를 참조하면, 도 1 내지 도 7에 도시된 실시 예와 상이한 구성을 갖는 유연 구동 장치(2)의 구성을 확인할 수 있다.
일 실시 예에 따른 유연 구동 장치(2)는 도 1 내지 도 7에 도시된 1 자유도 구동 방식의 유연 구동 장치(1)에서 2 자유도 구동이 가능하도록 관절부의 구성과 와이어의 구성이 추가 또는 수정된 것으로 이해될 수 있다.
일 실시 예에 따른 유연 구동 장치(2)는, 근위부(21), 복수개의 관절부(22), 원위부(23), 제 1 구동 와이어(261), 제 2 구동 와이어(262), 제 1 고정 와이어(271), 제 2 고정 와이어(272), 구동 조작부(28), 고정 조작부(29) 및 제어부(25)를 포함할 수 있다.
근위부(21)는, 복수개의 관절부(22)가 종축에 직교하는 제 1 횡축(도면의 x축)을 중심으로 회전하는 제 1 회동 방향 및 종축 및 제 1 횡축에 직교하는 제 2 횡축(도면의 y축)을 중심으로 회전하는 제 2 회동 방향으로의 구동의 상대적인 기준이 되는 부재일 수 있다.
복수개의 관절부(22)는, 근위부(21)로부터 제 1 구동 와이어(261), 제 2 구동 와이어(262), 제 1 고정 와이어(271) 및 제 2 고정 와이어(272)를 통해 연속적으로 연결되는 복수개의 연속체의 집합일 수 있다.
예를 들어, 복수개의 관절부(22)는 근위부(21)에 대해서 제 1 회동 방향 및 제 2 회동 방향을 따라서 2 자유도로 굴곡 또는 신전 운동을 수행할 수 있다.
예를 들어, 복수개의 관절부(22)는 근위부(21)로부터 연결되는 순서에 따라서, 2 종류의 관절부(22)가 서로 교번적으로 배치되는 부분을 포함할 수 있다. 예를 들어, 복수개의 관절부(22)는 종류에 따라서 제 1 관절부(22a) 와 제 2 관절부(22b)로 구분될 수 있다.
예를 들어, 제 1 관절부(22a) 및 제 2 관절부(22b)는 동일한 형상을 갖는 관절부(22)가 종축에 평행한 중심축을 기준으로 회전된 각도에 따라 구별될 수도 있다. 예를 들어, 상기 각도가 0도인 경우, 제 1 관절부(22a)라고 하고, 상기 각도가 90도인 경우, 제 2 관절부(22b)라고 할 수 있다. 제 1 관절부(22a) 및 제 2 관절부(22b) 각각에 대한 설명은 아래에서 하나의 관절부(22)의 대한 설명으로 대체할 것임을 밝혀둔다.
예를 들어, 관절부(22)는 한 쌍의 제 1 접촉부(224), 한 쌍의 제 2 접촉부(225), 한 쌍의 제 1 구동 와이어 통로(222a), 한 쌍의 제 2 구동 와이어 통로(222b), 한 쌍의 제 1 고정 와이어 통로(223a), 한 쌍의 제 2 고정 와이어 통로(223b) 및 내부 통로(221)를 포함할 수 있다.
한 쌍의 제 1 접촉부(224)는, 관절부(22)의 양면 중 일면에 형성될 수 있다. 한 쌍의 제 1 접촉부(224)는, 관절부(22)의 중심축에 직교하는 제 1 가상선(도면의 y축)을 기준으로, 서로 반대 방향에 형성될 수 있다.
한 쌍의 제 1 접촉부(224)는, 상기 일면 중 상기 제 1 가상선에 대응하는 부분의 최대 돌출 높이보다, 낮은 돌출 높이를 가질 수 있다.
예를 들어, 도 10 및 11에 도시된 바와 같이, 한 쌍의 제 1 접촉부(224)는, 서로 인접한 관절부(22)를 마주보는 양 표면 중 어느 하나의 표면 부분이 중심축에 수직한 방향(y축 방향)을 따라서 양 가장자리 쪽으로 갈수록 종축 방향으로 함몰되는 부분일 수 있다.
한 쌍의 제 2 접촉부(225)는, 관절부(22)의 양면 중 타면에 형성될 수 있다. 한 쌍의 제 2 접촉부(225)는, 관절부(22)의 중심축 및 상기 제 1 가상선에 동시에 직교하는 제 2 가상선(도면의 x축)을 기준으로, 서로 반대 방향에 형성될 수 있다.
한 쌍의 제 2 접촉부(225)는, 상기 타면 중 상기 제 2 가상선에 대응하는 부분의 최대 돌출 높이보다, 낮은 돌출 높이를 가질 수 있다.
예를 들어, 도 10 및 11에 도시된 바와 같이, 한 쌍의 제 2 접촉부(225)는, 서로 인접한 관절부(22)를 마주보는 양 표면 중 다른 하나의 표면 부분이 중심축에 수직한 방향(x축 방향)을 따라서 양 가장자리 쪽으로 갈수록 종축 방향으로 함몰되는 부분일 수 있다.
예를 들어, 도 10과 같이 제 1 관절부(22a)는 상측 표면에 제 1 접촉부(224)가 형성되고, 하측 표면에 제 2 접촉부(225)가 형성될 수 있다. 반면, 제 2 관절부(22b)는 상측 표면에 제 2 접촉부(225)가 형성되고 하측 표면에 제 1 접촉부(224)가 형성될 수 있다.
위의 구조에 의하면, 제 1 관절부(22a) 보다 상측에 인접하게 위치하는 제 2 관절부(22b)는, 종축에 수직한 제 1 회동 방향(x축을 중심으로 하는 회전 방향)으로 굴곡 운동 가능하고, 제 2 관절부(22b) 보다 상측에 인접하게 위치하는 제 1 관절부(22a)는, 제 2 회동 방향(y축을 중심으로 하는 회전 방향)으로 굴곡 운동 가능하다.
결과적으로 제 1 관절부(22a)와 제 2 관절부(22b)가 교번적으로 연결됨에 따라서, 복수개의 관절부(22)는 제 1 회동 방향 및 제 2 회동 방향으로의 2 자유도 구동이 가능하다.
제 1 구동 와이어 통로(222a)는, 제 1 접촉부(224)의 가장자리 부분에 형성되어, 제 1 구동 와이어(261)를 통과시킬 수 있다.
제 2 구동 와이어 통로(222b)는, 제 2 접촉부(225)의 가장자리 부분에 형성되어, 제 2 구동 와이어(262)를 통과시킬 수 있다.
예를 들어, 한 쌍의 제 1 구동 와이어 통로(222a)와 한 쌍의 제 2 구동 와이어 통로(222b)는 도 11과 같이 관절부(22)의 가장자리 둘레를 따라 방사상으로 서로 수직한 각도로 이격된 위치에 형성될 수 있다.
제 1 고정 와이어 통로(223a)는, 제 1 접촉부(224) 부분에 형성되어, 제 1 고정 와이어(271)를 통과시킬 수 있다. 예를 들어, 한 쌍의 제 1 고정 와이어 통로(223a)는, 중심축에 직교하는 제 1 가상선을 따라서 한 쌍의 제 1 구동 와이어 통로(222a) 각각으로부터 내측으로 이격된 지점에 관통 형성될 수 있다.
제 2 고정 와이어 통로(223b)는, 제 2 접촉부(225) 부분에 형성되어, 제 2 고정 와이어(272)를 통과시킬 수 있다. 예를 들어, 한 쌍의 제 2 고정 와이어 통로(223b)는, 중심축 및 제 1 가상선에 직교하는 제 2 가상선을 따라서 한 쌍의 제 2 구동 와이어 통로(222b) 각각으로부터 내측으로 이격된 지점에 관통 형성될 수 있다.
예를 들어, 한 쌍의 제 1 고정 와이어 통로(223a)와, 한 쌍의 제 2 고정 와이어 통로(223b)는 근위부(21)로부터 멀어지는 순서대로 각각 내측으로 비스듬하게 수렴하는 형태를 가질 수 있다. 예를 들어, 한 쌍의 제 1 고정 와이어 통로(223a)와 한 쌍의 제 2 고정 와이어 통로(223b)는 도 11과 같이 관절부(22)의 둘레를 따라 방사상으로 서로 수직한 각도로 이격된 위치에 형성될 수 있다.
원위부(23)는, 복수개의 관절부(22)의 구동 단부에 해당하는 부재로서, 복수개의 관절부(22) 중 근위부(21)로부터 마지막으로 연결되는 관절부(22)에 연결될 수 있다.
예를 들어, 원위부(23)는 한 쌍의 제 1 구동 와이어 수용 구멍(233a), 한 쌍의 제 2 구동 와이어 수용 구멍(233b), 한 쌍의 제 1 고정 와이어 수용 구멍(미도시), 한 쌍의 제 2 고정 와이어 수용 구멍(미도시), 중앙 홈(242), 와이어 파지부(24) 및 내부 통로(231)를 포함할 수 있다.
한 쌍의 제 1 구동 와이어 수용 구멍(233a)은, 종축을 따라서 복수개의 관절부(22)를 통과한 제 1 구동 와이어(261)가 삽입되는 한 쌍의 구멍일 수 있다.
한 쌍의 제 2 구동 와이어 수용 구멍(233b)은, 종축을 따라서 복수개의 관절부(22)를 통과한 제 2 구동 와이어(262)가 삽입되는 한 쌍의 구멍일 수 있다.
예를 들어, 한 쌍의 제 1 구동 와이어 수용 구멍(233a)과, 한 쌍의 제 2 구동 와이어 수용 구멍(233b)은 각각, 종축에 바라볼 때 복수개의 관절부(22)에 형성된 한 쌍의 제 1 구동 와이어 통로(222a)와 한 쌍의 제 2 구동 와이어 통로(222b)에 오버랩되는 위치에 형성될 수 있다.
한 쌍의 제 1 고정 와이어 수용 구멍(미도시)은, 중심축에 직교하는 제 1 가상선을 따라서 중앙으로부터 나란히 이격된 부분에 형성될 수 있다.
한 쌍의 제 2 고정 와이어 수용 구멍(미도시)은, 중심축에 직교하는 제 2 가상선을 중앙으로부터 나란히 이격된 부분에 형성될 수 있다.
예를 들어, 한 쌍의 제 1 고정 와이어 수용 구멍(미도시)과, 한 쌍의 제 2 고정 와이어 수용 구멍(미도시)은 각각, 복수개의 관절부(22)의 한 쌍의 제 1 고정 와이어 통로(223a)와 한 쌍의 제 2 고정 와이어 통로(223b) 각각과 동일한 각도를 가지며 수렴하는 형태의 통로를 형성할 수 있다.
와이어 파지부(24)는, 중앙 홈(242)에 삽입되어 원위부(23)에 삽입된 제 1 고정 와이어(271) 및 제 2 고정 와이어(272)를 파지할 수 있다.
예를 들어, 와이어 파지부(24)는 원위부(23)보다 상대적으로 유연한 소재로 형성될 수 있다. 예를 들어, 와이어 파지부(24)는 종축으로 갈수록 단면폭이 감소하는 원추형 형상을 포함할 수 있다.
예를 들어, 와이어 파지부(24)는 제 1 고정 와이어(271)가 통과하는 제 1 고정 통로(241a)와, 제 2 고정 와이어(272)가 통과하는 제 2 고정 통로(241b)를 포함할 수 있다.
제 1 고정 통로(241a)는, 중심축에 직교하는 제 1 가상선을 따라 중앙으로부터 나란히 이격된 지점 상에 형성되는 한 쌍의 통로일 수 있다.
제 2 고정 통로(241b)는, 중심축에 직교하는 제 2 가상선을 따라 중앙으로부터 나란히 이격된 지점 상에 형성되는 한 쌍의 통로일 수 있다.
제 1 고정 통로(241a) 및 제 2 고정 통로(241b)는 각각, 복수개의 관절부(22)의 한 쌍의 제 1 고정 와이어 통로(223a) 및 한 쌍의 제 2 고정 와이어 통로(223b) 각각과 동일한 각도를 가지며 수렴하는 형태의 통로를 형성할 수 있다.
따라서, 종축을 따라서 한 쌍의 제 1 고정 통로(241a)를 통과하는 제 1 고정 와이어(271)는, 한 쌍의 제 2 고정 통로(241b)를 통과하는 제 2 고정 와이어(272)와 수직하게 교차할 수 있다.
제 1 구동 와이어(261)는, 일단은 제 1 구동 액추에이터(281)에 연결되고, 타단은 근위부(21), 복수개의 관절부(22)를 순차적으로 통과한 이후 원위부(23)에 고정될 수 있다. 예를 들어, 제 1 구동 와이어(261)는 제 1 가상선을 따라 나란히 이격되어 연장되는 한 쌍의 와이어로 형성될 수 있다.
제 2 구동 와이어(262)는, 일단은 제 2 구동 액추에이터(282)에 연결되고, 타단은 근위부(21), 복수개의 관절부(22)를 순차적으로 통과한 이후 원위부(23)에 고정될 수 있다. 예를 들어, 제 2 구동 와이어(262)는 제 2 가상선을 따라 나란히 이격되어 연장되는 한 쌍의 와이어로 형성될 수 있다.
위의 구조에 의하면, 제 1 구동 와이어(261) 및 제 2 구동 와이어(262)는, 도 9 및 도 10과 같이 복수개의 관절부(22)의 가장자리 둘레를 따라 방사상 동일한 간격으로 이격된 4개의 지점상에서 서로 평행한 상태로 통과할 수 있다.
제 1 고정 와이어(271)는, 한 쌍의 제 1 고정 와이어 통로(223a) 중 제 1 가상선을 기준으로 일측에 형성된 제 1 고정 와이어 통로(223a)들을 통과한 이후, 와이어 파지부(24)의 제 1 고정 통로(241a)를 통과하면서 방향이 전환되어 통과하지 않은 타측의 제 1 고정 와이어 통로(223a)들을 통과함으로써, 결과적으로 양단이 근위 방향으로 돌출되어 제 1 고정 액추에이터(291)에 연결되는 구조를 가질 수 있다.
제 2 고정 와이어(272)는, 한 쌍의 제 2 고정 와이어 통로(223b) 중 제 2 가상선을 기준으로 일측에 형성된 제 2 고정 와이어 통로(223b)들을 통과한 이후, 와이어 파지부(24)의 제 2 고정 통로(241b)를 통과하면서 방향이 전환되어 통과하지 않은 타측의 제 2 고정 와이어 통로(223b)들을 통과함으로써, 결과적으로 양단이 근위 방향으로 돌출되어 제 2 고정 액추에이터(292)에 연결되는 구조를 가질 수 있다.
위의 구조에 의하면, 도 9와 같이 유연 구동 장치(2)가 구동되지 않은 중립 상태를 기준으로, 각각의 양단이 각각 제 1 및 제 2 고정 액추에이터(291, 292)에 연결된 2 가닥의 제 1 고정 와이어(271)와, 제 2 고정 와이어(272)는, 복수개의 관절부(22)를 통과하는 동시에 서로를 향해 비스듬한 각도를 가지도록 대칭적으로 수렴하는 구조를 가질 수 있다.
구동 조작부(28)는, 제 1 구동 와이어(261)에 장력을 인가하는 제 1 구동 액추에이터(281)와, 제 2 구동 와이어(262)에 장력을 인가하는 제 2 구동 액추에이터(282)를 포함할 수 있다.
고정 조작부(29)는, 제 1 고정 와이어(271)에 장력을 인가하는 제 1 고정 액추에이터(291)와, 제 2 고정 와이어(272)에 장력을 인가하는 제 2 고정 액추에이터(292)를 포함할 수 있다.
제어부(25)는, 제 1 구동 액추에이터(281)를 통해 제 1 구동 와이어(261)에 인가되는 장력을 조절함으로써, 복수개의 관절부(22)를 제 1 회동 방향을 따라서 구동시킬 수 있다. 제어부(25)는, 제 2 구동 액추에이터(282)를 통해 제 2 구동 와이어(262)에 인가되는 장력을 조절함으로써, 복수개의 관절부(22)를 제 2 회동 방향을 따라서 구동시킬 수 있다
제어부(25)는 제 1 고정 액추에이터(291)를 통해 제 1 고정 와이어(271)에 인가되는 장력을 조절함으로써, 복수개의 관절부(22)의 제 1 회동 방향에 따른 지지 강성을 조절할 수 있다. 제어부(25)는 제 2 고정 액추에이터(292)를 통해 제 2 고정 와이어(272)에 인가되는 장력을 조절함으로써, 복수개의 관절부(22)의 제 2 회동 방향에 따른 지지 강성을 조절할 수 있다.
일 실시 예에 따른 유연 구동 장치(2)에 의하면, 제 1 회동 방향 및 제 2 회동 방향으로 복수개의 관절부(22)를 2 자유도 구동시킬 수 있으며, 동시에 제 1 회동 방향 및 제 2 회동 방향으로의 구동 자세를 유지하도록 하는 강성을 부가할 수 있다.
일 실시 예에 따른 유연 구동 장치(2)에 의하면, 구동 와이어 및 고정 와이어의 2 종류의 와이어 구성을 통해 구동과 강성을 개별적으로 조절하는 것이 가능하므로 구조적으로 단순하며 소형화가 유지한 장점을 갖는다.
일 실시 예에 따른 유연 구동 장치(1, 2)에 의하면, 고정 와이어에 인가되는 장력을 조절함으로써 가변 강성을 구현할 수 있다.
일 실시 예에 따른 유연 구동 장치(1, 2)에 의하면, 연속체 작동기의 강성을 증대시켜 엔드 이펙터의 작업을 안정적으로 지지할 수 있다. 또한, 구동 와이어의 인장 모델 만으로도 유연 구동 장치(1, 2)의 말단부의 위치를 예측하는 것이 가능할 수 있다.
일 실시 예에 따른 유연 구동 장치(1, 2)를 수술용 내시경에 적용하였을 경우, 내시경이 다양한 자세로 구부러져도 복수개의 관절부 각각의 내부 통로를 통해 수술 도구가 통과할 수 있는 채널을 확보할 수 있고, 내시경에 하중 및 모멘트가 가해져도 쉽게 처지지 않을 수 있다.
도 13은 일 실시 예에 따른 유연 구동 장치의 단면도이다.
도 13을 참조하면, 도 1 내지 12에 도시된 복수개의 관절부들을 갖는 유연 구동 장치들(1, 1', 2)과 달리 하나의 변형체를 갖는 유연 구동 장치(4)의 구성이 확인할 수 있다.
일 실시 예에 따른 유연 구동 장치(4)는 종축(도 13의 z축 방향)을 따라서 연장되고 가요성을 갖는 유연체(41)와, 종축을 따라서 유연체(41)의 가장자리 부분을 평행하게 통과하여 유연체(41)를 종축에 수직한 축을 중심으로 회전하는 회동 방향으로 구동시키는 한 쌍의 구동 와이어(46)와, 종축을 따라서 유연체(41)를 수렴하는 형태로 통과하여 유연체(41)의 강성을 조절하는 고정 와이어(47)와, 구동 와이어(46)에 연결되어 구동 와이어(46)의 장력을 조절하는 구동 액추에이터(48)와, 고정 와이어(47)에 연결되어 고정 와이어(47)의 장력을 조절하는 고정 액추에이터(49)와, 구동 액추에이터(48) 및 고정 액추에이터(49)를 제어하는 제어부(45)를 포함할 수 있다.
유연체(41)는 종축을 따라서 연장되어 유연하게 만곡될 수 있다.
예를 들어, 유연체(41)는 중심축에 수직한 축을 따라서 이격된 양측 가장자리 부분이 종축을 따라 함몰 형성된 한 쌍의 구동 와이어 통로(411)와, 중심축에 수직한 축을 따라서 서로 이격된 지점을 통과하는 한 쌍의 통로로 형성되되 종축으로 갈수록 상호 간의 간격이 감소하고 고정 와이어(47)가 통과하는 고정 와이어 통로(412)를 포함할 수 있다.
한 쌍의 구동 와이어 통로(411)는 도 13과 같이 유연 구동 장치(4)가 종축을 따라서 직립한 상태를 기준으로 유연체(41)의 양 가장자리 부분이 서로 평형을 이루며 함몰 형성될 수 있다.
고정 와이어 통로(412)는 도 13과 같이 중심축에 수직한 축을 따라서 한 쌍의 구동 와이어 통로(411) 각각으로부터 내측으로 이격된 2 개의 지점에서 종축을 따라서 함몰 형성되되, 종축으로 연장됨에 따라 서로를 향해 비스듬히 경사지게 수렴하는 형상을 가질 수 있다.
한 쌍의 구동 와이어(46)는 구동 액추에이터(48)의 구동에 따라 유연체(41)를 회동 방향으로 굴곡 또는 신전 시킬 수 있다.
고정 와이어(47)는 고정 액추에이터(49)의 구동에 의해 유연체(41)의 강성을 조절할 수 있다
일 실시 예에 따른 유연 구동 장치(1, 2, 4)에 의하면, 유연 구동 장치(1, 2, 4)가 좁고 굴곡진 관 내부를 이동하여야 할 경우, 유연 구동 장치(1, 2, 4)를 저 강성 상태로 만들어 관 형상에 적응하여 이동할 수 있도록 할 수 있고, 이후에 엔드 이펙터가 구동 위치에 도달 할 경우, 유연 구동 장치(1, 2, 4)를 고강성 상태로 만들어 엔드 이펙터의 구동을 안정적으로 지지할 수 있다.
일 실시 예에 따른 유연 구동 장치(1, 2, 4)에 의하면, 기존의 평형 와이어만을 사용할 경우에 잉여 자유도로 인해 발생하는 굴곡 현상을 방지할 수 있다.
도 14는 일 실시 예에 따른 유연 구동 장치의 단면도이고, 도 15는 도 14의 영역 A의 확대 단면도이다.
도 14 및 도 15를 참조하면, 도 1 내지 도 13에 도시된 실시 예의 유연 구동 장치들(1, 1', 2, 4)과 상이한 구성을 갖는 유연 구동 장치(5)의 구성을 확인할 수 있다.
일 실시 예에 따른 유연 구동 장치(5)는, 구동의 기준이 되는 근위부(51)와, 종축을 기준으로 근위부(51)의 단부로부터 구동 가능하게 연결되는 복수개의 관절부(52)와, 복수개의 관절부(52)의 단부에 연결되는 원위부(53)와, 복수개의 관절부(52)를 종축을 따라서 평행하게 통과하여 복수개의 관절부(52)를 종축에 수직한 축(도 14의 x축)을 중심으로 하는 회동 방향으로 구동시키는 구동 와이어(56)와, 복수개의 관절부(52)를 종축을 따라서 수렴하는 형태로 통과하여 복수개의 관절부(52)의 강성을 조절하는 고정 와이어(57)와, 종축을 따라서 복수개의 관절부(52)의 중앙을 통과하여 원위부(53)에 고정되는 중앙 와이어(54)를 포함할 수 있다.
복수개의 관절부(52)의 사이를 통과하는 구동 와이어(56)의 부분은 종축(도 14 및 도 15의 z축)에 평행할 수 있다.
예를 들어, 복수개의 관절부(52)는, 종축에 평행한 관절부(52)의 중심축에 직교하는 횡방향을 따라서 양 가장자리 부분이 종축을 따라 함몰 형성되는 한 쌍의 접촉부(524)와, 관절부(52)의 중심축에 평행하게 구동 와이어(56)가 통과하는 한 쌍의 구동 와이어 통로(522)와, 원위부(53)에 가까워질수록 각각의 관절부(52)의 중심축에 대해 수렴하는 경사를 갖는 한 쌍의 고정 와이어 통로(523)와, 중앙 와이어(54)가 중심축을 따라서 통과하는 중앙 와이어 통로(525)를 포함할 수 있다.
예를 들어, 한 쌍의 고정 와이어 통로(523)는 관절부(52)의 중심축에 대해 기울어져 있는 동시에, 중심축에 대해 서로 대칭적으로 형성될 수 있다.
다른 예로, 한 쌍의 접촉부(524)는 도 14 및 도 15와 같이 관절부(52)의 양면에 형성되는 것과 달리, 어느 하나의 면에만 형성될 수도 있다는 점을 밝혀둔다.
관절부(52)내에 형성되는 한 쌍의 구동 와이어 통로(522), 한 쌍의 고정 와이어 통로(523) 및 중앙 와이어 통로(525)는, 관절부(52)의 중심축(도면의 z축)을 따라서 동일한 선상에 위치할 수 있다.
복수개의 관절부(52) 중, 원위부(53)에 인접하게 연결되는 관절부(52) 일수록, 관절부(52) 각각의 한 쌍의 고정 와이어 통로(523) 사이의 간격은 순차적으로 감소할 수 있다.
예를 들어, 고정 와이어 통로(523)는 원위부(53)를 향해 노출되는 전방 개구(523b)와, 근위부(51)를 향해 노출되는 후방 개구(523a)를 포함할 수 있다.
한 쌍의 고정 와이어 통로(523)가 원위부(53)를 향해 갈수록 서로 수렴하는 경사를 갖는 구조를 갖기 때문에, 관절부(52)의 전방 개구(523b)의 위치는 관절부(52)의 후방 개구(523a)의 위치보다 중앙에 가까운 위치에 형성될 수 있다. 즉, 전방 개구(523b)는 후방 개구(523a)보다 해당 관절부(52)의 중심축에 가까운 위치에 형성될 수 있다.
서로 인접하게 연결된 한 쌍의 관절부(52) 중, 상대적으로 근위부(51)에 인접한 관절부(52)의 후방 개구(523a)와, 상대적으로 원위부(53)에 인접한 관절부(52)의 전방 개구(523b)는 종축과 평행한 동일한 선 상에 위치할 수 있다.
다시 말하면, 도 15에 도시된 바와 같이 복수개의 관절부(52)가 굴곡되지 않은 중립 상태에서, 종축을 따라서 서로 인접하게 연결되는 한 쌍의 관절부(52) 중, 서로 대향하는 한 쌍의 관절부(52) 각각의 전방 개구(523b)와 후방 개구(523a)는 종축에 평행한 방향을 따라서 정확하게 오버랩될 수 있다.
도 15에 도시된 바와 같이, 서로 인접하게 연결되는 2개의 관절부(52) 각각의 고정 와이어 통로(523)의 개구 사이를 연결하는 가상의 직선은 종축 또는 관절부(52)의 중심축에 평행할 수 있다.
따라서, 도 5, 도 8 및 도 10에서 도시되는 유연 구동 장치(1, 1', 2)들의 고정 와이어(17, 271, 272)가 종축을 따라 근위로 갈수록 대칭적으로 및 선형적으로 감소하는 형상의 경로를 형성하는데 반해, 일 실시 예에 따른 유연 구동 장치(5)의 고정 와이어(57)의 통과 경로는 관절부(52)의 고정 와이어 통로(523)를 통과하는 구간에서만 관절부(52)의 중심축으로 수렴하는 경사를 형성하고, 복수개의 관절부(52)들 사이에서 연결되는 구간에서는 선행하여 통과한 관절부(52)의 중심축에 평행할 수 있다.
이상의 구조에 의하면, 한 쌍의 구동 와이어(56)에 인가되는 장력을 통해 유연 구동 장치(5)가 일 방향을 따라서 굴곡 되는 경우, 서로 인접하게 접촉하는 관절부(52)들 각각의 접촉부(524)가 마주보며 연결되는 관절부(52)에 대해 밀착되도록 회동함에 따라, 양 관절부(52) 상의 고정 와이어 통로(523)의 개구(523a, 523b)의 형상이 서로 맞물리면서 밀착될 수 있다.
결과적으로, 복수개의 관절부(52)가 굴곡되는 과정에서, 서로 마주보는 2 개의 접촉부(524) 각각의 전방 개구(523b) 및 후방 개구(523a)가 정확한 위치에서 맞물리게 됨으로써, 양 개구(523a, 523b) 사이에서 노출되는 고정 와이어(57)가 양 접촉부(524) 사이에 끼이는 문제를 방지할 수 있다.
또한, 서로 인접한 관절부(52)가 구름 접촉하는 동작 과정에서, 양 관절부(52) 각각의 고정 와이어 통로(523) 사이에서 연결되는 고정 와이어(57)가 형성하는 각도는, 양 관절부(52) 각각의 중심축이 형성하는 각도 사이의 값을 갖도록 유지될 수 있어서, 고정 와이어(57)의 구간별로 형성되는 장력의 크기 및 방향이 분산되는 것을 방지할 수 있다.
더불어, 고정 와이어(57)가 마주보는 2 개의 접촉부(524) 각각에 투영되는 면적을 최소한의 수준으로 유지할 수 있기 때문에, 고정 와이어(57)가 접촉부(524) 사이에 간섭되는 경향을 효과적으로 감소시킬 수 있다.
이상과 같이 비록 한정된 도면에 의해 실시 예들이 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구조, 장치 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.

Claims (7)

  1. 근위부;
    종축을 기준으로 상기 근위부의 단부로부터 구동 가능하게 연결되는 복수개의 관절부;
    상기 복수개의 관절부의 단부에 연결되는 원위부;
    상기 복수개의 관절부를 상기 종축을 따라서 평행하게 통과하여 상기 복수개의 관절부를 상기 종축에 수직한 횡축을 중심으로 회전시키는 회동 방향으로 구동하는 한 쌍의 구동 와이어; 및
    상기 복수개의 관절부를 상기 종축을 따라서 수렴하는 형태로 통과하여 상기 복수개의 관절부의 강성을 조절하는 고정 와이어를 포함하는 유연 구동 장치.
  2. 제 1 항에 있어서,
    상기 관절부는,
    상기 종축에 평행한 상기 관절부의 중심축에 직교하는 횡축을 따라서 양 가장자리 부분이 상기 종축을 따라 함몰 형성되는 한 쌍의 접촉부;
    상기 고정 와이어가 통과하고, 상기 종축에 대해 서로 대칭적으로 수렴하도록 경사진 형태를 갖는 한 쌍의 고정 와이어 통로를 포함하고,
    상기 복수개의 관절부 중, 상기 원위부에 인접하게 연결되는 관절부 일수록, 관절부 각각의 상기 한 쌍의 고정 와이어 통로 사이의 간격은 순차적으로 감소하고,
    상기 고정 와이어 중 상기 복수개의 관절부의 사이를 통과하는 부분은 상기 종축에 평행한 유연 구동 장치.
  3. 제 2 항에 있어서,
    상기 고정 와이어 통로는,
    상기 근위부를 향해 노출되는 전방 개구; 및
    상기 원위부를 향해 노출되는 후방 개구를 포함하고,
    서로 인접하게 연결된 한 쌍의 관절부 중, 상대적으로 상기 근위부에 인접한 관절부의 상기 후방 개구 및 상대적으로 상기 원위부에 인접한 관절부의 상기 전방 개구는, 상기 종축에 평행한 동일한 선 상에 위치하는 유연 구동 장치.
  4. 제 3 항에 있어서,
    상기 한 쌍의 구동 와이어에 인가되는 장력에 의해 복수개의 관절부 각각의 접촉부는 마주보며 연결되는 관절부에 밀착되도록 회동하고,
    서로 인접하게 접촉하는 한 쌍의 관절부 중, 상대적으로 상기 근위부에 인접한 관절부의 상기 후방 개구 및 상대적으로 상기 원위부에 인접한 관절부의 상기 전방 개구는, 각각의 개구의 형상이 서로 맞물리도록 밀착되는 것을 특징으로 하는 유연 구동 장치.
  5. 제 3 항에 있어서,
    상기 고정 와이어 중, 상기 복수개의 관절부의 상기 고정 와이어 통로를 통과하는 부분은 상기 복수개의 관절부 각각의 중심축을 향해 수렴하는 경사를 갖되, 상기 복수개의 관절부 사이를 통과하는 부분은 선행하여 통과한 관절부의 중심축에 평행한 것을 특징으로 하는 유연 구동 장치.
  6. 제 2 항에 있어서,
    상기 복수개의 관절부의 중심축을 통과하고 상기 원위부에 고정되는 중앙 와이어를 더 포함하고,
    상기 관절부는,
    상기 중심축을 기준으로 상기 횡축을 따라서 이격되어 형성되고, 상기 한 쌍의 구동 와이어가 통과하는 한 쌍의 구동 와이어 통로; 및
    상기 중심축을 따라서 상기 중앙 와이어가 통과하는 중앙 와이어 통로를 더 포함하는 유연 구동 장치.
  7. 제 6 항에 있어서,
    상기 관절부의 상기 한 쌍의 구동 와이어 통로, 한 쌍의 고정 와이어 통로 및 중앙 와이어 통로는, 상기 관절부의 상기 중심축에 직교하는 횡축을 따라서 동일한 선상에 위치하는 유연 구동 장치.
PCT/KR2020/011310 2019-08-29 2020-08-25 유연 구동 장치 WO2021040376A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/056,763 US11433558B2 (en) 2019-08-29 2020-08-25 Flexible drive manipulator
EP20806915.3A EP4023395A4 (en) 2019-08-29 2020-08-25 FLEXIBLE ACTUATOR
CN202080002872.5A CN112770878A (zh) 2019-08-29 2020-08-25 柔性驱动装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190106795 2019-08-29
KR10-2019-0106795 2019-08-29
KR10-2020-0106401 2020-08-24
KR1020200106401A KR102349030B1 (ko) 2019-08-29 2020-08-24 유연 구동 장치

Publications (1)

Publication Number Publication Date
WO2021040376A1 true WO2021040376A1 (ko) 2021-03-04

Family

ID=74683590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011310 WO2021040376A1 (ko) 2019-08-29 2020-08-25 유연 구동 장치

Country Status (1)

Country Link
WO (1) WO2021040376A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862151A1 (en) * 2020-01-23 2021-08-11 General Electric Company Extension tool having a plurality of links
CN114872061A (zh) * 2022-04-27 2022-08-09 西南科技大学 一种车载式柔性检测机器人
US11613003B2 (en) 2020-01-24 2023-03-28 General Electric Company Line assembly for an extension tool having a plurality of links
US11654547B2 (en) 2021-03-31 2023-05-23 General Electric Company Extension tool
US11692650B2 (en) 2020-01-23 2023-07-04 General Electric Company Selectively flexible extension tool
US11702955B2 (en) 2019-01-14 2023-07-18 General Electric Company Component repair system and method
US11707819B2 (en) 2018-10-15 2023-07-25 General Electric Company Selectively flexible extension tool
US11834990B2 (en) 2020-03-10 2023-12-05 Oliver Crispin Robotics Limited Insertion tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337994A (ja) * 2003-05-13 2004-12-02 Hitachi Ltd マニピュレータおよび回転関節機構
KR101369515B1 (ko) * 2012-08-08 2014-03-06 서울대학교산학협력단 가변 강성 구조체
WO2015093602A1 (ja) * 2013-12-20 2015-06-25 オリンパス株式会社 軟性マニピュレータ用ガイド部材および軟性マニピュレータ
US20150343649A1 (en) * 2014-05-28 2015-12-03 Richard Galinson Tentacle mechanism
KR20190079790A (ko) * 2017-12-28 2019-07-08 선문대학교 산학협력단 가변 강성 그리퍼 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337994A (ja) * 2003-05-13 2004-12-02 Hitachi Ltd マニピュレータおよび回転関節機構
KR101369515B1 (ko) * 2012-08-08 2014-03-06 서울대학교산학협력단 가변 강성 구조체
WO2015093602A1 (ja) * 2013-12-20 2015-06-25 オリンパス株式会社 軟性マニピュレータ用ガイド部材および軟性マニピュレータ
US20150343649A1 (en) * 2014-05-28 2015-12-03 Richard Galinson Tentacle mechanism
KR20190079790A (ko) * 2017-12-28 2019-07-08 선문대학교 산학협력단 가변 강성 그리퍼 시스템

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11707819B2 (en) 2018-10-15 2023-07-25 General Electric Company Selectively flexible extension tool
US11702955B2 (en) 2019-01-14 2023-07-18 General Electric Company Component repair system and method
EP3862151A1 (en) * 2020-01-23 2021-08-11 General Electric Company Extension tool having a plurality of links
US11692650B2 (en) 2020-01-23 2023-07-04 General Electric Company Selectively flexible extension tool
US11752622B2 (en) 2020-01-23 2023-09-12 General Electric Company Extension tool having a plurality of links
US11613003B2 (en) 2020-01-24 2023-03-28 General Electric Company Line assembly for an extension tool having a plurality of links
US11834990B2 (en) 2020-03-10 2023-12-05 Oliver Crispin Robotics Limited Insertion tool
US11654547B2 (en) 2021-03-31 2023-05-23 General Electric Company Extension tool
CN114872061A (zh) * 2022-04-27 2022-08-09 西南科技大学 一种车载式柔性检测机器人
CN114872061B (zh) * 2022-04-27 2023-11-14 西南科技大学 一种车载式柔性检测机器人

Similar Documents

Publication Publication Date Title
WO2021040376A1 (ko) 유연 구동 장치
WO2013077572A1 (ko) 차동 부재
WO2017150933A1 (ko) 가변형 중력토크 보상장치 및 이의 제어 방법
WO2016052784A1 (ko) 수술용 인스트루먼트
WO2019235905A1 (ko) 수술용 인스트루먼트
WO2020256504A2 (ko) 수술 시스템
WO2016144057A1 (ko) 공간 순응 손가락 모듈 및 이를 구비한 그리퍼
WO2021045439A1 (ko) 의류 관리기
WO2019225977A1 (ko) 정보 출력 장치
WO2021162232A1 (ko) 초소형 복강경 수술 로봇
WO2021162310A1 (en) Humidification apparatus
WO2016080786A1 (ko) 회전 및 병진 운동 시의 출력부재의 강성을 제어하는 장치
WO2015183049A1 (ko) 옵티컬 트래킹 시스템 및 옵티컬 트래킹 시스템의 마커부 자세 산출방법
WO2018021763A1 (ko) 보행 운동용 다방향 현수장치
WO2014171642A1 (ko) 여유구동형 기구 형성 방법 및 구동기 힘 분배 시스템
WO2020251130A1 (ko) 소프트 그립유닛, 이를 포함하는 그립장치 및 그립장치의 구동방법
WO2020256502A2 (ko) 그리퍼 및 이를 포함하는 수술용 마스터 장치
WO2021025460A1 (ko) 엘이디 스핀척
WO2023128583A1 (ko) 로봇 핸드
WO2010053245A1 (ko) 물체 형상에 따라 신축 변형되는 접속부를 가지는 로봇 핸드 및 로봇 핸드 제어방법
WO2011149300A2 (en) Mems actuator mounted camera module having sag compensation and sag compensation method using the same
WO2020032466A1 (ko) 다관절형 지지부재를 포함하는 케이블
WO2021101287A1 (ko) 로봇 암용 그리퍼 장치
WO2022231337A1 (ko) 다관절형 수술용 장치
WO2020091134A1 (ko) 모션 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020806915

Country of ref document: EP

Effective date: 20201123

NENP Non-entry into the national phase

Ref country code: DE