WO2021039302A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2021039302A1
WO2021039302A1 PCT/JP2020/029707 JP2020029707W WO2021039302A1 WO 2021039302 A1 WO2021039302 A1 WO 2021039302A1 JP 2020029707 W JP2020029707 W JP 2020029707W WO 2021039302 A1 WO2021039302 A1 WO 2021039302A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
tube
heat exchanger
separator
refrigerant
Prior art date
Application number
PCT/JP2020/029707
Other languages
French (fr)
Japanese (ja)
Inventor
遼平 杉村
真一郎 滝瀬
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080060293.6A priority Critical patent/CN114341573B/en
Publication of WO2021039302A1 publication Critical patent/WO2021039302A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present disclosure relates to a heat exchanger that is used as an outdoor unit of a heat pump system, functions as an evaporator during heating, and functions as a condenser during cooling.
  • the heat pump system that constitutes the vehicle air conditioner is equipped with an outdoor unit for heat exchange between the outdoor air and the refrigerant.
  • Some outdoor units of heat pump systems function as an evaporator for recovering heat from the outdoor air during heating and as a condenser for releasing heat to the outdoor air during cooling.
  • the outdoor unit is often configured as a heat exchanger including a plurality of tubes through which the refrigerant passes and a tank for distributing the refrigerant to each tube.
  • Patent Document 1 describes that the height of the passage in the tube of the condenser is set within a specific range in order to enhance the heat dissipation performance of the condenser.
  • the heat exchanger When the heat exchanger is functioning as an evaporator, it is preferable that the liquid phase refrigerant before evaporation is present in the flow path in each tube as widely as possible. In such a state, heat is recovered from the air due to evaporation of the refrigerant in a wide range, and heat exchange in the evaporator is efficiently performed.
  • the liquid phase refrigerant is evenly distributed to a plurality of tubes.
  • the distribution of the liquid phase refrigerant to each tube tends to be uneven due to the influence of gravity.
  • some heat exchangers have a structure in which the internal space of the tank is divided into upper and lower parts by a separator.
  • the refrigerant flows through each tube below the separator, then is folded back and distributed to each tube above the separator.
  • the amount of the liquid phase refrigerant has decreased due to the evaporation up to that point. For this reason, it is particularly difficult to evenly distribute the liquid phase refrigerant to each tube above the separator.
  • An object of the present disclosure is to provide a heat exchanger capable of evenly distributing a liquid phase refrigerant to each tube and performing heat exchange with high efficiency.
  • the heat exchanger according to the present disclosure is a heat exchanger used as an outdoor unit of a heat pump system, which functions as an evaporator during heating and as a condenser during cooling.
  • This heat exchanger is a tubular member that extends in the horizontal direction, and has a plurality of tubes stacked so as to be arranged in the vertical direction, and a first tank to which one end of each tube is connected. A second tank to which the other end of each tube is connected is provided.
  • the internal space of the first tank is divided into upper and lower parts by a separator. A portion of the first tank below the separator is provided with an inlet portion that serves as an inlet for the refrigerant when functioning as an evaporator.
  • the portion of the first tank above the separator is provided with an outlet portion that serves as an outlet for the refrigerant when functioning as an evaporator.
  • the total value of all cross-sectional areas of the flow path formed inside the tube above the separator in the cross section perpendicular to the longitudinal direction is set as A tube, and the internal space formed inside the second tank.
  • the cross-sectional area in the cross section perpendicular to the vertical direction is A tank, and the length of the second tank above the separator along the vertical direction is expressed in millimeters as L1 tank . when this heat exchanger is configured so as to satisfy the a tank / a tube ⁇ 0.00000378 ⁇ L1 tank 2 -0.00305 ⁇ L1 tank +0.78510.
  • the liquid-phase refrigerant in the interior space of the second tank is appropriate. As a result, the liquid phase refrigerant is evenly distributed to each tube, and heat is recovered from the air with high efficiency.
  • a heat exchanger capable of evenly distributing the liquid phase refrigerant to each tube and performing heat exchange with high efficiency.
  • FIG. 1 is a diagram showing a configuration of a heat exchanger according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the internal configuration of the second tank of the heat exchanger of FIG.
  • FIG. 3 is a cross-sectional view showing the internal configuration of the tube in the heat exchanger of FIG.
  • FIG. 4 is a diagram schematically showing an example of the distribution of the liquid phase refrigerant flowing through the heat exchanger.
  • FIG. 5 is a diagram showing the relationship between the value of A tank / A tube and the performance of the heat exchanger.
  • FIG. 6 is a diagram schematically showing the flow of the liquid phase refrigerant inside the second tank.
  • the heat exchanger 10 is used as an outdoor unit of a heat pump system constituting an air conditioner for a vehicle (not shown).
  • the heat exchanger 10 is installed in the engine room of the vehicle.
  • heat exchange is performed between the refrigerant flowing inside the heat exchanger 10 and the air flowing in from the front grill of the vehicle.
  • a fluorocarbon-based refrigerant is used as the refrigerant.
  • the heat exchanger 10 functions as an evaporator during heating when the interior of the vehicle is heated. At this time, a low-temperature low-pressure liquid-phase refrigerant is supplied to the heat exchanger 10 from an expansion valve (not shown) provided in the heat pump system. In the heat exchanger 10, heat exchange is performed between the refrigerant and air, whereby heat is recovered from the air.
  • the heat exchanger 10 functions as a condenser during cooling when the interior of the vehicle is cooled. At this time, a high-temperature and high-pressure vapor-phase refrigerant is supplied to the heat exchanger 10 from a compressor (not shown) provided in the heat pump system. In the heat exchanger 10, heat exchange is performed between the refrigerant and the air, whereby the heat of the refrigerant is released to the air.
  • the configuration of the heat exchanger 10 will be described with reference to FIG.
  • the heat exchanger 10 includes a first tank 100, a second tank 200, a tube 300, and fins 400.
  • the direction in which the air used for heat exchange flows is from the front side to the back side of the paper surface.
  • the first tank 100 is a container for temporarily storing the refrigerant.
  • the first tank 100 is formed as an elongated container having a substantially cylindrical shape, and is arranged in a state in which the longitudinal direction thereof is along the vertical direction.
  • One end of a tube 300 which will be described later, is connected to the first tank 100.
  • a separator 130 is arranged inside the first tank 100.
  • the internal space of the first tank 100 is divided into upper and lower parts by a separator 130.
  • the position where the separator 130 is arranged is a position in the internal space of the first tank 100 that is closer to the lower side than the center along the vertical direction thereof.
  • a first port 110 is provided in a portion of the first tank 100 below the separator 130. Further, a second port 120 is provided in a portion of the first tank 100 on the upper side of the separator 130.
  • the first port 110 and the second port 120 are provided as inlets or outlets for the refrigerant.
  • the refrigerant is supplied from the first port 110 to the internal space of the first tank 100 and discharged from the second port 120 to the outside. That is, the first port 110 corresponds to an "inlet portion” that serves as an inlet for the refrigerant when the heat exchanger 10 functions as an evaporator.
  • the second port 120 corresponds to an "outlet portion” that serves as an outlet for the refrigerant when the heat exchanger 10 functions as an evaporator.
  • the refrigerant is supplied from the first port 110 to the internal space of the first tank 100 and discharged from the second port 120 to the outside in the same manner as described above.
  • the Rukoto When the heat exchanger 10 functions as a condenser instead of such a configuration, the refrigerant is supplied from the second port 120 to the internal space of the first tank 100 and discharged from the first port 110 to the outside. It may be configured as such.
  • the first port 110 is connected to a position in the internal space of the first tank 100 below the separator 130, which is below the center along the vertical direction thereof.
  • the second port 120 is connected to a position in the internal space of the first tank 100 above the separator 130, which is above the center along the vertical direction thereof.
  • the second tank 200 is a container for temporarily storing the refrigerant.
  • the second tank 200 is formed as an elongated container having a substantially cylindrical shape, and is arranged in a state in which the longitudinal direction thereof is along the vertical direction.
  • the other end of the tube 300 is connected to the second tank 200.
  • the shape of the second tank 200 is substantially the same as the shape of the first tank.
  • the second tank 200 is arranged at a position facing the first tank along the horizontal direction. No separator is arranged inside the second tank 200. Therefore, the entire internal space of the second tank 200 is a single space.
  • the horizontal direction from the first tank 100 to the second tank 200 is the x direction, and the x axis is set along the same direction. Further, the direction is perpendicular to the x direction, and the direction from the front side to the back side of the paper surface is the y direction, and the y axis is set along the same direction.
  • This y direction is a horizontal direction and is a direction in which air used for heat exchange flows. Further, in FIG. 1, the direction is perpendicular to both the x direction and the y direction, and the direction from the lower side to the upper side is the z direction, and the z axis is along the same direction. It is set. In the following, the description will be given using the x-direction, y-direction, and z-direction defined as described above.
  • FIG. 2 shows a cross section when the second tank 200 is cut on a plane perpendicular to the z direction.
  • the position of the cross section is on the z-direction side, that is, on the upper side of the position of the separator 130.
  • the second tank 200 has a core plate 210 and a tank member 220.
  • the core plate 210 is a portion to which the ends of the plurality of tubes 300 are connected.
  • a plurality of through holes are formed in the core plate 210, and the tube 300 is inserted into each through hole.
  • the edge of the through hole and the outer peripheral surface of the tube 300 are wax-contacted over the entire circumference.
  • the end of the tube 300 inserted into the through hole as described above is in a state of protruding in the x direction.
  • an opening serving as an end portion of the flow path FP formed in the tube 300 is formed.
  • the tank member 220 is a member for forming an internal space SP with the core plate 210 by covering the entire core plate 210 from the x direction side. Both the tank member 220 and the core plate 210 are made of metal and are brazed to each other.
  • a recess 221 is formed at a position on the inner surface of the tank member 220 on the most x-direction side.
  • the recess 221 is a groove formed so as to extend linearly along the vertical direction, that is, the z direction.
  • the range in which the recess 221 is formed along the vertical direction is a range in which the recesses 221 can face the end faces of all the tubes 300 laminated in the same direction. The effect of forming the recess 221 will be described later.
  • the tube 300 is a tubular member that extends in the horizontal direction.
  • a plurality of tubes 300 are provided in the heat exchanger 10, and these are arranged in a laminated manner so as to be arranged in the vertical direction.
  • Fins 400 which will be described later, are arranged between the tubes 300 adjacent to each other along the vertical direction.
  • each tube 300 has a flat cross-sectional shape perpendicular to the longitudinal direction thereof, and the longitudinal direction of the flat shape is along the air flow direction, that is, the y direction.
  • a plurality of flow paths FP through which the refrigerant passes are formed inside the tube 300, and these are arranged along the y direction.
  • Each flow path FP is formed so as to extend along the longitudinal direction of the tube 300, that is, the x direction.
  • the internal space of the first tank 100 and the internal space of the second tank 200 are communicated with each other by the flow path FP of each tube 300.
  • the fin 400 is a so-called “corrugated fin", which is formed by bending a metal plate in a wavy shape.
  • the fins 400 are inserted between adjacent tubes 300 along the vertical direction. Therefore, in the heat exchanger 10, the tubes 300 and the fins 400 are laminated and arranged so as to be alternately arranged in the vertical direction.
  • Each top of the wavy fin 400 is brazing to the surface of the adjacent tube 300.
  • the heat exchanger 10 functions as an evaporator, the heat of the passing air is directly transferred to the tube 300, and is also transferred to the tube 300 via the fins 400. That is, the contact area with air is increased by the fins 400, whereby heat exchange between air and the refrigerant is efficiently performed.
  • the heat exchanger 10 functions as a condenser.
  • the portion of the heat exchanger 10 in which all the laminated tubes 300 and fins 400 are laminated is also referred to as "heat exchange core portion CR" below.
  • the heat exchange core portion CR is a portion where heat exchange is performed between the external air and the internal refrigerant.
  • Side plates 11 and 12 which are metal plates, are provided at positions on both the upper and lower sides of the heat exchange core portion CR. The side plates 11 and 12 are for reinforcing the heat exchange core portion CR and maintaining its shape by sandwiching the heat exchange core portion CR from both the upper and lower sides.
  • the flow path of the refrigerant when the heat exchanger 10 functions as an evaporator will be described.
  • the heat exchanger 10 is supplied with the refrigerant from the first port 110, which is the inlet portion.
  • the refrigerant is a low-temperature low-pressure refrigerant as described above.
  • the refrigerant flows from the first port 110 into a portion of the internal space of the first tank 100 below the separator 130. After that, the refrigerant flows into the internal space SP of the second tank 200 through the flow path FP of the tube 300 located below the separator 130.
  • the refrigerant is heated by the air passing outside when passing through the flow path FP as described above. As a result, a part of the refrigerant evaporates and changes from the liquid phase to the gas phase. However, at the time of flowing into the internal space SP of the second tank 200, the refrigerant is in a state of containing a large amount of liquid phase refrigerant that has not yet evaporated.
  • the refrigerant that has flowed into the internal space SP of the second tank 200 flows upward along the longitudinal direction of the internal space SP. After that, the refrigerant flows into the internal space of the first tank 100 through the flow path FP of the tube 300 located above the separator 130.
  • the refrigerant is reheated by the air passing outside when passing through the flow path FP as described above. As a result, a part of the refrigerant evaporates and changes from the liquid phase to the gas phase. When the refrigerant flows into the internal space of the first tank 100, most of the refrigerant evaporates to become a vapor phase refrigerant. After flowing into the internal space of the first tank 100, the refrigerant is discharged to the outside from the second port 120, which is an outlet portion, and flows toward a compressor (not shown) provided in the heat pump system.
  • the heat exchanger 10 is configured so that the refrigerant flows back in the second tank 200.
  • the path through which the refrigerant flows is in the same direction as above, but the path may be in the opposite direction to the above. ..
  • the refrigerant when passing through the flow path FP, the refrigerant is deprived of heat by the air passing through the outside and condenses, and changes from the gas phase to the liquid phase.
  • the heat exchanger 10 functions as an evaporator, the liquid phase refrigerant before evaporation is present in the flow path FP in the tube 300 as widely as possible, that is, the heat exchange core. It is preferable that the part CR is distributed almost entirely. In such a state, heat is recovered from the air due to evaporation of the refrigerant in a wide range of the heat exchange core portion CR, and heat exchange in the heat exchanger 10 is efficiently performed.
  • the liquid phase refrigerant is evenly distributed to the plurality of tubes 300.
  • the distribution of the liquid phase refrigerant to each tube 300 tends to be uneven due to the influence of gravity.
  • the refrigerant is distributed from the second tank 200 to each tube 300 at the time of turning back. At that time, the distribution of the liquid-phase refrigerant tends to be particularly uneven. This is because the amount of the liquid phase refrigerant contained in the refrigerant is smaller than when the refrigerant is first distributed from the first tank 100 to each tube 300.
  • FIG. 4B schematically shows the heat exchange core portion CR in the comparative example when the heat exchanger 10 has the same configuration as the conventional one.
  • the basic configuration is the same as that of the heat exchanger 10, but it differs from the present embodiment only in the cross-sectional area of the flow path FP and the like.
  • the alternate long and short dash line DL2 shown in FIG. 4B shows the z-coordinate of the position where the separator 130 is arranged.
  • the refrigerant flows in the portion below the alternate long and short dash line DL2 in the x direction, then is folded back in the second tank 200 (not shown), and the portion above the alternate long and short dash line DL2 is in the ⁇ x direction. Flow toward.
  • the shaded area in FIG. 4B indicates the range in which the liquid phase refrigerant is distributed in the heat exchange core portion CR. As shown in the figure, in the portion of the heat exchange core portion CR below the alternate long and short dash line DL2, the liquid phase refrigerant is distributed substantially evenly in each tube 300, and as a result, the liquid phase is distributed. The refrigerant is distributed throughout.
  • the liquid phase refrigerant is supplied only to the tube 300 on the upper side, and is arranged on the lower side, that is, in the vicinity of the alternate long and short dash line DL2. Almost no liquid phase refrigerant is supplied to the tube 300. This is because the flow path resistance in the internal space SP of the second tank 200 is too small, so that most of the liquid phase refrigerant flowing upward in the internal space SP reaches the upper end of the second tank 200 and is in the vicinity thereof. It is considered that this is because it is distributed only to the connected tube 300.
  • the above problem is solved by appropriately setting the cross-sectional area of the flow path FP and the like.
  • FIG. 4A it is possible to distribute the liquid phase refrigerant to each tube 300 substantially evenly even in the portion of the heat exchange core portion CR above the alternate long and short dash line DL2. It has become.
  • a method of setting the cross-sectional area of the flow path FP and the like will be described. First, two parameters consisting of A tube and A tank will be described.
  • a tube is the total cross-sectional area of the flow path FP formed inside the tube 300 on the upper side of the separator 130 in the cross section perpendicular to the longitudinal direction thereof.
  • the "cross section perpendicular to the longitudinal direction" is a cross section perpendicular to the x direction as shown in FIG.
  • a plurality of flow path FPs are formed in one tube 300.
  • the above A tube is a value obtained by summing the cross-sectional area values of each flow path FP shown in FIG. 3 and multiplying this by the number of tubes 300 on the upper side of the separator 130. is there.
  • the A tank is the cross-sectional area of the internal space SP formed inside the second tank 200 in a cross section perpendicular to the vertical direction. That is, A tank is the cross-sectional area of the internal space SP in the cross section shown in FIG. This tank does not include the cross-sectional area of the protruding portion of the tube 300 in FIG. That is, it can be said that the tank is the cross-sectional area of the space SP in which the refrigerant can flow linearly along the longitudinal direction of the second tank 200. If the cross-sectional area changes locally in the vertical direction, the shape of the portion shall not be considered in the calculation of the tank.
  • L1 tank The length of the portion above the separator 130 of the second tank 200 along the vertical direction, that is, the length along the z direction is hereinafter referred to as "L1 tank”.
  • the unit of L1 tank is millimeter (mm).
  • the heat exchanger 10 according to this embodiment, as the value of A tank / A tube is 0.00000378 ⁇ L1 tank 2 -0.00305 ⁇ L1 tank +0.78510, the cross-sectional area of the flow path FP and settings such as Has been done. The reason will be described with reference to FIG.
  • the horizontal axis in the graph of FIG. 5 shows the above-mentioned A tank / A tube value when the value of L1 tank is 140 (mm).
  • the vertical axis in the graph shows the value of the performance ratio.
  • the "performance ratio” is an index showing the magnitude of the heat recovery performance from the air as a ratio to the recovery performance when the shape of the heat exchanger 10 is a specific shape.
  • the "recovery performance” in the above is the amount of heat recovered from the air per unit time in the heat exchanger 10.
  • the recovery performance when the value of A tank / Tube is the value indicated by the point P1 is 100%, and the ratio to this is the performance ratio shown on the vertical axis. ..
  • the performance ratio is 100% as described above.
  • the value of A tank / A tube is calculated by 0.00000378 ⁇ L1 tank 2 -0.00305 ⁇ L1 tank +0.78510 as in this embodiment, at that time The performance ratio is 105%.
  • the value of A tank / A tube has a smaller value than the value calculated by 0.00000378 ⁇ L1 tank 2 -0.00305 ⁇ L1 tank +0.78510, performance ratio at that time Is 125%.
  • the smaller the value of A tank / A tube the higher the performance ratio.
  • the performance ratio will improve. This effect is due to the fact that the pressure and temperature of the refrigerant at the inlet portion of the flow path FP are reduced and the temperature difference from the surrounding air is increased.
  • the cross-sectional area of the flow path FP is set so as to satisfy the condition represented by the following formula (1).
  • a tank / A tube ⁇ 0.00000378 ⁇ L1 tank 2 -0.00305 ⁇ L1 tank +0.78510 ⁇ (1)
  • the performance ratio when the heat exchanger 10 functions as an evaporator improves as described above.
  • the value of A tank / A tube is made too small, the heat exchange performance when the heat exchanger 10 functions as a condenser may deteriorate. This is because when the heat exchanger 10 functions as a condenser, the heat transfer coefficient becomes smaller as the pressure loss of the flow path FP becomes smaller and the flow velocity of the refrigerant becomes smaller, and the heat exchange performance as a condenser becomes lower. This is because it will decrease. It is preferable to consider this point when setting the value of A tank / A tube.
  • the tank of the formula (1) is a parameter that affects the pressure loss of the refrigerant in the internal space SP formed inside the second tank 200.
  • a parameter in addition to the tank , for example, the length of the second tank 200 along the z direction and the like can be mentioned.
  • a tube of the same formula is a parameter that affects the pressure loss of the refrigerant in the flow path FP of the tube 300.
  • the length of the tube 300 along the x direction can be mentioned.
  • the L1 tube in the formula (2) is the length of the tube 300 above the separator 130 along the longitudinal direction, that is, the length along the x direction.
  • L2 tube is the total value of all wet edge lengths of the flow path FP formed inside the tube 300 on the upper side of the separator 130 in the cross section perpendicular to the longitudinal direction thereof.
  • the "cross section perpendicular to the longitudinal direction" is a cross section perpendicular to the x direction as shown in FIG.
  • a plurality of flow path FPs are formed in one tube 300.
  • the above L2 tube is obtained by summing the values of the wet edge length of each flow path FP shown in FIG. 2, that is, the value of the peripheral length of the inner surface of the flow path FP in the cross section of FIG. It is a value obtained by multiplying the number of tubes 300 on the upper side of the separator 130.
  • the L1 tank is the length of the portion of the second tank 200 above the separator 130 in the vertical direction, that is, the length in the z direction.
  • L2 tank is the wet edge length of the internal space SP formed inside the second tank 200 in the cross section perpendicular to the vertical direction, that is, the peripheral length of the inner surface of the internal space SP in the cross section of FIG. is there.
  • the internal space SP in this case does not include the portion where the tube 300 protrudes in FIG. That is, it can be said that the L2 tank is the wet edge length of the portion of the internal space SP where the refrigerant can flow linearly along the longitudinal direction of the second tank 200.
  • Equation (2) On the right side of the equation (2), it is necessary to use the unit of millimeter as the L1 tank. In equation (2), since the L1 tank also exists on the left side, it is necessary to use the unit of millimeters for each element on the left side as well.
  • the first is more reliable. It has been confirmed that the liquid phase refrigerant is distributed from the two tanks 200 to each tube 300, and the heat exchanger 10 performs heat exchange with high efficiency. Even when the parameter shown on the left side of the equation (2) is set to the horizontal axis of FIG. 5, a graph substantially similar to that of FIG. 5 is drawn.
  • a recess 221 extending linearly along the vertical direction is formed on the inner surface of the second tank 200, specifically, the inner surface of the tank member 220.
  • a part of the liquid phase refrigerant flowing in this way is distributed to the flow path FP of each tube 300 facing the recess 221 while being guided by the recess 221 extending linearly along the vertical direction. I will go. That is, as compared with the case where the recess 221 is not formed, a larger amount of the liquid phase refrigerant flows through the position of the recess 221 and is distributed to each tube 300. This makes it possible to more evenly distribute the liquid phase refrigerant to each tube 300.
  • the position of the recess 221 is preferably a position of the inner surface of the second tank 200 facing the end of the tube 300.
  • the dotted line DL1 shown in FIG. 2 indicates the x-coordinate of the position of the end portion of the tube 300.
  • the "position facing the end of the tube 300" is a position on the x-direction side of the dotted line DL1. More preferably, the recess 221 may be formed at a position overlapping the end of the tube 300 when viewed along the x-axis.
  • the recess 221 may be formed so as to cover the entire range from the lower end to the upper end of the second tank 200 as in the present embodiment, but is larger than the separator 130 of the second tank 200. It may be formed only in the portion on the upper side.
  • a protruding portion 211 is formed around the portion of the inner surface of the second tank 200 to which the tube 300 is connected so as to project toward the inside of the second tank 200. There is.
  • the protruding portion 211 is a surface that protrudes from other portions so as to be closer to the tube 300, the inside of the second tank 200, and toward the tip end side of the tube 300.
  • the liquid phase refrigerant tends to flow along the inner surface of the second tank 200.
  • the protrusion 211 as described above is formed around the tube 300, a part of the liquid-phase refrigerant flowing along the inner surface of the second tank 200 is sewn along the protrusion 211. It is guided to the tip side of 300. As a result, the liquid phase refrigerant is more likely to flow into the flow path FP of the tube 300 as compared with the case where the protruding portion 211 is not formed.
  • the protrusion for guiding the refrigerant flowing along the inner surface to the end of the tube 300 around the portion of the inner surface of the second tank 200 to which the tube 300 is connected. 211 is formed. This makes it possible to more evenly distribute the liquid phase refrigerant to each tube 300.
  • the first port 110 which is an inlet portion, is formed so as to project from the first tank 100 toward the ⁇ x direction side. Therefore, the direction in which the refrigerant flows from the first port 110 into the internal space of the first tank 100 is the x direction, that is, the direction along the longitudinal direction of the tube 300.
  • the refrigerant flowing into the internal space of the first tank 100 while flowing in the x direction through the first port 110 goes to the flow path FP of each tube 300 without substantially changing the flow direction. It flows in and flows in the x direction as it is. Therefore, it is possible to reduce the flow path resistance due to the change in the flow direction of the refrigerant.
  • the second port 120 which is an outlet portion, is also formed so as to protrude from the first tank 100 toward the ⁇ x direction side. Therefore, the direction in which the refrigerant flows out from the internal space of the first tank 100 to the second port 120 is the ⁇ x direction, that is, the direction along the longitudinal direction of the tube 300.
  • the refrigerant flowing into the internal space of the first tank 100 while flowing in the ⁇ x direction through the flow path FP of the tube 300 goes to the second port 120 without substantially changing the flow direction. It flows in and is discharged from the second port 120 as it is in the ⁇ x direction. Therefore, it is possible to reduce the flow path resistance due to the change in the flow direction of the refrigerant.
  • the position where the separator 130 is arranged in the first tank 100 is a position in the internal space of the first tank 100 that is closer to the lower side than the center along the vertical direction thereof. There is. Therefore, the number of tubes 300 above the separator 130 is larger than the number of tubes 300 below the separator 130. The effect of having such a configuration of the heat exchanger 10 will be described with reference to FIG.
  • FIG. 6 the heat exchange core portion CR and the first tank 100 and the second tank 200 on both sides thereof are schematically shown.
  • the alternate long and short dash line DL3 shown in FIG. 6 indicates the z coordinate of the position where the separator 130 is arranged.
  • the flow of the refrigerant in the tube 300 below the separator 130 is indicated by the arrow AR1.
  • the number of tubes 300 below the separator 130 is smaller than the number of tubes 300 above the separator 130. Therefore, the flow velocity of the refrigerant indicated by the arrow AR1 is higher than that in the case where the separator 130 is arranged at the center in the vertical direction.
  • the flow of the refrigerant When the flow of the refrigerant is disturbed, the vapor-phase refrigerant and the liquid-phase refrigerant are mixed, so that the liquid-phase refrigerant is distributed throughout the second tank 200. Therefore, the liquid phase refrigerant is evenly distributed from the second tank 200 to each tube 300 and flows into each flow path FP.
  • the flow of the refrigerant thus distributed is indicated by the arrow AR3.
  • the number of tubes 300 on the upper side of the separator 130 is larger than the number of tubes 300 on the lower side of the separator 130, so that after folding back. It is possible to more evenly distribute the refrigerant of the above to each tube 300.
  • the throttle portion 230 is formed in a portion of the inside of the second tank 200 that has a height corresponding to the separator 130.
  • the cross-sectional area of the internal space SP formed inside the second tank 200 in the cross section perpendicular to the vertical direction is locally smaller than the cross-sectional area of the other portion. That is, the cross-sectional area of the inside of the second tank 200, which is the height corresponding to the separator 130, is locally smaller than that of the tank.
  • the position where the throttle portion 230 is formed may be a position that is a part of a predetermined range including the height corresponding to the separator 130.
  • the size of this "predetermined range” is preferably the size of the range in which the three tubes 300 are connected along the vertical direction. Further, even if the throttle portion 230 is not formed, the throttle portion 230 may be omitted if the vapor phase refrigerant and the liquid phase refrigerant are sufficiently mixed.

Abstract

A heat exchanger (10) comprises a plurality of tubes (300), a first tank (100), and a second tank (200). The internal space of the first tank is divided into upper and lower parts by a separator (130). This heat exchanger is configured so as to satisfy Atank/Atube ≤ 0.00000378 × L1tank 2 − 0.00305 × L1tank + 0.78510, where: Atube is the sum of all cross-sectional areas of flow paths (FP) formed inside the tubes above the separator, in the cross section perpendicular to the longitudinal direction thereof; Atank is the cross-sectional area of internal space (SP) formed inside the second tank, in the cross section perpendicular to the vertical direction; and L1tank is the length in millimeters of the portion of the second tank above the separator, along the vertical direction.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年8月29日に出願された日本国特許出願2019-156578号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2019-156578 filed on August 29, 2019 and claims the benefit of its priority, and the entire contents of the patent application are Incorporated herein by reference.
 本開示は、ヒートポンプシステムの室外機として用いられ、暖房時には蒸発器として機能し、冷房時には凝縮器として機能する熱交換器に関する。 The present disclosure relates to a heat exchanger that is used as an outdoor unit of a heat pump system, functions as an evaporator during heating, and functions as a condenser during cooling.
 例えば車両用空調装置を構成するヒートポンプシステムには、室外の空気と冷媒との間で熱交換を行うための室外機が備えられる。ヒートポンプシステムの室外機としては、暖房時には室外の空気から熱を回収するための蒸発器として機能し、冷房時には室外の空気に熱を放出するための凝縮器として機能するものがある。室外機は、内部を冷媒が通る複数のチューブと、それぞれのチューブに冷媒を分配するタンクと、を備えた熱交換器として構成されることが多い。 For example, the heat pump system that constitutes the vehicle air conditioner is equipped with an outdoor unit for heat exchange between the outdoor air and the refrigerant. Some outdoor units of heat pump systems function as an evaporator for recovering heat from the outdoor air during heating and as a condenser for releasing heat to the outdoor air during cooling. The outdoor unit is often configured as a heat exchanger including a plurality of tubes through which the refrigerant passes and a tank for distributing the refrigerant to each tube.
 上記のような構成の熱交換器については、空気と冷媒との間における熱交換が可能な限り効率的に行われるよう、チューブの内側に形成される冷媒の流路の形状等、熱交換器の各部の寸法を最適なものとするための検討が進められている。例えば下記特許文献1には、凝縮器の放熱性能を高めるために、凝縮器におけるチューブ内通路高さを特定の範囲内に設定することが記載されている。 For the heat exchanger having the above configuration, the shape of the flow path of the refrigerant formed inside the tube so that the heat exchange between the air and the refrigerant can be performed as efficiently as possible, etc. Studies are underway to optimize the dimensions of each part of the. For example, Patent Document 1 below describes that the height of the passage in the tube of the condenser is set within a specific range in order to enhance the heat dissipation performance of the condenser.
特許第3922288号公報Japanese Patent No. 3922288
 熱交換器が蒸発器として機能しているときにおいては、蒸発前の液相冷媒が、各チューブ内の流路において可能な限り広範囲に存在している状態となることが好ましい。このような状態においては、冷媒の蒸発に伴う空気からの熱の回収が広範囲において行われ、蒸発器における熱交換が効率的に行われることとなる。 When the heat exchanger is functioning as an evaporator, it is preferable that the liquid phase refrigerant before evaporation is present in the flow path in each tube as widely as possible. In such a state, heat is recovered from the air due to evaporation of the refrigerant in a wide range, and heat exchange in the evaporator is efficiently performed.
 従って、蒸発器における熱交換が効率的に行われるためには、複数のチューブに、液相冷媒が均等に分配されることが好ましい。しかしながら、複数のチューブが上下方向に積層配置された構成の熱交換器においては、重力の影響により各チューブへの液相冷媒の分配が不均等なものとなりやすい。 Therefore, in order for heat exchange in the evaporator to be performed efficiently, it is preferable that the liquid phase refrigerant is evenly distributed to a plurality of tubes. However, in a heat exchanger having a configuration in which a plurality of tubes are stacked and arranged in the vertical direction, the distribution of the liquid phase refrigerant to each tube tends to be uneven due to the influence of gravity.
 また、熱交換器には、タンクの内部空間がセパレータで上下に分けられている構成のものもある。このような構成の熱交換器では、冷媒は、セパレータよりも下方側にある各チューブを流れた後、折り返して、セパレータよりも上方側にある各チューブに分配されることとなる。折り返し時点においては、それまでの蒸発により液相冷媒の量が少なくなっている。このため、セパレータよりも上方側にある各チューブに液相冷媒を均等に分配することは特に難しくなる。 In addition, some heat exchangers have a structure in which the internal space of the tank is divided into upper and lower parts by a separator. In the heat exchanger having such a configuration, the refrigerant flows through each tube below the separator, then is folded back and distributed to each tube above the separator. At the time of turning back, the amount of the liquid phase refrigerant has decreased due to the evaporation up to that point. For this reason, it is particularly difficult to evenly distribute the liquid phase refrigerant to each tube above the separator.
 本発明者らが行った実験等によれば、タンクの内側を上方側に向かって流れる液相冷媒の圧力損失が小さくなり過ぎると、液相冷媒はその多くがタンクの上端まで到達し、上方側に配置されたチューブへと偏って分配されてしまうという知見が得られている。また、一般的には、液相冷媒の偏りがある場合は、チューブ内の流路における圧力損失を大きくすると、チューブ内に液相冷媒が入り難くなる為、タンク全体に液相冷媒が広がり得る。しかしながら、タンクが上下方向に伸びる構成では、それぞれのチューブ内の流路における液相冷媒の圧力損失が大きくなると、上記のような液相冷媒の偏りは更に大きくなってしまうという新たな知見を、本発明者らは得ている。 According to the experiments conducted by the present inventors, when the pressure loss of the liquid phase refrigerant flowing upward inside the tank becomes too small, most of the liquid phase refrigerant reaches the upper end of the tank and is upward. It has been found that the tubes are distributed unevenly to the tubes arranged on the side. Further, in general, when the liquid phase refrigerant is biased, if the pressure loss in the flow path in the tube is increased, it becomes difficult for the liquid phase refrigerant to enter the tube, so that the liquid phase refrigerant can spread throughout the tank. .. However, in the configuration in which the tank extends in the vertical direction, if the pressure loss of the liquid phase refrigerant in the flow path in each tube becomes large, the bias of the liquid phase refrigerant as described above becomes further large. The present inventors have obtained.
 更に、タンクの内側を上方側に向かって流れる液相冷媒の流速が小さい場合にも、やはり液相冷媒はタンクの上端まで到達しにくくなる。液相冷媒の流速は、タンク内の流路断面積に影響されるので、当該流速をも考慮してタンクの形状を検討する必要がある。 Furthermore, even when the flow velocity of the liquid phase refrigerant flowing upward inside the tank is small, it is difficult for the liquid phase refrigerant to reach the upper end of the tank. Since the flow velocity of the liquid phase refrigerant is affected by the cross-sectional area of the flow path in the tank, it is necessary to consider the shape of the tank in consideration of the flow velocity.
 以上の知見に鑑みれば、それぞれのチューブに液相冷媒が均等に分配されるためには、液相冷媒の流速に影響するタンクの形状を考慮しながら、タンク内の空間における液相冷媒の圧力損失と、チューブ内の流路における液相冷媒の圧力損失と、のバランスを適切に設定しておく必要がある。しかしながら、これを実現するための熱交換器の構成については、従来、具体的な検討がなされていなかった。 In view of the above findings, in order for the liquid phase refrigerant to be evenly distributed to each tube, the pressure of the liquid phase refrigerant in the space inside the tank is taken into consideration while considering the shape of the tank, which affects the flow velocity of the liquid phase refrigerant. It is necessary to properly set the balance between the loss and the pressure loss of the liquid phase refrigerant in the flow path in the tube. However, a concrete study has not been made on the configuration of the heat exchanger to realize this.
 本開示は、それぞれのチューブに液相冷媒を均等に分配し、高い効率で熱交換を行うことのできる熱交換器、を提供することを目的とする。 An object of the present disclosure is to provide a heat exchanger capable of evenly distributing a liquid phase refrigerant to each tube and performing heat exchange with high efficiency.
 本開示に係る熱交換器は、ヒートポンプシステムの室外機として用いられ、暖房時には蒸発器として機能し、冷房時には凝縮器として機能する熱交換器である。この熱交換器は、水平方向に沿って伸びる管状の部材であって、上下方向に沿って並ぶように積層配置された複数のチューブと、それぞれのチューブの一端が接続された第1タンクと、それぞれのチューブの他端が接続された第2タンクと、を備える。第1タンクの内部空間は、セパレータによって上下に分けられている。第1タンクのうちセパレータよりも下方側の部分には、蒸発器として機能する場合において冷媒の入口となる入口部が設けられている。第1タンクのうちセパレータよりも上方側の部分には、蒸発器として機能する場合において冷媒の出口となる出口部が設けられている。セパレータよりも上方側にあるチューブの内側に形成された流路の、その長手方向に対し垂直な断面における全ての断面積の合計値をAtubeとし、第2タンクの内側に形成された内部空間の、上下方向に対し垂直な断面における断面積をAtankとし、第2タンクのうち、セパレータよりも上方側の部分の上下方向に沿った長さをミリメートルの単位で表したものをL1tankとしたときに、この熱交換器は、Atank/Atube≦0.00000378×L1tank -0.00305×L1tank+0.78510を満たすように構成されている。 The heat exchanger according to the present disclosure is a heat exchanger used as an outdoor unit of a heat pump system, which functions as an evaporator during heating and as a condenser during cooling. This heat exchanger is a tubular member that extends in the horizontal direction, and has a plurality of tubes stacked so as to be arranged in the vertical direction, and a first tank to which one end of each tube is connected. A second tank to which the other end of each tube is connected is provided. The internal space of the first tank is divided into upper and lower parts by a separator. A portion of the first tank below the separator is provided with an inlet portion that serves as an inlet for the refrigerant when functioning as an evaporator. The portion of the first tank above the separator is provided with an outlet portion that serves as an outlet for the refrigerant when functioning as an evaporator. The total value of all cross-sectional areas of the flow path formed inside the tube above the separator in the cross section perpendicular to the longitudinal direction is set as A tube, and the internal space formed inside the second tank. The cross-sectional area in the cross section perpendicular to the vertical direction is A tank, and the length of the second tank above the separator along the vertical direction is expressed in millimeters as L1 tank . when this heat exchanger is configured so as to satisfy the a tank / a tube ≦ 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510.
 本発明者らが行った実験によれば、Atank/Atube≦0.00000378×L1tank -0.00305×L1tank+0.78510を満たすように構成された熱交換器においては、折り返し時に第2タンク内を流れる液相冷媒の圧力損失がある程度大きくなることで、第2タンクの上端まで到達してしまう液相冷媒の量が従来よりも抑制されることが確認されている。また、セパレータよりも上方側にある各チューブの圧力損失がある程度小さくなることで、第2タンクから各チューブへの液相冷媒の流入が促進され、第2タンクの上端まで到達してしまう液相冷媒の量が更に抑制されることも確認されている。 According to the experiments conducted by the present inventors, in the heat exchanger configured to satisfy A tank / A tube ≦ 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510, when folded It has been confirmed that the amount of the liquid phase refrigerant that reaches the upper end of the second tank is suppressed more than before by increasing the pressure loss of the liquid phase refrigerant flowing in the second tank to some extent. Further, since the pressure loss of each tube above the separator is reduced to some extent, the inflow of the liquid phase refrigerant from the second tank to each tube is promoted, and the liquid phase reaches the upper end of the second tank. It has also been confirmed that the amount of refrigerant is further suppressed.
 このように、Atank/Atube≦0.00000378×L1tank -0.00305×L1tank+0.78510を満たすように構成された熱交換器においては、第2タンクの内部空間における液相冷媒の圧力損失と、チューブ内の流路における液相冷媒の圧力損失と、のバランスが適切なものとなる。これにより、それぞれのチューブに液相冷媒は均等に分配され、高い効率で空気からの熱の回収が行われることとなる。 Thus, in the heat exchanger configured to satisfy A tank / A tube ≦ 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510, the liquid-phase refrigerant in the interior space of the second tank The balance between the pressure loss of the liquid phase refrigerant and the pressure loss of the liquid phase refrigerant in the flow path in the tube is appropriate. As a result, the liquid phase refrigerant is evenly distributed to each tube, and heat is recovered from the air with high efficiency.
 本開示によれば、それぞれのチューブに液相冷媒を均等に分配し、高い効率で熱交換を行うことのできる熱交換器、が提供される。 According to the present disclosure, there is provided a heat exchanger capable of evenly distributing the liquid phase refrigerant to each tube and performing heat exchange with high efficiency.
図1は、本実施形態に係る熱交換器の構成を示す図である。FIG. 1 is a diagram showing a configuration of a heat exchanger according to the present embodiment. 図2は、図1の熱交換器のうち、第2タンクの内部構成を示す断面図である。FIG. 2 is a cross-sectional view showing the internal configuration of the second tank of the heat exchanger of FIG. 図3は、図1の熱交換器のうち、チューブの内部構成を示す断面図である。FIG. 3 is a cross-sectional view showing the internal configuration of the tube in the heat exchanger of FIG. 図4は、熱交換器を流れる液相冷媒の分布の例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of the distribution of the liquid phase refrigerant flowing through the heat exchanger. 図5は、Atank/Atubeの値と、熱交換器の性能との関係を示す図である。FIG. 5 is a diagram showing the relationship between the value of A tank / A tube and the performance of the heat exchanger. 図6は、第2タンクの内部における液相冷媒の流れを模式的に示す図である。FIG. 6 is a diagram schematically showing the flow of the liquid phase refrigerant inside the second tank.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
 本実施形態に係る熱交換器10は、不図示の車両用空調装置を構成するヒートポンプシステムの室外機として用いられるものである。熱交換器10は、車両のエンジンルームに設置される。熱交換器10では、その内側を流れる冷媒と、車両のフロントグリルから流入する空気との間で熱交換が行われる。尚、本実施形態では、冷媒としてフロン系の冷媒が用いられる。 The heat exchanger 10 according to the present embodiment is used as an outdoor unit of a heat pump system constituting an air conditioner for a vehicle (not shown). The heat exchanger 10 is installed in the engine room of the vehicle. In the heat exchanger 10, heat exchange is performed between the refrigerant flowing inside the heat exchanger 10 and the air flowing in from the front grill of the vehicle. In this embodiment, a fluorocarbon-based refrigerant is used as the refrigerant.
 車室内の暖房が行われる暖房時においては、熱交換器10は蒸発器として機能する。このとき、熱交換器10には、ヒートポンプシステムが備える不図示の膨張弁から、低温低圧の液相冷媒が供給される。熱交換器10では、冷媒と空気との間で熱交換が行われ、これにより空気から熱が回収される。 The heat exchanger 10 functions as an evaporator during heating when the interior of the vehicle is heated. At this time, a low-temperature low-pressure liquid-phase refrigerant is supplied to the heat exchanger 10 from an expansion valve (not shown) provided in the heat pump system. In the heat exchanger 10, heat exchange is performed between the refrigerant and air, whereby heat is recovered from the air.
 車室内の冷房が行われる冷房時においては、熱交換器10は凝縮器として機能する。このとき、熱交換器10には、ヒートポンプシステムが備える不図示のコンプレッサから、高温高圧の気相冷媒が供給される。熱交換器10では、冷媒と空気との間で熱交換が行われ、これにより冷媒の熱が空気へと放出される。 The heat exchanger 10 functions as a condenser during cooling when the interior of the vehicle is cooled. At this time, a high-temperature and high-pressure vapor-phase refrigerant is supplied to the heat exchanger 10 from a compressor (not shown) provided in the heat pump system. In the heat exchanger 10, heat exchange is performed between the refrigerant and the air, whereby the heat of the refrigerant is released to the air.
 尚、室外機である熱交換器10の機能を、上記のように蒸発器と凝縮器との間で切り替えることのできるヒートポンプシステムの構成としては、公知のものを採用することができる。このため、ヒートポンプシステム全体の具体的な構成の説明や図示については省略する。 As a configuration of the heat pump system capable of switching the function of the heat exchanger 10 which is an outdoor unit between the evaporator and the condenser as described above, a known one can be adopted. Therefore, the description and illustration of the specific configuration of the entire heat pump system will be omitted.
 図1を参照しながら、熱交換器10の構成について説明する。熱交換器10は、第1タンク100と、第2タンク200と、チューブ300と、フィン400と、を備えている。尚、図1においては、熱交換に供される空気の流れる方向が、紙面手前側から奥側へと向かう方向となっている。 The configuration of the heat exchanger 10 will be described with reference to FIG. The heat exchanger 10 includes a first tank 100, a second tank 200, a tube 300, and fins 400. In FIG. 1, the direction in which the air used for heat exchange flows is from the front side to the back side of the paper surface.
 第1タンク100は、冷媒を一時的に貯えるための容器である。第1タンク100は、略円柱形状の細長い容器として形成されており、その長手方向を上下方向に沿わせた状態で配置されている。第1タンク100には、後述のチューブ300の一端が接続されている。 The first tank 100 is a container for temporarily storing the refrigerant. The first tank 100 is formed as an elongated container having a substantially cylindrical shape, and is arranged in a state in which the longitudinal direction thereof is along the vertical direction. One end of a tube 300, which will be described later, is connected to the first tank 100.
 第1タンク100の内部にはセパレータ130が配置されている。第1タンク100の内部空間は、セパレータ130によって上下に分けられている。セパレータ130が配置されている位置は、第1タンク100の内部空間のうち、その上下方向に沿った中央よりも下方側寄りとなる位置である。 A separator 130 is arranged inside the first tank 100. The internal space of the first tank 100 is divided into upper and lower parts by a separator 130. The position where the separator 130 is arranged is a position in the internal space of the first tank 100 that is closer to the lower side than the center along the vertical direction thereof.
 第1タンク100のうちセパレータ130よりも下方側の部分には、第1ポート110が設けられている。また、第1タンク100のうちセパレータ130よりも上方側の部分には、第2ポート120が設けられている。第1ポート110及び第2ポート120は、冷媒の入口又は出口として設けられている。 A first port 110 is provided in a portion of the first tank 100 below the separator 130. Further, a second port 120 is provided in a portion of the first tank 100 on the upper side of the separator 130. The first port 110 and the second port 120 are provided as inlets or outlets for the refrigerant.
 熱交換器10が蒸発器として機能する場合においては、冷媒は第1ポート110から第1タンク100の内部空間へと供給され、第2ポート120から外部へと排出される。つまり、第1ポート110は、熱交換器10が蒸発器として機能する場合に冷媒の入口となる「入口部」に該当する。第2ポート120は、熱交換器10が蒸発器として機能する場合において冷媒の出口となる「出口部」に該当する。 When the heat exchanger 10 functions as an evaporator, the refrigerant is supplied from the first port 110 to the internal space of the first tank 100 and discharged from the second port 120 to the outside. That is, the first port 110 corresponds to an "inlet portion" that serves as an inlet for the refrigerant when the heat exchanger 10 functions as an evaporator. The second port 120 corresponds to an "outlet portion" that serves as an outlet for the refrigerant when the heat exchanger 10 functions as an evaporator.
 尚、熱交換器10が凝縮器として機能する場合においては、上記と同様に、冷媒は第1ポート110から第1タンク100の内部空間へと供給され、第2ポート120から外部へと排出されることとなる。このような構成に替えて、熱交換器10が凝縮器として機能する場合においては、冷媒が第2ポート120から第1タンク100の内部空間へと供給され、第1ポート110から外部へと排出されるような構成としてもよい。 When the heat exchanger 10 functions as a condenser, the refrigerant is supplied from the first port 110 to the internal space of the first tank 100 and discharged from the second port 120 to the outside in the same manner as described above. The Rukoto. When the heat exchanger 10 functions as a condenser instead of such a configuration, the refrigerant is supplied from the second port 120 to the internal space of the first tank 100 and discharged from the first port 110 to the outside. It may be configured as such.
 本実施形態では、第1ポート110は、セパレータ130よりも下方側にある第1タンク100の内部空間のうち、その上下方向に沿った中央よりも下方側となる位置に接続されている。また、第2ポート120は、セパレータ130よりも上方側にある第1タンク100の内部空間のうち、その上下方向に沿った中央よりも上方側となる位置に接続されている。 In the present embodiment, the first port 110 is connected to a position in the internal space of the first tank 100 below the separator 130, which is below the center along the vertical direction thereof. Further, the second port 120 is connected to a position in the internal space of the first tank 100 above the separator 130, which is above the center along the vertical direction thereof.
 第2タンク200は、冷媒を一時的に貯えるための容器である。第2タンク200は、上記の第1タンク100と同様に、略円柱形状の細長い容器として形成されており、その長手方向を上下方向に沿わせた状態で配置されている。第2タンク200には、チューブ300の他端が接続されている。第2タンク200の形状は、第1タンクの形状と概ね同一である。第2タンク200は、水平方向に沿って第1タンクと対向する位置に配置されている。尚、第2タンク200の内部にはセパレータが配置されていない。このため、第2タンク200の内部空間は、その全体が単一の空間となっている。 The second tank 200 is a container for temporarily storing the refrigerant. Like the first tank 100 described above, the second tank 200 is formed as an elongated container having a substantially cylindrical shape, and is arranged in a state in which the longitudinal direction thereof is along the vertical direction. The other end of the tube 300 is connected to the second tank 200. The shape of the second tank 200 is substantially the same as the shape of the first tank. The second tank 200 is arranged at a position facing the first tank along the horizontal direction. No separator is arranged inside the second tank 200. Therefore, the entire internal space of the second tank 200 is a single space.
 図1においては、水平方向であって第1タンク100から第2タンク200へと向かう方向がx方向となっており、同方向に沿ってx軸が設定されている。また、x方向に対して垂直な方向であって、紙面手前側から奥側へと向かう方向がy方向となっており、同方向に沿ってy軸が設定されている。このy方向は、水平な方向であって、且つ熱交換に供される空気の流れる方向となっている。図1においては更に、上記のx方向及びy方向のいずれに対しても垂直な方向であって、下方側から上方側に向かう方向がz方向となっており、同方向に沿ってz軸が設定されている。以下においては、上記のように定義されたx方向、y方向、z方向を用いて説明を行うこととする。 In FIG. 1, the horizontal direction from the first tank 100 to the second tank 200 is the x direction, and the x axis is set along the same direction. Further, the direction is perpendicular to the x direction, and the direction from the front side to the back side of the paper surface is the y direction, and the y axis is set along the same direction. This y direction is a horizontal direction and is a direction in which air used for heat exchange flows. Further, in FIG. 1, the direction is perpendicular to both the x direction and the y direction, and the direction from the lower side to the upper side is the z direction, and the z axis is along the same direction. It is set. In the following, the description will be given using the x-direction, y-direction, and z-direction defined as described above.
 図2には、z方向に垂直な面において第2タンク200を切断した場合の断面が示されている。尚、当該断面の位置は、セパレータ130の位置よりもz方向側、つまり上方側の位置となっている。 FIG. 2 shows a cross section when the second tank 200 is cut on a plane perpendicular to the z direction. The position of the cross section is on the z-direction side, that is, on the upper side of the position of the separator 130.
 図2に示されるように、第2タンク200は、コアプレート210とタンク部材220とを有している。コアプレート210は、複数のチューブ300の端部が接続されている部分である。コアプレート210には複数の貫通孔が形成されており、それぞれの貫通孔にチューブ300が挿通されている。当該貫通孔の縁と、チューブ300の外周面との間は、全周に亘ってろう接されている。 As shown in FIG. 2, the second tank 200 has a core plate 210 and a tank member 220. The core plate 210 is a portion to which the ends of the plurality of tubes 300 are connected. A plurality of through holes are formed in the core plate 210, and the tube 300 is inserted into each through hole. The edge of the through hole and the outer peripheral surface of the tube 300 are wax-contacted over the entire circumference.
 第2タンク200の内部空間SPには、上記のように貫通穴に挿通されたチューブ300の端部がx方向に突出した状態となっている。当該端部の先端には、チューブ300に形成された流路FPの端部となる開口が形成されている。 In the internal space SP of the second tank 200, the end of the tube 300 inserted into the through hole as described above is in a state of protruding in the x direction. At the tip of the end portion, an opening serving as an end portion of the flow path FP formed in the tube 300 is formed.
 タンク部材220は、コアプレート210の全体をx方向側から覆うことにより、コアプレート210との間に内部空間SPを形成するための部材である。タンク部材220及びコアプレート210はいずれも金属によって形成されており、互いにろう接されている。 The tank member 220 is a member for forming an internal space SP with the core plate 210 by covering the entire core plate 210 from the x direction side. Both the tank member 220 and the core plate 210 are made of metal and are brazed to each other.
 図2に示されるように、タンク部材220の内面のうち最もx方向側となる位置には、凹部221が形成されている。凹部221は、上下方向すなわちz方向に沿って直線状に伸びるように形成された溝である。上下方向に沿って凹部221が形成されている範囲は、同方向に沿って積層された全てのチューブ300の端面と対向し得る範囲、となっている。凹部221が形成されていることの効果については後に説明する。 As shown in FIG. 2, a recess 221 is formed at a position on the inner surface of the tank member 220 on the most x-direction side. The recess 221 is a groove formed so as to extend linearly along the vertical direction, that is, the z direction. The range in which the recess 221 is formed along the vertical direction is a range in which the recesses 221 can face the end faces of all the tubes 300 laminated in the same direction. The effect of forming the recess 221 will be described later.
 チューブ300は、水平方向に沿って伸びる管状の部材である。熱交換器10には、チューブ300が複数本設けられており、これらが上下方向に沿って並ぶように積層配置されている。上下方向に沿って互いに隣り合うチューブ300の間には、後述のフィン400が配置されている。 The tube 300 is a tubular member that extends in the horizontal direction. A plurality of tubes 300 are provided in the heat exchanger 10, and these are arranged in a laminated manner so as to be arranged in the vertical direction. Fins 400, which will be described later, are arranged between the tubes 300 adjacent to each other along the vertical direction.
 図3に示されるように、それぞれのチューブ300は、その長手方向に対し垂直な断面の形状が扁平形状となっており、当該扁平形状の長手方向が空気の流れ方向、すなわちy方向に沿っている。チューブ300の内側には、冷媒の通る流路FPが複数形成されており、これらがy方向に沿って並んでいる。それぞれの流路FPは、チューブ300の長手方向、すなわちx方向に沿って伸びるように形成されている。第1タンク100の内部空間と、第2タンク200の内部空間との間は、それぞれのチューブ300の流路FPによって互いに連通されている。 As shown in FIG. 3, each tube 300 has a flat cross-sectional shape perpendicular to the longitudinal direction thereof, and the longitudinal direction of the flat shape is along the air flow direction, that is, the y direction. There is. A plurality of flow paths FP through which the refrigerant passes are formed inside the tube 300, and these are arranged along the y direction. Each flow path FP is formed so as to extend along the longitudinal direction of the tube 300, that is, the x direction. The internal space of the first tank 100 and the internal space of the second tank 200 are communicated with each other by the flow path FP of each tube 300.
 図1に戻って説明を続ける。フィン400は、所謂「コルゲートフィン」であって、金属板を波状に折り曲げることにより形成されたものである。フィン400は、上下方向に沿って隣り合うチューブ300の間に挿入されている。このため、熱交換器10では、チューブ300とフィン400とが、上下方向に沿って交互に並ぶように積層配置されている。 Return to Fig. 1 and continue the explanation. The fin 400 is a so-called "corrugated fin", which is formed by bending a metal plate in a wavy shape. The fins 400 are inserted between adjacent tubes 300 along the vertical direction. Therefore, in the heat exchanger 10, the tubes 300 and the fins 400 are laminated and arranged so as to be alternately arranged in the vertical direction.
 波状となっているフィン400のそれぞれの頂部は、隣接するチューブ300の表面にろう接されている。熱交換器10が蒸発器として機能する場合においては、通過する空気の熱がチューブ300に直接伝達される他、フィン400を介してもチューブ300に伝達される。つまり、空気との接触面積がフィン400によって大きくなっており、これにより空気と冷媒との熱交換が効率的に行われる。熱交換器10が凝縮器として機能する場合においても同様である。 Each top of the wavy fin 400 is brazing to the surface of the adjacent tube 300. When the heat exchanger 10 functions as an evaporator, the heat of the passing air is directly transferred to the tube 300, and is also transferred to the tube 300 via the fins 400. That is, the contact area with air is increased by the fins 400, whereby heat exchange between air and the refrigerant is efficiently performed. The same applies when the heat exchanger 10 functions as a condenser.
 熱交換器10のうち、積層された全てのチューブ300及びフィン400が積層配置されている部分のことを、以下では「熱交換コア部CR」とも称する。熱交換コア部CRは、外部の空気と内部の冷媒との間で熱交換が行われる部分である。熱交換コア部CRの上下両側となる位置には、金属板であるサイドプレート11、12が設けられている。サイドプレート11、12は、熱交換コア部CRを上下両側から挟み込むことにより、熱交換コア部CRを補強してその形状を維持するためのものである。 The portion of the heat exchanger 10 in which all the laminated tubes 300 and fins 400 are laminated is also referred to as "heat exchange core portion CR" below. The heat exchange core portion CR is a portion where heat exchange is performed between the external air and the internal refrigerant. Side plates 11 and 12, which are metal plates, are provided at positions on both the upper and lower sides of the heat exchange core portion CR. The side plates 11 and 12 are for reinforcing the heat exchange core portion CR and maintaining its shape by sandwiching the heat exchange core portion CR from both the upper and lower sides.
 熱交換器10が蒸発器として機能する場合における、冷媒の流れる経路について説明する。この場合、熱交換器10には、入口部である第1ポート110から冷媒が供給される。当該冷媒は、先に述べたように低温低圧の冷媒である。冷媒は、第1ポート110から、第1タンク100の内部空間のうちセパレータ130よりも下方側の部分に流入する。その後、冷媒は、セパレータ130よりも下方側にあるチューブ300の流路FPを通って、第2タンク200の内部空間SPへと流入する。 The flow path of the refrigerant when the heat exchanger 10 functions as an evaporator will be described. In this case, the heat exchanger 10 is supplied with the refrigerant from the first port 110, which is the inlet portion. The refrigerant is a low-temperature low-pressure refrigerant as described above. The refrigerant flows from the first port 110 into a portion of the internal space of the first tank 100 below the separator 130. After that, the refrigerant flows into the internal space SP of the second tank 200 through the flow path FP of the tube 300 located below the separator 130.
 冷媒は、上記のように流路FPを通る際において、外側を通る空気によって加熱される。これにより、冷媒の一部は蒸発し、液相から気相へと変化する。ただし、第2タンク200の内部空間SPに流入した時点においては、冷媒には未だ蒸発していない液相冷媒が多く含まれた状態となっている。 The refrigerant is heated by the air passing outside when passing through the flow path FP as described above. As a result, a part of the refrigerant evaporates and changes from the liquid phase to the gas phase. However, at the time of flowing into the internal space SP of the second tank 200, the refrigerant is in a state of containing a large amount of liquid phase refrigerant that has not yet evaporated.
 第2タンク200の内部空間SPに流入した冷媒は、内部空間SPの長手方向に沿って上方側へと向かって流れる。その後、冷媒は、セパレータ130よりも上方側にあるチューブ300の流路FPを通って、第1タンク100の内部空間へと流入する。 The refrigerant that has flowed into the internal space SP of the second tank 200 flows upward along the longitudinal direction of the internal space SP. After that, the refrigerant flows into the internal space of the first tank 100 through the flow path FP of the tube 300 located above the separator 130.
 冷媒は、上記のように流路FPを通る際において、外側を通る空気によって再び加熱される。これにより、冷媒の一部は蒸発し、液相から気相へと変化する。第1タンク100の内部空間に流入した時点においては、冷媒はその大部分が蒸発して気相冷媒となっている。冷媒は、第1タンク100の内部空間に流入した後、出口部である第2ポート120から外部へと排出され、ヒートポンプシステムが備える不図示のコンプレッサに向かって流れる。 The refrigerant is reheated by the air passing outside when passing through the flow path FP as described above. As a result, a part of the refrigerant evaporates and changes from the liquid phase to the gas phase. When the refrigerant flows into the internal space of the first tank 100, most of the refrigerant evaporates to become a vapor phase refrigerant. After flowing into the internal space of the first tank 100, the refrigerant is discharged to the outside from the second port 120, which is an outlet portion, and flows toward a compressor (not shown) provided in the heat pump system.
 このように、本実施形態に係る熱交換器10は、冷媒が第2タンク200において折り返して流れるように構成されている。 As described above, the heat exchanger 10 according to the present embodiment is configured so that the refrigerant flows back in the second tank 200.
 尚、熱交換器10が凝縮器として機能する場合においては、冷媒の流れる経路は上記とは同じ方向の経路となるのであるが、上記とは逆の方向の経路となるような構成としてもよい。いずれにしても、冷媒は、流路FPを通る際において、外側を通る空気によって熱を奪われて凝縮し、気相から液相へと変化する。 When the heat exchanger 10 functions as a condenser, the path through which the refrigerant flows is in the same direction as above, but the path may be in the opposite direction to the above. .. In any case, when passing through the flow path FP, the refrigerant is deprived of heat by the air passing through the outside and condenses, and changes from the gas phase to the liquid phase.
 ところで、熱交換器10が蒸発器として機能しているときにおいては、蒸発前の液相冷媒が、チューブ300内の流路FPにおいて可能な限り広範囲に存在している状態、すなわち、熱交換コア部CRの略全体に分布している状態となることが好ましい。このような状態においては、冷媒の蒸発に伴う空気からの熱の回収が熱交換コア部CRの広範囲において行われ、熱交換器10における熱交換が効率的に行われることとなる。 By the way, when the heat exchanger 10 functions as an evaporator, the liquid phase refrigerant before evaporation is present in the flow path FP in the tube 300 as widely as possible, that is, the heat exchange core. It is preferable that the part CR is distributed almost entirely. In such a state, heat is recovered from the air due to evaporation of the refrigerant in a wide range of the heat exchange core portion CR, and heat exchange in the heat exchanger 10 is efficiently performed.
 従って、蒸発器としての熱交換器10における熱交換が効率的に行われるためには、複数のチューブ300に、液相冷媒が均等に分配されることが好ましい。しかしながら、本実施形態のように複数のチューブ300が上下方向に積層配置された構成の熱交換器10においては、重力の影響により各チューブ300への液相冷媒の分配が不均等となりやすい。 Therefore, in order for the heat exchange in the heat exchanger 10 as the evaporator to be performed efficiently, it is preferable that the liquid phase refrigerant is evenly distributed to the plurality of tubes 300. However, in the heat exchanger 10 having a configuration in which a plurality of tubes 300 are stacked and arranged in the vertical direction as in the present embodiment, the distribution of the liquid phase refrigerant to each tube 300 tends to be uneven due to the influence of gravity.
 特に本実施形態のように、冷媒が第2タンク200において折り返して流れるように構成されている熱交換器10においては、折り返しの際、すなわち第2タンク200から各チューブ300に冷媒が分配される際に、液相冷媒の分配が特に不均等となりやすい。これは、最初に第1タンク100から各チューブ300に冷媒が分配されるときに比べて、冷媒に含まれる液相冷媒の量が少なくなっているからである。 In particular, in the heat exchanger 10 configured such that the refrigerant flows back in the second tank 200 as in the present embodiment, the refrigerant is distributed from the second tank 200 to each tube 300 at the time of turning back. At that time, the distribution of the liquid-phase refrigerant tends to be particularly uneven. This is because the amount of the liquid phase refrigerant contained in the refrigerant is smaller than when the refrigerant is first distributed from the first tank 100 to each tube 300.
 図4(B)には、熱交換器10を従来と同様の構成とした場合の比較例における、熱交換コア部CRが模式的に示されている。この比較例では、基本的な構成は熱交換器10と同じであるが、流路FPの断面積等においてのみ本実施形態と異なっている。図4(B)に示される一点鎖線DL2は、セパレータ130が配置されている位置のz座標を示すものである。この比較例でも、冷媒は、一点鎖線DL2よりも下方側の部分をx方向に向かって流れた後、不図示の第2タンク200において折り返し、一点鎖線DL2よりも上方側の部分を-x方向に向かって流れる。 FIG. 4B schematically shows the heat exchange core portion CR in the comparative example when the heat exchanger 10 has the same configuration as the conventional one. In this comparative example, the basic configuration is the same as that of the heat exchanger 10, but it differs from the present embodiment only in the cross-sectional area of the flow path FP and the like. The alternate long and short dash line DL2 shown in FIG. 4B shows the z-coordinate of the position where the separator 130 is arranged. Also in this comparative example, the refrigerant flows in the portion below the alternate long and short dash line DL2 in the x direction, then is folded back in the second tank 200 (not shown), and the portion above the alternate long and short dash line DL2 is in the −x direction. Flow toward.
 図4(B)で斜線が付されている領域は、熱交換コア部CRにおいて液相冷媒が分布している範囲を示している。同図に示されるように、熱交換コア部CRのうち一点鎖線DL2よりも下方側の部分においては、それぞれのチューブ300に液相冷媒が概ね均等に分配されており、その結果として、液相冷媒が全体に分布した状態となっている。 The shaded area in FIG. 4B indicates the range in which the liquid phase refrigerant is distributed in the heat exchange core portion CR. As shown in the figure, in the portion of the heat exchange core portion CR below the alternate long and short dash line DL2, the liquid phase refrigerant is distributed substantially evenly in each tube 300, and as a result, the liquid phase is distributed. The refrigerant is distributed throughout.
 一方、熱交換コア部CRのうち一点鎖線DL2よりも上方側の部分においては、上方側にあるチューブ300にのみ液相冷媒が供給されており、下方側、すなわち一点鎖線DL2の近傍に配置されたチューブ300には液相冷媒がほとんど供給されていない。これは、第2タンク200の内部空間SPにおける流路抵抗が小さすぎることにより、内部空間SPを上方側に向かって流れる液相冷媒の殆どが第2タンク200の上端まで到達し、その近傍に接続されたチューブ300にのみ分配されてしまうためであると考えられる。 On the other hand, in the portion of the heat exchange core portion CR above the alternate long and short dash line DL2, the liquid phase refrigerant is supplied only to the tube 300 on the upper side, and is arranged on the lower side, that is, in the vicinity of the alternate long and short dash line DL2. Almost no liquid phase refrigerant is supplied to the tube 300. This is because the flow path resistance in the internal space SP of the second tank 200 is too small, so that most of the liquid phase refrigerant flowing upward in the internal space SP reaches the upper end of the second tank 200 and is in the vicinity thereof. It is considered that this is because it is distributed only to the connected tube 300.
 図4(B)に示された状態になると、斜線が付されていない領域においては気相冷媒のみが流れることとなるため、冷媒の蒸発に伴う空気からの熱の回収が効率的には行われない。 In the state shown in FIG. 4 (B), only the vapor phase refrigerant flows in the area not shaded, so that the heat recovered from the air due to the evaporation of the refrigerant can be efficiently recovered. I can't.
 そこで、本実施形態に係る熱交換器10では、流路FPの断面積等を適切に設定することで、上記の問題を解決している。その結果、図4(A)に示されるように、熱交換コア部CRのうち一点鎖線DL2よりも上方側の部分においても、それぞれのチューブ300に液相冷媒を概ね均等に分配することが可能となっている。 Therefore, in the heat exchanger 10 according to the present embodiment, the above problem is solved by appropriately setting the cross-sectional area of the flow path FP and the like. As a result, as shown in FIG. 4A, it is possible to distribute the liquid phase refrigerant to each tube 300 substantially evenly even in the portion of the heat exchange core portion CR above the alternate long and short dash line DL2. It has become.
 流路FPの断面積等の設定方法について説明する。先ず、Atube及びAtankからなる2つのパラメータについて説明する。 A method of setting the cross-sectional area of the flow path FP and the like will be described. First, two parameters consisting of A tube and A tank will be described.
 Atubeとは、セパレータ130よりも上方側にあるチューブ300の内側に形成された流路FPの、その長手方向に対し垂直な断面における全ての断面積の合計値である。「その長手方向に対し垂直な断面」とは、図3に示されるような、x方向に対して垂直な断面のことである。図3を参照しながら先に述べたように、1本のチューブ300には複数の流路FPが形成されている。上記のAtubeは、図3に示されるそれぞれの流路FPの断面積の値を合計した上で、これに、セパレータ130よりも上方側にあるチューブ300の本数を掛けることにより得られる値である。 A tube is the total cross-sectional area of the flow path FP formed inside the tube 300 on the upper side of the separator 130 in the cross section perpendicular to the longitudinal direction thereof. The "cross section perpendicular to the longitudinal direction" is a cross section perpendicular to the x direction as shown in FIG. As described above with reference to FIG. 3, a plurality of flow path FPs are formed in one tube 300. The above A tube is a value obtained by summing the cross-sectional area values of each flow path FP shown in FIG. 3 and multiplying this by the number of tubes 300 on the upper side of the separator 130. is there.
 Atankとは、第2タンク200の内側に形成された内部空間SPの、上下方向に対し垂直な断面における断面積である。つまり、Atankは、図2に示される断面における内部空間SPの断面積である。このAtankには、図2においてチューブ300が突出している部分の断面積は含まれない。つまり、Atankは、内部空間SPのうち、第2タンク200の長手方向に沿って冷媒が直線的に流れ得る空間の断面積、ということができる。尚、上記の断面積が、上下方向において局所的に変化しているような場合には、当該部分の形状はAtankの算出において考慮しないものとする。 The A tank is the cross-sectional area of the internal space SP formed inside the second tank 200 in a cross section perpendicular to the vertical direction. That is, A tank is the cross-sectional area of the internal space SP in the cross section shown in FIG. This tank does not include the cross-sectional area of the protruding portion of the tube 300 in FIG. That is, it can be said that the tank is the cross-sectional area of the space SP in which the refrigerant can flow linearly along the longitudinal direction of the second tank 200. If the cross-sectional area changes locally in the vertical direction, the shape of the portion shall not be considered in the calculation of the tank.
 第2タンク200のうち、セパレータ130よりも上方側の部分の上下方向に沿った長さ、すなわちz方向に沿った長さのことを、以下では「L1tank」と表記する。L1tankの単位はミリメートル(mm)である。本実施形態に係る熱交換器10は、Atank/Atubeの値が0.00000378×L1tank -0.00305×L1tank+0.78510となるように、流路FPの断面積等が設定されている。その理由について、図5を参照しながら説明する。 The length of the portion above the separator 130 of the second tank 200 along the vertical direction, that is, the length along the z direction is hereinafter referred to as "L1 tank". The unit of L1 tank is millimeter (mm). The heat exchanger 10 according to this embodiment, as the value of A tank / A tube is 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510, the cross-sectional area of the flow path FP and settings such as Has been done. The reason will be described with reference to FIG.
 図5のグラフにおける横軸は、L1tankの値が140(mm)である場合における、上記のAtank/Atubeの値を示している。また、同グラフにおける縦軸は、性能比の値を示している。「性能比」とは、空気からの熱の回収性能の大きさを、熱交換器10の形状が特定の形状であるときにおける回収性能との比率として示す指標である。上記における「回収性能」とは、熱交換器10において、単位時間あたりに空気から回収される熱量のことである。図5の例では、Atank/Atubeの値が点P1で示される値であるときにおける回収性能が100%となっており、これとの比率が縦軸に示される性能比となっている。 The horizontal axis in the graph of FIG. 5 shows the above-mentioned A tank / A tube value when the value of L1 tank is 140 (mm). The vertical axis in the graph shows the value of the performance ratio. The "performance ratio" is an index showing the magnitude of the heat recovery performance from the air as a ratio to the recovery performance when the shape of the heat exchanger 10 is a specific shape. The "recovery performance" in the above is the amount of heat recovered from the air per unit time in the heat exchanger 10. In the example of FIG. 5, the recovery performance when the value of A tank / Tube is the value indicated by the point P1 is 100%, and the ratio to this is the performance ratio shown on the vertical axis. ..
 図5の点P1では、性能比は上記のように100%となっている。図5の点P2では、本実施形態のようにAtank/Atubeの値が0.00000378×L1tank -0.00305×L1tank+0.78510で算出される値となっており、その時の性能比は105%となっている。図5の点P3では、Atank/Atubeの値が0.00000378×L1tank -0.00305×L1tank+0.78510で算出される値よりも小さな値となっており、その時の性能比は125%となっている。このように、Atank/Atubeの値が小さくなる程、性能比が高くなっている。 At point P1 in FIG. 5, the performance ratio is 100% as described above. At point P2 in FIG. 5, has a value that the value of A tank / A tube is calculated by 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510 as in this embodiment, at that time The performance ratio is 105%. At point P3 in FIG. 5, the value of A tank / A tube has a smaller value than the value calculated by 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510, performance ratio at that time Is 125%. As described above, the smaller the value of A tank / A tube , the higher the performance ratio.
 Atank/Atubeの値が点P2のときよりも大きい範囲においては、Atank/Atubeの値を小さくするほど、主にチューブ300の流路FPにおける圧力損失が小さくなることの効果によって、性能比が向上して行く。当該効果は、流路FPの入口部分における冷媒の圧力及び温度が小さくなり、周囲の空気との温度差が大きくなることによる効果である。 In the range where the value of A tank / A tube is larger than that at the point P2, the smaller the value of A tank / A tube is, the smaller the pressure loss in the flow path FP of the tube 300 is mainly due to the effect. The performance ratio will improve. This effect is due to the fact that the pressure and temperature of the refrigerant at the inlet portion of the flow path FP are reduced and the temperature difference from the surrounding air is increased.
 本発明者らが実験等によって確認したところによれば、Atank/Atubeの値が点P2のときの値以下になると、上記の効果に加えて、第2タンク200から各チューブ300へと液相冷媒が均等に分配される効果が加わることにより、性能比が著しく向上することが確認されている。このため、以下の式(1)で示される条件を満たすように、流路FPの断面積などが設定されることが好ましい。
tank/Atube≦0.00000378×L1tank -0.00305×L1tank+0.78510・・・・(1)
According to the results confirmed by the present inventors by experiments and the like , when the value of A tank / A tube becomes equal to or less than the value at the point P2, in addition to the above effect, from the second tank 200 to each tube 300. It has been confirmed that the performance ratio is significantly improved by adding the effect of evenly distributing the liquid phase refrigerant. Therefore, it is preferable that the cross-sectional area of the flow path FP is set so as to satisfy the condition represented by the following formula (1).
A tank / A tube ≦ 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510 ···· (1)
 尚、式(1)における左辺は無次元であるから、Atank等としては任意の単位を用いることができる。ただし、式(1)の右辺においては、L1tankとしてミリメートルの単位を用いる必要がある。 Since the left side in the equation (1) is dimensionless, any unit can be used as the tank or the like. However, on the right side of the equation (1), it is necessary to use the unit of millimeter as the L1 tank.
 尚、Atank/Atubeの値が小さくなる程、熱交換器10が蒸発器として機能する場合における性能比は上記のように向上する。ただし、Atank/Atubeの値を小さくし過ぎた場合には、熱交換器10が凝縮器として機能する場合における熱交換性能が低下してしまう可能性がある。これは、熱交換器10が凝縮器として機能する場合には、流路FPの圧力損失が小さくなって冷媒の流速が小さくなる程、熱伝達率が小さくなり、凝縮器としての熱交換性能が低下してしまうからである。Atank/Atubeの値を設定するにあたっては、この点についても考慮することが好ましい。 As the value of A tank / A tube becomes smaller, the performance ratio when the heat exchanger 10 functions as an evaporator improves as described above. However, if the value of A tank / A tube is made too small, the heat exchange performance when the heat exchanger 10 functions as a condenser may deteriorate. This is because when the heat exchanger 10 functions as a condenser, the heat transfer coefficient becomes smaller as the pressure loss of the flow path FP becomes smaller and the flow velocity of the refrigerant becomes smaller, and the heat exchange performance as a condenser becomes lower. This is because it will decrease. It is preferable to consider this point when setting the value of A tank / A tube.
 式(1)のAtankは、第2タンク200の内側に形成された内部空間SPにおける冷媒の圧力損失に影響を与えるパラメータである。このようなパラメータとしては、Atankの他に、例えば第2タンク200のz方向に沿った長さ等も挙げることができる。また、同式のAtubeは、チューブ300の流路FPにおける冷媒の圧力損失に影響を与えるパラメータである。このようなパラメータとしては、Atubeの他に、例えばチューブ300のx方向に沿った長さ等も挙げることができる。 The tank of the formula (1) is a parameter that affects the pressure loss of the refrigerant in the internal space SP formed inside the second tank 200. As such a parameter , in addition to the tank , for example, the length of the second tank 200 along the z direction and the like can be mentioned. Further, A tube of the same formula is a parameter that affects the pressure loss of the refrigerant in the flow path FP of the tube 300. As such a parameter , in addition to A tube , for example, the length of the tube 300 along the x direction can be mentioned.
 車両用空調装置の室外機として熱交換器10が構成される場合には、第2タンク200のz方向に沿った長さ等を考慮しなくても、上記の式(1)を満たすような構成であれば、性能比が向上するという効果をある程度得ることができる。ただし、熱交換器10の性能比を向上させるための条件を厳密に求めるのであれば、第2タンク200のz方向に沿った長さ等のパラメータも考慮することが好ましい。このような厳密な条件としては、以下の式(2)を挙げることができる。
(L1tube×L2tube/Atube)×(Atank/(L1tank×L2tank))≦0.00000378×L1tank -0.00305×L1tank+0.78510・・・・(2)
When the heat exchanger 10 is configured as the outdoor unit of the vehicle air conditioner, the above equation (1) is satisfied without considering the length of the second tank 200 along the z direction and the like. If it is configured, the effect of improving the performance ratio can be obtained to some extent. However, if the conditions for improving the performance ratio of the heat exchanger 10 are strictly determined, it is preferable to consider parameters such as the length of the second tank 200 along the z direction. As such a strict condition, the following equation (2) can be mentioned.
(L1 tube × L2 tube / A tube) × (A tank / (L1 tank × L2 tank)) ≦ 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510 ···· (2)
 式(2)におけるL1tubeは、セパレータ130よりも上方側にあるチューブ300の、その長手方向に沿った長さ、すなわちx方向に沿った長さのことである。 The L1 tube in the formula (2) is the length of the tube 300 above the separator 130 along the longitudinal direction, that is, the length along the x direction.
 L2tubeは、セパレータ130よりも上方側にあるチューブ300の内側に形成された流路FPの、その長手方向に対し垂直な断面における全ての濡れ縁長さの合計値である。「その長手方向に対し垂直な断面」とは、図3に示されるような、x方向に対して垂直な断面のことである。図3を参照しながら先に述べたように、1本のチューブ300には複数の流路FPが形成されている。上記のL2tubeは、図2に示されるそれぞれの流路FPの濡れ縁長さの値、つまり、図3の断面における流路FPの内面の周長さの値を合計した上で、これに、セパレータ130よりも上方側にあるチューブ300の本数を掛けることにより得られる値である。 L2 tube is the total value of all wet edge lengths of the flow path FP formed inside the tube 300 on the upper side of the separator 130 in the cross section perpendicular to the longitudinal direction thereof. The "cross section perpendicular to the longitudinal direction" is a cross section perpendicular to the x direction as shown in FIG. As described above with reference to FIG. 3, a plurality of flow path FPs are formed in one tube 300. The above L2 tube is obtained by summing the values of the wet edge length of each flow path FP shown in FIG. 2, that is, the value of the peripheral length of the inner surface of the flow path FP in the cross section of FIG. It is a value obtained by multiplying the number of tubes 300 on the upper side of the separator 130.
 L1tankは、先に述べたように、第2タンク200のうち、セパレータ130よりも上方側の部分の上下方向に沿った長さ、すなわちz方向に沿った長さのことである。 As described above, the L1 tank is the length of the portion of the second tank 200 above the separator 130 in the vertical direction, that is, the length in the z direction.
 L2tankは、第2タンク200の内側に形成された内部空間SPの、上下方向に対し垂直な断面における濡れ縁長さ、つまり、図2の断面における内部空間SPの内面の周長さのことである。尚、この場合の内部空間SPには、図3においてチューブ300が突出している部分は含まれない。つまり、L2tankは、内部空間SPのうち、第2タンク200の長手方向に沿って冷媒が直線的に流れ得る部分の濡れ縁長さ、ということができる。 L2 tank is the wet edge length of the internal space SP formed inside the second tank 200 in the cross section perpendicular to the vertical direction, that is, the peripheral length of the inner surface of the internal space SP in the cross section of FIG. is there. The internal space SP in this case does not include the portion where the tube 300 protrudes in FIG. That is, it can be said that the L2 tank is the wet edge length of the portion of the internal space SP where the refrigerant can flow linearly along the longitudinal direction of the second tank 200.
 尚、式(2)の右辺においては、L1tankとしてミリメートルの単位を用いる必要がある。式(2)では、L1tankは左辺にも存在するので、左辺の各要素においてもミリメートルの単位を用いる必要がある。 On the right side of the equation (2), it is necessary to use the unit of millimeter as the L1 tank. In equation (2), since the L1 tank also exists on the left side, it is necessary to use the unit of millimeters for each element on the left side as well.
 本発明者らが行った実験によれば、熱交換器10の構成が先に述べた式(1)を満たし、且つ式(2)をも満たすように構成されていれば、より確実に第2タンク200から各チューブ300へと液相冷媒が分配される構成となり、熱交換器10では高い効率で熱交換が行われることが確認されている。尚、式(2)の左辺で示されるパラメータを図5の横軸とした場合においても、図5と概ね同様のグラフが描かれる。 According to the experiments conducted by the present inventors, if the configuration of the heat exchanger 10 satisfies the above-mentioned equation (1) and also satisfies the equation (2), the first is more reliable. It has been confirmed that the liquid phase refrigerant is distributed from the two tanks 200 to each tube 300, and the heat exchanger 10 performs heat exchange with high efficiency. Even when the parameter shown on the left side of the equation (2) is set to the horizontal axis of FIG. 5, a graph substantially similar to that of FIG. 5 is drawn.
 熱交換器10では、その性能を高めるために更なる工夫がいくつか施されている。以下では、当該工夫について説明する。 In the heat exchanger 10, some further measures have been taken to improve its performance. The device will be described below.
 図2を参照しながら先に説明したように、第2タンク200の内面、具体的にはタンク部材220の内面には、上下方向に沿って直線状に伸びる凹部221が形成されている。
気液混合状態の冷媒が、第2タンク200のような管状の部材の内側を流れる際には、液相冷媒が管壁に沿って流れて、気相冷媒が管壁よりも内側の空間を流れる傾向がある。このため、第2タンク200の内部空間SPを上方に向かって冷媒が流れる際には、液相冷媒は、やはり第2タンク200の内面に沿って流れる傾向がある。
As described above with reference to FIG. 2, a recess 221 extending linearly along the vertical direction is formed on the inner surface of the second tank 200, specifically, the inner surface of the tank member 220.
When the gas-liquid mixed refrigerant flows inside a tubular member such as the second tank 200, the liquid-phase refrigerant flows along the pipe wall, and the gas-liquid refrigerant flows through the space inside the pipe wall. Tends to flow. Therefore, when the refrigerant flows upward through the internal space SP of the second tank 200, the liquid phase refrigerant also tends to flow along the inner surface of the second tank 200.
 本実施形態では、このように流れる液相冷媒の一部が、上下方向に沿って直線状に伸びる凹部221に案内されながら、凹部221に対向する各チューブ300の流路FPへと分配されていく。つまり、凹部221が形成されていない場合に比べて、より多くの液相冷媒が凹部221の位置を流れながら、それぞれのチューブ300へと分配されていくこととなる。これにより、それぞれのチューブ300に対し、液相冷媒をより均等に分配することが可能となる。 In the present embodiment, a part of the liquid phase refrigerant flowing in this way is distributed to the flow path FP of each tube 300 facing the recess 221 while being guided by the recess 221 extending linearly along the vertical direction. I will go. That is, as compared with the case where the recess 221 is not formed, a larger amount of the liquid phase refrigerant flows through the position of the recess 221 and is distributed to each tube 300. This makes it possible to more evenly distribute the liquid phase refrigerant to each tube 300.
 尚、このような機能を実現するためには、凹部221の位置は、第2タンク200の内面のうち、チューブ300の端部と対向する位置であることが好ましい。図2に示される点線DL1は、チューブ300の端部の位置のx座標を示すものである。「チューブ300の端部と対向する位置」とは、このような点線DL1よりもx方向側となる位置のことである。より好ましくは、x軸に沿って見た場合において、チューブ300の端部と重なるような位置に凹部221が形成されていることとすればよい。 In order to realize such a function, the position of the recess 221 is preferably a position of the inner surface of the second tank 200 facing the end of the tube 300. The dotted line DL1 shown in FIG. 2 indicates the x-coordinate of the position of the end portion of the tube 300. The "position facing the end of the tube 300" is a position on the x-direction side of the dotted line DL1. More preferably, the recess 221 may be formed at a position overlapping the end of the tube 300 when viewed along the x-axis.
 凹部221は、本実施形態のように、第2タンク200の下端から上端に至るまでの全範囲に亘るように形成されていてもよいのであるが、第2タンク200ののうちセパレータ130よりも上方側となる部分にのみ形成されていてもよい。 The recess 221 may be formed so as to cover the entire range from the lower end to the upper end of the second tank 200 as in the present embodiment, but is larger than the separator 130 of the second tank 200. It may be formed only in the portion on the upper side.
 図2に示されるように、第2タンク200の内面のうち、チューブ300が接続されている部分の周囲には、第2タンク200の内側に向かって突出するように突出部211が形成されている。突出部211は、チューブ300の方に近づく程、第2タンク200の内側であり且つチューブ300の先端側に向かうように、他の部分から突出した面となっている。 As shown in FIG. 2, a protruding portion 211 is formed around the portion of the inner surface of the second tank 200 to which the tube 300 is connected so as to project toward the inside of the second tank 200. There is. The protruding portion 211 is a surface that protrudes from other portions so as to be closer to the tube 300, the inside of the second tank 200, and toward the tip end side of the tube 300.
 先に述べたように、液相冷媒は、第2タンク200の内面に沿って流れる傾向がある。本実施形態では、チューブ300の周囲に上記のような突出部211が形成されているので、第2タンク200の内面に沿って流れる液相冷媒の一部が、突出部211に沿って、チューブ300の先端側へと導かれる。これにより、突出部211が形成されていない場合に比べて、液相冷媒がチューブ300の流路FPへと流入しやすくなる。 As mentioned earlier, the liquid phase refrigerant tends to flow along the inner surface of the second tank 200. In the present embodiment, since the protrusion 211 as described above is formed around the tube 300, a part of the liquid-phase refrigerant flowing along the inner surface of the second tank 200 is sewn along the protrusion 211. It is guided to the tip side of 300. As a result, the liquid phase refrigerant is more likely to flow into the flow path FP of the tube 300 as compared with the case where the protruding portion 211 is not formed.
 このように、本実施形態では、第2タンク200の内面のうち、チューブ300が接続されている部分の周囲に、上記内面に沿って流れる冷媒を、チューブ300の端部に導くための突出部211が形成されている。これにより、液相冷媒を、それぞれのチューブ300に対して更に均等に分配することが可能となる。 As described above, in the present embodiment, the protrusion for guiding the refrigerant flowing along the inner surface to the end of the tube 300 around the portion of the inner surface of the second tank 200 to which the tube 300 is connected. 211 is formed. This makes it possible to more evenly distribute the liquid phase refrigerant to each tube 300.
 図1に示されるように、入口部である第1ポート110は、第1タンク100から-x方向側に向けて突出するように形成されている。このため、第1ポート110から第1タンク100の内部空間へと冷媒が流入する方向は、x方向、すなわちチューブ300の長手方向に沿った方向となっている。このような構成においては、第1ポート110をx方向に向かって流れながら第1タンク100の内部空間に流入した冷媒は、その流れ方向を概ね変化させることなく各チューブ300の流路FPへと流入し、そのままx方向に向かって流れることとなる。このため、冷媒の流れる方向が変化することに伴う流路抵抗を低減することができる。 As shown in FIG. 1, the first port 110, which is an inlet portion, is formed so as to project from the first tank 100 toward the −x direction side. Therefore, the direction in which the refrigerant flows from the first port 110 into the internal space of the first tank 100 is the x direction, that is, the direction along the longitudinal direction of the tube 300. In such a configuration, the refrigerant flowing into the internal space of the first tank 100 while flowing in the x direction through the first port 110 goes to the flow path FP of each tube 300 without substantially changing the flow direction. It flows in and flows in the x direction as it is. Therefore, it is possible to reduce the flow path resistance due to the change in the flow direction of the refrigerant.
 また、出口部である第2ポート120は、やはり第1タンク100から-x方向側に向けて突出するように形成されている。このため、第1タンク100の内部空間から第2ポート120へと冷媒が流出する方向は、-x方向、すなわちチューブ300の長手方向に沿った方向となっている。このような構成においては、チューブ300の流路FPを-x方向に向かって流れながら第1タンク100の内部空間に流入した冷媒は、その流れ方向を概ね変化させることなく第2ポート120へと流入し、そのまま-x方向に向かって第2ポート120から排出されることとなる。このため、冷媒の流れる方向が変化することに伴う流路抵抗を低減することができる。 Further, the second port 120, which is an outlet portion, is also formed so as to protrude from the first tank 100 toward the −x direction side. Therefore, the direction in which the refrigerant flows out from the internal space of the first tank 100 to the second port 120 is the −x direction, that is, the direction along the longitudinal direction of the tube 300. In such a configuration, the refrigerant flowing into the internal space of the first tank 100 while flowing in the −x direction through the flow path FP of the tube 300 goes to the second port 120 without substantially changing the flow direction. It flows in and is discharged from the second port 120 as it is in the −x direction. Therefore, it is possible to reduce the flow path resistance due to the change in the flow direction of the refrigerant.
 先に述べたように、第1タンク100においてセパレータ130が配置されている位置は、第1タンク100の内部空間のうち、その上下方向に沿った中央よりも下方側寄りとなる位置となっている。このため、セパレータ130よりも上方側にあるチューブ300の数は、セパレータ130よりも下方側にあるチューブ300の数よりも多くなっている。熱交換器10をこのような構成としたことの効果について、図6を参照しながら説明する。 As described above, the position where the separator 130 is arranged in the first tank 100 is a position in the internal space of the first tank 100 that is closer to the lower side than the center along the vertical direction thereof. There is. Therefore, the number of tubes 300 above the separator 130 is larger than the number of tubes 300 below the separator 130. The effect of having such a configuration of the heat exchanger 10 will be described with reference to FIG.
 図6においては、熱交換コア部CRと、その両側にある第1タンク100及び第2タンク200とが模式的に示されている。図6に示される一点鎖線DL3は、セパレータ130が配置されている位置のz座標を示すものである。 In FIG. 6, the heat exchange core portion CR and the first tank 100 and the second tank 200 on both sides thereof are schematically shown. The alternate long and short dash line DL3 shown in FIG. 6 indicates the z coordinate of the position where the separator 130 is arranged.
 図6では、セパレータ130よりも下方側にあるチューブ300における冷媒の流れが矢印AR1で示されている。本実施形態では上記のように、セパレータ130よりも下方側にあるチューブ300の数が、上方側にあるチューブ300の数よりも少なくなっている。このため、セパレータ130が上下方向の中央となる位置に配置されている場合に比べると、矢印AR1で示される冷媒の流速は大きくなっている。 In FIG. 6, the flow of the refrigerant in the tube 300 below the separator 130 is indicated by the arrow AR1. In the present embodiment, as described above, the number of tubes 300 below the separator 130 is smaller than the number of tubes 300 above the separator 130. Therefore, the flow velocity of the refrigerant indicated by the arrow AR1 is higher than that in the case where the separator 130 is arranged at the center in the vertical direction.
 このように流速の大きい冷媒が第2タンク200の内部空間SPに流入すると、その直後に冷媒は第2タンク200の内壁に衝突し、その流れに乱れが生じる。図6では、このような冷媒の流れが矢印AR2で示されている。 When the refrigerant having such a high flow velocity flows into the internal space SP of the second tank 200, the refrigerant collides with the inner wall of the second tank 200 immediately after that, and the flow is disturbed. In FIG. 6, such a flow of refrigerant is indicated by arrow AR2.
 冷媒の流れに乱れが生じると、気相冷媒と液相冷媒が混合されることにより、第2タンク200の全体に液相冷媒が分布することとなる。このため、液相冷媒は、第2タンク200からそれぞれのチューブ300に対して均等に分配され、それぞれの流路FPに流入する。図6では、このように分配される冷媒の流れが矢印AR3で示されている。 When the flow of the refrigerant is disturbed, the vapor-phase refrigerant and the liquid-phase refrigerant are mixed, so that the liquid-phase refrigerant is distributed throughout the second tank 200. Therefore, the liquid phase refrigerant is evenly distributed from the second tank 200 to each tube 300 and flows into each flow path FP. In FIG. 6, the flow of the refrigerant thus distributed is indicated by the arrow AR3.
 このように、本実施形態に係る熱交換器10では、セパレータ130よりも上方側にあるチューブ300の数を、セパレータ130よりも下方側にあるチューブ300の数よりも多くすることで、折り返し後の冷媒をより均等に各チューブ300へと分配することが可能となっている。 As described above, in the heat exchanger 10 according to the present embodiment, the number of tubes 300 on the upper side of the separator 130 is larger than the number of tubes 300 on the lower side of the separator 130, so that after folding back. It is possible to more evenly distribute the refrigerant of the above to each tube 300.
 本実施形態では、第2タンク200の内側のうち、セパレータ130と対応する高さとなる部分に、絞り部230が形成されている。絞り部230においては、第2タンク200の内側に形成された内部空間SPの、上下方向に対し垂直な断面における断面積が、他の部分の当該断面積よりも局所的に小さくなっている。つまり、第2タンク200の内側のうち、セパレータ130と対応する高さとなる部分においては、断面積が局所的にAtankよりも小さくなっている。 In the present embodiment, the throttle portion 230 is formed in a portion of the inside of the second tank 200 that has a height corresponding to the separator 130. In the throttle portion 230, the cross-sectional area of the internal space SP formed inside the second tank 200 in the cross section perpendicular to the vertical direction is locally smaller than the cross-sectional area of the other portion. That is, the cross-sectional area of the inside of the second tank 200, which is the height corresponding to the separator 130, is locally smaller than that of the tank.
 このような構成においては、折り返し後の冷媒の流れにおいて更に乱れが生じやすくなるので、上記のような気相冷媒と液相冷媒との混合がさらに促進される。 In such a configuration, the flow of the refrigerant after turning back is more likely to be disturbed, so that the mixing of the gas phase refrigerant and the liquid phase refrigerant as described above is further promoted.
 尚、絞り部230が形成されている位置は、セパレータ130と対応する高さを含む所定範囲内の一部となるような位置であればよい。この「所定範囲」の大きさとしては、上下方向に沿って3本のチューブ300が接続されている範囲の大きさとすることが好ましい。また、絞り部230を形成しなくても、気相冷媒と液相冷媒との混合が十分に行われる場合には、絞り部230は無くてもよい。 The position where the throttle portion 230 is formed may be a position that is a part of a predetermined range including the height corresponding to the separator 130. The size of this "predetermined range" is preferably the size of the range in which the three tubes 300 are connected along the vertical direction. Further, even if the throttle portion 230 is not formed, the throttle portion 230 may be omitted if the vapor phase refrigerant and the liquid phase refrigerant are sufficiently mixed.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those skilled in the art with appropriate design changes to these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, its arrangement, conditions, shape, etc. is not limited to the illustrated one, and can be appropriately changed. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (7)

  1.  ヒートポンプシステムの室外機として用いられ、暖房時には蒸発器として機能し、冷房時には凝縮器として機能する熱交換器(10)であって、
     水平方向に沿って伸びる管状の部材であって、上下方向に沿って並ぶように積層配置された複数のチューブ(300)と、
     それぞれの前記チューブの一端が接続された第1タンク(100)と、
     それぞれの前記チューブの他端が接続された第2タンク(200)と、を備え、
     前記第1タンクの内部空間は、セパレータ(130)によって上下に分けられており、
     前記第1タンクのうち前記セパレータよりも下方側の部分には、蒸発器として機能する場合において冷媒の入口となる入口部(110)が設けられており、
     前記第1タンクのうち前記セパレータよりも上方側の部分には、蒸発器として機能する場合において冷媒の出口となる出口部(120)が設けられており、
     前記セパレータよりも上方側にある前記チューブの内側に形成された流路(FP)の、その長手方向に対し垂直な断面における全ての断面積の合計値をAtubeとし、
     前記第2タンクの内側に形成された内部空間(SP)の、上下方向に対し垂直な断面における断面積をAtankとし、
     前記第2タンクのうち、前記セパレータよりも上方側の部分の上下方向に沿った長さをミリメートルの単位で表したものをL1tankとしたときに、
    tank/Atube≦0.00000378×L1tank -0.00305×L1tank+0.78510
    を満たすように構成されている熱交換器。
    A heat exchanger (10) used as an outdoor unit of a heat pump system, which functions as an evaporator during heating and as a condenser during cooling.
    A plurality of tubes (300) which are tubular members extending in the horizontal direction and are arranged in a stack so as to be arranged in the vertical direction.
    The first tank (100) to which one end of each of the tubes is connected,
    A second tank (200) to which the other end of each of the tubes is connected is provided.
    The internal space of the first tank is divided into upper and lower parts by a separator (130).
    A portion of the first tank below the separator is provided with an inlet portion (110) that serves as an inlet for the refrigerant when functioning as an evaporator.
    The portion of the first tank above the separator is provided with an outlet portion (120) that serves as an outlet for the refrigerant when functioning as an evaporator.
    The total value of all cross-sectional areas of the flow path (FP) formed inside the tube on the upper side of the separator in the cross section perpendicular to the longitudinal direction thereof is defined as A tube .
    The cross-sectional area of the internal space (SP) formed inside the second tank in the cross section perpendicular to the vertical direction is defined as A tank .
    When the length of the second tank above the separator along the vertical direction is expressed in millimeters as L1 tank ,
    A tank / A tube ≦ 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510
    A heat exchanger that is configured to meet.
  2.  前記第2タンクの内面のうち、前記チューブが接続されている部分の周囲には、前記内面に沿って流れる冷媒を、前記チューブの端部に導くための突出部(211)が形成されている、請求項1に記載の熱交換器。 A protrusion (211) for guiding the refrigerant flowing along the inner surface to the end of the tube is formed around the portion of the inner surface of the second tank to which the tube is connected. , The heat exchanger according to claim 1.
  3.  前記セパレータよりも上方側にある前記チューブの、その長手方向に沿った長さをL1tubeとし、
     前記セパレータよりも上方側にある前記チューブの内側に形成された流路の、その長手方向に対し垂直な断面における全ての濡れ縁長さの合計値をL2tubeとし、
     前記第2タンクの内側に形成された内部空間の、上下方向に対し垂直な断面における濡れ縁長さをL2tankとしたときに、
    (L1tube×L2tube/Atube)×(Atank/(L1tank×L2tank))≦0.00000378×L1tank -0.00305×L1tank+0.78510
    を満たすように構成されている、請求項1又は2に記載の熱交換器。
    The length of the tube on the upper side of the separator along the longitudinal direction thereof is defined as L1 tube.
    The total value of all wet edge lengths in the cross section perpendicular to the longitudinal direction of the flow path formed inside the tube on the upper side of the separator is defined as L2 tube .
    When the wet edge length of the internal space formed inside the second tank in the cross section perpendicular to the vertical direction is L2 tank ,
    (L1 tube × L2 tube / A tube) × (A tank / (L1 tank × L2 tank)) ≦ 0.00000378 × L1 tank 2 -0.00305 × L1 tank +0.78510
    The heat exchanger according to claim 1 or 2, which is configured to satisfy the above conditions.
  4.  前記第2タンクのうち、前記セパレータと対応する高さとなる位置を含む所定範囲内の一部においては、
     前記第2タンクの内側に形成された内部空間の、上下方向に対し垂直な断面における断面積が、他の部分の当該断面積よりも局所的に小さくなっている、請求項1乃至3のいずれか1項に記載の熱交換器。
    In a part of the second tank within a predetermined range including a position corresponding to the separator,
    Any of claims 1 to 3, wherein the cross-sectional area of the internal space formed inside the second tank in the cross section perpendicular to the vertical direction is locally smaller than the cross-sectional area of the other portion. The heat exchanger according to item 1.
  5.  前記第2タンクの内面には、上下方向に沿って伸びる凹部(221)が形成されている、請求項1乃至4のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein a recess (221) extending in the vertical direction is formed on the inner surface of the second tank.
  6.  前記入口部から前記第1タンクの内部空間へと冷媒が流入する方向、及び、前記第1タンクの内部空間から前記出口部へと冷媒が流出する方向は、いずれも、前記チューブの長手方向に沿った方向である、請求項1乃至5のいずれか1項に記載の熱交換器。 The direction in which the refrigerant flows from the inlet portion into the internal space of the first tank and the direction in which the refrigerant flows out from the internal space of the first tank to the outlet portion are both in the longitudinal direction of the tube. The heat exchanger according to any one of claims 1 to 5, which is in the direction along the line.
  7.  前記セパレータよりも上方側にある前記チューブの数が、前記セパレータよりも下方側にある前記チューブの数よりも多い、請求項1乃至6のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 6, wherein the number of the tubes above the separator is larger than the number of tubes below the separator.
PCT/JP2020/029707 2019-08-29 2020-08-03 Heat exchanger WO2021039302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080060293.6A CN114341573B (en) 2019-08-29 2020-08-03 heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-156578 2019-08-29
JP2019156578A JP7383935B2 (en) 2019-08-29 2019-08-29 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2021039302A1 true WO2021039302A1 (en) 2021-03-04

Family

ID=74675834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029707 WO2021039302A1 (en) 2019-08-29 2020-08-03 Heat exchanger

Country Status (3)

Country Link
JP (1) JP7383935B2 (en)
CN (1) CN114341573B (en)
WO (1) WO2021039302A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339587A (en) * 1997-06-10 1998-12-22 Nippon Light Metal Co Ltd Heat exchanger
JP2013217528A (en) * 2012-04-05 2013-10-24 Daikin Industries Ltd Heat exchanger
JP2017203578A (en) * 2016-05-10 2017-11-16 株式会社デンソー Heat exchanger
JP2019035559A (en) * 2017-08-21 2019-03-07 株式会社Uacj Condenser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW487797B (en) * 1998-07-31 2002-05-21 Sanden Corp Heat exchanger
JP3922288B2 (en) 2005-03-14 2007-05-30 株式会社デンソー Refrigerant condenser
JP2007327664A (en) * 2006-06-06 2007-12-20 Japan Climate Systems Corp Heat exchanger
CN106288893A (en) * 2015-06-03 2017-01-04 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339587A (en) * 1997-06-10 1998-12-22 Nippon Light Metal Co Ltd Heat exchanger
JP2013217528A (en) * 2012-04-05 2013-10-24 Daikin Industries Ltd Heat exchanger
JP2017203578A (en) * 2016-05-10 2017-11-16 株式会社デンソー Heat exchanger
JP2019035559A (en) * 2017-08-21 2019-03-07 株式会社Uacj Condenser

Also Published As

Publication number Publication date
JP7383935B2 (en) 2023-11-21
JP2021032546A (en) 2021-03-01
CN114341573B (en) 2023-11-07
CN114341573A (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US8550153B2 (en) Heat exchanger and method of operating the same
US10962307B2 (en) Stacked heat exchanger
US20060237178A1 (en) Heat exchanger
US20140060789A1 (en) Heat exchanger and method of operating the same
JP6094261B2 (en) Laminate heat exchanger
US6431264B2 (en) Heat exchanger with fluid-phase change
EP1114974A2 (en) Plate for stack type heat exchangers and heat exchanger using such plates
KR101748242B1 (en) Refrigerant evaporator
JP2020079693A (en) Heat exchanger
JP7278430B2 (en) Heat exchanger and refrigeration cycle equipment
JP6589790B2 (en) Combined heat exchanger
WO2021039302A1 (en) Heat exchanger
JP2001221535A (en) Refrigerant evaporator
US20220018614A1 (en) Heat exchanger
JP3812021B2 (en) Laminate heat exchanger
WO2021103735A1 (en) Condenser and air conditioner having same
JP4731212B2 (en) Heat exchanger
EP0935115A2 (en) Heat exchanger constructed by plural heat conductive plates
KR20170112659A (en) Cooling module for hybrid vehicle
US11820199B2 (en) Heat exchanger
JP2019200039A (en) Plate lamination type heat exchanger
CN218097332U (en) Heat exchanger
WO2020100687A1 (en) Heat exchanger
WO2021152984A1 (en) Heat exchanger
WO2019216183A1 (en) Laminated plate type heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856448

Country of ref document: EP

Kind code of ref document: A1