WO2018139891A1 - Radiation therapy evaluation system - Google Patents

Radiation therapy evaluation system Download PDF

Info

Publication number
WO2018139891A1
WO2018139891A1 PCT/KR2018/001155 KR2018001155W WO2018139891A1 WO 2018139891 A1 WO2018139891 A1 WO 2018139891A1 KR 2018001155 W KR2018001155 W KR 2018001155W WO 2018139891 A1 WO2018139891 A1 WO 2018139891A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
radiation
coordinate system
markers
marker
Prior art date
Application number
PCT/KR2018/001155
Other languages
French (fr)
Korean (ko)
Inventor
한영이
천원중
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2018139891A1 publication Critical patent/WO2018139891A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1071Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N2005/1074Details of the control system, e.g. user interfaces

Definitions

  • the present invention relates to a radiotherapy evaluation system, and more particularly to a radiation therapy evaluation system for calculating the absolute coordinates on the absolute coordinate system of the treatment room for the measurement marker that emits radiation.
  • proton therapy is one of radiation treatments, in which a proton, a small particle constituting the nucleus of a hydrogen atom, is shot at a high-speed cancer site and destroys cancer tissue. Since there are few side effects that can occur during radiation therapy, it is called 'treatment of dreams'. It is characterized by using the peculiar physical properties of protons, namely Bragg Peak.
  • the Bragg peak is a phenomenon in which energy absorption in the body reaches its peak when protons reach cancer tissues when the human body penetrates the human body.
  • Proton therapy can be effectively applied to the treatment of cancer patients because there is almost no energy absorption in normal tissues and there are few side effects that can occur during radiation therapy. (Figure 1)
  • the elements contained in the metal are isotopes to emit radiation.
  • the location of the isotope emitting radiation can be traced to determine if the energy of the proton beam has been delivered correctly to cancer tissues.
  • PET positron emission tomography
  • Korean Patent Application Publication No. 2016-0013325 uses an acceleration sensor and a gyro sensor attached to a radioisotope to provide a system that simultaneously provides data on the direction and movement of a radiation source on a visual basis and manages optimal power management by the tracking device itself. Although disclosed, it is difficult to apply this to the coordinate system of the treatment room that is not equipped with a tracking device.
  • U.S. Patent No. 8249693 discloses a positioning system that includes a gamma camera with a set of inclined bore collimators, but is also difficult to apply to coordinate systems in treatment rooms that are not equipped with tracking devices.
  • the present invention has been made to solve the above-mentioned problems of the prior art.
  • the present invention aims to provide a system capable of evaluating radiotherapy by simply tracking the position of the isotope emitting radiation even in a treatment room where no positron emission tomography device such as PET is installed.
  • the present invention is inserted into the tissue of the object, the measurement marker unit 600 including at least one measurement marker (610, 620, 630) made of a metal material, having a Bragg peak (bragg peak) characteristic on the tissue Measurement of emitting radiation by using a particle beam irradiator 500 for irradiating particle beams, at least one radiation sensing camera 300 for photographing a radiographic image of the measurement marker unit 600, and the photographed radiographic image
  • a radiation therapy evaluation system is provided that includes a computing device 400 for calculating camera-reference coordinates of a marker.
  • the radiation detection camera 300 may be a camera capable of detecting radiation, the camera includes a collimator 310 for limiting the incident direction of the radiation emitted from the measurement markers (610, 620, 630) It is desirable to.
  • the computing device 400 includes a memory 440 in which transformation matrix information indicating a transformation relationship between an absolute coordinate system of a treatment room where the system is installed and a camera-reference coordinate system of the radiation sensing camera is stored in advance. It is desirable to.
  • the computing device 400 preferably converts the camera-reference coordinates of the measurement marker that emitted the radiation into absolute coordinates on the absolute coordinate system using the conversion matrix information.
  • a reference marker unit 100 including a reference display unit 170 and a plurality of isotope markers and a laser irradiator 200 for irradiating a laser to the reference display unit 170.
  • the computing device 400 may be configured to obtain absolute coordinates on the absolute coordinate system for the plurality of isotope markers by using the reference display unit 170 irradiated with the laser by the laser irradiator 200 as a reference point.
  • Camera-on a reference coordinate system for the plurality of isotopic markers by using the radiographic image of the reference marker unit 100 obtained through the first coordinate calculation unit 410 and the radiation detection camera 300 to calculate.
  • the second coordinate calculator 420 for calculating reference coordinates and the camera-reference coordinate system between the absolute coordinate system and the camera-reference coordinate system, using the camera coordinates and the absolute coordinates calculated for the plurality of isotope markers. It is preferable to further include a conversion matrix calculation unit 430 for calculating a conversion matrix.
  • the conversion matrix calculation unit 430 preferably stores the calculated conversion matrix in the memory 440.
  • the plurality of isotope markers is preferably at least three.
  • the reference marker unit 100 including a reference display unit 170 and a plurality of isotope markers, a laser irradiator 200 for irradiating a laser to the reference display unit 170, inserted into the tissue of the object,
  • a measurement marker unit 600 including at least one measurement marker 610, 620, and 630 made of a metal material, a particle beam irradiator 500 irradiating a particle beam having Bragg peak characteristics to the tissue;
  • At least one radiation sensing camera 300, the laser irradiator 200, and the at least one radiation sensing camera 300 which respectively photograph radiographic images of the reference marker unit 100 and the measurement marker unit 600.
  • Computing device 400 for data communication the computing device 400, the absolute coordinate system of the treatment room for the plurality of isotope markers with the reference display unit 170 to which the laser is irradiated as a reference point.
  • calculating a transformation matrix between the absolute coordinate system and the camera-reference coordinate system by using the absolute coordinates and the camera-reference coordinates calculated for the plurality of isotope markers.
  • Radiation provided by converting camera-reference coordinates for emitted measurement markers into absolute coordinates on the absolute coordinate system Provide a treatment assessment system.
  • the present invention it is possible to simply track the position of an isotope that emits radiation even in a treatment room where no positron emission tomography device such as PET is installed.
  • 1 is a view for explaining the treatment of cancer tissue through a conventional irradiator and particle beam irradiator.
  • FIG. 2 is a block diagram showing a radiotherapy evaluation system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a computing device according to an exemplary embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating a radiotherapy evaluation system according to an embodiment of the present invention.
  • 5 and 6 are diagrams schematically showing a relationship between a plurality of isotope markers in the reference marker unit shown in FIG. 4.
  • FIG 7 and 8 are views schematically showing the application of the radiation therapy evaluation system according to an embodiment of the present invention.
  • the radiation therapy evaluation system includes a measurement marker unit 600, a particle beam irradiator 500, a radiation sensing camera 300, and a computing device 400.
  • the measurement marker unit 600 is a part inserted into the tissue of the object and includes at least one measurement marker 610, 620, 630 made of a metal material. Specifically, as shown in FIG. 7, the measurement markers 610, 620, and 630 are inserted into the rear of the cancer tissue so as to face the particle beam irradiator 500 with the cancer tissue interposed therebetween. Since the measurement markers 610, 620, and 630 are made of a metal material, when the particle beam beam having the Bragg peak characteristics irradiated by the particle beam emitter 500 is subtracted, it is compared with the ground state. It becomes the state which has an additional proton (isotopation). This isotope measuring marker emits radiation and its position is detected by a radiation sensing camera 300 to be described later.
  • the particle beam irradiator 500 is a portion for irradiating a particle beam beam having Bragg peak characteristics to the target tissue.
  • the particle beam has a Bragg peak and is a device for releasing the energy intensively at a target position and destroying and treating the tissue with the emitted energy.
  • the measurement markers 610, 620, and 630 of the metal material are isotoped and emit radiation when the particle beam beam having the Bragg peak characteristic is split, thereby detecting the target tissue. It is only possible to know exactly whether the particle beam has arrived.
  • the energy of the particle beam beam is emitted to the measurement markers 610, 620, and 630 inserted into the back of the target tissue, and thus, it may be determined that the treatment plan needs to be modified in the future.
  • the radiation sensing camera 300 is a part of photographing a radiographic image of the measurement marker unit 600, and generates a 2D radiographic image.
  • the radiation detecting camera 300 may be a gamma camera or a Compton camera capable of generating radiation and generating a 2D radiographic image.
  • a collimator 310 is provided in front of the gamma camera to limit the incident direction of radiation.
  • the radiation detection camera 300 detects radiation emitted from the isotopic measuring markers 610, 620, and 630 by emitting a particle beam to take a radiographic image.
  • the computing device 400 is a part that calculates camera-reference coordinates on the camera-reference coordinate system of the measurement markers 610, 620, and 630 that emit radiation by using the radiation image photographed by the radiation sensing camera 300. Taking the measurement markers 610, 620, 630 emitting radiation with the radiation sensing camera 300 displays the positions of the measurement markers, and the computing device 400 displays the cameras on the camera-reference coordinate system of the measurement markers 610, 620, 630 emitting radiation. The reference coordinate is calculated.
  • the computing device 400 may include a memory 440 in which transformation matrix information indicating a transformation relationship between an absolute coordinate system of a treatment room where a system according to an exemplary embodiment of the present invention is installed and a camera-reference coordinate system of the radiation sensing camera 300 is stored. It includes more.
  • the computing device 400 converts the camera-reference coordinates of the measurement markers 610, 620, and 630 which emit radiation using the transformation matrix information stored in advance in the memory 440 into absolute coordinates on the absolute coordinate system of the treatment room. Through this conversion process, the camera-reference coordinates of the measurement markers 610, 620, and 630 which emit radiation captured by the radiation sensing camera 300 are converted to the absolute coordinates of the treatment room, so that the measurement markers 610, 620, 630 which emit radiation are the absolute coordinate system of the treatment room. If the measurement markers (610, 620, 630) emit radiation, it means that the proton beam is irradiated to the normal tissue instead of only the target tissue. It is also possible to modify the treatment plan of 500).
  • the reference marker unit 100, the laser irradiator 200, the radiation sensing camera 300, and the computing device 400 are used to calculate the transformation matrix. Each configuration and role will be described later.
  • a process of positioning the reference marker unit 100 in the treatment room is required in advance.
  • the laser irradiator 200 may display the reference point C0 of the absolute coordinate system of the treatment room using a laser.
  • the absolute coordinate system of the treatment room is the same as the three-dimensional coordinate system of the treatment room where the object is located.
  • the laser irradiator 200 may display a reference point C0 of the absolute coordinate system of the treatment room by irradiating a cross (+) type laser.
  • the fiducial marker unit 100 may be located in the treatment room. 5 and 6, the reference marker unit 100 includes a first surface 110, a second surface 120 parallel to the first surface, a reference display unit 170 displaying a center of the first surface, and a reference. It may include a plurality of isotopic markers spaced apart from the display unit 170 and disposed on the first surface 110.
  • the fiducial marker unit 100 may include at least three isotope markers to obtain three-dimensional coordinate values using the fiducial marker unit 100. However, in order to increase the position measurement accuracy may be included more, in the present invention will be described with an example including four isotope markers (130, 140, 150, 160).
  • Isotopes are provided in the plurality of isotope markers 130, 140, 150, and 160 to emit radiation.
  • the radiation detection camera 300 detects the radiation emitted from the isotope marker to generate a radiographic image.
  • FIG. 5 and 6 are perspective views schematically illustrating a relationship between a plurality of isotopic markers 130, 140, 150, and 160 in the reference marker unit 100 illustrated in FIG. 4.
  • the reference marker unit 100 includes a first surface 110 and a second surface 120 parallel to the first surface.
  • the reference marker unit 100 may be a cube or a cube in which each corner is perpendicular to each other.
  • the lengths w1, w2, and w3 of each corner of the reference marker unit 100 are known information, and the information may be stored in the computing device 400.
  • the reference marker unit 100 may be made of a material in which the lengths w1, w2, and w3 of each corner do not change due to external action.
  • the plurality of isotopic markers may include a first marker 130, a second marker 140, a third marker 150, and a fourth marker 160 disposed on the first surface 110.
  • the first marker 130 to the fourth marker 160 may be disposed to be adjacent to each vertex of the first surface 110.
  • the distance between the markers that is, the first separation distance d1 of the first marker 130 and the second marker 140 and the second separation of the second marker 140 and the fourth marker 160.
  • the distance d2 is also known information, which may also be stored in the computing device 400.
  • the reference marker unit 100 may include a reference display unit 170 that displays the center of the first surface 110.
  • the reference display unit 170 may have a cross (+) shape, and the reference display unit 170 may be a midpoint of lines passing vertically through the center of each corner.
  • the first coordinate calculator 410 may include the separation distances d1 and d2 between the plurality of isotope markers and the length w1 of each corner of the reference marker unit 100. w2 and w3, specifically, the first distance w3 between the first surface 110 and the second surface 120 may be stored in advance.
  • the first coordinate calculator 410 is configured to store the first marker 130 to the fourth marker 160 using the separation distances d1 and d2 and the first distance w3 between the plurality of isotopic markers stored in advance.
  • the coordinate values on the absolute coordinate system of the treatment room can be calculated. At this time, the coordinate value is preferably a three-dimensional coordinate value.
  • the first coordinate calculator 410 may contact the first marker 130, the second marker 140, the third marker 150, and the fourth marker 160 based on the reference point C0 of the absolute coordinate system.
  • the first-first coordinate value 130A, the first-second coordinate value 140A, the first-three coordinate value 140C, and the first-fourth coordinate value 140D may be calculated, respectively.
  • the first coordinate calculator 410 may be formed at a position where the first marker 130, the second marker 140, the third marker 150, and the fourth marker 160 correspond to each other on the second surface 120.
  • the first to fifth coordinate values 130B, the first to sixth coordinate values 140B, the first to seventh coordinate values 150B, and the first to eighth coordinate values 160B may be calculated.
  • the first coordinate calculator 410 may calculate eight coordinate values on the absolute coordinate system of the treatment room using the information of the reference marker unit 100.
  • the radiation sensing camera 300 may generate a radiographic image by photographing a plurality of isotope markers of the reference marker unit 100.
  • the second coordinate calculator 420 which will be described later, using the radiation images generated by the plurality of radiation sensing cameras 300, calculates camera-based coordinate values of the plurality of isotope markers 130, 140, 150, and 160 in the camera-based coordinate system. can do.
  • the radiation detection camera 300 includes a collimator for vertically incidence of radiation emitted by a plurality of isotope markers ( 310, it is possible to obtain an accurate three-dimensional coordinate value.
  • the second coordinate calculator 420 may calculate camera-reference coordinate values on the camera-reference coordinate system of each of the plurality of isotopic markers 130, 140, 150, and 160 using the radiation image generated by the radiation detection camera 300.
  • the second coordinate calculation unit 420 uses the first marker 130, the second marker 140, the third marker 150, and the fourth marker 160 to include the isotope.
  • the camera-reference coordinate value on the three-dimensional camera-reference coordinate system is calculated.
  • the second coordinate calculation unit 420 uses the radiographic image generated by the radiation sensing camera 300 to form a 2-1 coordinate value, a 2-2 coordinate value, a 2-3 coordinate value, and The second to fourth coordinate values can be calculated.
  • the second coordinate calculation unit 420 like the first coordinate calculation unit 410, the separation distance (d1, d2) of the plurality of isotope markers (130, 140, 150, 160) and at least the first surface 110 and the second The lengths w1, w2, and w3 of each corner of the reference marker unit 100 including the first distance w3 between the surfaces 120 may be stored in advance.
  • the second coordinate calculator 420 may correspond to the first marker 130, the second marker 140, the third marker 150, and the fourth marker 160 on the second surface 120.
  • the 2-5th coordinate value, the 2-6th coordinate value, the 2-7th coordinate value, and the 2-8th coordinate value can be calculated.
  • the second coordinate calculator 420 may calculate eight coordinate values on the camera-based coordinate system.
  • the transformation matrix calculator 430 may derive the transformation relationship between the absolute coordinate system and the camera-based coordinate system using the absolute coordinate values of the absolute coordinate systems 130, 140, 150, and 160 of the plurality of isotope markers 130 and the camera-based coordinate values of the camera-based coordinate system. Can be.
  • the transformation matrix calculator 430 generates a first matrix of 1-1 coordinate values to 1-8 coordinate values.
  • R which is the first matrix representing the absolute coordinate system
  • the transformation matrix calculator 430 generates a second matrix of the 2-1st to 2-8th coordinate values.
  • V the second matrix representing the camera-reference coordinate system, may be expressed as [X2, Y2, Z2, 1] T. Since the first matrix and the second matrix each include eight coordinate values, the first matrix and the second matrix may be expressed as in Equation 1.
  • an operation relationship between the first matrix and the second matrix may be defined as in Equation 2.
  • V [V1 V2 V3 V4 V5 V6 V7 V8]
  • the transformation matrix calculation unit 430 calculates an inverse of one of the first matrix and the second matrix, and then calculates the inverse of the remaining one of the first and second matrices and converts the matrix as shown in Equation 3 below. Can be derived.
  • the size of the first matrix and the second matrix may be 4 ⁇ 8
  • the transform matrix T may be 4 ⁇ 4.
  • the reference marker unit 100 may include at least three isotopic markers to obtain three-dimensional coordinate values of the isotopic markers. That is, at least three markers are required to calculate the transformation matrix, wherein the size of the first matrix and the second matrix is 4 ⁇ 3, and the transform matrix T may be 4 ⁇ 4. However, three or more isotopic markers may be included in order to increase the position measurement accuracy. However, when the information of the pre-stored reference marker unit 100 is used, only the three isotopic markers may be used for the first matrix of 4X8 and The second matrix and the 4X4 transform matrix T are also operable.
  • the conversion matrix calculator 430 may store the calculated conversion matrix in the memory 440 of the computing device 400 and later convert the converted conversion matrix to an absolute coordinate value in an absolute coordinate system of a treatment room of a measurement marker that emits radiation.
  • the camera-based coordinate value of the camera-based coordinate system may be converted into the absolute coordinate value of the absolute coordinate system of the treatment room by the calculator 450.
  • Embodiments according to the present invention described above may be implemented in the form of a computer program that can be executed through various components on a computer, such a computer program may be recorded on a computer readable medium.
  • the media may be magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and Hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • the medium may include an intangible medium that is implemented in a form that can be transmitted on a network.
  • the medium may be a medium that may be implemented in the form of software or an application to be transmitted and distributed through a network.
  • the computer program is specifically designed and configured for the present invention, but may be known and available to those skilled in the computer software field.
  • Examples of computer programs may include not only machine code generated by a compiler, but also high-level language code executable by a computer using an interpreter or the like.
  • connection or connection members of the lines between the components shown in the drawings by way of example shows a functional connection and / or physical or circuit connections, in the actual device replaceable or additional various functional connections, physical It may be represented as a connection, or circuit connections.
  • such as "essential”, “important” may not be a necessary component for the application of the present invention.
  • the present invention it is possible to simply track the position of an isotope that emits radiation even in a treatment room in which a positron tomography device such as PET is not installed. As a result, the particle beam treatment having Bragg Peak characteristics is possible. Afterwards, it is possible to assess the exact delivery of energy only to the targeted tissues, which can then be used for future particle beam treatment plans.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Nuclear Medicine (AREA)

Abstract

Provided is a radiation therapy evaluation system. A radiation therapy evaluation system according to an embodiment of the present invention may comprise: a measurement marker unit (600) which is inserted into tissue of an evaluation object and includes one or more measurement markers (610, 620, and 630) made of metal material; a particle ray irradiator (500) for emitting a particle ray having a Bragg peak characteristic to the tissue; at least one radiation detection camera (300) for capturing a radiation image for the measurement marker unit (600); and a computing device (400) for calculating camera-reference coordinates of a measurement marker having emitted radiation, by using the captured radiation image.

Description

방사선 치료 평가 시스템Radiation therapy evaluation system
본 발명은 방사선 치료 평가 시스템에 관한 것으로, 보다 상세하게는 방사선을 방출하는 측정 마커에 대한 치료실의 절대 좌표계상의 절대 좌표를 산출하는 방사선 치료 평가 시스템에 관한 것이다.The present invention relates to a radiotherapy evaluation system, and more particularly to a radiation therapy evaluation system for calculating the absolute coordinates on the absolute coordinate system of the treatment room for the measurement marker that emits radiation.
의료용 기기의 개발이나 의료의 진보에 수반해, 최근 의료용 기기는 더욱 더 고도화되고 있다. 예를 들면, 암 치료에 있어서, 종래에는 외과, 투약 및 방사선에 치료가 주류였지만 최근에는 양자선이나 탄소선으로 대표되는 입자선을 조사해 치료하는 입자선 치료 장치가 개발되었다. 입자선 치료 장치에 의한 치료는 비침습적인 것이 특징이며 치료 후 환자의 빠른 회복이 가능하다.With the development of medical devices and advances in medical care, medical devices are becoming more and more advanced in recent years. For example, in the treatment of cancer, conventionally, treatment, surgery, and radiation have been mainstream, but recently, a particle beam treatment apparatus for irradiating and treating particle beams represented by quantum rays or carbon rays has been developed. Treatment with a particle beam therapy device is characterized by non-invasive and rapid recovery of the patient after treatment.
그 중, 양성자 치료(Proton therapy)란 방사선 치료의 하나로 수소원자의 핵을 구성하는 소립자인 양성자를 빠른 속도로 암이 생긴 부위에 쏘아 암조직을 파괴하는 치료 방법이다. 방사선 치료시 발생할 수 있는 부작용이 거의 없어 '꿈의 치료'라 불리고 있다. 양성자가 가진 특이한 물리학적 성질, 즉 브래그 피크(Bragg Peak)를 이용하는 것이 특징이다. 브래그 피크란 양성자가 인체 투과시 암조직에 도달할 무렵 체내 에너지 흡수가 절정에 달해 암 조직에 특이적으로 많은 에너지 흡수가 일어나는 현상이다. 양성자 치료를 하게 되면 정상 조직에는 거의 에너지 흡수가 일어나지 않아 방사선 치료시 생길 수 있는 부작용이 거의 없어 암환자의 치료에 효과적으로 적용될 수 있다. (도 1)Among them, proton therapy is one of radiation treatments, in which a proton, a small particle constituting the nucleus of a hydrogen atom, is shot at a high-speed cancer site and destroys cancer tissue. Since there are few side effects that can occur during radiation therapy, it is called 'treatment of dreams'. It is characterized by using the peculiar physical properties of protons, namely Bragg Peak. The Bragg peak is a phenomenon in which energy absorption in the body reaches its peak when protons reach cancer tissues when the human body penetrates the human body. Proton therapy can be effectively applied to the treatment of cancer patients because there is almost no energy absorption in normal tissues and there are few side effects that can occur during radiation therapy. (Figure 1)
이러한 양성자 치료 시 암 조직에만 정확히 에너지를 방출하였는지 아는 것이 중요하게 여겨진다. 암 조직만이 아닌 주변의 정상 조직에까지 에너지를 방출한 경우 부작용이 발생할 위험이 있으므로, 목표했던 암 조직에만 정확히 에너지를 방출하였는지 측정하여 차후 양성자 치료의 계획에 이용할 수 있게 된다.It is important to know whether the proton treatment has released energy exactly to cancer tissues. If energy is released not only to cancerous tissues but also to surrounding normal tissues, there is a risk of side effects. Therefore, it is possible to measure the accurate release of energy only to targeted cancer tissues and use it for future proton treatment plans.
금속이 양성자를 쪼이게 되면 금속에 포함되어 있는 원소는 동위원소화되어 방사선을 방출하게 된다. 방사선을 방출하는 동위원소의 위치를 추적하여 암 조직에만 정확히 양성자 빔의 에너지가 전달되었는지 측정할 수 있게 된다.When the metal splits protons, the elements contained in the metal are isotopes to emit radiation. The location of the isotope emitting radiation can be traced to determine if the energy of the proton beam has been delivered correctly to cancer tissues.
이는 양전자 단층촬영(PET)으로도 가능하나, 이는 고가이면서도 크기가 큰 장비이며, 특히 PET이 설비되어 있는 곳에서만 이를 측정할 수 있다는 단점이 존재한다.This is also possible with positron emission tomography (PET), but this is an expensive and large sized device, and has a disadvantage in that it can be measured only where the PET is installed.
따라서, PET과 같은 고가의 장비가 설비되어 있지 않은 치료실에서도 간단히 방사선을 방출하는 동위원소의 위치를 추적할 수 있는 시스템의 개발이 필요한 실정이다.Therefore, there is a need for the development of a system that can easily track the position of the isotope emitting radiation even in the treatment room that is not equipped with expensive equipment such as PET.
관련된 종래기술을 살펴보면 다음과 같다.Looking at the related art as follows.
한국공개특허문헌 제2016-0013325호는 방사성 동위원소에 부착하여 가속도 센서 및 자이로 센서를 이용함으로써, 방사선원의 방향성과 움직임의 데이터를 시각 기준으로 동시에 제공하고 추적장치 스스로 최적의 전원 관리를 하는 시스템을 개시하고 있으나, 이를 추적 기기가 설비되어 있지 않은 치료실의 좌표계에 적용하기에는 무리가 있다.Korean Patent Application Publication No. 2016-0013325 uses an acceleration sensor and a gyro sensor attached to a radioisotope to provide a system that simultaneously provides data on the direction and movement of a radiation source on a visual basis and manages optimal power management by the tracking device itself. Although disclosed, it is difficult to apply this to the coordinate system of the treatment room that is not equipped with a tracking device.
미국등록특허문헌 제8249693호는 경사진 구멍 시준기 세트를 가진 감마 카메라를 포함하는 위치결정 시스템을 개시하나, 이 또한 추적 기기가 설비되어 있지 않은 치료실의 좌표계에 적용하기에는 무리가 있다.U.S. Patent No. 8249693 discloses a positioning system that includes a gamma camera with a set of inclined bore collimators, but is also difficult to apply to coordinate systems in treatment rooms that are not equipped with tracking devices.
본 발명은 전술한 종래 기술의 문제점들을 해결하기 위하여 안출된 것이다.The present invention has been made to solve the above-mentioned problems of the prior art.
특히, PET과 같은 양전자 단층촬영 기기가 설치되어 있지 않은 치료실에서도 간단히 방사선을 방출하는 동위원소의 위치를 추적함으로써 방사선 치료의 평가가 가능한 시스템을 제공하고자 한다.In particular, the present invention aims to provide a system capable of evaluating radiotherapy by simply tracking the position of the isotope emitting radiation even in a treatment room where no positron emission tomography device such as PET is installed.
이에 본 발명은, 대상물의 조직에 삽입되며, 금속 재질로 이루어진 적어도 하나의 측정 마커(610, 620, 630)를 포함하는 측정 마커 유닛(600), 상기 조직에 브래그 피크(bragg peak) 특성을 갖는 입자선을 조사하는 입자선 조사기(500), 상기 측정 마커 유닛(600)에 대한 방사선 영상을 촬영하는 적어도 하나의 방사선 감지 카메라(300) 및 상기 촬영된 방사선 영상을 이용하여, 방사선을 방출한 측정 마커의 카메라-기준 좌표를 산출하는 컴퓨팅 장치(400)를 포함하는 방사선 치료 평가 시스템을 제공한다.Accordingly, the present invention is inserted into the tissue of the object, the measurement marker unit 600 including at least one measurement marker (610, 620, 630) made of a metal material, having a Bragg peak (bragg peak) characteristic on the tissue Measurement of emitting radiation by using a particle beam irradiator 500 for irradiating particle beams, at least one radiation sensing camera 300 for photographing a radiographic image of the measurement marker unit 600, and the photographed radiographic image A radiation therapy evaluation system is provided that includes a computing device 400 for calculating camera-reference coordinates of a marker.
일 실시예에 있어서, 상기 방사선 감지 카메라(300)는 방사선을 감지할 수 있는 카메라일 수 있고, 상기 카메라는 상기 측정 마커(610,620,630)에서 방출된 방사선의 입사 방향을 제한하는 콜리메이터(310)를 포함하는 것이 바람직하다.In one embodiment, the radiation detection camera 300 may be a camera capable of detecting radiation, the camera includes a collimator 310 for limiting the incident direction of the radiation emitted from the measurement markers (610, 620, 630) It is desirable to.
일 실시예에 있어서, 상기 컴퓨팅 장치(400)는 상기 시스템이 설치되는 치료실의 절대 좌표계와 상기 방사선 감지 카메라의 카메라-기준 좌표계 사이의 변환 관계를 나타내는 변환행렬 정보가 미리 저장된 메모리(440)를 포함하는 것이 바람직하다.In one embodiment, the computing device 400 includes a memory 440 in which transformation matrix information indicating a transformation relationship between an absolute coordinate system of a treatment room where the system is installed and a camera-reference coordinate system of the radiation sensing camera is stored in advance. It is desirable to.
일 실시예에 있어서, 상기 컴퓨팅 장치(400)는 상기 변환행렬 정보를 이용하여, 상기 방사선을 방출한 측정 마커의 카메라-기준 좌표를 상기 절대 좌표계 상의 절대 좌표로 변환하여 제공하는 것이 바람직하다.In one embodiment, the computing device 400 preferably converts the camera-reference coordinates of the measurement marker that emitted the radiation into absolute coordinates on the absolute coordinate system using the conversion matrix information.
일 실시예에 있어서, 기준표시부(170)와 복수의 동위원소 마커를 포함하는 기준 마커 유닛(100) 및 상기 기준표시부(170)에 레이저를 조사하는 레이저 조사기(200)를 더 포함하는 것이 바람직하다.In one embodiment, it is preferable to further include a reference marker unit 100 including a reference display unit 170 and a plurality of isotope markers and a laser irradiator 200 for irradiating a laser to the reference display unit 170. .
일 실시예에 있어서, 상기 컴퓨팅 장치(400)는, 상기 레이저 조사기(200)에 의해 레이저가 조사된 기준표시부(170)를 기준점으로 하여 상기 복수의 동위원소 마커에 대한 상기 절대 좌표계 상의 절대 좌표들을 산출하는 제1 좌표 산출부(410), 상기 방사선 감지 카메라(300)를 통해 얻어지는 상기 기준 마커 유닛(100)의 방사선 영상을 이용하여, 상기 복수의 동위원소 마커에 대한 카메라-기준 좌표계 상의 카메라-기준 좌표들을 산출하는 제2 좌표 산출부(420) 및 상기 복수의 동위원소 마커에 대해 산출된 상기 절대 좌표들과 상기 카메라-기준 좌표들을 이용하여, 상기 절대 좌표계와 상기 카메라-기준 좌표계 사이의 상기 변환행렬을 산출하는 변환 행렬 산출부(430)를 더 포함하는 것이 바람직하다.According to an embodiment, the computing device 400 may be configured to obtain absolute coordinates on the absolute coordinate system for the plurality of isotope markers by using the reference display unit 170 irradiated with the laser by the laser irradiator 200 as a reference point. Camera-on a reference coordinate system for the plurality of isotopic markers, by using the radiographic image of the reference marker unit 100 obtained through the first coordinate calculation unit 410 and the radiation detection camera 300 to calculate. The second coordinate calculator 420 for calculating reference coordinates and the camera-reference coordinate system between the absolute coordinate system and the camera-reference coordinate system, using the camera coordinates and the absolute coordinates calculated for the plurality of isotope markers. It is preferable to further include a conversion matrix calculation unit 430 for calculating a conversion matrix.
일 실시예에 있어서, 상기 변환 행렬 산출부(430)는, 상기 산출된 변환행렬을 상기 메모리(440)에 저장하는 것이 바람직하다.In one embodiment, the conversion matrix calculation unit 430 preferably stores the calculated conversion matrix in the memory 440.
일 실시예에 있어서, 상기 복수의 동위원소 마커는 적어도 3개인 것이 바람직하다.In one embodiment, the plurality of isotope markers is preferably at least three.
또한 본 발명은, 기준표시부(170)와 복수의 동위원소 마커를 포함하는 기준 마커 유닛(100), 상기 기준표시부(170)에 레이저를 조사하는 레이저 조사기(200), 대상물의 조직에 삽입되며, 금속 재질로 이루어진 적어도 하나의 측정 마커(610, 620, 630)를 포함하는 측정 마커 유닛(600), 상기 조직에 브래그 피크(bragg peak) 특성을 갖는 입자선을 조사하는 입자선 조사기(500), 상기 기준 마커 유닛(100) 및 측정 마커 유닛(600)에 대한 방사선 영상을 각각 촬영하는 적어도 하나의 방사선 감지 카메라(300) 및 상기 레이저 조사기(200) 및 상기 적어도 하나의 방사선 감지 카메라(300)와 데이터 통신하는 컴퓨팅 장치(400)를 포함하며, 상기 컴퓨팅 장치(400)는, 상기 레이저가 조사되는 기준표시부(170)를 기준점으로 하여 상기 복수의 동위원소 마커에 대한 치료실의 절대 좌표계 상의 절대 좌표들을 산출하고, 상기 방사선 감지 카메라(300)에 의해 얻어지는 상기 기준 마커 유닛(100)의 방사선 영상을 이용하여, 상기 복수의 동위원소 마커에 대한 카메라-기준 좌표계상의 카메라-기준 좌표들을 산출하며, 상기 복수의 동위원소 마커에 대해 산출된 상기 절대 좌표들과 상기 카메라-기준 좌표들을 이용하여, 상기 절대 좌표계와 상기 카메라-기준 좌표계 사이의 변환행렬을 산출하고, 상기 방사선 감지 카메라(300)에 의해 얻어지는 상기 측정 마커 유닛(600)의 방사선 영상을 이용하여, 상기 방사선을 방출한 측정 마커에 대한 카메라-기준 좌표계 상의 카메라-기준 좌표를 산출하며, 상기 산출된 변환행렬을 이용하여, 상기 방사선을 방출한 측정 마커에 대한 카메라-기준 좌표를 상기 절대 좌표계 상의 절대 좌표로 변환하여 제공하는 방사선 치료 평가 시스템을 제공한다.In another aspect, the present invention, the reference marker unit 100 including a reference display unit 170 and a plurality of isotope markers, a laser irradiator 200 for irradiating a laser to the reference display unit 170, inserted into the tissue of the object, A measurement marker unit 600 including at least one measurement marker 610, 620, and 630 made of a metal material, a particle beam irradiator 500 irradiating a particle beam having Bragg peak characteristics to the tissue; At least one radiation sensing camera 300, the laser irradiator 200, and the at least one radiation sensing camera 300, which respectively photograph radiographic images of the reference marker unit 100 and the measurement marker unit 600. Computing device 400 for data communication, the computing device 400, the absolute coordinate system of the treatment room for the plurality of isotope markers with the reference display unit 170 to which the laser is irradiated as a reference point. Calculate absolute coordinates and calculate camera-reference coordinates on the camera-reference coordinate system for the plurality of isotopic markers using the radiographic image of the reference marker unit 100 obtained by the radiation-sensing camera 300 And calculating a transformation matrix between the absolute coordinate system and the camera-reference coordinate system by using the absolute coordinates and the camera-reference coordinates calculated for the plurality of isotope markers. By using the radiographic image of the measurement marker unit 600 obtained by calculating the camera-reference coordinates on the camera-reference coordinate system for the measurement marker that emitted the radiation, and using the calculated transformation matrix, Radiation provided by converting camera-reference coordinates for emitted measurement markers into absolute coordinates on the absolute coordinate system Provide a treatment assessment system.
본 발명에 따르면, PET과 같은 양전자 단층촬영 기기가 설치되어 있지 않은 치료실에서도 간단히 방사선을 방출하는 동위원소의 위치를 추적하는 것이 가능하다.According to the present invention, it is possible to simply track the position of an isotope that emits radiation even in a treatment room where no positron emission tomography device such as PET is installed.
이로 인해, 브래그 피크 특성을 갖는 입자선 치료 후 목표했던 조직에만 정확히 에너지가 전달되었는지의 평가가 가능하여 추후의 입자선 치료 계획에 이용할 수 있다는 장점을 갖는다.As a result, it is possible to evaluate whether the energy is correctly delivered only to the target tissue after the particle beam treatment having the Bragg peak characteristics, which has the advantage that it can be used in the future particle beam treatment plan.
특히, 고가의 장비가 설치되지 않은 치료실에서도 입자선 치료의 평가가 가능함에 따라, 종래 고가의 장비로만 측정이 가능한 입자선 치료의 평가를 대체할 수 있어 비용 효율적이며 환자와 측정자의 편의 또한 증대되는 장점을 갖는다.In particular, as the evaluation of the particle beam treatment is possible even in a treatment room in which no expensive equipment is installed, it is possible to replace the evaluation of the particle beam treatment that can be measured only by conventional expensive equipment, which is cost-effective and increases the convenience of the patient and the measurer. Has the advantage.
도 1은 종래의 방사선 조사기와 입자선 조사기를 통해 암 조직을 치료하는 것을 설명하기 위한 도면이다.1 is a view for explaining the treatment of cancer tissue through a conventional irradiator and particle beam irradiator.
도 2는 본 발명의 실시예에 따른 방사선 치료 평가 시스템을 나타낸 블록도이다.2 is a block diagram showing a radiotherapy evaluation system according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 컴퓨팅 장치를 나타낸 블록도이다.3 is a block diagram illustrating a computing device according to an exemplary embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 방사선 치료 평가 시스템을 개략적으로 도시한 도면이다.4 is a diagram schematically illustrating a radiotherapy evaluation system according to an embodiment of the present invention.
도 5 및 도 6은 도 4에 도시된 기준 마커 유닛에 있어서, 복수의 동위원소 마커들 간의 관계를 개략적으로 도시한 도면이다.5 and 6 are diagrams schematically showing a relationship between a plurality of isotope markers in the reference marker unit shown in FIG. 4.
도 7 및 도 8은 본 발명의 실시예에 따른 방사선 치료 평가 시스템이 적용되는 모습을 개략적으로 도시한 도면이다.7 and 8 are views schematically showing the application of the radiation therapy evaluation system according to an embodiment of the present invention.
먼저, 도 2, 도 3, 도 7 및 도 8을 참조하여 본 발명의 실시예에 따른 방사선 치료 평가 시스템을 설명한다.First, a radiation therapy evaluation system according to an embodiment of the present invention will be described with reference to FIGS. 2, 3, 7 and 8.
본 발명의 실시예에 따른 방사선 치료 평가 시스템은 측정 마커 유닛(600), 입자선 조사기(500), 방사선 감지 카메라(300) 및 컴퓨팅 장치(400)를 포함한다.The radiation therapy evaluation system according to an embodiment of the present invention includes a measurement marker unit 600, a particle beam irradiator 500, a radiation sensing camera 300, and a computing device 400.
측정 마커 유닛(600)은 대상물의 조직에 삽입되는 부분으로, 금속재질로 이루어진 적어도 하나의 측정 마커(610, 620, 630)를 포함한다. 구체적으로, 도 7에 나타난 것처럼 측정 마커(610, 620, 630)는 암 조직 후면에 삽입되어 암 조직을 사이에 두고 입자선 조사기(500)와 대향 배치되도록 삽입된다. 이러한 측정 마커(610, 620, 630)는 금속 재질로 이루어져 있기 때문에, 입자선 조사기(500)가 조사한 브래그 피크(bragg peak) 특성을 갖는 입자선 빔을 쪼이면 바닥 상태(ground state)와 비교하여 양성자를 추가로 가지게 되는 상태가 된다(동위 원소화). 이러한 동위원소화된 측정 마커는 방사선을 방출하게 되며 후술하는 방사선 감지 카메라(300)에 의해 그 위치가 감지된다.The measurement marker unit 600 is a part inserted into the tissue of the object and includes at least one measurement marker 610, 620, 630 made of a metal material. Specifically, as shown in FIG. 7, the measurement markers 610, 620, and 630 are inserted into the rear of the cancer tissue so as to face the particle beam irradiator 500 with the cancer tissue interposed therebetween. Since the measurement markers 610, 620, and 630 are made of a metal material, when the particle beam beam having the Bragg peak characteristics irradiated by the particle beam emitter 500 is subtracted, it is compared with the ground state. It becomes the state which has an additional proton (isotopation). This isotope measuring marker emits radiation and its position is detected by a radiation sensing camera 300 to be described later.
입자선 조사기(500)는 목표 조직에 브래그 피크 특성을 갖는 입자선 빔을 조사하는 부분이다. 입자선 빔은 브래그 피크(bragg peak)를 가지고 있어 목표한 위치에 집중적으로 에너지를 방출하여 방출 에너지로 조직을 파괴하여 치료하는 장치이다. 다만, 이러한 입자선 조사기(500)에 의해 조사된 입자선 빔이 목표 조직에 정확히 에너지를 방출한 것인지 평가하는 시스템이 필요하다. 전술한 바와 같이, 금속 재질의 측정 마커(610, 620, 630)는 브래그 피크(bragg peak) 특성을 갖는 입자선 빔을 쪼일 경우 동위원소화되어 방사선을 방출하게 되므로 이러한 방사선을 감지하여 목표했던 조직에만 정확히 입자선 빔이 도달하였는지 알 수 있다. 예를 들어, 방사선이 감지된 경우 목표 조직 후면에 삽입되는 측정 마커(610, 620, 630)에까지 입자선 빔의 에너지가 방출되었다는 것을 의미하므로, 향후 치료 계획의 수정이 필요하다는 판단을 내릴 수 있다. 또한, 목표했던 조직뿐만 아니라 주변의 어느 정상 조직에까지 영향을 미쳤는지 후술하는 컴퓨팅 장치(400)에서 산출된 변환 행렬을 이용하여 그 위치까지도 산출이 가능하다.The particle beam irradiator 500 is a portion for irradiating a particle beam beam having Bragg peak characteristics to the target tissue. The particle beam has a Bragg peak and is a device for releasing the energy intensively at a target position and destroying and treating the tissue with the emitted energy. However, there is a need for a system for evaluating whether the particle beam beam irradiated by the particle beam irradiator 500 accurately emits energy to the target tissue. As described above, the measurement markers 610, 620, and 630 of the metal material are isotoped and emit radiation when the particle beam beam having the Bragg peak characteristic is split, thereby detecting the target tissue. It is only possible to know exactly whether the particle beam has arrived. For example, when radiation is detected, it means that the energy of the particle beam beam is emitted to the measurement markers 610, 620, and 630 inserted into the back of the target tissue, and thus, it may be determined that the treatment plan needs to be modified in the future. . In addition, it is possible to calculate even the position using the transformation matrix calculated by the computing device 400, which will be described later, which affects not only the target tissue but also any surrounding normal tissue.
방사선 감지 카메라(300)는 측정 마커 유닛(600)에 대한 방사선 영상을 촬영하는 부분으로서, 2차원 방사선 영상을 생성하게 된다. 이러한 방사선 감지 카메라(300)는 방사선을 감지하여 2차원 방사선 영상을 생성할 수 있는 감마 카메라 혹은 컴프턴 카메라일 수 있다. 감마 카메라의 경우 감마 카메라 전면에 방사선의 입사 방향을 제한하는 콜리메이터(310)가 구비된다. 방사선 감지 카메라(300)는 입자선 빔을 쐬어 동위원소화된 측정 마커(610, 620, 630)에서 방출되는 방사선을 감지하여 방사선 영상을 촬영하게 된다.The radiation sensing camera 300 is a part of photographing a radiographic image of the measurement marker unit 600, and generates a 2D radiographic image. The radiation detecting camera 300 may be a gamma camera or a Compton camera capable of generating radiation and generating a 2D radiographic image. In the case of a gamma camera, a collimator 310 is provided in front of the gamma camera to limit the incident direction of radiation. The radiation detection camera 300 detects radiation emitted from the isotopic measuring markers 610, 620, and 630 by emitting a particle beam to take a radiographic image.
컴퓨팅 장치(400)는 방사선 감지 카메라(300)에 의해 촬영된 방사선 영상을 이용하여, 방사선을 방출한 측정 마커(610,620,630)의 카메라-기준 좌표계상의 카메라-기준 좌표를 산출하는 부분이다. 방사선을 방출하는 측정 마커(610,620,630)를 방사선 감지 카메라(300)로 촬영하면 측정 마커의 위치가 표시되고, 컴퓨팅 장치(400)는 방사선을 방출하는 측정 마커(610,620,630)의 카메라-기준 좌표계상의 카메라-기준 좌표를 산출하게 된다.The computing device 400 is a part that calculates camera-reference coordinates on the camera-reference coordinate system of the measurement markers 610, 620, and 630 that emit radiation by using the radiation image photographed by the radiation sensing camera 300. Taking the measurement markers 610, 620, 630 emitting radiation with the radiation sensing camera 300 displays the positions of the measurement markers, and the computing device 400 displays the cameras on the camera-reference coordinate system of the measurement markers 610, 620, 630 emitting radiation. The reference coordinate is calculated.
컴퓨팅 장치(400)는 본 발명의 실시예에 따른 시스템이 설치되는 치료실의 절대 좌표계와 방사선 감지 카메라(300)의 카메라-기준 좌표계 사이의 변환 관계를 나타내는 변환행렬 정보가 미리 저장된 메모리(440)를 더 포함한다.The computing device 400 may include a memory 440 in which transformation matrix information indicating a transformation relationship between an absolute coordinate system of a treatment room where a system according to an exemplary embodiment of the present invention is installed and a camera-reference coordinate system of the radiation sensing camera 300 is stored. It includes more.
컴퓨팅 장치(400)는 메모리(440)에 미리 저장된 변환행렬 정보를 이용하여 방사선을 방출하는 측정 마커(610,620,630)의 카메라-기준 좌표를 치료실의 절대 좌표계 상의 절대 좌표로 변환하여 제공하게 된다. 이러한 변환 과정을 거쳐 방사선 감지 카메라(300)가 촬영한 방사선을 방출하는 측정 마커(610,620,630)의 카메라-기준 좌표를 치료실의 절대 좌표로 변환함으로써 방사선을 방출한 측정 마커(610,620,630)가 치료실의 절대 좌표계 상의 어느 좌표에 위치하는지 알 수 있고, 측정 마커(610,620,630)가 방사선을 방출한 경우, 목표했던 조직에만 양성자 빔이 조사되는 것이 아닌 정상 조직까지 양성자 빔이 조사되었다는 의미이므로 이를 분석하여 차후 양성자 조사기(500)의 치료 계획을 수정하는 것도 가능하다.The computing device 400 converts the camera-reference coordinates of the measurement markers 610, 620, and 630 which emit radiation using the transformation matrix information stored in advance in the memory 440 into absolute coordinates on the absolute coordinate system of the treatment room. Through this conversion process, the camera-reference coordinates of the measurement markers 610, 620, and 630 which emit radiation captured by the radiation sensing camera 300 are converted to the absolute coordinates of the treatment room, so that the measurement markers 610, 620, 630 which emit radiation are the absolute coordinate system of the treatment room. If the measurement markers (610, 620, 630) emit radiation, it means that the proton beam is irradiated to the normal tissue instead of only the target tissue. It is also possible to modify the treatment plan of 500).
다음으로, 도 2 내지 도 6을 참조하여 전술한 치료실의 절대 좌표계와 카메라-기준 좌표계 사이의 변환 관계인 변환행렬을 산출하는 방식에 대해 설명한다.Next, a method of calculating a transformation matrix, which is a transformation relationship between the absolute coordinate system and the camera-reference coordinate system of the treatment room described above, will be described with reference to FIGS. 2 to 6.
변환행렬을 산출하기 위해 기준 마커 유닛(100), 레이저 조사기(200), 방사선 감지 카메라(300) 및 컴퓨팅 장치(400)가 이용된다. 각각의 구성 및 역할은 후술한다.The reference marker unit 100, the laser irradiator 200, the radiation sensing camera 300, and the computing device 400 are used to calculate the transformation matrix. Each configuration and role will be described later.
치료실의 절대 좌표계와 카메라-기준 좌표계 사이의 변환 관계인 변환행렬을 산출하기 위해서는 선결적으로 기준 마커 유닛(100)을 치료실에 위치시키는 과정이 필요하다.In order to calculate a transformation matrix that is a transformation relationship between the absolute coordinate system of the treatment room and the camera-reference coordinate system, a process of positioning the reference marker unit 100 in the treatment room is required in advance.
도 4에 나타난 것처럼 기준 마커 유닛(100)을 치료실에 위치시키면 변환행렬을 산출하는 과정이 시작된다.As shown in FIG. 4, when the reference marker unit 100 is positioned in the treatment room, a process of calculating the transformation matrix is started.
레이저 조사기(200)는 레이저(laser)를 이용하여 치료실의 절대 좌표계의 기준점(C0)을 표시할 수 있다. 치료실의 절대 좌표계는 대상물이 위치하는 치료실의 3차원 좌표계와 동일하다. 레이저 조사기(200)는 도 4에 도시된 바와 같이 십자(+) 형태의 레이저를 조사하여 치료실의 절대 좌표계의 기준점(C0)을 표시할 수 있다.The laser irradiator 200 may display the reference point C0 of the absolute coordinate system of the treatment room using a laser. The absolute coordinate system of the treatment room is the same as the three-dimensional coordinate system of the treatment room where the object is located. As shown in FIG. 4, the laser irradiator 200 may display a reference point C0 of the absolute coordinate system of the treatment room by irradiating a cross (+) type laser.
기준 마커 유닛(100)은 치료실에 위치할 수 있다. 도 5 및 도 6을 참조하면 기준 마커 유닛(100)은 제1면(110), 제1면과 평행한 제2면(120), 제1면의 중심을 표시하는 기준표시부(170) 및 기준표시부(170)로부터 이격되어 제1면(110)상에 배치되는 복수의 동위원소 마커를 포함할 수 있다.The fiducial marker unit 100 may be located in the treatment room. 5 and 6, the reference marker unit 100 includes a first surface 110, a second surface 120 parallel to the first surface, a reference display unit 170 displaying a center of the first surface, and a reference. It may include a plurality of isotopic markers spaced apart from the display unit 170 and disposed on the first surface 110.
기준 마커 유닛(100)은 기준 마커 유닛(100)을 이용하여 3차원 좌표값을 획득하기 위해 적어도 3개의 동위원소 마커를 포함할 수 있다. 다만, 위치 측정 정확도를 높이기 위해 그 이상 포함할 수도 있으며, 본 발명에서는 4개의 동위원소 마커(130,140,150,160)를 포함하는 경우를 예로 들어 설명하기로 한다.The fiducial marker unit 100 may include at least three isotope markers to obtain three-dimensional coordinate values using the fiducial marker unit 100. However, in order to increase the position measurement accuracy may be included more, in the present invention will be described with an example including four isotope markers (130, 140, 150, 160).
복수의 동위원소 마커(130,140,150,160) 내에는 동위원소가 구비되어 방사선이 방출된다. 이 때, 방사선 감지 카메라(300)는 동위원소 마커에서 방출되는 방사선을 감지하여 방사선 영상을 생성하게 된다.Isotopes are provided in the plurality of isotope markers 130, 140, 150, and 160 to emit radiation. At this time, the radiation detection camera 300 detects the radiation emitted from the isotope marker to generate a radiographic image.
도 5 및 도 6은 도 4에 도시된 기준 마커 유닛(100)에 있어서, 복수의 동위원소 마커(130,140,150,160) 간의 관계를 개략적으로 도시한 사시도이다.5 and 6 are perspective views schematically illustrating a relationship between a plurality of isotopic markers 130, 140, 150, and 160 in the reference marker unit 100 illustrated in FIG. 4.
도 5를 참조하면, 기준 마커 유닛(100)은 제1면(110) 및 제1면과 평행한 제2면(120)을 포함한다. 이러한 기준 마커 유닛(100)은 각 모서리들이 서로 수직을 이루는 직육면체 또는 정육면체일 수 있다. 기준 마커 유닛(100)의 각 모서리의 길이(w1, w2, w3)는 이미 알고 있는 정보로서, 이러한 정보는 컴퓨팅 장치(400)에 저장될 수 있다. 기준 마커 유닛(100)은 각 모서리의 길이(w1, w2, w3)가 외부 작용에 의해 변하지 않는 재질로 이루어질 수 있다.Referring to FIG. 5, the reference marker unit 100 includes a first surface 110 and a second surface 120 parallel to the first surface. The reference marker unit 100 may be a cube or a cube in which each corner is perpendicular to each other. The lengths w1, w2, and w3 of each corner of the reference marker unit 100 are known information, and the information may be stored in the computing device 400. The reference marker unit 100 may be made of a material in which the lengths w1, w2, and w3 of each corner do not change due to external action.
복수의 동위원소 마커는 제1면(110)에 배치되는 제1마커(130), 제2마커(140), 제3마커(150) 및 제4마커(160)를 포함할 수 있다. 예를 들면, 도 5에 도시된 바와 같이 제1마커(130) 내지 제4마커(160)는 제1면(110)의 각 꼭지점에 인접하도록 배치될 수 있다. 이 때, 각 마커들 간의 거리, 즉, 제1마커(130)와 제2마커(140)의 제1이격거리(d1) 및 제2마커(140)와 제4마커(160)의 제2이격거리(d2)도 이미 알고 있는 정보로서, 이러한 정보 또한 컴퓨팅 장치(400)에 저장될 수 있다.The plurality of isotopic markers may include a first marker 130, a second marker 140, a third marker 150, and a fourth marker 160 disposed on the first surface 110. For example, as illustrated in FIG. 5, the first marker 130 to the fourth marker 160 may be disposed to be adjacent to each vertex of the first surface 110. In this case, the distance between the markers, that is, the first separation distance d1 of the first marker 130 and the second marker 140 and the second separation of the second marker 140 and the fourth marker 160. The distance d2 is also known information, which may also be stored in the computing device 400.
기준 마커 유닛(100)은 제1면(110)의 중심을 표시하는 기준표시부(170)를 포함할 수 있다. 기준표시부(170)는 십자(+) 형태일 수 있으며, 기준표시부(170)는 각 모서리의 가운데를 수직하게 지나는 선들의 중점일 수 있다.The reference marker unit 100 may include a reference display unit 170 that displays the center of the first surface 110. The reference display unit 170 may have a cross (+) shape, and the reference display unit 170 may be a midpoint of lines passing vertically through the center of each corner.
한편, 도 3 및 도 5를 참조하면, 제1 좌표 산출부(410)에는 전술한 복수의 동위원소 마커들간의 이격거리(d1, d2) 및 기준 마커 유닛(100) 각 모서리의 길이(w1, w2, w3), 구체적으로 제1면(110)과 제2면(120) 사이의 제1거리(w3)가 사전에 저장될 수 있다. 제1 좌표 산출부(410)는 사전에 저장된 복수의 동위원소 마커들 간의 이격거리(d1, d2) 및 제1거리(w3)를 이용하여 제1마커(130) 내지 제4마커(160)의 치료실의 절대 좌표계 상의 좌표값들을 산출할 수 있다. 이 때, 좌표값은 3차원 좌표값인 것이 바람직하다.Meanwhile, referring to FIGS. 3 and 5, the first coordinate calculator 410 may include the separation distances d1 and d2 between the plurality of isotope markers and the length w1 of each corner of the reference marker unit 100. w2 and w3, specifically, the first distance w3 between the first surface 110 and the second surface 120 may be stored in advance. The first coordinate calculator 410 is configured to store the first marker 130 to the fourth marker 160 using the separation distances d1 and d2 and the first distance w3 between the plurality of isotopic markers stored in advance. The coordinate values on the absolute coordinate system of the treatment room can be calculated. At this time, the coordinate value is preferably a three-dimensional coordinate value.
구체적으로, 제1 좌표 산출부(410)는 절대 좌표계의 기준점(C0)을 기준으로 제1마커(130), 제2마커(140), 제3마커(150) 및 제4마커(160)에 각각 대응되는 제1-1좌표값(130A), 제1-2좌표값(140A), 제1-3좌표값(140C) 및 제1-4좌표값(140D)을 산출할 수 있다. 또한, 제1 좌표 산출부(410)는 제2면(120)에서 제1마커(130), 제2마커(140), 제3마커(150) 및 제4마커(160)가 대응되는 위치의 제1-5좌표값(130B), 제1-6좌표값(140B), 제1-7좌표값(150B) 및 제1-8좌표값(160B)을 산출할 수 있다.In detail, the first coordinate calculator 410 may contact the first marker 130, the second marker 140, the third marker 150, and the fourth marker 160 based on the reference point C0 of the absolute coordinate system. The first-first coordinate value 130A, the first-second coordinate value 140A, the first-three coordinate value 140C, and the first-fourth coordinate value 140D may be calculated, respectively. In addition, the first coordinate calculator 410 may be formed at a position where the first marker 130, the second marker 140, the third marker 150, and the fourth marker 160 correspond to each other on the second surface 120. The first to fifth coordinate values 130B, the first to sixth coordinate values 140B, the first to seventh coordinate values 150B, and the first to eighth coordinate values 160B may be calculated.
다시 말해, 제1 좌표 산출부(410)는 기준 마커 유닛(100)의 정보를 이용하여 치료실의 절대 좌표계상의 8개의 좌표값을 산출할 수 있다.In other words, the first coordinate calculator 410 may calculate eight coordinate values on the absolute coordinate system of the treatment room using the information of the reference marker unit 100.
방사선 감지 카메라(300)는 기준 마커 유닛(100)의 복수의 동위원소 마커들을 촬영하여 방사선 영상을 생성할 수 있다. 복수의 방사선 감지 카메라(300)에 의해 생성된 방사선 영상을 이용하여 후술하는 제2 좌표 산출부(420)는 카메라-기반 좌표계에서의 복수의 동위원소 마커(130,140,150,160)의 카메라-기반 좌표값을 산출할 수 있다. 카메라-기준 좌표계에서의 3차원 좌표값을 획득하기 위해서는 최소 2대의 방사선 감지 카메라(300)가 필요하며, 방사선 감지 카메라(300)는 복수의 동위원소 마커가 방출하는 방사선이 수직 입사되도록 하는 콜리메이터(310)를 포함하고 있어, 정확한 3차원 좌표값의 획득이 가능하다.The radiation sensing camera 300 may generate a radiographic image by photographing a plurality of isotope markers of the reference marker unit 100. The second coordinate calculator 420, which will be described later, using the radiation images generated by the plurality of radiation sensing cameras 300, calculates camera-based coordinate values of the plurality of isotope markers 130, 140, 150, and 160 in the camera-based coordinate system. can do. In order to obtain a three-dimensional coordinate value in the camera-reference coordinate system, at least two radiation detection cameras 300 are required, and the radiation detection camera 300 includes a collimator for vertically incidence of radiation emitted by a plurality of isotope markers ( 310, it is possible to obtain an accurate three-dimensional coordinate value.
제2 좌표 산출부(420)는 방사선 감지 카메라(300)에 의해 생성된 방사선 영상을 이용하여 복수의 동위원소 마커(130,140,150,160) 각각의 카메라-기준 좌표계 상의 카메라-기준 좌표값들을 산출할 수 있다. 제2 좌표 산출부(420)는 동위원소를 포함하는 제1마커(130), 제2마커(140), 제3마커(150) 및 제4마커(160)를 이용하여 복수의 동위원소 마커들의 3차원 카메라-기준 좌표계 상의 카메라-기준 좌표값을 산출하게 된다.The second coordinate calculator 420 may calculate camera-reference coordinate values on the camera-reference coordinate system of each of the plurality of isotopic markers 130, 140, 150, and 160 using the radiation image generated by the radiation detection camera 300. The second coordinate calculation unit 420 uses the first marker 130, the second marker 140, the third marker 150, and the fourth marker 160 to include the isotope. The camera-reference coordinate value on the three-dimensional camera-reference coordinate system is calculated.
제2 좌표 산출부(420)는 방사선 감지 카메라(300)에 의해 생성된 방사선 영상을 이용하여 카메라-기준 좌표계 상의 제2-1좌표값, 제2-2좌표값, 제2-3좌표값 및 제2-4좌표값을 산출할 수 있다. 이 때, 제2 좌표 산출부(420)에는 제1좌표 산출부(410)와 마찬가지로, 복수의 동위원소 마커(130,140,150,160)들의 이격거리(d1, d2) 및 적어도 제1면(110)과 제2면(120) 사이의 제1거리(w3)를 포함하는 기준 마커 유닛(100)의 각 모서리의 길이(w1, w2, w3)가 사전에 저장될 수 있다. 이를 통해, 제2 좌표 산출부(420)는 제2면(120)에서 제1마커(130), 제2마커(140), 제3마커(150) 및 제4마커(160)에 대응되는 위치의 제2-5좌표값, 제2-6좌표값, 제2-7좌표값 및 제2-8좌표값을 산출할 수 있다. 다시 말해, 제2 좌표 산출부(420)는 카메라-기반 좌표계 상에서의 8개의 좌표값을 산출할 수 있다.The second coordinate calculation unit 420 uses the radiographic image generated by the radiation sensing camera 300 to form a 2-1 coordinate value, a 2-2 coordinate value, a 2-3 coordinate value, and The second to fourth coordinate values can be calculated. At this time, the second coordinate calculation unit 420, like the first coordinate calculation unit 410, the separation distance (d1, d2) of the plurality of isotope markers (130, 140, 150, 160) and at least the first surface 110 and the second The lengths w1, w2, and w3 of each corner of the reference marker unit 100 including the first distance w3 between the surfaces 120 may be stored in advance. As a result, the second coordinate calculator 420 may correspond to the first marker 130, the second marker 140, the third marker 150, and the fourth marker 160 on the second surface 120. The 2-5th coordinate value, the 2-6th coordinate value, the 2-7th coordinate value, and the 2-8th coordinate value can be calculated. In other words, the second coordinate calculator 420 may calculate eight coordinate values on the camera-based coordinate system.
변환 행렬 산출부(430)는 복수의 동위원소 마커(130,140,150,160)의 절대 좌표계 상의 절대 좌표값과 카메라-기반 좌표계 상의 카메라-기반 좌표값을 이용하여 절대 좌표계와 카메라-기반 좌표계의 변환관계를 도출할 수 있다. 구체적으로, 변환 행렬 산출부(430)는 제1-1좌표값 내지 제1-8좌표값의 제1행렬을 생성한다. 이 때, 절대 좌표계를 대변하는 제1행렬인 R은 [X1,Y1,Z1,1]T로 표기할 수 있다. 또한, 변환 행렬 산출부(430)는 제2-1좌표값 내지 제2-8좌표값의 제2행렬을 생성한다. 카메라-기준 좌표계를 대변하는 제2행렬인 V는 [X2,Y2,Z2,1]T로 표기할 수 있다. 제1행렬 및 제2행렬은 각각 8개의 좌표값을 포함하므로, 수학식 1과 같이 표현될 수 있다. 또한, 제1행렬과 제2행렬의 연산관계는 수학식 2와 같이 정의될 수 있다.The transformation matrix calculator 430 may derive the transformation relationship between the absolute coordinate system and the camera-based coordinate system using the absolute coordinate values of the absolute coordinate systems 130, 140, 150, and 160 of the plurality of isotope markers 130 and the camera-based coordinate values of the camera-based coordinate system. Can be. In detail, the transformation matrix calculator 430 generates a first matrix of 1-1 coordinate values to 1-8 coordinate values. In this case, R, which is the first matrix representing the absolute coordinate system, may be expressed as [X1, Y1, Z1, 1] T. In addition, the transformation matrix calculator 430 generates a second matrix of the 2-1st to 2-8th coordinate values. V, the second matrix representing the camera-reference coordinate system, may be expressed as [X2, Y2, Z2, 1] T. Since the first matrix and the second matrix each include eight coordinate values, the first matrix and the second matrix may be expressed as in Equation 1. In addition, an operation relationship between the first matrix and the second matrix may be defined as in Equation 2.
[수학식 1][Equation 1]
V = [V1 V2 V3 V4 V5 V6 V7 V8]V = [V1 V2 V3 V4 V5 V6 V7 V8]
R = [R1 R2 R3 R4 R5 R6 R7 R8]R = [R1 R2 R3 R4 R5 R6 R7 R8]
[수학식 2][Equation 2]
R=TVR = TV
이 연관관계를 이용하여 변환관계를 도출할 수 있다. 다시 말해, 변환 행렬 산출부(430)는 제1행렬 및 제2행렬 중 어느 하나의 역행렬을 계산한 후, 제1행렬 및 제2행렬 중 남은 하나와 역행렬을 연산하여 수학식 3과 같이 변환 행렬을 도출할 수 있다.This association can be used to derive the transformation relationship. In other words, the transformation matrix calculation unit 430 calculates an inverse of one of the first matrix and the second matrix, and then calculates the inverse of the remaining one of the first and second matrices and converts the matrix as shown in Equation 3 below. Can be derived.
[수학식 3][Equation 3]
T=RV-1 T = RV -1
한편, 제1행렬 및 제2행렬의 크기는 4X8이며, 변환행렬인 T는 4X4일 수 있다.Meanwhile, the size of the first matrix and the second matrix may be 4 × 8, and the transform matrix T may be 4 × 4.
동위원소 마커의 3차원 좌표값을 획득하기 위해 기준 마커 유닛(100)은 적어도 3개의 동위원소 마커를 포함할 수 있다. 즉, 변환 행렬을 산출하기 위해 필요한 마커는 적어도 3개이며, 이때 제1행렬 및 제2행렬의 크기는 4X3이며, 변환행렬인 T는 4X4일수 있다. 다만, 위치 측정 정확도를 높이기 위해 3개가 아닌 그 이상의 동위원소 마커를 포함할 수도 있으나, 미리 저장된 기준 마커 유닛(100)의 정보를 이용하면, 3개의 동위원소 마커만을 이용하여 4X8의 제1행렬 및 제2행렬과 4X4의 변환행렬 T 또한 연산가능하다.The reference marker unit 100 may include at least three isotopic markers to obtain three-dimensional coordinate values of the isotopic markers. That is, at least three markers are required to calculate the transformation matrix, wherein the size of the first matrix and the second matrix is 4 × 3, and the transform matrix T may be 4 × 4. However, three or more isotopic markers may be included in order to increase the position measurement accuracy. However, when the information of the pre-stored reference marker unit 100 is used, only the three isotopic markers may be used for the first matrix of 4X8 and The second matrix and the 4X4 transform matrix T are also operable.
변환 행렬 산출부(430)는 산출된 변환행렬을 컴퓨팅 장치(400)의 메모리(440)에 저장하여 추후, 방사선을 방출하는 측정 마커의 치료실의 절대 좌표계상의 절대 좌표값으로 변환할 수 있다.The conversion matrix calculator 430 may store the calculated conversion matrix in the memory 440 of the computing device 400 and later convert the converted conversion matrix to an absolute coordinate value in an absolute coordinate system of a treatment room of a measurement marker that emits radiation.
이후, 연산부(450)에 의해 카메라-기반 좌표계의 카메라-기반 좌표값은 치료실의 절대 좌표계의 절대 좌표값으로 변환될 수 있다.Thereafter, the camera-based coordinate value of the camera-based coordinate system may be converted into the absolute coordinate value of the absolute coordinate system of the treatment room by the calculator 450.
이상 설명된 본 발명에 따른 실시예는 컴퓨터 상에서 다양한 구성요소를 통하여 실행될 수 있는 컴퓨터 프로그램의 형태로 구현될 수 있으며, 이와 같은 컴퓨터 프로그램은 컴퓨터로 판독 가능한 매체에 기록될 수 있다. 이 때, 매체는 하드디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치를 포함할 수 있다. 나아가, 매체는 네트워크 상에서 전송 가능한 형태로 구현되는 무형의 매체를 포함할 수 있으며, 예를 들어 소프트웨어 또는 애플리케이션 형태로 구현되어 네트워크를 통해 전송 및 유통이 가능한 형태의 매체일 수 있다.Embodiments according to the present invention described above may be implemented in the form of a computer program that can be executed through various components on a computer, such a computer program may be recorded on a computer readable medium. At this time, the media may be magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and Hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Furthermore, the medium may include an intangible medium that is implemented in a form that can be transmitted on a network. For example, the medium may be a medium that may be implemented in the form of software or an application to be transmitted and distributed through a network.
한편, 상기 컴퓨터 프로그램은 본 발명을 위하여 특별히 설계되고 구성된 것이나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 프로그램의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함될 수 있다.On the other hand, the computer program is specifically designed and configured for the present invention, but may be known and available to those skilled in the computer software field. Examples of computer programs may include not only machine code generated by a compiler, but also high-level language code executable by a computer using an interpreter or the like.
본 발명에서 설명하는 특정 실행들은 일 실시예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들과의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.Particular implementations described in the present invention are examples and do not limit the scope of the present invention in any way. For brevity of description, descriptions of conventional electronic configurations, control systems, software, and other functional aspects with the systems may be omitted. In addition, the connection or connection members of the lines between the components shown in the drawings by way of example shows a functional connection and / or physical or circuit connections, in the actual device replaceable or additional various functional connections, physical It may be represented as a connection, or circuit connections. In addition, unless specifically mentioned, such as "essential", "important" may not be a necessary component for the application of the present invention.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐만 아니라 이 청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the embodiments described above, and all the scope equivalent to or equivalent to the claims as well as the following claims are included in the scope of the spirit of the present invention. I will say.
부호의 설명Explanation of the sign
100 : 기준 마커 유닛100: reference marker unit
200 : 레이저 조사기200: laser irradiator
300 : 방사선 감지 카메라300: radiation detection camera
310 : 콜리메이터310: collimator
400 : 컴퓨팅 장치400: computing device
410 : 제1 좌표 산출부410: first coordinate calculation unit
420 : 제2 좌표 산출부420: second coordinate calculation unit
430 : 변환 행렬 산출부430: transformation matrix calculator
440 : 메모리440: memory
450 : 연산부450: calculator
500 : 입자선 조사기500: particle beam irradiator
600 : 측정 마커 유닛600: measuring marker unit
610, 620, 630 : 측정 마커610, 620, 630: measuring marker
1000 : 방사선 치료 평가 시스템1000: Radiation Therapy Evaluation System
본 발명에 따르면, PET과 같은 양전자 단층촬영 기기가 설치되어 있지 않은 치료실에서도 간단히 방사선을 방출하는 동위원소의 위치를 추적하는 것이 가능하며, 이로 인해, 브래그 피크(Bragg Peak) 특성을 갖는 입자선 치료 후 목표했던 조직에만 정확히 에너지가 전달되었는지의 평가가 가능하여 추후의 입자선 치료 계획에 이용할 수 있다.According to the present invention, it is possible to simply track the position of an isotope that emits radiation even in a treatment room in which a positron tomography device such as PET is not installed. As a result, the particle beam treatment having Bragg Peak characteristics is possible. Afterwards, it is possible to assess the exact delivery of energy only to the targeted tissues, which can then be used for future particle beam treatment plans.

Claims (9)

  1. 대상물의 조직에 삽입되며, 금속 재질로 이루어진 적어도 하나의 측정 마커(610, 620, 630)를 포함하는 측정 마커 유닛(600);A measurement marker unit 600 inserted into the tissue of the object and including at least one measurement marker 610, 620, 630 made of a metal material;
    상기 조직에 브래그 피크(bragg peak) 특성을 갖는 입자선을 조사하는 입자선 조사기(500);A particle beam irradiator 500 for irradiating particle beams having Bragg peak characteristics to the tissue;
    상기 측정 마커 유닛(600)에 대한 방사선 영상을 촬영하는 적어도 하나의 방사선 감지 카메라(300); 및At least one radiation sensing camera (300) for capturing a radiographic image of the measurement marker unit (600); And
    상기 촬영된 방사선 영상을 이용하여, 방사선을 방출한 측정 마커의 카메라-기준 좌표를 산출하는 컴퓨팅 장치(400);를 포함하는,Computing device 400 for calculating the camera-reference coordinates of the measurement marker that emitted the radiation by using the photographed radiographic image, including;
    방사선 치료 평가 시스템.Radiation therapy evaluation system.
  2. 제1항에 있어서,The method of claim 1,
    상기 방사선 감지 카메라(300)는 방사선을 감지할 수 있는 카메라이고,The radiation detection camera 300 is a camera capable of detecting radiation,
    상기 카메라는 상기 측정 마커(610,620,630)에서 방출된 방사선의 입사 방향을 제한하는 콜리메이터(310)를 포함하는,The camera comprises a collimator 310 for limiting the direction of incidence of radiation emitted from the measurement markers 610, 620, 630,
    방사선 치료 평가 시스템.Radiation therapy evaluation system.
  3. 제1항에 있어서,The method of claim 1,
    상기 컴퓨팅 장치(400)는 상기 시스템이 설치되는 치료실의 절대 좌표계와 The computing device 400 and the absolute coordinate system of the treatment room where the system is installed
    상기 방사선 감지 카메라의 카메라-기준 좌표계 사이의 변환 관계를 나타내는 변환행렬 정보가 미리 저장된 메모리(440)를 포함하는,And a memory 440 in which transformation matrix information indicating a transformation relationship between the camera-reference coordinate system of the radiation sensing camera is stored in advance.
    방사선 치료 평가 시스템.Radiation therapy evaluation system.
  4. 제3항에 있어서,The method of claim 3,
    상기 컴퓨팅 장치(400)는 상기 변환행렬 정보를 이용하여, 상기 방사선을 방출한 측정 마커의 카메라-기준 좌표를 상기 절대 좌표계 상의 절대 좌표로 변환하여 제공하는,The computing device 400 converts and provides a camera-reference coordinate of the measurement marker that emits the radiation into absolute coordinates on the absolute coordinate system by using the transformation matrix information.
    방사선 치료 평가 시스템.Radiation therapy evaluation system.
  5. 제4항에 있어서,The method of claim 4, wherein
    기준표시부(170)와 복수의 동위원소 마커를 포함하는 기준 마커 유닛(100); 및A reference marker unit 100 including a reference display unit 170 and a plurality of isotope markers; And
    상기 기준표시부(170)에 레이저를 조사하는 레이저 조사기(200)를 더 포함하는,Further comprising a laser irradiator 200 for irradiating a laser on the reference display unit 170,
    방사선 치료 평가 시스템.Radiation therapy evaluation system.
  6. 제5항에 있어서,The method of claim 5,
    상기 컴퓨팅 장치(400)는,The computing device 400,
    상기 레이저 조사기(200)에 의해 레이저가 조사된 기준표시부(170)를 기준점으로 하여 상기 복수의 동위원소 마커에 대한 상기 절대 좌표계 상의 절대 좌표들을 산출하는 제1 좌표 산출부(410);A first coordinate calculator 410 for calculating absolute coordinates on the absolute coordinate system for the plurality of isotope markers by using the reference display unit 170 irradiated with the laser by the laser irradiator 200 as a reference point;
    상기 방사선 감지 카메라(300)를 통해 얻어지는 상기 기준 마커 유닛(100)의 방사선 영상을 이용하여, 상기 복수의 동위원소 마커에 대한 카메라-기준 좌표계상의 카메라-기준 좌표들을 산출하는 제2 좌표 산출부(420); 및A second coordinate calculator for calculating camera-reference coordinates on a camera-reference coordinate system for the plurality of isotopic markers by using a radiographic image of the reference marker unit 100 obtained through the radiation-sensing camera 300 ( 420); And
    상기 복수의 동위원소 마커에 대해 산출된 상기 절대 좌표들과 상기 카메라-기준 좌표들을 이용하여, 상기 절대 좌표계와 상기 카메라-기준 좌표계 사이의 상기 변환행렬을 산출하는 변환 행렬 산출부(430);를 더 포함하는,A transformation matrix calculator 430 for calculating the transformation matrix between the absolute coordinate system and the camera-reference coordinate system using the absolute coordinates and the camera-reference coordinates calculated for the plurality of isotope markers; Including more,
    방사선 치료 평가 시스템.Radiation therapy evaluation system.
  7. 제6항에 있어서,The method of claim 6,
    상기 변환 행렬 산출부(430)는,The transformation matrix calculation unit 430,
    상기 산출된 변환행렬을 상기 메모리(440)에 저장하는,Storing the calculated transformation matrix in the memory 440,
    방사선 치료 평가 시스템.Radiation therapy evaluation system.
  8. 제5항에 있어서,The method of claim 5,
    상기 복수의 동위원소 마커는 적어도 3개인,The plurality of isotope markers is at least three,
    방사선 치료 평가 시스템.Radiation therapy evaluation system.
  9. 기준표시부(170)와 복수의 동위원소 마커를 포함하는 기준 마커 유닛(100); A reference marker unit 100 including a reference display unit 170 and a plurality of isotope markers;
    상기 기준표시부(170)에 레이저를 조사하는 레이저 조사기(200);A laser irradiator 200 irradiating a laser to the reference display unit 170;
    대상물의 조직에 삽입되며, 금속 재질로 이루어진 적어도 하나의 측정 마커(610, 620, 630)를 포함하는 측정 마커 유닛(600);A measurement marker unit 600 inserted into the tissue of the object and including at least one measurement marker 610, 620, 630 made of a metal material;
    상기 조직에 브래그 피크(bragg peak) 특성을 갖는 입자선 빔을 조사하는 입자선 조사기(500);A particle beam irradiator 500 for irradiating a particle beam having a Bragg peak characteristic to the tissue;
    상기 기준 마커 유닛(100) 및 측정 마커 유닛(600)에 대한 방사선 영상을 각각 촬영하는 적어도 하나의 방사선 감지 카메라(300); 및At least one radiation sensing camera (300) for capturing radiographic images of the reference marker unit (100) and the measurement marker unit (600), respectively; And
    상기 레이저 조사기(200) 및 상기 적어도 하나의 방사선 감지 카메라(300)와 데이터 통신하는 컴퓨팅 장치(400);를 포함하며,And a computing device 400 in data communication with the laser irradiator 200 and the at least one radiation sensing camera 300.
    상기 컴퓨팅 장치(400)는,The computing device 400,
    상기 레이저가 조사되는 기준표시부(170)를 기준점으로 하여 상기 복수의 동위원소 마커에 대한 치료실의 절대 좌표계 상의 절대 좌표들을 산출하고,Calculating absolute coordinates on the absolute coordinate system of the treatment room for the plurality of isotope markers using the reference display unit 170 to which the laser is irradiated as a reference point,
    상기 방사선 감지 카메라(300)에 의해 얻어지는 상기 기준 마커 유닛(100)의 방사선 영상을 이용하여, 상기 복수의 동위원소 마커에 대한 카메라-기준 좌표계 상의 카메라-기준 좌표들을 산출하며,Calculating the camera-reference coordinates on the camera-reference coordinate system for the plurality of isotopic markers using the radiographic image of the reference marker unit 100 obtained by the radiation-sensing camera 300,
    상기 복수의 동위원소 마커에 대해 산출된 상기 절대 좌표들과 상기 카메라-기준 좌표들을 이용하여, 상기 절대 좌표계와 상기 카메라-기준 좌표계 사이의 변환행렬을 산출하고,Calculating a transformation matrix between the absolute coordinate system and the camera-reference coordinate system using the absolute coordinates and the camera-reference coordinates calculated for the plurality of isotope markers,
    상기 방사선 감지 카메라(300)에 의해 얻어지는 상기 측정 마커 유닛(600)의 방사선 영상을 이용하여, 상기 방사선을 방출한 측정 마커에 대한 카메라-기준 좌표계 상의 카메라-기준 좌표를 산출하며,Using the radiographic image of the measurement marker unit 600 obtained by the radiation detection camera 300, to calculate the camera-reference coordinate on the camera-reference coordinate system for the measurement marker that emitted the radiation,
    상기 산출된 변환행렬을 이용하여, 상기 방사선을 방출한 측정 마커에 대한 카메라-기준 좌표를 상기 절대 좌표계 상의 절대 좌표로 변환하여 제공하는,By using the calculated transformation matrix, converting the camera-reference coordinates for the measurement markers that emit the radiation into absolute coordinates on the absolute coordinate system,
    방사선 치료 평가 시스템.Radiation therapy evaluation system.
PCT/KR2018/001155 2017-01-26 2018-01-26 Radiation therapy evaluation system WO2018139891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170012809A KR101835123B1 (en) 2017-01-26 2017-01-26 Evaluation system of radiation therapy
KR10-2017-0012809 2017-01-26

Publications (1)

Publication Number Publication Date
WO2018139891A1 true WO2018139891A1 (en) 2018-08-02

Family

ID=61727039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001155 WO2018139891A1 (en) 2017-01-26 2018-01-26 Radiation therapy evaluation system

Country Status (2)

Country Link
KR (1) KR101835123B1 (en)
WO (1) WO2018139891A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021211236A1 (en) * 2020-04-16 2021-10-21 Warsaw Orthopedic, Inc. Device for mapping a sensor's baseline coordinate reference frames to anatomical landmarks

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102223769B1 (en) * 2019-04-08 2021-03-05 사회복지법인 삼성생명공익재단 System and method for evaluating motion of radiation diagnosis and therapy apparatus
KR102219337B1 (en) * 2019-04-11 2021-02-23 사회복지법인 삼성생명공익재단 System and method for quality assurance of radiation isocenter of radiation diagnosis and therapy device
KR102336912B1 (en) * 2019-11-07 2021-12-07 가톨릭대학교 산학협력단 Infrared markers used in radiation therapy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039920A (en) * 2005-07-22 2008-05-07 토모테라피 인코포레이티드 System and method of evaluating dose delivered by a radiation therapy system
KR20080088635A (en) * 2006-01-19 2008-10-02 올림푸스 메디칼 시스템즈 가부시키가이샤 In vovo medical system, method of operating body-insertable device, and method of surgery
JP2010183965A (en) * 2009-02-10 2010-08-26 Fujifilm Corp Radiographic system and method of detecting quantity of dislocation from focal position of radiation source
JP5682868B2 (en) * 2001-06-08 2015-03-11 ヴァリアン メディカル システムズ インコーポレイテッド Guided radiation therapy system
KR20160090558A (en) * 2015-01-22 2016-08-01 성균관대학교산학협력단 The marker tracking apparatus
KR20170008684A (en) * 2015-07-14 2017-01-24 고려대학교 산학협력단 Apparatus and method for evaluating radiation therapy plan based on respiratory motion of patient

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682868B2 (en) * 2001-06-08 2015-03-11 ヴァリアン メディカル システムズ インコーポレイテッド Guided radiation therapy system
KR20080039920A (en) * 2005-07-22 2008-05-07 토모테라피 인코포레이티드 System and method of evaluating dose delivered by a radiation therapy system
KR20080088635A (en) * 2006-01-19 2008-10-02 올림푸스 메디칼 시스템즈 가부시키가이샤 In vovo medical system, method of operating body-insertable device, and method of surgery
JP2010183965A (en) * 2009-02-10 2010-08-26 Fujifilm Corp Radiographic system and method of detecting quantity of dislocation from focal position of radiation source
KR20160090558A (en) * 2015-01-22 2016-08-01 성균관대학교산학협력단 The marker tracking apparatus
KR20170008684A (en) * 2015-07-14 2017-01-24 고려대학교 산학협력단 Apparatus and method for evaluating radiation therapy plan based on respiratory motion of patient

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021211236A1 (en) * 2020-04-16 2021-10-21 Warsaw Orthopedic, Inc. Device for mapping a sensor's baseline coordinate reference frames to anatomical landmarks
US11717173B2 (en) 2020-04-16 2023-08-08 Warsaw Orthopedic, Inc. Device for mapping a sensor's baseline coordinate reference frames to anatomical landmarks

Also Published As

Publication number Publication date
KR101835123B1 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2018139891A1 (en) Radiation therapy evaluation system
WO2020185048A2 (en) C-arm-based medical imaging system, and method for matching 2d image and 3d space
JP5554498B2 (en) A stand-alone mini-gamma camera with a localization system for intraoperative use
WO2013115607A2 (en) Method and apparatus for manufacturing radiation intensity bolus
Karger et al. Three-dimensional accuracy and interfractional reproducibility of patient fixation and positioning using a stereotactic head mask system
WO2014148794A1 (en) Method, apparatus, and system for manufacturing phantom customized to patient
Baroni et al. Real-time three-dimensional motion analysis for patient positioning verification
GB2538260A (en) Patient monitoring system
CN104755136A (en) Patient monitor
WO2016010398A1 (en) Radiation therapy device and quality control method for radiation therapy device
Black et al. An investigation of clinical treatment field delivery verification using cherenkov imaging: IMRT positioning shifts and field matching
Santanam et al. Quality assurance for clinical implementation of an electromagnetic tracking system
Alexander et al. Scintillation imaging as a high‐resolution, remote, versatile 2D detection system for MR‐linac quality assurance
Sumida et al. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid
WO2020209568A1 (en) System and method for evaluating motion of radiation diagnosis and treatment device
WO2020209665A1 (en) Radiation isocenter quality assurance system and method for diagnosis and treatment apparatus using radiation
Alnewaini et al. Real‐time, ray casting‐based scatter dose estimation for c‐arm x‐ray system
CN113975663A (en) Accurate radiotherapy integration quality evaluation system based on radiation-induced luminescence technology
WO2021040213A1 (en) Real-time dose monitoring system and real-time dose monitoring method using plastic fluorescent plate
WO2016076598A1 (en) Radiation therapy apparatus and quality control method for radiation therapy apparatus
JP2020081874A (en) Determination of radiation dose measurement
CN216136587U (en) Intensity modulated radiotherapy plan dose verification system
Yogo et al. Source position measurement by Cherenkov emission imaging from applicators for high‐dose‐rate brachytherapy
Sephton et al. A diagnostic-quality electronic portal imaging system
Yang et al. Performance evaluation of the CyberKnife system in real-time target tracking during beam delivery using a moving phantom coupled with two-dimensional detector array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745358

Country of ref document: EP

Kind code of ref document: A1