WO2021039450A1 - Method for self-diagnosis of inspection device, and inspection device - Google Patents

Method for self-diagnosis of inspection device, and inspection device Download PDF

Info

Publication number
WO2021039450A1
WO2021039450A1 PCT/JP2020/030934 JP2020030934W WO2021039450A1 WO 2021039450 A1 WO2021039450 A1 WO 2021039450A1 JP 2020030934 W JP2020030934 W JP 2020030934W WO 2021039450 A1 WO2021039450 A1 WO 2021039450A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
light
inspection device
amount
Prior art date
Application number
PCT/JP2020/030934
Other languages
French (fr)
Japanese (ja)
Inventor
慶崇 大塚
茂登 鶴田
勇之 三村
浩史 前田
英二 眞鍋
久則 日詰
真一 篠塚
裕憲 田上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2021542752A priority Critical patent/JP7297074B2/en
Priority to KR1020227010277A priority patent/KR20220051389A/en
Priority to CN202080059026.7A priority patent/CN114258482A/en
Publication of WO2021039450A1 publication Critical patent/WO2021039450A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/93Detection standards; Calibrating baseline adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0228Control of working procedures; Failure detection; Spectral bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/104Mechano-optical scan, i.e. object and beam moving
    • G01N2201/1047Mechano-optical scan, i.e. object and beam moving with rotating optics and moving stage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Definitions

  • This disclosure relates to a self-diagnosis method of an inspection device and an inspection device.
  • a bonding system including a bonding device for forming a polymerized substrate by bonding substrates such as semiconductor wafers and an inspection device for inspecting the polymerized substrate formed by the bonding device is known (Patent Document 1). reference).
  • the present disclosure provides a technique that can facilitate the maintenance of measurement accuracy of an inspection device.
  • the self-diagnosis method of the inspection device is a self-diagnosis method of the inspection device for inspecting the polymerized substrate in which the first substrate and the second substrate are joined, and includes a step of arranging and a step of irradiating. , Includes a step of receiving light and a step of determining an abnormality in the amount of light.
  • the step of arranging is a holding portion that holds the outer peripheral portion of the polymerized substrate, and by moving the holding portion provided with the diagnostic portion having an attenuation member that attenuates light, the holding portion is moved to one of the upper side and the lower side of the holding portion.
  • the illumination unit that irradiates the polymer substrate that is arranged and held by the holding unit with light, and the polymer substrate that is arranged at a position facing the illumination unit on the other side above and below the holding unit and held by the holding unit are imaged.
  • An attenuation member is arranged between the image pickup unit and the image pickup unit.
  • the irradiating step after the arranging step, light is radiated from the illuminating unit at a set amount of light.
  • the step of receiving light after the step of irradiating, the light emitted from the illumination unit and transmitted through the attenuation member is received by the imaging unit.
  • the abnormality of the amount of light emitted from the illumination unit is determined based on the amount of light received by the imaging unit.
  • FIG. 1 is a schematic view showing a configuration of a joining system according to an embodiment.
  • FIG. 2 is a schematic view showing a state before joining the first substrate and the second substrate according to the embodiment.
  • FIG. 3 is a schematic view showing the configuration of the joining device according to the embodiment.
  • FIG. 4 is a schematic view showing the configuration of the inspection device according to the embodiment.
  • FIG. 5 is a schematic view showing a configuration of a holding unit of the inspection device according to the embodiment.
  • FIG. 6 is a diagram showing an example of a method of imaging a measurement mark.
  • FIG. 7 is a diagram showing an example of the measurement mark.
  • FIG. 8 is a diagram showing a configuration of a damping member according to the embodiment.
  • FIG. 1 is a schematic view showing a configuration of a joining system according to an embodiment.
  • FIG. 2 is a schematic view showing a state before joining the first substrate and the second substrate according to the embodiment.
  • FIG. 3 is a schematic view showing the configuration of the joining
  • FIG. 9 is a diagram showing an example of a calibration mark formed on the damping member.
  • FIG. 10 is a block diagram showing a configuration of a control device according to an embodiment.
  • FIG. 11 is a flowchart showing an example of the procedure of the process performed by the bonding system until the polymerized substrate is formed by the bonding device.
  • FIG. 12 is a flowchart showing an example of the procedure of the light amount check process.
  • FIG. 13 is a flowchart showing an example of the procedure of the optical axis check process.
  • FIG. 1 is a schematic view showing a configuration of a joining system according to an embodiment.
  • FIG. 2 is a schematic view showing a state before joining the first substrate and the second substrate according to the embodiment.
  • the bonding system 1 shown in FIG. 1 forms a polymerization substrate T by bonding the first substrate W1 and the second substrate W2 (see FIG. 2).
  • the first substrate W1 and the second substrate W2 are substrates in which a plurality of electronic circuits are formed on a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer.
  • the first substrate W1 and the second substrate W2 have substantially the same diameter.
  • One of the first substrate W1 and the second substrate W2 may be, for example, a substrate on which no electronic circuit is formed.
  • the plate surface on the side to be joined to the second substrate W2 is referred to as "joining surface W1j", and the side opposite to the joining surface W1j is described.
  • the plate surface is described as "non-bonded surface W1n”.
  • the plate surface on the side to be joined to the first substrate W1 is described as “joining surface W2j”
  • the plate surface on the side opposite to the joining surface W2j is “non-joining surface W2n”.
  • the joining system 1 includes an loading / unloading station 2, a processing station 3, and an inspection station 4.
  • the carry-in / out station 2 is arranged on the negative side of the X-axis of the processing station 3 and is integrally connected to the processing station 3.
  • the inspection station 4 is arranged on the X-axis positive direction side of the processing station 3 and is integrally connected to the processing station 3.
  • the loading / unloading station 2 includes a mounting table 10 and a transport area 20.
  • the mounting table 10 includes a plurality of mounting plates 11.
  • Cassettes C1 to C4 for accommodating a plurality of (for example, 25) substrates in a horizontal state are mounted on each mounting plate 11.
  • the cassette C1 can accommodate a plurality of first substrates W1
  • the cassette C2 can accommodate a plurality of second substrates W2
  • the cassette C3 can accommodate a plurality of polymerization substrates T.
  • the cassette C4 is, for example, a cassette for collecting a defective substrate.
  • the number of cassettes C1 to C4 mounted on the mounting plate 11 is not limited to the one shown in the figure.
  • the transport area 20 is arranged adjacent to the X-axis positive direction side of the mounting table 10.
  • the transport region 20 is provided with a transport path 21 extending in the Y-axis direction and a transport device 22 that can move along the transport path 21.
  • the transport device 22 can move not only in the Y-axis direction but also in the X-axis direction and can rotate around the Z-axis.
  • the transport device 22 is formed between the cassettes C1 to C4 mounted on the mounting plate 11 and the third processing block G3 of the processing station 3, which will be described later, of the first substrate W1, the second substrate W2, and the polymerization substrate T. Carry out.
  • the processing station 3 is provided with, for example, three processing blocks G1, G2, and G3.
  • the first processing block G1 is arranged on the back surface side (Y-axis positive direction side in FIG. 1) of the processing station 3.
  • the second processing block G2 is arranged on the front side of the processing station 3 (the negative direction side of the Y axis in FIG. 1)
  • the third processing block G3 is on the loading / unloading station 2 side of the processing station 3 (X in FIG. 1). It is arranged on the negative axis side).
  • a surface reforming device 30 that modifies the joint surfaces W1j and W2j of the first substrate W1 and the second substrate W2 is arranged in the first processing block G1.
  • the surface modifier 30 cuts the bond of SiO2 on the bonding surfaces W1j and W2j of the first substrate W1 and the second substrate W2 to form a single-bonded SiO, so that the bonding surface W1j can be easily hydrophilized thereafter. , W2j is modified.
  • the surface reformer 30 for example, oxygen gas or nitrogen gas, which is a processing gas, is excited to be turned into plasma and ionized in a reduced pressure atmosphere. Then, by irradiating the bonding surfaces W1j and W2j of the first substrate W1 and the second substrate W2 with such oxygen ions or nitrogen ions, the bonding surfaces W1j and W2j are plasma-treated and modified.
  • oxygen gas or nitrogen gas which is a processing gas
  • a surface hydrophilic device 40 is arranged in the first treatment block G1.
  • the surface hydrophilization device 40 hydrophilizes the joint surfaces W1j and W2j of the first substrate W1 and the second substrate W2 with pure water, and cleans the joint surfaces W1j and W2j.
  • the surface hydrophilic device 40 supplies pure water onto the first substrate W1 or the second substrate W2 while rotating the first substrate W1 or the second substrate W2 held by the spin chuck, for example. ..
  • the pure water supplied on the first substrate W1 or the second substrate W2 diffuses on the joint surfaces W1j and W2j of the first substrate W1 or the second substrate W2, and the joint surfaces W1j and W2j are hydrophilized. ..
  • the surface modifier 30 and the surface hydrophilizer 40 are arranged side by side, but the surface hydrophilizer 40 may be laminated above the surface modifier 30.
  • a joining device 41 is arranged in the second processing block G2.
  • the joining device 41 joins the hydrophilic first substrate W1 and the second substrate W2 by an intermolecular force.
  • the configuration of the joining device 41 will be described later.
  • a transport region 60 is formed in a region surrounded by the first processing block G1, the second processing block G2, and the third processing block G3.
  • a transport device 61 is arranged in the transport region 60.
  • the transport device 61 has, for example, a transport arm that is movable in the vertical direction, the horizontal direction, and around the vertical axis.
  • the transfer device 61 moves in the transfer area 60, and the first substrate W1 and the second are connected to predetermined devices in the first processing block G1, the second processing block G2, and the third processing block G3 adjacent to the transport area 60.
  • the substrate W2 and the polymerization substrate T are conveyed.
  • the inspection station 4 is provided with an inspection device 80.
  • the inspection device 80 inspects the polymerization substrate T formed by the joining device 41.
  • the joining system 1 includes a control device 70.
  • the control device 70 controls the operation of the joining system 1.
  • the configuration of the control device 70 will be described later.
  • FIG. 3 is a schematic view showing the configuration of the joining device 41 according to the embodiment.
  • the joining device 41 includes a first holding portion 140, a second holding portion 141, and a striker 190.
  • the first holding portion 140 has a main body portion 170.
  • the main body 170 is supported by the support member 180.
  • the support member 180 and the main body 170 are formed with through holes 176 that penetrate the support member 180 and the main body 170 in the vertical direction.
  • the position of the through hole 176 corresponds to the central portion of the first substrate W1 which is attracted and held by the first holding portion 140.
  • the pressing pin 191 of the striker 190 is inserted into the through hole 176.
  • the striker 190 is arranged on the upper surface of the support member 180, and includes a pressing pin 191, an actuator portion 192, and a linear motion mechanism 193.
  • the pressing pin 191 is a columnar member extending along the vertical direction, and is supported by the actuator portion 192.
  • the actuator unit 192 generates a constant pressure in a certain direction (here, vertically downward) by air supplied from, for example, an electropneumatic regulator (not shown).
  • the actuator unit 192 can control the pressing load applied to the central portion of the first substrate W1 in contact with the central portion of the first substrate W1 by the air supplied from the electropneumatic regulator. Further, the tip portion of the actuator portion 192 is vertically movable up and down through the through hole 176 by the air from the electropneumatic regulator.
  • the actuator unit 192 is supported by the linear motion mechanism 193.
  • the linear motion mechanism 193 moves the actuator unit 192 along the vertical direction by, for example, a drive unit having a built-in motor.
  • the striker 190 controls the movement of the actuator unit 192 by the linear motion mechanism 193, and controls the pressing load of the first substrate W1 by the pressing pin 191 by the actuator unit 192. As a result, the striker 190 presses the central portion of the first substrate W1 that is attracted and held by the first holding portion 140 to bring it into contact with the second substrate W2.
  • a plurality of pins 171 that come into contact with the upper surface (non-joining surface W1n) of the first substrate W1 are provided on the lower surface of the main body 170.
  • the plurality of pins 171 have, for example, a diameter dimension of 0.1 mm to 1 mm and a height of several tens of ⁇ m to several hundreds of ⁇ m.
  • the plurality of pins 171 are evenly arranged at intervals of, for example, 2 mm.
  • the first holding portion 140 includes a plurality of suction portions for sucking the first substrate W1 in a part of the regions where the plurality of pins 171 are provided. Specifically, on the lower surface of the main body 170 of the first holding portion 140, a plurality of outer suction portions 301 and a plurality of inner suction portions 302 for evacuating and sucking the first substrate W1 are provided. The plurality of outer suction portions 301 and the plurality of inner suction portions 302 have arc-shaped suction regions in a plan view. The plurality of outer suction portions 301 and the plurality of inner suction portions 302 have the same height as the pin 171.
  • the plurality of outer suction portions 301 are arranged on the outer peripheral portion of the main body portion 170.
  • the plurality of outer suction portions 301 are connected to a suction device (not shown) such as a vacuum pump, and suck the outer peripheral portion of the first substrate W1 by vacuuming.
  • the plurality of inner suction portions 302 are arranged side by side along the circumferential direction in the radial direction of the main body portion 170 with respect to the plurality of outer suction portions 301.
  • the plurality of inner suction portions 302 are connected to a suction device (not shown) such as a vacuum pump, and suck the region between the outer peripheral portion and the central portion of the first substrate W1 by vacuuming.
  • the second holding unit 141 will be described.
  • the second holding portion 141 has a main body portion 200 having the same diameter as the second substrate W2 or a diameter larger than that of the second substrate W2.
  • the second holding portion 141 having a diameter larger than that of the second substrate W2 is shown.
  • the upper surface of the main body 200 is a facing surface facing the lower surface (non-joining surface W2n) of the second substrate W2.
  • a plurality of pins 201 that come into contact with the lower surface (non-joining surface Wn2) of the second substrate W2 are provided on the upper surface of the main body 200.
  • the plurality of pins 201 have, for example, a diameter dimension of 0.1 mm to 1 mm and a height of several tens of ⁇ m to several hundreds of ⁇ m.
  • the plurality of pins 201 are evenly arranged at intervals of, for example, 2 mm.
  • a lower rib 202 is provided in an annular shape on the outside of the plurality of pins 201.
  • the lower rib 202 is formed in an annular shape and supports the outer peripheral portion of the second substrate W2 over the entire circumference.
  • the main body 200 has a plurality of lower suction ports 203.
  • a plurality of lower suction ports 203 are provided in a suction region surrounded by the lower ribs 202.
  • the plurality of lower suction ports 203 are connected to a suction device (not shown) such as a vacuum pump via a suction pipe (not shown).
  • the second holding portion 141 decompresses the suction region by evacuating the suction region surrounded by the lower rib 202 from the plurality of lower suction ports 203. As a result, the second substrate W2 placed on the suction region is sucked and held by the second holding portion 141.
  • the second substrate W2 Since the lower rib 202 supports the outer peripheral portion of the lower surface of the second substrate W2 over the entire circumference, the second substrate W2 is appropriately evacuated to the outer peripheral portion. As a result, the entire surface of the second substrate W2 can be adsorbed and held. Further, since the lower surface of the second substrate W2 is supported by the plurality of pins 201, the second substrate W2 is easily peeled off from the second holding portion 141 when the evacuation of the second substrate W2 is released.
  • the joining device 41 is provided with a transition, a reversing mechanism, a position adjusting mechanism, and the like in front of the first holding portion 140, the second holding portion 141, and the like shown in FIG.
  • the transition temporarily mounts the first substrate W1, the second substrate W2, and the polymerization substrate T.
  • the position adjusting mechanism adjusts the horizontal orientation of the first substrate W1 and the second substrate W2.
  • the reversing mechanism reverses the front and back of the first substrate W1.
  • FIG. 4 is a schematic view showing the configuration of the inspection device according to the embodiment.
  • FIG. 5 is a schematic view showing a configuration of a holding unit of the inspection device according to the embodiment. Note that FIG. 4 is a schematic view of the inspection device viewed from the side, and FIG. 5 is a schematic view of the holding portion of the inspection device viewed from above.
  • the inspection device 80 includes a holding unit 400, an imaging unit 500, and a lighting unit 600. Further, as shown in FIG. 5, the inspection device 80 includes a diagnostic unit 700.
  • the holding portion 400 holds the polymerization substrate T horizontally.
  • the holding portion 400 includes a main body portion 410 and a plurality of support members 420.
  • the main body 410 is a flat plate frame-shaped member having an opening 411 having a diameter larger than that of the polymerization substrate T.
  • the main body 410 is connected to the moving mechanism 440, and the moving mechanism 440 enables movement in the horizontal direction (X-axis direction and Y-axis direction) and rotation about the vertical axis.
  • the plurality of support members 420 are provided in the main body 410 so as to extend toward the center of the opening 411.
  • the outer peripheral portion of the polymerization substrate T is supported by the tip portions of a plurality of support members 420.
  • the tips of the plurality of support members 420 are connected to a suction device 480 such as a vacuum pump via a suction pipe 460, and the outer peripheral portion of the lower surface of the polymerization substrate T is sucked by vacuuming.
  • the imaging unit 500 includes a macro imaging unit 510, a micro imaging unit 520, a fixing unit 530, and an elevating mechanism 540.
  • the macro imaging unit 510 and the micro imaging unit 520 are arranged above the holding unit 400.
  • the macro image pickup unit 510 includes a camera lens 511 for macro imaging and an image pickup element 512 such as a CCD image sensor or a CMOS image sensor.
  • the micro-imaging unit 520 includes a camera lens 521 for micro-imaging and an image sensor 522 such as a CCD image sensor or a CMOS image sensor.
  • the magnification of the camera lens 511 included in the macro imaging unit 510 is, for example, 10 times.
  • the magnification of the camera lens 521 included in the micro-imaging unit 520 is, for example, 50 times.
  • the macro imaging unit 510 and the micro imaging unit 520 are fixed to the fixing unit 530 with the camera lenses 511 and 521 facing vertically downward.
  • the fixing portion 530 is connected to the elevating mechanism 540, and is moved (elevated) along the vertical direction by the elevating mechanism 540.
  • the image pickup unit 500 can adjust the distance between the macro image pickup unit 510 and the micro image pickup section 520 and the polymerization substrate T by raising and lowering the fixed portion 530 using the elevating mechanism 540.
  • the lighting unit 600 includes a macro lighting unit 610, a micro lighting unit 620, a fixing unit 630, and an elevating mechanism 640.
  • the macro illumination unit 610 and the micro illumination unit 620 are arranged below the holding unit 400. Specifically, the macro illumination unit 610 is arranged at a position facing the macro imaging unit 510 with the polymerization substrate T held by the holding unit 400 interposed therebetween. Further, the microillumination unit 620 is arranged at a position facing the microimaging unit 520 with the polymerization substrate T held by the holding unit 400 interposed therebetween.
  • the macro illumination unit 610 includes a light source 611 and a light collection unit 612.
  • the light source 611 irradiates, for example, near-infrared light of 1000 to 1200 nm.
  • the condensing unit 612 is, for example, a condensing lens, and converges the light emitted from the light source 611 to one point.
  • the micro illumination unit 620 has the same configuration as the macro illumination unit 610. That is, the micro-illumination unit 620 includes a light source 621 and a condensing unit 622, and these configurations are the same as those of the light source 611 and the condensing unit 612 included in the macro illumination unit 610.
  • the light sources 611 and 621 may be arranged outside the macro illumination unit 610 and the micro illumination unit 620. In this case, the light sources 611 and 621 may supply light to the inside of the macro illumination unit 610 and the micro illumination unit 620 via an optical fiber or the like.
  • the macro illumination unit 610 and the micro illumination unit 620 are fixed to the fixing unit 630 with the optical axis oriented in the vertical direction.
  • the fixing portion 630 is connected to the elevating mechanism 640, and is moved (elevated) along the vertical direction by the elevating mechanism 640.
  • the lighting unit 600 can adjust the distance between the macro lighting unit 610 and the micro lighting unit 620 and the polymerization substrate T by raising and lowering the fixed portion 630 using the lifting mechanism 640.
  • the inspection device 80 uses the microimaging unit 520 and the microilluminating unit 620 to image the measurement marks formed on the first substrate W1 and the second substrate W2, respectively.
  • FIG. 6 is a diagram showing an example of a method of imaging a measurement mark.
  • FIG. 7 is a diagram showing an example of the measurement mark.
  • the macro imaging unit 510 and the macro illumination unit 610 are used in the process of specifying the location of the measurement mark, and this point will be described later.
  • the microillumination unit 620 is fixed to the fixing unit 630 (see FIG. 4) so that the optical axis Ax of the light emitted from the light source 621 faces in the vertical direction.
  • the micro image pickup unit 520 is fixed to the fixing portion 530 (see FIG. 4) so that the optical axis Ax passes through the center of the camera lens 521 and intersects the camera lens 521 and the image pickup element 522 perpendicularly.
  • the imaging unit 500 is arranged above the polymerization substrate T and the illumination unit 600 is arranged below the polymerization substrate T, but the illumination unit 600 is arranged above the polymerization substrate T.
  • the image pickup unit 500 may be arranged below the polymerization substrate T.
  • the distance between the micro-imaging unit 520 and the micro-illuminating unit 620 is set to a distance at which the focal point of the camera lens 521 and the focal point of the condensing unit 622 coincide with each other, for example, by manual adjustment work or the like.
  • the inspection device 80 interlocks the elevating mechanism 540 and the elevating mechanism 640 to maintain a distance in which the focal point of the camera lens 521 and the focal point of the condensing unit 622 coincide with each other, and the microimaging unit 520 and the microilluminating unit 620 Raise and lower.
  • the inspection device 80 integrally raises and lowers the micro-imaging unit 520 and the micro-illumination unit 620 using the fixing unit 530 and the elevating mechanism 540, so that the camera lenses 521 and the camera lenses 521 and M2 are formed on the polymerization substrate T. Position the focus of the light collector 622. Then, the inspection device 80 images the measurement marks M1 and M2. Specifically, the light emitted vertically upward from the microillumination unit 620 reaches the image pickup device 522 of the microimaging unit 520 via the second substrate W2 and the first substrate W1. That is, the micro-imaging unit 520 images the measurement marks M1 and M2 with the transmitted light transmitted through the polymerization substrate T. The image data captured by the micro-imaging unit 520 is output to the control device 70.
  • the image data includes an image of the measurement mark M1 formed on the first substrate W1 and the measurement mark M2 formed on the second substrate W2.
  • the control device 70 acquires measurement results such as coordinates of the center of gravity points G1 and G2 of the measurement marks M1 and M2 and the amount of deviation of the center of gravity points G1 and G2 by performing image recognition processing such as edge detection on the image data. Then, based on the obtained measurement results, the bonding state of the polymerization substrate T is inspected.
  • the amount of light emitted from the light source 621 of the microillumination unit 620 changes, the thickness of the contours of the measurement mark M1 and the measurement mark M2 included in the image data changes, and the position of the edge detected by the edge detection changes. May change.
  • the coordinates of the center of gravity points G1 and G2 and the measurement results such as the amount of deviation of the center of gravity points G1 and G2 may be deviated. Therefore, in order to maintain the measurement accuracy of the inspection device 80, it is desirable that the amount of light emitted from the light source 621 of the microillumination unit 620 is always constant.
  • the light source 621 included in the micro-illumination unit 620 gradually deteriorates as it is used, and the amount of light actually obtained becomes lower than the set amount of light. That is, the amount of light of the light source 621 included in the microilluminating unit 620 changes (decreases) with use.
  • the measurement result of the inspection device 80 may deviate.
  • a diagnostic unit 700 is provided in the inspection device 80, and the diagnostic unit 700 is used to check the light intensity and the optical axis of the microillumination unit 620.
  • the diagnostic unit 700 is provided in the main body 410 of the holding unit 400, and has a mounting portion 710 extending toward the center of the opening 411 and a damping member attached to the tip of the mounting portion 710. It is equipped with 720.
  • the mounting portion 710 is arranged between two adjacent support members 420.
  • the mounting portion 710 is shorter than the support member 420, and the damping member 720 is arranged at a position exposed from the polymerization substrate T supported by the plurality of support members 420 in a plan view.
  • the inspection device 80 can perform the light quantity check and the optical axis check using the diagnostic unit 700 even when the polymerization substrate T is held by the holding unit 400.
  • FIG. 8 is a diagram showing the configuration of the damping member 720 according to the embodiment. Further, FIG. 9 is a diagram showing an example of a calibration mark formed on the damping member 720.
  • the damping member 720 includes a glass plate 721 and a plurality of (here, two) silicon plates 722.
  • the glass plate 721 and the two silicon plates 722 are laminated in the order of the silicon plate 722, the glass plate 721, and the silicon plate 722 from the bottom.
  • the light amount check is performed by receiving the light emitted from the light source 621 and transmitted through the attenuation member 720 by the microimaging unit 520 and checking the light amount of the received light.
  • the amount of light of the light source 621 is set to a relatively high value in order to pass through the polymerization substrate T. Therefore, when the light emitted from the light source 621 is directly imaged by the micro-imaging unit 520 at the time of checking the amount of light, the amount of light may be too strong to obtain an appropriate image. Therefore, in the inspection device 80, the light emitted from the light source 621 is attenuated by using the silicon plate 722 in the same manner as the polymerization substrate T. This makes it possible to appropriately check the amount of light.
  • the damping member 720 may include at least one silicon plate 722.
  • the inspection device 80 may check the amount of light every time a predetermined time (for example, 24:00 every day) arrives. Further, the inspection apparatus 80 may check the amount of light each time the number of processed substrates T or the number of processed lots reaches a predetermined number. Further, the inspection device 80 may check the amount of light at predetermined time intervals (for example, every 12 hours). As described above, since the inspection device 80 can perform the light amount check even when the polymerization substrate T is held by the holding portion 400, the light amount check is periodically performed regardless of the presence or absence of the polymerization substrate T. Easy to do.
  • a calibration mark M3 is formed on the glass plate 721.
  • the calibration mark M3 is formed on the glass plate 721 by, for example, thin film deposition.
  • the damping member 720 can be formed at a lower cost than when the calibration mark M3 is formed on the silicon plate 722, for example.
  • the damping member 720 does not necessarily have to be provided with the glass plate 721, and the calibration mark M3 may be formed on the silicon plate 722.
  • the calibration mark M3 includes, for example, a first square M3a and a second square M3b.
  • the first square M3a and the second square M3b have a square frame shape having a uniform thickness.
  • the second square M3b is smaller than the first square M3a and is arranged inside the first square M3a. Further, the position of the center of gravity G3a of the first square M3a and the position of the center of gravity G3b of the second square M3b coincide with each other.
  • the optical axis check checks the degree of deviation between the coordinates of the center of gravity G3a of the first square M3a and the coordinates of the center of gravity G3b of the second square M3b, which are calculated based on the image data captured by the micro-imaging unit 520. It is done by doing. That is, if the optical axis of the microilluminating unit 620 is tilted, the thickness of the frames of the first square M3a and the second square M3b included in the image data becomes non-uniform, so that the centers of gravity G3a and G3b Coordinates do not match.
  • the inspection device 80 can determine whether or not the optical axis is tilted by checking the deviation of the coordinates of the centers of gravity G3a and G3b.
  • the inspection device 80 may execute the optical axis check less frequently than the execution frequency of the light amount check. For example, the inspection device 80 may perform the optical axis check once every time the light amount check is performed a plurality of times. Further, the inspection device 80 may check the optical axis when the power is turned on.
  • FIG. 10 is a block diagram showing the configuration of the control device 70 according to the embodiment. Note that FIG. 10 shows a configuration related to the inspection device 80 among the configurations included in the control device 70.
  • the control device 70 includes a control unit 71 and a storage unit 72.
  • the control unit 71 includes a measurement control unit 71a and a diagnostic control unit 71b. Further, the storage unit 72 stores the light amount initial information 72a.
  • the control device 70 includes, for example, a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), an input / output port, and various circuits. ..
  • a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), an input / output port, and various circuits. ..
  • the CPU of the computer functions as the measurement control unit 71a and the diagnostic control unit 71b of the control unit 71 by reading and executing the program stored in the ROM, for example.
  • At least one or all of the measurement control unit 71a and the diagnostic control unit 71b are composed of hardware such as an ASIC (Application Specific Integrated Circuit), a GPU (Graphics Processing Unit), and an FPGA (Field Programmable Gate Array). You may.
  • ASIC Application Specific Integrated Circuit
  • GPU Graphics Processing Unit
  • FPGA Field Programmable Gate Array
  • the storage unit 72 corresponds to, for example, a RAM or an HDD.
  • the RAM or HDD can store the initial light intensity information 72a.
  • the control device 70 may acquire the above-mentioned program and various information via another computer or a portable recording medium connected by a wired or wireless network.
  • the measurement control unit 71a sets a plurality of (for example, 5 to 13 points) measurement points on the plate surface of the polymerization substrate T, and causes the inspection device 80 to measure the polymerization substrate T at each measurement point.
  • the polymerization substrate T is carried in.
  • the polymerization substrate T is conveyed to the inside of the inspection apparatus 80 by the conveying apparatus 61 (see FIG. 1).
  • the inspection device 80 receives the polymerization substrate T from the transfer device 61 using a lifter (not shown), moves the lifter, and places the polymerization substrate T on the plurality of support members 420.
  • the suction device 480 evacuates the polymerization substrate T through the suction pipe 460, so that the polymerization substrate T is sucked and held by the holding portion 400.
  • the inspection device 80 performs a ⁇ alignment process.
  • the ⁇ alignment process is a process of adjusting the position of the polymerization substrate T in the rotation direction.
  • the inspection apparatus 80 uses the macroimaging unit 510 to set a plurality of reference points (for example, a reference point located at the center of the polymerization substrate T and a reference point located next to the reference point) existing on the polymerization substrate T by the macro imaging unit 510. Take an image. Then, the inspection device 80 calculates the rotation angle of the polymerization substrate T from the obtained image, and rotates the polymerization substrate T using the moving mechanism 440 so that the rotation angle becomes 0 degrees.
  • This reference point is formed on the first substrate W1 or the second substrate W2 for each shot together with the pattern when a pattern is formed on the first substrate W1 or the second substrate W2 by the exposure process, for example. is there. That is, the inspection device 80 rotates the polymerization substrate T so that the pattern arrangement direction for each shot is always the same.
  • the inspection device 80 performs the measurement process. Specifically, the inspection device 80 positions the microimaging unit 520 and the microilluminating unit 620 on the vertical line of the first measurement point by horizontally moving the holding unit 400 using the moving mechanism 440. After that, the inspection device 80 performs the focusing of the micro-imaging unit 520, the position correction of the holding unit 400, and the like, and then uses the micro-imaging unit 520 and the micro-illumination unit 620 to perform the measurement located at the first measurement point.
  • the marks M1 and M2 are imaged.
  • the inspection device 80 performs the same processing on the remaining measurement points. That is, the inspection device 80 repeats the above-mentioned process for the number of measurement points.
  • the measurement control unit 71a acquires image data as a measurement result from the inspection device 80. Then, the measurement control unit 71a derives an inspection result including the amount of deviation between the first substrate W1 and the second substrate W2 in the polymerization substrate T based on the acquired image data. Specifically, the measurement control unit 71a analyzes the image data to obtain the X coordinate (x1) and the Y coordinate (y1) of the measurement mark M1 and the X coordinate (x2) of the measurement mark M2 at each measurement point. The Y coordinate (y2) is calculated. Further, the measurement control unit 71a calculates the amount of deviation ( ⁇ x) of the X coordinate of the measurement marks M1 and M2 and the amount of deviation ( ⁇ y) of the Y coordinate of the measurement marks M1 and M2. Then, the measurement control unit 71a substitutes the calculation results (x1, y1, x2, y2, ⁇ x, ⁇ y) for the first number of measurement points (here, five points) into the calculation model prepared in advance.
  • the amount of deviation of the first substrate W1 with respect to the second substrate W2 is set to the deviation in the X-axis direction (X shift), the deviation in the Y-axis direction (Y shift), and the rotation direction around the vertical axis. It decomposes into each component of shift (rotate) and shift (scaling) due to expansion and contraction.
  • the measurement control unit 71a acquires the inspection result for each of the above components by using this calculation model, and stores the acquired inspection result in the storage unit 72.
  • the diagnostic control unit 71b controls the operation of the light quantity check and the optical axis check by the inspection device 80.
  • the light amount initial information 72a stored in the storage unit 72 is used in the light amount check.
  • the light amount initial information 72a includes the set light amount of the light source 621 included in the microillumination unit 620 and the light reception amount when the microimaging unit 520 receives the light emitted from the light source 621 at this set light amount via the attenuation member 720. Information showing the relationship between.
  • the set light amount is a command value of the light amount output to the light source 621. For example, it is assumed that the light amount initial information 72a is associated with the set light amount “100” of the light source 621 and the light receiving amount “80” in the micro-imaging unit 520.
  • the light amount initial information 72a is information indicating the initial relationship between the set light amount of the light source 621 and the received light amount in the microimaging unit 520 before the deterioration of the light source 621 occurs, and is, for example, at the time of starting up the junction system 1 or for the first use. Occasionally generated.
  • the light source 621 deteriorates due to use, even if a command is issued to the light source 621 to emit light at the set light amount "100", the amount of light actually obtained, that is, the amount of light received by the microimaging unit 520 is "80". Will be less than.
  • FIG. 11 is a flowchart showing an example of the procedure of the process performed by the bonding system 1 until the polymerization substrate T is formed by the bonding device 41.
  • the various processes shown in FIG. 11 are executed based on the control by the control device 70.
  • a cassette C1 containing a plurality of first substrates W1, a cassette C2 accommodating a plurality of second substrates W2, and an empty cassette C3 are placed on a predetermined mounting plate 11 of the loading / unloading station 2.
  • the first substrate W1 in the cassette C1 is taken out by the transfer device 22, and is transferred to the transition device arranged in the third processing block G3.
  • the first substrate W1 is conveyed to the surface modification device 30 of the first processing block G1 by the transfer device 61.
  • oxygen gas which is a processing gas
  • the oxygen ions are irradiated to the joint surface of the first substrate W1, and the joint surface is subjected to plasma treatment.
  • the joint surface of the first substrate W1 is modified (step S101).
  • the first substrate W1 is conveyed to the surface hydrophilic device 40 of the second processing block G1 by the transfer device 61.
  • the surface hydrophilization device 40 pure water is supplied onto the first substrate W1 while rotating the first substrate W1 held by the spin chuck.
  • the joint surface of the first substrate W1 is made hydrophilic.
  • the joint surface of the first substrate W1 is cleaned with the pure water (step S102).
  • the first substrate W1 is conveyed to the joining device 41 of the second processing block G2 by the conveying device 61.
  • the first substrate W1 carried into the joining device 41 is conveyed to the position adjusting mechanism via the transition, and the horizontal orientation is adjusted by the position adjusting mechanism (step S103).
  • the first substrate W1 is passed from the position adjusting mechanism to the reversing mechanism, and the front and back surfaces of the first substrate W1 are inverted by the reversing mechanism (step S104). Specifically, the joint surface W1j of the first substrate W1 is directed downward.
  • the first substrate W1 is delivered from the reversing mechanism to the first holding unit 140.
  • the first substrate W1 is attracted and held by the first holding portion 140 with the notch portion oriented in a predetermined direction (step S105).
  • the processing of the second substrate W2 is performed in duplicate with the processing of steps S101 to S105 for the first substrate W1.
  • the second substrate W2 in the cassette C2 is taken out by the transfer device 22, and is transferred to the transition device arranged in the third processing block G3.
  • the second substrate W2 is conveyed to the surface modification device 30 by the transfer device 61, and the joint surface W2j of the second substrate W2 is modified (step S106).
  • the second substrate W2 is conveyed to the surface hydrophilization device 40 by the transfer device 61, the joint surface W2j of the second substrate W2 is hydrophilized, and the joint surface is washed (step S107).
  • the second substrate W2 is conveyed to the joining device 41 by the conveying device 61.
  • the second substrate W2 carried into the joining device 41 is conveyed to the position adjusting mechanism via the transition.
  • the horizontal orientation of the second substrate W2 is adjusted by the position adjusting mechanism (step S108).
  • the second substrate W2 is conveyed to the second holding portion 141, and is sucked and held by the second holding portion 141 with the notch portion oriented in a predetermined direction (step S109).
  • step S110 the horizontal position adjustment between the first substrate W1 held by the first holding portion 140 and the second substrate W2 held by the second holding portion 141 is performed.
  • step S111 the vertical positions of the first substrate W1 held by the first holding portion 140 and the second substrate W2 held by the second holding portion 141 are adjusted (step S111). Specifically, the first moving unit 160 moves the second holding unit 141 vertically upward to bring the second substrate W2 closer to the first substrate W1.
  • step S112 After releasing the suction holding of the first substrate W1 by the plurality of inner suction portions 302 (step S112), the central portion of the first substrate W1 is pressed by lowering the pressing pin 191 of the striker 190 (step). S113).
  • the bonding surface W1j of the first substrate W1 and the bonding surface W2j of the second substrate W2 are hydrophilized in steps S102 and S110, respectively, the hydrophilic groups between the bonding surfaces W1j and W2j are hydrogen-bonded, and the bonding surface W1j , W2j are firmly joined to each other. In this way, the junction region is formed.
  • a bonding wave is generated between the first substrate W1 and the second substrate W2 in which the bonding region expands from the central portion of the first substrate W1 and the second substrate W2 toward the outer peripheral portion.
  • the suction holding of the first substrate W1 by the plurality of outer suction portions 301 is released (step S114).
  • the outer peripheral portion of the first substrate W1 that has been sucked and held by the outer suction portion 301 falls.
  • the bonding surface W1j of the first substrate W1 and the bonding surface W2j of the second substrate W2 are in contact with each other on the entire surface, and the polymerization substrate T is formed.
  • the pressing pin 191 is raised to the first holding portion 140 to release the suction holding of the second substrate W2 by the second holding portion 141.
  • the polymerization substrate T is carried out from the joining device 41 by the transport device 61. In this way, a series of joining processes is completed.
  • FIG. 12 is a flowchart showing an example of the procedure of the light amount check process.
  • the processing procedure for checking the light intensity of the micro-illumination unit 620 is shown, but the light intensity check of the macro illumination unit 610 may be performed by the same processing procedure.
  • the light intensity check process is performed according to the control by the diagnostic control unit 71b.
  • the moving mechanism 440 moves the diagnostic unit 700 to move the damping member 720 of the diagnostic unit 700 above the microillumination unit 620 (microimaging unit). It is arranged below 520 (step S201).
  • the light source 621 of the microilluminating unit 620 is made to emit light at a set amount of light (step S202).
  • the light emitted from the light source 621 passes through the attenuation member 720 and is received by the image sensor 522 of the micro image pickup unit 520.
  • the diagnostic control unit 71b calculates the amount of light received by the micro-imaging unit 520 (hereinafter, referred to as “measured light-receiving amount”) based on the image data captured by the micro-imaging unit 520 (step S203). Further, the diagnostic control unit 71b calculates the difference between the calculated measured light receiving amount and the light receiving amount included in the light amount initial information 72a (hereinafter, referred to as “initial light receiving amount”) (step S204). Then, the diagnostic control unit 71b determines whether or not the difference between the measured light reception amount and the initial light reception amount is less than a threshold value (hereinafter, referred to as “light amount threshold value”) (step S205).
  • a threshold value hereinafter, referred to as “light amount threshold value”
  • step S205 when the difference between the measured received light amount and the initial received light amount is equal to or greater than the light amount threshold value (steps S205, No), that is, when the light amount of the light source 621 is not normal, the diagnostic control unit 71b automatically sets the current mode. It is determined whether or not the mode is the adjustment mode (step S206). When it is determined in step S206 that the automatic adjustment mode is in progress (step S206, Yes), the diagnostic control unit 71b changes the set light amount of the light source 621 (step S207). Specifically, the diagnostic control unit 71b increases the set amount of light of the light source 621. For example, the diagnostic control unit 71b may increase the set light amount by the difference between the measured light receiving amount and the initial light receiving amount. Further, the diagnostic control unit 71b may increase the set light amount by a predetermined amount. When the process of step S206 is completed, the diagnostic control unit 71b returns to step S202 and causes the light source 621 to emit light at the changed set light amount.
  • step S206 when the automatic adjustment mode is not in progress (step S206, No), the diagnostic control unit 71b performs notification processing (step S208).
  • the diagnostic control unit 71b may transmit information indicating that the amount of light of the light source 621 is reduced to a higher-level device connected to the junction system 1 via a network as a notification process. Further, the diagnostic control unit 71b may operate an alarm device (alarm, lamp, etc.) (not shown) provided in the joining system 1 as a notification process.
  • step S208 When the process of step S208 is completed, or when the difference between the measured received light amount and the initial received light amount is less than the light amount threshold value in step S205 (step S205, Yes), that is, when the light amount of the light source 621 is normal. , The diagnostic control unit 71b finishes the light amount check process.
  • FIG. 13 is a flowchart showing an example of the procedure of the optical axis check process.
  • the moving mechanism 440 moves the diagnostic unit 700 to move the damping member 720 of the diagnostic unit 700 above the microillumination unit 620 (microimaging unit). (Lower than 520) (step S301).
  • the light source 621 of the micro-illumination unit 620 is made to emit light at a set amount of light (step S302).
  • the microimaging unit 520 takes an image of the calibration mark M3 formed on the damping member 720 (step S303).
  • the diagnostic control unit 71b calculates the distance between the center of gravity G3a of the first square M3a and the center of gravity G3b of the second square M3b as a mark measurement value based on the image data captured by the micro-imaging unit 520 (Ste S304). Further, the diagnostic control unit 71b calculates the difference between the calculated mark measurement value and the normal value of the distance between the centers of gravity G3a and G3b (hereinafter, referred to as “Ref value”) (step S305). In the present embodiment, the case where the Ref value is 0, that is, the case where the center of gravity G3a and the center of gravity G3b match is described as an example, but the Ref value does not necessarily have to be 0.
  • the diagnostic control unit 71b determines whether or not the difference between the mark measurement value and the Ref value is less than a threshold value (hereinafter, referred to as “optical axis threshold value”) (step S306).
  • the diagnostic control unit 71b performs the notification process (step S307).
  • the diagnostic control unit 71b may transmit information indicating that the optical axis of the light source 621 is tilted to a higher-level device connected to the junction system 1 via a network as a notification process. Further, the diagnostic control unit 71b may operate an alarm device (alarm, lamp, etc.) (not shown) provided in the joining system 1 as a notification process.
  • step S307 When the process of step S307 is completed, or when the difference between the mark measurement value and the Ref value is less than the optical axis threshold value in step S306 (step S306, Yes), the diagnostic control unit 71b performs the optical axis check process. Finish.
  • the self-diagnosis method of the inspection device includes the first substrate (for example, the first substrate W1) and the second substrate (for example, the second substrate W2).
  • the step of arranging is a holding portion that holds the outer peripheral portion of the polymerized substrate, and is provided with a diagnostic unit (as an example, a diagnostic unit 700) having a damping member (for example, a damping member 720) that attenuates light.
  • a lighting unit (as an example, a macro lighting unit 610) that is arranged on one of the upper side and the lower side of the holding unit by moving the unit (as an example, the holding unit 400) and irradiates the polymer substrate held by the holding unit with light.
  • the micro-illumination unit 620) and the imaging unit (for example, the macro-imaging unit 510 or the micro) that are arranged at positions facing the illumination unit on the other side above and below the holding unit and image the polymer substrate held by the holding unit.
  • a damping member is arranged between the image pickup unit 520) and the image pickup unit 520).
  • the irradiating step after the arranging step, light is radiated from the illuminating unit at a set amount of light.
  • the step of receiving light after the step of irradiating, the light emitted from the illumination unit and transmitted through the attenuation member is received by the imaging unit.
  • the abnormality of the amount of light emitted from the illumination unit is determined based on the amount of light received by the imaging unit.
  • the light intensity of the lighting unit can be easily checked by using the diagnosis unit built in the inspection device. Therefore, it is possible to easily maintain the measurement accuracy of the inspection device.
  • the initial received amount of light that is irradiated from the illumination unit at a set amount of light passes through the attenuation member, and is stored in advance as the amount of received light received by the imaging unit (for example, the initial amount of light).
  • the difference between the initial light receiving amount included in the information 72a) and the light receiving amount of the light received by the imaging unit in the imaging process is calculated, and when the difference is equal to or more than the light amount threshold. , It may be determined that the amount of light emitted from the illumination unit is abnormal. As a result, deterioration due to the use of the light source of the lighting unit can be easily detected.
  • the self-diagnosis method of the inspection device further includes a step of changing the set light amount when it is determined that the light amount of the light emitted from the illumination unit is abnormal in the step of determining the abnormality of the light amount. You may. As a result, it is possible to easily maintain a state in which the amount of light emitted from the lighting unit is always constant.
  • the damping member may have a calibration mark.
  • the self-diagnosis method of the inspection device may further include a step of imaging and a step of determining the inclination of the optical axis.
  • the step of imaging after the step of irradiating, the calibration mark is imaged using the imaging unit.
  • the step of determining the tilt of the optical axis after the step of imaging, the tilt of the optical axis of the illumination unit is determined based on the calibration mark imaged by the imaging unit.
  • the inclination of the optical axis can also be checked by using the diagnostic unit for checking the amount of light.
  • the inspection device (for example, the inspection device 80) according to the embodiment is a polymerized substrate in which a first substrate (for example, a first substrate W1) and a second substrate (for example, a second substrate W2) are bonded to each other.
  • a first substrate for example, a first substrate W1
  • a second substrate for example, a second substrate W2
  • an inspection device for inspecting a polymerized substrate T which includes a holding unit (holding unit 400 as an example), an illuminating unit (as an example, a macro illuminating unit 610 or a micro illuminating unit 620), and an imaging unit (as an example).
  • a macro imaging unit 510 or a micro imaging unit 520), a moving mechanism (moving mechanism 440 as an example), and a diagnostic unit (diagnostic unit 700 as an example) are provided.
  • the holding portion holds the outer peripheral portion of the polymerization substrate.
  • the illumination unit is arranged on one of the upper side and the lower side of the holding part, and irradiates the polymerization substrate held by the holding part with light.
  • the imaging unit is arranged at a position facing the illumination unit on either the upper side or the lower side of the holding unit, and images the polymerized substrate held by the holding unit.
  • the moving mechanism moves the holding portion.
  • the diagnostic unit is provided on the holding unit and has an attenuation member (for example, an attenuation member 720) that attenuates the light emitted from the illumination unit.
  • the light intensity of the lighting unit can be easily checked by using the diagnostic unit built in the inspection device. Therefore, it is possible to easily maintain the measurement accuracy of the inspection device.
  • the damping member may include silicon (as an example, a silicon plate 722). By attenuating the light emitted from the illumination unit using silicon in the same manner as the polymerized substrate, the amount of light can be appropriately checked.
  • the damping member may include silicon, glass laminated on silicon (for example, glass plate 721), and a calibration mark formed on the glass (for example, calibration mark M3).
  • a calibration mark formed on the glass for example, calibration mark M3
  • the damping member can be formed at a lower cost than, for example, when the calibration mark is formed on silicon.
  • the holding portion may include a main body portion (for example, the main body portion 410) and a plurality of support members (for example, the support member 420).
  • the main body has an opening (for example, opening 411) having a diameter larger than that of the polymerized substrate.
  • the plurality of support members are provided in the main body portion, extend toward the center of the opening, and support the outer peripheral portion of the polymerization substrate at the tip portion.
  • the diagnostic unit may be arranged between two adjacent support members. As a result, it is possible to suppress the increase in size of the inspection device 80.
  • the diagnostic unit may include a mounting portion (as an example, a mounting portion 710) and a damping member (as an example, a damping member 720).
  • the mounting portion is provided on the holding portion and extends toward the center of the opening.
  • the damping member is attached to the tip of the attachment portion.
  • the damping member may be arranged at a position exposed from the polymerization substrate in a plan view (for example, FIG. 5) when the inspection device is viewed from a direction perpendicular to the plate surface of the polymerization substrate. This makes it possible to perform self-diagnosis using the diagnostic unit even when the polymerized substrate is held in the holding unit.
  • the central portion of the first substrate is pressed by a striker to bring it into contact with the second substrate, and the intermolecular force generated between the joint surfaces of the first substrate and the second substrate whose surfaces have been modified is generated.
  • the joining device for joining the first substrate and the second substrate using the above method has been described as an example. Not limited to this, the joining device may be, for example, a type of joining device in which the first substrate and the second substrate are joined via an adhesive.
  • Control device 71 Control unit 71a Measurement control unit 71b Diagnostic control unit 72 Storage unit 72a Light intensity initial information 80 Inspection Device 400 Holding part 410 Main body part 420 Supporting member 460 Suction tube 500 Imaging unit 510 Macro imaging unit 520 Micro imaging unit 600 Lighting unit 610 Macro lighting unit 620 Micro lighting unit 700 Diagnostic unit 710 Mounting unit 720 Damping member

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A method for self-diagnosis of an inspection device (80) according to the present disclosure includes a positioning step, an irradiation step, a light reception step, and a step for determining an abnormality in a light quantity. In the positioning step, a retaining part for retaining an external peripheral part of a polymerized substrate (T), a diagnostic part (700) having an attenuating member (720) for attenuating light being provided to the retaining part (400), is moved, whereby the attenuating part is positioned between illumination parts (610, 620) for radiating light to the polymerized substrate and imaging parts (51, 52) for capturing an image of the polymerized substrate. In the irradiation step, a set quantity of light is radiated from the illumination parts after the positioning step. In the light reception step, light radiated from the illumination parts and transmitted through the attenuating part is received using the imaging parts after the irradiation step. In the step for determining an abnormality in a light quantity, an abnormality in the quantity of light radiated from the illumination parts is determined on the basis of a light reception quantity of light received by the imaging parts after the light reception step.

Description

検査装置の自己診断方法および検査装置Self-diagnosis method of inspection equipment and inspection equipment
 本開示は、検査装置の自己診断方法および検査装置に関する。 This disclosure relates to a self-diagnosis method of an inspection device and an inspection device.
 半導体ウエハ等の基板同士を接合することによって重合基板を形成する接合装置と、この接合装置によって形成された重合基板の検査を行う検査装置とを備えた接合システムが知られている(特許文献1参照)。 A bonding system including a bonding device for forming a polymerized substrate by bonding substrates such as semiconductor wafers and an inspection device for inspecting the polymerized substrate formed by the bonding device is known (Patent Document 1). reference).
特開2011-187716号公報Japanese Unexamined Patent Publication No. 2011-187716
 本開示は、検査装置の測定精度の維持を容易化することができる技術を提供する。 The present disclosure provides a technique that can facilitate the maintenance of measurement accuracy of an inspection device.
 本開示の一態様による検査装置の自己診断方法は、第1基板と第2基板とが接合された重合基板を検査する検査装置の自己診断方法であって、配置する工程と、照射する工程と、受光する工程と、光量の異常を判定する工程とを含む。配置する工程は、重合基板の外周部を保持する保持部であって、光を減衰させる減衰部材を有する診断部が設けられた保持部を移動させることにより、保持部の上方および下方の一方に配置され、保持部に保持された重合基板に光を照射する照明部と、保持部の上方および下方の他方において照明部と対向する位置に配置され、保持部に保持された重合基板を撮像する撮像部との間に、減衰部材を配置する。照射する工程は、配置する工程の後、照明部から設定光量にて光を照射する。受光する工程は、照射する工程の後、照明部から照射されて減衰部材を透過した光を撮像部を用いて受光する。光量の異常を判定する工程は、受光する工程の後、撮像部にて受光された光の受光量に基づいて、照明部から照射される光の光量の異常を判定する。 The self-diagnosis method of the inspection device according to one aspect of the present disclosure is a self-diagnosis method of the inspection device for inspecting the polymerized substrate in which the first substrate and the second substrate are joined, and includes a step of arranging and a step of irradiating. , Includes a step of receiving light and a step of determining an abnormality in the amount of light. The step of arranging is a holding portion that holds the outer peripheral portion of the polymerized substrate, and by moving the holding portion provided with the diagnostic portion having an attenuation member that attenuates light, the holding portion is moved to one of the upper side and the lower side of the holding portion. The illumination unit that irradiates the polymer substrate that is arranged and held by the holding unit with light, and the polymer substrate that is arranged at a position facing the illumination unit on the other side above and below the holding unit and held by the holding unit are imaged. An attenuation member is arranged between the image pickup unit and the image pickup unit. In the irradiating step, after the arranging step, light is radiated from the illuminating unit at a set amount of light. In the step of receiving light, after the step of irradiating, the light emitted from the illumination unit and transmitted through the attenuation member is received by the imaging unit. In the step of determining the abnormality of the amount of light, after the step of receiving light, the abnormality of the amount of light emitted from the illumination unit is determined based on the amount of light received by the imaging unit.
 本開示によれば、検査装置の測定精度の維持を容易化することができる。 According to the present disclosure, it is possible to facilitate the maintenance of the measurement accuracy of the inspection device.
図1は、実施形態に係る接合システムの構成を示す模式図である。FIG. 1 is a schematic view showing a configuration of a joining system according to an embodiment. 図2は、実施形態に係る第1基板および第2基板の接合前の状態を示す模式図である。FIG. 2 is a schematic view showing a state before joining the first substrate and the second substrate according to the embodiment. 図3は、実施形態に係る接合装置の構成を示す模式図である。FIG. 3 is a schematic view showing the configuration of the joining device according to the embodiment. 図4は、実施形態に係る検査装置の構成を示す模式図である。FIG. 4 is a schematic view showing the configuration of the inspection device according to the embodiment. 図5は、実施形態に係る検査装置の保持部の構成を示す模式図である。FIG. 5 is a schematic view showing a configuration of a holding unit of the inspection device according to the embodiment. 図6は、測定マークの撮像方法の一例を示す図である。FIG. 6 is a diagram showing an example of a method of imaging a measurement mark. 図7は、測定マークの一例を示す図である。FIG. 7 is a diagram showing an example of the measurement mark. 図8は、実施形態に係る減衰部材の構成を示す図である。FIG. 8 is a diagram showing a configuration of a damping member according to the embodiment. 図9は、減衰部材に形成された校正マークの一例を示す図である。FIG. 9 is a diagram showing an example of a calibration mark formed on the damping member. 図10は、実施形態に係る制御装置の構成を示すブロック図である。FIG. 10 is a block diagram showing a configuration of a control device according to an embodiment. 図11は、接合システムが実行する処理のうち、接合装置によって重合基板が形成されるまでの処理の手順の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of the procedure of the process performed by the bonding system until the polymerized substrate is formed by the bonding device. 図12は、光量チェック処理の手順の一例を示すフローチャートである。FIG. 12 is a flowchart showing an example of the procedure of the light amount check process. 図13は、光軸チェック処理の手順の一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of the procedure of the optical axis check process.
 以下に、本開示による検査装置の自己診断方法および検査装置を実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。なお、この実施形態により本開示による検査装置の自己診断方法および検査装置が限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。 Hereinafter, the self-diagnosis method of the inspection device according to the present disclosure and the mode for implementing the inspection device (hereinafter, referred to as “execution”) will be described in detail with reference to the drawings. It should be noted that this embodiment does not limit the self-diagnosis method and the inspection device of the inspection device according to the present disclosure. In addition, each embodiment can be appropriately combined as long as the processing contents do not contradict each other. Further, in each of the following embodiments, the same parts are designated by the same reference numerals, and duplicate description is omitted.
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、例えば製造精度、設置精度などのずれを許容するものとする。 Further, in the embodiments shown below, expressions such as "constant", "orthogonal", "vertical" or "parallel" may be used, but these expressions are strictly "constant", "orthogonal", and "parallel". It does not have to be "vertical" or "parallel". That is, each of the above expressions allows for deviations in manufacturing accuracy, installation accuracy, and the like.
 また、以下参照する各図面では、説明を分かりやすくするために、互いに直交するX軸方向、Y軸方向およびZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする直交座標系を示す場合がある。また、鉛直軸を回転中心とする回転方向をθ方向と呼ぶ場合がある。 Further, in each drawing referred to below, in order to make the explanation easy to understand, an orthogonal coordinate system in which the X-axis direction, the Y-axis direction, and the Z-axis direction orthogonal to each other are defined and the Z-axis positive direction is the vertically upward direction is shown. In some cases. Further, the rotation direction centered on the vertical axis may be referred to as the θ direction.
<接合システムの構成>
 まず、実施形態に係る接合システムの構成について図1および図2を参照して説明する。図1は、実施形態に係る接合システムの構成を示す模式図である。また、図2は、実施形態に係る第1基板および第2基板の接合前の状態を示す模式図である。
<Structure of joining system>
First, the configuration of the joining system according to the embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic view showing a configuration of a joining system according to an embodiment. Further, FIG. 2 is a schematic view showing a state before joining the first substrate and the second substrate according to the embodiment.
 図1に示す接合システム1は、第1基板W1と第2基板W2とを接合することによって重合基板Tを形成する(図2参照)。 The bonding system 1 shown in FIG. 1 forms a polymerization substrate T by bonding the first substrate W1 and the second substrate W2 (see FIG. 2).
 第1基板W1および第2基板W2は、たとえばシリコンウエハや化合物半導体ウエハなどの半導体基板に複数の電子回路が形成された基板である。第1基板W1および第2基板W2は、略同径である。なお、第1基板W1および第2基板W2の一方は、たとえば電子回路が形成されていない基板であってもよい。 The first substrate W1 and the second substrate W2 are substrates in which a plurality of electronic circuits are formed on a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer. The first substrate W1 and the second substrate W2 have substantially the same diameter. One of the first substrate W1 and the second substrate W2 may be, for example, a substrate on which no electronic circuit is formed.
 以下では、図2に示すように、第1基板W1の板面のうち、第2基板W2と接合される側の板面を「接合面W1j」と記載し、接合面W1jとは反対側の板面を「非接合面W1n」と記載する。また、第2基板W2の板面のうち、第1基板W1と接合される側の板面を「接合面W2j」と記載し、接合面W2jとは反対側の板面を「非接合面W2n」と記載する。 In the following, as shown in FIG. 2, of the plate surfaces of the first substrate W1, the plate surface on the side to be joined to the second substrate W2 is referred to as "joining surface W1j", and the side opposite to the joining surface W1j is described. The plate surface is described as "non-bonded surface W1n". Further, among the plate surfaces of the second substrate W2, the plate surface on the side to be joined to the first substrate W1 is described as "joining surface W2j", and the plate surface on the side opposite to the joining surface W2j is "non-joining surface W2n". ".
 図1に示すように、接合システム1は、搬入出ステーション2と、処理ステーション3と、検査ステーション4を備える。搬入出ステーション2は、処理ステーション3のX軸負方向側に配置され、処理ステーション3と一体的に接続される。また、検査ステーション4は、処理ステーション3のX軸正方向側に配置され、処理ステーション3と一体的に接続される。 As shown in FIG. 1, the joining system 1 includes an loading / unloading station 2, a processing station 3, and an inspection station 4. The carry-in / out station 2 is arranged on the negative side of the X-axis of the processing station 3 and is integrally connected to the processing station 3. Further, the inspection station 4 is arranged on the X-axis positive direction side of the processing station 3 and is integrally connected to the processing station 3.
 搬入出ステーション2は、載置台10と、搬送領域20とを備える。載置台10は、複数の載置板11を備える。各載置板11には、複数枚(たとえば、25枚)の基板を水平状態で収容するカセットC1~C4がそれぞれ載置される。カセットC1は複数枚の第1基板W1を収容可能であり、カセットC2は複数枚の第2基板W2を収容可能であり、カセットC3は複数枚の重合基板Tを収容可能である。カセットC4は、たとえば、不具合が生じた基板を回収するためのカセットである。なお、載置板11に載置されるカセットC1~C4の個数は、図示のものに限定されない。 The loading / unloading station 2 includes a mounting table 10 and a transport area 20. The mounting table 10 includes a plurality of mounting plates 11. Cassettes C1 to C4 for accommodating a plurality of (for example, 25) substrates in a horizontal state are mounted on each mounting plate 11. The cassette C1 can accommodate a plurality of first substrates W1, the cassette C2 can accommodate a plurality of second substrates W2, and the cassette C3 can accommodate a plurality of polymerization substrates T. The cassette C4 is, for example, a cassette for collecting a defective substrate. The number of cassettes C1 to C4 mounted on the mounting plate 11 is not limited to the one shown in the figure.
 搬送領域20は、載置台10のX軸正方向側に隣接して配置される。搬送領域20には、Y軸方向に延在する搬送路21と、搬送路21に沿って移動可能な搬送装置22とが設けられる。搬送装置22は、Y軸方向だけでなく、X軸方向にも移動可能かつZ軸周りに旋回可能である。搬送装置22は、載置板11に載置されたカセットC1~C4と、後述する処理ステーション3の第3処理ブロックG3との間で、第1基板W1、第2基板W2および重合基板Tの搬送を行う。 The transport area 20 is arranged adjacent to the X-axis positive direction side of the mounting table 10. The transport region 20 is provided with a transport path 21 extending in the Y-axis direction and a transport device 22 that can move along the transport path 21. The transport device 22 can move not only in the Y-axis direction but also in the X-axis direction and can rotate around the Z-axis. The transport device 22 is formed between the cassettes C1 to C4 mounted on the mounting plate 11 and the third processing block G3 of the processing station 3, which will be described later, of the first substrate W1, the second substrate W2, and the polymerization substrate T. Carry out.
 処理ステーション3には、たとえば3つの処理ブロックG1,G2,G3が設けられる。第1処理ブロックG1は、処理ステーション3の背面側(図1のY軸正方向側)に配置される。また、第2処理ブロックG2は、処理ステーション3の正面側(図1のY軸負方向側)に配置され、第3処理ブロックG3は、処理ステーション3の搬入出ステーション2側(図1のX軸負方向側)に配置される。 The processing station 3 is provided with, for example, three processing blocks G1, G2, and G3. The first processing block G1 is arranged on the back surface side (Y-axis positive direction side in FIG. 1) of the processing station 3. Further, the second processing block G2 is arranged on the front side of the processing station 3 (the negative direction side of the Y axis in FIG. 1), and the third processing block G3 is on the loading / unloading station 2 side of the processing station 3 (X in FIG. 1). It is arranged on the negative axis side).
 第1処理ブロックG1には、第1基板W1および第2基板W2の接合面W1j,W2jを改質する表面改質装置30が配置される。表面改質装置30は、第1基板W1および第2基板W2の接合面W1j,W2jにおけるSiO2の結合を切断して単結合のSiOとすることで、その後親水化され易くするように接合面W1j,W2jを改質する。 A surface reforming device 30 that modifies the joint surfaces W1j and W2j of the first substrate W1 and the second substrate W2 is arranged in the first processing block G1. The surface modifier 30 cuts the bond of SiO2 on the bonding surfaces W1j and W2j of the first substrate W1 and the second substrate W2 to form a single-bonded SiO, so that the bonding surface W1j can be easily hydrophilized thereafter. , W2j is modified.
 具体的には、表面改質装置30では、たとえば減圧雰囲気下において処理ガスである酸素ガスまたは窒素ガスが励起されてプラズマ化され、イオン化される。そして、かかる酸素イオンまたは窒素イオンが、第1基板W1および第2基板W2の接合面W1j,W2jに照射されることにより、接合面W1j,W2jがプラズマ処理されて改質される。 Specifically, in the surface reformer 30, for example, oxygen gas or nitrogen gas, which is a processing gas, is excited to be turned into plasma and ionized in a reduced pressure atmosphere. Then, by irradiating the bonding surfaces W1j and W2j of the first substrate W1 and the second substrate W2 with such oxygen ions or nitrogen ions, the bonding surfaces W1j and W2j are plasma-treated and modified.
 また、第1処理ブロックG1には、表面親水化装置40が配置される。表面親水化装置40は、たとえば純水によって第1基板W1および第2基板W2の接合面W1j,W2jを親水化するとともに、接合面W1j,W2jを洗浄する。具体的には、表面親水化装置40は、たとえばスピンチャックに保持された第1基板W1または第2基板W2を回転させながら、当該第1基板W1または第2基板W2上に純水を供給する。これにより、第1基板W1または第2基板W2上に供給された純水が第1基板W1または第2基板W2の接合面W1j,W2j上を拡散し、接合面W1j,W2jが親水化される。 Further, a surface hydrophilic device 40 is arranged in the first treatment block G1. The surface hydrophilization device 40 hydrophilizes the joint surfaces W1j and W2j of the first substrate W1 and the second substrate W2 with pure water, and cleans the joint surfaces W1j and W2j. Specifically, the surface hydrophilic device 40 supplies pure water onto the first substrate W1 or the second substrate W2 while rotating the first substrate W1 or the second substrate W2 held by the spin chuck, for example. .. As a result, the pure water supplied on the first substrate W1 or the second substrate W2 diffuses on the joint surfaces W1j and W2j of the first substrate W1 or the second substrate W2, and the joint surfaces W1j and W2j are hydrophilized. ..
 ここでは、表面改質装置30と表面親水化装置40とが横並びで配置される場合の例を示したが、表面親水化装置40は、表面改質装置30の上方に積層されてもよい。 Here, an example is shown in which the surface modifier 30 and the surface hydrophilizer 40 are arranged side by side, but the surface hydrophilizer 40 may be laminated above the surface modifier 30.
 第2処理ブロックG2には、接合装置41が配置される。接合装置41は、親水化された第1基板W1と第2基板W2とを分子間力により接合する。かかる接合装置41の構成については、後述する。 A joining device 41 is arranged in the second processing block G2. The joining device 41 joins the hydrophilic first substrate W1 and the second substrate W2 by an intermolecular force. The configuration of the joining device 41 will be described later.
 第1処理ブロックG1、第2処理ブロックG2および第3処理ブロックG3に囲まれた領域には、搬送領域60が形成される。搬送領域60には、搬送装置61が配置される。搬送装置61は、たとえば鉛直方向、水平方向および鉛直軸周りに移動自在な搬送アームを有する。かかる搬送装置61は、搬送領域60内を移動し、搬送領域60に隣接する第1処理ブロックG1、第2処理ブロックG2および第3処理ブロックG3内の所定の装置に第1基板W1、第2基板W2および重合基板Tを搬送する。 A transport region 60 is formed in a region surrounded by the first processing block G1, the second processing block G2, and the third processing block G3. A transport device 61 is arranged in the transport region 60. The transport device 61 has, for example, a transport arm that is movable in the vertical direction, the horizontal direction, and around the vertical axis. The transfer device 61 moves in the transfer area 60, and the first substrate W1 and the second are connected to predetermined devices in the first processing block G1, the second processing block G2, and the third processing block G3 adjacent to the transport area 60. The substrate W2 and the polymerization substrate T are conveyed.
 検査ステーション4には、検査装置80が設けられる。検査装置80は、接合装置41によって形成された重合基板Tの検査を行う。 The inspection station 4 is provided with an inspection device 80. The inspection device 80 inspects the polymerization substrate T formed by the joining device 41.
 また、接合システム1は、制御装置70を備える。制御装置70は、接合システム1の動作を制御する。制御装置70の構成については後述する。 Further, the joining system 1 includes a control device 70. The control device 70 controls the operation of the joining system 1. The configuration of the control device 70 will be described later.
<接合装置の構成>
 次に、接合装置41の構成について図3を参照して説明する。図3は、実施形態に係る接合装置41の構成を示す模式図である。
<Structure of joining device>
Next, the configuration of the joining device 41 will be described with reference to FIG. FIG. 3 is a schematic view showing the configuration of the joining device 41 according to the embodiment.
 図3に示すように、接合装置41は、第1保持部140と、第2保持部141と、ストライカー190とを備える。 As shown in FIG. 3, the joining device 41 includes a first holding portion 140, a second holding portion 141, and a striker 190.
 第1保持部140は、本体部170を有する。本体部170は、支持部材180によって支持される。支持部材180および本体部170には、支持部材180および本体部170を鉛直方向に貫通する貫通孔176が形成される。貫通孔176の位置は、第1保持部140に吸着保持される第1基板W1の中心部に対応している。貫通孔176には、ストライカー190の押圧ピン191が挿通される。 The first holding portion 140 has a main body portion 170. The main body 170 is supported by the support member 180. The support member 180 and the main body 170 are formed with through holes 176 that penetrate the support member 180 and the main body 170 in the vertical direction. The position of the through hole 176 corresponds to the central portion of the first substrate W1 which is attracted and held by the first holding portion 140. The pressing pin 191 of the striker 190 is inserted into the through hole 176.
 ストライカー190は、支持部材180の上面に配置され、押圧ピン191と、アクチュエータ部192と、直動機構193とを備える。押圧ピン191は、鉛直方向に沿って延在する円柱状の部材であり、アクチュエータ部192によって支持される。 The striker 190 is arranged on the upper surface of the support member 180, and includes a pressing pin 191, an actuator portion 192, and a linear motion mechanism 193. The pressing pin 191 is a columnar member extending along the vertical direction, and is supported by the actuator portion 192.
 アクチュエータ部192は、たとえば電空レギュレータ(図示せず)から供給される空気により一定方向(ここでは鉛直下方)に一定の圧力を発生させる。アクチュエータ部192は、電空レギュレータから供給される空気により、第1基板W1の中心部と当接して当該第1基板W1の中心部にかかる押圧荷重を制御することができる。また、アクチュエータ部192の先端部は、電空レギュレータからの空気によって、貫通孔176を挿通して鉛直方向に昇降自在になっている。 The actuator unit 192 generates a constant pressure in a certain direction (here, vertically downward) by air supplied from, for example, an electropneumatic regulator (not shown). The actuator unit 192 can control the pressing load applied to the central portion of the first substrate W1 in contact with the central portion of the first substrate W1 by the air supplied from the electropneumatic regulator. Further, the tip portion of the actuator portion 192 is vertically movable up and down through the through hole 176 by the air from the electropneumatic regulator.
 アクチュエータ部192は、直動機構193に支持される。直動機構193は、たとえばモータを内蔵した駆動部によってアクチュエータ部192を鉛直方向に沿って移動させる。 The actuator unit 192 is supported by the linear motion mechanism 193. The linear motion mechanism 193 moves the actuator unit 192 along the vertical direction by, for example, a drive unit having a built-in motor.
 ストライカー190は、直動機構193によってアクチュエータ部192の移動を制御し、アクチュエータ部192によって押圧ピン191による第1基板W1の押圧荷重を制御する。これにより、ストライカー190は、第1保持部140に吸着保持された第1基板W1の中心部を押圧して第2基板W2に接触させる。 The striker 190 controls the movement of the actuator unit 192 by the linear motion mechanism 193, and controls the pressing load of the first substrate W1 by the pressing pin 191 by the actuator unit 192. As a result, the striker 190 presses the central portion of the first substrate W1 that is attracted and held by the first holding portion 140 to bring it into contact with the second substrate W2.
 本体部170の下面には、第1基板W1の上面(非接合面W1n)に接触する複数のピン171が設けられている。複数のピン171は、たとえば、径寸法が0.1mm~1mmであり、高さが数十μm~数百μmである。複数のピン171は、たとえば2mmの間隔で均等に配置される。 A plurality of pins 171 that come into contact with the upper surface (non-joining surface W1n) of the first substrate W1 are provided on the lower surface of the main body 170. The plurality of pins 171 have, for example, a diameter dimension of 0.1 mm to 1 mm and a height of several tens of μm to several hundreds of μm. The plurality of pins 171 are evenly arranged at intervals of, for example, 2 mm.
 第1保持部140は、これら複数のピン171が設けられている領域のうちの一部の領域に、第1基板W1を吸着する複数の吸着部を備える。具体的には、第1保持部140における本体部170の下面には、第1基板W1を真空引きして吸着する複数の外側吸着部301および複数の内側吸着部302が設けられている。複数の外側吸着部301および複数の内側吸着部302は、平面視において円弧形状の吸着領域を有する。複数の外側吸着部301および複数の内側吸着部302は、ピン171と同じ高さを有する。 The first holding portion 140 includes a plurality of suction portions for sucking the first substrate W1 in a part of the regions where the plurality of pins 171 are provided. Specifically, on the lower surface of the main body 170 of the first holding portion 140, a plurality of outer suction portions 301 and a plurality of inner suction portions 302 for evacuating and sucking the first substrate W1 are provided. The plurality of outer suction portions 301 and the plurality of inner suction portions 302 have arc-shaped suction regions in a plan view. The plurality of outer suction portions 301 and the plurality of inner suction portions 302 have the same height as the pin 171.
 複数の外側吸着部301は、本体部170の外周部に配置される。複数の外側吸着部301は、真空ポンプ等の図示しない吸引装置に接続され、真空引きによって第1基板W1の外周部を吸着する。 The plurality of outer suction portions 301 are arranged on the outer peripheral portion of the main body portion 170. The plurality of outer suction portions 301 are connected to a suction device (not shown) such as a vacuum pump, and suck the outer peripheral portion of the first substrate W1 by vacuuming.
 複数の内側吸着部302は、複数の外側吸着部301よりも本体部170の径方向内方において、周方向に沿って並べて配置される。複数の内側吸着部302は、真空ポンプ等の図示しない吸引装置に接続され、真空引きによって第1基板W1の外周部と中心部との間の領域を吸着する。 The plurality of inner suction portions 302 are arranged side by side along the circumferential direction in the radial direction of the main body portion 170 with respect to the plurality of outer suction portions 301. The plurality of inner suction portions 302 are connected to a suction device (not shown) such as a vacuum pump, and suck the region between the outer peripheral portion and the central portion of the first substrate W1 by vacuuming.
 第2保持部141について説明する。第2保持部141は、第2基板W2と同径もしくは第2基板W2より大きい径を有する本体部200を有する。ここでは、第2基板W2よりも大きい径を有する第2保持部141を示している。本体部200の上面は、第2基板W2の下面(非接合面W2n)と対向する対向面である。 The second holding unit 141 will be described. The second holding portion 141 has a main body portion 200 having the same diameter as the second substrate W2 or a diameter larger than that of the second substrate W2. Here, the second holding portion 141 having a diameter larger than that of the second substrate W2 is shown. The upper surface of the main body 200 is a facing surface facing the lower surface (non-joining surface W2n) of the second substrate W2.
 本体部200の上面には、第2基板W2の下面(非接合面Wn2)に接触する複数のピン201が設けられている。複数のピン201は、たとえば、径寸法が0.1mm~1mmであり、高さが数十μm~数百μmである。複数のピン201は、たとえば2mmの間隔で均等に配置される。 A plurality of pins 201 that come into contact with the lower surface (non-joining surface Wn2) of the second substrate W2 are provided on the upper surface of the main body 200. The plurality of pins 201 have, for example, a diameter dimension of 0.1 mm to 1 mm and a height of several tens of μm to several hundreds of μm. The plurality of pins 201 are evenly arranged at intervals of, for example, 2 mm.
 また、本体部200の上面には、下側リブ202が複数のピン201の外側に環状に設けられている。下側リブ202は、環状に形成され、第2基板W2の外周部を全周に亘って支持する。 Further, on the upper surface of the main body 200, a lower rib 202 is provided in an annular shape on the outside of the plurality of pins 201. The lower rib 202 is formed in an annular shape and supports the outer peripheral portion of the second substrate W2 over the entire circumference.
 また、本体部200は、複数の下側吸引口203を有する。複数の下側吸引口203は、下側リブ202によって囲まれた吸着領域に複数設けられる。複数の下側吸引口203は、図示しない吸引管を介して真空ポンプ等の図示しない吸引装置に接続される。 Further, the main body 200 has a plurality of lower suction ports 203. A plurality of lower suction ports 203 are provided in a suction region surrounded by the lower ribs 202. The plurality of lower suction ports 203 are connected to a suction device (not shown) such as a vacuum pump via a suction pipe (not shown).
 第2保持部141は、下側リブ202によって囲まれた吸着領域を複数の下側吸引口203から真空引きすることによって吸着領域を減圧する。これにより、吸着領域に載置された第2基板W2は、第2保持部141に吸着保持される。 The second holding portion 141 decompresses the suction region by evacuating the suction region surrounded by the lower rib 202 from the plurality of lower suction ports 203. As a result, the second substrate W2 placed on the suction region is sucked and held by the second holding portion 141.
 下側リブ202が第2基板W2の下面の外周部を全周に亘って支持するため、第2基板W2は外周部まで適切に真空引きされる。これにより、第2基板W2の全面を吸着保持することができる。また、第2基板W2の下面は複数のピン201に支持されるため、第2基板W2の真空引きを解除した際に、第2基板W2が第2保持部141から剥がれ易くなる。 Since the lower rib 202 supports the outer peripheral portion of the lower surface of the second substrate W2 over the entire circumference, the second substrate W2 is appropriately evacuated to the outer peripheral portion. As a result, the entire surface of the second substrate W2 can be adsorbed and held. Further, since the lower surface of the second substrate W2 is supported by the plurality of pins 201, the second substrate W2 is easily peeled off from the second holding portion 141 when the evacuation of the second substrate W2 is released.
 なお、ここでは図示を省略するが、接合装置41は、図3に示す第1保持部140や第2保持部141等の前段に、トランジション、反転機構および位置調節機構等を備える。トランジションは、第1基板W1、第2基板W2および重合基板Tを一時的に載置する。位置調節機構は、第1基板W1および第2基板W2の水平方向の向きを調節する。反転機構は、第1基板W1の表裏を反転させる。 Although not shown here, the joining device 41 is provided with a transition, a reversing mechanism, a position adjusting mechanism, and the like in front of the first holding portion 140, the second holding portion 141, and the like shown in FIG. The transition temporarily mounts the first substrate W1, the second substrate W2, and the polymerization substrate T. The position adjusting mechanism adjusts the horizontal orientation of the first substrate W1 and the second substrate W2. The reversing mechanism reverses the front and back of the first substrate W1.
<検査装置の構成>
 次に、検査装置の構成について図4および図5を参照して説明する。図4は、実施形態に係る検査装置の構成を示す模式図である。また、図5は、実施形態に係る検査装置の保持部の構成を示す模式図である。なお、図4は、検査装置を側方から見た模式図であり、図5は、検査装置の保持部を上方から見た模式図である。
<Configuration of inspection equipment>
Next, the configuration of the inspection device will be described with reference to FIGS. 4 and 5. FIG. 4 is a schematic view showing the configuration of the inspection device according to the embodiment. Further, FIG. 5 is a schematic view showing a configuration of a holding unit of the inspection device according to the embodiment. Note that FIG. 4 is a schematic view of the inspection device viewed from the side, and FIG. 5 is a schematic view of the holding portion of the inspection device viewed from above.
 図4に示すように、検査装置80は、保持部400と、撮像ユニット500と、照明ユニット600とを備える。また、図5に示すように、検査装置80は、診断部700を備える。 As shown in FIG. 4, the inspection device 80 includes a holding unit 400, an imaging unit 500, and a lighting unit 600. Further, as shown in FIG. 5, the inspection device 80 includes a diagnostic unit 700.
 図4および図5に示すように、保持部400は、重合基板Tを水平に保持する。保持部400は、本体部410と、複数の支持部材420とを備える。 As shown in FIGS. 4 and 5, the holding portion 400 holds the polymerization substrate T horizontally. The holding portion 400 includes a main body portion 410 and a plurality of support members 420.
 本体部410は、重合基板Tよりも大径の開口411を有する平板枠状の部材である。本体部410は、移動機構440に接続されており、移動機構440によって水平方向(X軸方向およびY軸方向)への移動および鉛直軸を中心とする回転が可能である。 The main body 410 is a flat plate frame-shaped member having an opening 411 having a diameter larger than that of the polymerization substrate T. The main body 410 is connected to the moving mechanism 440, and the moving mechanism 440 enables movement in the horizontal direction (X-axis direction and Y-axis direction) and rotation about the vertical axis.
 複数の支持部材420は、開口411の中心に向かって延在するように本体部410に設けられる。重合基板Tは、複数の支持部材420の先端部に外周部が支持される。複数の支持部材420の先端部は、吸引管460を介して真空ポンプ等の吸引装置480に接続され、真空引きによって重合基板Tの下面外周部を吸着する。 The plurality of support members 420 are provided in the main body 410 so as to extend toward the center of the opening 411. The outer peripheral portion of the polymerization substrate T is supported by the tip portions of a plurality of support members 420. The tips of the plurality of support members 420 are connected to a suction device 480 such as a vacuum pump via a suction pipe 460, and the outer peripheral portion of the lower surface of the polymerization substrate T is sucked by vacuuming.
 撮像ユニット500は、マクロ撮像部510と、マイクロ撮像部520と、固定部530と、昇降機構540とを備える。 The imaging unit 500 includes a macro imaging unit 510, a micro imaging unit 520, a fixing unit 530, and an elevating mechanism 540.
 マクロ撮像部510およびマイクロ撮像部520は、保持部400の上方に配置される。マクロ撮像部510は、マクロ撮像用のカメラレンズ511と、CCDイメージセンサやCMOSイメージセンサ等の撮像素子512とを備える。マイクロ撮像部520は、マイクロ撮像用のカメラレンズ521と、CCDイメージセンサやCMOSイメージセンサ等の撮像素子522とを備える。マクロ撮像部510が備えるカメラレンズ511の倍率は、たとえば10倍である。また、マイクロ撮像部520が備えるカメラレンズ521の倍率は、たとえば50倍である。 The macro imaging unit 510 and the micro imaging unit 520 are arranged above the holding unit 400. The macro image pickup unit 510 includes a camera lens 511 for macro imaging and an image pickup element 512 such as a CCD image sensor or a CMOS image sensor. The micro-imaging unit 520 includes a camera lens 521 for micro-imaging and an image sensor 522 such as a CCD image sensor or a CMOS image sensor. The magnification of the camera lens 511 included in the macro imaging unit 510 is, for example, 10 times. The magnification of the camera lens 521 included in the micro-imaging unit 520 is, for example, 50 times.
 マクロ撮像部510およびマイクロ撮像部520は、カメラレンズ511,521を鉛直下方に向けた状態で固定部530に固定される。固定部530は、昇降機構540に接続されており、昇降機構540によって鉛直方向に沿って移動(昇降)する。撮像ユニット500は、昇降機構540を用いて固定部530を昇降させることにより、マクロ撮像部510およびマイクロ撮像部520と重合基板Tとの距離を調整することができる。 The macro imaging unit 510 and the micro imaging unit 520 are fixed to the fixing unit 530 with the camera lenses 511 and 521 facing vertically downward. The fixing portion 530 is connected to the elevating mechanism 540, and is moved (elevated) along the vertical direction by the elevating mechanism 540. The image pickup unit 500 can adjust the distance between the macro image pickup unit 510 and the micro image pickup section 520 and the polymerization substrate T by raising and lowering the fixed portion 530 using the elevating mechanism 540.
 照明ユニット600は、マクロ照明部610と、マイクロ照明部620と、固定部630と、昇降機構640とを備える。 The lighting unit 600 includes a macro lighting unit 610, a micro lighting unit 620, a fixing unit 630, and an elevating mechanism 640.
 マクロ照明部610およびマイクロ照明部620は、保持部400の下方に配置される。具体的には、マクロ照明部610は、保持部400に保持された重合基板Tを挟んでマクロ撮像部510と対向する位置に配置される。また、マイクロ照明部620は、保持部400に保持された重合基板Tを挟んでマイクロ撮像部520と対向する位置に配置される。 The macro illumination unit 610 and the micro illumination unit 620 are arranged below the holding unit 400. Specifically, the macro illumination unit 610 is arranged at a position facing the macro imaging unit 510 with the polymerization substrate T held by the holding unit 400 interposed therebetween. Further, the microillumination unit 620 is arranged at a position facing the microimaging unit 520 with the polymerization substrate T held by the holding unit 400 interposed therebetween.
 マクロ照明部610は、光源611と、集光部612とを備える。光源611は、たとえば、1000~1200nmの近赤外光を照射する。集光部612は、たとえば集光レンズであり、光源611から発せられた光を一点に収束させる。マイクロ照明部620は、マクロ照明部610と同様の構成を有する。すなわち、マイクロ照明部620は、光源621および集光部622を備えており、これらの構成は、マクロ照明部610が備える光源611および集光部612と同様である。 The macro illumination unit 610 includes a light source 611 and a light collection unit 612. The light source 611 irradiates, for example, near-infrared light of 1000 to 1200 nm. The condensing unit 612 is, for example, a condensing lens, and converges the light emitted from the light source 611 to one point. The micro illumination unit 620 has the same configuration as the macro illumination unit 610. That is, the micro-illumination unit 620 includes a light source 621 and a condensing unit 622, and these configurations are the same as those of the light source 611 and the condensing unit 612 included in the macro illumination unit 610.
 なお、光源611,621は、マクロ照明部610およびマイクロ照明部620の外部に配置されてもよい。この場合、光源611,621は、光ファイバ等を介してマクロ照明部610およびマイクロ照明部620の内部に光を供給してもよい。 The light sources 611 and 621 may be arranged outside the macro illumination unit 610 and the micro illumination unit 620. In this case, the light sources 611 and 621 may supply light to the inside of the macro illumination unit 610 and the micro illumination unit 620 via an optical fiber or the like.
 マクロ照明部610およびマイクロ照明部620は、光軸を鉛直方向に向けた状態で固定部630に固定される。固定部630は、昇降機構640に接続されており、昇降機構640によって鉛直方向に沿って移動(昇降)する。照明ユニット600は、昇降機構640を用いて固定部630を昇降させることにより、マクロ照明部610およびマイクロ照明部620と重合基板Tとの距離を調整することができる。 The macro illumination unit 610 and the micro illumination unit 620 are fixed to the fixing unit 630 with the optical axis oriented in the vertical direction. The fixing portion 630 is connected to the elevating mechanism 640, and is moved (elevated) along the vertical direction by the elevating mechanism 640. The lighting unit 600 can adjust the distance between the macro lighting unit 610 and the micro lighting unit 620 and the polymerization substrate T by raising and lowering the fixed portion 630 using the lifting mechanism 640.
 検査装置80は、マイクロ撮像部520およびマイクロ照明部620を用いて、第1基板W1および第2基板W2にそれぞれ形成された測定マークを撮像する。図6は、測定マークの撮像方法の一例を示す図である。また、図7は、測定マークの一例を示す図である。なお、マクロ撮像部510およびマクロ照明部610は、測定マークの場所を特定する処理に用いられるが、この点については後述する。 The inspection device 80 uses the microimaging unit 520 and the microilluminating unit 620 to image the measurement marks formed on the first substrate W1 and the second substrate W2, respectively. FIG. 6 is a diagram showing an example of a method of imaging a measurement mark. Further, FIG. 7 is a diagram showing an example of the measurement mark. The macro imaging unit 510 and the macro illumination unit 610 are used in the process of specifying the location of the measurement mark, and this point will be described later.
 図6に示すように、マイクロ照明部620は、光源621から発せられる光の光軸Axが鉛直方向を向くように固定部630(図4参照)に固定される。また、マイクロ撮像部520は、光軸Axがカメラレンズ521の中心を通り、かつ、カメラレンズ521および撮像素子522に対して垂直に交わるように固定部530(図4参照)に固定される。なお、ここでは、重合基板Tの上方に撮像ユニット500が配置され、重合基板Tの下方に照明ユニット600が配置される場合の例を示したが、重合基板Tの上方に照明ユニット600が配置され、重合基板Tの下方に撮像ユニット500が配置されてもよい。 As shown in FIG. 6, the microillumination unit 620 is fixed to the fixing unit 630 (see FIG. 4) so that the optical axis Ax of the light emitted from the light source 621 faces in the vertical direction. Further, the micro image pickup unit 520 is fixed to the fixing portion 530 (see FIG. 4) so that the optical axis Ax passes through the center of the camera lens 521 and intersects the camera lens 521 and the image pickup element 522 perpendicularly. Here, an example is shown in which the imaging unit 500 is arranged above the polymerization substrate T and the illumination unit 600 is arranged below the polymerization substrate T, but the illumination unit 600 is arranged above the polymerization substrate T. The image pickup unit 500 may be arranged below the polymerization substrate T.
 マイクロ撮像部520とマイクロ照明部620との距離は、たとえば人手による事前の調整作業等により、カメラレンズ521の焦点と集光部622の焦点とが一致する距離に設定される。検査装置80は、昇降機構540および昇降機構640を連動させることにより、カメラレンズ521の焦点と集光部622の焦点とが一致する距離を保った状態でマイクロ撮像部520およびマイクロ照明部620を昇降させる。 The distance between the micro-imaging unit 520 and the micro-illuminating unit 620 is set to a distance at which the focal point of the camera lens 521 and the focal point of the condensing unit 622 coincide with each other, for example, by manual adjustment work or the like. The inspection device 80 interlocks the elevating mechanism 540 and the elevating mechanism 640 to maintain a distance in which the focal point of the camera lens 521 and the focal point of the condensing unit 622 coincide with each other, and the microimaging unit 520 and the microilluminating unit 620 Raise and lower.
 検査装置80は、固定部530および昇降機構540を用いてマイクロ撮像部520およびマイクロ照明部620を一体的に昇降させることで、重合基板Tに形成された測定マークM1,M2にカメラレンズ521および集光部622の焦点を位置させる。そして、検査装置80は、測定マークM1,M2を撮像する。具体的には、マイクロ照明部620から鉛直上方に照射された光は、第2基板W2および第1基板W1を介してマイクロ撮像部520の撮像素子522へ到達する。すなわち、マイクロ撮像部520は、重合基板Tを透過した透過光により測定マークM1,M2を撮像する。マイクロ撮像部520によって撮像された画像データは、制御装置70に出力される。 The inspection device 80 integrally raises and lowers the micro-imaging unit 520 and the micro-illumination unit 620 using the fixing unit 530 and the elevating mechanism 540, so that the camera lenses 521 and the camera lenses 521 and M2 are formed on the polymerization substrate T. Position the focus of the light collector 622. Then, the inspection device 80 images the measurement marks M1 and M2. Specifically, the light emitted vertically upward from the microillumination unit 620 reaches the image pickup device 522 of the microimaging unit 520 via the second substrate W2 and the first substrate W1. That is, the micro-imaging unit 520 images the measurement marks M1 and M2 with the transmitted light transmitted through the polymerization substrate T. The image data captured by the micro-imaging unit 520 is output to the control device 70.
 図7に示すように、画像データには、第1基板W1に形成された測定マークM1および第2基板W2に形成された測定マークM2の画像が含まれる。制御装置70は、画像データに対し、エッジ検出等の画像認識処理を行うことにより、測定マークM1,M2の重心点G1,G2の座標、重心点G1,G2のずれ量等の測定結果を取得し、取得した測定結果に基づき、重合基板Tの接合状態を検査する。 As shown in FIG. 7, the image data includes an image of the measurement mark M1 formed on the first substrate W1 and the measurement mark M2 formed on the second substrate W2. The control device 70 acquires measurement results such as coordinates of the center of gravity points G1 and G2 of the measurement marks M1 and M2 and the amount of deviation of the center of gravity points G1 and G2 by performing image recognition processing such as edge detection on the image data. Then, based on the obtained measurement results, the bonding state of the polymerization substrate T is inspected.
 ところで、マイクロ照明部620の光源621から発せられる光の光量が変化すると、画像データに含まれる測定マークM1や測定マークM2の輪郭の太さが変化し、エッジ検出によって検出されるエッジの位置が変化するおそれがある。この場合、重心点G1,G2の座標や重心点G1,G2のずれ量等の測定結果にずれが生じるおそれがある。このため、検査装置80の測定精度を維持するためには、マイクロ照明部620の光源621から発せられる光の光量が常に一定であることが望ましい。 By the way, when the amount of light emitted from the light source 621 of the microillumination unit 620 changes, the thickness of the contours of the measurement mark M1 and the measurement mark M2 included in the image data changes, and the position of the edge detected by the edge detection changes. May change. In this case, there is a possibility that the coordinates of the center of gravity points G1 and G2 and the measurement results such as the amount of deviation of the center of gravity points G1 and G2 may be deviated. Therefore, in order to maintain the measurement accuracy of the inspection device 80, it is desirable that the amount of light emitted from the light source 621 of the microillumination unit 620 is always constant.
 しかしながら、マイクロ照明部620が備える光源621は、使用するに連れて徐々に劣化し、これに伴い、実際に得られる光量が設定された光量よりも低くなる。すなわち、マイクロ照明部620が備える光源621の光量は、使用に伴い変化(低下)する。 However, the light source 621 included in the micro-illumination unit 620 gradually deteriorates as it is used, and the amount of light actually obtained becomes lower than the set amount of light. That is, the amount of light of the light source 621 included in the microilluminating unit 620 changes (decreases) with use.
 また、仮に、マイクロ照明部620の光軸が鉛直方向からずれた場合にも、検査装置80の測定結果にずれが生じるおそれがある。 Further, even if the optical axis of the microilluminating unit 620 deviates from the vertical direction, the measurement result of the inspection device 80 may deviate.
 そこで、接合システム1では、検査装置80に診断部700を設け、かかる診断部700を用いてマイクロ照明部620の光量チェックおよび光軸チェックを行うこととした。 Therefore, in the joining system 1, a diagnostic unit 700 is provided in the inspection device 80, and the diagnostic unit 700 is used to check the light intensity and the optical axis of the microillumination unit 620.
 図5に示すように、診断部700は、保持部400の本体部410に設けられ、開口411の中心に向かって延在する取付部710と、取付部710の先端部に取り付けられた減衰部材720とを備える。取付部710は、隣り合う2つの支持部材420の間に配置される。取付部710は、支持部材420よりも短く、減衰部材720は、平面視において複数の支持部材420に支持された重合基板Tから露出する位置に配置される。これにより、検査装置80は、保持部400に重合基板Tが保持された状態であっても、診断部700を用いた光量チェックや光軸チェックを行うことができる。 As shown in FIG. 5, the diagnostic unit 700 is provided in the main body 410 of the holding unit 400, and has a mounting portion 710 extending toward the center of the opening 411 and a damping member attached to the tip of the mounting portion 710. It is equipped with 720. The mounting portion 710 is arranged between two adjacent support members 420. The mounting portion 710 is shorter than the support member 420, and the damping member 720 is arranged at a position exposed from the polymerization substrate T supported by the plurality of support members 420 in a plan view. As a result, the inspection device 80 can perform the light quantity check and the optical axis check using the diagnostic unit 700 even when the polymerization substrate T is held by the holding unit 400.
 図8は、実施形態に係る減衰部材720の構成を示す図である。また、図9は、減衰部材720に形成された校正マークの一例を示す図である。 FIG. 8 is a diagram showing the configuration of the damping member 720 according to the embodiment. Further, FIG. 9 is a diagram showing an example of a calibration mark formed on the damping member 720.
 図8に示すように、減衰部材720は、ガラス板721と、複数(ここでは2つ)のシリコン板722とを備える。ガラス板721および2つのシリコン板722は、下方からシリコン板722、ガラス板721およびシリコン板722の順に積層される。 As shown in FIG. 8, the damping member 720 includes a glass plate 721 and a plurality of (here, two) silicon plates 722. The glass plate 721 and the two silicon plates 722 are laminated in the order of the silicon plate 722, the glass plate 721, and the silicon plate 722 from the bottom.
 光量チェックは、光源621から照射され減衰部材720を透過した光をマイクロ撮像部520で受光し、受光した光の光量をチェックすることによって行われる。光源621の光量は、重合基板Tを透過させるために比較的高い値に設定される。このため、光量チェックの際に、光源621から発せられる光をマイクロ撮像部520で直接撮像した場合、光量が強すぎて適切な画像が得られないおそれがある。そこで、検査装置80では、光源621から発せられる光をシリコン板722を用いて重合基板Tと同じように減衰させることとした。これにより、光量チェックを適切に行うことができる。なお、減衰部材720は、少なくとも1つのシリコン板722を備えていればよい。 The light amount check is performed by receiving the light emitted from the light source 621 and transmitted through the attenuation member 720 by the microimaging unit 520 and checking the light amount of the received light. The amount of light of the light source 621 is set to a relatively high value in order to pass through the polymerization substrate T. Therefore, when the light emitted from the light source 621 is directly imaged by the micro-imaging unit 520 at the time of checking the amount of light, the amount of light may be too strong to obtain an appropriate image. Therefore, in the inspection device 80, the light emitted from the light source 621 is attenuated by using the silicon plate 722 in the same manner as the polymerization substrate T. This makes it possible to appropriately check the amount of light. The damping member 720 may include at least one silicon plate 722.
 検査装置80は、予め決められた時刻(たとえば、毎日24時)が到来する毎に光量チェックを行ってもよい。また、検査装置80は、重合基板Tの処理枚数または処理ロット数が予め決められた数に達する毎に光量チェックを行ってもよい。また、検査装置80は、予め決められた時間間隔で(たとえば、12時間ごとに)光量チェックを行ってもよい。上述したように、検査装置80は、保持部400に重合基板Tが保持された状態であっても光量チェックを行うことができるため、重合基板Tの有無にかかわらず、定期的に光量チェックを行うことが容易である。 The inspection device 80 may check the amount of light every time a predetermined time (for example, 24:00 every day) arrives. Further, the inspection apparatus 80 may check the amount of light each time the number of processed substrates T or the number of processed lots reaches a predetermined number. Further, the inspection device 80 may check the amount of light at predetermined time intervals (for example, every 12 hours). As described above, since the inspection device 80 can perform the light amount check even when the polymerization substrate T is held by the holding portion 400, the light amount check is periodically performed regardless of the presence or absence of the polymerization substrate T. Easy to do.
 ガラス板721には校正マークM3が形成される。校正マークM3は、たとえば蒸着によってガラス板721に形成される。このように、ガラス板721に校正マークM3を形成することで、たとえばシリコン板722に校正マークM3を形成する場合と比べて安価に減衰部材720を形成することができる。なお、減衰部材720は、必ずしもガラス板721を備えることを要せず、シリコン板722に校正マークM3が形成されたものであってよい。 A calibration mark M3 is formed on the glass plate 721. The calibration mark M3 is formed on the glass plate 721 by, for example, thin film deposition. By forming the calibration mark M3 on the glass plate 721 in this way, the damping member 720 can be formed at a lower cost than when the calibration mark M3 is formed on the silicon plate 722, for example. The damping member 720 does not necessarily have to be provided with the glass plate 721, and the calibration mark M3 may be formed on the silicon plate 722.
 図9に示すように、校正マークM3は、たとえば、第1の四角M3aと、第2の四角M3bとを含む。第1の四角M3aおよび第2の四角M3bは、均一な厚みを持った四角の枠形状を有する。第2の四角M3bは、第1の四角M3aよりも小さく、第1の四角M3aの内部に配置される。また、第1の四角M3aの重心G3aの位置と、第2の四角M3bの重心G3bの位置とは、一致する。 As shown in FIG. 9, the calibration mark M3 includes, for example, a first square M3a and a second square M3b. The first square M3a and the second square M3b have a square frame shape having a uniform thickness. The second square M3b is smaller than the first square M3a and is arranged inside the first square M3a. Further, the position of the center of gravity G3a of the first square M3a and the position of the center of gravity G3b of the second square M3b coincide with each other.
 光軸チェックは、マイクロ撮像部520によって撮像された画像データに基づき算出される、第1の四角M3aの重心G3aの座標と、第2の四角M3bの重心G3bの座標とのずれの程度をチェックすることによって行われる。すなわち、仮に、マイクロ照明部620の光軸が傾いている場合、画像データに含まれる第1の四角M3a、第2の四角M3bの枠の太さが不均一になることで、重心G3a,G3bの座標が一致しなくなる。検査装置80は、かかる重心G3a,G3bの座標のずれをチェックすることによって光軸の傾きの有無を判定することができる。 The optical axis check checks the degree of deviation between the coordinates of the center of gravity G3a of the first square M3a and the coordinates of the center of gravity G3b of the second square M3b, which are calculated based on the image data captured by the micro-imaging unit 520. It is done by doing. That is, if the optical axis of the microilluminating unit 620 is tilted, the thickness of the frames of the first square M3a and the second square M3b included in the image data becomes non-uniform, so that the centers of gravity G3a and G3b Coordinates do not match. The inspection device 80 can determine whether or not the optical axis is tilted by checking the deviation of the coordinates of the centers of gravity G3a and G3b.
 光源621の劣化に起因する光量の低下は、経時的に起こるのに対し、光軸のずれは、たとえば、メンテナンス時に人が接触した場合等、突発的に起こるケースが多い。このため、検査装置80は、光量チェックの実行頻度と比較して光軸チェックの実行頻度を少なくしてもよい。たとえば、検査装置80は、光量チェックを複数回行う毎に、光軸チェックを1回行うようにしてもよい。また、検査装置80は、電源投入時に光軸チェックを行うようにしてもよい。 While the decrease in the amount of light due to the deterioration of the light source 621 occurs over time, the deviation of the optical axis often occurs suddenly, for example, when a person comes into contact during maintenance. Therefore, the inspection device 80 may execute the optical axis check less frequently than the execution frequency of the light amount check. For example, the inspection device 80 may perform the optical axis check once every time the light amount check is performed a plurality of times. Further, the inspection device 80 may check the optical axis when the power is turned on.
<制御装置の構成>
 次に、制御装置70の構成について図10を参照して説明する。図10は、実施形態に係る制御装置70の構成を示すブロック図である。なお、図10には、制御装置70が備える構成のうち、検査装置80に関連する構成を示している。
<Control device configuration>
Next, the configuration of the control device 70 will be described with reference to FIG. FIG. 10 is a block diagram showing the configuration of the control device 70 according to the embodiment. Note that FIG. 10 shows a configuration related to the inspection device 80 among the configurations included in the control device 70.
 図10に示すように、制御装置70は、制御部71と、記憶部72とを備える。制御部71は、測定制御部71aと、診断制御部71bとを備える。また、記憶部72は、光量初期情報72aを記憶する。 As shown in FIG. 10, the control device 70 includes a control unit 71 and a storage unit 72. The control unit 71 includes a measurement control unit 71a and a diagnostic control unit 71b. Further, the storage unit 72 stores the light amount initial information 72a.
 なお、制御装置70は、たとえば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、入出力ポートなどを有するコンピュータや各種の回路を含む。 The control device 70 includes, for example, a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), an input / output port, and various circuits. ..
 コンピュータのCPUは、たとえば、ROMに記憶されたプログラムを読み出して実行することによって、制御部71の測定制御部71aおよび診断制御部71bとして機能する。なお、測定制御部71aおよび診断制御部71bの少なくともいずれか一つまたは全部は、ASIC(Application Specific Integrated Circuit)、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)等のハードウェアで構成されてもよい。 The CPU of the computer functions as the measurement control unit 71a and the diagnostic control unit 71b of the control unit 71 by reading and executing the program stored in the ROM, for example. At least one or all of the measurement control unit 71a and the diagnostic control unit 71b are composed of hardware such as an ASIC (Application Specific Integrated Circuit), a GPU (Graphics Processing Unit), and an FPGA (Field Programmable Gate Array). You may.
 また、記憶部72は、たとえば、RAMやHDDに対応する。RAMやHDDは、光量初期情報72aを記憶することができる。なお、制御装置70は、有線や無線のネットワークで接続された他のコンピュータや可搬型記録媒体を介して上記したプログラムや各種情報を取得することとしてもよい。 Further, the storage unit 72 corresponds to, for example, a RAM or an HDD. The RAM or HDD can store the initial light intensity information 72a. The control device 70 may acquire the above-mentioned program and various information via another computer or a portable recording medium connected by a wired or wireless network.
(測定制御部について)
 測定制御部71aは、重合基板Tの板面上に複数(たとえば、5~13点)の測定点を設定し、検査装置80に対し、各測定点において重合基板Tの測定を行わせる。
(About the measurement control unit)
The measurement control unit 71a sets a plurality of (for example, 5 to 13 points) measurement points on the plate surface of the polymerization substrate T, and causes the inspection device 80 to measure the polymerization substrate T at each measurement point.
 具体的には、検査装置80では、まず、重合基板Tの搬入処理が行われる。重合基板Tは、搬送装置61(図1参照)によって検査装置80の内部に搬送される。検査装置80は、図示しないリフターを用いて搬送装置61から重合基板Tを受け取り、リフターを移動させて、複数の支持部材420上に重合基板Tを載置する。その後、吸引装置480が吸引管460を介して重合基板Tを真空引きすることにより、重合基板Tが保持部400に吸着保持される。 Specifically, in the inspection device 80, first, the polymerization substrate T is carried in. The polymerization substrate T is conveyed to the inside of the inspection apparatus 80 by the conveying apparatus 61 (see FIG. 1). The inspection device 80 receives the polymerization substrate T from the transfer device 61 using a lifter (not shown), moves the lifter, and places the polymerization substrate T on the plurality of support members 420. After that, the suction device 480 evacuates the polymerization substrate T through the suction pipe 460, so that the polymerization substrate T is sucked and held by the holding portion 400.
 つづいて、検査装置80では、θアライメント処理が行われる。θアライメント処理は、重合基板Tの回転方向における位置を調整する処理である。具体的には、検査装置80は、重合基板T上に存在する複数の基準点(たとえば、重合基板Tの中心部に位置する基準点とその隣に位置する基準点)をマクロ撮像部510により撮像する。そして、検査装置80は、得られた画像から重合基板Tの回転角度を計算し、この回転角度が0度となるように、移動機構440を用いて重合基板Tを回転させる。この基準点は、たとえば、第1基板W1または第2基板W2上に露光処理によってパターンを形成する際に、パターンとともに1ショットごとに第1基板W1または第2基板W2上に形成されるものである。すなわち、検査装置80は、1ショットごとのパターンの並び方向が常に同じ方向となるように、重合基板Tを回転させる。 Subsequently, the inspection device 80 performs a θ alignment process. The θ alignment process is a process of adjusting the position of the polymerization substrate T in the rotation direction. Specifically, the inspection apparatus 80 uses the macroimaging unit 510 to set a plurality of reference points (for example, a reference point located at the center of the polymerization substrate T and a reference point located next to the reference point) existing on the polymerization substrate T by the macro imaging unit 510. Take an image. Then, the inspection device 80 calculates the rotation angle of the polymerization substrate T from the obtained image, and rotates the polymerization substrate T using the moving mechanism 440 so that the rotation angle becomes 0 degrees. This reference point is formed on the first substrate W1 or the second substrate W2 for each shot together with the pattern when a pattern is formed on the first substrate W1 or the second substrate W2 by the exposure process, for example. is there. That is, the inspection device 80 rotates the polymerization substrate T so that the pattern arrangement direction for each shot is always the same.
 つづいて、検査装置80では、測定処理が行われる。具体的には、検査装置80は、移動機構440を用いて保持部400を水平移動させることにより、1つ目の測定点の鉛直線上にマイクロ撮像部520およびマイクロ照明部620を位置させる。その後、検査装置80は、マイクロ撮像部520のフォーカス合わせや保持部400の位置補正等を行ったうえで、マイクロ撮像部520およびマイクロ照明部620を用いて1つ目の測定点に位置する測定マークM1,M2の撮像を行う。 Subsequently, the inspection device 80 performs the measurement process. Specifically, the inspection device 80 positions the microimaging unit 520 and the microilluminating unit 620 on the vertical line of the first measurement point by horizontally moving the holding unit 400 using the moving mechanism 440. After that, the inspection device 80 performs the focusing of the micro-imaging unit 520, the position correction of the holding unit 400, and the like, and then uses the micro-imaging unit 520 and the micro-illumination unit 620 to perform the measurement located at the first measurement point. The marks M1 and M2 are imaged.
 検査装置80は、残りの測定点についても同様の処理を行う。すなわち、検査装置80は、上述した処理を測定点数分繰り返す。 The inspection device 80 performs the same processing on the remaining measurement points. That is, the inspection device 80 repeats the above-mentioned process for the number of measurement points.
 測定制御部71aは、検査装置80から測定結果としての画像データを取得する。そして、測定制御部71aは、取得した画像データに基づき、重合基板Tにおける第1基板W1と第2基板W2とのずれ量を含む検査結果を導出する。具体的には、測定制御部71aは、画像データを解析することにより、各測定点における、測定マークM1のX座標(x1)ならびにY座標(y1)、測定マークM2のX座標(x2)ならびにY座標(y2)を算出する。また、測定制御部71aは、測定マークM1,M2のX座標のずれ量(Δx)および測定マークM1,M2のY座標のずれ量(Δy)を算出する。そして、測定制御部71aは、予め用意された計算モデルに、第1の測定点数分(ここでは、5点分)の算出結果(x1,y1,x2,y2,Δx,Δy)を代入する。 The measurement control unit 71a acquires image data as a measurement result from the inspection device 80. Then, the measurement control unit 71a derives an inspection result including the amount of deviation between the first substrate W1 and the second substrate W2 in the polymerization substrate T based on the acquired image data. Specifically, the measurement control unit 71a analyzes the image data to obtain the X coordinate (x1) and the Y coordinate (y1) of the measurement mark M1 and the X coordinate (x2) of the measurement mark M2 at each measurement point. The Y coordinate (y2) is calculated. Further, the measurement control unit 71a calculates the amount of deviation (Δx) of the X coordinate of the measurement marks M1 and M2 and the amount of deviation (Δy) of the Y coordinate of the measurement marks M1 and M2. Then, the measurement control unit 71a substitutes the calculation results (x1, y1, x2, y2, Δx, Δy) for the first number of measurement points (here, five points) into the calculation model prepared in advance.
 計算モデルは、たとえば、第2基板W2に対する第1基板W1のずれ量を、X軸方向のずれ(Xシフト)、Y軸方向のずれ(Yシフト)、鉛直軸を中心とする回転方向へのずれ(ロテート)、伸び縮みによるずれ(スケーリング)の各成分に分解するものである。測定制御部71aは、この計算モデルを用いて、上記成分ごとの検査結果を取得し、取得した検査結果を記憶部72に記憶させる。 In the calculation model, for example, the amount of deviation of the first substrate W1 with respect to the second substrate W2 is set to the deviation in the X-axis direction (X shift), the deviation in the Y-axis direction (Y shift), and the rotation direction around the vertical axis. It decomposes into each component of shift (rotate) and shift (scaling) due to expansion and contraction. The measurement control unit 71a acquires the inspection result for each of the above components by using this calculation model, and stores the acquired inspection result in the storage unit 72.
(診断制御部について)
 診断制御部71bは、検査装置80による光量チェックおよび光軸チェックの動作を制御する。
(About the diagnostic control unit)
The diagnostic control unit 71b controls the operation of the light quantity check and the optical axis check by the inspection device 80.
 記憶部72に記憶された光量初期情報72aは、光量チェックにおいて用いられる。光量初期情報72aは、マイクロ照明部620が備える光源621の設定光量と、この設定光量にて光源621から発せられた光を減衰部材720を介してマイクロ撮像部520が受光した場合の受光量との関係を示す情報である。設定光量とは、光源621に対して出力される光量の指令値である。たとえば、光量初期情報72aには、光源621の設定光量「100」と、マイクロ撮像部520における受光量「80」とが関連づけられているものとする。 The light amount initial information 72a stored in the storage unit 72 is used in the light amount check. The light amount initial information 72a includes the set light amount of the light source 621 included in the microillumination unit 620 and the light reception amount when the microimaging unit 520 receives the light emitted from the light source 621 at this set light amount via the attenuation member 720. Information showing the relationship between. The set light amount is a command value of the light amount output to the light source 621. For example, it is assumed that the light amount initial information 72a is associated with the set light amount “100” of the light source 621 and the light receiving amount “80” in the micro-imaging unit 520.
 光量初期情報72aは、光源621の劣化が生じる前の、光源621の設定光量とマイクロ撮像部520における受光量との初期の関係を示す情報であり、たとえば接合システム1の立ち上げ時や初回使用時に生成される。光源621が使用によって劣化した場合、設定光量「100」にて発光するよう光源621に対して指令を出したとしても、実際に得られる光量、すなわち、マイクロ撮像部520における受光量は、「80」を下回るようになる。 The light amount initial information 72a is information indicating the initial relationship between the set light amount of the light source 621 and the received light amount in the microimaging unit 520 before the deterioration of the light source 621 occurs, and is, for example, at the time of starting up the junction system 1 or for the first use. Occasionally generated. When the light source 621 deteriorates due to use, even if a command is issued to the light source 621 to emit light at the set light amount "100", the amount of light actually obtained, that is, the amount of light received by the microimaging unit 520 is "80". Will be less than.
 なお、光量チェック処理および光軸チェック処理の具体的な手順については、図12および図13を用いて後述する。 The specific procedure of the light intensity check process and the optical axis check process will be described later with reference to FIGS. 12 and 13.
<接合システムの具体的動作>
 次に、接合システム1の具体的な動作について説明する。まず、接合装置41によって重合基板Tが形成されるまでの処理手順について図11を参照して説明する。図11は、接合システム1が実行する処理のうち、接合装置41によって重合基板Tが形成されるまでの処理の手順の一例を示すフローチャートである。図11に示す各種の処理は、制御装置70による制御に基づいて実行される。
<Specific operation of the joining system>
Next, the specific operation of the joining system 1 will be described. First, the processing procedure until the polymerization substrate T is formed by the joining device 41 will be described with reference to FIG. FIG. 11 is a flowchart showing an example of the procedure of the process performed by the bonding system 1 until the polymerization substrate T is formed by the bonding device 41. The various processes shown in FIG. 11 are executed based on the control by the control device 70.
 まず、複数枚の第1基板W1を収容したカセットC1、複数枚の第2基板W2を収容したカセットC2、および空のカセットC3が、搬入出ステーション2の所定の載置板11に載置される。その後、搬送装置22によりカセットC1内の第1基板W1が取り出され、第3処理ブロックG3に配置されたトランジション装置に搬送される。 First, a cassette C1 containing a plurality of first substrates W1, a cassette C2 accommodating a plurality of second substrates W2, and an empty cassette C3 are placed on a predetermined mounting plate 11 of the loading / unloading station 2. To. After that, the first substrate W1 in the cassette C1 is taken out by the transfer device 22, and is transferred to the transition device arranged in the third processing block G3.
 次に、第1基板W1は、搬送装置61によって第1処理ブロックG1の表面改質装置30に搬送される。表面改質装置30では、所定の減圧雰囲気下において、処理ガスである酸素ガスが励起されてプラズマ化され、イオン化される。この酸素イオンが第1基板W1の接合面に照射されて、当該接合面がプラズマ処理される。これにより、第1基板W1の接合面が改質される(ステップS101)。 Next, the first substrate W1 is conveyed to the surface modification device 30 of the first processing block G1 by the transfer device 61. In the surface reformer 30, oxygen gas, which is a processing gas, is excited to be turned into plasma and ionized under a predetermined reduced pressure atmosphere. The oxygen ions are irradiated to the joint surface of the first substrate W1, and the joint surface is subjected to plasma treatment. As a result, the joint surface of the first substrate W1 is modified (step S101).
 次に、第1基板W1は、搬送装置61によって第2処理ブロックG1の表面親水化装置40に搬送される。表面親水化装置40では、スピンチャックに保持された第1基板W1を回転させながら、第1基板W1上に純水を供給する。これにより、第1基板W1の接合面が親水化される。また、当該純水によって、第1基板W1の接合面が洗浄される(ステップS102)。 Next, the first substrate W1 is conveyed to the surface hydrophilic device 40 of the second processing block G1 by the transfer device 61. In the surface hydrophilization device 40, pure water is supplied onto the first substrate W1 while rotating the first substrate W1 held by the spin chuck. As a result, the joint surface of the first substrate W1 is made hydrophilic. Further, the joint surface of the first substrate W1 is cleaned with the pure water (step S102).
 次に、第1基板W1は、搬送装置61によって第2処理ブロックG2の接合装置41に搬送される。接合装置41に搬入された第1基板W1は、トランジションを介して位置調節機構に搬送され、位置調節機構によって水平方向の向きが調節される(ステップS103)。 Next, the first substrate W1 is conveyed to the joining device 41 of the second processing block G2 by the conveying device 61. The first substrate W1 carried into the joining device 41 is conveyed to the position adjusting mechanism via the transition, and the horizontal orientation is adjusted by the position adjusting mechanism (step S103).
 その後、位置調節機構から反転機構に第1基板W1が受け渡され、反転機構によって第1基板W1の表裏面が反転される(ステップS104)。具体的には、第1基板W1の接合面W1jが下方に向けられる。 After that, the first substrate W1 is passed from the position adjusting mechanism to the reversing mechanism, and the front and back surfaces of the first substrate W1 are inverted by the reversing mechanism (step S104). Specifically, the joint surface W1j of the first substrate W1 is directed downward.
 その後、反転機構から第1保持部140に第1基板W1が受け渡される。第1基板W1は、ノッチ部を予め決められた方向に向けた状態で、第1保持部140に吸着保持される(ステップS105)。 After that, the first substrate W1 is delivered from the reversing mechanism to the first holding unit 140. The first substrate W1 is attracted and held by the first holding portion 140 with the notch portion oriented in a predetermined direction (step S105).
 第1基板W1に対するステップS101~S105の処理と重複して、第2基板W2の処理が行われる。まず、搬送装置22によりカセットC2内の第2基板W2が取り出され、第3処理ブロックG3に配置されたトランジション装置に搬送される。 The processing of the second substrate W2 is performed in duplicate with the processing of steps S101 to S105 for the first substrate W1. First, the second substrate W2 in the cassette C2 is taken out by the transfer device 22, and is transferred to the transition device arranged in the third processing block G3.
 次に、第2基板W2は、搬送装置61によって表面改質装置30に搬送され、第2基板W2の接合面W2jが改質される(ステップS106)。その後、第2基板W2は、搬送装置61によって表面親水化装置40に搬送され、第2基板W2の接合面W2jが親水化されるとともに当該接合面が洗浄される(ステップS107)。 Next, the second substrate W2 is conveyed to the surface modification device 30 by the transfer device 61, and the joint surface W2j of the second substrate W2 is modified (step S106). After that, the second substrate W2 is conveyed to the surface hydrophilization device 40 by the transfer device 61, the joint surface W2j of the second substrate W2 is hydrophilized, and the joint surface is washed (step S107).
 その後、第2基板W2は、搬送装置61によって接合装置41に搬送される。接合装置41に搬入された第2基板W2は、トランジションを介して位置調節機構に搬送される。そして、位置調節機構によって、第2基板W2の水平方向の向きが調節される(ステップS108)。 After that, the second substrate W2 is conveyed to the joining device 41 by the conveying device 61. The second substrate W2 carried into the joining device 41 is conveyed to the position adjusting mechanism via the transition. Then, the horizontal orientation of the second substrate W2 is adjusted by the position adjusting mechanism (step S108).
 その後、第2基板W2は、第2保持部141に搬送され、ノッチ部を予め決められた方向に向けた状態で第2保持部141に吸着保持される(ステップS109)。 After that, the second substrate W2 is conveyed to the second holding portion 141, and is sucked and held by the second holding portion 141 with the notch portion oriented in a predetermined direction (step S109).
 つづいて、第1保持部140に保持された第1基板W1と第2保持部141に保持された第2基板W2との水平方向の位置調節が行われる(ステップS110)。 Subsequently, the horizontal position adjustment between the first substrate W1 held by the first holding portion 140 and the second substrate W2 held by the second holding portion 141 is performed (step S110).
 次に、第1保持部140に保持された第1基板W1と第2保持部141に保持された第2基板W2との鉛直方向位置の調節を行う(ステップS111)。具体的には、第1移動部160が第2保持部141を鉛直上方に移動させることによって、第2基板W2を第1基板W1に接近させる。 Next, the vertical positions of the first substrate W1 held by the first holding portion 140 and the second substrate W2 held by the second holding portion 141 are adjusted (step S111). Specifically, the first moving unit 160 moves the second holding unit 141 vertically upward to bring the second substrate W2 closer to the first substrate W1.
 次に、複数の内側吸着部302による第1基板W1の吸着保持を解除した後(ステップS112)、ストライカー190の押圧ピン191を下降させることによって、第1基板W1の中心部を押下する(ステップS113)。 Next, after releasing the suction holding of the first substrate W1 by the plurality of inner suction portions 302 (step S112), the central portion of the first substrate W1 is pressed by lowering the pressing pin 191 of the striker 190 (step). S113).
 第1基板W1の中心部が第2基板W2の中心部に接触し、第1基板W1の中心部と第2基板W2の中心部とがストライカー190によって所定の力で押圧されると、押圧された第1基板W1の中心部と第2基板W2の中心部との間で接合が開始される。すなわち、第1基板W1の接合面W1jと第2基板W2の接合面W2jはそれぞれステップS101,S109において改質されているため、まず、接合面W1j,W2j間にファンデルワールス力(分子間力)が生じ、当該接合面W1j,W2j同士が接合される。さらに、第1基板W1の接合面W1jと第2基板W2の接合面W2jはそれぞれステップS102,S110において親水化されているため、接合面W1j,W2j間の親水基が水素結合し、接合面W1j,W2j同士が強固に接合される。このようにして、接合領域が形成される。 When the central portion of the first substrate W1 contacts the central portion of the second substrate W2 and the central portion of the first substrate W1 and the central portion of the second substrate W2 are pressed by the striker 190 with a predetermined force, they are pressed. Bonding is started between the central portion of the first substrate W1 and the central portion of the second substrate W2. That is, since the joint surface W1j of the first substrate W1 and the joint surface W2j of the second substrate W2 are modified in steps S101 and S109, respectively, first, a van der Waals force (intermolecular force) is formed between the joint surfaces W1j and W2j. ) Occurs, and the joint surfaces W1j and W2j are joined to each other. Further, since the bonding surface W1j of the first substrate W1 and the bonding surface W2j of the second substrate W2 are hydrophilized in steps S102 and S110, respectively, the hydrophilic groups between the bonding surfaces W1j and W2j are hydrogen-bonded, and the bonding surface W1j , W2j are firmly joined to each other. In this way, the junction region is formed.
 その後、第1基板W1と第2基板W2との間では、第1基板W1および第2基板W2の中心部から外周部に向けて接合領域が拡大していくボンディングウェーブが発生する。その後、複数の外側吸着部301による第1基板W1の吸着保持が解除される(ステップS114)。これにより、外側吸着部301によって吸着保持されていた第1基板W1の外周部が落下する。この結果、第1基板W1の接合面W1jと第2基板W2の接合面W2jが全面で当接し、重合基板Tが形成される。 After that, a bonding wave is generated between the first substrate W1 and the second substrate W2 in which the bonding region expands from the central portion of the first substrate W1 and the second substrate W2 toward the outer peripheral portion. After that, the suction holding of the first substrate W1 by the plurality of outer suction portions 301 is released (step S114). As a result, the outer peripheral portion of the first substrate W1 that has been sucked and held by the outer suction portion 301 falls. As a result, the bonding surface W1j of the first substrate W1 and the bonding surface W2j of the second substrate W2 are in contact with each other on the entire surface, and the polymerization substrate T is formed.
 その後、押圧ピン191を第1保持部140まで上昇させ、第2保持部141による第2基板W2の吸着保持を解除する。その後、重合基板Tは、搬送装置61によって接合装置41から搬出される。こうして、一連の接合処理が終了する。 After that, the pressing pin 191 is raised to the first holding portion 140 to release the suction holding of the second substrate W2 by the second holding portion 141. After that, the polymerization substrate T is carried out from the joining device 41 by the transport device 61. In this way, a series of joining processes is completed.
 次に、検査装置80における光量チェック処理の手順について図12を参照して説明する。図12は、光量チェック処理の手順の一例を示すフローチャートである。なお、ここでは、一例として、マイクロ照明部620の光量チェックを行う場合の処理手順を示すが、同様の処理手順にてマクロ照明部610の光量チェックが行われてもよい。光量チェック処理は、診断制御部71bによる制御に従って行われる。 Next, the procedure of the light intensity check process in the inspection device 80 will be described with reference to FIG. FIG. 12 is a flowchart showing an example of the procedure of the light amount check process. Here, as an example, the processing procedure for checking the light intensity of the micro-illumination unit 620 is shown, but the light intensity check of the macro illumination unit 610 may be performed by the same processing procedure. The light intensity check process is performed according to the control by the diagnostic control unit 71b.
 図12に示すように、検査装置80では、まず、移動機構440(図4参照)が診断部700を移動させることにより、診断部700の減衰部材720をマイクロ照明部620の上方(マイクロ撮像部520の下方)に配置させる(ステップS201)。 As shown in FIG. 12, in the inspection device 80, first, the moving mechanism 440 (see FIG. 4) moves the diagnostic unit 700 to move the damping member 720 of the diagnostic unit 700 above the microillumination unit 620 (microimaging unit). It is arranged below 520 (step S201).
 つづいて、検査装置80では、マイクロ撮像部520のフォーカス合わせ等を行ったうえで、マイクロ照明部620の光源621を設定光量にて発光させる(ステップS202)。光源621から発せられた光は、減衰部材720を透過してマイクロ撮像部520の撮像素子522によって受光される。 Subsequently, in the inspection device 80, after focusing the microimaging unit 520 and the like, the light source 621 of the microilluminating unit 620 is made to emit light at a set amount of light (step S202). The light emitted from the light source 621 passes through the attenuation member 720 and is received by the image sensor 522 of the micro image pickup unit 520.
 つづいて、診断制御部71bは、マイクロ撮像部520によって撮像された画像データに基づき、マイクロ撮像部520における受光量(以下、「測定受光量」と記載する)を算出する(ステップS203)。また、診断制御部71bは、算出した測定受光量と、光量初期情報72aに含まれる受光量(以下、「初期受光量」と記載する)との差分を算出する(ステップS204)。そして、診断制御部71bは、測定受光量と初期受光量との差分が閾値(以下、「光量閾値」と記載する)未満であるか否かを判定する(ステップS205)。 Subsequently, the diagnostic control unit 71b calculates the amount of light received by the micro-imaging unit 520 (hereinafter, referred to as “measured light-receiving amount”) based on the image data captured by the micro-imaging unit 520 (step S203). Further, the diagnostic control unit 71b calculates the difference between the calculated measured light receiving amount and the light receiving amount included in the light amount initial information 72a (hereinafter, referred to as “initial light receiving amount”) (step S204). Then, the diagnostic control unit 71b determines whether or not the difference between the measured light reception amount and the initial light reception amount is less than a threshold value (hereinafter, referred to as “light amount threshold value”) (step S205).
 ステップS205において、測定受光量と初期受光量との差が光量閾値以上である場合(ステップS205,No)、すなわち、光源621の光量が正常でない場合、診断制御部71bは、現在のモードが自動調整モードであるか否かを判定する(ステップS206)。ステップS206において、自動調整モード中であると判定した場合(ステップS206,Yes)、診断制御部71bは、光源621の設定光量を変更する(ステップS207)。具体的には、診断制御部71bは、光源621の設定光量を上げる。たとえば、診断制御部71bは、測定受光量と初期受光量との差分だけ設定光量を上げてもよい。また、診断制御部71bは、予め決められた量だけ設定光量を上げてもよい。ステップS206の処理を終えると、診断制御部71bは、ステップS202に戻り、変更後の設定光量にて光源621を発光させる。 In step S205, when the difference between the measured received light amount and the initial received light amount is equal to or greater than the light amount threshold value (steps S205, No), that is, when the light amount of the light source 621 is not normal, the diagnostic control unit 71b automatically sets the current mode. It is determined whether or not the mode is the adjustment mode (step S206). When it is determined in step S206 that the automatic adjustment mode is in progress (step S206, Yes), the diagnostic control unit 71b changes the set light amount of the light source 621 (step S207). Specifically, the diagnostic control unit 71b increases the set amount of light of the light source 621. For example, the diagnostic control unit 71b may increase the set light amount by the difference between the measured light receiving amount and the initial light receiving amount. Further, the diagnostic control unit 71b may increase the set light amount by a predetermined amount. When the process of step S206 is completed, the diagnostic control unit 71b returns to step S202 and causes the light source 621 to emit light at the changed set light amount.
 一方、ステップS206において、自動調整モード中でない場合(ステップS206,No)診断制御部71bは、報知処理を行う(ステップS208)。たとえば、診断制御部71bは、報知処理として、接合システム1にネットワークを介して接続される上位装置に対し、光源621の光量が低下している旨の情報を送信してもよい。また、診断制御部71bは、報知処理として、接合システム1に設けられた図示しない警報装置(アラームやランプ等)を作動させてもよい。 On the other hand, in step S206, when the automatic adjustment mode is not in progress (step S206, No), the diagnostic control unit 71b performs notification processing (step S208). For example, the diagnostic control unit 71b may transmit information indicating that the amount of light of the light source 621 is reduced to a higher-level device connected to the junction system 1 via a network as a notification process. Further, the diagnostic control unit 71b may operate an alarm device (alarm, lamp, etc.) (not shown) provided in the joining system 1 as a notification process.
 ステップS208の処理を終えた場合、または、ステップS205において、測定受光量と初期受光量との差が光量閾値未満である場合(ステップS205,Yes)、すなわち、光源621の光量が正常である場合、診断制御部71bは、光量チェック処理を終える。 When the process of step S208 is completed, or when the difference between the measured received light amount and the initial received light amount is less than the light amount threshold value in step S205 (step S205, Yes), that is, when the light amount of the light source 621 is normal. , The diagnostic control unit 71b finishes the light amount check process.
 次に、検査装置80における光軸チェック処理の手順について図13を参照して説明する。図13は、光軸チェック処理の手順の一例を示すフローチャートである。 Next, the procedure of the optical axis check process in the inspection device 80 will be described with reference to FIG. FIG. 13 is a flowchart showing an example of the procedure of the optical axis check process.
 図13に示すように、検査装置80では、まず、移動機構440(図4参照)が診断部700を移動させることにより、診断部700の減衰部材720をマイクロ照明部620の上方(マイクロ撮像部520の下方)に配置させる(ステップS301)。 As shown in FIG. 13, in the inspection device 80, first, the moving mechanism 440 (see FIG. 4) moves the diagnostic unit 700 to move the damping member 720 of the diagnostic unit 700 above the microillumination unit 620 (microimaging unit). (Lower than 520) (step S301).
 つづいて、検査装置80では、マイクロ撮像部520のフォーカス合わせ等を行ったうえで、マイクロ照明部620の光源621を設定光量にて発光させる(ステップS302)。そして、検査装置80では、減衰部材720に形成された校正マークM3をマイクロ撮像部520が撮像する(ステップS303)。 Subsequently, in the inspection device 80, after focusing the micro-imaging unit 520 and the like, the light source 621 of the micro-illumination unit 620 is made to emit light at a set amount of light (step S302). Then, in the inspection device 80, the microimaging unit 520 takes an image of the calibration mark M3 formed on the damping member 720 (step S303).
 つづいて、診断制御部71bは、マイクロ撮像部520によって撮像された画像データに基づき、第1の四角M3aの重心G3aおよび第2の四角M3bの重心G3b間の距離をマーク測定値として算出する(ステップS304)。また、診断制御部71bは、算出したマーク測定値と、重心G3a,G3b間の距離の正常値(以下、「Ref値」と記載する)との差分を算出する(ステップS305)。なお、本実施形態では、Ref値が0である場合、すなわち、重心G3aと重心G3bとが一致する場合を例に挙げて説明したが、Ref値は必ずしも0であることを要しない。 Subsequently, the diagnostic control unit 71b calculates the distance between the center of gravity G3a of the first square M3a and the center of gravity G3b of the second square M3b as a mark measurement value based on the image data captured by the micro-imaging unit 520 ( Step S304). Further, the diagnostic control unit 71b calculates the difference between the calculated mark measurement value and the normal value of the distance between the centers of gravity G3a and G3b (hereinafter, referred to as “Ref value”) (step S305). In the present embodiment, the case where the Ref value is 0, that is, the case where the center of gravity G3a and the center of gravity G3b match is described as an example, but the Ref value does not necessarily have to be 0.
 つづいて、診断制御部71bは、マーク測定値とRef値との差分が閾値(以下、「光軸閾値」と記載する)未満であるか否かを判定する(ステップS306)。この処理において、マーク測定値とRef値との差分が光軸閾値未満でない場合(ステップS306,No)、診断制御部71bは、報知処理を行う(ステップS307)。たとえば、診断制御部71bは、報知処理として、接合システム1にネットワークを介して接続される上位装置に対し、光源621の光軸が傾いている旨の情報を送信してもよい。また、診断制御部71bは、報知処理として、接合システム1に設けられた図示しない警報装置(アラームやランプ等)を作動させてもよい。 Subsequently, the diagnostic control unit 71b determines whether or not the difference between the mark measurement value and the Ref value is less than a threshold value (hereinafter, referred to as “optical axis threshold value”) (step S306). In this process, when the difference between the mark measurement value and the Ref value is not less than the optical axis threshold value (step S306, No), the diagnostic control unit 71b performs the notification process (step S307). For example, the diagnostic control unit 71b may transmit information indicating that the optical axis of the light source 621 is tilted to a higher-level device connected to the junction system 1 via a network as a notification process. Further, the diagnostic control unit 71b may operate an alarm device (alarm, lamp, etc.) (not shown) provided in the joining system 1 as a notification process.
 ステップS307の処理を終えた場合、または、ステップS306において、マーク測定値とRef値との差分が光軸閾値未満である場合(ステップS306,Yes)、診断制御部71bは、光軸チェック処理を終える。 When the process of step S307 is completed, or when the difference between the mark measurement value and the Ref value is less than the optical axis threshold value in step S306 (step S306, Yes), the diagnostic control unit 71b performs the optical axis check process. Finish.
 上述してきたように、実施形態に係る検査装置(一例として、検査装置80)の自己診断方法は、第1基板(一例として、第1基板W1)と第2基板(一例として、第2基板W2)とが接合された重合基板(一例として、重合基板T)を検査する検査装置の自己診断方法であって、配置する工程と、照射する工程と、受光する工程と、光量の異常を判定する工程とを含む。配置する工程は、重合基板の外周部を保持する保持部であって、光を減衰させる減衰部材(一例として、減衰部材720)を有する診断部(一例として、診断部700)が設けられた保持部(一例として、保持部400)を移動させることにより、保持部の上方および下方の一方に配置され、保持部に保持された重合基板に光を照射する照明部(一例として、マクロ照明部610またはマイクロ照明部620)と、保持部の上方および下方の他方において照明部と対向する位置に配置され、保持部に保持された重合基板を撮像する撮像部(一例として、マクロ撮像部510またはマイクロ撮像部520)との間に、減衰部材を配置する。照射する工程は、配置する工程の後、照明部から設定光量にて光を照射する。受光する工程は、照射する工程の後、照明部から照射されて減衰部材を透過した光を撮像部を用いて受光する。光量の異常を判定する工程は、受光する工程の後、撮像部にて受光された光の受光量に基づいて、照明部から照射される光の光量の異常を判定する。 As described above, the self-diagnosis method of the inspection device (inspection device 80 as an example) according to the embodiment includes the first substrate (for example, the first substrate W1) and the second substrate (for example, the second substrate W2). ) Is a self-diagnosis method of an inspection device that inspects a polymerized substrate (for example, a polymerized substrate T) bonded to the above, and determines a step of arranging, a step of irradiating, a step of receiving light, and an abnormality in the amount of light. Including the process. The step of arranging is a holding portion that holds the outer peripheral portion of the polymerized substrate, and is provided with a diagnostic unit (as an example, a diagnostic unit 700) having a damping member (for example, a damping member 720) that attenuates light. A lighting unit (as an example, a macro lighting unit 610) that is arranged on one of the upper side and the lower side of the holding unit by moving the unit (as an example, the holding unit 400) and irradiates the polymer substrate held by the holding unit with light. Alternatively, the micro-illumination unit 620) and the imaging unit (for example, the macro-imaging unit 510 or the micro) that are arranged at positions facing the illumination unit on the other side above and below the holding unit and image the polymer substrate held by the holding unit. A damping member is arranged between the image pickup unit 520) and the image pickup unit 520). In the irradiating step, after the arranging step, light is radiated from the illuminating unit at a set amount of light. In the step of receiving light, after the step of irradiating, the light emitted from the illumination unit and transmitted through the attenuation member is received by the imaging unit. In the step of determining the abnormality of the amount of light, after the step of receiving light, the abnormality of the amount of light emitted from the illumination unit is determined based on the amount of light received by the imaging unit.
 実施形態に係る検査装置の自己診断方法によれば、検査装置に内蔵された診断部を用いて、照明部の光量チェックを容易に行うことができる。したがって、検査装置の測定精度の維持を容易化することが可能である。 According to the self-diagnosis method of the inspection device according to the embodiment, the light intensity of the lighting unit can be easily checked by using the diagnosis unit built in the inspection device. Therefore, it is possible to easily maintain the measurement accuracy of the inspection device.
 光量の異常を判定する工程は、照明部から設定光量にて照射され、減衰部材を透過して撮像部にて受光された光の受光量として予め記憶された初期受光量(一例として、光量初期情報72aに含まれる初期受光量)と、撮像する工程において撮像部にて受光された光の受光量(一例として、測定受光量)との差分を算出し、差分が光量閾値以上である場合に、照明部から照射される光の光量が異常であると判定してもよい。これにより、照明部の光源の使用による劣化を容易に発見することができる。 In the step of determining an abnormality in the amount of light, the initial received amount of light that is irradiated from the illumination unit at a set amount of light, passes through the attenuation member, and is stored in advance as the amount of received light received by the imaging unit (for example, the initial amount of light). The difference between the initial light receiving amount included in the information 72a) and the light receiving amount of the light received by the imaging unit in the imaging process (as an example, the measured light receiving amount) is calculated, and when the difference is equal to or more than the light amount threshold. , It may be determined that the amount of light emitted from the illumination unit is abnormal. As a result, deterioration due to the use of the light source of the lighting unit can be easily detected.
 実施形態に係る検査装置の自己診断方法は、光量の異常を判定する工程において、照明部から照射される光の光量が異常であると判定した場合に、設定光量を変更する工程をさらに含んでいてもよい。これにより、照明部から発せられる光の光量が常に一定である状態を容易に維持することができる。 The self-diagnosis method of the inspection device according to the embodiment further includes a step of changing the set light amount when it is determined that the light amount of the light emitted from the illumination unit is abnormal in the step of determining the abnormality of the light amount. You may. As a result, it is possible to easily maintain a state in which the amount of light emitted from the lighting unit is always constant.
 減衰部材は、校正マークを有していてもよい。この場合、実施形態に係る検査装置の自己診断方法は、撮像する工程と、光軸の傾きを判定する工程とをさらに含んでいてもよい。撮像する工程は、照射する工程の後、撮像部を用いて校正マークを撮像する。光軸の傾きを判定する工程は、撮像する工程の後、撮像部によって撮像された校正マークに基づき、照明部の光軸の傾きを判定する。これにより、光量チェックを行うための診断部を用いて、光軸の傾きのチェックも行うことができる。 The damping member may have a calibration mark. In this case, the self-diagnosis method of the inspection device according to the embodiment may further include a step of imaging and a step of determining the inclination of the optical axis. In the step of imaging, after the step of irradiating, the calibration mark is imaged using the imaging unit. In the step of determining the tilt of the optical axis, after the step of imaging, the tilt of the optical axis of the illumination unit is determined based on the calibration mark imaged by the imaging unit. As a result, the inclination of the optical axis can also be checked by using the diagnostic unit for checking the amount of light.
 また、実施形態に係る検査装置(一例として、検査装置80)は、第1基板(一例として、第1基板W1)と第2基板(一例として、第2基板W2)とが接合された重合基板(一例として、重合基板T)を検査する検査装置であって、保持部(一例として、保持部400)と、照明部(一例として、マクロ照明部610またはマイクロ照明部620)と、撮像部(一例として、マクロ撮像部510またはマイクロ撮像部520)と、移動機構(一例として、移動機構440)と、診断部(一例として、診断部700)とを備える。保持部は、重合基板の外周部を保持する。照明部は、保持部の上方および下方の一方に配置され、保持部に保持された重合基板に光を照射する。撮像部は、保持部の上方および下方の他方において照明部と対向する位置に配置され、保持部に保持された重合基板を撮像する。移動機構は、保持部を移動させる。診断部は、保持部に設けられ、照明部から照射される光を減衰させる減衰部材(一例として、減衰部材720)を有する。 Further, the inspection device (for example, the inspection device 80) according to the embodiment is a polymerized substrate in which a first substrate (for example, a first substrate W1) and a second substrate (for example, a second substrate W2) are bonded to each other. (As an example, an inspection device for inspecting a polymerized substrate T), which includes a holding unit (holding unit 400 as an example), an illuminating unit (as an example, a macro illuminating unit 610 or a micro illuminating unit 620), and an imaging unit (as an example). As an example, a macro imaging unit 510 or a micro imaging unit 520), a moving mechanism (moving mechanism 440 as an example), and a diagnostic unit (diagnostic unit 700 as an example) are provided. The holding portion holds the outer peripheral portion of the polymerization substrate. The illumination unit is arranged on one of the upper side and the lower side of the holding part, and irradiates the polymerization substrate held by the holding part with light. The imaging unit is arranged at a position facing the illumination unit on either the upper side or the lower side of the holding unit, and images the polymerized substrate held by the holding unit. The moving mechanism moves the holding portion. The diagnostic unit is provided on the holding unit and has an attenuation member (for example, an attenuation member 720) that attenuates the light emitted from the illumination unit.
 実施形態に係る検査装置によれば、検査装置に内蔵された診断部を用いて、照明部の光量チェックを容易に行うことができる。したがって、検査装置の測定精度の維持を容易化することが可能である。 According to the inspection device according to the embodiment, the light intensity of the lighting unit can be easily checked by using the diagnostic unit built in the inspection device. Therefore, it is possible to easily maintain the measurement accuracy of the inspection device.
 減衰部材は、シリコン(一例として、シリコン板722)を含んでいてもよい。照明部から発せられる光をシリコンを用いて重合基板と同じように減衰させることで、光量チェックを適切に行うことができる。 The damping member may include silicon (as an example, a silicon plate 722). By attenuating the light emitted from the illumination unit using silicon in the same manner as the polymerized substrate, the amount of light can be appropriately checked.
 減衰部材は、シリコンと、シリコンに積層されたガラス(一例として、ガラス板721)と、ガラスに形成された校正マーク(一例として、校正マークM3)とを含んでいてもよい。ガラスに校正マークを形成することで、たとえばシリコンに校正マークを形成する場合と比べて安価に減衰部材を形成することができる。 The damping member may include silicon, glass laminated on silicon (for example, glass plate 721), and a calibration mark formed on the glass (for example, calibration mark M3). By forming the calibration mark on the glass, the damping member can be formed at a lower cost than, for example, when the calibration mark is formed on silicon.
 保持部は、本体部(一例として、本体部410)と、複数の支持部材(一例として、支持部材420)とを備えていてもよい。本体部は、重合基板よりも大径の開口(一例として、開口411)を有する。複数の支持部材は、本体部に設けられ、開口の中心に向かって延在し、先端部において重合基板の外周部を支持する。この場合、診断部は、隣り合う2つの支持部材の間に配置されてもよい。これにより、検査装置80の大型化を抑制することができる。 The holding portion may include a main body portion (for example, the main body portion 410) and a plurality of support members (for example, the support member 420). The main body has an opening (for example, opening 411) having a diameter larger than that of the polymerized substrate. The plurality of support members are provided in the main body portion, extend toward the center of the opening, and support the outer peripheral portion of the polymerization substrate at the tip portion. In this case, the diagnostic unit may be arranged between two adjacent support members. As a result, it is possible to suppress the increase in size of the inspection device 80.
 診断部は、取付部(一例として、取付部710)と、減衰部材(一例として、減衰部材720)とを備えていてもよい。取付部は、保持部に設けられ、開口の中心に向かって延在する。減衰部材は、取付部の先端部に取り付けられる。この場合、減衰部材は、重合基板の板面に対して垂直な方向から検査装置を見た平面視(一例として、図5)において、重合基板から露出する位置に配置されてもよい。これにより、保持部に重合基板が保持された状態であっても、診断部を用いた自己診断を行うことができる。 The diagnostic unit may include a mounting portion (as an example, a mounting portion 710) and a damping member (as an example, a damping member 720). The mounting portion is provided on the holding portion and extends toward the center of the opening. The damping member is attached to the tip of the attachment portion. In this case, the damping member may be arranged at a position exposed from the polymerization substrate in a plan view (for example, FIG. 5) when the inspection device is viewed from a direction perpendicular to the plate surface of the polymerization substrate. This makes it possible to perform self-diagnosis using the diagnostic unit even when the polymerized substrate is held in the holding unit.
 なお、上述した実施形態では、第1基板の中心部をストライカーにより押圧して第2基板に接触させて、表面が改質された第1基板および第2基板の接合面間に生じる分子間力を用いて第1基板と第2基板とを接合する接合装置を例に挙げて説明した。これに限らず、接合装置は、たとえば、第1基板および第2基板を接着剤を介して接合するタイプの接合装置であってもよい。 In the above-described embodiment, the central portion of the first substrate is pressed by a striker to bring it into contact with the second substrate, and the intermolecular force generated between the joint surfaces of the first substrate and the second substrate whose surfaces have been modified is generated. The joining device for joining the first substrate and the second substrate using the above method has been described as an example. Not limited to this, the joining device may be, for example, a type of joining device in which the first substrate and the second substrate are joined via an adhesive.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. Indeed, the above embodiments can be embodied in a variety of forms. Further, the above-described embodiment may be omitted, replaced or changed in various forms without departing from the scope of the appended claims and the purpose thereof.
W1  第1基板
W2  第2基板
T   重合基板
1   接合システム
2   搬入出ステーション
3   処理ステーション
4   検査ステーション
41  接合装置
70  制御装置
71  制御部
71a 測定制御部
71b 診断制御部
72  記憶部
72a 光量初期情報
80  検査装置
400 保持部
410 本体部
420 支持部材
460 吸引管
500 撮像ユニット
510 マクロ撮像部
520 マイクロ撮像部
600 照明ユニット
610 マクロ照明部
620 マイクロ照明部
700 診断部
710 取付部
720 減衰部材
W1 1st substrate W2 2nd substrate T Polymerized substrate 1 Bonding system 2 Loading / unloading station 3 Processing station 4 Inspection station 41 Joining device 70 Control device 71 Control unit 71a Measurement control unit 71b Diagnostic control unit 72 Storage unit 72a Light intensity initial information 80 Inspection Device 400 Holding part 410 Main body part 420 Supporting member 460 Suction tube 500 Imaging unit 510 Macro imaging unit 520 Micro imaging unit 600 Lighting unit 610 Macro lighting unit 620 Micro lighting unit 700 Diagnostic unit 710 Mounting unit 720 Damping member

Claims (9)

  1.  第1基板と第2基板とが接合された重合基板を検査する検査装置の自己診断方法であって、
     前記重合基板の外周部を保持する保持部であって、光を減衰させる減衰部材を有する診断部が設けられた前記保持部を移動させることにより、前記保持部の上方および下方の一方に配置され、前記保持部に保持された前記重合基板に光を照射する照明部と、前記保持部の上方および下方の他方において前記照明部と対向する位置に配置され、前記保持部に保持された前記重合基板を撮像する撮像部との間に、前記減衰部材を配置する工程と、
     前記配置する工程の後、前記照明部から設定光量にて光を照射する工程と、
     前記照射する工程の後、前記照明部から照射されて前記減衰部材を透過した光を前記撮像部を用いて受光する工程と、
     前記受光する工程の後、前記撮像部にて受光された光の受光量に基づいて、前記照明部から照射される光の光量の異常を判定する工程と
     を含む、検査装置の自己診断方法。
    It is a self-diagnosis method of an inspection device that inspects a polymerized substrate in which a first substrate and a second substrate are bonded.
    By moving the holding portion which is a holding portion for holding the outer peripheral portion of the laminated substrate and provided with a diagnostic portion having an attenuation member for attenuating light, the holding portion is arranged above or below the holding portion. , The illumination unit that irradiates the polymerization substrate held by the holding portion with light, and the polymerization that is arranged at a position facing the illumination unit on the other side above and below the holding portion and held by the holding portion. The step of arranging the damping member between the image pickup unit that images the substrate and
    After the step of arranging, a step of irradiating light from the lighting unit with a set amount of light and
    After the irradiation step, a step of receiving light emitted from the illumination unit and transmitted through the attenuation member by using the imaging unit, and a step of receiving the light.
    A self-diagnosis method for an inspection device, which comprises a step of determining an abnormality in the amount of light emitted from the illumination unit based on the amount of light received by the imaging unit after the step of receiving light.
  2.  前記光量の異常を判定する工程は、
     前記照明部から前記設定光量にて照射され、前記減衰部材を透過して前記撮像部にて受光された光の受光量として予め記憶された初期受光量と、前記受光する工程において前記撮像部にて受光された光の受光量との差分を算出し、前記差分が光量閾値以上である場合に、前記照明部から照射される光の光量が異常であると判定する、請求項1に記載の検査装置の自己診断方法。
    The step of determining the abnormality of the amount of light is
    The initial light receiving amount radiated from the illuminating unit at the set light amount, transmitted through the attenuation member, and stored in advance as the received light amount received by the imaging unit, and the imaging unit in the receiving step. The first aspect of claim 1, wherein the difference from the received amount of the received light is calculated, and when the difference is equal to or more than the light amount threshold value, it is determined that the amount of light emitted from the illuminating unit is abnormal. Self-diagnosis method for inspection equipment.
  3.  前記光量の異常を判定する工程において、前記照明部から照射される光の光量が異常であると判定した場合に、前記設定光量を変更する工程
     をさらに含む、請求項1または2に記載の検査装置の自己診断方法。
    The inspection according to claim 1 or 2, further comprising a step of changing the set light amount when it is determined that the light amount of light emitted from the illumination unit is abnormal in the step of determining the abnormality of the light amount. How to self-diagnose the device.
  4.  前記減衰部材は、校正マークを有しており、
     前記照射する工程の後、前記撮像部を用いて前記校正マークを撮像する工程と、
     前記撮像する工程の後、前記撮像部によって撮像された前記校正マークに基づき、前記照明部の光軸の傾きを判定する工程
     をさらに含む、請求項1~3のいずれか一つに記載の検査装置の自己診断方法。
    The damping member has a calibration mark and has a calibration mark.
    After the irradiation step, a step of imaging the calibration mark using the imaging unit and a step of imaging the calibration mark.
    The inspection according to any one of claims 1 to 3, further comprising a step of determining the inclination of the optical axis of the lighting unit based on the calibration mark imaged by the imaging unit after the imaging step. How to self-diagnose the device.
  5.  第1基板と第2基板とが接合された重合基板を検査する検査装置であって、
     前記重合基板の外周部を保持する保持部と、
     前記保持部の上方および下方の一方に配置され、前記保持部に保持された前記重合基板に光を照射する照明部と、
     前記保持部の上方および下方の他方において前記照明部と対向する位置に配置され、前記保持部に保持された前記重合基板を撮像する撮像部と、
     前記保持部を移動させる移動機構と、
     前記保持部に設けられ、前記照明部から照射される光を減衰させる減衰部材を有する診断部と
     を備える、検査装置。
    An inspection device that inspects a polymerized substrate to which a first substrate and a second substrate are bonded.
    A holding portion that holds the outer peripheral portion of the polymerization substrate and
    An illumination unit that is arranged on one of the upper side and the lower side of the holding part and irradiates the polymerization substrate held by the holding part with light.
    An imaging unit that is arranged at a position facing the illumination unit on the other side above and below the holding unit and that images the polymerization substrate held by the holding unit.
    A moving mechanism for moving the holding portion and
    An inspection device including a diagnostic unit provided in the holding unit and having an attenuation member for attenuating the light emitted from the illumination unit.
  6.  前記減衰部材は、シリコンを含む、請求項5に記載の検査装置。 The inspection device according to claim 5, wherein the damping member contains silicon.
  7.  前記減衰部材は、
     前記シリコンと、
     前記シリコンに積層されたガラスと、
     前記ガラスに形成された校正マークと
     を含む、請求項6に記載の検査装置。
    The damping member is
    With the silicon
    The glass laminated on the silicon and
    The inspection device according to claim 6, which includes a calibration mark formed on the glass.
  8.  前記保持部は、
     前記重合基板よりも大径の開口を有する本体部と、
     前記本体部に設けられ、前記開口の中心に向かって延在し、先端部において前記重合基板の外周部を支持する複数の支持部材と
     を備え、
     前記診断部は、
     隣り合う2つの前記支持部材の間に配置される、請求項5~7のいずれか一つに記載の検査装置。
    The holding part is
    A main body having an opening with a diameter larger than that of the polymerization substrate,
    A plurality of support members provided on the main body portion, extending toward the center of the opening, and supporting the outer peripheral portion of the polymerization substrate at the tip portion are provided.
    The diagnostic unit
    The inspection device according to any one of claims 5 to 7, which is arranged between two adjacent support members.
  9.  前記診断部は、
     前記保持部に設けられ、前記開口の中心に向かって延在する取付部と、
     前記取付部の先端部に取り付けられた前記減衰部材と
     を備え、
     前記減衰部材は、
     前記重合基板の板面に対して垂直な方向から前記検査装置を見た平面視において、前記重合基板から露出する位置に配置される、請求項8に記載の検査装置。
    The diagnostic unit
    A mounting portion provided on the holding portion and extending toward the center of the opening,
    The damping member attached to the tip of the attachment portion is provided.
    The damping member is
    The inspection device according to claim 8, wherein the inspection device is arranged at a position exposed from the polymerized substrate in a plan view of the inspection device from a direction perpendicular to the plate surface of the polymerized substrate.
PCT/JP2020/030934 2019-08-29 2020-08-17 Method for self-diagnosis of inspection device, and inspection device WO2021039450A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021542752A JP7297074B2 (en) 2019-08-29 2020-08-17 SELF-DIAGNOSIS METHOD OF INSPECTION DEVICE AND INSPECTION DEVICE
KR1020227010277A KR20220051389A (en) 2019-08-29 2020-08-17 Self-diagnosis method and test device of test device
CN202080059026.7A CN114258482A (en) 2019-08-29 2020-08-17 Self-diagnosis method for inspection apparatus and inspection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-157271 2019-08-29
JP2019157271 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039450A1 true WO2021039450A1 (en) 2021-03-04

Family

ID=74684762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030934 WO2021039450A1 (en) 2019-08-29 2020-08-17 Method for self-diagnosis of inspection device, and inspection device

Country Status (4)

Country Link
JP (1) JP7297074B2 (en)
KR (1) KR20220051389A (en)
CN (1) CN114258482A (en)
WO (1) WO2021039450A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122903A (en) * 1986-11-12 1988-05-26 Sekisui Jushi Co Ltd Length measuring device
JPH08338814A (en) * 1995-06-09 1996-12-24 Toray Ind Inc Apparatus for detecting defect of film and manufacture for film
JP2001074669A (en) * 1999-09-07 2001-03-23 Nippon Columbia Co Ltd Apparatus for inspecting optical disk defect
US20030147070A1 (en) * 2001-12-12 2003-08-07 Abdurrahman Sezginer Method and apparatus for position-dependent optical metrology calibration
JP2004191324A (en) * 2002-12-13 2004-07-08 Ricoh Co Ltd Pin-hole inspecting device
JP2010008336A (en) * 2008-06-30 2010-01-14 Shin Etsu Handotai Co Ltd Sample wafer for calibration of image inspection device, and calibration method of image inspection device
JP2011107144A (en) * 2009-11-20 2011-06-02 Foundation Seoul Technopark Junction wafer inspection method
JP2014041956A (en) * 2012-08-23 2014-03-06 Tokyo Electron Ltd Inspection apparatus, bonding system, inspection method, program, and computer storage medium
US10215695B1 (en) * 2018-04-25 2019-02-26 Globalfoundries Inc. Inspection system and method for detecting defects at a materials interface
WO2019203214A1 (en) * 2018-04-17 2019-10-24 豊田合成株式会社 Storage box

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122908A (en) * 1986-11-13 1988-05-26 Toshiba Corp Surface inspection apparatus
JP5421825B2 (en) 2010-03-09 2014-02-19 東京エレクトロン株式会社 Joining system, joining method, program, and computer storage medium
JP6004517B2 (en) * 2011-04-19 2016-10-12 芝浦メカトロニクス株式会社 Substrate inspection apparatus, substrate inspection method, and adjustment method of the substrate inspection apparatus
KR101264099B1 (en) * 2011-07-07 2013-05-14 한국전기연구원 Apparatus and method for inspecting void of multi-junction semiconductor
JP7065949B2 (en) * 2018-04-23 2022-05-12 東京エレクトロン株式会社 Measuring method and measuring device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122903A (en) * 1986-11-12 1988-05-26 Sekisui Jushi Co Ltd Length measuring device
JPH08338814A (en) * 1995-06-09 1996-12-24 Toray Ind Inc Apparatus for detecting defect of film and manufacture for film
JP2001074669A (en) * 1999-09-07 2001-03-23 Nippon Columbia Co Ltd Apparatus for inspecting optical disk defect
US20030147070A1 (en) * 2001-12-12 2003-08-07 Abdurrahman Sezginer Method and apparatus for position-dependent optical metrology calibration
JP2004191324A (en) * 2002-12-13 2004-07-08 Ricoh Co Ltd Pin-hole inspecting device
JP2010008336A (en) * 2008-06-30 2010-01-14 Shin Etsu Handotai Co Ltd Sample wafer for calibration of image inspection device, and calibration method of image inspection device
JP2011107144A (en) * 2009-11-20 2011-06-02 Foundation Seoul Technopark Junction wafer inspection method
JP2014041956A (en) * 2012-08-23 2014-03-06 Tokyo Electron Ltd Inspection apparatus, bonding system, inspection method, program, and computer storage medium
WO2019203214A1 (en) * 2018-04-17 2019-10-24 豊田合成株式会社 Storage box
US10215695B1 (en) * 2018-04-25 2019-02-26 Globalfoundries Inc. Inspection system and method for detecting defects at a materials interface

Also Published As

Publication number Publication date
CN114258482A (en) 2022-03-29
KR20220051389A (en) 2022-04-26
JP7297074B2 (en) 2023-06-23
JPWO2021039450A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6952853B2 (en) Joining system and joining method
JP7066559B2 (en) Joining device and joining method
JP7420185B2 (en) Board bonding equipment and board bonding method
JP4799325B2 (en) Substrate delivery apparatus, substrate processing apparatus, and substrate delivery method
TWI487897B (en) A substrate processing apparatus, a substrate processing method, a program and a computer memory medium
TWI760545B (en) Substrate processing device
US20120043474A1 (en) Laser processing method and laser processing apparatus
US20150017782A1 (en) Bonding device and bonding method
JP6562828B2 (en) Inspection apparatus, bonding apparatus, bonding system, and inspection method
WO2021039450A1 (en) Method for self-diagnosis of inspection device, and inspection device
WO2021070661A1 (en) Bonding system and method for inspecting multilayer substrate
JP2020141034A (en) Substrate processing apparatus, substrate processing method, and joining method
JP2013102053A (en) Substrate processing system, substrate transfer method, program, and computer storage medium
JP6929427B2 (en) Joining equipment, joining systems, joining methods, programs and computer storage media
JP7203918B2 (en) Joining device, joining system, joining method and computer storage medium
JP6596342B2 (en) Ultraviolet processing apparatus, bonding system, ultraviolet processing method, program, and computer storage medium
JP2020126924A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227010277

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20858397

Country of ref document: EP

Kind code of ref document: A1