WO2021039937A1 - Motor driving circuit - Google Patents

Motor driving circuit Download PDF

Info

Publication number
WO2021039937A1
WO2021039937A1 PCT/JP2020/032496 JP2020032496W WO2021039937A1 WO 2021039937 A1 WO2021039937 A1 WO 2021039937A1 JP 2020032496 W JP2020032496 W JP 2020032496W WO 2021039937 A1 WO2021039937 A1 WO 2021039937A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
power supply
terminal
fet
Prior art date
Application number
PCT/JP2020/032496
Other languages
French (fr)
Japanese (ja)
Inventor
宏文 青山
貴哉 上田
Original Assignee
株式会社ハイレックスコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハイレックスコーポレーション filed Critical 株式会社ハイレックスコーポレーション
Priority to CN202080059027.1A priority Critical patent/CN114270648A/en
Publication of WO2021039937A1 publication Critical patent/WO2021039937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply

Definitions

  • the present invention relates to a motor drive circuit.
  • a drive circuit for an actuator such as a motor
  • a circuit that is provided with a power supply terminal connected to a positive terminal of the battery and is configured to operate using the battery as a power supply.
  • FETs Field Effect Transistors
  • the FET when the battery is normally connected, a potential difference is generated between the gate and the source of the FET and the FET is turned on.
  • the power supply path is connected, and power can be supplied from the battery to the drive circuit.
  • a counter electromotive voltage is generated in the motor when the motor is started and stopped.
  • the generated counter electromotive force is applied to the gate of the FET to turn on the FET.
  • the FET When the FET is turned on, the power supply path is connected, and the counter electromotive voltage of the motor is output toward the power supply terminal side, which may affect the operation of other electronic control devices.
  • An object of the present invention is to provide a drive circuit of a motor capable of suppressing the generated back electromotive voltage from being output to the battery connection portion side of the power supply path even if the back electromotive voltage is generated in the motor.
  • the motor drive circuit that solves the above problems has the following features. That is, the motor drive circuit of the present invention is provided on the motor, the battery that supplies power to the motor, the power supply path to which the battery voltage of the battery is supplied and connected to the motor, and the power supply path.
  • a power supply switching means that connects the power supply path when a voltage is applied and divides the power supply path when a voltage is not applied, and a drive that is connected to the motor to control the drive of the motor.
  • a voltage application path connecting a control unit, a control unit including a voltage application unit connected to the power supply switching means and capable of applying a voltage to the power supply switching means, and the control unit and the power supply switching means.
  • a detection circuit provided on the voltage application path and capable of detecting the countercurrent voltage generated in the motor.
  • the detection circuit detects the countercurrent voltage of the motor, the detection circuit is said to pass through the voltage application path. It is a motor drive circuit that cuts off the voltage applied to the power supply switching means.
  • the power supply switching means divides the power supply path, and the generated countercurrent voltage is the power. There is no output to the battery connection side of the supply path. As a result, it is possible to suppress the influence on the operation of other electronic control devices connected to the power supply path.
  • the motor drive circuit 3 shown in FIGS. 1 to 3 is an embodiment of the motor drive circuit according to the present invention, and is provided in the vehicle 10.
  • the vehicle 10 includes a vehicle body 11 having an opening 11a, a back door 12 which is an opening / closing body for opening / closing the opening 11a of the vehicle body 11, and an opening / closing body driving unit 20 for opening / closing the back door 12.
  • the drive circuit 3 is provided in the opening / closing body drive unit 20.
  • the motor drive circuit 3 has a motor 30 which is a drive source for opening and closing the back door 12.
  • the opening 11a is located at the rear of the vehicle body 11.
  • the upper end of the back door 12 is rotatably supported by the vehicle body 11 via a hinge, and the back door 12 rotates around the upper end to close the opening 11a (FIG. 2). It is possible to move between the position described by the solid line in FIG. 2) and the open position (the position described by the alternate long and short dash line in FIG. 2) for opening the opening 11a.
  • the opening / closing body driving unit 20 can be provided at both left and right ends of the rear portion of the vehicle 10, for example, but can also be provided only at the left and right end portions.
  • the application of the motor 30 in the motor drive circuit 3 is not limited to a drive source for opening and closing the back door 12 of the vehicle 10, and for example, a shutter installed in a structure such as a store or a garage. It can be used as a drive source for opening and closing a sliding door, a hinged door, and the like, and as a drive source for opening and closing a toilet lid of a toilet bowl. Further, the motor 30 can be used as a drive source for various drive devices for rotating, vertically, horizontally, and diagonally moving articles and structures to be driven. ..
  • the opening / closing body drive unit 20 has a main body cylinder portion 21, a slide cylinder portion 22, and a motor drive circuit 3.
  • One end of the main body cylinder 21 is rotatably supported by the vehicle 10, and the other end is open.
  • the slide cylinder portion 22 is slidably supported in the longitudinal direction with respect to the main body cylinder portion 21.
  • the slide cylinder portion 22 can move forward and backward with respect to the main body cylinder portion 21 by sliding in the longitudinal direction with respect to the main body cylinder portion 21.
  • a spindle (not shown) that is rotatably supported around an axis and a motor 30 that rotationally drives the spindle are arranged.
  • a spindle nut (not shown) fixed to the slide cylinder portion 22 and to which the spindle is screwed is provided.
  • the spindle When the spindle is rotationally driven by the motor 30, the spindle nut moves along the longitudinal direction of the main body cylinder portion 21. As a result, the slide cylinder portion 22 moves back and forth with respect to the main body cylinder portion 21.
  • the slide cylinder portion 22 housed inside the main body cylinder portion 21 advances from the opening of the main body cylinder portion 21, and the motor 30 moves in the forward / reverse rotation direction.
  • the slide cylinder portion 22 can be configured to retract inside the main body cylinder portion 21.
  • the back door 12 opens and closes the opening 11a corresponding to the length of the slide cylinder portion 22 advancing from the main body cylinder portion 21.
  • the back door 12 moves in the direction of opening the opening 11a, and the slide cylinder portion 22 retracts with respect to the main body cylinder portion 21.
  • the back door 12 moves in the direction of closing the opening 11a. That is, the motor 30 drives the drive target (back door 12 in this embodiment) by driving the motor 30.
  • the vehicle 10 has a battery 6 which is a DC power source, and the motor 30 is composed of a DC motor driven by the battery 6.
  • the motor 30 can also be configured as an AC motor driven by an AC power source.
  • the motor drive circuit 3 is larger than the motor 30, the battery 6 for supplying power to the motor 30, the power supply wiring 51 for supplying the battery voltage of the battery 6, and the battery voltage of the battery 6. It includes a ground wiring 52 to which a low potential voltage is supplied, and a motor driver 81 which is a drive control unit that controls the drive of the motor 30.
  • the motor 30 has a first terminal 30a and a second terminal 30b.
  • One end of the power supply wiring 51 has a power supply terminal VB1 to which the positive terminal of the battery 6 is connected, and the other end of the power supply path 51 is connected to the motor 30.
  • the power supply wiring 51 is an example of a power supply path.
  • the ground wiring 52 is an example of a ground path, and is grounded in this embodiment.
  • the motor drive circuit 3 has a first FET 31, a second FET 32, a third FET 33, a fourth FET 34, and a fifth FET 35.
  • the first FET 31, the second FET 32, the third FET 33, the fourth FET 34, and the fifth FET 35 are N-channel MOSFETs, respectively.
  • the first FET 31 is connected between the power supply wiring 51 and the first terminal 30a of the motor 30. That is, the power supply wiring 51 and the first terminal 30a of the motor 30 are connected via the first FET 31.
  • the first drain 31D of the first FET 31 is connected to the power supply wiring 51
  • the first source 31S of the first FET 31 is connected to the first terminal 30a of the motor 30.
  • the first FET 31 is an example of the first switching means.
  • the first FET 31 has a first parasitic diode D1 in which the cathode is connected to the fifth FET 35 side and the anode is connected to the motor 30 side.
  • the second FET 32 is connected between the second terminal 30b of the motor 30 and the ground wiring 52. That is, the second terminal 30b of the motor 30 and the ground wiring 52 are connected via the second FET 32.
  • the second drain 32D of the second FET 32 is connected to the second terminal 30b of the motor 30, and the second source 32S of the second FET 32 is connected to the ground wiring 52.
  • the second FET 32 is an example of the second switching means.
  • the second FET 32 has a second parasitic diode D2 in which the cathode is connected to the motor 30 side and the anode is connected to the ground wiring 52 side.
  • the third FET 33 is connected between the power supply wiring 51 and the second terminal 30b of the motor 30. That is, the power supply wiring 51 and the second terminal 30b of the motor 30 are connected via the third FET 33.
  • the third drain 33D of the third FET 33 is connected to the power supply wiring 51
  • the third source 33S of the third FET 33 is connected to the second terminal 30b of the motor 30.
  • the third FET 33 is an example of the third switching means.
  • the third FET 33 has a third parasitic diode D3 in which the cathode is connected to the fifth FET 35 side and the anode is connected to the motor 30 side.
  • the fourth FET 34 is connected between the first terminal 30a of the motor 30 and the ground wiring 52. That is, the first terminal 30a of the motor 30 and the ground wiring 52 are connected via the fourth FET 34.
  • the fourth drain 34D of the fourth FET 34 is connected to the first terminal 30a of the motor 30, and the fourth source 34S of the fourth FET 34 is connected to the ground wiring 52.
  • the fourth FET 34 is an example of the fourth switching means.
  • the fourth FET 34 has a fourth parasitic diode D4 in which the cathode is connected to the motor 30 side and the anode is connected to the ground wiring 52 side.
  • the fifth FET 35 is provided on the power supply wiring 51. Specifically, it is connected between the power supply terminal VB1 in the power supply wiring 51 and the first FET 31 and the third FET 33.
  • the fifth source 35S of the fifth FET 35 is connected to the power supply wiring 51 on the power supply terminal VB1 side
  • the fifth drain 35D of the fifth FET 35 is connected to the power supply wiring 51 on the side of the first FET 31 and the third FET 33.
  • the fifth FET 35 is an example of the power supply switching means.
  • the fifth FET 35 has a fifth parasitic diode D5 in which the cathode is connected to the first FET 31 and the third FET 33 side and the anode is connected to the power supply terminal VB1 side.
  • the motor driver 81 has a first terminal 81a, a second terminal 81b, a third terminal 81c, a fourth terminal 81d, a fifth terminal 81e, and a sixth terminal 81f.
  • the first terminal 81a is connected to the first gate 31G of the first FET 31, and the motor driver 81 can apply a voltage larger than the threshold voltage of the first FET 31 to the first gate 31G from the first terminal 81a. It is configured.
  • the first FET 31 is turned on when a voltage larger than the threshold voltage is applied from the first terminal 81a of the motor driver 81 to the first gate 31G, and the first drain 31D and the first source 31S are connected to each other. Become.
  • the first FET 31 is turned off when no voltage is applied from the first terminal 81a of the motor driver 81 to the first gate 31G, and the first drain 31D and the first source 31S are separated from each other.
  • the second terminal 81b is connected to the second gate 32G of the second FET 32, and the motor driver 81 can apply a voltage larger than the threshold voltage of the second FET 32 to the second gate 32G from the second terminal 81b. It is configured.
  • the second FET 32 is turned on when a voltage larger than the threshold voltage is applied from the second terminal 81b of the motor driver 81 to the second gate 32G, and the second drain 32D and the second source 32S are connected to each other. Become.
  • the second FET 32 is turned off when no voltage is applied from the second terminal 81b of the motor driver 81 to the second gate 32G, and the second drain 32D and the second source 32S are separated from each other.
  • the third terminal 81c is connected to the third gate 33G of the third FET 33, and the motor driver 81 can apply a voltage larger than the threshold voltage of the third FET 33 to the third gate 33G from the third terminal 81c. It is configured.
  • the third FET 33 is turned on when a voltage larger than the threshold voltage is applied from the third terminal 81c of the motor driver 81 to the third gate 33G, and the third drain 33D and the third source 33S are connected to each other. Become.
  • the third FET 33 is turned off when no voltage is applied from the third terminal 81c of the motor driver 81 to the third gate 33G, and the third drain 33D and the third source 33S are separated from each other.
  • the fourth terminal 81d is connected to the fourth gate 34G of the fourth FET 34, and the motor driver 81 can apply a voltage larger than the threshold voltage of the fourth FET 34 to the fourth gate 34G from the fourth terminal 81d. It is configured.
  • the fourth FET 34 is turned on when a voltage larger than the threshold voltage is applied from the fourth terminal 81d of the motor driver 81 to the fourth gate 34G, and the fourth drain 34D and the fourth source 34S are connected to each other. Become.
  • the fourth FET 34 is turned off when no voltage is applied from the fourth terminal 81d of the motor driver 81 to the fourth gate 34G, and the fourth drain 34D and the fourth source 34S are separated from each other.
  • a bridge circuit BC for driving the motor 30 is configured by the first FET 31, the second FET 32, the third FET 33, and the fourth FET 34.
  • the bridge circuit BC is an example of a bridge circuit for driving a motor.
  • the motor drive circuit 3 has a voltage application wiring 53 that connects the fifth terminal 81e and the fifth gate 35G of the fifth FET 35, and the motor driver 81 has a third gate 33G from the fifth terminal 81e through the voltage application wiring 53. On the other hand, a voltage larger than the threshold voltage of the fifth FET 35 can be applied.
  • the fifth FET 35 is turned on when a voltage larger than the threshold voltage is applied from the fifth terminal 81e of the motor driver 81 to the fifth gate 35G, and the fifth drain 35D and the fifth source 35S are connected to each other. Become. On the other hand, the fifth FET 35 is turned off when no voltage is applied from the fifth terminal 81e of the motor driver 81 to the fifth gate 35G, and the fifth drain 35D and the fifth source 35S are separated from each other.
  • the motor drive circuit 3 has a connection wiring 54.
  • One end of the connection wiring 54 is connected to the power supply wiring 51, and the other end is connected to the sixth terminal 81f.
  • One end of the connection wiring 54 is connected between the fifth FET 35 in the power supply wiring 51 and the first FET 31 and the third FET 33 of the bridge circuit BC.
  • a drive terminal VM1 to which a drive voltage for driving the motor driver 81 is supplied is connected between the fifth FET 35 of the bridge circuit BC and the first FET 31 and the third FET 33 in the power supply wiring 51.
  • the drive terminal VM1 is connected to the sixth terminal 81f of the motor driver 81 by the connection wiring 54.
  • the drive terminal VM1 is an example of a control unit drive terminal.
  • the connection wiring 54 is an example of a connection path.
  • the motor drive circuit 3 has a voltage application unit that applies a voltage to the power supply switching means.
  • the motor drive circuit 3 has a short-circuit transistor 37 connected between the fifth gate 35G of the fifth FET 35 and the fifth source 35S.
  • a diode 38 is connected between the short-circuit transistor 37 and the fifth source 35S.
  • the short-circuit transistor 37 is an NPN type transistor, the base B is grounded, the collector C is connected to the fifth gate 35G, and the mitter E is connected to the fifth source 35S.
  • the short-circuit transistor 37 is turned on when the voltage of the base B is higher than the voltage of the emitter E by a predetermined value or more, and is turned off when the voltage of the base B is not higher than the voltage of the Emi E by a predetermined value or more.
  • the cathode is connected to the fifth source 35S side and the anode is connected to the fifth gate 35G side.
  • the voltage of the base B of the short-circuit transistor 37 is a predetermined value rather than the voltage of the emitter E.
  • the short-circuit transistor 37 is turned off without becoming higher.
  • the collector C and the emitter E are separated, and no current flows between the fifth gate 35G and the fifth source 35S of the fifth FET 35.
  • the voltage of the base B of the short-circuit transistor 37 becomes higher than the voltage of the emitter E by a predetermined value or more, and the short-circuit transistor 37 is turned on. Become.
  • the short-circuit transistor 37 is turned on, the collector C and the emitter E are electrically connected, and the fifth gate 35G and the fifth source 35S of the fifth FET 35 are short-circuited.
  • the diode 38 is connected between the 5th gate 35G and the 5th source 35S, a current flows from the 5th gate 35G to the 5th source 35S, but the 5th source 35S to the 5th gate No current flows toward 35G.
  • the motor drive circuit 3 has a detection circuit 7.
  • the detection circuit 7 is provided on the voltage application wiring 53, and has a first transistor 71 and a second transistor 72.
  • the first transistor 71 is an example of the first circuit
  • the second transistor 72 is an example of the second circuit.
  • the detection circuit 7 may be configured to be provided with a detection unit that detects the battery voltage of the battery connected to the power supply path.
  • the first transistor 71 is an NPN type transistor, the first base B1 is connected to the counter electromotive voltage input terminal VM2, the first collector C1 is connected to the voltage application wiring 53, and the first emitter E1 is grounded.
  • the first base B1 is an example of the first input terminal of the first transistor, the first collector C1 is an example of the first output terminal of the first transistor, and the first emitter E1 is the first ground terminal of the first transistor. This is an example.
  • the counter electromotive voltage input terminal VM2 is a terminal to which the counter electromotive voltage generated in the motor 30 is input.
  • the first transistor 71 is turned on when the counter electromotive voltage of the motor 30 is input to the first base B1 via the counter electromotive voltage input terminal VM2, and the first collector C1 and the first emitter E1 are electrically connected.
  • the voltage application wiring 53 is grounded by the conduction between the first collector C1 and the first emitter E1. Further, the first transistor 71 is turned off when the counter electromotive voltage of the motor 30 is not input to the first base B1, and the first collector C1 and the first emitter E1 are separated. When the first collector C1 and the first emitter E1 are separated, the voltage application wiring 53 is not grounded.
  • the second transistor 72 is an NPN type transistor, the second base B2 is connected to the battery voltage input terminal VB2, the second collector C2 is connected to the first base B1 of the first transistor 71, and the second emitter E2 is grounded. ing.
  • the second base B2 is an example of the second input terminal of the second transistor, the second collector C2 is an example of the second output terminal of the second transistor, and the second emitter E2 is the second ground terminal of the second transistor. This is an example.
  • the battery voltage input terminal VB2 is a terminal into which the battery voltage of the battery 6 is input.
  • the battery voltage is input to the battery voltage input terminal VB2 when the positive terminal of the battery 6 is connected to the power supply terminal VB1, and the battery voltage is input when the positive terminal of the battery 6 is not connected to the power supply terminal VB1. Not entered.
  • the second transistor 72 is turned on when the battery voltage of the battery 6 is input to the second base B2 via the battery voltage input terminal VB2, the second collector C2 and the second emitter E2 are electrically connected, and the first transistor 72 is connected.
  • the first base B1 of 71 is grounded.
  • the input of the counter electromotive voltage to the first transistor 71 is hindered even when the counter electromotive voltage of the motor 30 is applied to the counter electromotive voltage input terminal VM2, and the first transistor 71 is turned off. Maintain the state.
  • the second transistor 72 is turned off when the battery voltage is not input to the second base B2, and the second collector C2 and the second emitter E2 are separated. In a state where the second collector C2 and the second emitter E2 are separated, the first base B1 of the first transistor 71 is not grounded, and the first back electromotive voltage of the motor 30 applied to the back electromotive voltage input terminal VM2 is the first. Input to base B1 is allowed.
  • the motor drive circuit 3 has a plurality of ECUs (Electronic Control Units) 82 and 83 that control the operation of each part of the vehicle 10.
  • the ECUs 82 and 83 are connected between the power supply terminal VB1 and the fifth FET 35 in the power supply wiring 51.
  • the ECUs 82 and 83 can be configured to control the operation of the engine, transmission, brakes, power windows, various meters, and the like of the vehicle 10.
  • the boosted voltage is higher than the threshold voltage of the 5th FET 35, and when the boosted voltage is applied to the 5th gate 35G, the 5th FET 35 is turned on and the electric power from the battery 6 can be supplied to the motor 30.
  • the applied voltages to the first gate 31G and the second gate 32G are output from the first terminal 81a and the second terminal 81b of the motor driver 81 to turn on the first FET 31 and the second FET 32, and the third FET 33 and the fourth FET 34 are turned on.
  • the motor 30 is held in the off state, a current flows from the first FET 31 to the second FET 32 through the motor 30, and the motor 30 rotates in the forward rotation direction.
  • the applied voltages to the third gate 33G and the fourth gate 34G are output from the third terminal 83a and the fourth terminal 84b of the motor driver 81, the third FET 33 and the fourth FET 34 are turned on, and the first FET 31 and the second FET 32 are turned off.
  • a current flows from the third FET 33 to the fourth FET 34 through the motor 30, and the motor 30 rotates in the reverse rotation direction.
  • the short-circuit transistor 37 is turned on to short-circuit the fifth gate 35G and the fifth source 35S of the fifth FET 35, so that the fifth FET 35 A voltage larger than the threshold voltage is not applied to the fifth gate 35G of the above, and the fifth FET 35 is turned off.
  • a counter electromotive voltage is generated in the motor 30 at the time of starting and stopping, but the cathode of the first parasitic diode D1 of the first FET 31 and the third parasitic diode D3 of the third FET 33 connected to the motor 30 is on the fifth FET 35 side. Since it is connected to, the generated counter electromotive voltage is input to the power supply wiring 51 through the first parasitic diode D1 and the third parasitic diode D3.
  • the counter electromotive voltage input to the power supply wiring 51 is more power supply than the 5th FET 35. There is no output to the terminal VB1 side. As a result, the counter electromotive voltage of the motor 30 is not applied to the ECUs 82 and 83 connected between the power supply terminal VB1 and the fifth FET 35 in the power supply wiring 51, which affects the operation of the ECUs 82 and 83. Can be suppressed.
  • the generated counter electromotive voltage is input to the power supply wiring 51 through the first parasitic diode D1 and the third parasitic diode D3. Will be done.
  • the counter electromotive voltage input to the power supply wiring 51 is input to the motor driver 81 through the connection wiring 54 and the sixth terminal 81f, and the counter electromotive voltage input to the motor driver 81 is further voltage-applied wiring from the fifth terminal 81e. It is output to 53.
  • the counter electromotive voltage output to the voltage application wiring 53 is applied to the fifth gate 35G of the fifth FET 35, the counter electromotive voltage is larger than the threshold voltage of the fifth FET 35, so that the fifth FET 35 is turned on.
  • the counter electromotive voltage output to the power supply wiring 51 is applied to the ECUs 82 and 83.
  • the reverse is applied to the fifth gate 35G of the fifth FET 35 through the voltage application wiring 53.
  • the electromotive voltage is cut off and the fifth FET 35 is turned off.
  • the power supply wiring 51 is divided by the fifth FET 35, and the counter electromotive voltage output to the power supply wiring 51 is not output to the ECUs 82 and 83, which suppresses the influence on the operation of the ECUs 82 and 83. Will be done.
  • the first transistor 71 of the detection circuit 7 cuts off the voltage applied to the fifth FET 35 when the counter electromotive voltage of the motor 30 is input, and when the counter electromotive voltage of the motor 30 is not input. It is configured to allow the application of a voltage to the fifth FET 35. Further, the second transistor 72 of the detection circuit 7 blocks the input of the counter electromotive voltage to the first transistor 71 when the battery voltage of the battery 30 is input, and when the battery voltage of the battery 30 is not input, the second transistor 72 becomes the first. It is configured to allow the input of a counter electromotive voltage to one transistor 71.
  • the second transistor 72 allows the input of the counter electromotive voltage to the first transistor 71, and when the counter electromotive voltage is generated in the motor 30 in this state, , The voltage applied to the fifth FET 35 is cut off by the first transistor 71. As a result, the power supply wiring 51 is divided by the fifth FET 35, and the counter electromotive voltage is not output to the power supply terminal VB1 side of the fifth FET 35 in the power supply wiring 51.
  • the detection circuit 7 is composed of the first transistor 71 and the second transistor 72, it is possible to make the detection circuit 7 a simple circuit configuration.
  • the motor drive circuit 3 has a first FET 31, a second FET 32, a third FET 33, and a fourth FET 34, and is between the bridge circuit BC for driving the motor 30 and the fifth FET 35 and the bridge circuit BC in the power supply wiring 51. It has a drive terminal VM1 to which the drive voltage of the motor driver 81 is supplied.
  • the motor 30 in this embodiment is a drive source for opening and closing the back door 12 of the vehicle 10. Therefore, when a counter electromotive voltage is generated in the motor 30 when the battery 6 is not connected to the power supply wiring 51, the generated counter electromotive voltage is not output to the power supply terminal VB1 side of the power supply wiring 51. , It is possible to suppress the influence on the operation of the ECUs 82 and 83 which are the control devices of other in-vehicle devices connected to the power supply wiring 51.
  • the first FET 31, the second FET 32, the third FET 33, and the fourth FET 34 constituting the bridge circuit BC can also be configured by a physical relay switch.
  • each relay switch is provided with a diode similar to the first parasitic diode D1, the second parasitic diode D2, the third parasitic diode D3, and the fourth parasitic diode D4.
  • a trunk lid, a bonnet, a sunroof, a sliding door, a door mirror, a fan, or a window glass provided on the door is applied in addition to the back door 12. It is possible to do.
  • Switchgear switchgear 3 Motor drive circuit 6 Motor 7 Detection circuit 10 Vehicle 11 Body 11a Opening 12 Backdoor 20 Switchgear drive 21 Main body cylinder 22 Slide cylinder 30 Motor 30a 1st terminal 30b 2nd terminal 31 1st FET 31D 1st drain 31G 1st gate 31S 1st source 32 2nd FET 32D 2nd drain 32G 2nd gate 32S 2nd source 33 3rd FET 33D 3rd drain 33G 3rd gate 33S 3rd source 34 4th FET 34D 4th drain 34G 4th gate 34S 4th source 35 5th FET 35D 5th drain 35G 5th gate 35S 5th source 37 Short circuit transistor 38 Diode 51 Power supply wiring 52 Ground wiring 53 Voltage application wiring 54 Connection path 71 1st transistor 72 2nd transistor 81 Motor driver 81a 1st terminal 81b 2nd Terminal 81c 3rd terminal 81d 4th terminal 81e 5th terminal 81f 6th terminal 82, 83 ECU BC Bridge circuit B base C collector E emit

Abstract

This motor driving circuit is provided with: a motor; a battery that supplies electric power to the motor; a power supply wiring to which a battery voltage is supplied and which is connected to the motor; a fifth FET that connects the power supply wiring when a voltage is applied and disconnects the power supply wiring when the voltage is not applied; a motor driver that controls driving of the motor and can cause application of a voltage to the fifth FET; a voltage application wiring that connects the motor driver and the fifth FET; and a detection circuit that can detect a counter electromotive voltage generated in the motor and the battery voltage of the battery connected to the power supply wiring, wherein upon detection of the counter electromotive voltage in the motor while the battery is not connected to the power supply wiring, the detection circuit can suppress, by using the motor driving circuit that blocks the voltage applied to the fifth FET through the voltage application wiring, outputting of the counter electromotive voltage to a battery connection side of a power supply path even if the counter electromotive voltage is generated in the motor while the battery is not connected to the motor driving circuit.

Description

モータ駆動回路Motor drive circuit
 本発明は、モータ駆動回路に関する。 The present invention relates to a motor drive circuit.
 従来、モータ等のアクチュエータの駆動回路として、バッテリのプラス端子に接続される電源端子を備え、バッテリを電源として動作するように構成されたものがある。 Conventionally, as a drive circuit for an actuator such as a motor, there is a circuit that is provided with a power supply terminal connected to a positive terminal of the battery and is configured to operate using the battery as a power supply.
 バッテリからの電力により動作する駆動回路においては、バッテリのマイナス端子が駆動回路の電源端子に接続されるバッテリの逆接続時に、駆動回路側から電源端子側に電流が流れることを防止するために、電源端子と駆動回路とを接続する電力供給経路上にFET(Field effect transistor)を設けることが行われている(特許文献1参照)。 In a drive circuit that operates with electric power from the battery, in order to prevent current from flowing from the drive circuit side to the power supply terminal side when the negative terminal of the battery is connected to the power supply terminal of the drive circuit and the battery is reversely connected. FETs (Field Effect Transistors) are provided on the power supply path connecting the power supply terminal and the drive circuit (see Patent Document 1).
 このように、電力供給経路上にFETが設けられた駆動回路においては、バッテリが正常に接続されている場合には、FETのゲートとソースとの間に電位差が生じてFETがオンすることにより電力供給経路が接続された状態となり、バッテリから駆動回路への電力供給が可能となる。 As described above, in the drive circuit in which the FET is provided on the power supply path, when the battery is normally connected, a potential difference is generated between the gate and the source of the FET and the FET is turned on. The power supply path is connected, and power can be supplied from the battery to the drive circuit.
 一方、駆動回路にバッテリが逆接続されている場合には、FETのゲートとソースとが同電位に保持されてFETがオフすることにより電力供給経路が分断された状態となり、電流が電力供給経路を駆動回路側から電源端子側に向けて流れることが阻止される。電源端子にはアクチュエータの駆動回路以外の電子制御装置が接続されており、電流が電源端子側に向けて流れることを阻止することで、他の電子制御装置の動作に影響が及ぶことを抑制可能となっている。 On the other hand, when the battery is reversely connected to the drive circuit, the gate and source of the FET are held at the same potential and the FET is turned off, so that the power supply path is divided and the current flows through the power supply path. Is prevented from flowing from the drive circuit side toward the power supply terminal side. An electronic control device other than the drive circuit of the actuator is connected to the power supply terminal, and by blocking the current from flowing toward the power supply terminal side, it is possible to suppress the influence on the operation of other electronic control devices. It has become.
特開2007-82374号公報Japanese Unexamined Patent Publication No. 2007-82374
 上述の駆動回路がモータを駆動するための駆動回路であった場合、モータの起動時および停止時にモータに逆起電圧が発生する。例えば駆動回路にバッテリが接続されていない場合にモータに逆起電圧が発生すると、発生した逆起電力がFETのゲートに印加されてFETがオンする。FETがオンすると電力供給経路が接続された状態となり、モータの逆起電圧が電源端子側に向けて出力され、他の電子制御装置の動作に影響を及ぼすおそれがある。 If the above-mentioned drive circuit is a drive circuit for driving the motor, a counter electromotive voltage is generated in the motor when the motor is started and stopped. For example, when a counter electromotive voltage is generated in the motor when the battery is not connected to the drive circuit, the generated counter electromotive force is applied to the gate of the FET to turn on the FET. When the FET is turned on, the power supply path is connected, and the counter electromotive voltage of the motor is output toward the power supply terminal side, which may affect the operation of other electronic control devices.
 本発明は、モータに逆起電圧が発生したとしても、発生した逆起電圧が電力供給経路のバッテリ接続部側へ出力されることを抑制できるモータの駆動回路を提供することを目的とする。 An object of the present invention is to provide a drive circuit of a motor capable of suppressing the generated back electromotive voltage from being output to the battery connection portion side of the power supply path even if the back electromotive voltage is generated in the motor.
 上記課題を解決するモータ駆動回路は、以下の特徴を有する。
 即ち、本発明のモータ駆動回路は、モータと、前記モータに電力を供給するバッテリと、前記バッテリのバッテリ電圧が供給され、前記モータに接続される電力供給経路と、前記電力供給経路上に設けられ、電圧が印加されたときに前記電力供給経路を接続し、電圧が印加されないときに前記電力供給経路を分断する電力供給切替手段と、前記モータに接続されて前記モータの駆動を制御する駆動制御部と、前記電力供給切替手段に接続されて前記電力供給切替手段に電圧を印加可能な電圧印加部とを含む制御部と、前記制御部と前記電力供給切替手段とを接続する電圧印加経路と、前記電圧印加経路上に設けられ、前記モータに生じた逆起電圧を検知可能な検知回路とを備え、前記検知回路は、前記モータの逆起電圧を検知すると、前記電圧印加経路を通じて前記電力供給切替手段に印加される電圧を遮断するモータ駆動回路である。
The motor drive circuit that solves the above problems has the following features.
That is, the motor drive circuit of the present invention is provided on the motor, the battery that supplies power to the motor, the power supply path to which the battery voltage of the battery is supplied and connected to the motor, and the power supply path. A power supply switching means that connects the power supply path when a voltage is applied and divides the power supply path when a voltage is not applied, and a drive that is connected to the motor to control the drive of the motor. A voltage application path connecting a control unit, a control unit including a voltage application unit connected to the power supply switching means and capable of applying a voltage to the power supply switching means, and the control unit and the power supply switching means. And a detection circuit provided on the voltage application path and capable of detecting the countercurrent voltage generated in the motor. When the detection circuit detects the countercurrent voltage of the motor, the detection circuit is said to pass through the voltage application path. It is a motor drive circuit that cuts off the voltage applied to the power supply switching means.
 本発明によれば、モータに逆起電圧が発生した場合に電力供給切替手段に電圧が印加されることがないため、電力供給切替手段によって電力供給経路が分断され、発生した逆起電圧が電力供給経路のバッテリ接続部側へ出力されることがない。これにより、電力供給経路に接続される他の電子制御装置の動作に影響を与えることを抑制できる。 According to the present invention, when a countercurrent voltage is generated in the motor, no voltage is applied to the power supply switching means. Therefore, the power supply switching means divides the power supply path, and the generated countercurrent voltage is the power. There is no output to the battery connection side of the supply path. As a result, it is possible to suppress the influence on the operation of other electronic control devices connected to the power supply path.
モータ駆動回路を備えた車両を示す斜視図である。It is a perspective view which shows the vehicle provided with the motor drive circuit. モータ駆動回路を備えた車両を示す側面図である。It is a side view which shows the vehicle provided with the motor drive circuit. モータ駆動回路の回路図である。It is a circuit diagram of a motor drive circuit.
 次に、本発明を実施するための形態を、添付の図面を用いて説明する。 Next, a mode for carrying out the present invention will be described with reference to the attached drawings.
[開閉体駆動部およびモータ駆動装置の概略構成]
 図1~図3に示すモータ駆動回路3は、本発明に係るモータ駆動回路の一実施形態であり、車両10に備えられている。車両10は、開口部11aを有する車体11と、車体11の開口部11aを開閉する開閉体であるバックドア12と、バックドア12を開閉駆動する開閉体駆動部20とを備えており、モータ駆動回路3は開閉体駆動部20に設けられている。モータ駆動回路3は、バックドア12を開閉駆動するための駆動源であるモータ30を有している。
[Rough configuration of switch drive unit and motor drive device]
The motor drive circuit 3 shown in FIGS. 1 to 3 is an embodiment of the motor drive circuit according to the present invention, and is provided in the vehicle 10. The vehicle 10 includes a vehicle body 11 having an opening 11a, a back door 12 which is an opening / closing body for opening / closing the opening 11a of the vehicle body 11, and an opening / closing body driving unit 20 for opening / closing the back door 12. The drive circuit 3 is provided in the opening / closing body drive unit 20. The motor drive circuit 3 has a motor 30 which is a drive source for opening and closing the back door 12.
 開口部11aは車体11の後部に位置している。バックドア12の上端部は、ヒンジを介して車体11に回動可能に支持されており、バックドア12は上端部を中心として回動することで、開口部11aを閉塞する閉位置(図2において実線で記載した位置)と開口部11aを開放する開位置(図2において2点鎖線で記載した位置)との間で移動可能である。開閉体駆動部20は、例えば車両10の後部における左右両端部に設けることができるが、左右一側の端部にのみ設けることも可能である。 The opening 11a is located at the rear of the vehicle body 11. The upper end of the back door 12 is rotatably supported by the vehicle body 11 via a hinge, and the back door 12 rotates around the upper end to close the opening 11a (FIG. 2). It is possible to move between the position described by the solid line in FIG. 2) and the open position (the position described by the alternate long and short dash line in FIG. 2) for opening the opening 11a. The opening / closing body driving unit 20 can be provided at both left and right ends of the rear portion of the vehicle 10, for example, but can also be provided only at the left and right end portions.
 なお、モータ駆動回路3におけるモータ30の用途は、車両10のバックドア12を開閉駆動するための駆動源に限定されるものではなく、例えば、店舗およびガレージ等の構造物に設置されるシャッター、引き戸、および開き扉等を開閉駆動するための駆動源、ならびに便器の便蓋を開閉駆動するための駆動源として用いることができる。さらに、モータ30は、駆動対象となる物品および構造物を、回動させたり、上下方向、左右方向、および斜め方向に移動させたりする、種々の駆動装置の駆動源として用いることが可能である。 The application of the motor 30 in the motor drive circuit 3 is not limited to a drive source for opening and closing the back door 12 of the vehicle 10, and for example, a shutter installed in a structure such as a store or a garage. It can be used as a drive source for opening and closing a sliding door, a hinged door, and the like, and as a drive source for opening and closing a toilet lid of a toilet bowl. Further, the motor 30 can be used as a drive source for various drive devices for rotating, vertically, horizontally, and diagonally moving articles and structures to be driven. ..
 開閉体駆動部20は、本体筒部21、スライド筒部22、およびモータ駆動回路3を有している。 The opening / closing body drive unit 20 has a main body cylinder portion 21, a slide cylinder portion 22, and a motor drive circuit 3.
 本体筒部21は、一端部側が車両10に回動可能に支持されており、他端部側が開口している。本体筒部21の他端部側には、スライド筒部22が、本体筒部21に対して長手方向へスライド可能に支持されている。スライド筒部22は、本体筒部21に対して長手方向へスライドすることにより、本体筒部21に対して進退可能となっている。 One end of the main body cylinder 21 is rotatably supported by the vehicle 10, and the other end is open. On the other end side of the main body cylinder portion 21, the slide cylinder portion 22 is slidably supported in the longitudinal direction with respect to the main body cylinder portion 21. The slide cylinder portion 22 can move forward and backward with respect to the main body cylinder portion 21 by sliding in the longitudinal direction with respect to the main body cylinder portion 21.
 本体筒部21の内部には、軸回りに回転可能に支持されるスピンドル(不図示)、および前記スピンドルを回転駆動するモータ30が配置されている。スライド筒部22の内部には、スライド筒部22に固定され前記スピンドルが螺合されたスピンドルナット(不図示)が設けられている。 Inside the main body cylinder 21, a spindle (not shown) that is rotatably supported around an axis and a motor 30 that rotationally drives the spindle are arranged. Inside the slide cylinder portion 22, a spindle nut (not shown) fixed to the slide cylinder portion 22 and to which the spindle is screwed is provided.
 前記スピンドルがモータ30によって回転駆動されることにより、前記スピンドルナットが本体筒部21の長手方向に沿って移動する。これにより、スライド筒部22が本体筒部21に対して進退移動する。この場合、例えばモータ30が正逆回転方向の一方向に回転すると、本体筒部21の内部に収納されたスライド筒部22が本体筒部21の開口から進出し、モータ30が正逆回転方向の他方向に回転すると、スライド筒部22が本体筒部21の内部に後退するように構成することができる。 When the spindle is rotationally driven by the motor 30, the spindle nut moves along the longitudinal direction of the main body cylinder portion 21. As a result, the slide cylinder portion 22 moves back and forth with respect to the main body cylinder portion 21. In this case, for example, when the motor 30 rotates in one direction in the forward / reverse rotation direction, the slide cylinder portion 22 housed inside the main body cylinder portion 21 advances from the opening of the main body cylinder portion 21, and the motor 30 moves in the forward / reverse rotation direction. When rotated in the other direction, the slide cylinder portion 22 can be configured to retract inside the main body cylinder portion 21.
 このように、スライド筒部22が本体筒部21に対して進退移動することにより、スライド筒部22が本体筒部21から進出する長さに対応して、バックドア12が開口部11aを開閉する方向に移動する。具体的には、スライド筒部22が本体筒部21から進出する方向に移動すると、バックドア12は開口部11aを開く方向に移動し、スライド筒部22が本体筒部21に対して縮退する方向に移動すると、バックドア12は開口部11aを閉じる方向に移動する。つまり、モータ30は、駆動することにより駆動対象(本実施形態ではバックドア12)を駆動させる。 In this way, as the slide cylinder portion 22 moves back and forth with respect to the main body cylinder portion 21, the back door 12 opens and closes the opening 11a corresponding to the length of the slide cylinder portion 22 advancing from the main body cylinder portion 21. Move in the direction you want. Specifically, when the slide cylinder portion 22 moves in the direction of advancing from the main body cylinder portion 21, the back door 12 moves in the direction of opening the opening 11a, and the slide cylinder portion 22 retracts with respect to the main body cylinder portion 21. When moving in the direction, the back door 12 moves in the direction of closing the opening 11a. That is, the motor 30 drives the drive target (back door 12 in this embodiment) by driving the motor 30.
 車両10は直流電源であるバッテリ6を有しており、モータ30はバッテリ6により駆動される直流モータにて構成されている。但し、モータ30は、交流電源により駆動される交流モータにて構成することも可能である。 The vehicle 10 has a battery 6 which is a DC power source, and the motor 30 is composed of a DC motor driven by the battery 6. However, the motor 30 can also be configured as an AC motor driven by an AC power source.
[モータ駆動回路の構成]
 図3に示すように、モータ駆動回路3は、モータ30と、モータ30に電力を供給するバッテリ6と、バッテリ6のバッテリ電圧が供給される電力供給配線51と、バッテリ6のバッテリ電圧よりも低電位の電圧が供給される接地配線52と、モータ30の駆動を制御する駆動制御部であるモータドライバ81とを備えている。モータ30は第1端子30aと第2端子30bとを有している。電力供給配線51の一端部はバッテリ6のプラス端子が接続される電源端子VB1を有しており、電力供給経路51の他端部はモータ30に接続されている。電力供給配線51は、電力供給経路の一例である。接地配線52は接地経路の一例であり、本実施形態においては接地されている。
[Motor drive circuit configuration]
As shown in FIG. 3, the motor drive circuit 3 is larger than the motor 30, the battery 6 for supplying power to the motor 30, the power supply wiring 51 for supplying the battery voltage of the battery 6, and the battery voltage of the battery 6. It includes a ground wiring 52 to which a low potential voltage is supplied, and a motor driver 81 which is a drive control unit that controls the drive of the motor 30. The motor 30 has a first terminal 30a and a second terminal 30b. One end of the power supply wiring 51 has a power supply terminal VB1 to which the positive terminal of the battery 6 is connected, and the other end of the power supply path 51 is connected to the motor 30. The power supply wiring 51 is an example of a power supply path. The ground wiring 52 is an example of a ground path, and is grounded in this embodiment.
 モータ駆動回路3は、第1FET31、第2FET32、第3FET33、第4FET34、および第5FET35を有している。第1FET31、第2FET32、第3FET33、第4FET34、および第5FET35は、それぞれNチャネル形のMOSFETである。 The motor drive circuit 3 has a first FET 31, a second FET 32, a third FET 33, a fourth FET 34, and a fifth FET 35. The first FET 31, the second FET 32, the third FET 33, the fourth FET 34, and the fifth FET 35 are N-channel MOSFETs, respectively.
 第1FET31は、電力供給配線51とモータ30の第1端子30aとの間に接続されている。つまり、電力供給配線51とモータ30の第1端子30aとは、第1FET31を介して接続されている。この場合、第1FET31の第1ドレイン31Dが電力供給配線51に接続され、第1FET31の第1ソース31Sがモータ30の第1端子30aに接続されている。第1FET31は、第1スイッチング手段の一例である。第1FET31は、カソードが第5FET35側に接続され、アノードがモータ30側に接続される第1寄生ダイオードD1を有している。 The first FET 31 is connected between the power supply wiring 51 and the first terminal 30a of the motor 30. That is, the power supply wiring 51 and the first terminal 30a of the motor 30 are connected via the first FET 31. In this case, the first drain 31D of the first FET 31 is connected to the power supply wiring 51, and the first source 31S of the first FET 31 is connected to the first terminal 30a of the motor 30. The first FET 31 is an example of the first switching means. The first FET 31 has a first parasitic diode D1 in which the cathode is connected to the fifth FET 35 side and the anode is connected to the motor 30 side.
 第2FET32は、モータ30の第2端子30bと接地配線52との間に接続されている。つまり、モータ30の第2端子30bと接地配線52とは、第2FET32を介して接続されている。この場合、第2FET32の第2ドレイン32Dがモータ30の第2端子30bに接続され、第2FET32の第2ソース32Sが接地配線52に接続されている。第2FET32は、第2スイッチング手段の一例である。第2FET32は、カソードがモータ30側に接続され、アノードが接地配線52側に接続される第2寄生ダイオードD2を有している。 The second FET 32 is connected between the second terminal 30b of the motor 30 and the ground wiring 52. That is, the second terminal 30b of the motor 30 and the ground wiring 52 are connected via the second FET 32. In this case, the second drain 32D of the second FET 32 is connected to the second terminal 30b of the motor 30, and the second source 32S of the second FET 32 is connected to the ground wiring 52. The second FET 32 is an example of the second switching means. The second FET 32 has a second parasitic diode D2 in which the cathode is connected to the motor 30 side and the anode is connected to the ground wiring 52 side.
 第3FET33は、電力供給配線51とモータ30の第2端子30bとの間に接続されている。つまり、電力供給配線51とモータ30の第2端子30bとは、第3FET33を介して接続されている。この場合、第3FET33の第3ドレイン33Dが電力供給配線51に接続され、第3FET33の第3ソース33Sがモータ30の第2端子30bに接続されている。第3FET33は、第3スイッチング手段の一例である。第3FET33は、カソードが第5FET35側に接続され、アノードがモータ30側に接続される第3寄生ダイオードD3を有している。 The third FET 33 is connected between the power supply wiring 51 and the second terminal 30b of the motor 30. That is, the power supply wiring 51 and the second terminal 30b of the motor 30 are connected via the third FET 33. In this case, the third drain 33D of the third FET 33 is connected to the power supply wiring 51, and the third source 33S of the third FET 33 is connected to the second terminal 30b of the motor 30. The third FET 33 is an example of the third switching means. The third FET 33 has a third parasitic diode D3 in which the cathode is connected to the fifth FET 35 side and the anode is connected to the motor 30 side.
 第4FET34は、モータ30の第1端子30aと接地配線52との間に接続されている。つまり、モータ30の第1端子30aと接地配線52とは、第4FET34を介して接続されている。この場合、第4FET34の第4ドレイン34Dがモータ30の第1端子30aに接続され、第4FET34の第4ソース34Sが接地配線52に接続されている。第4FET34は、第4スイッチング手段の一例である。第4FET34は、カソードがモータ30側に接続され、アノードが接地配線52側に接続される第4寄生ダイオードD4を有している。 The fourth FET 34 is connected between the first terminal 30a of the motor 30 and the ground wiring 52. That is, the first terminal 30a of the motor 30 and the ground wiring 52 are connected via the fourth FET 34. In this case, the fourth drain 34D of the fourth FET 34 is connected to the first terminal 30a of the motor 30, and the fourth source 34S of the fourth FET 34 is connected to the ground wiring 52. The fourth FET 34 is an example of the fourth switching means. The fourth FET 34 has a fourth parasitic diode D4 in which the cathode is connected to the motor 30 side and the anode is connected to the ground wiring 52 side.
 第5FET35は、電力供給配線51上に設けられている。具体的には、電力供給配線51における電源端子VB1と第1FET31および第3FET33との間に接続されている。この場合、第5FET35の第5ソース35Sが電源端子VB1側の電力供給配線51に接続され、第5FET35の第5ドレイン35Dが第1FET31および第3FET33の側の電力供給配線51に接続されている。第5FET35は、電力供給切替手段の一例である。第5FET35は、カソードが第1FET31および第3FET33側に接続され、アノードが電源端子VB1側に接続される第5寄生ダイオードD5を有している。 The fifth FET 35 is provided on the power supply wiring 51. Specifically, it is connected between the power supply terminal VB1 in the power supply wiring 51 and the first FET 31 and the third FET 33. In this case, the fifth source 35S of the fifth FET 35 is connected to the power supply wiring 51 on the power supply terminal VB1 side, and the fifth drain 35D of the fifth FET 35 is connected to the power supply wiring 51 on the side of the first FET 31 and the third FET 33. The fifth FET 35 is an example of the power supply switching means. The fifth FET 35 has a fifth parasitic diode D5 in which the cathode is connected to the first FET 31 and the third FET 33 side and the anode is connected to the power supply terminal VB1 side.
 モータドライバ81は、第1端子81aと、第2端子81bと、第3端子81cと、第4端子81dと、第5端子81eと、第6端子81fとを有している。 The motor driver 81 has a first terminal 81a, a second terminal 81b, a third terminal 81c, a fourth terminal 81d, a fifth terminal 81e, and a sixth terminal 81f.
 第1端子81aは第1FET31の第1ゲート31Gに接続されており、モータドライバ81は第1端子81aから第1ゲート31Gに対して、第1FET31のしきい値電圧よりも大きな電圧を印加可能に構成されている。第1FET31は、モータドライバ81の第1端子81aから第1ゲート31Gにしきい値電圧よりも大きな電圧が印加されたときにはオンして、第1ドレイン31Dと第1ソース31Sとが接続された状態となる。一方、第1FET31は、モータドライバ81の第1端子81aから第1ゲート31Gに電圧が印加されていないときにはオフして、第1ドレイン31Dと第1ソース31Sとが分断された状態となる。 The first terminal 81a is connected to the first gate 31G of the first FET 31, and the motor driver 81 can apply a voltage larger than the threshold voltage of the first FET 31 to the first gate 31G from the first terminal 81a. It is configured. The first FET 31 is turned on when a voltage larger than the threshold voltage is applied from the first terminal 81a of the motor driver 81 to the first gate 31G, and the first drain 31D and the first source 31S are connected to each other. Become. On the other hand, the first FET 31 is turned off when no voltage is applied from the first terminal 81a of the motor driver 81 to the first gate 31G, and the first drain 31D and the first source 31S are separated from each other.
 第2端子81bは第2FET32の第2ゲート32Gに接続されており、モータドライバ81は第2端子81bから第2ゲート32Gに対して、第2FET32のしきい値電圧よりも大きな電圧を印加可能に構成されている。第2FET32は、モータドライバ81の第2端子81bから第2ゲート32Gにしきい値電圧よりも大きな電圧が印加されたときにはオンして、第2ドレイン32Dと第2ソース32Sとが接続された状態となる。一方、第2FET32は、モータドライバ81の第2端子81bから第2ゲート32Gに電圧が印加されていないときにはオフして、第2ドレイン32Dと第2ソース32Sとが分断された状態となる。 The second terminal 81b is connected to the second gate 32G of the second FET 32, and the motor driver 81 can apply a voltage larger than the threshold voltage of the second FET 32 to the second gate 32G from the second terminal 81b. It is configured. The second FET 32 is turned on when a voltage larger than the threshold voltage is applied from the second terminal 81b of the motor driver 81 to the second gate 32G, and the second drain 32D and the second source 32S are connected to each other. Become. On the other hand, the second FET 32 is turned off when no voltage is applied from the second terminal 81b of the motor driver 81 to the second gate 32G, and the second drain 32D and the second source 32S are separated from each other.
 第3端子81cは第3FET33の第3ゲート33Gに接続されており、モータドライバ81は第3端子81cから第3ゲート33Gに対して、第3FET33のしきい値電圧よりも大きな電圧を印加可能に構成されている。第3FET33は、モータドライバ81の第3端子81cから第3ゲート33Gにしきい値電圧よりも大きな電圧が印加されたときにはオンして、第3ドレイン33Dと第3ソース33Sとが接続された状態となる。一方、第3FET33は、モータドライバ81の第3端子81cから第3ゲート33Gに電圧が印加されていないときにはオフして、第3ドレイン33Dと第3ソース33Sとが分断された状態となる。 The third terminal 81c is connected to the third gate 33G of the third FET 33, and the motor driver 81 can apply a voltage larger than the threshold voltage of the third FET 33 to the third gate 33G from the third terminal 81c. It is configured. The third FET 33 is turned on when a voltage larger than the threshold voltage is applied from the third terminal 81c of the motor driver 81 to the third gate 33G, and the third drain 33D and the third source 33S are connected to each other. Become. On the other hand, the third FET 33 is turned off when no voltage is applied from the third terminal 81c of the motor driver 81 to the third gate 33G, and the third drain 33D and the third source 33S are separated from each other.
 第4端子81dは第4FET34の第4ゲート34Gに接続されており、モータドライバ81は第4端子81dから第4ゲート34Gに対して、第4FET34のしきい値電圧よりも大きな電圧を印加可能に構成されている。第4FET34は、モータドライバ81の第4端子81dから第4ゲート34Gにしきい値電圧よりも大きな電圧が印加されたときにはオンして、第4ドレイン34Dと第4ソース34Sとが接続された状態となる。一方、第4FET34は、モータドライバ81の第4端子81dから第4ゲート34Gに電圧が印加されていないときにはオフして、第4ドレイン34Dと第4ソース34Sとが分断された状態となる。 The fourth terminal 81d is connected to the fourth gate 34G of the fourth FET 34, and the motor driver 81 can apply a voltage larger than the threshold voltage of the fourth FET 34 to the fourth gate 34G from the fourth terminal 81d. It is configured. The fourth FET 34 is turned on when a voltage larger than the threshold voltage is applied from the fourth terminal 81d of the motor driver 81 to the fourth gate 34G, and the fourth drain 34D and the fourth source 34S are connected to each other. Become. On the other hand, the fourth FET 34 is turned off when no voltage is applied from the fourth terminal 81d of the motor driver 81 to the fourth gate 34G, and the fourth drain 34D and the fourth source 34S are separated from each other.
 モータ駆動回路3においては、第1FET31、第2FET32、第3FET33、および第4FET34によって、モータ30を駆動するためのブリッジ回路BCが構成されている。ブリッジ回路BCは、モータを駆動するためのブリッジ回路の一例である。 In the motor drive circuit 3, a bridge circuit BC for driving the motor 30 is configured by the first FET 31, the second FET 32, the third FET 33, and the fourth FET 34. The bridge circuit BC is an example of a bridge circuit for driving a motor.
 モータ駆動回路3は、第5端子81eと第5FET35の第5ゲート35Gとを接続する電圧印加配線53を有しており、モータドライバ81は第5端子81eから電圧印加配線53を通じて第3ゲート33Gに対して、第5FET35のしきい値電圧よりも大きな電圧を印加可能に構成されている。 The motor drive circuit 3 has a voltage application wiring 53 that connects the fifth terminal 81e and the fifth gate 35G of the fifth FET 35, and the motor driver 81 has a third gate 33G from the fifth terminal 81e through the voltage application wiring 53. On the other hand, a voltage larger than the threshold voltage of the fifth FET 35 can be applied.
 第5FET35は、モータドライバ81の第5端子81eから第5ゲート35Gにしきい値電圧よりも大きな電圧が印加されたときにはオンして、第5ドレイン35Dと第5ソース35Sとが接続された状態となる。一方、第5FET35は、モータドライバ81の第5端子81eから第5ゲート35Gに電圧が印加されていないときにはオフして、第5ドレイン35Dと第5ソース35Sとが分断された状態となる。 The fifth FET 35 is turned on when a voltage larger than the threshold voltage is applied from the fifth terminal 81e of the motor driver 81 to the fifth gate 35G, and the fifth drain 35D and the fifth source 35S are connected to each other. Become. On the other hand, the fifth FET 35 is turned off when no voltage is applied from the fifth terminal 81e of the motor driver 81 to the fifth gate 35G, and the fifth drain 35D and the fifth source 35S are separated from each other.
 モータ駆動回路3は、接続配線54を有している。接続配線54は、一端が電力供給配線51に接続され、他端が第6端子81fに接続されている。接続配線54の一端は、電力供給配線51における第5FET35とブリッジ回路BCの第1FET31および第3FET33との間に接続されている。電力供給配線51におけるブリッジ回路BCの第5FET35と第1FET31および第3FET33との間には、モータドライバ81を駆動するための駆動電圧が供給される駆動端子VM1が接続されている。駆動端子VM1は、接続配線54によりモータドライバ81の第6端子81fと接続されている。駆動端子VM1は、制御部駆動端子の一例である。接続配線54は、接続経路の一例である。モータ駆動回路3は、電力供給切替手段に対して電圧を印加する電圧印加部を有している。 The motor drive circuit 3 has a connection wiring 54. One end of the connection wiring 54 is connected to the power supply wiring 51, and the other end is connected to the sixth terminal 81f. One end of the connection wiring 54 is connected between the fifth FET 35 in the power supply wiring 51 and the first FET 31 and the third FET 33 of the bridge circuit BC. A drive terminal VM1 to which a drive voltage for driving the motor driver 81 is supplied is connected between the fifth FET 35 of the bridge circuit BC and the first FET 31 and the third FET 33 in the power supply wiring 51. The drive terminal VM1 is connected to the sixth terminal 81f of the motor driver 81 by the connection wiring 54. The drive terminal VM1 is an example of a control unit drive terminal. The connection wiring 54 is an example of a connection path. The motor drive circuit 3 has a voltage application unit that applies a voltage to the power supply switching means.
 モータ駆動回路3は、第5FET35の第5ゲート35Gと第5ソース35Sとの間に接続される短絡用トランジスタ37を有している。短絡用トランジスタ37と第5ソース35Sとの間にはダイオード38が接続されている。短絡用トランジスタ37はNPN型トランジスタであり、ベースBが接地され、コレクタCが第5ゲート35Gに接続され、ミッタEが第5ソース35Sに接続されている。短絡用トランジスタ37は、ベースBの電圧がエミッタEの電圧よりも所定値以上高くなるとオンし、ベースBの電圧がエミッEの電圧よりも所定値以上高くない場合にはオフする。ダイオード38は、カソードが第5ソース35S側に接続され、アノードが第5ゲート35G側に接続されている。 The motor drive circuit 3 has a short-circuit transistor 37 connected between the fifth gate 35G of the fifth FET 35 and the fifth source 35S. A diode 38 is connected between the short-circuit transistor 37 and the fifth source 35S. The short-circuit transistor 37 is an NPN type transistor, the base B is grounded, the collector C is connected to the fifth gate 35G, and the mitter E is connected to the fifth source 35S. The short-circuit transistor 37 is turned on when the voltage of the base B is higher than the voltage of the emitter E by a predetermined value or more, and is turned off when the voltage of the base B is not higher than the voltage of the Emi E by a predetermined value or more. In the diode 38, the cathode is connected to the fifth source 35S side and the anode is connected to the fifth gate 35G side.
 電源端子VB1にバッテリ6のプラス端子が接続されている場合、または電源端子VB1にバッテリ6が接続されていない場合には、短絡用トランジスタ37のベースBの電圧はエミッタEの電圧よりも所定値以上高くなることがなく、短絡用トランジスタ37はオフした状態となる。短絡用トランジスタ37がオフした状態では、コレクタCとエミッタEとが分断され、第5FET35の第5ゲート35Gと第5ソース35Sとの間には電流が流れない。 When the positive terminal of the battery 6 is connected to the power supply terminal VB1, or when the battery 6 is not connected to the power supply terminal VB1, the voltage of the base B of the short-circuit transistor 37 is a predetermined value rather than the voltage of the emitter E. The short-circuit transistor 37 is turned off without becoming higher. When the short-circuit transistor 37 is turned off, the collector C and the emitter E are separated, and no current flows between the fifth gate 35G and the fifth source 35S of the fifth FET 35.
 一方、電源端子VB1にバッテリ6のマイナス端子が接続されている場合は、短絡用トランジスタ37のベースBの電圧がエミッタEの電圧よりも所定値以上高くなり、短絡用トランジスタ37はオンした状態となる。短絡用トランジスタ37がオンした状態では、コレクタCとエミッタEとが導通し、第5FET35の第5ゲート35Gと第5ソース35Sとが短絡される。この場合、第5ゲート35Gと第5ソース35Sとの間にダイオード38が接続されているため、第5ゲート35Gから第5ソース35Sへ向けては電流が流れるが、第5ソース35Sから5ゲート35Gへ向けては電流は流れない。 On the other hand, when the negative terminal of the battery 6 is connected to the power supply terminal VB1, the voltage of the base B of the short-circuit transistor 37 becomes higher than the voltage of the emitter E by a predetermined value or more, and the short-circuit transistor 37 is turned on. Become. When the short-circuit transistor 37 is turned on, the collector C and the emitter E are electrically connected, and the fifth gate 35G and the fifth source 35S of the fifth FET 35 are short-circuited. In this case, since the diode 38 is connected between the 5th gate 35G and the 5th source 35S, a current flows from the 5th gate 35G to the 5th source 35S, but the 5th source 35S to the 5th gate No current flows toward 35G.
 モータ駆動回路3は、検知回路7を有している。検知回路7は、電圧印加配線53上に設けられており、第1トランジスタ71および第2トランジスタ72を有している。第1トランジスタ71は第1回路の一例であり、第2トランジスタ72は第2回路の一例である。検知回路7は、電力供給経路に接続されたバッテリのバッテリ電圧を検知する検知部を設けた構成とすることもできる。 The motor drive circuit 3 has a detection circuit 7. The detection circuit 7 is provided on the voltage application wiring 53, and has a first transistor 71 and a second transistor 72. The first transistor 71 is an example of the first circuit, and the second transistor 72 is an example of the second circuit. The detection circuit 7 may be configured to be provided with a detection unit that detects the battery voltage of the battery connected to the power supply path.
 第1トランジスタ71はNPN型トランジスタであり、第1ベースB1が逆起電圧入力端子VM2に接続され、第1コレクタC1が電圧印加配線53に接続され、第1エミッタE1が接地されている。第1ベースB1は第1トランジスタの第1入力端子の一例であり、第1コレクタC1は第1トランジスタの第1出力端子の一例であり、第1エミッタE1は第1トランジスタの第1接地端子の一例である。逆起電圧入力端子VM2は、モータ30に発生した逆起電圧が入力される端子である。 The first transistor 71 is an NPN type transistor, the first base B1 is connected to the counter electromotive voltage input terminal VM2, the first collector C1 is connected to the voltage application wiring 53, and the first emitter E1 is grounded. The first base B1 is an example of the first input terminal of the first transistor, the first collector C1 is an example of the first output terminal of the first transistor, and the first emitter E1 is the first ground terminal of the first transistor. This is an example. The counter electromotive voltage input terminal VM2 is a terminal to which the counter electromotive voltage generated in the motor 30 is input.
 第1トランジスタ71は、モータ30の逆起電圧が逆起電圧入力端子VM2を介して第1ベースB1に入力されたときにはオンして、第1コレクタC1と第1エミッタE1とが導通する。第1コレクタC1と第1エミッタE1とが導通することにより、電圧印加配線53が接地される。また、第1トランジスタ71は、モータ30の逆起電圧が第1ベースB1に入力されていないときにはオフして、第1コレクタC1と第1エミッタE1とが分断される。第1コレクタC1と第1エミッタE1とが分断された状態では、電圧印加配線53は接地されない。 The first transistor 71 is turned on when the counter electromotive voltage of the motor 30 is input to the first base B1 via the counter electromotive voltage input terminal VM2, and the first collector C1 and the first emitter E1 are electrically connected. The voltage application wiring 53 is grounded by the conduction between the first collector C1 and the first emitter E1. Further, the first transistor 71 is turned off when the counter electromotive voltage of the motor 30 is not input to the first base B1, and the first collector C1 and the first emitter E1 are separated. When the first collector C1 and the first emitter E1 are separated, the voltage application wiring 53 is not grounded.
 第2トランジスタ72はNPN型トランジスタであり、第2ベースB2がバッテリ電圧入力端子VB2に接続され、第2コレクタC2が第1トランジスタ71の第1ベースB1に接続され、第2エミッタE2が接地されている。第2ベースB2は第2トランジスタの第2入力端子の一例であり、第2コレクタC2は第2トランジスタの第2出力端子の一例であり、第2エミッタE2は第2トランジスタの第2接地端子の一例である。 The second transistor 72 is an NPN type transistor, the second base B2 is connected to the battery voltage input terminal VB2, the second collector C2 is connected to the first base B1 of the first transistor 71, and the second emitter E2 is grounded. ing. The second base B2 is an example of the second input terminal of the second transistor, the second collector C2 is an example of the second output terminal of the second transistor, and the second emitter E2 is the second ground terminal of the second transistor. This is an example.
 バッテリ電圧入力端子VB2は、バッテリ6のバッテリ電圧が入力される端子である。なお、バッテリ電圧入力端子VB2には、バッテリ6のプラス端子が電源端子VB1に接続されているときにバッテリ電圧が入力され、バッテリ6のプラス端子が電源端子VB1に接続されていないときにはバッテリ電圧は入力されない。 The battery voltage input terminal VB2 is a terminal into which the battery voltage of the battery 6 is input. The battery voltage is input to the battery voltage input terminal VB2 when the positive terminal of the battery 6 is connected to the power supply terminal VB1, and the battery voltage is input when the positive terminal of the battery 6 is not connected to the power supply terminal VB1. Not entered.
 第2トランジスタ72は、バッテリ6のバッテリ電圧がバッテリ電圧入力端子VB2を介して第2ベースB2に入力されたときにはオンして、第2コレクタC2と第2エミッタE2とが導通し、第1トランジスタ71の第1ベースB1が接地される。第1ベースB1が接地された状態では、逆起電圧入力端子VM2にモータ30の逆起電圧が印加された場合でも第1トランジスタ71に対する逆起電圧の入力が阻害され、第1トランジスタ71はオフ状態を維持する。 The second transistor 72 is turned on when the battery voltage of the battery 6 is input to the second base B2 via the battery voltage input terminal VB2, the second collector C2 and the second emitter E2 are electrically connected, and the first transistor 72 is connected. The first base B1 of 71 is grounded. When the first base B1 is grounded, the input of the counter electromotive voltage to the first transistor 71 is hindered even when the counter electromotive voltage of the motor 30 is applied to the counter electromotive voltage input terminal VM2, and the first transistor 71 is turned off. Maintain the state.
 第2トランジスタ72は、第2ベースB2にバッテリ電圧が入力されていないときにはオフして、第2コレクタC2と第2エミッタE2とが分断される。第2コレクタC2と第2エミッタE2とが分断された状態では、第1トランジスタ71の第1ベースB1は接地されず、逆起電圧入力端子VM2に印加されたモータ30の逆起電圧の第1ベースB1に対する入力が許容される。 The second transistor 72 is turned off when the battery voltage is not input to the second base B2, and the second collector C2 and the second emitter E2 are separated. In a state where the second collector C2 and the second emitter E2 are separated, the first base B1 of the first transistor 71 is not grounded, and the first back electromotive voltage of the motor 30 applied to the back electromotive voltage input terminal VM2 is the first. Input to base B1 is allowed.
 モータ駆動回路3は、車両10の各部の動作を制御する複数のECU(Electronic Control Unit)82、83を有している。ECU82、83は、電力供給配線51における電源端子VB1と第5FET35との間に接続されている。ECU82、83は、車両10のエンジン、トランスミッション、ブレーキ、パワーウィンドウ、および各種メーター等の動作を制御するように構成することができる。 The motor drive circuit 3 has a plurality of ECUs (Electronic Control Units) 82 and 83 that control the operation of each part of the vehicle 10. The ECUs 82 and 83 are connected between the power supply terminal VB1 and the fifth FET 35 in the power supply wiring 51. The ECUs 82 and 83 can be configured to control the operation of the engine, transmission, brakes, power windows, various meters, and the like of the vehicle 10.
[モータ駆動回路の動作]
 このように構成されるモータ駆動回路3においては、電源端子VB1にバッテリ6のプラス端子が接続されて電力供給配線51にバッテリ電圧が供給された通常時においては、モータドライバ81の第5端子81eからバッテリ電圧を昇圧した昇圧電圧が第5FET35の第5ゲート35Gに印加される。この場合、検知回路7におけるバッテリ電圧入力端子VB2にはバッテリ電圧が入力されていて第1トランジスタ71がオフするとともに、短絡用トランジスタ37がオフしているため、第5端子81eから出力される前記昇圧電圧を電圧印加配線53を通じて第5ゲート35Gに印加することが許容される。
[Operation of motor drive circuit]
In the motor drive circuit 3 configured in this way, in the normal state where the positive terminal of the battery 6 is connected to the power supply terminal VB1 and the battery voltage is supplied to the power supply wiring 51, the fifth terminal 81e of the motor driver 81 A boosted voltage that boosts the battery voltage is applied to the fifth gate 35G of the fifth FET 35. In this case, since the battery voltage is input to the battery voltage input terminal VB2 in the detection circuit 7 and the first transistor 71 is turned off and the short-circuit transistor 37 is turned off, the output is output from the fifth terminal 81e. It is permissible to apply the boost voltage to the fifth gate 35G through the voltage application wiring 53.
 前記昇圧電圧は第5FET35のしきい値電圧よりも高く、前記昇圧電圧が第5ゲート35Gに印加されると第5FET35はオンして、バッテリ6からの電力をモータ30に供給可能となる。 The boosted voltage is higher than the threshold voltage of the 5th FET 35, and when the boosted voltage is applied to the 5th gate 35G, the 5th FET 35 is turned on and the electric power from the battery 6 can be supplied to the motor 30.
 この状態において、モータドライバ81の第1端子81aおよび第2端子81bから第1ゲート31Gおよび第2ゲート32Gに対する印加電圧が出力されて第1FET31および第2FET32がオンするとともに、第3FET33および第4FET34がオフした状態に保持されると、第1FET31からモータ30を通じて第2FET32に電流が流れ、モータ30が正回転方向に回転する。 In this state, the applied voltages to the first gate 31G and the second gate 32G are output from the first terminal 81a and the second terminal 81b of the motor driver 81 to turn on the first FET 31 and the second FET 32, and the third FET 33 and the fourth FET 34 are turned on. When the motor 30 is held in the off state, a current flows from the first FET 31 to the second FET 32 through the motor 30, and the motor 30 rotates in the forward rotation direction.
 一方、モータドライバ81の第3端子83aおよび第4端子84bから第3ゲート33Gおよび第4ゲート34Gに対する印加電圧が出力されて第3FET33および第4FET34がオンするとともに、第1FET31および第2FET32がオフした状態に保持されると、第3FET33からモータ30を通じて第4FET34に電流が流れ、モータ30が逆回転方向に回転する。 On the other hand, the applied voltages to the third gate 33G and the fourth gate 34G are output from the third terminal 83a and the fourth terminal 84b of the motor driver 81, the third FET 33 and the fourth FET 34 are turned on, and the first FET 31 and the second FET 32 are turned off. When held in the state, a current flows from the third FET 33 to the fourth FET 34 through the motor 30, and the motor 30 rotates in the reverse rotation direction.
 また、電源端子VB1にバッテリ6のマイナス端子が接続されたバッテリ6の逆接続時には、短絡用トランジスタ37がオンして第5FET35の第5ゲート35Gと第5ソース35Sとを短絡するため、第5FET35の第5ゲート35Gにしきい値電圧よりも大きな電圧が印加されることがなく、第5FET35はオフする。 Further, when the negative terminal of the battery 6 is connected to the power supply terminal VB1 in the reverse connection, the short-circuit transistor 37 is turned on to short-circuit the fifth gate 35G and the fifth source 35S of the fifth FET 35, so that the fifth FET 35 A voltage larger than the threshold voltage is not applied to the fifth gate 35G of the above, and the fifth FET 35 is turned off.
 ここで、モータ30には起動時および停止時に逆起電圧が発生するが、モータ30に接続される第1FET31の第1寄生ダイオードD1および第3FET33の第3寄生ダイオードD3は、カソードが第5FET35側に接続されているため、発生した逆起電圧は第1寄生ダイオードD1および第3寄生ダイオードD3を通じて電力供給配線51に入力される。 Here, a counter electromotive voltage is generated in the motor 30 at the time of starting and stopping, but the cathode of the first parasitic diode D1 of the first FET 31 and the third parasitic diode D3 of the third FET 33 connected to the motor 30 is on the fifth FET 35 side. Since it is connected to, the generated counter electromotive voltage is input to the power supply wiring 51 through the first parasitic diode D1 and the third parasitic diode D3.
 しかし、第5FET35はオフしており、第5FET35の第5寄生ダイオードD5はアノードが電源端子VB1側に接続されているため、電力供給配線51に入力された逆起電圧は、第5FET35よりも電源端子VB1側に出力されることがない。これにより、モータ30の逆起電圧が、電力供給配線51における電源端子VB1と第5FET35との間に接続されるECU82、83に印加されることがなく、ECU82、83の動作に影響を及ぼすことが抑制可能となっている。 However, since the 5th FET 35 is off and the anode of the 5th parasitic diode D5 of the 5th FET 35 is connected to the power supply terminal VB1, the counter electromotive voltage input to the power supply wiring 51 is more power supply than the 5th FET 35. There is no output to the terminal VB1 side. As a result, the counter electromotive voltage of the motor 30 is not applied to the ECUs 82 and 83 connected between the power supply terminal VB1 and the fifth FET 35 in the power supply wiring 51, which affects the operation of the ECUs 82 and 83. Can be suppressed.
 また、電源端子VB1にバッテリ6が接続されていないときに、モータ30に逆起電圧が発生すると、発生した逆起電圧は第1寄生ダイオードD1および第3寄生ダイオードD3を通じて電力供給配線51に入力される。電力供給配線51に入力された逆起電圧は、接続配線54および第6端子81fを通じてモータドライバ81に入力され、モータドライバ81に入力された逆起電圧は、さらに第5端子81eから電圧印加配線53に出力される。 If a counter electromotive voltage is generated in the motor 30 when the battery 6 is not connected to the power supply terminal VB1, the generated counter electromotive voltage is input to the power supply wiring 51 through the first parasitic diode D1 and the third parasitic diode D3. Will be done. The counter electromotive voltage input to the power supply wiring 51 is input to the motor driver 81 through the connection wiring 54 and the sixth terminal 81f, and the counter electromotive voltage input to the motor driver 81 is further voltage-applied wiring from the fifth terminal 81e. It is output to 53.
 この場合、電圧印加配線53に出力された逆起電圧が第5FET35の第5ゲート35Gに印加されると、逆起電圧は第5FET35のしきい値電圧よりも大きいため、第5FET35がオンして電力供給配線51に出力された逆起電圧がECU82、83に印加されてしまう。 In this case, when the counter electromotive voltage output to the voltage application wiring 53 is applied to the fifth gate 35G of the fifth FET 35, the counter electromotive voltage is larger than the threshold voltage of the fifth FET 35, so that the fifth FET 35 is turned on. The counter electromotive voltage output to the power supply wiring 51 is applied to the ECUs 82 and 83.
 しかし、電源端子VB1にバッテリ6が接続されていないときにモータ30に逆起電圧が発生した場合には、第2トランジスタ72がオフした状態で逆起電圧が逆起電圧入力端子VM2に入力されるため、逆起電圧が逆起電圧入力端子VM2から第1ベースB1に入力されて第1トランジスタ71がオンする。第1トランジスタ71がオンすると、電圧印加配線53が接地されて、電圧印加配線53に出力された逆起電圧が第5FET35の第5ゲート35Gに印加されることがない。 However, if a counter electromotive voltage is generated in the motor 30 when the battery 6 is not connected to the power supply terminal VB1, the counter electromotive voltage is input to the counter electromotive voltage input terminal VM2 with the second transistor 72 turned off. Therefore, the counter electromotive voltage is input to the first base B1 from the counter electromotive voltage input terminal VM2, and the first transistor 71 is turned on. When the first transistor 71 is turned on, the voltage application wiring 53 is grounded, and the counter electromotive voltage output to the voltage application wiring 53 is not applied to the fifth gate 35G of the fifth FET 35.
 つまり、電力供給配線51にバッテリ6が接続されていないときに、検知回路7によってモータ30の逆起電圧が検知されると、電圧印加配線53を通じて第5FET35の第5ゲート35Gに印加される逆起電圧が遮断され、第5FET35はオフされる。これにより、第5FET35により電力供給配線51が分断されて、電力供給配線51に出力された逆起電圧がECU82、83に出力されることがなく、ECU82、83の動作に影響を及ぼすことが抑制される。 That is, when the back electromotive voltage of the motor 30 is detected by the detection circuit 7 when the battery 6 is not connected to the power supply wiring 51, the reverse is applied to the fifth gate 35G of the fifth FET 35 through the voltage application wiring 53. The electromotive voltage is cut off and the fifth FET 35 is turned off. As a result, the power supply wiring 51 is divided by the fifth FET 35, and the counter electromotive voltage output to the power supply wiring 51 is not output to the ECUs 82 and 83, which suppresses the influence on the operation of the ECUs 82 and 83. Will be done.
 このように、検知回路7の第1トランジスタ71は、モータ30の逆起電圧が入力されたときに第5FET35へ印加される電圧を遮断し、モータ30の逆起電圧が入力されていないときに第5FET35への電圧の印加を許容するように構成されている。さらに、検知回路7の第2トランジスタ72は、バッテリ30のバッテリ電圧が入力されたときに第1トランジスタ71に対する逆起電圧の入力を阻害し、バッテリ30のバッテリ電圧が入力されていないときに第1トランジスタ71に対する逆起電圧の入力を許容するように構成されている。 In this way, the first transistor 71 of the detection circuit 7 cuts off the voltage applied to the fifth FET 35 when the counter electromotive voltage of the motor 30 is input, and when the counter electromotive voltage of the motor 30 is not input. It is configured to allow the application of a voltage to the fifth FET 35. Further, the second transistor 72 of the detection circuit 7 blocks the input of the counter electromotive voltage to the first transistor 71 when the battery voltage of the battery 30 is input, and when the battery voltage of the battery 30 is not input, the second transistor 72 becomes the first. It is configured to allow the input of a counter electromotive voltage to one transistor 71.
 従って、電力供給配線51にバッテリ6が接続されていないときには、第2トランジスタ72により第1トランジスタ71に対する逆起電圧の入力が許容され、この状態でモータ30に逆起電圧が発生した場合には、第1トランジスタ71により第5FET35へ印加される電圧が遮断される。これにより、第5FET35によって電力供給配線51が分断され、逆起電圧が電力供給配線51における第5FET35よりも電源端子VB1側へ出力されることがない。 Therefore, when the battery 6 is not connected to the power supply wiring 51, the second transistor 72 allows the input of the counter electromotive voltage to the first transistor 71, and when the counter electromotive voltage is generated in the motor 30 in this state, , The voltage applied to the fifth FET 35 is cut off by the first transistor 71. As a result, the power supply wiring 51 is divided by the fifth FET 35, and the counter electromotive voltage is not output to the power supply terminal VB1 side of the fifth FET 35 in the power supply wiring 51.
 また、検知回路7は、第1トランジスタ71と第2トランジスタ72とで構成されているため、検知回路7を簡単な回路構成とすることが可能となっている。 Further, since the detection circuit 7 is composed of the first transistor 71 and the second transistor 72, it is possible to make the detection circuit 7 a simple circuit configuration.
 また、モータ駆動回路3は、第1FET31、第2FET32、第3FET33、および第4FET34を有し、モータ30を駆動するためのブリッジ回路BCと、電力供給配線51における第5FET35とブリッジ回路BCとの間に設けられ、モータドライバ81の駆動電圧が供給される駆動端子VM1とを有している。 Further, the motor drive circuit 3 has a first FET 31, a second FET 32, a third FET 33, and a fourth FET 34, and is between the bridge circuit BC for driving the motor 30 and the fifth FET 35 and the bridge circuit BC in the power supply wiring 51. It has a drive terminal VM1 to which the drive voltage of the motor driver 81 is supplied.
 このような構成において、モータドライバ81と第5FET35とが電圧印加配線53により接続されていると、ブリッジ回路BCにより駆動されるモータ30に発生した逆起電圧が接続配線54、モータドライバ81、および電圧印加配線53を通じて第5FET35に印加される。 In such a configuration, when the motor driver 81 and the fifth FET 35 are connected by the voltage application wiring 53, the counter electromotive voltage generated in the motor 30 driven by the bridge circuit BC is generated by the connection wiring 54, the motor driver 81, and the motor driver 81. It is applied to the fifth FET 35 through the voltage application wiring 53.
 しかし、電力供給配線51にバッテリ6が接続されていない状態でモータ30に逆起電圧が発生した場合には、検知回路7によって電圧が遮断されるため第5FET35に逆起電圧が印加されることがない。これにより、第5FET35によって電力供給配線51が分断され、発生した逆起電圧が電力供給配線51の電源端子VB1側へ出力されることがなく電力供給配線51に接続されるECU82、83の動作に影響を与えることを抑制できる。 However, if a counter electromotive voltage is generated in the motor 30 when the battery 6 is not connected to the power supply wiring 51, the voltage is cut off by the detection circuit 7, so that the counter electromotive voltage is applied to the fifth FET 35. There is no. As a result, the power supply wiring 51 is divided by the fifth FET 35, and the generated back electromotive voltage is not output to the power supply terminal VB1 side of the power supply wiring 51, and the ECUs 82 and 83 connected to the power supply wiring 51 operate. It can suppress the influence.
 特に、本実施形態におけるモータ30は、車両10のバックドア12を開閉するための駆動源である。従って、電力供給配線51にバッテリ6が接続されていない状態でモータ30に逆起電圧が発生した場合に、発生した逆起電圧が電力供給配線51の電源端子VB1側へ出力されることがなく、電力供給配線51に接続される他の車載機器の制御装置であるECU82、83の動作に影響を与えることを抑制できる。 In particular, the motor 30 in this embodiment is a drive source for opening and closing the back door 12 of the vehicle 10. Therefore, when a counter electromotive voltage is generated in the motor 30 when the battery 6 is not connected to the power supply wiring 51, the generated counter electromotive voltage is not output to the power supply terminal VB1 side of the power supply wiring 51. , It is possible to suppress the influence on the operation of the ECUs 82 and 83 which are the control devices of other in-vehicle devices connected to the power supply wiring 51.
 なお、ブリッジ回路BCを構成する第1FET31、第2FET32、第3FET33、および第4FET34は、物理的なリレースイッチにて構成することも可能である。この場合、各リレースイッチに第1寄生ダイオードD1、第2寄生ダイオードD2、第3寄生ダイオードD3、および第4寄生ダイオードD4と同様のダイオードを併設することが好ましい。リレースイッチにダイオードを併設することで、モータ30に逆起電圧が発生した場合に、モータ30の逆起電圧に起因する電流をダイオードにより逃がして、リレースイッチに破損が生じることを抑制することが可能となる。 The first FET 31, the second FET 32, the third FET 33, and the fourth FET 34 constituting the bridge circuit BC can also be configured by a physical relay switch. In this case, it is preferable that each relay switch is provided with a diode similar to the first parasitic diode D1, the second parasitic diode D2, the third parasitic diode D3, and the fourth parasitic diode D4. By providing a diode in the relay switch, when a counter electromotive voltage is generated in the motor 30, the current caused by the counter electromotive voltage of the motor 30 is released by the diode to prevent the relay switch from being damaged. It will be possible.
 また、車両10において、モータ30を駆動源とする開閉体としては、バックドア12以外にも、トランクリッド、ボンネット、サンルーフ、スライドドア、ドアミラー、ファン関係、またはドアに設けられる窓ガラス等を適用することが可能である。 Further, in the vehicle 10, as an opening / closing body using the motor 30 as a drive source, a trunk lid, a bonnet, a sunroof, a sliding door, a door mirror, a fan, or a window glass provided on the door is applied in addition to the back door 12. It is possible to do.
  1  開閉体開閉装置
  3  モータ駆動回路
  6  モータ
  7  検知回路
 10  車両
 11  車体
 11a 開口部
 12  バックドア
 20  開閉体駆動部
 21  本体筒部
 22  スライド筒部
 30  モータ
 30a 第1端子
 30b 第2端子
 31  第1FET
 31D 第1ドレイン
 31G 第1ゲート
 31S 第1ソース
 32  第2FET
 32D 第2ドレイン
 32G 第2ゲート
 32S 第2ソース
 33  第3FET
 33D 第3ドレイン
 33G 第3ゲート
 33S 第3ソース
 34  第4FET
 34D 第4ドレイン
 34G 第4ゲート
 34S 第4ソース
 35  第5FET
 35D 第5ドレイン
 35G 第5ゲート
 35S 第5ソース
 37  短絡用トランジスタ
 38  ダイオード
 51  電力供給配線
 52  接地配線
 53  電圧印加配線
 54  接続経路
 71  第1トランジスタ
 72  第2トランジスタ
 81  モータドライバ
 81a 第1端子
 81b 第2端子
 81c 第3端子
 81d 第4端子
 81e 第5端子
 81f 第6端子
 82、83 ECU
 BC  ブリッジ回路
  B  ベース
  C  コレクタ
  E  エミッタ
  B  ベース
  C1 第1コレクタ
  E1 第1エミッタ
  B2 第2ベース
  C2 第2コレクタ
  E2 第2エミッタ
  D1 第1寄生ダイオード
  D2 第2寄生ダイオード
  D3 第3寄生ダイオード
  D4 第4寄生ダイオード
  D5 第5寄生ダイオード
 VB1 電源端子
 VB2 バッテリ電圧入力端子
 VM1 駆動端子
 VM2 逆起電圧入力端子
1 Switchgear switchgear 3 Motor drive circuit 6 Motor 7 Detection circuit 10 Vehicle 11 Body 11a Opening 12 Backdoor 20 Switchgear drive 21 Main body cylinder 22 Slide cylinder 30 Motor 30a 1st terminal 30b 2nd terminal 31 1st FET
31D 1st drain 31G 1st gate 31S 1st source 32 2nd FET
32D 2nd drain 32G 2nd gate 32S 2nd source 33 3rd FET
33D 3rd drain 33G 3rd gate 33S 3rd source 34 4th FET
34D 4th drain 34G 4th gate 34S 4th source 35 5th FET
35D 5th drain 35G 5th gate 35S 5th source 37 Short circuit transistor 38 Diode 51 Power supply wiring 52 Ground wiring 53 Voltage application wiring 54 Connection path 71 1st transistor 72 2nd transistor 81 Motor driver 81a 1st terminal 81b 2nd Terminal 81c 3rd terminal 81d 4th terminal 81e 5th terminal 81f 6th terminal 82, 83 ECU
BC Bridge circuit B base C collector E emitter B base C1 1st collector E1 1st emitter B2 2nd base C2 2nd collector E2 2nd emitter D1 1st parasitic diode D2 2nd parasitic diode D3 3rd parasitic diode D4 4th parasitic Diode D5 Fifth parasitic diode VB1 Power supply terminal VB2 Battery voltage input terminal VM1 Drive terminal VM2 Countercurrent voltage input terminal

Claims (5)

  1.  モータと、
     前記モータに電力を供給するバッテリと、
     前記バッテリのバッテリ電圧が供給され、前記モータに接続される電力供給経路と、
     前記電力供給経路上に設けられ、電圧が印加されたときに前記電力供給経路を接続し、電圧が印加されないときに前記電力供給経路を分断する電力供給切替手段と、
     前記モータに接続されて前記モータの駆動を制御する駆動制御部と前記電力供給切替手段に接続されて前記電力供給切替手段に電圧を印加可能な電圧印加部とを含む制御部と、
     前記制御部と前記電力供給切替手段とを接続する電圧印加経路と、
     前記電圧印加経路上に設けられ、前記モータに生じた逆起電圧を検知可能な検知回路とを備え、
     前記検知回路は、前記モータの逆起電圧を検知すると、前記電圧印加経路を通じて前記電力供給切替手段に印加される電圧を遮断する
     モータ駆動回路。
    With the motor
    A battery that supplies power to the motor and
    A power supply path to which the battery voltage of the battery is supplied and connected to the motor, and
    A power supply switching means provided on the power supply path, connecting the power supply path when a voltage is applied, and dividing the power supply path when a voltage is not applied.
    A control unit including a drive control unit connected to the motor to control the drive of the motor and a voltage application unit connected to the power supply switching means and capable of applying a voltage to the power supply switching means.
    A voltage application path connecting the control unit and the power supply switching means,
    It is provided with a detection circuit provided on the voltage application path and capable of detecting the counter electromotive voltage generated in the motor.
    The detection circuit is a motor drive circuit that cuts off the voltage applied to the power supply switching means through the voltage application path when the back electromotive voltage of the motor is detected.
  2.  前記検知回路は、前記モータの逆起電圧が入力されたときに前記電力供給切替手段へ印加される電圧を遮断し、前記モータの逆起電圧が入力されていないときに前記電力供給切替手段への電圧の印加を許容する第1回路と、
     前記バッテリのバッテリ電圧が入力されたときに前記第1回路に対する前記逆起電圧の入力を阻害し、前記バッテリのバッテリ電圧が入力されていないときに前記第1回路に対する前記逆起電圧の入力を許容する第2回路とを有する
     請求項1に記載のモータ駆動回路。
    The detection circuit cuts off the voltage applied to the power supply switching means when the countercurrent voltage of the motor is input, and to the power supply switching means when the countercurrent voltage of the motor is not input. The first circuit that allows the application of the voltage of
    When the battery voltage of the battery is input, the input of the counter electromotive voltage to the first circuit is hindered, and when the battery voltage of the battery is not input, the input of the counter electromotive voltage to the first circuit is input. The motor drive circuit according to claim 1, which has a second circuit that allows it.
  3.  前記第1回路は、前記モータの逆起電圧が入力される第1入力端子と、前記電力供給経路に接続される第1出力端子と、接地される第1接地端子とを有する第1トランジスタであり、
     前記第2回路は、前記バッテリのバッテリ電圧が入力される第2入力端子と、前記第1トランジスタの前記第1入力端子に接続される第2出力端子と、接地される第2接地端子とを有する第2トランジスタである
     請求項2に記載のモータ駆動回路。
    The first circuit is a first transistor having a first input terminal to which the counter electromotive voltage of the motor is input, a first output terminal connected to the power supply path, and a first grounded terminal to be grounded. Yes,
    The second circuit has a second input terminal into which the battery voltage of the battery is input, a second output terminal connected to the first input terminal of the first transistor, and a second grounded terminal to be grounded. The motor drive circuit according to claim 2, which is a second transistor having.
  4.  前記モータは、第1端子と第2端子とを有し、
     前記モータ駆動回路は、
     前記バッテリ電圧よりも低電位の電圧が供給される接地経路と、
     前記電力供給経路と前記第1端子との間に設けられる第1スイッチング手段、前記第2端子と前記接地経路との間に設けられる第2スイッチング手段、前記電力供給経路と前記第2端子との間に設けられる第3スイッチング手段、および前記第1端子と前記接地経路との間に設けられる第4スイッチング手段を有し、前記モータを駆動するためのブリッジ回路と、
     前記電力供給経路における前記電力供給切替手段と前記ブリッジ回路との間に設けられ、前記制御部の駆動電圧が供給される制御部駆動端子と、
     前記制御部駆動端子と前記制御部とを接続する接続経路と、
     を備える
     請求項1~請求項3の何れか一項に記載のモータ駆動回路。
    The motor has a first terminal and a second terminal.
    The motor drive circuit
    A ground path to which a voltage lower than the battery voltage is supplied, and
    A first switching means provided between the power supply path and the first terminal, a second switching means provided between the second terminal and the ground path, the power supply path and the second terminal. A bridge circuit having a third switching means provided between them and a fourth switching means provided between the first terminal and the grounding path for driving the motor.
    A control unit drive terminal provided between the power supply switching means and the bridge circuit in the power supply path and to which a drive voltage of the control unit is supplied.
    A connection path connecting the control unit drive terminal and the control unit,
    The motor drive circuit according to any one of claims 1 to 3.
  5.  前記モータは、車両のバックドアを開閉するための駆動源である
     請求項1~請求項4の何れか一項に記載のモータ駆動回路。
    The motor drive circuit according to any one of claims 1 to 4, wherein the motor is a drive source for opening and closing a back door of a vehicle.
PCT/JP2020/032496 2019-08-30 2020-08-28 Motor driving circuit WO2021039937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080059027.1A CN114270648A (en) 2019-08-30 2020-08-28 Motor driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019158634A JP7237777B2 (en) 2019-08-30 2019-08-30 motor drive circuit
JP2019-158634 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039937A1 true WO2021039937A1 (en) 2021-03-04

Family

ID=74684236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032496 WO2021039937A1 (en) 2019-08-30 2020-08-28 Motor driving circuit

Country Status (3)

Country Link
JP (1) JP7237777B2 (en)
CN (1) CN114270648A (en)
WO (1) WO2021039937A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223371A (en) * 2012-04-18 2013-10-28 Denso Corp Motor drive device
JP2017017813A (en) * 2015-06-29 2017-01-19 京セラドキュメントソリューションズ株式会社 Electronic circuit and image formation device
JP2019127715A (en) * 2018-01-23 2019-08-01 アイシン精機株式会社 Vehicle opening/closing body control device and control method of vehicle opening/closing body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288901A (en) * 1994-04-12 1995-10-31 Meidensha Corp Controller for electric rolling stock
JP5246407B2 (en) * 2008-11-04 2013-07-24 株式会社ジェイテクト Motor drive circuit and electric power steering device
JP2014093908A (en) * 2012-11-06 2014-05-19 Asmo Co Ltd Motor control device
JP2014172491A (en) * 2013-03-08 2014-09-22 Jtekt Corp Electric power steering device
GB2555117B (en) * 2016-10-18 2022-03-02 Trw Ltd A motor drive circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223371A (en) * 2012-04-18 2013-10-28 Denso Corp Motor drive device
JP2017017813A (en) * 2015-06-29 2017-01-19 京セラドキュメントソリューションズ株式会社 Electronic circuit and image formation device
JP2019127715A (en) * 2018-01-23 2019-08-01 アイシン精機株式会社 Vehicle opening/closing body control device and control method of vehicle opening/closing body

Also Published As

Publication number Publication date
JP2021040371A (en) 2021-03-11
JP7237777B2 (en) 2023-03-13
CN114270648A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US9461566B2 (en) Drive arrangement for the motorized adjustment of an adjustment element of a motor vehicle
US9564485B2 (en) Switch driving circuit, inverter apparatus and power steering apparatus
US6316892B1 (en) Automatic door control system
US20140265959A1 (en) Motor drive device
JP6544173B2 (en) Open / close controller for vehicle
WO2009125714A1 (en) Electric power steering device and method for controlling the same
CN113760027B (en) Circuit, corresponding system, vehicle and operating method
WO2021039937A1 (en) Motor driving circuit
US20050212568A1 (en) Drive circuit and method of applying high voltage test thereon
JP3989352B2 (en) Motor drive device
US20200300021A1 (en) Drive arrangement for motorized adjustment of a closure element of a motor vehicle
JP2015165745A (en) power supply circuit
JPH048587B2 (en)
US9637074B2 (en) Drive arrangement in a motor vehicle
JP2001270401A (en) Device for controlling on-vehicle motor
JP2017201089A (en) Power Window System
JP4535659B2 (en) Electric circuit arrangement for controlling the motor in the vehicle
JP7272220B2 (en) Opening/closing body driving device and its control method
CN111817611A (en) Load control device, load control system, and vehicle-mounted control system
WO2018100844A1 (en) Drive device
WO2021124893A1 (en) Drive device
US20220227210A1 (en) Opening and closing body control apparatus for vehicle
US20210099114A1 (en) Opening/closing body drive device and control method thereof
KR0178911B1 (en) Power window auto closing device of vehicle
KR200164557Y1 (en) A circuit for automatic opening and shutting of car windows

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857454

Country of ref document: EP

Kind code of ref document: A1