WO2021040007A1 - ミリ波吸収性を有する構造体 - Google Patents
ミリ波吸収性を有する構造体 Download PDFInfo
- Publication number
- WO2021040007A1 WO2021040007A1 PCT/JP2020/032718 JP2020032718W WO2021040007A1 WO 2021040007 A1 WO2021040007 A1 WO 2021040007A1 JP 2020032718 W JP2020032718 W JP 2020032718W WO 2021040007 A1 WO2021040007 A1 WO 2021040007A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- millimeter wave
- coating film
- range
- metal member
- mass
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/12—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
Definitions
- the present invention relates to a millimeter wave absorber.
- radio waves are also emitted from electronic devices such as mobile phones and personal computers, which have rapidly increased due to recent advances in information technology. For this reason, as a method for avoiding malfunctions caused by radio waves in electronic devices and communication devices, radio wave absorbers (ElectroMagnetic Wave Absorber, EMA) that efficiently absorb radio waves and convert the absorbed radio waves into heat energy. ) Is often installed near or far from the radio wave generation site.
- radio wave absorbers ElectroMagnetic Wave Absorber, EMA
- a pyramid type radio wave absorber is a type of radio wave absorber in which the energy of radio waves is attenuated while the radio waves pass through the inside of the absorber.
- a radio wave obtained by molding a material obtained by kneading a conductive material such as carbon black or graphite with a foaming organic resin such as polyethylene foam as a base material into a shape in which a number of pyramid shapes are connected.
- Absorbers are listed. Since the radio wave absorber itself has a pyramid-like shape, the cross-sectional area of the surface of the radio wave absorber (direction of arrival of radio waves) can be reduced, and the reflection of incident radio waves on the surface is suppressed inside the absorber. It is considered that the radio waves that have entered the inside of the absorber can be efficiently converted into thermal energy as the radio waves easily enter and the cross-sectional area of the absorber increases.
- the sheet-type radio wave absorber absorbs radio waves by laminating a radio wave reflecting layer and a radio wave absorbing layer.
- Patent Document 2 contains a metal powder and a binder on the surface of a metal plate.
- a radio wave absorber forming a magnetic loss layer is disclosed.
- radio wave absorbers that absorb radio waves in the millimeter wave band have been developed, most of them are pyramid type, and there is a problem that the base material is altered or deformed due to aging or heat, and the radio wave absorption is lowered. .. Further, since the pyramid type radio wave absorber is bulky, it is difficult to install it depending on the installation location, and there is also a problem that the manufacturing process is complicated.
- the conventional sheet-type radio wave absorber has not reached a sufficient level regarding the absorption frequency bandwidth of the millimeter wave band. For this reason, it has been technically difficult to design a lightweight and flexible radio wave absorber that can absorb a wide area with a millimeter wave bandwidth and can be attached to a curved surface.
- Patent Documents 3 and 4 a radio wave absorption sheet capable of sufficiently absorbing radio waves in the millimeter wave band.
- the radio wave absorbing sheets described in Patent Documents 3 and 4 still have a problem that it is difficult to attach them to a complicated shape such as a complicated inside.
- Japanese Unexamined Patent Publication No. 6-3343382 Japanese Unexamined Patent Publication No. 8-288648 WO2018 / 124131 WO2019 / 077808
- An object of the present invention is to provide a structure having millimeter wave absorption, a method for producing the same, a method for absorbing millimeter waves, and a method for suppressing reflection or scattering of millimeter waves.
- the present inventors diligently examined the above-mentioned problems. As a result, it has been found that a structure exhibiting millimeter wave absorption can be obtained by forming a coating film containing a specific carbon powder or granular material on a metal member to form an integrated structure.
- the coating film (B) contains a metal member (A) and a coating film (B) formed on the surface of the metal member (A) and integrated with the metal member (A), and the coating film (B) has a specific surface area of 30 m.
- the coating film (B) contains 2 / g or more of carbon powder or granular material and a binder, and the amount of the carbon powder or granular material is in the range of 1 to 100 parts by mass with reference to 100 parts by mass of the binder.
- Method of manufacturing the structure A millimeter-wave absorption method using the structure, and a method of suppressing reflection or scattering of millimeter waves received by the millimeter-wave receiver by arranging the structure in the vicinity of the millimeter-wave receiver. Regarding.
- the structure of the present invention has sufficient millimeter wave absorption. Further, even if the target base material has a complicated shape, the appearance is excellent.
- the metal member (A) which is a component of the structure of the present invention, is not particularly limited as long as it is a metal, for example, magnesium, aluminum, zinc, titanium, iron, nickel, chromium, gold, silver, copper, tin, and platinum. , Palladium, zirconium, tungsten and other metals themselves and metal materials such as at least two or more alloys of these metals. Examples of the two or more types of alloys include alloyed zinc such as Zn—Al, Zn—Ni, and Zn—Fe, stainless steel, and steel plated with the above metal material.
- the shape is not particularly limited and may be any of a two-dimensional shape and a three-dimensional shape, but the effect of the present invention can be maximized when the shape is a three-dimensional shape.
- the three-dimensional shape refers to a shape including a three-dimensional three-dimensional shape that can be visually recognized by the human eye, such as a square shape, a concave shape, a convex shape, and a curved surface shape.
- the coating film (B) is a coating film formed by directly coating the metal member (A) with a liquid paint, and contains carbon powders and binders and a binder.
- the carbon powder is a powder containing carbon as a main component, and is carbon black obtained by a furnace method, a channel method, or a thermal method, or carbon black such as acetylene black, ketjen black, or lamp black.
- Commercially available carbon powders include, for example, "VULCAN XC-72" (manufactured by Cabot, trade name), "Ketchen Black EC", “Ketchen Black EC600JD”, “Ketchen Black ECP600” (Lion Specialty Chemicals). (Product name, product name), "Denka Black HS-100” (manufactured by Denki Kagaku Kogyo Co., Ltd., product name, acetylene black) and the like can be mentioned.
- the carbon powder or granular material used has a specific surface area of 30 m 2 / g or more from the viewpoint of millimeter wave absorption.
- the specific surface area of the carbon powder or granular material is calculated by the nitrogen adsorption method.
- the preferable range of the specific surface area is 30 to 3000 m 2 / g, particularly 100 to 1000 m 2 / g.
- the carbon powder or granular material used in the present invention is in the form of powder, and the average particle size thereof is preferably in the range of 1 nm to 500 nm, particularly in the range of 10 to 100 nm.
- the average minor axis is preferably in the range of 1 nm to 500 nm, particularly in the range of 10 to 100 nm.
- the average particle size or the average minor axis of carbon powder particles is obtained as an average value obtained by taking a magnified photograph with an electron microscope and measuring the particle size of 1000 particles.
- binder examples include film-forming resins that are usually used in the coating industry regardless of whether they are solvent-based, water-based, or solvent-free, and specifically, acrylic resins.
- Polyester resin polyolefin resin, alkyd resin, polyether resin, silicone resin, fluorine resin, rosin resin, phenol resin, polyurethane resin, urea resin, epoxy resin, cellulose resin, butyral resin, maleic acid resin, fumaric acid resin, acetic acid Resins such as vinyl resin, melamine resin, polyisocyanate, blocked polyisocyanate, and polyamine; two or more modified resins of these resins; and two or more combinations of these resins; and the like.
- acrylic resin, polyester resin, polyolefin resin, polyisocyanate, melamine resin, alkyd resin, polyether resin and combinations thereof are suitable, and acrylic resin and alkyd resin are particularly suitable from the viewpoint of the appearance of the structure of the present invention.
- Polyester resins and polyisocyanates are suitable.
- acrylic resin examples include (meth) acrylic acid esters having functional groups such as ⁇ , ⁇ -ethylenically unsaturated carboxylic acids, hydroxyl groups, amide groups, and methylol groups, and other (meth) acrylic acid esters, styrene, and the like. Can be mentioned as a resin obtained by copolymerizing the above.
- examples of the (meth) acrylic acid ester having a functional group include 2-hydroxyethyl (meth) acrylicate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
- Examples of other (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, and i.
- polyester resin examples include a resin obtained by a condensation reaction of a polybasic acid and a polyhydric alcohol.
- the polybasic acid is a compound having two or more carboxyl groups in one molecule, and is, for example, phthalic acid, isophthalic acid, terephthalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, tetrahydrophthalic acid, hexa.
- examples thereof include hydrophthalic acid, maleic acid, fumaric acid, itaconic acid, trimellitic acid, pyromellitic acid and anhydrides thereof, and the polyvalent alcohol has two or more hydroxyl groups in one molecule.
- neopentyl glycol 1,9-nonanediol, 1,4-cyclohexanediol, hydroxypivalate neopentyl glycol ester, 2-butyl-2-ethyl-1,3-propanediol, 3-methyl-1 , 5-Pentanediol, 2,2,4-trimethylpentanediol, diols such as bisphenol A hydride; and trivalent or higher polyol components such as trimethylolpropane, trimethylolethane, glycerin, pentaerythritol; and 2 , 2-Dimethylol propionic acid, 2,2-Dimethylolbutanoic acid, 2,2-Dimethylolpentanoic acid, 2,2-Dimethylolhexanoic acid, 2,2-Dimethyloloctanoic acid and other hydroxycarboxylic acids Can be mentioned.
- alkyd resin examples include resins obtained by denaturing with long-chain fatty acids in addition to the above-mentioned polybasic acids and polyhydric alcohols.
- Long-chain fatty acids include fish oil fatty acid, dehydrated castor oil fatty acid, safflower oil fatty acid, flaxseed oil fatty acid, soybean oil fatty acid, sesame oil fatty acid, poppy oil fatty acid, eno oil fatty acid, hemp oil fatty acid, grape kernel oil fatty acid, corn oil fatty acid, Examples thereof include tall oil fatty acid, sunflower oil fatty acid, cottonseed oil fatty acid, walnut oil fatty acid, and rubber seed oil fatty acid.
- polyether resin examples include a polyether polyol containing one or more alkylene oxides selected from ethylene oxide, propylene oxide, butylene oxide, tetramethylene oxide and the like.
- the binder preferably contains a resin having a hydroxyl group, and particularly preferably contains an acrylic polyol, a polyester polyol, an alkyd resin having a hydroxyl group, a polyether polyol, and a combination thereof.
- Acrylic polyols have a weight average molecular weight in the range of 1,000 to 50,000, especially 3,000 to 30,000, and polyester polyols and alkyd resins having hydroxyl groups have a weight average molecular weight of 500 to 50,000, especially 1,000 to 20,000.
- a polyether polyol having a weight average molecular weight of 500 to 5000, particularly 800 to 1000 it is preferable that the binder contains at least one selected from a melamine resin, a polyisocyanate, and a blocked polyisocyanate as a curing agent in combination with the resin having a hydroxyl group.
- the polyolefin that is the raw material of the polyolefin resin is a resin composed of a copolymer or homopolymer of an ⁇ -olefin unsaturated hydrocarbon such as ethylene, propylene, 1-butene, and 4-methyl-1-pentene.
- the polyolefin resin may be a modified polyolefin resin obtained by chlorination, acrylic modification, or maleic acid modification.
- the chlorine content is preferably in the range of 10 to 50% by mass, preferably 20 to 40% by mass.
- the chlorine content is the ratio of the mass of chlorine to the total mass of the chlorinated polyolefin resin.
- the content of carbon powder or granular material in the coating film (B) is important in order for the structure to exhibit millimeter wave absorbability.
- the amount of the carbon powder pair based on 100 parts by mass of the binder is in the range of 1 to 100 parts by mass, preferably in the range of 3 to 40 parts by mass.
- the coating film (B) can contain titanium oxide in addition to the carbon powder or granular material.
- the content of titanium oxide is preferably in the range of 20 to 150 parts by mass, preferably 40 to 120 parts by mass, based on 100 parts by mass of the binder. ..
- One aspect of the present invention is a method for manufacturing a structure in which the metal member (A) and the coating film (B) are integrated by directly coating the surface of the metal member (A) with a liquid paint. According to such a manufacturing method, even when the metal member (A) has a three-dimensional shape, a structure having millimeter wave absorption and excellent appearance can be obtained.
- the liquid paint may contain organic solvents or water, pigments, carbons other than the carbon powders, paint additives and the like, which are usually used in the field of paints, with the carbon powders and binder as essential components.
- liquid paint coating method examples include air spray coating, airless spray coating, roll coater, curtain flow coater, brush coating, and dip coating.
- the drying method after painting may be normal temperature drying or heat drying, and examples thereof include a drying method of heating to 60 to 140 ° C.
- the coating film (B) has a specific gravity of 1.1 to 2.5 g / cm 2 and a film thickness of 100 to 400 ⁇ m in order to improve both millimeter wave absorption and appearance. It is important to be within range. From the viewpoint of millimeter wave absorption and appearance, it is more preferable that the specific gravity is in the range of 1.2 to 1.8 g / cm 2 and the film thickness is in the range of 150 to 300 ⁇ m.
- the film thickness of the coating film can be determined by observing the cross section of the coating film using SEM, arbitrarily selecting three points from the obtained image, and averaging them. Further, the specific gravity of the coating film can be determined according to the JIS K7112: 1999 5.1A method (underwater substitution method). The film thickness of the free film for measuring the specific gravity is 200 ⁇ m, and the drying conditions after coating are 70 ° C. and 30 minutes.
- the structure of the present invention obtained as described above exhibits millimeter wave absorption.
- the specific millimeter-wave absorption amount can be an absorption amount larger than -5 dB, preferably an absorption amount larger than -10 dB.
- the millimeter wave absorption amount ⁇ 5 dB is 68.4% of the electric power ratio, and ⁇ 10 dB is 90% absorption.
- the millimeter wave absorption amount can be, for example, an absorption amount smaller than -100 dB.
- the millimeter wave absorption amount can be obtained by measuring with a millimeter wave radio wave absorption amount measuring device.
- the millimeter wave absorption amount is measured by the reflection characteristic, and the attenuation amount is taken as the absorption characteristic. Therefore, in the present specification, the millimeter wave absorption amount is displayed as a negative value, and the larger the absolute value, the better the millimeter wave absorption amount.
- another coating film may be provided on the coating film (B) as needed.
- One aspect of the present invention provides a method of absorbing millimeter waves by using a structure as described above.
- the application is not particularly limited, but it is preferable to dispose the structure in the vicinity of the millimeter wave receiving device because the reflection or scattering of the millimeter wave received by the millimeter wave receiving device can be suppressed.
- Chlorinated polyolefin resin "Supercron 813A", chlorine content 30%, trade name, manufactured by Nippon Paper Industries, Ltd.
- Polypropylene glycol Weight average molecular weight 1000
- Liquid coating materials (A2) to (A16) shown in Tables 1 to 3 were obtained in the same manner as in Production Example 1 except that the solid content composition and composition were shown in Tables 1 to 3.
- the solid content in the table means a non-volatile content, and means a residue obtained by removing volatile components such as water and an organic solvent from the sample. Further, ph means the mass ratio of each component to 100 parts by mass of the binder.
- Examples 1 to 20 and Comparative Examples 1 to 7 A liquid paint having the composition shown in Tables 1 to 3 is applied to a metal member made of a flat substrate having a size of 30 ⁇ 30 ⁇ 0.3 cm and the material shown in Tables 1 to 3 by using an airless spray. The coating was applied to the above-mentioned dry film thickness, and the mixture was dried at 70 ° C. for 30 minutes to prepare a structure in which the metal member and the coating film were integrated.
- (*) Millimeter wave absorption amount A radio wave absorber having a radio wave absorption amount of -30 dB or more was measured using a millimeter wave radio wave absorption measuring device (network analyzer) in an anechoic chamber installed on the wall surface and floor of the room. Specifically, for transmission so that the incident and reflection angles of the transmitting horn antenna and the receiving horn antenna provided in the millimeter-wave radio wave absorption measuring device are 15 ° with respect to the vertical plane from the floor surface, respectively. Install a horn antenna and a receiving horn antenna, place a metal reflector at a distance of 45 cm from each antenna, receive the reflected signal with the receiving horn antenna, and set the radio wave reflectance to 100%. And.
- the metal reflector is removed and the reflected signal is received by the receiving horn antenna, and the radio wave reflectance is set to 0%.
- a millimeter wave absorber composed of each structure obtained in Examples and Comparative Examples was placed at the position where the metal reflector was placed, and the amount of radio wave reflected from the surface of the measurement sample was measured at various frequencies.
- the frequency having the largest radio wave absorption amount was defined as the peak frequency (GHz), and the radio wave absorption amount at the peak frequency was determined.
- the indication of "-" in the table means that the absorption amount in the millimeter wave band (76 to 81 GHz) is small and the measured value is less than -1 dB.
- Molded member having a three-dimensional shape A member processed so as to have a bellows-shaped unevenness with a height difference of 2 cm and a period of 5 cm when a flat plate-shaped base material of 30 ⁇ 30 ⁇ 0.3 cm is viewed from the side.
- ⁇ Very good
- ⁇ Good
- ⁇ There are defects such as sauce, armpits, cracks, etc.
- ⁇ Defects such as sagging, armpits, and cracks are prominent.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
ミリ波吸収性を有する構造体、その製造方法、ミリ波吸収方法及びミリ波の反射又は散乱を抑制する方法を提供する。 金属部材(A)と、前記金属部材(A)表面に形成され、前記金属部材(A)と一体化してなる塗膜(B)とを含み、前記塗膜(B)が、比表面積が30m2/g以上のカーボン粉粒体及び結合剤を含み、カーボン粉粒体の含有量が結合剤100質量部を基準として1~100質量部の範囲内にあり、塗膜(B)の比重が1.1~2.5g/cm3の範囲内、膜厚が100~400μmの範囲内にある、ミリ波吸収性を有する構造体。
Description
本発明はミリ波吸収体に関する。
ラジオ、テレビ、無線通信などの通信機器に加え、最近の情報技術の進展により急増した携帯電話、パソコンなどの電子機器からも電波は放射されている。このため、電子機器、通信機器などの電波による誤作動を回避するための一手法として、効率よく電波を吸収し、吸収した電波を熱エネルギーに変換するという電波吸収体(Electro Magnetic Wave Absorber、EMA)を電波発生部位近傍又は遠方に設置することがよく行われている。
このような電波吸収体としてはピラミッド型電波吸収体とシート型電波吸収体がよく知られている。
ピラミッド型電波吸収体とは吸収材内部を電波が透過する間に電波のエネルギーが減衰していくタイプの電波吸収体である。特許文献1には、発泡ポリエチレンなどの発泡性有機樹脂を基材として、カーボンブラックやグラファイトなどの導電性材料を混錬させた材料を、ピラミッド型がいくつも連なったような形状に成型した電波吸収体が記載されている。電波吸収体自体がピラミッド型のような形状であることによって、電波吸収体表面部(電波の到来方向)の断面積を小さくでき、表面部での入射電波の反射が抑制されて吸収体内部に電波が進入しやすくなり、吸収体断面積が増加するにしたがって、吸収体内部に進入した電波が効率よく熱エネルギーに変換できると考えられている。
一方、シート型の電波吸収体は電波反射層と電波吸収層を積層することで、電波を吸収させたものであり、例えば特許文献2には、金属板の表面に金属粉末及び結合剤を含む磁性損失層を形成した電波吸収体が開示されている。
近年、電子機器や通信機器は高周波数の電波を利用する製品へとシフトしてきた。例えば、自動車の衝突防止支援用にミリ波レーダーの適用が試みられている。ミリ波帯域の電波を吸収する電波吸収体は開発されているものの、その多くはピラミッド型であり、経年や熱等により基材が変質・変形して電波吸収性が低下するという問題があった。また、ピラミッド型電波吸収体は嵩高いため、設置場所によっては取り付け困難であり、製造工程も煩雑という問題もある。
更には、従来のシート型電波吸収体はミリ波帯域の吸収周波数帯域幅に関して十分なレベルに達していなかった。このため、ミリ波帯域幅で広域に吸収し、更には曲面に貼り付けできる軽量で可とう性のある電波吸収体を設計することは技術的に困難であった。
こうしたニーズに応えるべく、本発明者は特許文献3及び4において、ミリ波帯域において十分に電波を吸収できる電波吸収シートを提案した。しかしながら特許文献3及び4記載の電波吸収シートは、内部が入り組んだような複雑な形状への貼り付けが困難であるという問題が依然として残されていた。
本発明の目的は、ミリ波吸収性を有する構造体、その製造方法、ミリ波吸収方法及びミリ波の反射又は散乱を抑制する方法を提供することにある。
本発明者らは上記した課題について鋭意検討した。その結果、金属部材に特定のカーボン粉粒体を含む塗膜を形成して一体化した構造とすることにより、ミリ波吸収性を発現する構造体が得られることを見出した。
すなわち本発明は、
金属部材(A)と、前記金属部材(A)表面に形成され、前記金属部材(A)と一体化してなる塗膜(B)とを含み、前記塗膜(B)が、比表面積が30m2/g以上のカーボン粉粒体及び結合剤を含み、前記カーボン粉粒体の量が前記結合剤100質量部を基準として1~100質量部の範囲内にあり、前記塗膜(B)の比重が1.1~2.5g/cm3の範囲内にあり、膜厚が100~400μmの範囲内にある、ミリ波吸収性を有する構造体、
前記構造体の製造方法、
前記構造体を用いるミリ波吸収方法、並びに
ミリ波受信装置の近傍に、前記構造体を配置せしめることにより、ミリ波受信装置が受信するミリ波の反射又は散乱を抑制する方法、
に関する。
金属部材(A)と、前記金属部材(A)表面に形成され、前記金属部材(A)と一体化してなる塗膜(B)とを含み、前記塗膜(B)が、比表面積が30m2/g以上のカーボン粉粒体及び結合剤を含み、前記カーボン粉粒体の量が前記結合剤100質量部を基準として1~100質量部の範囲内にあり、前記塗膜(B)の比重が1.1~2.5g/cm3の範囲内にあり、膜厚が100~400μmの範囲内にある、ミリ波吸収性を有する構造体、
前記構造体の製造方法、
前記構造体を用いるミリ波吸収方法、並びに
ミリ波受信装置の近傍に、前記構造体を配置せしめることにより、ミリ波受信装置が受信するミリ波の反射又は散乱を抑制する方法、
に関する。
本発明の構造体は十分なミリ波吸収性を有している。また、対象となる基材が複雑な形状を有していても外観に優れている。
[金属部材(A)]
本発明の構造体の構成要素である金属部材(A)は、金属であればとくに制限なく、例えば、マグネシウム、アルミニウム、亜鉛、チタン、鉄、ニッケル、クロム、金、銀、銅、錫、白金、パラジウム、ジルコニウム、タングステン等の金属そのもの及びこれらの金属の少なくとも2種類以上の合金等の金属材料が挙げられる。2種以上の合金としては、Zn-Al、Zn-Ni、Zn-Fe等の合金化亜鉛、ステンレス鋼、上記金属材料でメッキした鋼等が挙げられる。また、その形状も特に制限はなく2次元形状、3次元形状のいずれであってもよいが、3次元形状である場合に本発明の効果を最大限に発揮することができる。前記3次元形状とは、角状、凹状、凸状、曲面状などの人の目で視認可能な3次元の立体形状を含む形状をいう。
本発明の構造体の構成要素である金属部材(A)は、金属であればとくに制限なく、例えば、マグネシウム、アルミニウム、亜鉛、チタン、鉄、ニッケル、クロム、金、銀、銅、錫、白金、パラジウム、ジルコニウム、タングステン等の金属そのもの及びこれらの金属の少なくとも2種類以上の合金等の金属材料が挙げられる。2種以上の合金としては、Zn-Al、Zn-Ni、Zn-Fe等の合金化亜鉛、ステンレス鋼、上記金属材料でメッキした鋼等が挙げられる。また、その形状も特に制限はなく2次元形状、3次元形状のいずれであってもよいが、3次元形状である場合に本発明の効果を最大限に発揮することができる。前記3次元形状とは、角状、凹状、凸状、曲面状などの人の目で視認可能な3次元の立体形状を含む形状をいう。
[塗膜(B)]
本発明において、塗膜(B)は、前記金属部材(A)に対して直接、液状塗料を塗装してなる塗膜であり、カーボン粉粒体及び結合剤を含む。
本発明において、塗膜(B)は、前記金属部材(A)に対して直接、液状塗料を塗装してなる塗膜であり、カーボン粉粒体及び結合剤を含む。
前記カーボン粉粒体としては、炭素を主成分とする粉末状のものであって、ファーネス法、チャンネル法又はサーマル法によって得られるカーボンブラック、或いはアセチレンブラック、ケッチェンブラック又はランプブラック等のカーボンブラック、黒鉛、黒鉛化カーボンブラック、活性炭、炭素繊維、カーボンナノチューブ、カーボンマイクロコイル、カーボンナノホーン、カーボンエアロゲル、フラーレンなどを挙げることができる。カーボン粉粒体の市販品としては例えば、「VULCAN XC-72」(キャボット社製、商品名)、「ケッチェンブラックEC」、「ケッチェンブラックEC600JD」、「ケッチェンブラックECP600」(ライオンスペシャリティケミカルズ社製、商品名)、「デンカブラックHS-100」(電気化学工業社製、商品名、アセチレンブラック)等を挙げることができる。
また、前記カーボン粉粒体は、ミリ波吸収性の観点から比表面積が30m2/g以上のものが使用される。本明細書においてカーボン粉粒体の比表面積は窒素吸着法により算出したものである。比表面積の好ましい範囲としては30~3000m2/g、特に100~1000m2/gである。
本発明に使用されるカーボン粉粒体は粉末状であるが、その平均粒子径の好ましい範囲としては、1nm~500nmの範囲内、特に10~100nmの範囲内である。また、カーボン粉粒体が繊維状の場合の好ましい平均短径としては1nm~500nmの範囲内、特に10~100nmの範囲内である。
本明細書において、カーボン粉粒体の平均粒子径又は平均短径は、電子顕微鏡で拡大写真を撮影し、1000個の粒子の粒子径を測定し、その平均値として求められる。
前記結合剤としては、被膜形成性の樹脂であって、溶剤系、水系、無溶剤系を問わず、塗料業界において通常使用されている樹脂を例示することができ、具体的には、アクリル樹脂、ポリエステル樹脂、ポリオレフィン樹脂、アルキド樹脂、ポリエーテル樹脂、シリコーン樹脂、ふっ素樹脂、ロジン樹脂、フェノール樹脂、ポリウレタン樹脂、尿素樹脂、エポキシ樹脂、セルロース樹脂、ブチラール樹脂、マレイン酸樹脂、フマル酸樹脂、酢酸ビニル樹脂、メラミン樹脂、ポリイソシアネート、ブロックポリイソシアネート、ポリアミン等の樹脂;これら樹脂の2種以上の変性樹脂;これら樹脂の2種以上の組み合わせ;等が挙げられる。これらの中でもアクリル樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリイソシアネート、メラミン樹脂、アルキド樹脂、ポリエーテル樹脂及びこれらの組み合わせが適しており、特に本発明の構造体の外観の点から、アクリル樹脂、アルキド樹脂、ポリエーテル樹脂及びポリイソシアネートが適している。
アクリル樹脂としては、例えば、α,β-エチレン性不飽和カルボン酸、水酸基、アミド基、メチロール基等の官能基を有する(メタ)アクリル酸エステル、及びその他の(メタ)アクリル酸エステル、スチレン等を共重合して得られる樹脂を挙げることができる。
官能基を有する(メタ)アクリル酸エステルとしては、2-ヒドロキシエチル(メタ)アクリレ-ト、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート;(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物のε-カプロラクトン変性体;分子末端が水酸基であるポリオキシエチレン鎖を有する(メタ)アクリレート;(メタ)アクリル酸、マレイン酸、クロトン酸、β-カルボキシエチルアクリレート;(メタ)アクリロニトリル、(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート;グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、分子末端がアルコキシ基であるポリオキシエチレン鎖を有する(メタ)アクリレート;ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アセトアセトキシエチルメタクリレート及びそれらの組み合わせが挙げられる。
官能基を有する(メタ)アクリル酸エステルとしては、2-ヒドロキシエチル(メタ)アクリレ-ト、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート;(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物のε-カプロラクトン変性体;分子末端が水酸基であるポリオキシエチレン鎖を有する(メタ)アクリレート;(メタ)アクリル酸、マレイン酸、クロトン酸、β-カルボキシエチルアクリレート;(メタ)アクリロニトリル、(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート;グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、分子末端がアルコキシ基であるポリオキシエチレン鎖を有する(メタ)アクリレート;ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アセトアセトキシエチルメタクリレート及びそれらの組み合わせが挙げられる。
その他の(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、「イソステアリルアクリレート」(商品名、大阪有機化学工業社製)、シクロヘキシル(メタ)アクリレ-ト、メチルシクロヘキシル(メタ)アクリレ-ト、t-ブチルシクロヘキシル(メタ)アクリレ-ト、シクロドデシル(メタ)アクリレ-トなどのアルキル又はシクロアルキル(メタ)アクリレート;イソボルニル(メタ)アクリレート;アダマンチル(メタ)アクリレート;及びこれらの組み合わせが挙げられる。
ポリエステル樹脂としては、多塩基酸及び多価アルコールを縮合反応して得られる樹脂を挙げることができる。該多塩基酸は、1分子中に2個以上のカルボキシル基を有する化合物であり、例えば、フタル酸、イソフタル酸、テレフタル酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、マレイン酸、フマル酸、イタコン酸、トリメリット酸、ピロメリット酸及びこれらの無水物などが挙げられ、また、該多価アルコ-ルは、1分子中に2個以上の水酸基を有する化合物であり、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2-ジエチル-1,3-プロパンジオール、ネオペンチルグリコール、1,9-ノナンジオール、1,4-シクロヘキサンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、2-ブチル-2-エチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチルペンタンジオール、水素化ビスフェノールA等のジオール類;及びトリメチロールプロパン、トリメチロールエタン、グリセリン、ペンタエリスリトール等の三価以上のポリオール成分;並びに、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロールペンタン酸、2,2-ジメチロールヘキサン酸、2,2-ジメチロールオクタン酸等のヒドロキシカルボン酸などが挙げられる。
アルキド樹脂としては、上述の多塩基酸と多価アルコールに加えて長鎖脂肪酸で変性して得られる樹脂を挙げることができる。長鎖脂肪酸としては魚油脂肪酸、脱水ヒマシ油脂肪酸、サフラワー油脂肪酸、アマニ油脂肪酸、大豆油脂肪酸、ゴマ油脂肪酸、ケシ油脂肪酸、エノ油脂肪酸、麻実油脂肪酸、ブドウ核油脂肪酸、トウモロコシ油脂肪酸、トール油脂肪酸、ヒマワリ油脂肪酸、綿実油脂肪酸、クルミ油脂肪酸、ゴム種油脂肪酸等があげられる。
ポリエーテル樹脂としては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド及びテトラメチレンオキサイド等から選ばれた1種又は2種以上のアルキレンオキサイドによるポリエーテルポリオール等を挙げることができる。
前記結合剤は水酸基を有する樹脂を含むことが好ましく、特にアクリルポリオール、ポリエステルポリオール、水酸基を有するアルキド樹脂、ポリエーテルポリオール及びこれらの組み合わせを含むことが好ましい。アクリルポリオールでは重量平均分子量が1,000~50,000、特に3,000~30,000の範囲内、ポリエステルポリオール及び水酸基を有するアルキド樹脂では重量平均分子量が500~50000、特に1000~20,000の範囲内、ポリエーテルポリオールでは重量平均分子量が500~5000、特に800~1000のものを使用することが好ましい。この場合、結合剤には、メラミン樹脂、ポリイソシアネート、ブロックポリイソシアネートから選ばれる少なくとも1種を硬化剤として、前記水酸基を有する樹脂に併用して含むことが好適である。
前記ポリオレフィン樹脂の原料であるポリオレフィンは、例えばエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどのα-オレフィン系不飽和炭化水素の共重合体又は単独重合体からなる樹脂である。また、前記ポリオレフィン樹脂は、塩素化、アクリル変性、又はマレイン酸変性されてなる変性ポリオレフィン樹脂であってもよい。ポリオレフィン樹脂が塩素化ポリオレフィン樹脂である場合は、塩素含有率は10~50質量%、好ましくは20~40質量%の範囲内がよい。なお、塩素含有率とは、塩素化ポリオレフィン樹脂全体の質量に占める塩素の質量の率である。
本発明においては、前記構造体がミリ波吸収性を発現するためには、前記塗膜(B)中のカーボン粉粒体の含有量が重要である。結合剤100質量部を基準とするカーボン粉粒対の量は1~100質量部の範囲内であり、好ましくは3~40質量部の範囲内にある。
また、塗膜(B)は、カーボン粉粒体に加えて酸化チタンを含むことができる。構造体のミリ波吸収性の観点から、酸化チタンの含有量は、結合剤100質量部を基準として、20~150質量部、好ましくは40~120質量部の範囲内にあることが適している。
[構造体、及び製造方法]
本発明の一態様は、金属部材(A)表面に直接、液状塗料を塗装することにより、前記金属部材(A)と塗膜(B)が一体化された構造体の製造方法である。かかる製造方法によれば金属部材(A)が3次元形状を有する場合であっても、ミリ波吸収性を有し、外観に優れた構造体が得られる。
本発明の一態様は、金属部材(A)表面に直接、液状塗料を塗装することにより、前記金属部材(A)と塗膜(B)が一体化された構造体の製造方法である。かかる製造方法によれば金属部材(A)が3次元形状を有する場合であっても、ミリ波吸収性を有し、外観に優れた構造体が得られる。
前記液状塗料は前記カーボン粉粒体及び結合剤を必須成分として、通常塗料分野で用いられる有機溶媒又は水、顔料、前記カーボン粉粒体以外のカーボン、塗料用添加剤等を含むことができる。
液状塗料の塗装方法としては、エアスプレー塗装、エアレススプレー塗装、ロールコーター、カーテンフローコーター、刷毛塗装、浸漬塗装などの方法が挙げられる。塗装後の乾燥方法としては常温乾燥でも加熱乾燥でもよいが、例えば60~140℃に加熱する乾燥方法が挙げられる。
本発明の構造体においては、ミリ波吸収性と外観を共に良好なものとするために、塗膜(B)の比重が1.1~2.5g/cm2、膜厚が100~400μmの範囲内にあることが重要である。ミリ波吸収性と外観の点からは比重が1.2~1.8g/cm2、膜厚が150~300μmの範囲内にあるとさらによい。
本明細書において、塗膜の膜厚はSEMを用いて塗膜の断面を観察し、得られた画像から任意に3箇所を選択し、その平均値によって求めることができる。また、塗膜比重は、JIS K 7112:1999 5.1A法(水中置換法)に準じて求めることができる。比重測定用のフリーフィルムの膜厚は200μmであり、塗装後の乾燥条件は70℃、30分である。
上記のようにして得られる本発明の構造体は、ミリ波吸収性を発現する。具体的なミリ波吸収量としては-5dBよりも大きい吸収量、好ましくは-10dBよりも大きい吸収量であることができる。ここでミリ波吸収量-5dBは電力比で68.4%、-10dBは90%の吸収とされている。一般にノイズ電波を6割以上カットすれば電波環境が大幅に改善され、システム等が正常に動作する場合が多い。ミリ波吸収量に上限はないが例えば-100dBより小さい吸収量であることができる。
本明細書においてミリ波吸収量は、ミリ波電波吸収量測定装置により測定して得ることができる。ここで、ミリ波吸収量は反射特性により測定を行ない、その減衰量を吸収特性としている。従って、本明細書において、ミリ波吸収量は負の値で表示され、その絶対値が大きい程、ミリ波吸収量が優れていることを示す。
本発明においては、金属部材(A)と塗膜(B)とが一体化してなるものであれば、必要に応じて前記塗膜(B)の上に別の塗膜を設けてもよい。
<ミリ波吸収方法>
本発明の一態様は、上記した如き構造体を用いることによってミリ波を吸収する方法を提供するものである。その用途としては特に制限はないが、ミリ波受信装置の近傍に、前記構造体を配置せしめることにより、ミリ波受信装置が受信するミリ波の反射又は散乱を抑制することができ、好ましい。
本発明の一態様は、上記した如き構造体を用いることによってミリ波を吸収する方法を提供するものである。その用途としては特に制限はないが、ミリ波受信装置の近傍に、前記構造体を配置せしめることにより、ミリ波受信装置が受信するミリ波の反射又は散乱を抑制することができ、好ましい。
以下、実施例に基づき、本発明について詳細に説明するが、本発明は、これら実施例により何ら限定されるものではない。また、各例中の「部」は質量部、「%」は質量%を示す。
<液状塗料の製造>
製造例1
アクリル樹脂(注1)、ポリイソシアネート(注2)、チタン白、カーボン粉粒体A(注3)を表1の実施例1記載の固形分量となるように配合し、これをプロピレングリコールモノメチルエーテルアセテートに混合分散し、次いで固形分濃度が75%となるようにプロピレングリコールモノメチルエーテルアセテートで希釈して、液状塗料(A1)を製造した。
製造例1
アクリル樹脂(注1)、ポリイソシアネート(注2)、チタン白、カーボン粉粒体A(注3)を表1の実施例1記載の固形分量となるように配合し、これをプロピレングリコールモノメチルエーテルアセテートに混合分散し、次いで固形分濃度が75%となるようにプロピレングリコールモノメチルエーテルアセテートで希釈して、液状塗料(A1)を製造した。
(注1)アクリル樹脂:70%アクリルポリオールキシレン溶液、モノマー組成:メチルメタクリレート/n-ブチルアクリレート/ヒドロキシエチルアクリレート=50/20/30(wt%)、重量平均分子量10000
(注2)ポリイソシアネート:ヘキサメチレンジイソシアネートのヌレート、
(注3)カーボン粉粒体A:「VULCAN XC72」、カーボンブラック、商品名、CABOT社製、比重1.8g/cm3、比表面積225m2/g、平均粒子径30nm、
(注4)カーボン粉粒体B:「ケッチェンブラックECP600」、ケッチェンブラック、商品名、ライオンスペシャリティケミカルズ社製、比重2.0g/cm3、比表面積800m2/g、平均粒子径30nm、
(注5)カーボン粉粒体C:「#3050B」、カーボンブラック、商品名、三菱化学社製、比表面積50m2/g、平均粒子径55nm、
(注6)カーボン粉粒体D:「MONARCH120」、カーボンブラック、商品名、CABOT社製、比表面積25m2/g、平均粒子径75nm、
(注7)ポリエステル樹脂:モノマー組成:アジピン酸/1,6ヘキサンジオール/1,3-プロパンジオール=0.83/0.5/0.5(mol%)、重量平均分子量2000、
(注8)メラミン樹脂:「ユーバン21R」、商品名、三井ケミカル社製、
(注9)塩素化ポリオレフィン樹脂:「スーパークロン813A」、塩素含有率30%、商品名、日本製紙株式会社製。
(注10)アルキド樹脂:アジピン酸/トール油脂肪酸/1,6ヘキサンジオール/1,3-プロパンジオール=0.73/0.1/0.5/0.5(mol%)、重量平均分子量4000
(注11)ポリプロピレングリコール:重量平均分子量1000
(注2)ポリイソシアネート:ヘキサメチレンジイソシアネートのヌレート、
(注3)カーボン粉粒体A:「VULCAN XC72」、カーボンブラック、商品名、CABOT社製、比重1.8g/cm3、比表面積225m2/g、平均粒子径30nm、
(注4)カーボン粉粒体B:「ケッチェンブラックECP600」、ケッチェンブラック、商品名、ライオンスペシャリティケミカルズ社製、比重2.0g/cm3、比表面積800m2/g、平均粒子径30nm、
(注5)カーボン粉粒体C:「#3050B」、カーボンブラック、商品名、三菱化学社製、比表面積50m2/g、平均粒子径55nm、
(注6)カーボン粉粒体D:「MONARCH120」、カーボンブラック、商品名、CABOT社製、比表面積25m2/g、平均粒子径75nm、
(注7)ポリエステル樹脂:モノマー組成:アジピン酸/1,6ヘキサンジオール/1,3-プロパンジオール=0.83/0.5/0.5(mol%)、重量平均分子量2000、
(注8)メラミン樹脂:「ユーバン21R」、商品名、三井ケミカル社製、
(注9)塩素化ポリオレフィン樹脂:「スーパークロン813A」、塩素含有率30%、商品名、日本製紙株式会社製。
(注10)アルキド樹脂:アジピン酸/トール油脂肪酸/1,6ヘキサンジオール/1,3-プロパンジオール=0.73/0.1/0.5/0.5(mol%)、重量平均分子量4000
(注11)ポリプロピレングリコール:重量平均分子量1000
製造例2~12
固形分配合と組成を表1~3に示すようにする以外は製造例1と同様にして、表1~3記載の液状塗料(A2)~(A16)を得た。表中固形分とは、不揮発分を意味するものであり、試料から、水、有機溶剤等の揮発する成分を除いた残渣を意味する。また、phrは結合剤100質量部に対する各成分の質量比率を意味する。
固形分配合と組成を表1~3に示すようにする以外は製造例1と同様にして、表1~3記載の液状塗料(A2)~(A16)を得た。表中固形分とは、不揮発分を意味するものであり、試料から、水、有機溶剤等の揮発する成分を除いた残渣を意味する。また、phrは結合剤100質量部に対する各成分の質量比率を意味する。
<構造体の製造>
実施例1~20、及び比較例1~7
表1~3記載の素材で大きさが30×30×0.3cmの平板状基材からなる金属部材に、表1~3記載の組成の液状塗料を、エアレススプレーを用いて表1~3記載の乾燥膜厚となるように塗装し、70℃、30分乾燥させて、金属部材と塗膜が一体化した構造体を作成した。
実施例1~20、及び比較例1~7
表1~3記載の素材で大きさが30×30×0.3cmの平板状基材からなる金属部材に、表1~3記載の組成の液状塗料を、エアレススプレーを用いて表1~3記載の乾燥膜厚となるように塗装し、70℃、30分乾燥させて、金属部材と塗膜が一体化した構造体を作成した。
(*)ミリ波吸収量
電波吸収量が-30dB以上の電波吸収体を部屋の壁面及び床面に設置した電波暗室にて、ミリ波電波吸収測定装置(ネットワークアナライザー)を用いて測定した。具体的には、ミリ波電波吸収測定装置に備えられた送信用ホーンアンテナと受信用ホーンアンテナの入射及び反射角度が、床面からの垂直面に対し、それぞれ15°となるように、送信用ホーンアンテナと受信用ホーンアンテナを設置し、それぞれのアンテナから45cmの距離となるように金属反射板を置き、反射してくる信号を受信用ホーンアンテナで受信して、その電波反射率を100%とする。次に金属反射板を取除き反射してくる信号を受信用ホーンアンテナで受信してその電波反射率を0%とする。そして金属反射板を置いた位置に、実施例及び比較例で得られた各構造体からなるミリ波吸収体を置き、種々の周波数について測定試料表面から反射してくる電波反射量を測定し、周波数を横軸とし、電波吸収量(dB)を縦軸とする電波吸収特性チャートを得た。該電波吸収特性チャートの中で、最も電波吸収量が多い周波数をピーク周波数(GHz)とし、該ピーク周波数における電波吸収量を求めた。表中、数値が小さいほどミリ波吸収量が多く、良好であることを意味し、吸収量が-5dBより良好である場合を合格とした。
尚、表中「-」の表示は、ミリ波帯域(76~81GHz)の吸収量が少なく、測定値が-1dB未満であることを意味する。
電波吸収量が-30dB以上の電波吸収体を部屋の壁面及び床面に設置した電波暗室にて、ミリ波電波吸収測定装置(ネットワークアナライザー)を用いて測定した。具体的には、ミリ波電波吸収測定装置に備えられた送信用ホーンアンテナと受信用ホーンアンテナの入射及び反射角度が、床面からの垂直面に対し、それぞれ15°となるように、送信用ホーンアンテナと受信用ホーンアンテナを設置し、それぞれのアンテナから45cmの距離となるように金属反射板を置き、反射してくる信号を受信用ホーンアンテナで受信して、その電波反射率を100%とする。次に金属反射板を取除き反射してくる信号を受信用ホーンアンテナで受信してその電波反射率を0%とする。そして金属反射板を置いた位置に、実施例及び比較例で得られた各構造体からなるミリ波吸収体を置き、種々の周波数について測定試料表面から反射してくる電波反射量を測定し、周波数を横軸とし、電波吸収量(dB)を縦軸とする電波吸収特性チャートを得た。該電波吸収特性チャートの中で、最も電波吸収量が多い周波数をピーク周波数(GHz)とし、該ピーク周波数における電波吸収量を求めた。表中、数値が小さいほどミリ波吸収量が多く、良好であることを意味し、吸収量が-5dBより良好である場合を合格とした。
尚、表中「-」の表示は、ミリ波帯域(76~81GHz)の吸収量が少なく、測定値が-1dB未満であることを意味する。
(*)凹凸部への適用性
表1~3記載の素材で3次元形状を有する加工部材(注10)からなる金属部材に、実施例1~20及び比較例1~7に記載の液状塗料をエアレススプレーを用いて、表1~3記載の乾燥膜厚となるように塗装し、70℃、30分乾燥させて、試験体を得た。各試験体の外観を下記基準で評価した。
表1~3記載の素材で3次元形状を有する加工部材(注10)からなる金属部材に、実施例1~20及び比較例1~7に記載の液状塗料をエアレススプレーを用いて、表1~3記載の乾燥膜厚となるように塗装し、70℃、30分乾燥させて、試験体を得た。各試験体の外観を下記基準で評価した。
(注10)3次元形状を有する成型部材:30×30×0.3cmの平板状基材を側面から見た場合に、高低差2cm、周期5cmの蛇腹型の凹凸を持つように加工した部材
◎:非常に良好、
○:良好、
△:タレ、ワキ、ヒビ等の欠陥あり、
×:タレ、ワキ、ヒビ等の欠陥が顕著にあり。
◎:非常に良好、
○:良好、
△:タレ、ワキ、ヒビ等の欠陥あり、
×:タレ、ワキ、ヒビ等の欠陥が顕著にあり。
Claims (7)
- 金属部材(A)と、前記金属部材(A)表面に形成され、前記金属部材(A)と一体化してなる塗膜(B)とを含み、
前記塗膜(B)が、比表面積が30m2/g以上のカーボン粉粒体及び結合剤を含み、前記カーボン粉粒体の含有量が前記結合剤100質量部を基準として1~100質量部の範囲内にあり、
前記塗膜(B)の比重が1.1~2.5g/cm3の範囲内にあり、膜厚が100~400μmの範囲内にある、ミリ波吸収性を有する構造体。 - 前記金属部材(A)が3次元形状である、請求項1に記載の構造体。
- 前記塗膜(B)が、さらに酸化チタンを含む、請求項1又は2に記載の構造体。
- -5dBよりも大きいミリ波吸収量を有する、請求項1~3のいずれか1項に記載の構造体。
- 金属部材(A)表面に直接液状塗料を塗装して、前記金属部材(A)と一体化した塗膜(B)を形成する工程を含み、
前記塗膜(B)が、比表面積が30m2/g以上のカーボン粉粒体及び結合剤を含み、
前記カーボン粉粒体の含有量が前記結合剤100質量部を基準として1~100質量部の範囲内にあり、
前記塗膜(B)の比重が1.1~2.5g/cm3の範囲内にあり、膜厚が100~400μmの範囲内にある、請求項1に記載のミリ波吸収性を有する構造体の製造方法。 - 請求項1~4のいずれか1項に記載の構造体を用いるミリ波吸収方法。
- ミリ波受信装置の近傍に、請求項1~4のいずれか1項に記載の構造体を配置せしめることにより、ミリ波受信装置が受信するミリ波の反射又は散乱を抑制する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021543074A JPWO2021040007A1 (ja) | 2019-08-29 | 2020-08-28 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-156398 | 2019-08-29 | ||
JP2019156398 | 2019-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021040007A1 true WO2021040007A1 (ja) | 2021-03-04 |
Family
ID=74685959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/032718 WO2021040007A1 (ja) | 2019-08-29 | 2020-08-28 | ミリ波吸収性を有する構造体 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021040007A1 (ja) |
WO (1) | WO2021040007A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115971018A (zh) * | 2023-01-07 | 2023-04-18 | 中国航空制造技术研究院 | 一种雷达吸波涂层结构及制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002223094A (ja) * | 2001-01-25 | 2002-08-09 | Yokohama Rubber Co Ltd:The | 電波吸収体の構造 |
JP2005158960A (ja) * | 2003-11-25 | 2005-06-16 | Aichi Steel Works Ltd | 電波吸収体 |
-
2020
- 2020-08-28 WO PCT/JP2020/032718 patent/WO2021040007A1/ja active Application Filing
- 2020-08-28 JP JP2021543074A patent/JPWO2021040007A1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002223094A (ja) * | 2001-01-25 | 2002-08-09 | Yokohama Rubber Co Ltd:The | 電波吸収体の構造 |
JP2005158960A (ja) * | 2003-11-25 | 2005-06-16 | Aichi Steel Works Ltd | 電波吸収体 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115971018A (zh) * | 2023-01-07 | 2023-04-18 | 中国航空制造技术研究院 | 一种雷达吸波涂层结构及制备方法 |
CN115971018B (zh) * | 2023-01-07 | 2023-07-28 | 中国航空制造技术研究院 | 一种雷达吸波涂层结构及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021040007A1 (ja) | 2021-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100932150B1 (ko) | 전자파 쉴드재 및 그 제조 방법 | |
EP2360216B1 (en) | Resin composition for surface treatment of steel sheet and surface-treated steel sheet using the same | |
EP1992477B1 (en) | Coated steel sheet, works, panels for thin televisions and process for production of coated steel sheet | |
JP2008021990A (ja) | 電磁干渉抑制体および電磁障害抑制方法 | |
WO2020111159A1 (ja) | 準ミリ波・ミリ波帯域用電波吸収シート及び準ミリ波・ミリ波電波吸収方法 | |
US20090087608A1 (en) | Roll-type composite sheet having improved heat-releasing electromagnetic wave-absorbing, and impact-absorbing properties, and method of manufacturing the same | |
WO2021040007A1 (ja) | ミリ波吸収性を有する構造体 | |
EP3055903B1 (en) | Electromagnetic field absorbing composition | |
WO2021085508A1 (ja) | ミリ波吸収性を有する構造体 | |
CN110819220A (zh) | 一种石墨烯/镀银空心玻璃微珠电磁屏蔽涂料及其制备方法 | |
JP2007281074A (ja) | ノイズ抑制シート | |
JP2007301973A (ja) | 表面処理金属板 | |
JP7552060B2 (ja) | ノイズ抑制層形成用シート状前駆体、ノイズ抑制シート、およびノイズを抑制する方法 | |
JP2009155554A (ja) | 樹脂組成物 | |
CN100567422C (zh) | 一种四针状纳米氧化锌吸波涂层的制备方法 | |
JP2000244167A (ja) | 電磁波障害防止材 | |
EP0380267B1 (en) | Microwave absorber employing acicular magnetic metallic filaments | |
JP5137629B2 (ja) | 電磁波障害対策シ−ト | |
JP6607396B2 (ja) | 近赤外線吸収性粘着剤組成物とその製造方法、および、近赤外線吸収性粘着フィルム | |
CN108384422B (zh) | 一种轨道车辆用低频电磁屏蔽涂料及其制备方法 | |
KR102238617B1 (ko) | 전자파 차폐 시트 및 전자파 차폐성 배선 회로 기판 | |
JP5353426B2 (ja) | 表面処理金属板 | |
JPH1027986A (ja) | 電波吸収体 | |
WO2024090285A1 (ja) | 電磁波シールド膜形成用水系分散体 | |
KR100522537B1 (ko) | 광대역 전자기파 흡수용 벽지 및 그의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20857710 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021543074 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20857710 Country of ref document: EP Kind code of ref document: A1 |