WO2021039653A1 - Electric vertical take-off and landing aircraft - Google Patents

Electric vertical take-off and landing aircraft Download PDF

Info

Publication number
WO2021039653A1
WO2021039653A1 PCT/JP2020/031691 JP2020031691W WO2021039653A1 WO 2021039653 A1 WO2021039653 A1 WO 2021039653A1 JP 2020031691 W JP2020031691 W JP 2020031691W WO 2021039653 A1 WO2021039653 A1 WO 2021039653A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
vertical take
transported
landing
electric
Prior art date
Application number
PCT/JP2020/031691
Other languages
French (fr)
Japanese (ja)
Inventor
輝 岩川
真梨子 橋本
俊 杉田
優一 竹村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021039653A1 publication Critical patent/WO2021039653A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D5/00Aircraft transported by aircraft, e.g. for release or reberthing during flight

Definitions

  • This disclosure relates to an electric vertical take-off and landing aircraft.
  • An electric vertical take-off and landing aircraft is equipped with a plurality of electric drive systems (EDS: Electric Drive Systems) having motors, and a plurality of rotor blades are rotationally driven by a plurality of motors to obtain lift and thrust of the airframe (for example).
  • EDS Electric Drive Systems
  • Patent Document 1 After replacement or inspection of each electric drive system, it is desirable to carry out a functional test to confirm that the electric drive system operates normally and the rotor blades rotate.
  • the electric vertical takeoff and landing aircraft can take off and land in a narrow space compared to fixed-wing aircraft equipped with a gas turbine engine, it can take off and land not only in a specific place such as an airfield but also in any place such as a parking lot or a plaza. Takeoff and landing is possible.
  • the functional test of the electric drive system is performed at an inspection site or the like equipped with dedicated equipment such as a jig for fixing the electric drive system to the ground when the rotary blade is rotationally driven. Therefore, in the event of a failure of the electric drive system or rotorcraft, the electric vertical take-off and landing aircraft that has landed at an arbitrary location must be transported to the inspection site.
  • An electric vertical take-off and landing aircraft is provided as one form of the present disclosure.
  • This electric vertical take-off and landing aircraft includes a plurality of rotary blades, a plurality of electric drive systems having motors for rotationally driving each of the rotary blades, an aircraft in which the plurality of rotary blades and the electric drive system are arranged, and said. It is provided on at least one of the upper side and the lower side of the aircraft, and includes a connecting portion for connecting to another aircraft which is another electric vertical takeoff and landing aircraft.
  • the electric vertical take-off and landing aircraft of this form since it is provided on at least one of the upper side and the lower side of the airframe and has a connecting portion for connecting with the other aircraft, the connection provided on the upper side of the airframe In a configuration including a portion, the aircraft can be transported by another machine connected by such a connecting portion, and in a configuration including a connecting portion provided on the lower side of the aircraft, the other aircraft connected by such a connecting portion. Can carry the machine.
  • the present disclosure can also be realized in various forms other than the electric vertical take-off and landing aircraft.
  • an aircraft for an electric vertical take-off and landing aircraft a control device for an electric vertical take-off and landing aircraft, a transportation method for the electric vertical take-off and landing aircraft, a computer program for realizing these devices and methods, a storage medium for storing the computer program, and the like.
  • a storage medium for storing the computer program can be realized with.
  • FIG. 1 is a top view schematically showing a configuration of an electric vertical take-off and landing aircraft as an embodiment of the present disclosure.
  • FIG. 2 is a side view schematically showing the configuration of the electric vertical take-off and landing aircraft.
  • FIG. 3 is a block diagram showing a functional configuration of an electric vertical take-off and landing aircraft.
  • FIG. 4 is a top view showing a state of connection between the carrier and the transported machine in the transported state.
  • FIG. 5 is an explanatory diagram showing a detailed configuration of the connecting portion according to the first embodiment.
  • FIG. 6 is an explanatory view showing a connection position in the transported machine of the first embodiment.
  • FIG. 1 is a top view schematically showing a configuration of an electric vertical take-off and landing aircraft as an embodiment of the present disclosure.
  • FIG. 2 is a side view schematically showing the configuration of the electric vertical take-off and landing aircraft.
  • FIG. 3 is a block diagram showing a functional configuration of an electric vertical take-off and landing aircraft.
  • FIG. 4
  • FIG. 7 is a perspective view showing a detailed configuration of a connecting portion in the transported machine of the second embodiment.
  • FIG. 8 is a cross-sectional view showing a detailed configuration of a connecting portion in the transported machine of the second embodiment.
  • FIG. 9 is a perspective view schematically showing the position of the center of gravity of the connecting portion in the second embodiment.
  • FIG. 10 is a block diagram showing a functional configuration of the electric vertical take-off and landing aircraft according to the third embodiment.
  • FIG. 11 is a flowchart showing the procedure of the locking control process in the third embodiment.
  • FIG. 12 is a block diagram showing a functional configuration of the electric vertical take-off and landing aircraft according to the fourth embodiment.
  • FIG. 13 is a flowchart showing the procedure of the motor control process in the fourth embodiment.
  • FIG. 14 is a block diagram showing a functional configuration of the electric vertical take-off and landing aircraft according to the fifth embodiment.
  • FIG. 15 is a flowchart showing the procedure of the transportation process in the fifth embodiment.
  • FIG. 16 is a top view schematically showing the configuration of the electric vertical take-off and landing aircraft according to the sixth embodiment.
  • FIG. 17 is a perspective view schematically showing the position of the center of gravity of the connecting portion in another embodiment.
  • FIG. 18 is a top view schematically showing the positions of the electric vertical take-off and landing aircraft and the connecting portion in another embodiment.
  • FIG. 19 is a top view schematically showing the positions of the electric vertical take-off and landing aircraft and the connecting portion in another embodiment.
  • FIG. 19 is a top view schematically showing the positions of the electric vertical take-off and landing aircraft and the connecting portion in another embodiment.
  • FIG. 20 is a top view schematically showing the positions of the electric vertical take-off and landing aircraft and the connecting portion in another embodiment.
  • FIG. 21 is a top view schematically showing the positions of the electric vertical take-off and landing aircraft and the connecting portion in another embodiment.
  • FIG. 22 is a side view showing a connected state of the carrier and the carrier to be transported in another embodiment.
  • FIG. 23 is a side view showing a connected state of the carrier and the carrier to be transported in another embodiment.
  • FIG. 24 is a top view showing a connected state of the carrier and the carrier to be transported in another embodiment.
  • FIG. 25 is a top view showing a connected state of the carrier and the carrier to be transported in another embodiment.
  • the electric vertical take-off and landing aircraft 100 (hereinafter, also referred to as “eVTOL 100”) includes an airframe 20, eight rotors 30, and eight electric drive systems 10 (hereinafter, “EDS”) arranged corresponding to each rotor. It also has an Electric Drive System) 10 ”).
  • the airframe 20 corresponds to the portion of the eVTOL 100 excluding the eight rotor blades 30 and the EDS 10.
  • the airframe 20 includes an airframe main body 21, a strut 22, six first support 23, six second support 24, a main wing 25, a tail 28, and a connecting portion 29.
  • the body portion 21 constitutes the body portion of the eVTOL 100.
  • the machine body 21 has a symmetrical structure with the body axis AX as the target axis.
  • the "airframe axis AX” means an axis that passes through the center of gravity position CM of the eVTOL 100 and is along the front-rear direction of the eVTOL 100.
  • the "center of gravity position CM” means the position of the center of gravity of the eVTOL 100 when the weight is empty when no occupant is on board.
  • a passenger compartment (not shown) is formed inside the machine body 21.
  • the strut portion 22 has a substantially columnar appearance shape extending in the vertical direction, and is fixed to the upper part of the machine body portion 21.
  • the support column portion 22 is arranged at a position overlapping the center of gravity position CM of the eVTOL 100 when viewed in the vertical direction.
  • One end of each of the six first support parts 23 is fixed to the upper end of the support part 22.
  • Each of the six first support portions 23 has a substantially rod-like appearance shape, and is arranged radially at equal angular intervals so as to extend along a plane perpendicular to the vertical direction.
  • Rotors 30 and EDS 10 are arranged at the other end of each first support 23, that is, at the end far from the support column 22.
  • Each of the six second support portions 24 has a substantially rod-like appearance shape, and the other ends of the first support portions 23 (the ends on the side not connected to the strut portion 22) adjacent to each other are connected to each other. There is.
  • the main wing 25 is composed of a right wing 26 and a left wing 27.
  • the right wing 26 is formed so as to extend to the right from the main body portion 21 of the airframe.
  • the left wing 27 is formed so as to extend to the left from the main body portion 21 of the airframe.
  • a rotary wing 30 and an EDS 10 are arranged on the right wing 26 and the left wing 27, respectively.
  • the tail wing 28 is formed at the rear end of the main body 21 of the airframe.
  • the connecting unit 29 is used to connect with another eVTOL 100 (hereinafter, also referred to as "other machine 100").
  • the eVTOL 100 functions as a machine (hereinafter, also referred to as a “transporter”) that suspends and transports the other machine 100 by the connecting portion 29.
  • the connecting portion 29 is provided at a position corresponding to the center of gravity position CM on the bottom surface of the machine body portion 21.
  • the wire W1 is once attached to the connecting portion 29.
  • the other end of the wire W1 is attached to the connecting portion of the other machine 100.
  • FIG. 1 Unlike the example of FIG.
  • the connecting portion is provided on the first support portion 23.
  • the connecting portion provided on the side to be transported is also referred to as a “connecting portion for being transported”.
  • the detailed configuration of the connecting portion 29 and the connecting portion to be transported will be described later.
  • Six of the eight rotors 30 are arranged at the ends of each of the first support portions 23, and are mainly configured as lift rotors 31 for obtaining lift of the airframe 20.
  • the remaining two of the eight rotors 30 are arranged on the right wing 26 and the left wing 27, respectively, and are mainly configured as cruise rotors 32 for obtaining the thrust of the airframe 20.
  • the six lift rotary blades 31 are present at two positions symmetrical with each other about the center of gravity position CM. It consists of a total of three pairs of rotary blades 31 for lifting.
  • each rotor 30 is rotationally driven independently of each other around its own rotation axis (shaft 13 described later).
  • Each rotor 30 has three blades that are equidistant from each other.
  • the eight EDS 10s shown in FIG. 1 are configured as drive devices for rotationally driving each rotary blade 30. Six of the eight EDS 10s drive the lift rotor 31 to rotate. Two of the eight EDS 10s rotate the cruise rotor 32, respectively. The configurations of each EDS 10 are approximately equal to each other.
  • each EDS 10 includes a motor 111, an inverter circuit 112, a control unit 113, a voltmeter 114, an ammeter 115, a rotation sensor 116, and a storage device 117.
  • the motor 111 rotationally drives the rotary blade 30 via the shaft 13.
  • the motor 111 is composed of a brushless motor, and outputs rotational motion according to the voltage and current supplied from the inverter circuit 112.
  • the brushless motor instead of the brushless motor, it may be composed of an arbitrary motor such as an induction motor or a reluctance motor.
  • the inverter circuit 112 is composed of power elements such as an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and switches at a duty ratio according to a control signal supplied from the control unit 113. As a result, the drive voltage is supplied to the motor 111.
  • the control unit 113 is electrically connected to the main control unit 91, which will be described later, and supplies a control signal to the inverter circuit 112 in response to a command from the main control unit 91.
  • the voltmeter 114 and the ammeter 115 are provided between the inverter circuit 112 and the motor 111, respectively, and measure the drive current and the drive voltage of the motor 111, respectively.
  • the rotation sensor 116 measures the rotation speed of the motor 111.
  • the measured values of the voltmeter 114, the ammeter 115, and the rotation sensor 116 are stored in the storage device 117 in time series and output to the main control unit 91 via the control unit 113.
  • the airframe 20 includes a main control unit 91, a communication device 92, a sensor group 93, an actuator 941, a moving blade 942, a power supply 95, and a user interface unit 96 (hereinafter, “UI unit 96”). Also called).
  • UI unit 96 user interface unit 96
  • the main control unit 91 controls the entire body 20.
  • the main control unit 91 is composed of a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the CPU functions as the integrated control unit 911 by executing the control program stored in the ROM in advance.
  • the integrated control unit 911 makes the eVTOL 100 take off and land vertically or cruise by controlling the operation of the plurality of EDS 10s according to the driving operation of the occupant or according to the preset flight program.
  • the communication device 92 communicates with another device 100, a control tower on the ground, and the like.
  • the communication device 92 corresponds to, for example, a private-sector VHF radio.
  • the communication device 92 corresponds to the communication unit in the present disclosure.
  • the sensor group 93 includes an altimeter 931, an attitude sensor 932, a position sensor 933, and a speed sensor 934.
  • the altimeter 931 measures the current altitude of the electric vertical takeoff and landing aircraft 100.
  • the attitude sensor 932 identifies the attitude of the aircraft 20.
  • the posture sensor 932 is composed of a plurality of acceleration sensors composed of three-axis sensors, and specifies the postures of the airframe 20 in the tilt direction and the roll direction.
  • the position sensor 933 identifies the current position of the electric vertical takeoff and landing aircraft 100 as latitude and longitude.
  • the position sensor 933 is configured by GNSS (Global Navigation Satellite System). As the GNSS, for example, GPS (Global Positioning System) may be used.
  • the speed sensor 934 measures the flight speed of the eVTOL 100.
  • Actuator 941 drives rotor blades 942.
  • the moving blades 942 are provided on the main wings 25 and 26 and the tail wings 28, respectively.
  • the power supply 95 is composed of a lithium ion battery and functions as one of the power supply sources in the eVTOL 100.
  • the power supply 95 supplies three-phase AC power to the motor 111 via the inverter circuit 112 of each EDS 10.
  • the power supply 95 may be composed of an arbitrary secondary battery such as a nickel hydrogen battery instead of the lithium ion battery, and may be replaced with the secondary battery or in addition to the secondary battery to generate a fuel cell or power generator. It may be configured by any power supply source such as a machine.
  • the UI unit 96 supplies a predetermined user interface.
  • the user interface includes, for example, an operation input unit such as a keyboard and buttons, and a display unit such as a liquid crystal panel.
  • the UI unit 96 is provided, for example, in the cockpit of the eVTOL 100. The crew can use the UI unit 96 to change the operation mode of the eVTOL 100 and execute the test of each EDS 10.
  • the eVTOL 100 can be connected to the other machine 100 via the wire W1 to carry the other machine 100.
  • the eVTOL 100 which is a carrier is referred to as a carrier 101
  • the eVTOL 100 which is a carrier is referred to as a carrier 102.
  • one end of the wire W1 is attached to the connecting portion 29 and is connected to the transported machine 102 via the wire W1.
  • the other end of the wire W1 is attached to the connecting portion CP1 (hereinafter, also referred to as “transported connecting portion CP1”).
  • the EDS10 (hereinafter referred to as “EDS11”) for driving the right front lift rotor blade 31 of the transported machine 102 is out of order, and the lift rotorcraft 31 cannot be driven to rotate. Therefore, it is necessary to transport the transported machine 102 to the maintenance shop by the transporting machine 101.
  • the carrier 101 performs vertical takeoff and landing and cruise using all EDS10s out of eight EDS10s.
  • the transported device 102 of the eight EDS10s, the failed EDS11 is not driven, but the other EDS10s are driven.
  • the transported connecting portion CP1 has a configuration in which the locking member 50 is screwed into the screw hole 231 provided in the first support portion 23.
  • FIG. 5 shows how the locking member 50 is attached to the screw hole 231.
  • the locking member 50 has an annular portion 51 and a rod-shaped base portion 52.
  • the annular portion 51 is connected to one end of the base portion 52.
  • a hook 60 is attached to the annular portion 51.
  • One end of the wire W1 is attached to the hook 60.
  • a thread (not shown) is formed on the outer surface of the base 52 on the side opposite to the side to which the annular portion 51 is connected. Then, the locking member 50 is attached so that the screw thread is screwed into the screw hole 231.
  • the cover portion 232 is arranged so as to cover the portion of the surface of the first support portion 23 in which the screw hole 231 is formed.
  • An opening 233 is provided at a position corresponding to the screw hole 231 in the cover portion 232, and a lid portion 234 for opening and closing the opening 233 is provided.
  • each first support portion 23 is provided with a screw hole 231 for attaching the locking member 50 in advance. In other words, as shown in FIG.
  • each first support portion 23 has a predetermined position of a portion that can be a connecting portion CP1 to be transported. Then, the worker attaches the locking member 50 to the screw hole 231 so that the connecting portion CP1 to be transported is provided at the position corresponding to the failed EDS 11. When the locking member 50 is attached to the screw hole 231, at least the annular portion 51 of the locking member 50 is exposed from the machine body 20.
  • Center of gravity position CM is a half straight line starting from CM, and is located on a half straight line L1 passing through the center of gravity of the rotor 30 corresponding to the failed EDS 11. Specifically, it is located between the center of gravity position CM and the center of gravity of the rotary blade 30 corresponding to EDS 11 on the half straight line L1.
  • the half straight line L1 which is a virtual line is represented by a thick solid line.
  • the configuration of the connecting portion 29 shown in FIG. 2 is almost the same as the configuration of the connecting portion CP1 for transportation shown in FIG. That is, it has a configuration in which the locking member 50 is attached to a screw hole (not shown) provided on the bottom surface of the machine body 21.
  • the worker first opens the lid portion to expose the screw holes. Next, the worker attaches the locking member 50 to the screw hole. Next, the worker attaches the hook 60 to which the other end of the wire W1 is attached to the annular portion 51 of the locking member 50.
  • the connecting portion 29 and CP1 for connecting to the other machine 100 are provided, in the configuration in which the machine body 20 includes the connecting portion CP1 (connecting portion CP1 to be transported), It can be transported by the other machine 100 connected by the connecting portion CP1, and in the configuration including the connecting portion 29, the other machine 100 connected by the connecting portion 29 can be transported. Therefore, the eVTOL 100, which is difficult to fly stably due to a failure in the EDS 10 or the rotor blade 30, can be transported by the other aircraft 100.
  • the connecting portion 29 and CP1 have a locking member 50 for connecting the other end of the wire W1 whose one end is connected to the connecting portion CP1 and 29 of the other machine 100, the locking member 50 is used. Then, the other end of the wire W1 is connected, thereby connecting with the other machine 100, and it is possible to carry the other machine 100 or to be carried by the other machine 100.
  • the locking member 50 is detachably attached to the machine body 20 so that a part of the locking member 50 is exposed from the machine body 20, when the locking member 50 is not connected to another machine 100, the locking member 50 can be removed. , It is possible to suppress the increase in air resistance during flight.
  • the six lift rotors 31 consist of a total of three pairs of two rotors 30 that are point-symmetrical to each other with respect to the center of gravity CM of the aircraft 20 when viewed in the vertical direction. Since the rotor 32 is composed of two rotors 30 located at positions line-symmetrical with respect to the body axis AX passing through the center of gravity CM, it is possible to improve the stability of the body during vertical takeoff and landing or during cruise.
  • each of the plurality of transport connecting portions CP1 is a half straight line starting from the center of gravity position CM when the aircraft 20 is viewed in the vertical direction, and the plurality of rotary blades 30 of any of the plurality of rotary blades 30. Since it is located in a half straight line passing through the center of gravity, in a situation where one of the rotors 30 is not driven due to a failure or the like, it is connected to the other machine 100 by the transported connecting portion CP1 located in the half line passing through the center of gravity of the rotorcraft 30. Can be transported. In this case, the attitude of the own machine 100 can be stabilized in a situation where the driveable rotary blades of the transported machine are driven.
  • Second embodiment Since the schematic configuration of the eVTOL 100 of the second embodiment is the same as that of the eVTOL 100 of the first embodiment, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the eVTOL 100 of the second embodiment is different from the eVTOL 100 of the first embodiment in the detailed configuration of the connecting portion.
  • the number of connecting portions CP1 to be transported used in the state of being transported by the transporter 101 is one, but in the present embodiment, there are two.
  • the hook 60 is attached to the locking member 50a instead of the locking member 50.
  • the locking member 50a has an external shape in which the center is curved in a U shape, and threads are formed at both ends.
  • the cover portion 232, the opening 233, and the lid portion 234 are omitted.
  • a through hole 235 is formed in the first support portion 23.
  • a plate member 236 is arranged inside the portion of the first support portion 23 to which the locking member 50a is attached.
  • a through hole 237 is formed in the plate member 236 at a position corresponding to the through hole 235. Both ends of the locking member 50a are housed in the through hole 235 and the through hole 237, and the nut 239 is screwed into the thread formed at the end to attach the locking member 50a to the first support portion 23. Be done. In such a configuration, the two screwed portions of the locking member 50a and the nut 239 correspond to the transported connecting portions CP2 and CP3.
  • the centroid G1 of the two connecting portions CP2 and CP3 to be transported is configured to exist in the above-mentioned half straight line L1.
  • the center of gravity G1 is configured to exist in the half straight line L1.
  • the eVTOL 100 of the second embodiment described above has the same effect as the eVTOL 100 of the first embodiment.
  • the centers of gravity of the two connecting portions CP2 and CP3 for transportation are configured to exist in the half straight line L1, the posture balance of the transportation machine 102 when being transported by the transportation machine 101 is balanced. It can be suppressed from collapsing and the stability during transportation can be improved.
  • C. Third embodiment C-1.
  • Device configuration The configuration of the eVTOL 100 of the third embodiment shown in FIG. 10 is such that the main control unit 91 functions as the locking control unit 912, the actuator 97 and the load sensor 935 are provided, and the locking member 50 is displaceable. A state in which a part of the body is exposed from the inside of the machine body 21 (hereinafter referred to as "first state") and a state in which the entire body is housed inside the body 21 (hereinafter referred to as "second state"). It is different from the configuration of the eVTOL 100 of the first embodiment in that it is controlled by any of the above configurations, and the other configurations are the same. Therefore, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the locking control unit 912 controls the actuator 97 so that the state of the locking member 50 is one of the first state and the second state described above.
  • the actuator 97 displaces the locking member 50 in response to an instruction from the locking control unit 912.
  • the load sensor 935 measures the load applied to the locking member 50. When a load equal to or higher than a predetermined threshold is applied to the locking member 50, it is presumed that the locking member 50 is in a transported state.
  • the measured value of the load sensor 935 is output to the main control unit 91.
  • the eVTOL 100 is provided with both the connecting portion 29 and the connecting portion CP1 (connecting portion CP1 for transportation) in advance.
  • a locking member 50 is provided in advance for each of the connecting portions 29 and CP1, and each locking member 50 is configured to be displaceable by an actuator 97.
  • the locking control process shown in FIG. 11 is a process for controlling the state of the locking member 50 to either the first state or the second state.
  • the initial state of the locking member 50 is the second state.
  • the worker can open the lid 234 and attach the hook 60 to the locking member 50.
  • the eVTOL 100 when the power is turned on, the locking control process is executed.
  • the locking control unit 912 determines whether or not the own aircraft 100 is in vertical takeoff and landing or during a cruise (step S105). Whether or not it is in vertical takeoff and landing may be determined, for example, by the temporal change of the measured values of the altimeter 931 and the speed sensor 934. Further, whether or not the vehicle is cruising may be determined, for example, by the temporal change of the measured values of the position sensor 933 and the speed sensor 934.
  • the locking control unit 912 determines whether or not another machine 100 is connected to the own machine 100 (step S110). Specifically, the locking control unit 912 specifies the load applied to each locking member 50 by the measured value of the load sensor 935, and the load in any one of the locking members 50 is equal to or higher than a predetermined threshold value. In this case, it is determined that the other machine 100 is connected.
  • step S110 When it is determined that the other machine 100 is connected (step S110: YES), the locking control unit 912 sets the state of the locking member 50 in which the load equal to or higher than the threshold value is measured to the first state. Control (step S115). After the completion of step S115, the process returns to step S105 described above.
  • step S110 when it is determined that the other machine 100 is not connected (step S110: NO), the locking control unit 912 controls the states of all the locking members 50 to the second state (step S120). ). In the initial state, the state of all the locking members 50 is the second state, so in this case, the initial state is maintained. After the completion of step S120, the process returns to step S105 described above.
  • the eVTOL 100 of the third embodiment described above has the same effect as the eVTOL 100 of the first embodiment.
  • the locking control unit 912 controls the state of the locking member 50 to the second state when the eVTOL 100 is in vertical takeoff and landing or is cruising and is not connected to the other aircraft 100.
  • the state of the locking member 50a is controlled to be the first state. Therefore, when the locking member 50 is not connected to the other machine 100, the locking member 50 is connected to the machine body 21.
  • By accommodating it inside it is possible to suppress an increase in air resistance during flight of the eVTOL 100, and when it is connected to another aircraft 100, it is controlled to be in the second state, so that the locking member 50 is exposed. As a result, it is possible to prevent the first support portion 23 from being damaged by the hook 60 and the wire W1.
  • the configuration of the eVTOL 100 of the fourth embodiment shown in FIG. 12 is the configuration of the eVTOL 100 of the third embodiment shown in FIG. 10 in that the main control unit 91 functions as the transported state determination unit 913 instead of the locking control unit 912. Unlike the configuration, the other configurations are the same. Therefore, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the transported state determination unit 913 determines whether or not the own machine 100 is in a state of being connected to another machine 100 by using the transported connecting unit CP1 (hereinafter, referred to as “transported state”). ..
  • the motor control process shown in FIG. 13 is executed by the integrated control unit 911 and the transported state determination unit 913.
  • the motor control process is a process for controlling the motor 111 of each EDS 10 in the transported machine.
  • the motor control process is executed.
  • the transported state determination unit 913 determines whether or not the transported connecting unit CP1 is connected to the other machine 100 via the hook 60 and the wire W1 (step S205). Specifically, when the load sensor 935 detects a load equal to or greater than a predetermined threshold value in the locking member 50 used for the transportation connecting portion CP1 among the locking members 50, the transported state determination unit 913 In addition, it is determined that the device is connected to the other machine 100, and if the applied load is not detected, it is determined that the device is not connected to the other machine 100.
  • step S205 When it is determined that the machine is connected to the other machine 100 (step S205: YES), the integrated control unit 911 controls all the EDS 10s to stop the motor 111, thereby causing all the rotor blades 30 to stop. Stop (step S210).
  • the integrated control unit 911 controls all the EDS 10s to stop the motor 111, thereby causing all the rotor blades 30 to stop. Stop (step S210).
  • the EDS 10 or the rotary wing 30 has failed.
  • the attitude stability of the own machine 100 (the carrier 102) is stable. May collapse. Therefore, in the present embodiment, all the rotor blades 30 are stopped in the state of being transported to the other machine 100.
  • step S210 the process returns to step S205 described above.
  • step S205 If it is determined in step S205 described above that the device is not connected to another machine 100 (step S205: NO), the integrated control unit 911 drives the motor 111 of each EDS 10 in response to a command (step S215).
  • the instruction in step S215 corresponds to an instruction output according to the operation of the driver or an instruction pre-programmed in the case of automatic driving.
  • the eVTOL 100 of the fourth embodiment described above has the same effect as the eVTOL 100 of the third embodiment.
  • each EDS 10 is controlled so as to stop all the rotors 30 when it is determined to be in the transported state, some systems or some rotors of the EDS 10 of the own machine 100 are controlled. It is possible to prevent the posture of the own machine 100 from being out of balance due to the operation of the other normal EDS 10 and the rotational drive of the other rotors 30 in the state where the 30 has failed. Therefore, the attitude stability of the own machine 100 and the other machine 100 during transportation can be improved.
  • the configuration of the eVTOL 100 of the fifth embodiment shown in FIG. 14 is different from the configuration of the eVTOL 100 of the first embodiment shown in FIG. 3 in that the main control unit 91 functions as the posture-related information acquisition unit 914, and the other configurations are different. It is the same. Therefore, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the posture-related information acquisition unit 914 acquires information on the posture of the own machine 100 (hereinafter, referred to as “posture-related information”).
  • the posture-related information is a value measured by the posture sensor 932. That is, the acceleration in the roll direction and the acceleration in the tilt direction correspond to each other.
  • the attitude-related information it can be determined whether or not the attitude of the own machine 100 is stable. Specifically, when the acceleration in the roll direction is equal to or less than a predetermined threshold value and the acceleration in the tilt method is equal to or less than a predetermined threshold value, it can be determined that the posture of the other machine 100 is stable.
  • the attitude stability of the other aircraft 100 and the own aircraft 100 in the transport state is improved, and the power during vertical takeoff and landing and during cruise is improved. I am trying to improve.
  • the transport process shown in FIG. 15 is executed by the main control unit 91 (integrated control unit 911 and posture-related information acquisition unit 914) of the worker and the transporter 101 when the transporter 101 intends to transport the transporter 102. Will be done.
  • the worker prepares the connecting portion CP1 of the transported machine 102 (process P305).
  • This step P305 corresponds to the preparatory work in the transported machine 102 described in the first embodiment.
  • the worker connects the carrier 101 and the carrier 102 with the wire W1 (process P310).
  • the worker raises the carrier by performing a predetermined operation on the carrier 101 (step P315).
  • the predetermined operation in the step P315 is, for example, an ascending operation by the control stick or an operation in the UI unit 96 for executing a predetermined program for vertical takeoff.
  • the integrated control unit 911 of the carrier 101 instructs the main control unit 91 of the carrier 102 to drive the normal EDS 10 at full power via the communication device 92 (process P320).
  • the integrated control unit 911 of the transported device 102 receives an instruction output from the integrated control unit 911 of the carrier 101 via the communication device 92, and is normal in response to the instruction.
  • Drive the EDS 10 at full power By driving the normal EDS 10 in the transported machine 102 with full power, the flight power of the carrier 101 and the transported machine 102 as a whole can be improved.
  • the normal EDS 10 may be instructed to be driven by an arbitrary power lower than the full power, not limited to the full power.
  • the posture-related information acquisition unit 914 of the carrier 101 acquires the posture-related information of the carrier 102, and determines whether or not the posture of the carrier 102 is stable based on the posture-related information (step P325). .. Specifically, the attitude-related information acquisition unit 914 of the carrier 101 requests the attitude-related information acquisition unit 914 of the carrier 102 to transmit the acquired attitude-related information via the communication device 92. In response to such a request, the attitude-related information acquisition unit 914 of the transported machine 102 transmits the posture-related information obtained from the posture sensor 932 of the own machine 100 to the posture of the carrier 101 via the communication device 92 of the own machine 100. It is transmitted to the related information acquisition unit 914. In this way, the posture-related information acquisition unit 914 of the carrier 101 can receive the posture-related information of the carrier 102, and can determine whether or not the posture of the carrier 102 is stable.
  • step P330 the integrated control unit 911 of the carrier 101 rotates the carrier 101 so that the posture of the transported machine 102 is stable.
  • the rotation speed of the blade 30 is controlled (step P330).
  • the rotor 30 that is not rotationally driven in the carrier 102 is located relatively downward, and the rotor 30 that is point-symmetrical with respect to the center of gravity position CM is relatively upward with respect to the rotor 30.
  • the lift is increased by increasing the number of rotations of each lift rotor 31 of the own machine 100.
  • the rotary blade 30 that is not rotationally driven in the transported machine 102 rises, and the posture of the transported machine 102 is stabilized.
  • step P325 When it is determined that the posture of the transported machine 102 is stable (step P325: YES), the integrated control unit 911 of the carrier 101 determines the rotation speed of each rotor 30 of the own machine 100 in a stable state. While maintaining the ratio, the rotation speed of each rotor 30 is increased to raise the carrier 102 (step P335).
  • the posture-related information acquisition unit 914 of the carrier 101 acquires the posture-related information of the carrier 102, and determines whether or not the posture of the carrier 102 is stable based on the posture-related information (step P340). .. This step P340 is the same as the above-mentioned step P325.
  • the integrated control unit 911 of the carrier 101 rotates the carrier 101 so that the posture of the transported machine 102 is stable.
  • the rotation speed of the blade 30 is controlled (step P345).
  • This step P345 is the same as the above-mentioned step P330. That is, the rotation speed of each rotor 30 of the carrier 101 is controlled so that the posture of the carrier 102 is stable even after the carrier 102 rises and the cruise starts.
  • the integrated control unit 911 of the carrier 101 determines whether or not the vehicle has arrived at the destination (process P350). If it is determined that the destination has not arrived (step P350: NO), the process returns to step P340 described above. On the other hand, when it is determined that the vehicle has arrived at the destination (step P350: YES), the transportation process ends.
  • the eVTOL 100 of the fifth embodiment described above has the same effect as the eVTOL 100 of the first embodiment.
  • the integrated control unit 911 of the carrier 101 uses the communication device 92 to communicate with the integrated control unit 911 of the carrier 102 to perform the normal system of the EDS 10 of the carrier 102 at full power.
  • the operation of the EDS 10 of the carrier 101 is controlled so as to instruct to drive the machine, acquire the posture-related information of the carrier 102, and stabilize the posture balance of the carrier 102. Therefore, the power (flying force) of the carrier 101 and the carrier 102 during vertical takeoff and landing and cruise can be improved by operating the normal system of the carrier 102, and the carrier 101 and the carrier 102 can be operated. It is possible to stabilize the posture of the vehicle and improve the posture stability during transportation.
  • the eVTOL 100a of the sixth embodiment shown in FIG. 16 is different from the eVTOL 100 of the first embodiment in that a support plate 90 is provided in place of the first support portion 23 and the second support portion 24. Since the other configurations of the eVTOL 100a of the sixth embodiment are the same as those of the eVTOL 100 of the first embodiment, the same components are designated by the same reference numerals, and detailed description thereof will be omitted. In addition, in FIG. 16, eVTOL100a as the transported machine 102a is shown.
  • the support plate 90 has a hexagonal plan view shape.
  • the EDS 10 and the lift rotor 31 are arranged in the vicinity of each apex of the support plate 90.
  • the central portion of the support plate 90 is joined to the end portion of the strut portion 22.
  • the connected portion CP1 to be transported according to the first embodiment is a half straight line starting from the center of gravity position CM, and is connected to the center of gravity position CM and the EDS 11 in the half straight line L1 passing through the center of gravity of the rotor 30 corresponding to the failed EDS 11. It was located between the center of gravity of the corresponding rotor 30.
  • the transported connecting portion CP4 is located on the half straight line L1 on the side farther from the center of gravity position CM than the center of gravity of the rotor blade 30 corresponding to the failed EDS 11. positioned.
  • the eVTOL 100a of the sixth embodiment having the above configuration has the same effect as the eVTOL 100 of the first embodiment.
  • G. Other embodiments (G1) Other Embodiment 1: In the first, third to sixth embodiments, the number of connecting portions CP1 and CP4 for transportation used in the transportation state was one. Further, in the second embodiment, the number of the transported connecting portions CP2 and CP3 used in the transported state is two. However, this disclosure is not limited to this.
  • the three connected parts CP1 for transportation may be used at the same time.
  • the three transported connecting portions CP1, the center of gravity G1a of these three transported connecting portions CP1, and the center of gravity position P1 of the rotary blade 30 corresponding to the failed EDS 11 are shown. It is represented schematically. In the example of FIG.
  • the eVTOL 100b shown in FIG. 18 has a so-called multicopter type airframe.
  • the eVTOL 100b includes a machine body 21a, six first support 23b extending radially from the body 21a, and a total of six electric propulsion devices provided at the ends of the first support 23b. It includes 33b.
  • the electric propulsion device 33b includes the EDS 10 and the rotary blade 30 of the first embodiment.
  • the airframe body 21a has a hexahedral appearance and is not provided with fixed wings.
  • each first support portion 23b is provided with a transport connecting portion CPb for connecting to the transport machine 101 when functioning as the transport machine 102. Even in such a configuration, the same effect as that of each embodiment is obtained.
  • the eVTOL 100c shown in FIG. 19 has a so-called tilt rotor type airframe.
  • the eVTOL 100c has a main body portion 21, a main wing 25, and a tail wing 28, similarly to the eVTOL 100 of the first embodiment.
  • the eVTOL100c does not have a strut portion 22, a first support portion 23, and a second support portion 24.
  • Electric propulsion devices 33c are arranged at both ends of the main wing 25.
  • the electric propulsion device 33c includes the EDS 10 and the rotary blade 30 of the first embodiment.
  • the electric propulsion device 33c is controlled so that the posture of the rotor 30 is substantially parallel to the horizontal direction during vertical takeoff and landing, and is controlled so that the posture of the rotor 30 is substantially parallel to the vertical direction during cruise.
  • the connecting portion 29c for connecting to the transported machine 102 when functioning as the carrier 101 is located on the bottom surface side of the machine body portion 21 and at the same position as the center of gravity CMc of the eVTOL 100c when viewed in the vertical direction. I have.
  • each of the right wing 26 and the left wing 27 is provided with one CPc for being transported to be connected to the transporter 101 when functioning as the transporter 102.
  • the transported connecting portion CPc provided on the right wing 26 exists in a half straight line starting from the center of gravity position CMc and passing through the center of gravity position of the electric propulsion device 33c (rotor blade 30) on the right side.
  • the transported connecting portion CPc provided on the left wing 27 exists in a semi-straight line starting from the center of gravity position CMc and passing through the center of gravity position of the left electric propulsion device 33c (rotor blade 30). Even in such a configuration, the same effect as that of each embodiment is obtained.
  • the eVTOL 100d shown in FIGS. 20 and 21 is a so-called tilt wing type airframe.
  • FIG. 20 shows a top view of the eVTOL 100d during cruise
  • FIG. 21 shows a top view of the eVTOL 100d during vertical takeoff and landing.
  • the eVTOL 100d has a main body portion 21, a main wing 25, and a tail wing 28, similarly to the eVTOL 100 of the first embodiment.
  • the eVTOL100c does not have a strut portion 22, a first support portion 23, and a second support portion 24.
  • Two electric propulsion devices 33d are arranged on each of the right wing 26 and the left wing 27.
  • the electric propulsion device 33d includes the EDS 10 and the rotary blade 30 of the first embodiment.
  • the right wing 26 and the left wing 27 are configured to be rotatable. As shown in FIG. 20, during the cruise, the postures of the right wing 26 and the left wing 27 are controlled so as to be substantially horizontal. On the other hand, as shown in FIG. 21, at the time of vertical takeoff and landing, the attitudes of the right wing 26 and the left wing 27 are controlled so as to be substantially vertical. In either of the states of FIGS. 20 and 21, the eVTOL 100d has a connecting portion 29d for connecting to the transported machine 102 when functioning as the transporting machine 101 on the bottom surface side of the machine body portion 21 in the vertical direction.
  • the transported connecting portion CP1d1 passes through the center of the main wing 25 in the width direction from the center of gravity position CMd and the center of gravity of the electric propulsion device 33d, and passes through the center of gravity of the electric propulsion device 33d. It is provided at the intersection with a virtual half line parallel to.
  • the material handling connecting portion CP1d2 is provided at the position of the center of gravity of each electric propulsion device 33d (each rotor 30) in the posture during vertical takeoff and landing. Even in such a configuration, the same effect as that of each embodiment is obtained.
  • the carrier 101 and the carrier 102 are connected by one wire W1, but the present disclosure is not limited to this. Since the eVTOL 100b of FIG. 22 is the same as the eVTOL 100b shown in FIG. 18, detailed description thereof will be omitted.
  • the connecting portion 29b of the eVTOL 100b, which is the carrier 101b, and the two connecting portions CPb for being transported, which are the eVTOL 100b which is the transported machine 102b, are connected by a total of two wires W11 and W12. Even in such a configuration, the same effect as that of each embodiment is obtained.
  • the connecting portion of the carrier and the connecting portion of the transported machine may be connected to each other by an arbitrary number of wires.
  • one carrier 102 is used to carry one carrier 102, but the present disclosure is not limited to this.
  • one eVTOL 100b which is one carrier 102b, may be transported by two eVTOL 100b, which are two carriers 101b and 103b. Since the eVTOL 100b shown in FIGS. 23 and 24 is the same as the eVTOL 100b shown in FIG. 18, detailed description thereof will be omitted.
  • the connecting portion 29b of the transporter 101b and the two transportable connecting portions CPb of the transported machine 102b are connected by a total of two wires W13 and W14.
  • the connecting portion 29b of the transporting machine 103b and the two connecting portions CPb for being transported of the transported machine 102b are connected by a total of two wires W15 and W16.
  • one eVTOL100b which is one transported machine 102b, may be transported by three eVTOL100b, which are the transporters 101b, 103b, and 104b. Since the eVTOL 100b shown in FIG. 25 is the same as the eVTOL 100b shown in FIG. 18, detailed description thereof will be omitted.
  • the connecting portion 29b of the transporting machine 101b and the two connecting portions CPb for being transported of the transported machine 102b are connected by a total of two wires W21 and W22.
  • the connecting portion 29b of the transporting machine 103b and the two connecting portions CPb for being transported of the transported machine 102b are connected by a total of two wires W23 and W24.
  • the connecting portion 29b of the transporting machine 104b and the two connecting portions CPb for being transported of the transported machine 102b are connected by a total of two wires W25 and W26. Even in these configurations, the same effect as in each embodiment is obtained. As can be understood from each embodiment and the examples of FIGS. 23 to 25, the transported machine 102 may be transported by an arbitrary number of transporters 101.
  • the hook 60 may be omitted in each embodiment.
  • the wire W1 may be attached directly to the locking member 50.
  • the connecting portion 29 may be arranged at an arbitrary position on the lower side of the machine body portion 21 even if it is not the bottom surface of the machine body portion 21.
  • the material handling connecting portion CP1 may be provided at an arbitrary position on the upper side of the second supporting portion 24 and the machine body main body portion 21 instead of the first supporting portion 23.
  • the actuator 97 may be omitted. In such a configuration, the locking member 50 is attached to the first support portion 23 by an operator.
  • each EDS 10 may be connected by the load applied to the locking member 50, and it is possible to control the drive of the motor 111 of each EDS 10 according to the determination result.
  • the shaft 13 connecting the motor 111 and the rotary blade 30 may be provided with a gearbox for increasing or decreasing the rotational speed of the rotary blade 30.
  • the eVTOL 100, 100a to 100d may be configured as an unmanned aerial vehicle instead of the manned aircraft.
  • each set of the EDS 10 and the rotary blade 31 for lifting is fixed to the machine body 20 by a single support portion 22 via the first support portion 23 or the support plate 90.
  • Each set of the EDS 10 and the lift rotary blade 31 may be fixed to the machine body 20 by support portions (post portions) independent of each other. Further, in the third embodiment, whether or not the other machine 100 is connected to the own machine 100 is determined based on the measured value of the load sensor 935, but the present disclosure is not limited to this. For example, when a wire is passed through the wire W1 and the own machine 100 and the other machine 100 are connected, the wire is energized, while the wire is not energized in the unconnected state. It may be determined whether or not the other machine 100 is connected.
  • the main control unit 91 and its method described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. , May be realized.
  • the main control unit 91 and its method described in the present disclosure may be realized by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the main control unit 91 and its method described in the present disclosure include a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by a combination.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the purpose.
  • the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Abstract

These electric vertical take-off and landing aircrafts (100, 100a-100d) are each provided with: a plurality of electric drive systems (10) each having a plurality of rotary wings (30) and a motor (111) for rotationally driving the rotary wings; a fuselage (20) on which the plurality of rotary wings and the electric drive systems are disposed; and connection parts (29, CP1-CP4, CPb, CPc, CPd1, CPd2) which are provided on at least one among the upper side and the lower side of the fuselage, and which are for connection with another aircraft that is a different electric vertical take-off and landing aircraft.

Description

電動垂直離着陸機Electric vertical takeoff and landing aircraft 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年8月28日に出願された日本出願番号2019-155552号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-155552 filed on August 28, 2019, the contents of which are incorporated herein by reference.
 本開示は、電動垂直離着陸機に関する。 This disclosure relates to an electric vertical take-off and landing aircraft.
 近年、ガスタービンエンジンを有する飛行機とは異なる種類の航空機として、電動垂直離着陸機(eVTOL:electric Vertical Take-Off and Landing aircraft)と呼ばれる有人または無人の航空機の開発が活発化している。電動垂直離着陸機は、モータを有する電駆動システム(EDS:Electric Drive System)を複数備え、複数のモータによって複数の回転翼が回転駆動されることで、機体の揚力や推力を得ている(例えば、下記特許文献1参照)。それぞれの電駆動システムの交換後や点検後には、かかる電駆動システムが正常に動作して回転翼が回転することを確認するための機能試験が実行されることが望ましい。 In recent years, the development of manned or unmanned aircraft called electric vertical take-off and landing aircraft (eVTOL) has become active as a type of aircraft different from airplanes equipped with gas turbine engines. An electric vertical take-off and landing aircraft is equipped with a plurality of electric drive systems (EDS: Electric Drive Systems) having motors, and a plurality of rotor blades are rotationally driven by a plurality of motors to obtain lift and thrust of the airframe (for example). , See Patent Document 1 below). After replacement or inspection of each electric drive system, it is desirable to carry out a functional test to confirm that the electric drive system operates normally and the rotor blades rotate.
特開2018-131197号公報JP-A-2018-131197
 電動垂直離着陸機は、ガスタービンエンジンを備える固定翼機等と比較して狭い場所でも離着陸することができるため、飛行場のような特定の場所に限らず駐車場や広場のような任意の場所でも離着陸可能である。他方、電駆動システムの機能試験は、回転翼を回転駆動させる際に電駆動システムを地面に固定するための治具等の専用設備を備える検査場等において実行されることが想定される。したがって、電駆動システムや回転翼の故障発生時には、任意の場所に着陸した電動垂直離着陸機を検査場まで運搬しなければならない。これは、電駆動システムや回転翼の故障発生時に限らず、他の構成部の故障発生時にも同様である。また、故障発生時に限らず、例えば、電動垂直離着陸機の出荷時にも、製造場所から運用場所まで垂直離着陸機を運搬しなければならない。しかし、電動垂直離着陸機の運搬について検討が進んでいないのが実情である。このため、電動垂直離着陸機を運搬するための技術が望まれる。 Since the electric vertical takeoff and landing aircraft can take off and land in a narrow space compared to fixed-wing aircraft equipped with a gas turbine engine, it can take off and land not only in a specific place such as an airfield but also in any place such as a parking lot or a plaza. Takeoff and landing is possible. On the other hand, it is assumed that the functional test of the electric drive system is performed at an inspection site or the like equipped with dedicated equipment such as a jig for fixing the electric drive system to the ground when the rotary blade is rotationally driven. Therefore, in the event of a failure of the electric drive system or rotorcraft, the electric vertical take-off and landing aircraft that has landed at an arbitrary location must be transported to the inspection site. This applies not only when a failure occurs in the electric drive system or the rotor blades, but also when a failure occurs in other components. In addition, the vertical take-off and landing aircraft must be transported from the manufacturing site to the operating location not only when a failure occurs but also when the electric vertical take-off and landing aircraft is shipped, for example. However, the reality is that studies have not progressed on the transportation of electric vertical take-off and landing aircraft. Therefore, a technique for transporting an electric vertical take-off and landing aircraft is desired.
 本開示は、以下の形態として実現することが可能である。 This disclosure can be realized in the following forms.
 本開示の一形態として、電動垂直離着陸機が提供される。この電動垂直離着陸機は、複数の回転翼と、各前記回転翼を回転駆動させるモータを有する複数の電駆動システムと、前記複数の回転翼と前記電駆動システムとが配置された機体と、前記機体における上方側と下方側とのうちの少なくとも一方に設けられ、他の電動垂直離着陸機である他機と連結するための連結部と、を備える。 An electric vertical take-off and landing aircraft is provided as one form of the present disclosure. This electric vertical take-off and landing aircraft includes a plurality of rotary blades, a plurality of electric drive systems having motors for rotationally driving each of the rotary blades, an aircraft in which the plurality of rotary blades and the electric drive system are arranged, and said. It is provided on at least one of the upper side and the lower side of the aircraft, and includes a connecting portion for connecting to another aircraft which is another electric vertical takeoff and landing aircraft.
 この形態の電動垂直離着陸機によれば、機体における上方側と下方側とのうちの少なくとも一方に設けられ、他機と連結するための連結部を備えるので、機体における上方側に設けられた連結部を備える構成においては、かかる連結部により連結された他機により運搬されることができ、また、機体における下方側に設けられた連結部を備える構成においては、かかる連結部により連結された他機を運搬できる。 According to the electric vertical take-off and landing aircraft of this form, since it is provided on at least one of the upper side and the lower side of the airframe and has a connecting portion for connecting with the other aircraft, the connection provided on the upper side of the airframe In a configuration including a portion, the aircraft can be transported by another machine connected by such a connecting portion, and in a configuration including a connecting portion provided on the lower side of the aircraft, the other aircraft connected by such a connecting portion. Can carry the machine.
 本開示は、電動垂直離着陸機以外の種々の形態で実現することも可能である。例えば、電動垂直離着陸機用の機体、電動垂直離着陸機用の制御装置、電動垂直離着陸機の運搬方法、これら装置や方法を実現するためのコンピュータプログラム、かかるコンピュータプログラムを記憶した記憶媒体等の形態で実現することができる。 The present disclosure can also be realized in various forms other than the electric vertical take-off and landing aircraft. For example, an aircraft for an electric vertical take-off and landing aircraft, a control device for an electric vertical take-off and landing aircraft, a transportation method for the electric vertical take-off and landing aircraft, a computer program for realizing these devices and methods, a storage medium for storing the computer program, and the like. Can be realized with.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の一実施形態としての電動垂直離着陸機の構成を模式的に示す上面図であり、 図2は、電動垂直離着陸機の構成を模式的に示す側面図であり、 図3は、電動垂直離着陸機の機能的構成を示すブロック図であり、 図4は、運搬状態における運搬機と被運搬機との連結の様子を示す上面図であり、 図5は、第1実施形態における連結部の詳細構成を示す説明図であり、 図6は、第1実施形態の被運搬機における連結位置を示す説明図であり、 図7は、第2実施形態の被運搬機における連結部の詳細構成を示す斜視図であり、 図8は、第2実施形態の被運搬機における連結部の詳細構成を示す断面図であり、 図9は、第2実施形態における連結部の図心位置を模式的示す斜視図であり、 図10は、第3実施形態における電動垂直離着陸機の機能的構成を示すブロック図であり、 図11は、第3実施形態における係止制御処理の手順を示すフローチャートであり、 図12は、第4実施形態における電動垂直離着陸機の機能的構成を示すブロック図であり、 図13は、第4実施形態におけるモータ制御処理の手順を示すフローチャートであり、 図14は、第5実施形態における電動垂直離着陸機の機能的構成を示すブロック図であり、 図15は、第5実施形態における運搬処理の手順を示すフローチャートであり、 図16は、第6実施形態における電動垂直離着陸機の構成を模式的に示す上面図であり、 図17は、他の実施形態における連結部の図心位置を模式的示す斜視図であり、 図18は、他の実施形態における電動垂直離着陸機および連結部の位置を模式的に示す上面図であり、 図19は、他の実施形態における電動垂直離着陸機および連結部の位置を模式的に示す上面図であり、 図20は、他の実施形態における電動垂直離着陸機および連結部の位置を模式的に示す上面図であり、 図21は、他の実施形態における電動垂直離着陸機および連結部の位置を模式的に示す上面図であり、 図22は、他の実施形態における運搬機および被運搬機の連結状態を示す側面図であり、 図23は、他の実施形態における運搬機および被運搬機の連結状態を示す側面図であり、 図24は、他の実施形態における運搬機および被運搬機の連結状態を示す上面図であり、 図25は、他の実施形態における運搬機および被運搬機の連結状態を示す上面図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a top view schematically showing a configuration of an electric vertical take-off and landing aircraft as an embodiment of the present disclosure. FIG. 2 is a side view schematically showing the configuration of the electric vertical take-off and landing aircraft. FIG. 3 is a block diagram showing a functional configuration of an electric vertical take-off and landing aircraft. FIG. 4 is a top view showing a state of connection between the carrier and the transported machine in the transported state. FIG. 5 is an explanatory diagram showing a detailed configuration of the connecting portion according to the first embodiment. FIG. 6 is an explanatory view showing a connection position in the transported machine of the first embodiment. FIG. 7 is a perspective view showing a detailed configuration of a connecting portion in the transported machine of the second embodiment. FIG. 8 is a cross-sectional view showing a detailed configuration of a connecting portion in the transported machine of the second embodiment. FIG. 9 is a perspective view schematically showing the position of the center of gravity of the connecting portion in the second embodiment. FIG. 10 is a block diagram showing a functional configuration of the electric vertical take-off and landing aircraft according to the third embodiment. FIG. 11 is a flowchart showing the procedure of the locking control process in the third embodiment. FIG. 12 is a block diagram showing a functional configuration of the electric vertical take-off and landing aircraft according to the fourth embodiment. FIG. 13 is a flowchart showing the procedure of the motor control process in the fourth embodiment. FIG. 14 is a block diagram showing a functional configuration of the electric vertical take-off and landing aircraft according to the fifth embodiment. FIG. 15 is a flowchart showing the procedure of the transportation process in the fifth embodiment. FIG. 16 is a top view schematically showing the configuration of the electric vertical take-off and landing aircraft according to the sixth embodiment. FIG. 17 is a perspective view schematically showing the position of the center of gravity of the connecting portion in another embodiment. FIG. 18 is a top view schematically showing the positions of the electric vertical take-off and landing aircraft and the connecting portion in another embodiment. FIG. 19 is a top view schematically showing the positions of the electric vertical take-off and landing aircraft and the connecting portion in another embodiment. FIG. 20 is a top view schematically showing the positions of the electric vertical take-off and landing aircraft and the connecting portion in another embodiment. FIG. 21 is a top view schematically showing the positions of the electric vertical take-off and landing aircraft and the connecting portion in another embodiment. FIG. 22 is a side view showing a connected state of the carrier and the carrier to be transported in another embodiment. FIG. 23 is a side view showing a connected state of the carrier and the carrier to be transported in another embodiment. FIG. 24 is a top view showing a connected state of the carrier and the carrier to be transported in another embodiment. FIG. 25 is a top view showing a connected state of the carrier and the carrier to be transported in another embodiment.
A.第1実施形態:
A-1.装置構成:
 図1および図2に示す第1実施形態における電動垂直離着陸機100は、eVTOL(electric Vertical Take-Off and Landing aircraft)とも呼ばれ、鉛直方向に離着陸可能な有人航空機として構成されている。電動垂直離着陸機100(以下、「eVTOL100」とも呼ぶ)は、機体20と、8つの回転翼30と、各回転翼に対応して配置されている8つの電駆動システム10(以下、「EDS(Electric Drive System)10」とも呼ぶ)とを備える。
A. First Embodiment:
A-1. Device configuration:
The electric vertical take-off and landing aircraft 100 according to the first embodiment shown in FIGS. 1 and 2 is also called an eVTOL (electric Vertical Take-Off and Landing aircraft), and is configured as a manned aircraft capable of taking off and landing in the vertical direction. The electric vertical take-off and landing aircraft 100 (hereinafter, also referred to as “eVTOL 100”) includes an airframe 20, eight rotors 30, and eight electric drive systems 10 (hereinafter, “EDS”) arranged corresponding to each rotor. It also has an Electric Drive System) 10 ”).
 機体20は、eVTOL100において8つの回転翼30およびEDS10を除いた部分に相当する。機体20は、機体本体部21と、支柱部22と、6つの第1支持部23と、6つの第2支持部24と、主翼25と、尾翼28と、連結部29を備える。 The airframe 20 corresponds to the portion of the eVTOL 100 excluding the eight rotor blades 30 and the EDS 10. The airframe 20 includes an airframe main body 21, a strut 22, six first support 23, six second support 24, a main wing 25, a tail 28, and a connecting portion 29.
 機体本体部21は、eVTOL100の胴体部分を構成する。機体本体部21は、機体軸AXを対象軸として左右対称の構成を有する。本実施形態において、「機体軸AX」とは、eVTOL100の重心位置CMを通り、eVTOL100の前後方向に沿った軸を意味している。また、「重心位置CM」とは、乗員が搭乗していない空虚重量時におけるeVTOL100の重心位置を意味している。機体本体部21の内部には、図示しない乗員室が形成されている。 The body portion 21 constitutes the body portion of the eVTOL 100. The machine body 21 has a symmetrical structure with the body axis AX as the target axis. In the present embodiment, the "airframe axis AX" means an axis that passes through the center of gravity position CM of the eVTOL 100 and is along the front-rear direction of the eVTOL 100. Further, the "center of gravity position CM" means the position of the center of gravity of the eVTOL 100 when the weight is empty when no occupant is on board. A passenger compartment (not shown) is formed inside the machine body 21.
 支柱部22は、鉛直方向に延びる略柱状の外観形状を有し、機体本体部21の上部に固定されている。本実施形態において、支柱部22は、鉛直方向に見てeVTOL100の重心位置CMと重なる位置に配置されている。支柱部22の上端部には、6つの第1支持部23の一方の端部がそれぞれ固定されている。6つの第1支持部23は、それぞれ略棒状の外観形状を有し、鉛直方向に垂直な面に沿って延びるように、互いに等角度間隔で放射状に配置されている。各第1支持部23の他方の端部、すなわち支柱部22から遠い側の端部には、それぞれ回転翼30とEDS10とが配置されている。6つの第2支持部24は、それぞれ略棒状の外観形状を有し、互いに隣り合う第1支持部23他方の端部(支柱部22と接続されていない側の端部)同士を接続している。 The strut portion 22 has a substantially columnar appearance shape extending in the vertical direction, and is fixed to the upper part of the machine body portion 21. In the present embodiment, the support column portion 22 is arranged at a position overlapping the center of gravity position CM of the eVTOL 100 when viewed in the vertical direction. One end of each of the six first support parts 23 is fixed to the upper end of the support part 22. Each of the six first support portions 23 has a substantially rod-like appearance shape, and is arranged radially at equal angular intervals so as to extend along a plane perpendicular to the vertical direction. Rotors 30 and EDS 10 are arranged at the other end of each first support 23, that is, at the end far from the support column 22. Each of the six second support portions 24 has a substantially rod-like appearance shape, and the other ends of the first support portions 23 (the ends on the side not connected to the strut portion 22) adjacent to each other are connected to each other. There is.
 主翼25は、右翼26と左翼27とにより構成されている。右翼26は、機体本体部21から右方向に延びて形成されている。左翼27は、機体本体部21から左方向に延びて形成されている。右翼26と左翼27とには、それぞれ回転翼30とEDS10とが1つずつ配置されている。尾翼28は、機体本体部21の後端部に形成されている。 The main wing 25 is composed of a right wing 26 and a left wing 27. The right wing 26 is formed so as to extend to the right from the main body portion 21 of the airframe. The left wing 27 is formed so as to extend to the left from the main body portion 21 of the airframe. A rotary wing 30 and an EDS 10 are arranged on the right wing 26 and the left wing 27, respectively. The tail wing 28 is formed at the rear end of the main body 21 of the airframe.
 連結部29は、他のeVTOL100(以下、「他機100」とも呼ぶ)と連結するために用いられる。図2の例では、eVTOL100は、他機100を連結部29により吊り下げて運搬する機体(以下、「運搬機」とも呼ぶ)として機能する。このように、eVTOL100が運搬機として機能する場合には、連結部29は、機体本体部21の底面のうち、重心位置CMに対応する位置に設けられる。連結部29には、ワイヤW1の一旦が取り付けられている。ワイヤW1の他端は、他機100の連結部に取り付けられている。図2の例とは異なり、eVTOL100が運搬される側の機体(以下、「被運搬機」とも呼ぶ)として機能する場合、連結部は、第1支持部23に設けられる。本実施形態では、被運搬機側に設けられる連結部を「被運搬用連結部」とも呼ぶ。連結部29および被運搬用連結部の詳細構成については、後述する。 The connecting unit 29 is used to connect with another eVTOL 100 (hereinafter, also referred to as "other machine 100"). In the example of FIG. 2, the eVTOL 100 functions as a machine (hereinafter, also referred to as a “transporter”) that suspends and transports the other machine 100 by the connecting portion 29. In this way, when the eVTOL 100 functions as a carrier, the connecting portion 29 is provided at a position corresponding to the center of gravity position CM on the bottom surface of the machine body portion 21. The wire W1 is once attached to the connecting portion 29. The other end of the wire W1 is attached to the connecting portion of the other machine 100. Unlike the example of FIG. 2, when the eVTOL 100 functions as an airframe on the side to be transported (hereinafter, also referred to as “transported aircraft”), the connecting portion is provided on the first support portion 23. In the present embodiment, the connecting portion provided on the side to be transported is also referred to as a “connecting portion for being transported”. The detailed configuration of the connecting portion 29 and the connecting portion to be transported will be described later.
 8つの回転翼30のうちの6つは、各第1支持部23の端部に配置され、主に機体20の揚力を得るためのリフト用回転翼31として構成されている。8つの回転翼30のうちの残りの2つは、右翼26と左翼27とにそれぞれ配置され、主に機体20の推力を得るためのクルーズ用回転翼32として構成されている。上述のように、第1支持部23は、互いに等角度間隔で放射状に配置されているため、6つのリフト用回転翼31は、重心位置CMを中心として互いに点対称の位置に存在する2つのリフト用回転翼31の合計3つのペアからなる。また、2つのクルーズ用回転翼32は、互いに機体軸AXに対して線対称の位置にある。各回転翼30は、それぞれの回転軸(後述のシャフト13)を中心として、互いに独立して回転駆動される。各回転翼30は、互いに等角度間隔で配置された3つのブレードをそれぞれ有する。 Six of the eight rotors 30 are arranged at the ends of each of the first support portions 23, and are mainly configured as lift rotors 31 for obtaining lift of the airframe 20. The remaining two of the eight rotors 30 are arranged on the right wing 26 and the left wing 27, respectively, and are mainly configured as cruise rotors 32 for obtaining the thrust of the airframe 20. As described above, since the first support portions 23 are arranged radially at equal angular intervals with each other, the six lift rotary blades 31 are present at two positions symmetrical with each other about the center of gravity position CM. It consists of a total of three pairs of rotary blades 31 for lifting. Further, the two cruise rotors 32 are positioned line-symmetrically with respect to the airframe axis AX. Each rotor 30 is rotationally driven independently of each other around its own rotation axis (shaft 13 described later). Each rotor 30 has three blades that are equidistant from each other.
 図1に示す8つのEDS10は、各回転翼30をそれぞれ回転駆動させるための駆動装置として構成されている。8つのEDS10のうちの6つは、それぞれリフト用回転翼31を回転駆動させる。8つのEDS10のうちの2つは、それぞれクルーズ用回転翼32を回転駆動させる。各EDS10の構成は、互いにほぼ等しい。 The eight EDS 10s shown in FIG. 1 are configured as drive devices for rotationally driving each rotary blade 30. Six of the eight EDS 10s drive the lift rotor 31 to rotate. Two of the eight EDS 10s rotate the cruise rotor 32, respectively. The configurations of each EDS 10 are approximately equal to each other.
 図3に示すように、各EDS10は、モータ111と、インバータ回路112と、制御部113と、電圧計114と、電流計115と、回転センサ116と、記憶装置117とを備える。 As shown in FIG. 3, each EDS 10 includes a motor 111, an inverter circuit 112, a control unit 113, a voltmeter 114, an ammeter 115, a rotation sensor 116, and a storage device 117.
 モータ111は、シャフト13を介して回転翼30を回転駆動させる。モータ111は、本実施形態ではブラシレスモータにより構成され、インバータ回路112から供給される電圧および電流に応じた回転運動を出力する。なお、ブラシレスモータに代えて、誘導モータやリラクタンスモータ等の任意のモータにより構成されていてもよい。 The motor 111 rotationally drives the rotary blade 30 via the shaft 13. In the present embodiment, the motor 111 is composed of a brushless motor, and outputs rotational motion according to the voltage and current supplied from the inverter circuit 112. In addition, instead of the brushless motor, it may be composed of an arbitrary motor such as an induction motor or a reluctance motor.
 インバータ回路112は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等のパワー素子により構成され、制御部113から供給される制御信号に応じたデューティ比でスイッチングすることにより、モータ111に駆動電圧を供給する。制御部113は、後述する主制御部91と電気的に接続されており、主制御部91からの指令に応じてインバータ回路112に制御信号を供給する。 The inverter circuit 112 is composed of power elements such as an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and switches at a duty ratio according to a control signal supplied from the control unit 113. As a result, the drive voltage is supplied to the motor 111. The control unit 113 is electrically connected to the main control unit 91, which will be described later, and supplies a control signal to the inverter circuit 112 in response to a command from the main control unit 91.
 電圧計114と電流計115とは、それぞれインバータ回路112とモータ111との間に設けられており、モータ111の駆動電流と駆動電圧とをそれぞれ測定する。回転センサ116は、モータ111の回転数を計測する。電圧計114、電流計115および回転センサ116の計測値は、記憶装置117に時系列に記憶されると共に、制御部113を介して主制御部91へと出力される。 The voltmeter 114 and the ammeter 115 are provided between the inverter circuit 112 and the motor 111, respectively, and measure the drive current and the drive voltage of the motor 111, respectively. The rotation sensor 116 measures the rotation speed of the motor 111. The measured values of the voltmeter 114, the ammeter 115, and the rotation sensor 116 are stored in the storage device 117 in time series and output to the main control unit 91 via the control unit 113.
 図3に示すように、機体20には、各EDS10を制御するための様々な構成要素が配置されている。具体的には、機体20には、主制御部91と、通信装置92と、センサ群93と、アクチュエータ941と、動翼942と、電源95と、ユーザインターフェイス部96(以下、「UI部96」とも呼ぶ)とを備える。 As shown in FIG. 3, various components for controlling each EDS 10 are arranged on the airframe 20. Specifically, the airframe 20 includes a main control unit 91, a communication device 92, a sensor group 93, an actuator 941, a moving blade 942, a power supply 95, and a user interface unit 96 (hereinafter, “UI unit 96”). Also called).
 主制御部91は、機体20を全体制御する。主制御部91は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を備えるコンピュータにより構成されている。CPUがROMに予め記憶されている制御プログラムを実行することにより、統合制御部911として機能する。統合制御部911は、乗員の運転操作に応じて、或いは、予め設定されている飛行プログラムに応じて複数のEDS10の動作を制御することにより、eVTOL100を垂直離着陸させたり、クルーズさせたりする。 The main control unit 91 controls the entire body 20. The main control unit 91 is composed of a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The CPU functions as the integrated control unit 911 by executing the control program stored in the ROM in advance. The integrated control unit 911 makes the eVTOL 100 take off and land vertically or cruise by controlling the operation of the plurality of EDS 10s according to the driving operation of the occupant or according to the preset flight program.
 通信装置92は、他機100や、地上の管制塔などと通信を行う。通信装置92としては、例えば、民間用VHF無線機などが該当する。通信装置92は、本開示における通信部に相当する。 The communication device 92 communicates with another device 100, a control tower on the ground, and the like. The communication device 92 corresponds to, for example, a private-sector VHF radio. The communication device 92 corresponds to the communication unit in the present disclosure.
 センサ群93は、高度計931、姿勢センサ932、位置センサ933、速度センサ934を含む。高度計931は、電動垂直離着陸機100の現在の高度を計測する。姿勢センサ932は、機体20の姿勢を特定する。本実施形態において、姿勢センサ932は、三軸センサにより構成された複数の加速度センサからなり、機体20のチルト方向およびロール方向の姿勢を特定する。位置センサ933は、電動垂直離着陸機100の現在位置を緯度および経度として特定する。本実施形態において、位置センサ933は、GNSS(Global Navigation Satellite System)により構成されている。GNSSとしては、例えば、GPS(Global Positioning System)を用いてもよい。速度センサ934は、eVTOL100の飛行速度を計測する。 The sensor group 93 includes an altimeter 931, an attitude sensor 932, a position sensor 933, and a speed sensor 934. The altimeter 931 measures the current altitude of the electric vertical takeoff and landing aircraft 100. The attitude sensor 932 identifies the attitude of the aircraft 20. In the present embodiment, the posture sensor 932 is composed of a plurality of acceleration sensors composed of three-axis sensors, and specifies the postures of the airframe 20 in the tilt direction and the roll direction. The position sensor 933 identifies the current position of the electric vertical takeoff and landing aircraft 100 as latitude and longitude. In the present embodiment, the position sensor 933 is configured by GNSS (Global Navigation Satellite System). As the GNSS, for example, GPS (Global Positioning System) may be used. The speed sensor 934 measures the flight speed of the eVTOL 100.
 アクチュエータ941は、動翼942を駆動させる。本実施形態において、動翼942は、主翼25、26および尾翼28にそれぞれ設けられている。 Actuator 941 drives rotor blades 942. In the present embodiment, the moving blades 942 are provided on the main wings 25 and 26 and the tail wings 28, respectively.
 電源95は、本実施形態においては、リチウムイオン電池により構成され、eVTOL100における電力供給源の1つとして機能する。電源95は、各EDS10のインバータ回路112を介してモータ111に三相交流電力を供給する。なお、電源95は、リチウムイオン電池に代えて、ニッケル水素電池等の任意の二次電池により構成されていてもよく、二次電池に代えて、または二次電池に加えて、燃料電池や発電機等の任意の電力供給源により構成されてもよい。 In the present embodiment, the power supply 95 is composed of a lithium ion battery and functions as one of the power supply sources in the eVTOL 100. The power supply 95 supplies three-phase AC power to the motor 111 via the inverter circuit 112 of each EDS 10. The power supply 95 may be composed of an arbitrary secondary battery such as a nickel hydrogen battery instead of the lithium ion battery, and may be replaced with the secondary battery or in addition to the secondary battery to generate a fuel cell or power generator. It may be configured by any power supply source such as a machine.
 UI部96は、予め定められているユーザインターフェイスを供給する。ユーザインターフェイスとしては、例えば、キーボードやボタンなどの操作入力部や、液晶パネルなどの表示部などが含まれる。UI部96は、例えば、eVTOL100のコクピットに設けられている。乗組員は、UI部96を用いてeVTOL100の動作モードを変更したり、各EDS10の試験を実行したりできる。 The UI unit 96 supplies a predetermined user interface. The user interface includes, for example, an operation input unit such as a keyboard and buttons, and a display unit such as a liquid crystal panel. The UI unit 96 is provided, for example, in the cockpit of the eVTOL 100. The crew can use the UI unit 96 to change the operation mode of the eVTOL 100 and execute the test of each EDS 10.
A-2.運搬状態の詳細構成:
 図4に示すように、eVTOL100は、他機100とワイヤW1を介して連結し、他機100を運搬できる。本実施形態では、説明の便宜上、運搬機であるeVTOL100を運搬機101と呼び、被運搬機であるeVTOL100を被運搬機102と呼ぶ。
A-2. Detailed configuration of transportation status:
As shown in FIG. 4, the eVTOL 100 can be connected to the other machine 100 via the wire W1 to carry the other machine 100. In the present embodiment, for convenience of explanation, the eVTOL 100 which is a carrier is referred to as a carrier 101, and the eVTOL 100 which is a carrier is referred to as a carrier 102.
 運搬機101では、上述のように、連結部29においてワイヤW1の一端が取り付けられ、ワイヤW1を介して被運搬機102と連結されている。これに対して、被運搬機102では、連結部CP1(以下、「被運搬用連結部CP1」とも呼ぶ)においてワイヤW1の他端が取り付けられている。図4の例では、被運搬機102は、8つのEDS10のうち、右前方のリフト用回転翼31を駆動させるEDS10(以下、「EDS11」と呼ぶ)が故障しており、かかるリフト用回転翼31を回転駆動させることができない。このため、運搬機101により被運搬機102を整備工場まで運搬する必要がある。図4では、このような状況下でのeVTOL100の運搬状態を表している。本実施形態では、運搬状態において、運搬機101は、8つのEDS10のうちのすべてのEDS10を用いて垂直離着陸およびクルーズを行う。これに対して、被運搬機102では、8つのEDS10のうち、故障したEDS11を駆動させず、他のEDS10を駆動させる。 In the transporter 101, as described above, one end of the wire W1 is attached to the connecting portion 29 and is connected to the transported machine 102 via the wire W1. On the other hand, in the transported machine 102, the other end of the wire W1 is attached to the connecting portion CP1 (hereinafter, also referred to as “transported connecting portion CP1”). In the example of FIG. 4, of the eight EDS10s, the EDS10 (hereinafter referred to as “EDS11”) for driving the right front lift rotor blade 31 of the transported machine 102 is out of order, and the lift rotorcraft 31 cannot be driven to rotate. Therefore, it is necessary to transport the transported machine 102 to the maintenance shop by the transporting machine 101. FIG. 4 shows the transportation state of the eVTOL 100 under such a situation. In the present embodiment, in the transport state, the carrier 101 performs vertical takeoff and landing and cruise using all EDS10s out of eight EDS10s. On the other hand, in the transported device 102, of the eight EDS10s, the failed EDS11 is not driven, but the other EDS10s are driven.
 図5に示すように、被運搬用連結部CP1は、第1支持部23に設けられたねじ孔231に係止部材50が螺合された構成を有する。なお、図5では、係止部材50がねじ孔231に取り付けられる様子を示している。係止部材50は、環状部51と、棒状の基部52とを有する。環状部51は、基部52の一端に接続されている。環状部51には、フック60が取り付けられている。フック60には、ワイヤW1の一端が取り付けられている。基部52において、環状部51が接続されている側とは反対側の外表面には、図示しないねじ山が形成されている。そして、かかるねじ山がねじ孔231に螺合するように係止部材50が取り付けられる。本実施形態では、第1支持部23の表面のうち、ねじ孔231が形成されている部分を覆うように、カバー部232が配置されている。カバー部232のうち、ねじ孔231に対応する位置には開口233が設けられており、また、かかる開口233を開閉する蓋部234が設けられている。運搬状態でないときには、ねじ孔231に係止部材50は取り付けられておらず、また、蓋部234により開口233は閉じられている。このため、eVTOL100の飛行時における空気抵抗を低減できる。なお、取り付けられた状態の係止部材50は、本開示における係止部に相当する。 As shown in FIG. 5, the transported connecting portion CP1 has a configuration in which the locking member 50 is screwed into the screw hole 231 provided in the first support portion 23. Note that FIG. 5 shows how the locking member 50 is attached to the screw hole 231. The locking member 50 has an annular portion 51 and a rod-shaped base portion 52. The annular portion 51 is connected to one end of the base portion 52. A hook 60 is attached to the annular portion 51. One end of the wire W1 is attached to the hook 60. A thread (not shown) is formed on the outer surface of the base 52 on the side opposite to the side to which the annular portion 51 is connected. Then, the locking member 50 is attached so that the screw thread is screwed into the screw hole 231. In the present embodiment, the cover portion 232 is arranged so as to cover the portion of the surface of the first support portion 23 in which the screw hole 231 is formed. An opening 233 is provided at a position corresponding to the screw hole 231 in the cover portion 232, and a lid portion 234 for opening and closing the opening 233 is provided. When not in the transport state, the locking member 50 is not attached to the screw hole 231 and the opening 233 is closed by the lid portion 234. Therefore, the air resistance of the eVTOL 100 during flight can be reduced. The locked member 50 in the attached state corresponds to the locking portion in the present disclosure.
 被運搬機102を運搬機101により運搬しようとする場合、作業員は、被運搬機102における準備作業として、まず、蓋部234を開いてねじ孔231を露出させる。次に、作業員は、係止部材50の基部52に形成されたねじ山をねじ孔231に螺合させて係止部材50を第1支持部23に取り付ける。次に、作業員は、ワイヤW1の一端が取り付けられたフック60を、係止部材50の環状部51に取り付ける。このようにして、被運搬機102における準備作業が完了する。ここで、各第1支持部23には、予め係止部材50を取り付けるためのねじ孔231が用意されている。換言すると、図4に示すように、各第1支持部23には、被運搬用連結部CP1となり得る部位の位置が予め定められている。そして、作業員は、故障したEDS11に対応する位置に被運搬用連結部CP1を設けるように、ねじ孔231に係止部材50を取り付ける。ねじ孔231に係止部材50を取り付けた状態において、係止部材50のうちの少なくとも環状部51は、機体20から露出する状態となる。 When the carrier 102 is to be transported by the carrier 101, the worker first opens the lid portion 234 to expose the screw hole 231 as a preparatory work in the carrier 102. Next, the worker screwes the screw thread formed on the base portion 52 of the locking member 50 into the screw hole 231 to attach the locking member 50 to the first support portion 23. Next, the worker attaches the hook 60 to which one end of the wire W1 is attached to the annular portion 51 of the locking member 50. In this way, the preparatory work in the transported machine 102 is completed. Here, each first support portion 23 is provided with a screw hole 231 for attaching the locking member 50 in advance. In other words, as shown in FIG. 4, each first support portion 23 has a predetermined position of a portion that can be a connecting portion CP1 to be transported. Then, the worker attaches the locking member 50 to the screw hole 231 so that the connecting portion CP1 to be transported is provided at the position corresponding to the failed EDS 11. When the locking member 50 is attached to the screw hole 231, at least the annular portion 51 of the locking member 50 is exposed from the machine body 20.
 ここで、被運搬用連結部CP1の位置、すなわち、ねじ孔231が形成されている位置について、図6を用いて説明する。図4および図6に示す運搬状態において、実際に使用される被運搬用連結部CP1、すなわち、フック60を介してワイヤW1が取り付けられる被運搬用連結部CP1は、eVTOL100を鉛直方向に見て、重心位置CMを起点とする半直線であって、故障したEDS11に対応する回転翼30の重心を通る半直線L1に位置している。具体的には、半直線L1において、重心位置CMとEDS11に対応する回転翼30の重心との間に位置している。なお、図6では、図示の便宜上、仮想的な線である半直線L1を太い実線により表している。このような位置に被運搬用連結部CP1を設けることにより、被運搬機102をワイヤW1により吊り下げた際に、被運搬機102の姿勢が傾くことを抑制できる。 Here, the position of the material handling connecting portion CP1, that is, the position where the screw hole 231 is formed will be described with reference to FIG. In the transport state shown in FIGS. 4 and 6, the transported connecting portion CP1 actually used, that is, the transported connecting portion CP1 to which the wire W1 is attached via the hook 60, looks at the eVTOL 100 in the vertical direction. , Center of gravity position CM is a half straight line starting from CM, and is located on a half straight line L1 passing through the center of gravity of the rotor 30 corresponding to the failed EDS 11. Specifically, it is located between the center of gravity position CM and the center of gravity of the rotary blade 30 corresponding to EDS 11 on the half straight line L1. In FIG. 6, for convenience of illustration, the half straight line L1 which is a virtual line is represented by a thick solid line. By providing the transported connecting portion CP1 at such a position, it is possible to prevent the posture of the transported device 102 from tilting when the transported device 102 is suspended by the wire W1.
 図2に示す連結部29の構成は、図5に示す被運搬用連結部CP1の構成とほぼ同じである。すなわち、機体本体部21の底面に設けられた図示しないねじ孔に係止部材50が取り付けられた構成を有する。作業員は、運搬機101における準備作業として、まず、蓋部を開いてねじ孔を露出させる。次に、作業員は、ねじ孔に係止部材50を取り付ける。次に、作業員は、ワイヤW1の他端が取り付けられたフック60を、係止部材50の環状部51に取り付ける。 The configuration of the connecting portion 29 shown in FIG. 2 is almost the same as the configuration of the connecting portion CP1 for transportation shown in FIG. That is, it has a configuration in which the locking member 50 is attached to a screw hole (not shown) provided on the bottom surface of the machine body 21. As a preparatory work for the carrier 101, the worker first opens the lid portion to expose the screw holes. Next, the worker attaches the locking member 50 to the screw hole. Next, the worker attaches the hook 60 to which the other end of the wire W1 is attached to the annular portion 51 of the locking member 50.
 以上説明した第1実施形態のeVTOL100によれば、他機100と連結するための連結部29、CP1を備えるので、機体20が連結部CP1(被運搬用連結部CP1)を備える構成においては、かかる連結部CP1により連結された他機100により運搬されることができ、また、連結部29を備える構成においては、かかる連結部29により連結された他機100を運搬できる。したがって、EDS10や回転翼30に故障が発生して安定飛行が困難なeVTOL100を、他機100により運搬できる。 According to the eVTOL 100 of the first embodiment described above, since the connecting portion 29 and CP1 for connecting to the other machine 100 are provided, in the configuration in which the machine body 20 includes the connecting portion CP1 (connecting portion CP1 to be transported), It can be transported by the other machine 100 connected by the connecting portion CP1, and in the configuration including the connecting portion 29, the other machine 100 connected by the connecting portion 29 can be transported. Therefore, the eVTOL 100, which is difficult to fly stably due to a failure in the EDS 10 or the rotor blade 30, can be transported by the other aircraft 100.
 また、連結部29、CP1は、一端が他機100の連結部CP1、29に連結されたワイヤW1の他端を、連結するための係止部材50を有するので、かかる係止部材50を利用してワイヤW1の他端を連結し、これにより他機100と連結して、他機100を運搬することまたは他機100により運搬されることを実現できる。 Further, since the connecting portion 29 and CP1 have a locking member 50 for connecting the other end of the wire W1 whose one end is connected to the connecting portion CP1 and 29 of the other machine 100, the locking member 50 is used. Then, the other end of the wire W1 is connected, thereby connecting with the other machine 100, and it is possible to carry the other machine 100 or to be carried by the other machine 100.
 また、係止部材50は、機体20から一部が露出するように、機体20に着脱自在に取り付けられているので、他機100と連結しない場合には、かかる係止部材50を取り外すことにより、飛行中の空気抵抗の増大を抑制できる。 Further, since the locking member 50 is detachably attached to the machine body 20 so that a part of the locking member 50 is exposed from the machine body 20, when the locking member 50 is not connected to another machine 100, the locking member 50 can be removed. , It is possible to suppress the increase in air resistance during flight.
 また、6つのリフト用回転翼31は、鉛直方向に見たときの機体20の重心位置CMを中心として互いに点対称の位置にある2つの回転翼30の合計3つのペアからなり、また、クルーズ用回転翼32は、重心位置CMを通る機体軸AXに対して線対称の位置にある2つの回転翼30からなるので、垂直離着陸時またはクルーズ時の機体安定性を向上できる。 The six lift rotors 31 consist of a total of three pairs of two rotors 30 that are point-symmetrical to each other with respect to the center of gravity CM of the aircraft 20 when viewed in the vertical direction. Since the rotor 32 is composed of two rotors 30 located at positions line-symmetrical with respect to the body axis AX passing through the center of gravity CM, it is possible to improve the stability of the body during vertical takeoff and landing or during cruise.
 また、複数の被運搬用連結部CP1は、それぞれ、機体20を鉛直方向に見て、重心位置CMを起点とする半直線であって複数の回転翼30のうちのいずれかの回転翼30の重心を通る半直線に位置するので、いずれかの回転翼30が故障等により駆動されない状況において、かかる回転翼30の重心を通る半直線に位置する被運搬用連結部CP1により他機100に連結されて運搬されることができる。この場合、被運搬機における駆動可能な回転翼を駆動させる状況において自機100の姿勢を安定させることができる。 Further, each of the plurality of transport connecting portions CP1 is a half straight line starting from the center of gravity position CM when the aircraft 20 is viewed in the vertical direction, and the plurality of rotary blades 30 of any of the plurality of rotary blades 30. Since it is located in a half straight line passing through the center of gravity, in a situation where one of the rotors 30 is not driven due to a failure or the like, it is connected to the other machine 100 by the transported connecting portion CP1 located in the half line passing through the center of gravity of the rotorcraft 30. Can be transported. In this case, the attitude of the own machine 100 can be stabilized in a situation where the driveable rotary blades of the transported machine are driven.
B.第2実施形態:
 第2実施形態のeVTOL100の概略構成は、第1実施形態のeVTOL100と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。第2実施形態のeVTOL100は、連結部の詳細構成において、第1実施形態のeVTOL100と異なる。第1実施形態では、運搬機101により運搬される状態において使用される被運搬用連結部CP1は、1つであったが、本実施形態では、2つである。
B. Second embodiment:
Since the schematic configuration of the eVTOL 100 of the second embodiment is the same as that of the eVTOL 100 of the first embodiment, the same components are designated by the same reference numerals, and detailed description thereof will be omitted. The eVTOL 100 of the second embodiment is different from the eVTOL 100 of the first embodiment in the detailed configuration of the connecting portion. In the first embodiment, the number of connecting portions CP1 to be transported used in the state of being transported by the transporter 101 is one, but in the present embodiment, there are two.
 図7および図8に示すように、第2実施形態では、係止部材50に代えて、係止部材50aに、フック60が取り付けられている。係止部材50aは、中央がU字状に湾曲した外観形状を有し、両端にねじ山が形成されている。なお、図7および図8では、カバー部232、開口233および蓋部234は省略されている。 As shown in FIGS. 7 and 8, in the second embodiment, the hook 60 is attached to the locking member 50a instead of the locking member 50. The locking member 50a has an external shape in which the center is curved in a U shape, and threads are formed at both ends. In addition, in FIG. 7 and FIG. 8, the cover portion 232, the opening 233, and the lid portion 234 are omitted.
 図8に示すように、第1支持部23には、貫通孔235が形成されている。第1支持部23において係止部材50aが取り付けられる部分の内側には、板部材236が配置されている。板部材236には、貫通孔235と対応する位置に貫通孔237が形成されている。係止部材50aの両端は、貫通孔235および貫通孔237に収容され、端部に形成されているねじ山にナット239が螺合することにより、係止部材50aが第1支持部23に取り付けられる。かかる構成においては、係止部材50aとナット239との2つの螺合部分が、被運搬用連結部CP2、CP3に相当することとなる。 As shown in FIG. 8, a through hole 235 is formed in the first support portion 23. A plate member 236 is arranged inside the portion of the first support portion 23 to which the locking member 50a is attached. A through hole 237 is formed in the plate member 236 at a position corresponding to the through hole 235. Both ends of the locking member 50a are housed in the through hole 235 and the through hole 237, and the nut 239 is screwed into the thread formed at the end to attach the locking member 50a to the first support portion 23. Be done. In such a configuration, the two screwed portions of the locking member 50a and the nut 239 correspond to the transported connecting portions CP2 and CP3.
 図9に示すように、本実施形態では、2つの被運搬用連結部CP2、CP3の図心G1が、上述の半直線L1に存在するように構成されている。具体的には、貫通孔235、貫通孔237の位置を調整することにより、図心G1が半直線L1に存在するように構成されている。このような構成により、ワイヤW1によって連結された運搬機101により運搬される際に、被運搬機102の姿勢が不安定になることを抑制できる。 As shown in FIG. 9, in the present embodiment, the centroid G1 of the two connecting portions CP2 and CP3 to be transported is configured to exist in the above-mentioned half straight line L1. Specifically, by adjusting the positions of the through hole 235 and the through hole 237, the center of gravity G1 is configured to exist in the half straight line L1. With such a configuration, it is possible to prevent the posture of the transported machine 102 from becoming unstable when being transported by the carrier 101 connected by the wire W1.
 以上説明した第2実施形態のeVTOL100は、第1実施形態のeVTOL100と同様な効果を有する。加えて、2つの被運搬用連結部CP2、CP3の図心が半直線L1に存在するように構成されているので、運搬機101によって運搬される際に、被運搬機102の姿勢のバランスが崩れることを抑制でき、運搬時の安定性を向上できる。 The eVTOL 100 of the second embodiment described above has the same effect as the eVTOL 100 of the first embodiment. In addition, since the centers of gravity of the two connecting portions CP2 and CP3 for transportation are configured to exist in the half straight line L1, the posture balance of the transportation machine 102 when being transported by the transportation machine 101 is balanced. It can be suppressed from collapsing and the stability during transportation can be improved.
C.第3実施形態:
C-1.装置構成:
 図10に示す第3実施形態のeVTOL100の構成は、主制御部91が係止制御部912として機能する点と、アクチュエータ97および荷重センサ935を備える点と、係止部材50が変位可能に構成されており、機体本体部21の内部から一部が露出する状態(以下、「第1状態」と呼ぶ)と、機体本体部21の内部にすべて収容される状態(以下、「第2状態」と呼ぶ)とのいずれかに制御される点とにおいて、第1実施形態のeVTOL100の構成と異なり、他の構成は同じである。したがって、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。
C. Third embodiment:
C-1. Device configuration:
The configuration of the eVTOL 100 of the third embodiment shown in FIG. 10 is such that the main control unit 91 functions as the locking control unit 912, the actuator 97 and the load sensor 935 are provided, and the locking member 50 is displaceable. A state in which a part of the body is exposed from the inside of the machine body 21 (hereinafter referred to as "first state") and a state in which the entire body is housed inside the body 21 (hereinafter referred to as "second state"). It is different from the configuration of the eVTOL 100 of the first embodiment in that it is controlled by any of the above configurations, and the other configurations are the same. Therefore, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
 係止制御部912は、係止部材50の状態を、上述の第1状態と第2状態とのうちのいずれか一方となるように、アクチュエータ97を制御する。アクチュエータ97は、係止制御部912の指示に応じて、係止部材50を変位させる。荷重センサ935は、係止部材50に掛かる荷重を計測する。係止部材50に所定の閾値以上の負荷が掛かる場合、運搬状態であることが推定される。荷重センサ935の計測値は、主制御部91に出力される。 The locking control unit 912 controls the actuator 97 so that the state of the locking member 50 is one of the first state and the second state described above. The actuator 97 displaces the locking member 50 in response to an instruction from the locking control unit 912. The load sensor 935 measures the load applied to the locking member 50. When a load equal to or higher than a predetermined threshold is applied to the locking member 50, it is presumed that the locking member 50 is in a transported state. The measured value of the load sensor 935 is output to the main control unit 91.
 なお、本実施形態では、eVTOL100は、連結部29と連結部CP1(被運搬用連結部CP1)とをいずれも予め備えている。そして、いずれの連結部29、CP1についても係止部材50が予め設けられており、各係止部材50が、それぞれアクチュエータ97により変位可能に構成されている。 In the present embodiment, the eVTOL 100 is provided with both the connecting portion 29 and the connecting portion CP1 (connecting portion CP1 for transportation) in advance. A locking member 50 is provided in advance for each of the connecting portions 29 and CP1, and each locking member 50 is configured to be displaceable by an actuator 97.
C-2.係止制御処理:
 図11に示す係止制御処理は、係止部材50の状態を第1状態または第2状態のいずれかに制御するための処理である。本実施形態において、係止部材50の初期状態は、第2状態である。第2状態において、作業員は、蓋部234を開けて係止部材50にフック60を取り付けることができる。eVTOL100では、電源がオンすると、係止制御処理が実行される。
C-2. Locking control process:
The locking control process shown in FIG. 11 is a process for controlling the state of the locking member 50 to either the first state or the second state. In the present embodiment, the initial state of the locking member 50 is the second state. In the second state, the worker can open the lid 234 and attach the hook 60 to the locking member 50. In the eVTOL 100, when the power is turned on, the locking control process is executed.
 係止制御部912は、自機100が垂直離着陸中またはクルーズ中であるか否かを判定する(ステップS105)。垂直離着陸中であるか否かは、例えば、高度計931および速度センサ934の計測値の時間的変化により判断してもよい。また、クルーズ中であるか否かは、例えば、位置センサ933および速度センサ934の計測値の時間的変化により判断してもよい。 The locking control unit 912 determines whether or not the own aircraft 100 is in vertical takeoff and landing or during a cruise (step S105). Whether or not it is in vertical takeoff and landing may be determined, for example, by the temporal change of the measured values of the altimeter 931 and the speed sensor 934. Further, whether or not the vehicle is cruising may be determined, for example, by the temporal change of the measured values of the position sensor 933 and the speed sensor 934.
 係止制御部912は、自機100に他機100が連結されているか否かを判定する(ステップS110)。具体的には、係止制御部912は、各係止部材50に掛かっている荷重を荷重センサ935の計測値により特定し、いずれか1つの係止部材50において荷重が所定の閾値以上である場合に、他機100に連結されていると判定する。 The locking control unit 912 determines whether or not another machine 100 is connected to the own machine 100 (step S110). Specifically, the locking control unit 912 specifies the load applied to each locking member 50 by the measured value of the load sensor 935, and the load in any one of the locking members 50 is equal to or higher than a predetermined threshold value. In this case, it is determined that the other machine 100 is connected.
 他機100が連結されていると判定された場合(ステップS110:YES)、係止制御部912は、閾値以上の荷重が計測された係止部材50の状態を、第1状態となるように制御する(ステップS115)。ステップS115の完了後、処理は上述のステップS105に戻る。 When it is determined that the other machine 100 is connected (step S110: YES), the locking control unit 912 sets the state of the locking member 50 in which the load equal to or higher than the threshold value is measured to the first state. Control (step S115). After the completion of step S115, the process returns to step S105 described above.
 これに対して、他機100が連結されていないと判定された場合(ステップS110:NO)、係止制御部912は、すべての係止部材50の状態を第2状態に制御する(ステップS120)。初期状態では、すべての係止部材50の状態は第2状態であるので、この場合、初期状態を維持することとなる。ステップS120の完了後、処理は上述のステップS105に戻る。 On the other hand, when it is determined that the other machine 100 is not connected (step S110: NO), the locking control unit 912 controls the states of all the locking members 50 to the second state (step S120). ). In the initial state, the state of all the locking members 50 is the second state, so in this case, the initial state is maintained. After the completion of step S120, the process returns to step S105 described above.
 以上説明した第3実施形態のeVTOL100は、第1実施形態のeVTOL100と同様な効果を有する。加えて、係止制御部912は、eVTOL100が垂直離着陸中またはクルーズ中であり、且つ、他機100と連結されていない場合には、係止部材50の状態を第2状態に制御し、他機100と連結されている場合には、係止部材50aの状態を第1状態となるように制御するので、他機100と連結されていない場合には係止部材50を機体本体部21の内部に収容して、eVTOL100の飛行中における空気抵抗の増大を抑制でき、また、他機100と連結されている場合には第2状態となるように制御するので、係止部材50を露出させることにより、フック60やワイヤW1により第1支持部23が損傷することを抑制できる。 The eVTOL 100 of the third embodiment described above has the same effect as the eVTOL 100 of the first embodiment. In addition, the locking control unit 912 controls the state of the locking member 50 to the second state when the eVTOL 100 is in vertical takeoff and landing or is cruising and is not connected to the other aircraft 100. When connected to the machine 100, the state of the locking member 50a is controlled to be the first state. Therefore, when the locking member 50 is not connected to the other machine 100, the locking member 50 is connected to the machine body 21. By accommodating it inside, it is possible to suppress an increase in air resistance during flight of the eVTOL 100, and when it is connected to another aircraft 100, it is controlled to be in the second state, so that the locking member 50 is exposed. As a result, it is possible to prevent the first support portion 23 from being damaged by the hook 60 and the wire W1.
D.第4実施形態:
 図12に示す第4実施形態のeVTOL100の構成は、主制御部91が係止制御部912に代えて被運搬状態判定部913として機能する点において、図10に示す第3実施形態のeVTOL100の構成と異なり、他の構成は同じである。したがって、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。被運搬状態判定部913は、自機100が、被運搬用連結部CP1を用いて他機100と連結されている状態(以下、「被運搬状態」と呼ぶ)であるか否かを判定する。第4実施形態のeVTOL100では、統合制御部911および被運搬状態判定部913によって図13に示すモータ制御処理が実行される。
D. Fourth Embodiment:
The configuration of the eVTOL 100 of the fourth embodiment shown in FIG. 12 is the configuration of the eVTOL 100 of the third embodiment shown in FIG. 10 in that the main control unit 91 functions as the transported state determination unit 913 instead of the locking control unit 912. Unlike the configuration, the other configurations are the same. Therefore, the same components are designated by the same reference numerals, and detailed description thereof will be omitted. The transported state determination unit 913 determines whether or not the own machine 100 is in a state of being connected to another machine 100 by using the transported connecting unit CP1 (hereinafter, referred to as “transported state”). .. In the eVTOL 100 of the fourth embodiment, the motor control process shown in FIG. 13 is executed by the integrated control unit 911 and the transported state determination unit 913.
 モータ制御処理とは、被運搬機における各EDS10が有するモータ111を制御するための処理である。eVTOL100の電源がオンすると、モータ制御処理が実行される。 The motor control process is a process for controlling the motor 111 of each EDS 10 in the transported machine. When the power of the eVTOL 100 is turned on, the motor control process is executed.
 被運搬状態判定部913は、被運搬用連結部CP1は、フック60およびワイヤW1を介して他機100に連結されているか否かを判定する(ステップS205)。具体的には、被運搬状態判定部913は、係止部材50のうち、被運搬用連結部CP1に用いられる係止部材50において、所定の閾値以上の荷重が荷重センサ935により検出された場合に、他機100に連結されていると判定し、かかる荷重が検出されない場合に他機100に連結されていないと判定する。 The transported state determination unit 913 determines whether or not the transported connecting unit CP1 is connected to the other machine 100 via the hook 60 and the wire W1 (step S205). Specifically, when the load sensor 935 detects a load equal to or greater than a predetermined threshold value in the locking member 50 used for the transportation connecting portion CP1 among the locking members 50, the transported state determination unit 913 In addition, it is determined that the device is connected to the other machine 100, and if the applied load is not detected, it is determined that the device is not connected to the other machine 100.
 他機100に連結されていると判定された場合(ステップS205:YES)、統合制御部911は、全てのEDS10に対してモータ111を停止させるように制御することにより、全ての回転翼30を停止させる(ステップS210)。被運搬状態の場合、EDS10や回転翼30の故障が生じている可能性があり、そのような場合に、回転翼30を駆動した場合に、自機100(被運搬機102)の姿勢安定性が崩れるおそれがある。そこで、本実施形態では、他機100に運搬されている状態においては、全ての回転翼30を停止させるようにしている。ステップS210の完了後、処理は上述のステップS205に戻る。 When it is determined that the machine is connected to the other machine 100 (step S205: YES), the integrated control unit 911 controls all the EDS 10s to stop the motor 111, thereby causing all the rotor blades 30 to stop. Stop (step S210). In the case of being transported, there is a possibility that the EDS 10 or the rotary wing 30 has failed. In such a case, when the rotary wing 30 is driven, the attitude stability of the own machine 100 (the carrier 102) is stable. May collapse. Therefore, in the present embodiment, all the rotor blades 30 are stopped in the state of being transported to the other machine 100. After the completion of step S210, the process returns to step S205 described above.
 上述のステップS205において、他機100に連結されていないと判定された場合(ステップS205:NO)、統合制御部911は、指令に応じて各EDS10のモータ111を駆動させる(ステップS215)。ステップS215の指示とは、運転者の操作に応じて出力される指示や、自動運転の場合に予めプログラムされている指示が該当する。 If it is determined in step S205 described above that the device is not connected to another machine 100 (step S205: NO), the integrated control unit 911 drives the motor 111 of each EDS 10 in response to a command (step S215). The instruction in step S215 corresponds to an instruction output according to the operation of the driver or an instruction pre-programmed in the case of automatic driving.
 以上説明した第4実施形態のeVTOL100は、第3実施形態のeVTOL100と同様な効果を有する。加えて、被運搬状態であると判定された場合に、回転翼30をいずれも停止させるように各EDS10を制御するので、自機100のEDS10のうちの一部のシステムまたは一部の回転翼30が故障した状態において、他の正常なEDS10が動作して他の回転翼30が回転駆動することにより、自機100の姿勢のバランスが崩れてしまうことを抑制できる。このため、運搬時における自機100および他機100の姿勢安定性を向上できる。 The eVTOL 100 of the fourth embodiment described above has the same effect as the eVTOL 100 of the third embodiment. In addition, since each EDS 10 is controlled so as to stop all the rotors 30 when it is determined to be in the transported state, some systems or some rotors of the EDS 10 of the own machine 100 are controlled. It is possible to prevent the posture of the own machine 100 from being out of balance due to the operation of the other normal EDS 10 and the rotational drive of the other rotors 30 in the state where the 30 has failed. Therefore, the attitude stability of the own machine 100 and the other machine 100 during transportation can be improved.
E.第5実施形態:
 図14に示す第5実施形態のeVTOL100の構成は、主制御部91が姿勢関連情報取得部914として機能する点において、図3に示す第1実施形態のeVTOL100の構成と異なり、他の構成は同じである。したがって、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。姿勢関連情報取得部914は、自機100の姿勢に関する情報(以下、「姿勢関連情報」と呼ぶ)を取得する。本実施形態において、姿勢関連情報とは、姿勢センサ932により計測される値である。すなわち、ロール方向の加速度と、チルト方向の加速度とが該当する。かかる姿勢関連情報により、自機100の姿勢が安定しているか否かを判定できる。具体的には、ロール方向の加速度が所定の閾値以下であり、且つ、チルト方法の加速度が所定の閾値以下である場合に、他機100の姿勢が安定していると判定できる。
E. Fifth embodiment:
The configuration of the eVTOL 100 of the fifth embodiment shown in FIG. 14 is different from the configuration of the eVTOL 100 of the first embodiment shown in FIG. 3 in that the main control unit 91 functions as the posture-related information acquisition unit 914, and the other configurations are different. It is the same. Therefore, the same components are designated by the same reference numerals, and detailed description thereof will be omitted. The posture-related information acquisition unit 914 acquires information on the posture of the own machine 100 (hereinafter, referred to as “posture-related information”). In the present embodiment, the posture-related information is a value measured by the posture sensor 932. That is, the acceleration in the roll direction and the acceleration in the tilt direction correspond to each other. Based on the attitude-related information, it can be determined whether or not the attitude of the own machine 100 is stable. Specifically, when the acceleration in the roll direction is equal to or less than a predetermined threshold value and the acceleration in the tilt method is equal to or less than a predetermined threshold value, it can be determined that the posture of the other machine 100 is stable.
 第5実施形態では、運搬機および被運搬機において後述の運搬処理を実行することにより、運搬状態における他機100および自機100の姿勢安定性を向上させるとともに、垂直離着陸時およびクルーズ時の動力を向上させるようにしている。 In the fifth embodiment, by executing the transportation process described later in the carrier and the carrier, the attitude stability of the other aircraft 100 and the own aircraft 100 in the transport state is improved, and the power during vertical takeoff and landing and during cruise is improved. I am trying to improve.
 図15に示す運搬処理は、運搬機101により被運搬機102を運搬しようとする際に、作業員および運搬機101の主制御部91(統合制御部911および姿勢関連情報取得部914)により実行される。 The transport process shown in FIG. 15 is executed by the main control unit 91 (integrated control unit 911 and posture-related information acquisition unit 914) of the worker and the transporter 101 when the transporter 101 intends to transport the transporter 102. Will be done.
 作業員は、被運搬機102の連結部CP1を準備する(工程P305)。この工程P305は、第1実施形態において説明した被運搬機102における準備作業に該当する。作業員は、ワイヤW1で、運搬機101と被運搬機102とを連結する(工程P310)。作業員は、運搬機101において所定の操作を行うことにより、運搬機を上昇させる(工程P315)。工程P315における所定の操作とは、例えば、操縦桿による上昇操作であったり、垂直離陸のための所定のプログラムを実行させるためのUI部96における操作であったりする。 The worker prepares the connecting portion CP1 of the transported machine 102 (process P305). This step P305 corresponds to the preparatory work in the transported machine 102 described in the first embodiment. The worker connects the carrier 101 and the carrier 102 with the wire W1 (process P310). The worker raises the carrier by performing a predetermined operation on the carrier 101 (step P315). The predetermined operation in the step P315 is, for example, an ascending operation by the control stick or an operation in the UI unit 96 for executing a predetermined program for vertical takeoff.
 運搬機101の統合制御部911は、通信装置92を介して、被運搬機102の主制御部91に対して、正常なEDS10をフルパワーで駆動するように指示する(工程P320)。図示は省略されているが、被運搬機102の統合制御部911は、通信装置92を介して運搬機101の統合制御部911から出力される指示を受信し、かかる指示に応じて、正常なEDS10をフルパワーで駆動させる。被運搬機102における正常なEDS10をフルパワーで駆動させることにより、運搬機101および被運搬機102の全体としての飛翔力を向上できる。なお、工程P320においては、フルパワーに限らず、フルパワーよりも低い任意のパワーで正常なEDS10を駆動するように指示してもよい。 The integrated control unit 911 of the carrier 101 instructs the main control unit 91 of the carrier 102 to drive the normal EDS 10 at full power via the communication device 92 (process P320). Although not shown, the integrated control unit 911 of the transported device 102 receives an instruction output from the integrated control unit 911 of the carrier 101 via the communication device 92, and is normal in response to the instruction. Drive the EDS 10 at full power. By driving the normal EDS 10 in the transported machine 102 with full power, the flight power of the carrier 101 and the transported machine 102 as a whole can be improved. In the step P320, the normal EDS 10 may be instructed to be driven by an arbitrary power lower than the full power, not limited to the full power.
 運搬機101の姿勢関連情報取得部914は、被運搬機102の姿勢関連情報を取得し、かかる姿勢関連情報に基づき、被運搬機102の姿勢は安定したか否かを判定する(工程P325)。具体的には、運搬機101の姿勢関連情報取得部914は、通信装置92を介して被運搬機102の姿勢関連情報取得部914に対し、取得された姿勢関連情報の送信を要求する。かかる要求に応じて、被運搬機102の姿勢関連情報取得部914は、自機100の姿勢センサ932から得られた姿勢関連情報を、自機100の通信装置92を介して運搬機101の姿勢関連情報取得部914に送信する。このようにして運搬機101の姿勢関連情報取得部914は、被運搬機102の姿勢関連情報を受信でき、被運搬機102の姿勢が安定したか否かを判定できる。 The posture-related information acquisition unit 914 of the carrier 101 acquires the posture-related information of the carrier 102, and determines whether or not the posture of the carrier 102 is stable based on the posture-related information (step P325). .. Specifically, the attitude-related information acquisition unit 914 of the carrier 101 requests the attitude-related information acquisition unit 914 of the carrier 102 to transmit the acquired attitude-related information via the communication device 92. In response to such a request, the attitude-related information acquisition unit 914 of the transported machine 102 transmits the posture-related information obtained from the posture sensor 932 of the own machine 100 to the posture of the carrier 101 via the communication device 92 of the own machine 100. It is transmitted to the related information acquisition unit 914. In this way, the posture-related information acquisition unit 914 of the carrier 101 can receive the posture-related information of the carrier 102, and can determine whether or not the posture of the carrier 102 is stable.
 被運搬機102の姿勢は安定していないと判定された場合(工程P325:NO)、運搬機101の統合制御部911は、被運搬機102の姿勢が安定するように、運搬機101の回転翼30の回転数を制御する(工程P330)。例えば、被運搬機102において回転駆動していない回転翼30が相対的に下方に位置し、かかる回転翼30に対し重心位置CMを中心として点対称の位置にある回転翼30が相対的に上方に位置するように姿勢が傾いている場合には、自機100の各リフト用回転翼31の回転数を上昇させて揚力を増加させる。これにより、被運搬機102において回転駆動していない回転翼30が上昇して、被運搬機102の姿勢が安定する。ステップS330の完了後、処理は上述の工程P325に戻る。 When it is determined that the posture of the transported machine 102 is not stable (process P325: NO), the integrated control unit 911 of the carrier 101 rotates the carrier 101 so that the posture of the transported machine 102 is stable. The rotation speed of the blade 30 is controlled (step P330). For example, the rotor 30 that is not rotationally driven in the carrier 102 is located relatively downward, and the rotor 30 that is point-symmetrical with respect to the center of gravity position CM is relatively upward with respect to the rotor 30. When the posture is tilted so as to be located at, the lift is increased by increasing the number of rotations of each lift rotor 31 of the own machine 100. As a result, the rotary blade 30 that is not rotationally driven in the transported machine 102 rises, and the posture of the transported machine 102 is stabilized. After the completion of step S330, the process returns to step P325 described above.
 被運搬機102の姿勢は安定していると判定された場合(工程P325:YES)、運搬機101の統合制御部911は、安定した状態での自機100の各回転翼30の回転数の割合を維持したまま、各回転翼30の回転数を増加させて、被運搬機102を上昇させる(工程P335)。 When it is determined that the posture of the transported machine 102 is stable (step P325: YES), the integrated control unit 911 of the carrier 101 determines the rotation speed of each rotor 30 of the own machine 100 in a stable state. While maintaining the ratio, the rotation speed of each rotor 30 is increased to raise the carrier 102 (step P335).
 運搬機101の姿勢関連情報取得部914は、被運搬機102の姿勢関連情報を取得し、かかる姿勢関連情報に基づき、被運搬機102の姿勢は安定したか否かを判定する(工程P340)。この工程P340は、上述の工程P325と同じである。被運搬機102の姿勢は安定していないと判定された場合(工程P340:NO)、運搬機101の統合制御部911は、被運搬機102の姿勢が安定するように、運搬機101の回転翼30の回転数を制御する(工程P345)。この工程P345は、上述の工程P330と同じである。すなわち、被運搬機102が上昇してクルーズが開始した後も、被運搬機102の姿勢が安定するように運搬機101の各回転翼30の回転数を制御するようにしている。 The posture-related information acquisition unit 914 of the carrier 101 acquires the posture-related information of the carrier 102, and determines whether or not the posture of the carrier 102 is stable based on the posture-related information (step P340). .. This step P340 is the same as the above-mentioned step P325. When it is determined that the posture of the transported machine 102 is not stable (process P340: NO), the integrated control unit 911 of the carrier 101 rotates the carrier 101 so that the posture of the transported machine 102 is stable. The rotation speed of the blade 30 is controlled (step P345). This step P345 is the same as the above-mentioned step P330. That is, the rotation speed of each rotor 30 of the carrier 101 is controlled so that the posture of the carrier 102 is stable even after the carrier 102 rises and the cruise starts.
 被運搬機102の姿勢は安定していると判定された場合(工程P340:YES)、運搬機101の統合制御部911は、目的地に到着したか否かを判定する(工程P350)。目的地に到着していないと判定された場合(工程P350:NO)、処理は上述の工程P340に戻る。これに対して、目的地に到着したと判定された場合(工程P350:YES)、運搬処理は終了する。 When it is determined that the posture of the transported machine 102 is stable (process P340: YES), the integrated control unit 911 of the carrier 101 determines whether or not the vehicle has arrived at the destination (process P350). If it is determined that the destination has not arrived (step P350: NO), the process returns to step P340 described above. On the other hand, when it is determined that the vehicle has arrived at the destination (step P350: YES), the transportation process ends.
 以上説明した第5実施形態のeVTOL100は、第1実施形態のeVTOL100と同様な効果を有する。加えて、運搬機101の統合制御部911は、通信装置92を介した通信により、被運搬機102の統合制御部911に対して、被運搬機102のEDS10のうちの正常システムをフルパワーで駆動させるように指示し、また、被運搬機102の姿勢関連情報を取得し、被運搬機102の姿勢のバランスを安定するように、運搬機101のEDS10の動作を制御する。このため、被運搬機102の正常システムを動作させることにより垂直離着陸時およびクルーズ時の運搬機101および被運搬機102の動力(飛翔力)を向上でき、また、運搬機101および被運搬機102の姿勢を安定させることができ、運搬時の姿勢安定性を向上できる。 The eVTOL 100 of the fifth embodiment described above has the same effect as the eVTOL 100 of the first embodiment. In addition, the integrated control unit 911 of the carrier 101 uses the communication device 92 to communicate with the integrated control unit 911 of the carrier 102 to perform the normal system of the EDS 10 of the carrier 102 at full power. The operation of the EDS 10 of the carrier 101 is controlled so as to instruct to drive the machine, acquire the posture-related information of the carrier 102, and stabilize the posture balance of the carrier 102. Therefore, the power (flying force) of the carrier 101 and the carrier 102 during vertical takeoff and landing and cruise can be improved by operating the normal system of the carrier 102, and the carrier 101 and the carrier 102 can be operated. It is possible to stabilize the posture of the vehicle and improve the posture stability during transportation.
F.第6実施形態:
 図16に示す第6実施形態のeVTOL100aは、第1支持部23および第2支持部24に代えて、支持プレート90を備える点において、第1実施形態のeVTOL100と異なる。第6実施形態のeVTOL100aの他の構成は、第1実施形態のeVTOL100と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。なお、図16では、被運搬機102aとしてのeVTOL100aが表されている。
F. Sixth Embodiment:
The eVTOL 100a of the sixth embodiment shown in FIG. 16 is different from the eVTOL 100 of the first embodiment in that a support plate 90 is provided in place of the first support portion 23 and the second support portion 24. Since the other configurations of the eVTOL 100a of the sixth embodiment are the same as those of the eVTOL 100 of the first embodiment, the same components are designated by the same reference numerals, and detailed description thereof will be omitted. In addition, in FIG. 16, eVTOL100a as the transported machine 102a is shown.
 支持プレート90は、六角形の平面視形状を有する。支持プレート90の各頂点の近傍には、EDS10およびリフト用回転翼31が配置されている。支持プレート90の中心部は、支柱部22の端部と接合されている。 The support plate 90 has a hexagonal plan view shape. The EDS 10 and the lift rotor 31 are arranged in the vicinity of each apex of the support plate 90. The central portion of the support plate 90 is joined to the end portion of the strut portion 22.
 第1実施形態の被運搬用連結部CP1は、重心位置CMを起点とする半直線であって、故障したEDS11に対応する回転翼30の重心を通る半直線L1において、重心位置CMとEDS11に対応する回転翼30の重心との間に位置していた。これに対して、第6実施形態の被運搬機102aでは、被運搬用連結部CP4は、半直線L1において、故障したEDS11に対応する回転翼30の重心よりも、重心位置CMから遠い側に位置している。 The connected portion CP1 to be transported according to the first embodiment is a half straight line starting from the center of gravity position CM, and is connected to the center of gravity position CM and the EDS 11 in the half straight line L1 passing through the center of gravity of the rotor 30 corresponding to the failed EDS 11. It was located between the center of gravity of the corresponding rotor 30. On the other hand, in the transported machine 102a of the sixth embodiment, the transported connecting portion CP4 is located on the half straight line L1 on the side farther from the center of gravity position CM than the center of gravity of the rotor blade 30 corresponding to the failed EDS 11. positioned.
 以上の構成を有する第6実施形態のeVTOL100aは、第1実施形態のeVTOL100と同様な効果を有する。 The eVTOL 100a of the sixth embodiment having the above configuration has the same effect as the eVTOL 100 of the first embodiment.
G.他の実施形態:
 (G1)他の実施形態1:
 第1、3~6実施形態では、運搬状態において用いられる被運搬用連結部CP1、CP4は、1つであった。また、第2実施形態では、運搬状態において用いられる被運搬用連結部CP2、CP3は、2つであった。しかし、本開示はこれに限定されない。例えば、図17に示すように、3つの被運搬用連結部CP1が、同時に用いられる構成であってもよい。図17では、図9と同様に、3つの被運搬用連結部CP1と、これら3つの被運搬用連結部CP1の図心G1aと、故障したEDS11に対応する回転翼30の重心位置P1とが模式的に表されている。図17の例では、3つの係止部材50が被運搬機102に設けられており、それぞれの係止部材50においてフック60を介して取り付けられたワイヤが、単一の共用のフック61に取り付けられている。そして、このフック61に運搬機101から延びるワイヤW1が取り付けられている。このような構成においても、図心G1aが、半直線L1に存在することにより、各実施形態と同様な効果を得ることができる。
G. Other embodiments:
(G1) Other Embodiment 1:
In the first, third to sixth embodiments, the number of connecting portions CP1 and CP4 for transportation used in the transportation state was one. Further, in the second embodiment, the number of the transported connecting portions CP2 and CP3 used in the transported state is two. However, this disclosure is not limited to this. For example, as shown in FIG. 17, the three connected parts CP1 for transportation may be used at the same time. In FIG. 17, as in FIG. 9, the three transported connecting portions CP1, the center of gravity G1a of these three transported connecting portions CP1, and the center of gravity position P1 of the rotary blade 30 corresponding to the failed EDS 11 are shown. It is represented schematically. In the example of FIG. 17, three locking members 50 are provided on the transported machine 102, and the wires attached via the hooks 60 in each locking member 50 are attached to a single common hook 61. Has been done. A wire W1 extending from the carrier 101 is attached to the hook 61. Even in such a configuration, since the center of gravity G1a exists in the half straight line L1, the same effect as in each embodiment can be obtained.
 (G2)他の実施形態2:
 各実施形態におけるeVTOL100、100aの構成はあくまでも一例に過ぎず、種々変更可能である。
 (G2-1)例えば、図18に示すeVTOL100bは、いわゆるマルチコプター形の機体を有する。具体的には、eVTOL100bは、機体本体部21aと、機体本体部21aから放射状に延びる6つの第1支持部23bと、各第1支持部23bの端部に設けられた合計6つの電動推進装置33bとを備える。電動推進装置33bは、第1実施形態のEDS10と回転翼30とからなる。機体本体部21aは、六面体の外観形状を有し、固定翼を備えていない。eVTOL100bでは、運搬機101として機能する際に被運搬機102と連結するための連結部29bを、機体本体部21aの底面側であって、鉛直方向に見てeVTOL100bの重心位置CMbと同じ位置に備えている。また、被運搬機102として機能する際に運搬機101と連結するための被運搬用連結部CPbを、各第1支持部23bに備えている。このような構成においても、各実施形態と同様な効果を奏する。
(G2) Other Embodiment 2:
The configurations of eVTOL 100 and 100a in each embodiment are merely examples and can be changed in various ways.
(G2-1) For example, the eVTOL 100b shown in FIG. 18 has a so-called multicopter type airframe. Specifically, the eVTOL 100b includes a machine body 21a, six first support 23b extending radially from the body 21a, and a total of six electric propulsion devices provided at the ends of the first support 23b. It includes 33b. The electric propulsion device 33b includes the EDS 10 and the rotary blade 30 of the first embodiment. The airframe body 21a has a hexahedral appearance and is not provided with fixed wings. In the eVTOL 100b, the connecting portion 29b for connecting to the transported machine 102 when functioning as the carrier 101 is located on the bottom surface side of the machine body 21a and at the same position as the center of gravity CMb of the eVTOL 100b when viewed in the vertical direction. I have. In addition, each first support portion 23b is provided with a transport connecting portion CPb for connecting to the transport machine 101 when functioning as the transport machine 102. Even in such a configuration, the same effect as that of each embodiment is obtained.
 (G2-2)また、例えば、図19に示すeVTOL100cは、いわゆるチルトロータ形の機体を有する。eVTOL100cは、第1実施形態のeVTOL100と同様に、機体本体部21、主翼25、尾翼28を有する。但し、eVTOL100とは異なり、eVTOL100cは、支柱部22、第1支持部23、第2支持部24を有していない。主翼25の両端には、電動推進装置33cが配置されている。電動推進装置33cは、第1実施形態のEDS10と回転翼30とからなる。電動推進装置33cは、垂直離着陸時には、回転翼30の姿勢が水平方向と略平行となるように制御され、クルーズ時には、回転翼30の姿勢が鉛直方向と略平行となるように制御される。eVTOL100cは、運搬機101として機能する際に被運搬機102と連結するための連結部29cを、機体本体部21の底面側であって、鉛直方向に見てeVTOL100cの重心位置CMcと同じ位置に備えている。また、被運搬機102として機能する際に運搬機101と連結するための被運搬用連結部CPcを、右翼26と左翼27とにそれぞれ1つずつ備えている。右翼26に設けられた被運搬用連結部CPcは、重心位置CMcを起点として右側の電動推進装置33c(回転翼30)の重心位置を通る半直線に存在する。同様に、左翼27に設けられた被運搬用連結部CPcは、重心位置CMcを起点として左側の電動推進装置33c(回転翼30)の重心位置を通る半直線に存在する。このような構成においても、各実施形態と同様な効果を奏する。 (G2-2) For example, the eVTOL 100c shown in FIG. 19 has a so-called tilt rotor type airframe. The eVTOL 100c has a main body portion 21, a main wing 25, and a tail wing 28, similarly to the eVTOL 100 of the first embodiment. However, unlike the eVTOL100, the eVTOL100c does not have a strut portion 22, a first support portion 23, and a second support portion 24. Electric propulsion devices 33c are arranged at both ends of the main wing 25. The electric propulsion device 33c includes the EDS 10 and the rotary blade 30 of the first embodiment. The electric propulsion device 33c is controlled so that the posture of the rotor 30 is substantially parallel to the horizontal direction during vertical takeoff and landing, and is controlled so that the posture of the rotor 30 is substantially parallel to the vertical direction during cruise. In the eVTOL 100c, the connecting portion 29c for connecting to the transported machine 102 when functioning as the carrier 101 is located on the bottom surface side of the machine body portion 21 and at the same position as the center of gravity CMc of the eVTOL 100c when viewed in the vertical direction. I have. Further, each of the right wing 26 and the left wing 27 is provided with one CPc for being transported to be connected to the transporter 101 when functioning as the transporter 102. The transported connecting portion CPc provided on the right wing 26 exists in a half straight line starting from the center of gravity position CMc and passing through the center of gravity position of the electric propulsion device 33c (rotor blade 30) on the right side. Similarly, the transported connecting portion CPc provided on the left wing 27 exists in a semi-straight line starting from the center of gravity position CMc and passing through the center of gravity position of the left electric propulsion device 33c (rotor blade 30). Even in such a configuration, the same effect as that of each embodiment is obtained.
 (G2-3)また、例えば、図20および図21に示すeVTOL100dは、いわゆるチルトウィング形の機体である。なお、図20は、クルーズ時のeVTOL100dの上面図を表し、図21は、垂直離着陸時のeVTOL100dの上面図を表している。eVTOL100dは、第1実施形態のeVTOL100と同様に、機体本体部21、主翼25、尾翼28を有する。但し、eVTOL100とは異なり、eVTOL100cは、支柱部22、第1支持部23、第2支持部24を有していない。右翼26および左翼27には、それぞれ2つずつ電動推進装置33dが配置されている。電動推進装置33dは、第1実施形態のEDS10と回転翼30とからなる。右翼26および左翼27は、回動可能に構成されている。図20に示すように、クルーズ時には、右翼26および左翼27は、略水平となるように姿勢が制御されている。これに対して、図21に示すように、垂直離着陸時には、右翼26および左翼27は、略鉛直となるように姿勢が制御されている。図20および図21のいずれの状態においても、eVTOL100dは、運搬機101として機能する際に被運搬機102と連結するための連結部29dを、機体本体部21の底面側であって、鉛直方向に見てeVTOL100dの重心位置CMdと同じ位置に備えている。図20に示すようにクルーズ時の姿勢において、被運搬用連結部CP1d1は、重心位置CMdを起点として主翼25の幅方向の中央を通る半直線と、電動推進装置33dの重心を通り機体軸AXと並行な仮想的な半直線との交点に設けられている。これに対して、図21に示すように、垂直離着陸時の姿勢において、被運搬用連結部CP1d2は、各電動推進装置33d(各回転翼30)の重心位置に設けられている。このような構成においても、各実施形態と同様な効果を奏する。 (G2-3) Further, for example, the eVTOL 100d shown in FIGS. 20 and 21 is a so-called tilt wing type airframe. Note that FIG. 20 shows a top view of the eVTOL 100d during cruise, and FIG. 21 shows a top view of the eVTOL 100d during vertical takeoff and landing. The eVTOL 100d has a main body portion 21, a main wing 25, and a tail wing 28, similarly to the eVTOL 100 of the first embodiment. However, unlike the eVTOL100, the eVTOL100c does not have a strut portion 22, a first support portion 23, and a second support portion 24. Two electric propulsion devices 33d are arranged on each of the right wing 26 and the left wing 27. The electric propulsion device 33d includes the EDS 10 and the rotary blade 30 of the first embodiment. The right wing 26 and the left wing 27 are configured to be rotatable. As shown in FIG. 20, during the cruise, the postures of the right wing 26 and the left wing 27 are controlled so as to be substantially horizontal. On the other hand, as shown in FIG. 21, at the time of vertical takeoff and landing, the attitudes of the right wing 26 and the left wing 27 are controlled so as to be substantially vertical. In either of the states of FIGS. 20 and 21, the eVTOL 100d has a connecting portion 29d for connecting to the transported machine 102 when functioning as the transporting machine 101 on the bottom surface side of the machine body portion 21 in the vertical direction. It is provided at the same position as the center of gravity CMd of the eVTOL 100d. As shown in FIG. 20, in the attitude during cruise, the transported connecting portion CP1d1 passes through the center of the main wing 25 in the width direction from the center of gravity position CMd and the center of gravity of the electric propulsion device 33d, and passes through the center of gravity of the electric propulsion device 33d. It is provided at the intersection with a virtual half line parallel to. On the other hand, as shown in FIG. 21, the material handling connecting portion CP1d2 is provided at the position of the center of gravity of each electric propulsion device 33d (each rotor 30) in the posture during vertical takeoff and landing. Even in such a configuration, the same effect as that of each embodiment is obtained.
 (G3)他の実施形態3:
 各実施形態では、運搬機101と被運搬機102とは1本のワイヤW1で連結されていたが本開示はこれに限定されない。図22のeVTOL100bは、図18に示すeVTOL100bと同じであるので、その詳細な説明を省略する。運搬機101bであるeVTOL100bの連結部29bと、被運搬機102bであるeVTOL100bの2つの被運搬用連結部CPbとは、合計2本のワイヤW11、W12により連結されている。このような構成においても、各実施形態と同様な効果を奏する。なお、各実施形態および図22の例からも理解できるように、任意の本数のワイヤにより、運搬機の連結部と被運搬機の連結部とを互いに連結してもよい。
(G3) Other Embodiment 3:
In each embodiment, the carrier 101 and the carrier 102 are connected by one wire W1, but the present disclosure is not limited to this. Since the eVTOL 100b of FIG. 22 is the same as the eVTOL 100b shown in FIG. 18, detailed description thereof will be omitted. The connecting portion 29b of the eVTOL 100b, which is the carrier 101b, and the two connecting portions CPb for being transported, which are the eVTOL 100b which is the transported machine 102b, are connected by a total of two wires W11 and W12. Even in such a configuration, the same effect as that of each embodiment is obtained. As can be understood from each embodiment and the example of FIG. 22, the connecting portion of the carrier and the connecting portion of the transported machine may be connected to each other by an arbitrary number of wires.
 (G4)他の実施形態4:
 各実施形態では、1台の運搬機101により1台の被運搬機102を運搬していたが、本開示はこれに限定されない。例えば、図23および図24に示すように、2台の運搬機101b、103bである2台のeVTOL100bにより、1台の被運搬機102bである1台のeVTOL100bを運搬してもよい。なお、図23および図24に示すeVTOL100bは、図18に示すeVTOL100bと同じであるので、その詳細な説明を省略する。図24に示すように、運搬機101bの連結部29bと、被運搬機102bの2つの被運搬用連結部CPbとは、合計2本のワイヤW13、W14により連結されている。同様に、運搬機103bの連結部29bと、被運搬機102bの2つの被運搬用連結部CPbとは、合計2本のワイヤW15、W16により連結されている。
(G4) Other Embodiment 4:
In each embodiment, one carrier 102 is used to carry one carrier 102, but the present disclosure is not limited to this. For example, as shown in FIGS. 23 and 24, one eVTOL 100b, which is one carrier 102b, may be transported by two eVTOL 100b, which are two carriers 101b and 103b. Since the eVTOL 100b shown in FIGS. 23 and 24 is the same as the eVTOL 100b shown in FIG. 18, detailed description thereof will be omitted. As shown in FIG. 24, the connecting portion 29b of the transporter 101b and the two transportable connecting portions CPb of the transported machine 102b are connected by a total of two wires W13 and W14. Similarly, the connecting portion 29b of the transporting machine 103b and the two connecting portions CPb for being transported of the transported machine 102b are connected by a total of two wires W15 and W16.
 また、例えば、図25に示すように、3台の運搬機101b、103b、104bであるeVTOL100bにより、1台の被運搬機102bである1台のeVTOL100bを運搬してもよい。図25に示すeVTOL100bは、図18に示すeVTOL100bと同じであるので、その詳細な説明を省略する。運搬機101bの連結部29bと、被運搬機102bの2つの被運搬用連結部CPbとは、合計2本のワイヤW21、W22により連結されている。同様に、運搬機103bの連結部29bと、被運搬機102bの2つの被運搬用連結部CPbとは、合計2本のワイヤW23、W24により連結されている。同様に、運搬機104bの連結部29bと、被運搬機102bの2つの被運搬用連結部CPbとは、合計2本のワイヤW25、W26により連結されている。これらの構成においても、各実施形態と同様な効果を奏する。なお、各実施形態および図23~25の例からも理解できるように、任意の数の運搬機101により被運搬機102を運搬してもよい。 Further, for example, as shown in FIG. 25, one eVTOL100b, which is one transported machine 102b, may be transported by three eVTOL100b, which are the transporters 101b, 103b, and 104b. Since the eVTOL 100b shown in FIG. 25 is the same as the eVTOL 100b shown in FIG. 18, detailed description thereof will be omitted. The connecting portion 29b of the transporting machine 101b and the two connecting portions CPb for being transported of the transported machine 102b are connected by a total of two wires W21 and W22. Similarly, the connecting portion 29b of the transporting machine 103b and the two connecting portions CPb for being transported of the transported machine 102b are connected by a total of two wires W23 and W24. Similarly, the connecting portion 29b of the transporting machine 104b and the two connecting portions CPb for being transported of the transported machine 102b are connected by a total of two wires W25 and W26. Even in these configurations, the same effect as in each embodiment is obtained. As can be understood from each embodiment and the examples of FIGS. 23 to 25, the transported machine 102 may be transported by an arbitrary number of transporters 101.
 (G5)他の実施形態5:
 各実施形態においてフック60を省略してもよい。かかる構成においては、ワイヤW1を係止部材50に直接取り付けてもよい。また、連結部29は、機体本体部21の底面でなくとも、機体本体部21における下方側の任意の位置に配置されていてもよい。また、被運搬用連結部CP1は、第1支持部23でなくとも第2支持部24や機体本体部21の上方側の任意の位置に設けられていてもよい。また、第4実施形態において、アクチュエータ97を省略してもよい。かかる構成では、係止部材50は作業員により第1支持部23に取り付けられることとなる。かかる構成においても、係止部材50に掛かる荷重により他機100が連結されているか否かを判定でき、また、その判定結果に応じて各EDS10のモータ111の駆動を制御できる。また、各実施形態において、モータ111と回転翼30とを接続するシャフト13に、回転翼30の回転速度を増減させるギアボックスを設けてもよい。また、eVTOL100、100a~100dは、有人航空機に代えて無人航空機として構成されていてもよい。また、第1ないし第6実施形態のeVTOL100、100aでは、EDS10およびリフト用回転翼31の各セットは、第1支持部23または支持プレート90を介して単一の支柱部22により機体20に固定されていたが、本開示はこれに限定されない。EDS10およびリフト用回転翼31の各セットが、それぞれ互いに独立した支持部(支柱部)により機体20に固定される構成としてもよい。また、第3実施形態では、自機100に他機100が連結されているか否かを、荷重センサ935の計測値に基づき判定していたが、本開示はこれに限定されない。例えば、ワイヤW1内に導線を通し、自機100と他機100とが連結した場合にかかる導線が通電し、他方、非連結状態では通電しない構成として、導線の通電状態に基づき自機100に他機100が連結されているか否かを判定してもよい。
(G5) Other Embodiment 5:
The hook 60 may be omitted in each embodiment. In such a configuration, the wire W1 may be attached directly to the locking member 50. Further, the connecting portion 29 may be arranged at an arbitrary position on the lower side of the machine body portion 21 even if it is not the bottom surface of the machine body portion 21. Further, the material handling connecting portion CP1 may be provided at an arbitrary position on the upper side of the second supporting portion 24 and the machine body main body portion 21 instead of the first supporting portion 23. Further, in the fourth embodiment, the actuator 97 may be omitted. In such a configuration, the locking member 50 is attached to the first support portion 23 by an operator. Even in such a configuration, it is possible to determine whether or not the other machine 100 is connected by the load applied to the locking member 50, and it is possible to control the drive of the motor 111 of each EDS 10 according to the determination result. Further, in each embodiment, the shaft 13 connecting the motor 111 and the rotary blade 30 may be provided with a gearbox for increasing or decreasing the rotational speed of the rotary blade 30. Further, the eVTOL 100, 100a to 100d may be configured as an unmanned aerial vehicle instead of the manned aircraft. Further, in the eVTOL 100 and 100a of the first to sixth embodiments, each set of the EDS 10 and the rotary blade 31 for lifting is fixed to the machine body 20 by a single support portion 22 via the first support portion 23 or the support plate 90. However, this disclosure is not limited to this. Each set of the EDS 10 and the lift rotary blade 31 may be fixed to the machine body 20 by support portions (post portions) independent of each other. Further, in the third embodiment, whether or not the other machine 100 is connected to the own machine 100 is determined based on the measured value of the load sensor 935, but the present disclosure is not limited to this. For example, when a wire is passed through the wire W1 and the own machine 100 and the other machine 100 are connected, the wire is energized, while the wire is not energized in the unconnected state. It may be determined whether or not the other machine 100 is connected.
 (G6)他の実施形態6:
 本開示に記載の主制御部91及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の主制御部91及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の主制御部91及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
(G6) Other Embodiment 6:
The main control unit 91 and its method described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. , May be realized. Alternatively, the main control unit 91 and its method described in the present disclosure may be realized by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the main control unit 91 and its method described in the present disclosure include a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by a combination. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the purpose. For example, the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Claims (8)

  1.  電動垂直離着陸機(100、100a~100d)であって、
     複数の回転翼(30)と、
     各前記回転翼を回転駆動させるモータ(111)を有する複数の電駆動システム(10)と、
     前記複数の回転翼と前記電駆動システムとが配置された機体(20)と、
     前記機体における上方側と下方側とのうちの少なくとも一方に設けられ、他の電動垂直離着陸機である他機と連結するための連結部(29、CP1~CP4、CPb、CPc、CPd1、CPd2)と、
     を備える、電動垂直離着陸機。
    It is an electric vertical take-off and landing aircraft (100, 100a-100d).
    With multiple rotors (30),
    A plurality of electric drive systems (10) having a motor (111) for rotationally driving each rotor blade,
    An airframe (20) in which the plurality of rotor blades and the electric drive system are arranged, and
    Connecting portions (29, CP1 to CP4, CPb, CPc, CPd1, CPd2) provided on at least one of the upper side and the lower side of the aircraft and for connecting with another aircraft which is another electric vertical take-off and landing aircraft. When,
    Equipped with an electric vertical take-off and landing aircraft.
  2.  請求項1に記載の電動垂直離着陸機であって、
     前記連結部は、一端が前記他の電動垂直離着陸機の前記連結部に連結されたワイヤ(W1)の他端を、係止するための係止部(50)を有する、電動垂直離着陸機。
    The electric vertical take-off and landing aircraft according to claim 1.
    The connecting portion is an electric vertical take-off and landing machine having a locking portion (50) for locking the other end of a wire (W1) whose one end is connected to the connecting portion of the other electric vertical take-off and landing machine.
  3.  請求項2に記載の電動垂直離着陸機であって、
     前記係止部は、前記機体から一部が露出するように、前記機体に着脱自在に取り付けられている、電動垂直離着陸機。
    The electric vertical take-off and landing aircraft according to claim 2.
    The locking portion is an electric vertical take-off and landing aircraft that is detachably attached to the airframe so that a part of the locking portion is exposed from the airframe.
  4.  請求項2に記載の電動垂直離着陸機であって、
     前記係止部の状態を、前記機体から一部が露出する第1状態と、前記機体内部に収容される第2状態と、のうちのいずれか一方となるように制御する係止制御部(912)を、さらに備え、
     前記係止制御部は、前記電動垂直離着陸機が垂直離着陸中またはクルーズ中であり、且つ、前記他機と連結されていない場合には、前記係止部の状態が前記第2状態となり、前記他機と連結されている場合には、前記係止部の状態が前記第1状態となるように制御する、電動垂直離着陸機。
    The electric vertical take-off and landing aircraft according to claim 2.
    A locking control unit that controls the state of the locking portion to be one of a first state in which a part of the locking portion is exposed and a second state in which the locking portion is housed inside the airframe. 912) further prepared,
    When the electric vertical take-off and landing aircraft is in vertical take-off and landing or cruising and is not connected to the other aircraft, the locking control unit is in the second state. An electric vertical take-off and landing aircraft that controls the state of the locking portion to be the first state when connected to another aircraft.
  5.  請求項1から請求項4までのいずれか一項に記載の電動垂直離着陸機であって、
     前記複数の回転翼は、鉛直方向に見たときの前記機体の重心位置(CM)を中心として互いに点対称の位置にある2つの回転翼、または、前記重心位置を通る前記機体の軸線に対して線対称の位置にある2つの回転翼を含む、電動垂直離着陸機。
    The electric vertical take-off and landing aircraft according to any one of claims 1 to 4.
    The plurality of rotary blades are relative to two rotary blades that are point-symmetrical to each other with respect to the position of the center of gravity (CM) of the aircraft when viewed in the vertical direction, or the axis of the aircraft that passes through the position of the center of gravity. An electric vertical take-off and landing aircraft that includes two rotary wings in line-symmetrical positions.
  6.  請求項5に記載の電動垂直離着陸機であって、
     前記連結部は、前記機体の上方側に設けられ、前記他機によって運搬される際に用いられる被運搬用連結部(CP1~CP4、CPb、CPc、CPd1、CPd2)を備え、
     前記被運搬用連結部は、鉛直方向に見て、前記電動垂直離着陸機の重心を起点とする半直線(L1)であって前記複数の回転翼のうちのいずれかの回転翼の重心を通る半直線に位置する、電動垂直離着陸機。
    The electric vertical take-off and landing aircraft according to claim 5.
    The connecting portion is provided on the upper side of the aircraft and includes a connecting portion to be transported (CP1 to CP4, CPb, CPc, CPd1, CPd2) used when being transported by the other aircraft.
    The connected portion for transportation is a half straight line (L1) starting from the center of gravity of the electric vertical take-off and landing aircraft when viewed in the vertical direction, and passes through the center of gravity of any of the plurality of rotorcraft. An electric vertical take-off and landing aircraft located in a half straight line.
  7.  請求項1から請求項6までのいずれか一項に記載の電動垂直離着陸機であって、
     前記連結部は、前記機体の上方側に設けられ、前記他機によって運搬される際に用いられる被運搬用連結部(CP1~CP4、CPb、CPc、CPd1、CPd2)を備え、
     前記被運搬用連結部を用いて前記他機と連結されている状態である被運搬状態であるか否かを判定する被運搬状態判定部(913)と、
     前記複数の電駆動システムの動作を制御する統合制御部(911)と、
     をさらに備え、
     前記統合制御部は、前記被運搬状態であると判定された場合に、前記複数の回転翼をいずれも停止させるように前記複数の電駆動システムを制御する、電動垂直離着陸機。
    The electric vertical take-off and landing aircraft according to any one of claims 1 to 6.
    The connecting portion is provided on the upper side of the aircraft and includes a connecting portion to be transported (CP1 to CP4, CPb, CPc, CPd1, CPd2) used when being transported by the other aircraft.
    The transported state determination unit (913) for determining whether or not the vehicle is in a transported state, which is connected to the other machine by using the transported connecting unit,
    An integrated control unit (911) that controls the operation of the plurality of electric drive systems, and
    With more
    The integrated control unit is an electric vertical take-off and landing machine that controls the plurality of electric drive systems so as to stop all of the plurality of rotary blades when it is determined that the vehicle is in the transported state.
  8.  請求項1から請求項7までのいずれか一項に記載の電動垂直離着陸機であって、
     前記他機と通信を行う通信部(92)と、
     自身の姿勢に関する情報である姿勢関連情報を取得する姿勢関連情報取得部(914)と、
     前記複数の電駆動システムの動作を制御する統合制御部(911)と、
     をさらに備え、
     前記連結部は、前記機体の下方側に設けられ、
     自らの前記電動垂直離着陸機である自機と、前記他機と、が前記連結部を介して連結された状態において、前記統合制御部は、
      前記通信部を介した通信により、前記他機の前記統合制御部に対して、前記他機が有する前記複数の電駆動システムのうち、正常な電駆動システムである正常システムを動作させるように指示し、
      前記他機の前記姿勢関連情報取得部により取得された前記姿勢関連情報を、前記通信部を介して取得し、
      前記他機の姿勢のバランスを維持するように、前記自機が有する前記複数の電駆動システムの動作を制御する、電動垂直離着陸機。
    The electric vertical take-off and landing aircraft according to any one of claims 1 to 7.
    With the communication unit (92) that communicates with the other device
    The posture-related information acquisition unit (914), which acquires posture-related information that is information about one's own posture,
    An integrated control unit (911) that controls the operation of the plurality of electric drive systems, and
    With more
    The connecting portion is provided on the lower side of the airframe and is provided.
    In a state where the own aircraft, which is its own electric vertical take-off and landing aircraft, and the other aircraft are connected via the connecting portion, the integrated control unit
    By communication via the communication unit, the integrated control unit of the other unit is instructed to operate a normal system which is a normal electric drive system among the plurality of electric drive systems of the other unit. And
    The attitude-related information acquired by the attitude-related information acquisition unit of the other machine is acquired via the communication unit.
    An electric vertical take-off and landing aircraft that controls the operation of the plurality of electric drive systems owned by the own aircraft so as to maintain the balance of attitudes of the other aircraft.
PCT/JP2020/031691 2019-08-28 2020-08-21 Electric vertical take-off and landing aircraft WO2021039653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019155552A JP2021030976A (en) 2019-08-28 2019-08-28 Electric vertical takeoff and landing aircraft
JP2019-155552 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021039653A1 true WO2021039653A1 (en) 2021-03-04

Family

ID=74675045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031691 WO2021039653A1 (en) 2019-08-28 2020-08-21 Electric vertical take-off and landing aircraft

Country Status (2)

Country Link
JP (1) JP2021030976A (en)
WO (1) WO2021039653A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063141A1 (en) 2021-10-11 2023-04-20 株式会社デンソー Drive device and drive device unit
WO2023063140A1 (en) 2021-10-11 2023-04-20 株式会社デンソー Driving device and driving device unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144390A (en) * 1992-11-16 1994-05-24 Kawasaki Heavy Ind Ltd Flight test method for automatic landing experimental plane
CN106741958A (en) * 2017-03-10 2017-05-31 佛山市神风航空科技有限公司 One kind combination aerocraft system and its working method
US20170291704A1 (en) * 2016-04-08 2017-10-12 Drona, LLC Aerial vehicle system
US20190160315A1 (en) * 2017-11-17 2019-05-30 A & P Technology Inc. Beam For Transporting To Remote Locations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144390A (en) * 1992-11-16 1994-05-24 Kawasaki Heavy Ind Ltd Flight test method for automatic landing experimental plane
US20170291704A1 (en) * 2016-04-08 2017-10-12 Drona, LLC Aerial vehicle system
CN106741958A (en) * 2017-03-10 2017-05-31 佛山市神风航空科技有限公司 One kind combination aerocraft system and its working method
US20190160315A1 (en) * 2017-11-17 2019-05-30 A & P Technology Inc. Beam For Transporting To Remote Locations

Also Published As

Publication number Publication date
JP2021030976A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
US11492106B2 (en) Vertical take-off and landing vehicle
US20230234704A1 (en) Short takeoff and landing vehicle with forward swept wings
WO2021039653A1 (en) Electric vertical take-off and landing aircraft
CN110641693A (en) Vertical take-off and landing unmanned aerial vehicle
CN109476366A (en) VTOL aircraft with tiltwing configuration
US11485489B2 (en) Systems and methods for functionality and controls for a VTOL flying car
CA3096609C (en) Convertible biplane aircraft for autonomous cargo delivery
CN110466752B (en) Control method of tilt rotor unmanned aerial vehicle and tilt rotor unmanned aerial vehicle
US11975830B2 (en) Aircraft with pusher propeller
US11447035B1 (en) Battery system optimization for eVTOL aircraft
WO2021155208A1 (en) Aircraft with tilting fan assemblies
WO2021039469A1 (en) Control device of electric vertical takeoff and landing aircraft
JP2021030971A (en) Electric vertical takeoff and landing aircraft and control device for electric vertical takeoff and landing aircraft
US11964753B2 (en) Personal quadcopter aircraft
US11584512B2 (en) Weight distribution systems and control logic for center of gravity management of aircrafts
EP3738871B1 (en) Logistics support aircraft having a minimal drag configuration
JP7234865B2 (en) Equipment for checking the operation of electric vertical take-off and landing aircraft
US20220169371A1 (en) Aircraft
Govindarajan et al. Evaluation of UAV Configurations for Package Delivery Missions though Conceptual Design
WO2023136014A1 (en) Control device for vertical take-off and landing aircraft
US20230249816A1 (en) Flight vehicle
WO2023079965A1 (en) Flight control device
US20230138684A1 (en) Ground State Determination Systems for Aircraft
US20240124134A1 (en) Electric vtol aircraft with tilting propellers and lifting propellers
US20230393588A1 (en) Aircraft control with scheduled angle of attack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856015

Country of ref document: EP

Kind code of ref document: A1