WO2021040213A1 - Real-time dose monitoring system and real-time dose monitoring method using plastic fluorescent plate - Google Patents

Real-time dose monitoring system and real-time dose monitoring method using plastic fluorescent plate Download PDF

Info

Publication number
WO2021040213A1
WO2021040213A1 PCT/KR2020/008253 KR2020008253W WO2021040213A1 WO 2021040213 A1 WO2021040213 A1 WO 2021040213A1 KR 2020008253 W KR2020008253 W KR 2020008253W WO 2021040213 A1 WO2021040213 A1 WO 2021040213A1
Authority
WO
WIPO (PCT)
Prior art keywords
dose
fluorescent plate
radiation
plastic fluorescent
real
Prior art date
Application number
PCT/KR2020/008253
Other languages
French (fr)
Korean (ko)
Inventor
윤명근
정광주
정성훈
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2021040213A1 publication Critical patent/WO2021040213A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1071Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting

Definitions

  • the present invention relates to a system and method for real-time dose monitoring using a plastic fluorescent plate that enables real-time dose monitoring of a radiation therapy device more simply and accurately by using a plastic fluorescent plate that generates visible light corresponding to a dose transmitted.
  • radiotherapy has the advantage of less pain and outpatient treatment to the patient during treatment, but if the planned dose is not delivered correctly, there is a risk that cancer treatment is not performed properly and the surrounding normal tissues are damaged.
  • the present invention is to provide a real-time dose monitoring system and method using a plastic fluorescent plate that can maximize the monitoring performance while minimizing the implementation cost by using a plastic fluorescent plate.
  • a plastic fluorescent plate which is located in front of the gantry of the radiation treatment device, transmits the radiation irradiated by the radiation treatment device and generates visible light corresponding to the amount of radiation transmitted;
  • a camera that captures an image of the plastic fluorescent plate to obtain a dose distribution map;
  • it provides a real-time dose monitoring system using a plastic fluorescent plate including a processor for measuring and outputting the dose based on the size and color of the visible light generation area of the dose distribution map.
  • the real-time dose monitoring system is further characterized in that it further comprises a mirror for adjusting the viewing angle of the camera.
  • the processor may further include a function of comparing the dose measured amount with a dose setting value, and then stopping driving the radiation therapy device or generating and outputting an alarm signal for operator notification when there is a discrepancy.
  • the processor compares the dose measurement amount with a dose setting value, calculates a dose reduction amount due to insertion of a plastic fluorescent plate, and then calculates a radiation output adjustment amount based on the dose reduction amount, and provides the function to the radiation therapy device or treatment planning system. It characterized in that it further includes.
  • the processor may further include a function of checking and notifying the abnormal operation of the radiation therapy device when the dose measurement amount does not change according to the radiation output adjustment amount.
  • a plastic fluorescent plate when a plastic fluorescent plate is positioned in front of a gantry of a radiation treatment device, allowing the radiation treatment device to be driven; When the radiation therapy device is driven to generate visible light corresponding to the amount of radiation transmitted to the plastic fluorescent plate, taking an image of the plastic fluorescent plate to obtain a dose distribution map; And it provides a real-time dose monitoring method using a plastic fluorescent plate comprising the step of measuring and notifying the dose based on the size and color of the visible light generation area of the dose distribution map.
  • the real-time dose monitoring method further includes the step of comparing the dose measured amount with the dose setting value, and then stopping driving the radiation therapy device or generating and outputting an alarm signal for operator notification when there is a discrepancy.
  • the real-time dose monitoring method compares the dose measured with the dose set value to calculate the dose reduction amount due to the insertion of the plastic fluorescent plate, and then calculates a radiation output adjustment amount based on the dose reduction amount and provides it to the radiation therapy device or treatment planning system. It characterized in that it further comprises the step of.
  • a plastic fluorescent plate that generates visible light corresponding to the amount of radiation transmitted is attached to the front of a gantry of a radiation treatment device and image-processed to monitor the dose of the radiation treatment device in real time.
  • the dose of the oblique treatment device can be more precisely monitored.
  • the real-time dose monitoring system and method using the plastic fluorescent plate of the present invention is implemented as a device independent from the existing radiation therapy device, so that the subsequent dose is used together with the internal verification system of the radiation therapy device to perform a double verification operation. To be there. In other words, the verification of the dose can be made more accurately.
  • FIG. 1 is a view showing a real-time dose monitoring system using a plastic fluorescent plate according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a real-time dose monitoring system using a plastic fluorescent plate according to another embodiment of the present invention.
  • FIG. 3 is a view showing a real-time dose monitoring system using a plastic fluorescent plate according to another embodiment of the present invention.
  • FIG. 4 is a diagram showing a result of dose measurement using a plastic fluorescent plate, and the radiation at this time may be a particularly proton therapy beam.
  • FIG. 5 is a view for explaining the performance of a real-time dose monitoring system according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining a real-time dose monitoring method using a plastic fluorescent plate according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining a real-time dose monitoring method using a plastic fluorescent plate according to another embodiment of the present invention.
  • block diagrams herein are to be understood as representing a conceptual perspective of exemplary circuits embodying the principles of the invention.
  • all flowcharts, state transition diagrams, pseudocodes, etc. are understood to represent the various processes performed by a computer or processor, whether or not the computer or processor is clearly depicted and that can be represented substantially in a computer-readable medium. It should be.
  • the functions of the various elements shown in the drawings may be provided by the use of dedicated hardware as well as hardware having the ability to execute software in association with appropriate software.
  • the function may be provided by a single dedicated processor, a single shared processor, or a plurality of individual processors, some of which may be shared.
  • DSP digital signal processor
  • ROM read-only memory
  • RAM random access memory
  • non-volatile memory Other commonly used hardware may also be included.
  • components expressed as means for performing the functions described in the detailed description include all types of software including, for example, combinations of circuit elements or firmware/microcodes that perform the above functions. It is intended to include all methods of performing a function to perform the function, and is combined with suitable circuitry for executing the software to perform the function. Since the invention defined by these claims is combined with the functions provided by the various enumerated means and combined with the manner required by the claims, any means capable of providing the above functions are equivalent to those conceived from this specification. It should be understood as.
  • FIG. 1 is a view showing a real-time dose monitoring system using a plastic fluorescent plate according to an embodiment of the present invention.
  • the real-time dose monitoring system 100 of the present invention includes a plastic fluorescent plate insertion tray 110, a plastic fluorescent plate 120, a camera 130, a processor 140, and the like, and a radiation therapy device ( 210) and is implemented in a separate device type.
  • the plastic fluorescent plate insertion tray 110 is attached to the front of the gantry of the radiation therapy device 210 so that the plastic fluorescent plate 120 can be inserted and fixed later.
  • the radiation therapy device 210 may be a proton therapy device, a heavy particle therapy device, or the like.
  • the plastic fluorescent plate 120 reacts with high-energy radiation irradiated by a radiation therapy device and converts it into visible light. That is, while transmitting the radiation, visible light corresponding to the amount of radiation transmitted is generated.
  • the camera 130 captures an image of a plastic fluorescent plate to obtain a dose distribution map.
  • the processor 140 obtains information on the correlation between the visible light color and the dose in advance, and measures and reports the current dose based on the size and color of the visible light generation area of the dose distribution map.
  • the processor 140 receives and stores information on the dose setting value from the treatment planning system 200 that establishes and reports a patient treatment plan, and immediately stops the radiation treatment when the currently measured dose distribution is different from the dose setting value. To ensure the stability of the treatment.
  • the processor 140 considers that the dose may be reduced due to the insertion of the plastic fluorescent plate, and calculates a radiation output adjustment amount based on the dose reduction amount by as much as based on the dose reduction amount by the plastic fluorescent plate. It may also be provided to the planning system. That is, by increasing the radiation output amount of the radiation treatment device 210 by the amount of reduction in dose by the plastic fluorescent plate through the radiation treatment device or the treatment planning system, the dose finally provided to the patient can be guaranteed an initial set value.
  • the camera 130 and the processor 140 of the present invention may be implemented as a device located outside the radiation treatment device, but if necessary, the camera 130 and the processor 140 may be implemented in the form of a device built into the radiation treatment device as shown in FIG. Yes, of course.
  • the real-time dose monitoring system 100 of the present invention further includes a mirror 150 for reflecting the plastic fluorescent plate illuminated on itself toward the photographing direction of the camera, and thereby the viewing angle of the camera 130 It can be arbitrarily adjusted.
  • the arrangement position and inclination angle of the mirror 150 may be determined according to the relative position and angle of the gantry and the camera. For example, assuming that the camera is positioned on the lower left of the gantry, the mirror 150 is positioned vertically below the gantry and to the horizontal left of the camera, and may have an inclination angle of 45°.
  • FIG. 4 is a diagram showing a result of dose measurement using a plastic fluorescent plate, and the radiation at this time may be a particularly proton therapy beam.
  • the plastic fluorescent plate of the present invention can measure the spot of radiation (for example, a proton beam) requiring precise measurement at a level similar to that of the high-resolution film (EBT3), and generated light It can be seen that the amount of is proportional to the delivered dose and has excellent reproducibility.
  • the spot of radiation for example, a proton beam
  • EBT3 high-resolution film
  • the present invention can trace back to the dose based on the amount of light generated by the fluorescent plate, that is, the color of visible light. .
  • FIG. 5 is a view for explaining the performance of a real-time dose monitoring system according to an embodiment of the present invention.
  • Figure 5 (a) is the dose measurement result of the real-time dose monitoring system, (b) is the dose setting value of the treatment planning system, comparing this, the plastic fluorescent plate of the present invention will ensure very high measurement reproducibility as described above. You can see that you can.
  • FIG. 5C is a diagram showing the gamma distribution, and the comparison between the dose measurement value using a fluorescent plate and the treatment planning system has a very high gamma pass rate of 98.5% based on 3%/3 mm. And, if the gamma value of 3%/3 mm is less than 1, it is passed, and if it is greater than 1, it is confirmed and notified that it is failure.
  • FIG. 6 is a view for explaining a real-time dose monitoring method using a plastic fluorescent plate according to an embodiment of the present invention.
  • a plurality of background images for example, for example, after acquiring 40 seconds x sampling rate (n frames/sec), a single background image is generated by collecting and averaging all pixel values in the background image (S2).
  • the camera also starts photographing the plastic fluorescent plate 120 (S4).
  • the current dose is measured and reported based on the size and color of the visible light generation area in the dose distribution map (S6). ).
  • the present invention makes it possible to more simply and accurately measure the dose of a radiation treatment device by using a plastic fluorescent plate that generates visible light corresponding to the amount of radiation transmitted.
  • the dose provided to the patient may be slightly reduced.
  • the amount of dose reduction may be further increased depending on the thickness of the plastic fluorescent plate.
  • the radiation output amount of the radiation therapy device may be corrected as much as the dose reduction amount by inserting the plastic fluorescent plate.
  • the dose reduction amount due to the insertion of the plastic fluorescent plate is inferred based on the deviation between the dose setting amount and the dose measured amount (S11), and reflecting this, the radiation output amount of the radiation therapy device may be corrected. That is, by increasing the radiation output amount of the radiation therapy device 210 as much as the dose reduction amount due to the insertion of the plastic fluorescent plate, the dose finally provided to the patient can be maintained at the initial set value (S12).
  • the dose change amount is tracked and monitored, and the dose change amount is additionally confirmed to be changed according to the correction amount in step S12 (S13),
  • step S13 if the dose change amount does not change according to the correction amount in step S12, it is confirmed and notified that the radiation therapy device cannot adjust the output amount according to the correction amount (that is, the radiation treatment is driven abnormally) (S14). .
  • the method according to the present invention described above may be produced as a program for execution in a computer and stored in a computer-readable recording medium.
  • Examples of computer-readable recording media include ROM, RAM, CD-ROM, and magnetic tape. , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of a carrier wave (for example, transmission through the Internet).
  • the computer-readable recording medium is distributed over a computer system connected through a network, so that computer-readable codes can be stored and executed in a distributed manner.
  • functional programs, codes, and code segments for implementing the method can be easily inferred by programmers in the art to which the present invention pertains.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The present invention relates to a real-time dose monitoring system and a real-time dose monitoring method which use a plastic fluorescent plate, wherein the system may comprise: the plastic fluorescent plate located in front of a gantry of a radiation therapy apparatus to transmit radiation irradiated by the radiation therapy apparatus and generate visible light corresponding to an amount of transmitted radiation; a camera for acquiring a dose distribution by capturing an image of the plastic fluorescent plate; and a processor for measuring and outputting a dose on the basis of the size and color of a visible light generation area of the dose distribution.

Description

플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템 및 방법Real-time dose monitoring system and method using plastic fluorescent plate
본 발명은 선량 투과량에 상응하는 가시광을 발생하는 플라스틱 형광판을 이용하여, 보다 간단하고 정확하게 방사선 치료기의 실시간 선량 모니터링을 수행할 수 있도록 하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템 및 방법에 관한 것이다.The present invention relates to a system and method for real-time dose monitoring using a plastic fluorescent plate that enables real-time dose monitoring of a radiation therapy device more simply and accurately by using a plastic fluorescent plate that generates visible light corresponding to a dose transmitted.
암을 진단 받는 환자의 수는 꾸준히 증가중이며, 수술, 항암치료와 방사선치료를 통해 치료가 진행된다. 이 중 방사선치료는 치료 시 환자에게 고통 부담이 적고 통원 치료가 가능하다는 장점이 있지만, 계획한 선량이 정확하게 전달되지 않으면 암 치료가 제대로 이루어지지 않고 주변 정상 조직이 손상되는 위험성이 있다.The number of patients diagnosed with cancer is steadily increasing, and treatment is progressed through surgery, chemotherapy and radiation therapy. Among these, radiotherapy has the advantage of less pain and outpatient treatment to the patient during treatment, but if the planned dose is not delivered correctly, there is a risk that cancer treatment is not performed properly and the surrounding normal tissues are damaged.
현재까지 형광판을 갠트리에 부착하여 실시간으로 선량을 검증해주는 시스템이 개발되거나 상용화 된 경우가 없으며, 특히 입자선 치료의 경우는 다른 선량 계측기를 이용한 경우에도 갠트리에 부착하여 실시간으로 선량을 검증해주는 시스템은 보고된 것이 없다. 따라서 이 분야의 기술을 개발한다면 해당 기술을 선점하고 향후 다른 선량 검증 시스템 연구 개발에 대한 기술적인 파급 효과가 클 것으로 예상된다.Until now, a system that verifies the dose in real time by attaching a fluorescent plate to the gantry has not been developed or commercialized. In particular, in the case of particle ray therapy, a system that verifies the dose in real time by attaching it to the gantry even when other dose measuring devices are used. Nothing has been reported. Therefore, if the technology in this field is developed, it is expected to preempt the technology and have a large technical ripple effect on research and development of other dose verification systems in the future.
한편, 방사선 치료기 내부에 치료빔에 대한 검증을 해주는 시스템이 존재하긴 하지만, 해상도가 낮아 정밀한 치료빔 분포를 검증하는 것은 어려운 일이다. On the other hand, although there is a system for verifying the treatment beam inside the radiation therapy device, it is difficult to verify the precise distribution of the treatment beam due to low resolution.
그리고 입자선 치료의 경우에는 스캐닝 기법을 이용하여 매우 정밀한 치료를 실시하는 경우가 있는데. 이러한 치료기법은 내부 검증 시스템이 정밀하게 검증하기 힘들다. 또한, 내부 검증 시스템 이외의 독립적인 검증 시스템을 이용하여 이중으로 검증한다면 치료빔에 대한 검증이 보다 정확하게 이루어질 것이다. And in the case of particle ray therapy, there are cases where very precise treatment is performed using a scanning technique. This treatment technique is difficult to accurately verify by the internal verification system. In addition, if double verification using an independent verification system other than the internal verification system, verification of the treatment beam will be made more accurately.
이에 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명은 플라스틱 형광판을 이용하여 구현 비용은 최소화시키되 그 모니터링 성능은 극대화시킬 수 있는 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템 및 방법을 제공하고자 한다. Accordingly, as to solve the above problems, the present invention is to provide a real-time dose monitoring system and method using a plastic fluorescent plate that can maximize the monitoring performance while minimizing the implementation cost by using a plastic fluorescent plate.
또한 방사선 치료기에 독립되어 선량 모니터링 동작을 수행할 수 있도록 하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템 및 방법을 제공하고자 한다. In addition, it is intended to provide a real-time dose monitoring system and method using a plastic fluorescent plate that enables a radiation therapy device to perform a dose monitoring operation independently.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The object of the present invention is not limited to the above-mentioned object, and other objects not mentioned will be clearly understood by those of ordinary skill in the art from the following description.
상기 과제를 해결하기 위한 수단으로서, 본 발명의 일 실시 형태에 따르면 방사선 치료기의 갠트리 전면에 위치되어, 상기 방사선 치료기에 의해 조사되는 방사선을 투과시키면서 방사선 투과량에 상응하는 가시광을 발생하는 플라스틱 형광판; 상기 플라스틱 형광판을 영상 촬영하여 선량 분포도를 획득하는 카메라; 및 상기 선량 분포도의 가시광 발생 영역의 크기 및 색상을 기반으로 선량을 측정 및 출력하는 프로세서를 포함하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템을 제공한다. As a means for solving the above problems, according to an embodiment of the present invention, a plastic fluorescent plate which is located in front of the gantry of the radiation treatment device, transmits the radiation irradiated by the radiation treatment device and generates visible light corresponding to the amount of radiation transmitted; A camera that captures an image of the plastic fluorescent plate to obtain a dose distribution map; And it provides a real-time dose monitoring system using a plastic fluorescent plate including a processor for measuring and outputting the dose based on the size and color of the visible light generation area of the dose distribution map.
상기 실시간 선량 모니터링 시스템은 상기 카메라의 시야각 조정을 위한 거울을 더 포함하는 것을 더 특징으로 한다. The real-time dose monitoring system is further characterized in that it further comprises a mirror for adjusting the viewing angle of the camera.
상기 프로세서는 선량 측정량을 선량 설정치와 비교한 후, 불일치시에는 방사선 치료기 구동을 중단시키거나 작업자 통보를 위한 알람 신호를 생성 및 출력하는 기능을 더 포함하는 것을 특징으로 한다. The processor may further include a function of comparing the dose measured amount with a dose setting value, and then stopping driving the radiation therapy device or generating and outputting an alarm signal for operator notification when there is a discrepancy.
또한 상기 프로세서는 선량 측정량을 선량 설정치과 비교하여 플라스틱 형광판 삽입에 따른 선량 감소량을 산출한 후, 상기 선량 감소량에 기반하여 방사선 출력 조정량을 산출하여 상기 방사선 치료기 또는 치료 계획 시스템에 제공하는 기능을 더 포함하는 것을 특징으로 한다. In addition, the processor compares the dose measurement amount with a dose setting value, calculates a dose reduction amount due to insertion of a plastic fluorescent plate, and then calculates a radiation output adjustment amount based on the dose reduction amount, and provides the function to the radiation therapy device or treatment planning system. It characterized in that it further includes.
뿐 만 아니라 상기 프로세서는 방사선 출력 조정량에 따라 선량 측정량이 변화되지 않으면, 상기 방사선 치료기의 비정상 구동을 확인 및 통보하는 기능을 더 포함하는 것을 특징으로 한다. In addition, the processor may further include a function of checking and notifying the abnormal operation of the radiation therapy device when the dose measurement amount does not change according to the radiation output adjustment amount.
상기 과제를 해결하기 위한 수단으로서, 본 발명의 다른 실시 형태에 따르면 방사선 치료기의 갠트리 전면에 플라스틱 형광판가 위치되면, 상기 방사선 치료기의 구동을 허용하는 단계; 상기 방사선 치료기가 구동되어 상기 플라스틱 형광판에 방사선 투과량에 상응하는 가시광이 발생되면, 상기 플라스틱 형광판을 영상 촬영하여 선량 분포도를 획득하는 단계; 및 상기 선량 분포도의 가시광 발생 영역의 크기 및 색상을 기반으로 선량을 측정 및 통보하는 단계를 포함하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 방법을 제공한다. As a means for solving the above problem, according to another embodiment of the present invention, when a plastic fluorescent plate is positioned in front of a gantry of a radiation treatment device, allowing the radiation treatment device to be driven; When the radiation therapy device is driven to generate visible light corresponding to the amount of radiation transmitted to the plastic fluorescent plate, taking an image of the plastic fluorescent plate to obtain a dose distribution map; And it provides a real-time dose monitoring method using a plastic fluorescent plate comprising the step of measuring and notifying the dose based on the size and color of the visible light generation area of the dose distribution map.
상기 실시간 선량 모니터링 방법은 선량 측정량을 선량 설정치와 비교한 후, 불일치시에는 방사선 치료기 구동을 중단시키거나 작업자 통보를 위한 알람 신호를 생성 및 출력하는 단계를 더 포함하는 것을 특징으로 한다. The real-time dose monitoring method further includes the step of comparing the dose measured amount with the dose setting value, and then stopping driving the radiation therapy device or generating and outputting an alarm signal for operator notification when there is a discrepancy.
또한 상기 실시간 선량 모니터링 방법은 선량 측정량을 선량 설정치과 비교하여 플라스틱 형광판 삽입에 따른 선량 감소량을 산출한 후, 상기 선량 감소량에 기반하여 방사선 출력 조정량을 산출하여 상기 방사선 치료기 또는 치료 계획 시스템에 제공하는 단계를 더 포함하는 것을 특징으로 한다. In addition, the real-time dose monitoring method compares the dose measured with the dose set value to calculate the dose reduction amount due to the insertion of the plastic fluorescent plate, and then calculates a radiation output adjustment amount based on the dose reduction amount and provides it to the radiation therapy device or treatment planning system. It characterized in that it further comprises the step of.
본 발명은 방사선 투과량에 상응하는 가시광을 발생하는 플라스틱 형광판을 방사선 치료기의 갠트리 전면에 부착시키고, 이를 영상 처리함으로써 방사선 치료기의 선량을 보다 간단하고 신속하게, 실시간 모니터링할 수 있도록 한다. 또한 플라스틱 형광판의 높은 해상도를 기반으로 사선 치료기의 선량을 보다 정밀하게 모니터링할 수 있도록 한다. In the present invention, a plastic fluorescent plate that generates visible light corresponding to the amount of radiation transmitted is attached to the front of a gantry of a radiation treatment device and image-processed to monitor the dose of the radiation treatment device in real time. In addition, based on the high resolution of the plastic fluorescent plate, the dose of the oblique treatment device can be more precisely monitored.
뿐 만 아니라, 본 발명의 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템 및 방법은 기존의 방사선 치료기와 독립되는 장치로 구현되어, 차후 선량이 방사선 치료기의 내부 검증 시스템과 함께 이용되어 이중 검증 동작이 수행될 수 있도록 한다. 즉 선량에 대한 검증이 보다 정확하게 이루어질 수 있도록 한다. In addition, the real-time dose monitoring system and method using the plastic fluorescent plate of the present invention is implemented as a device independent from the existing radiation therapy device, so that the subsequent dose is used together with the internal verification system of the radiation therapy device to perform a double verification operation. To be there. In other words, the verification of the dose can be made more accurately.
도 1은 본 발명의 일 실시예에 따른 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템을 도시한 도면이다. 1 is a view showing a real-time dose monitoring system using a plastic fluorescent plate according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템을 도시한 도면이다. 2 is a diagram showing a real-time dose monitoring system using a plastic fluorescent plate according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템을 도시한 도면이다. 3 is a view showing a real-time dose monitoring system using a plastic fluorescent plate according to another embodiment of the present invention.
도 4는 본 발명은 플라스틱 형광판을 이용한 선량 측정 결과를 도시한 도면으로, 이때의 방사선은 특히 양성자 치료빔일 수 있다. FIG. 4 is a diagram showing a result of dose measurement using a plastic fluorescent plate, and the radiation at this time may be a particularly proton therapy beam.
도 5는 본 발명의 일 실시예에 따른 실시간 선량 모니터링 시스템의 성능을 설명하기 위한 도면이다. 5 is a view for explaining the performance of a real-time dose monitoring system according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 플라스틱 형광판을 이용한 실시간 선량 모니터링 방법을 설명하기 위한 도면이다. 6 is a view for explaining a real-time dose monitoring method using a plastic fluorescent plate according to an embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 플라스틱 형광판을 이용한 실시간 선량 모니터링 방법을 설명하기 위한 도면이다. 7 is a view for explaining a real-time dose monitoring method using a plastic fluorescent plate according to another embodiment of the present invention.
이하의 내용은 단지 본 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 본 발명의 원리를 구현하고 본 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시예들은 원칙적으로, 본 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.The following content merely exemplifies the principles of the present invention. Therefore, those skilled in the art can implement the principles of the present invention and invent various devices included in the concept and scope of the present invention, although not clearly described or illustrated herein. In addition, it is understood that all conditional terms and examples listed in this specification are, in principle, expressly intended only for the purpose of making the concept of the present invention understood, and are not limited to the embodiments and states specifically listed as such. It should be.
또한, 본 발명의 원리, 관점 및 실시예들 뿐만 아니라 특정 실시예를 열거하는 모든 상세한 설명은 이러한 사항의 구조적 및 기능적 균등물을 포함하도록 의도되는 것으로 이해되어야 한다. 또한 이러한 균등물들은 현재 공지된 균등물뿐만 아니라 장래에 개발될 균등물 즉 구조와 무관하게 동일한 기능을 수행하도록 발명된 모든 소자를 포함하는 것으로 이해되어야 한다.In addition, it is to be understood that all detailed descriptions listing specific embodiments as well as principles, aspects and embodiments of the present invention are intended to include structural and functional equivalents of these matters. It should also be understood that these equivalents include not only currently known equivalents, but also equivalents to be developed in the future, that is, all devices invented to perform the same function regardless of the structure.
따라서, 예를 들어, 본 명세서의 블럭도는 본 발명의 원리를 구체화하는 예시적인 회로의 개념적인 관점을 나타내는 것으로 이해되어야 한다. 이와 유사하게, 모든 흐름도, 상태 변환도, 의사 코드 등은 컴퓨터가 판독 가능한 매체에 실질적으로 나타낼 수 있고 컴퓨터 또는 프로세서가 명백히 도시되었는지 여부를 불문하고 컴퓨터 또는 프로세서에 의해 수행되는 다양한 프로세스를 나타내는 것으로 이해되어야 한다.Thus, for example, the block diagrams herein are to be understood as representing a conceptual perspective of exemplary circuits embodying the principles of the invention. Similarly, all flowcharts, state transition diagrams, pseudocodes, etc. are understood to represent the various processes performed by a computer or processor, whether or not the computer or processor is clearly depicted and that can be represented substantially in a computer-readable medium. It should be.
프로세서 또는 이와 유사한 개념으로 표시된 기능 블럭을 포함하는 도면에 도시된 다양한 소자의 기능은 전용 하드웨어뿐만 아니라 적절한 소프트웨어와 관련하여 소프트웨어를 실행할 능력을 가진 하드웨어의 사용으로 제공될 수 있다. 프로세서에 의해 제공될 때, 상기 기능은 단일 전용 프로세서, 단일 공유 프로세서 또는 복수의 개별적 프로세서에 의해 제공될 수 있고, 이들 중 일부는 공유될 수 있다.The functions of the various elements shown in the drawings, including a processor or functional block represented by a similar concept, may be provided by the use of dedicated hardware as well as hardware having the ability to execute software in association with appropriate software. When provided by a processor, the function may be provided by a single dedicated processor, a single shared processor, or a plurality of individual processors, some of which may be shared.
또한 프로세서, 제어 또는 이와 유사한 개념으로 제시되는 용어의 명확한 사용은 소프트웨어를 실행할 능력을 가진 하드웨어를 배타적으로 인용하여 해석되어서는 아니되고, 제한 없이 디지털 신호 프로세서(DSP) 하드웨어, 소프트웨어를 저장하기 위한 롬(ROM), 램(RAM) 및 비 휘발성 메모리를 암시적으로 포함하는 것으로 이해되어야 한다. 주지관용의 다른 하드웨어도 포함될 수 있다.In addition, the explicit use of terms presented as processor, control, or similar concepts should not be interpreted exclusively by quoting hardware capable of executing software, and without limitation, digital signal processor (DSP) hardware, ROM for storing software. It should be understood to implicitly include (ROM), RAM (RAM) and non-volatile memory. Other commonly used hardware may also be included.
본 명세서의 청구범위에서, 상세한 설명에 기재된 기능을 수행하기 위한 수단으로 표현된 구성요소는 예를 들어 상기 기능을 수행하는 회로 소자의 조합 또는 펌웨어/마이크로 코드 등을 포함하는 모든 형식의 소프트웨어를 포함하는 기능을 수행하는 모든 방법을 포함하는 것으로 의도되었으며, 상기 기능을 수행하도록 상기 소프트웨어를 실행하기 위한 적절한 회로와 결합된다. 이러한 청구범위에 의해 정의되는 본 발명은 다양하게 열거된 수단에 의해 제공되는 기능들이 결합되고 청구항이 요구하는 방식과 결합되기 때문에 상기 기능을 제공할 수 있는 어떠한 수단도 본 명세서로부터 파악되는 것과 균등한 것으로 이해되어야 한다.In the claims of the present specification, components expressed as means for performing the functions described in the detailed description include all types of software including, for example, combinations of circuit elements or firmware/microcodes that perform the above functions. It is intended to include all methods of performing a function to perform the function, and is combined with suitable circuitry for executing the software to perform the function. Since the invention defined by these claims is combined with the functions provided by the various enumerated means and combined with the manner required by the claims, any means capable of providing the above functions are equivalent to those conceived from this specification. It should be understood as.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. The above-described objects, features, and advantages will become more apparent through the following detailed description in connection with the accompanying drawings, whereby those of ordinary skill in the technical field to which the present invention pertains can easily implement the technical idea of the present invention. There will be. In addition, in describing the present invention, when it is determined that a detailed description of a known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템을 도시한 도면이다. 1 is a view showing a real-time dose monitoring system using a plastic fluorescent plate according to an embodiment of the present invention.
도 1을 참고하면, 본 발명의 실시간 선량 모니터링 시스템(100)은 플라스틱 형광판 삽입 트레이(110), 플라스틱 형광판(120), 카메라(130), 프로세서(140) 등을 포함하여 구성되며, 방사선 치료기(210)와 구분되는 별도 장치 형태로 구현된다. Referring to FIG. 1, the real-time dose monitoring system 100 of the present invention includes a plastic fluorescent plate insertion tray 110, a plastic fluorescent plate 120, a camera 130, a processor 140, and the like, and a radiation therapy device ( 210) and is implemented in a separate device type.
플라스틱 형광판 삽입 트레이(110)는 방사선 치료기(210)의 갠트리 전면에 부착되어, 차후 플라스틱 형광판(120)이 삽입 및 고정될 수 있도록 한다. 이때, 방사선 치료기(210)는 양성자 치료기, 중입자 치료기 등 일 수 있다. The plastic fluorescent plate insertion tray 110 is attached to the front of the gantry of the radiation therapy device 210 so that the plastic fluorescent plate 120 can be inserted and fixed later. In this case, the radiation therapy device 210 may be a proton therapy device, a heavy particle therapy device, or the like.
플라스틱 형광판(120)은 방사선 치료기에 의해 조사되는 고에너지의 방사선과 반응하여 이를 가시광선으로 변환해준다. 즉, 방사선을 투과시키면서 방사선 투과량에 상응하는 가시광을 발생하도록 한다. The plastic fluorescent plate 120 reacts with high-energy radiation irradiated by a radiation therapy device and converts it into visible light. That is, while transmitting the radiation, visible light corresponding to the amount of radiation transmitted is generated.
이는 갠트리와 동일 형상 및 크기를 가지는 판형으로 구현되며, 플라스틱 형광판 삽입 트레이(110)에 삽입 및 고정될 수 있으며, 표 1과 같은 물성을 가지는 EJ-212, NE-102A, BC-400 등으로 제작 가능하다. It is implemented in a plate shape having the same shape and size as the gantry, and can be inserted and fixed in the plastic fluorescent plate insertion tray 110, and manufactured with EJ-212, NE-102A, BC-400, etc. having the physical properties shown in Table 1. It is possible.
Light output (% Anthracene)Light output (% Anthracene) 6565
Scintillation efficiency (photons/1 MeV e-)Scintillation efficiency (photons/1 MeV e-) 10,00010,000
Wavelength of maximum emission (nm)Wavelength of maximum emission (nm) 423423
Rise time (ns)Rise time (ns) 0.90.9
Decay time (ns)Decay time (ns) 2.42.4
Pulse width, FWHM (ns)Pulse width, FWHM (ns) 2.72.7
Polymer basePolymer base PolyvinyltoluenePolyvinyltoluene
Density (g/cm3)Density (g/cm 3 ) 1.0231.023
카메라(130)는 플라스틱 형광판을 영상 촬영하여 선량 분포도를 획득하도록 한다. 프로세서(140)는 가시광 색상과 선량간 상관관계에 대한 정보를 사전 획득하고, 선량 분포도의 가시광 발생 영역의 크기 및 색상을 기반으로 현재 선량을 측정 및 통보하도록 한다. The camera 130 captures an image of a plastic fluorescent plate to obtain a dose distribution map. The processor 140 obtains information on the correlation between the visible light color and the dose in advance, and measures and reports the current dose based on the size and color of the visible light generation area of the dose distribution map.
또한 프로세서(140)는 환자 치료 계획을 수립 및 통보하는 치료 계획 시스템(200)로부터 선량 설정치에 대한 정보를 제공받아 저장하고, 현재 측정된 선량 분포도가 선량 설정치와 달라지면 방사선 치료를 즉각 중지함으로써, 방사선 치료의 안정성을 확보할 수 있도록 한다. In addition, the processor 140 receives and stores information on the dose setting value from the treatment planning system 200 that establishes and reports a patient treatment plan, and immediately stops the radiation treatment when the currently measured dose distribution is different from the dose setting value. To ensure the stability of the treatment.
뿐 만 아니라 프로세서(140)는 플라스틱 형광판 삽입으로 인해 선량이 감소될 수 있음으로 고려하여, 플라스틱 형광판에 의한 선량 감소량에 기반하여 만큼 상기 선량 감소량에 기반하여 방사선 출력 조정량을 산출하여 방사선 치료기 또는 치료 계획 시스템에 제공할 수도 있도록 한다. 즉, 방사선 치료기 또는 치료 계획 시스템을 통해 플라스틱 형광판에 의한 선량 감소량 만큼 방사선 치료기(210)의 방사선 출력량을 증가시킴으로써, 환자에 최종 제공되는 선량이 초기 설정치를 보장할 수 있도록 한다. In addition, the processor 140 considers that the dose may be reduced due to the insertion of the plastic fluorescent plate, and calculates a radiation output adjustment amount based on the dose reduction amount by as much as based on the dose reduction amount by the plastic fluorescent plate. It may also be provided to the planning system. That is, by increasing the radiation output amount of the radiation treatment device 210 by the amount of reduction in dose by the plastic fluorescent plate through the radiation treatment device or the treatment planning system, the dose finally provided to the patient can be guaranteed an initial set value.
더하여, 상기의 설명에서는 본 발명의 카메라(130와 프로세서(140)가 방사선 치료기 외부에 위치하는 장치로 구현될 수 있으나, 필요한 경우 도 2에서와 같이 방사선 치료기 내부에 내장되는 장치 형태로 구현될 수도 있음은 물론 당연하다. In addition, in the above description, the camera 130 and the processor 140 of the present invention may be implemented as a device located outside the radiation treatment device, but if necessary, the camera 130 and the processor 140 may be implemented in the form of a device built into the radiation treatment device as shown in FIG. Yes, of course.
또한 도 3에서와 같이, 본 발명의 실시간 선량 모니터링 시스템(100)은 자신에 비춰진 플라스틱 형광판을 상기 카메라의 촬영 방향쪽으로 반사시키는 거울(150)을 추가 구비하고, 이를 통해 카메라(130)의 시야각을 임의 조정할 수도 있도록 한다. In addition, as shown in FIG. 3, the real-time dose monitoring system 100 of the present invention further includes a mirror 150 for reflecting the plastic fluorescent plate illuminated on itself toward the photographing direction of the camera, and thereby the viewing angle of the camera 130 It can be arbitrarily adjusted.
이때의 거울(150)의 배치 위치 및 경사 각도는 갠트리와 카메라의 상대적 위치 및 각도에 따라 결정될 수 있을 것이다. 예를 들어, 갠트리의 하부 좌측에 카메라가 위치된다고 가정한다면, 거울(150)은 갠트리의 수직 하부 그리고 카메라의 수평 좌측에 위치되며, 45ㅀ의 경사 각도를 가질 수 있을 것이다. At this time, the arrangement position and inclination angle of the mirror 150 may be determined according to the relative position and angle of the gantry and the camera. For example, assuming that the camera is positioned on the lower left of the gantry, the mirror 150 is positioned vertically below the gantry and to the horizontal left of the camera, and may have an inclination angle of 45°.
도 4는 본 발명은 플라스틱 형광판을 이용한 선량 측정 결과를 도시한 도면으로, 이때의 방사선은 특히 양성자 치료빔일 수 있다. FIG. 4 is a diagram showing a result of dose measurement using a plastic fluorescent plate, and the radiation at this time may be a particularly proton therapy beam.
도 4의 (a)를 참고하면, 본 발명의 플라스틱 형광판은 정밀한 측정이 필요한 방사선(예를 들어, 양성자 빔)의 스팟을 고해상도의 필름(EBT3)과 비슷한 수준으로 측정할 수 있으며, 발생되는 빛의 양은 전달된 선량에 비례하고 재현성이 매우 뛰어난 것을 알 수 있다. Referring to Figure 4 (a), the plastic fluorescent plate of the present invention can measure the spot of radiation (for example, a proton beam) requiring precise measurement at a level similar to that of the high-resolution film (EBT3), and generated light It can be seen that the amount of is proportional to the delivered dose and has excellent reproducibility.
도 4의 (b)를 참고하면, 플라스틱 형광판은 선량에 대한 선형성을 가지므로, 본 발명은 형광판에 의해 발생된 빛의 양, 즉 가시광 색상을 기반으로 선량으로 역추적할 수 있음을 알 수 있다. Referring to (b) of FIG. 4, since the plastic fluorescent plate has linearity with respect to the dose, it can be seen that the present invention can trace back to the dose based on the amount of light generated by the fluorescent plate, that is, the color of visible light. .
마지막으로 도 4의 (c)에 도시된 바와 같이, 플라스틱 형광판의 측정 재현성 또한 매우 높음을 알 수 있다. 그 결과 형광판 기반 측정 시스템으로 치료 계획 시스템에서 계산한 방사선 분포를 높은 신뢰도로 검증할 수 있음을 알 수 있다. Finally, as shown in (c) of Figure 4, it can be seen that the measurement reproducibility of the plastic fluorescent plate is also very high. As a result, it can be seen that the radiation distribution calculated by the treatment planning system can be verified with high reliability with a fluorescent plate-based measurement system.
도 5는 본 발명의 일 실시예에 따른 실시간 선량 모니터링 시스템의 성능을 설명하기 위한 도면이다. 5 is a view for explaining the performance of a real-time dose monitoring system according to an embodiment of the present invention.
도 5의 (a)는 실시간 선량 모니터링 시스템의 선량 측정 결과이고, (b)는 치료 계획 시스템의 선량 설정값으로, 이를 비교하면 본 발명의 플라스틱 형광판은 앞서 설명한 바와 같이 매우 높은 측정 재현성을 보장할 수 있음을 알 수 있다. Figure 5 (a) is the dose measurement result of the real-time dose monitoring system, (b) is the dose setting value of the treatment planning system, comparing this, the plastic fluorescent plate of the present invention will ensure very high measurement reproducibility as described above. You can see that you can.
도 5의 (c)는 감마 분포를 도시한 도면으로, 형광판을 이용한 선량 측정값과 치료 계획 시스템간의 비교는 3%/3 mm 기준 감마 통과율이 98.5% 수준으로 매우 높다. 그리고 3%/3 mm 기준 감마값이 1 이하이면 통과, 1보다 크면 실패임을 확인 및 통보할 수 있도록 한다. FIG. 5C is a diagram showing the gamma distribution, and the comparison between the dose measurement value using a fluorescent plate and the treatment planning system has a very high gamma pass rate of 98.5% based on 3%/3 mm. And, if the gamma value of 3%/3 mm is less than 1, it is passed, and if it is greater than 1, it is confirmed and notified that it is failure.
도 6은 본 발명의 일 실시예에 따른 플라스틱 형광판을 이용한 실시간 선량 모니터링 방법을 설명하기 위한 도면이다. 6 is a view for explaining a real-time dose monitoring method using a plastic fluorescent plate according to an embodiment of the present invention.
먼저, 플라스틱 형광판(120)을 방사선 치료기의 갠트리 전면에 위치시킨 후(S1), 치료실의 조명을 모든 끈 상태에서 소정 시간(예를 들어, 40초)에 걸쳐 촬영하여 다수개의 배경 이미지(예를 들어, 40초 × 샘플링 속도(n 프레임/sec)를 획득한 후, 배경 이미지내 픽셀값을 모두 수집 및 평균화함으로써 단일 배경 이미지를 생성한다(S2). First, after placing the plastic fluorescent plate 120 in front of the gantry of the radiation therapy device (S1), taking a picture over a predetermined period of time (for example, 40 seconds) with all the lights of the treatment room turned off, a plurality of background images (for example, For example, after acquiring 40 seconds x sampling rate (n frames/sec), a single background image is generated by collecting and averaging all pixel values in the background image (S2).
이러한 상태에서 치료 계획 시스템 등으로부터 선량 설정량이 결정되고 방사선 치료기가 해당 설정량을 가지는 방사선을 조사하기 시작하면(S3), 카메라 또한 플라스틱 형광판(120)을 촬영하기 시작한다(S4). In this state, when the dose setting amount is determined from the treatment planning system, etc., and the radiation therapy device starts to irradiate the radiation having the set amount (S3), the camera also starts photographing the plastic fluorescent plate 120 (S4).
그리고 단일 배경 이미지를 통해 촬영 이미지에 포함된 배경 잡음을 제거하여한 선량 분포도를 획득한 후(S5), 선량 분포도내 가시광 발생 영역의 크기 및 색상을 기반으로 현재 선량을 측정 및 통보하도록 한다(S6). After obtaining a dose distribution map by removing background noise included in the captured image through a single background image (S5), the current dose is measured and reported based on the size and color of the visible light generation area in the dose distribution map (S6). ).
더하여, 선량 측정량과 선량 설정량을 비교 분석한 후(S7), 선량 측정량과 선량 설정이 일치하는 경우에는 단계 S3에 재진입하여 방사선 치료를 계속하되, 그렇지 않은 경우에는 방사선 치료기 구동을 중단시키거나 현재 상태를 작업자에게 통보하기 위한 알람 신호를 생성 및 출력할 수도 있도록 한다(S8). In addition, after comparing and analyzing the dose measured amount and the dose setting amount (S7), if the dose measured amount and the dose setting match, re-enter step S3 to continue the radiation treatment, but if not, stop the operation of the radiation therapy device. Or to generate and output an alarm signal to notify the operator of the current state (S8).
이와 같이, 본 발명은 방사선 투과량에 상응하는 가시광을 발생하는 플라스틱 형광판을 활용하여 방사선 치료기의 선량을 보다 간단하고 정확하게 측정할 수 있도록 한다. As described above, the present invention makes it possible to more simply and accurately measure the dose of a radiation treatment device by using a plastic fluorescent plate that generates visible light corresponding to the amount of radiation transmitted.
한편, 플라스틱 형광판이 삽입됨에 따라 환자에 제공되는 선량이 미소하게나마 감소될 수 있다. 특히, 플라스틱 형광판의 두께에 따라 선량 감소량이 더욱 증가될 수 있다. On the other hand, as the plastic fluorescent plate is inserted, the dose provided to the patient may be slightly reduced. In particular, the amount of dose reduction may be further increased depending on the thickness of the plastic fluorescent plate.
이에 본 발명은 플라스틱 형광판 삽입에 의한 선량 감소량 만큼 방사선 치료기의 방사선 출력량을 보정해줄 수도 있도록 한다. Accordingly, according to the present invention, the radiation output amount of the radiation therapy device may be corrected as much as the dose reduction amount by inserting the plastic fluorescent plate.
즉, 도 7에서와 같이, 선량 설정량과 선량 측정량간 편차를 기반으로 플라스틱 형광판 삽입에 따른 선량 감소량을 유추하고(S11), 이를 반영하여 방사선 치료기의 방사선 출력량을 보정할 수도 있도록 한다. 즉, 플라스틱 형광판 삽입에 따른 선량 감소량 만큼 방사선 치료기(210)의 방사선 출력량을 증가시킴으로써, 환자에 최종 제공되는 선량이 초기 설정치를 유지할 수 있도록 한다(S12). That is, as shown in FIG. 7, the dose reduction amount due to the insertion of the plastic fluorescent plate is inferred based on the deviation between the dose setting amount and the dose measured amount (S11), and reflecting this, the radiation output amount of the radiation therapy device may be corrected. That is, by increasing the radiation output amount of the radiation therapy device 210 as much as the dose reduction amount due to the insertion of the plastic fluorescent plate, the dose finally provided to the patient can be maintained at the initial set value (S12).
그리고 선량 변화량을 추적 모니터링하고 선량 변화량이 단계 S12의 보정량에 따라 변화되는 추가 확인하도록 한다(S13), Then, the dose change amount is tracked and monitored, and the dose change amount is additionally confirmed to be changed according to the correction amount in step S12 (S13),
단계 S13의 확인 결과, 선량 변화량이 단계 S12의 보정량에 따라 변화되지 않으면, 방사선 치료기가 보정량에 따라 출력량을 조정하지 못함(즉, 방사선 치료가 비정상적으로 구동됨)을 확인 및 통보하도록 한다(S14). As a result of the confirmation in step S13, if the dose change amount does not change according to the correction amount in step S12, it is confirmed and notified that the radiation therapy device cannot adjust the output amount according to the correction amount (that is, the radiation treatment is driven abnormally) (S14). .
상술한 본 발명에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.The method according to the present invention described above may be produced as a program for execution in a computer and stored in a computer-readable recording medium. Examples of computer-readable recording media include ROM, RAM, CD-ROM, and magnetic tape. , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of a carrier wave (for example, transmission through the Internet).
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.The computer-readable recording medium is distributed over a computer system connected through a network, so that computer-readable codes can be stored and executed in a distributed manner. In addition, functional programs, codes, and code segments for implementing the method can be easily inferred by programmers in the art to which the present invention pertains.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.In the above, preferred embodiments of the present invention have been illustrated and described, but the present invention is not limited to the specific embodiments described above, and the present invention is generally in the technical field to which the present invention belongs without departing from the gist of the present invention claimed in the claims. Of course, various modifications may be implemented by those skilled in the art, and these modifications should not be individually understood from the technical idea or perspective of the present invention.

Claims (8)

  1. 방사선 치료기의 갠트리 전면에 위치되어, 상기 방사선 치료기에 의해 조사되는 방사선을 투과시키면서 방사선 투과량에 상응하는 가시광을 발생하는 플라스틱 형광판;A plastic fluorescent plate positioned in front of the gantry of the radiation treatment device to transmit the radiation irradiated by the radiation treatment device and to generate visible light corresponding to the amount of radiation transmitted;
    상기 플라스틱 형광판을 영상 촬영하여 선량 분포도를 획득하는 카메라; 및A camera that captures an image of the plastic fluorescent plate to obtain a dose distribution map; And
    상기 선량 분포도의 가시광 발생 영역의 크기 및 색상을 기반으로 선량을 측정 및 출력하는 프로세서를 포함하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템.A real-time dose monitoring system using a plastic fluorescent plate comprising a processor configured to measure and output a dose based on the size and color of the visible light generation area of the dose distribution map.
  2. 제1항에 있어서, The method of claim 1,
    상기 카메라의 시야각 조정을 위한 거울을 더 포함하는 것을 더 특징으로 하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템.Real-time dose monitoring system using a plastic fluorescent plate further comprising a mirror for adjusting the viewing angle of the camera.
  3. 제1항에 있어서, 상기 프로세서는 The method of claim 1, wherein the processor
    선량 측정량을 선량 설정치와 비교한 후, 불일치시에는 방사선 치료기 구동을 중단시키거나 작업자 통보를 위한 알람 신호를 생성 및 출력하는 기능을 더 포함하는 것을 특징으로 하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템.A real-time dose monitoring system using a plastic fluorescent plate, characterized in that it further comprises a function of stopping the operation of the radiation therapy device or generating and outputting an alarm signal for operator notification in case of a discrepancy after comparing the dose measured amount with the dose setting value.
  4. 제1항에 있어서, 상기 프로세서는 The method of claim 1, wherein the processor
    선량 측정량을 선량 설정치과 비교하여 플라스틱 형광판 삽입에 따른 선량 감소량을 산출한 후, 상기 선량 감소량에 기반하여 방사선 출력 조정량을 산출하여 상기 방사선 치료기 또는 치료 계획 시스템에 제공하는 기능을 더 포함하는 것을 특징으로 하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템.Comparing the dose measurement amount with a dose setting value, calculating a dose reduction amount due to the insertion of a plastic fluorescent plate, and calculating a radiation output adjustment amount based on the dose reduction amount, and providing it to the radiation therapy device or treatment planning system. Real-time dose monitoring system using a plastic fluorescent plate characterized by.
  5. 제4항에 있어서, 상기 프로세서는 The method of claim 4, wherein the processor
    방사선 출력 조정량에 따라 선량 측정량이 변화되지 않으면, 상기 방사선 치료기의 비정상 구동을 확인 및 통보하는 기능을 더 포함하는 것을 특징으로 하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 시스템.If the dose measurement amount does not change according to the radiation output adjustment amount, the system further comprises a function of confirming and notifying the abnormal operation of the radiation therapy device.
  6. 방사선 치료기의 갠트리 전면에 플라스틱 형광판가 위치되면, 상기 방사선 치료기의 구동을 허용하는 단계;When the plastic fluorescent plate is positioned in front of the gantry of the radiation treatment device, allowing the radiation treatment device to be driven;
    상기 방사선 치료기가 구동되어 상기 플라스틱 형광판에 방사선 투과량에 상응하는 가시광이 발생되면, 상기 플라스틱 형광판을 영상 촬영하여 선량 분포도를 획득하는 단계; 및 When the radiation therapy device is driven and visible light corresponding to the amount of radiation transmitted to the plastic fluorescent plate is generated, taking an image of the plastic fluorescent plate to obtain a dose distribution map; And
    상기 선량 분포도의 가시광 발생 영역의 크기 및 색상을 기반으로 선량을 측정 및 통보하는 단계를 포함하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 방법.Real-time dose monitoring method using a plastic fluorescent plate comprising the step of measuring and notifying the dose based on the size and color of the visible light generation area of the dose distribution map.
  7. 제6항에 있어서, The method of claim 6,
    선량 측정량을 선량 설정치와 비교한 후, 불일치시에는 방사선 치료기 구동을 중단시키거나 작업자 통보를 위한 알람 신호를 생성 및 출력하는 단계를 더 포함하는 것을 특징으로 하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 방법. After comparing the dose measured amount with the dose setting value, if there is a discrepancy, stopping the operation of the radiation therapy device or generating and outputting an alarm signal for operator notification.
  8. 제6항에 있어서, The method of claim 6,
    선량 측정량을 선량 설정치과 비교하여 플라스틱 형광판 삽입에 따른 선량 감소량을 산출한 후, 상기 선량 감소량에 기반하여 방사선 출력 조정량을 산출하여 상기 방사선 치료기 또는 치료 계획 시스템에 제공하는 단계를 더 포함하는 것을 특징으로 하는 플라스틱 형광판을 이용한 실시간 선량 모니터링 방법. Comparing the dose measurement amount with a dose setting value, calculating a dose reduction amount due to insertion of a plastic fluorescent plate, calculating a radiation output adjustment amount based on the dose reduction amount, and providing it to the radiation therapy device or treatment planning system. Real-time dose monitoring method using a plastic fluorescent plate characterized by.
PCT/KR2020/008253 2019-08-27 2020-06-25 Real-time dose monitoring system and real-time dose monitoring method using plastic fluorescent plate WO2021040213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190105221A KR102324365B1 (en) 2019-08-27 2019-08-27 real-time monitoring system and method for therapeutic radiation based on plastic scintillating plate
KR10-2019-0105221 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021040213A1 true WO2021040213A1 (en) 2021-03-04

Family

ID=74684501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008253 WO2021040213A1 (en) 2019-08-27 2020-06-25 Real-time dose monitoring system and real-time dose monitoring method using plastic fluorescent plate

Country Status (2)

Country Link
KR (1) KR102324365B1 (en)
WO (1) WO2021040213A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102343789B1 (en) * 2019-12-23 2021-12-28 연세대학교 산학협력단 Real-time radiation measuring system and method for measuring radiation in real-time
KR20230168828A (en) * 2022-06-08 2023-12-15 사회복지법인 삼성생명공익재단 Real-time radiation dose analysis apparatus, method and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200288458Y1 (en) * 2002-05-04 2002-09-10 정원정밀공업 주식회사 The Antiscattering Grid which is using Digital Radiography System
JP4171731B2 (en) * 2002-09-02 2008-10-29 Agcテクノグラス株式会社 Method and apparatus for reading dose distribution of glass dosimeter
US20090207977A1 (en) * 2008-02-15 2009-08-20 Xiaodong Wu Laser Aligned Image Guided Radiation Beam Verification Apparatus
JP2010032419A (en) * 2008-07-30 2010-02-12 Natl Inst Of Radiological Sciences Exposure dose confirmation system and exposure dose confirmation method
JP2015516183A (en) * 2012-03-08 2015-06-11 ザ・ジョンズ・ホプキンス・ユニバーシティ Method and apparatus for measuring quality accuracy of machine and dosimetry in radiotherapy in real time

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200288458Y1 (en) * 2002-05-04 2002-09-10 정원정밀공업 주식회사 The Antiscattering Grid which is using Digital Radiography System
JP4171731B2 (en) * 2002-09-02 2008-10-29 Agcテクノグラス株式会社 Method and apparatus for reading dose distribution of glass dosimeter
US20090207977A1 (en) * 2008-02-15 2009-08-20 Xiaodong Wu Laser Aligned Image Guided Radiation Beam Verification Apparatus
JP2010032419A (en) * 2008-07-30 2010-02-12 Natl Inst Of Radiological Sciences Exposure dose confirmation system and exposure dose confirmation method
JP2015516183A (en) * 2012-03-08 2015-06-11 ザ・ジョンズ・ホプキンス・ユニバーシティ Method and apparatus for measuring quality accuracy of machine and dosimetry in radiotherapy in real time

Also Published As

Publication number Publication date
KR20210025758A (en) 2021-03-10
KR102324365B1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
WO2021040213A1 (en) Real-time dose monitoring system and real-time dose monitoring method using plastic fluorescent plate
WO2013115607A2 (en) Method and apparatus for manufacturing radiation intensity bolus
US7579608B2 (en) Particle-beam treatment system
US7488107B2 (en) Method and apparatus to detect and correct alignment errors in x-ray systems used to generate 3D volumetric images
US9521987B2 (en) Radiation imaging system and operating method thereof
US9060731B2 (en) Radiographing system, method of controlling automatic exposure in radiographing system, and radiological image detection device
US20140072103A1 (en) Radiographic imaging apparatus and control method for the same
US7791039B2 (en) Radiation image capturing apparatus and method of detecting malfunction of radiation image capturing apparatus
US20130058455A1 (en) Radiographing system, method of controlling automatic exposure in radiographing system, and radiological image detection device
WO2016125986A1 (en) X-ray apparatus and method of operating the same
WO2012153990A9 (en) X-ray imaging apparatus
WO2023027227A1 (en) System for inspecting defect in structure using x-rays, method for controlling x-ray output of inspection system, and method for calculating depth of defect
WO2016010398A1 (en) Radiation therapy device and quality control method for radiation therapy device
JP5630250B2 (en) Radiation imaging system
WO2020105970A1 (en) Dental ct imaging apparatus, method for aligning dental ct imaging apparatus, and computer-readable recording medium
Black et al. An investigation of clinical treatment field delivery verification using cherenkov imaging: IMRT positioning shifts and field matching
WO2018139891A1 (en) Radiation therapy evaluation system
CN112912007A (en) Detector module system for positron emission tomography and medical device
JP2011177424A (en) Shading correction device and method and program
US20240108916A1 (en) Quality Assurance Device for a Medical Accelerator
WO2018080195A1 (en) Automatic x-ray exposure control method using time synchronization in wireless environment
WO2016076598A1 (en) Radiation therapy apparatus and quality control method for radiation therapy apparatus
Gauntt et al. An automatic and accurate x‐ray tube focal spot/grid alignment system for mobile radiography: System description and alignment accuracy a
WO2018216898A1 (en) Radiation dose measurement device and measurement method
WO2021071306A1 (en) Apparatus and method for establishing radiation therapy plan for intensity-modulated radiation therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856484

Country of ref document: EP

Kind code of ref document: A1