WO2019216183A1 - Laminated plate type heat exchanger - Google Patents
Laminated plate type heat exchanger Download PDFInfo
- Publication number
- WO2019216183A1 WO2019216183A1 PCT/JP2019/017067 JP2019017067W WO2019216183A1 WO 2019216183 A1 WO2019216183 A1 WO 2019216183A1 JP 2019017067 W JP2019017067 W JP 2019017067W WO 2019216183 A1 WO2019216183 A1 WO 2019216183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- plate
- heat exchanger
- tank space
- cross
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/02—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/08—Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
Definitions
- This disclosure relates to a plate stack type heat exchanger.
- the heat exchanger described in Patent Document 1 has a structure in which a plurality of plate members are stacked and arranged with a predetermined gap therebetween. Offset fins are arranged in the gaps between adjacent plate members. A gap between adjacent plate members constitutes a coolant channel through which a coolant flows and a cooling water channel through which cooling water flows. The refrigerant channel and the cooling water channel are alternately arranged in the stacking direction of the plate members.
- a first outermost plate member disposed on one end side in the stacking direction is provided with a first joint that constitutes a cooling water inlet and a first cooling water pipe that constitutes a cooling water outlet.
- a second outermost plate member disposed on the other end side in the stacking direction is provided with a second joint that constitutes a refrigerant outlet and a second cooling water pipe that constitutes a cooling water inlet. ing.
- the plurality of plate-like members include a cooling water tank space that distributes the cooling water flowing from the first joint to the plurality of cooling water flow paths, and a refrigerant for distributing the refrigerant flowing from the second joint to the plurality of refrigerant flow paths.
- a tank space is formed.
- the flow rate of the liquid-phase refrigerant distributed from the other intermediate portion of the refrigerant tank space to the refrigerant flow path is larger. Such a deviation in the flow rate of the liquid-phase refrigerant distributed to the plurality of refrigerant channels tends to occur particularly in a plate-stacked heat exchanger having a short length in the stacking direction.
- the heat exchange amounts of the plurality of refrigerant flow paths and the plurality of cooling water flow paths also vary. This is not preferable because it causes a decrease in the heat exchange performance of the heat exchanger.
- An object of the present disclosure is to provide a plate stack type heat exchanger capable of improving heat exchange performance.
- a plate stacking type heat exchanger includes a heat exchanging unit including a plurality of plate members that are stacked and arranged with a gap therebetween, and a plurality of refrigerant flows between the plurality of plate members.
- the first flow path and a plurality of second flow paths through which a predetermined fluid flows are formed, and heat exchange is performed between the refrigerant flowing through the first flow path and the second flow path and the predetermined fluid.
- the heat exchange part has a tank space and a throttle part.
- the tank space is formed so as to extend in the plate stacking direction when the direction in which the plurality of plate members are stacked and arranged is the plate stacking direction, communicates with the plurality of first flow paths, and flows from the inflow portion.
- a refrigerant having a two-phase state of a gas phase and a liquid phase is distributed to the plurality of first flow paths.
- the throttle part partially reduces the cross-sectional area of the tank space in the direction orthogonal to the plate stacking direction.
- FIG. 1 is a front view showing a front structure of a plate-stacked heat exchanger according to the first embodiment.
- FIG. 2 is a plan view showing a planar structure of the plate stack type heat exchanger according to the first embodiment.
- FIG. 3 is an exploded view showing an exploded structure of the plate stacking type heat exchanger according to the first embodiment.
- FIG. 4 is a cross-sectional view showing a cross-sectional structure taken along line IV-IV in FIG.
- FIG. 5 is a cross-sectional view showing a cross-sectional structure around the aperture portion of the first embodiment.
- FIG. 6 is a cross-sectional view showing a cross-sectional structure of a plate stacking type heat exchanger according to a first modification of the first embodiment.
- FIG. 1 is a front view showing a front structure of a plate-stacked heat exchanger according to the first embodiment.
- FIG. 2 is a plan view showing a planar structure of the plate stack type heat exchanger according to the first embodiment.
- FIG. 7 is a cross-sectional view showing a cross-sectional structure of a plate-stacked heat exchanger according to a first modification of the first embodiment.
- FIG. 8 is a cross-sectional view showing a cross-sectional structure of a plate stack type heat exchanger according to a second modification of the first embodiment.
- FIG. 9 is a graph showing the relationship between the number of stages of cooling water flow paths and the cooling ratio in a plate-stacked heat exchanger not provided with a throttle.
- FIG. 10 is a graph showing the relationship between the number of stages of the cooling water flow path and the cooling ratio in the plate stack type heat exchanger of the second embodiment.
- FIG. 11 is a cross-sectional view showing a cross-sectional structure of a plate-stacked heat exchanger according to another embodiment.
- a heat exchanger 10 shown in FIG. 1 cools cooling water by exchanging heat between, for example, cooling water for cooling a storage battery mounted on a vehicle and a refrigerant having a temperature lower than that of the cooling water. Used as equipment.
- the cooling water corresponds to a predetermined fluid having a temperature higher than that of the refrigerant.
- the heat exchanger 10 includes a heat exchange unit HU in which a plurality of plate members 20 are stacked in the Z-axis direction. That is, in the present embodiment, the Z-axis direction corresponds to the plate stacking direction.
- Z1 direction one direction of the Z-axis direction
- Z2 direction the opposite direction
- each plate member 20 as indicated by the one-dot chain line and the two-dot chain line, a refrigerant flow path W1 through which the refrigerant flows and a cooling water flow path W2 through which the cooling water flows are formed.
- coolant flow path W1 and the some cooling water flow path W2 are arrange
- the refrigerant flow path W1 corresponds to the first flow path
- the cooling water flow path W2 corresponds to the second flow path.
- the heat exchanger 10 has a substantially rectangular cross-sectional shape perpendicular to the Z-axis direction.
- the longitudinal direction and the short direction of the heat exchanger 10 are referred to as “X-axis direction” and “Y-axis direction”, respectively.
- One direction of the X-axis direction is referred to as “X1 direction”, and the opposite direction is referred to as “X2 direction”.
- a first refrigerant tank space T11 and a second refrigerant tank space T12 are formed inside the two corners of the four corners of the heat exchanger 10 so as to extend in the Z-axis direction. Yes.
- a first cooling water tank space T21 and a second cooling water tank space T22 are formed in the remaining two corners located on the diagonal line so as to extend in the Z-axis direction.
- a refrigerant inflow portion 82 communicated with the first refrigerant tank space T11 and a cooling water outflow portion 83 communicated with the first cooling water tank space T21. Is provided.
- a refrigerant outflow part 80 communicated with the second refrigerant tank space T12 and a second cooling water tank space T22 communicated.
- the cooling water inflow portion 81 is provided.
- a refrigerant having a two-phase state of a gas phase and a liquid phase flows in from the refrigerant inflow portion 82, and cooling water flows in from the cooling water inflow portion 81.
- the refrigerant that has flowed into the first refrigerant tank space T ⁇ b> 11 from the refrigerant inflow portion 82 is distributed to a plurality of refrigerant flow paths W ⁇ b> 1 inside the heat exchanger 10.
- the refrigerant that has flowed through the plurality of refrigerant flow paths W1 is collected in the second refrigerant tank space T12 and then flows out of the refrigerant outflow portion 80.
- the cooling water that has flowed into the second cooling water tank space T22 from the cooling water inflow portion 81 is distributed to the plurality of cooling water flow paths W2 inside the heat exchanger 10.
- the cooling water that has flowed through the plurality of cooling water flow paths W2 is collected in the first cooling water tank space T21 and then flows out from the cooling water outflow portion 83.
- the cooling water is cooled by heat exchange between the refrigerant flowing through the refrigerant flow path W1 and the cooling water flowing through the cooling water flow path W2.
- the heat exchanger 10 includes a plate member 20, a refrigerant fin 30, a cooling water fin 40, a first outermost shell plate 50, and a second outermost shell plate 60.
- a plate member 20 a refrigerant fin 30, a cooling water fin 40, a first outermost shell plate 50, and a second outermost shell plate 60.
- These members are made of a metal material such as aluminum.
- the plate member 20 includes an outer plate 21 and an inner plate 22.
- the outer plate 21 is made of a plate-like member having a cross-sectional shape orthogonal to the Z-axis direction formed in a substantially rectangular shape.
- the plurality of outer plates 21 are arranged so that the tip portions of the respective overhanging portions 210 face the Z1 direction, and are stacked as shown in FIG.
- the overhang portions 210 of the plurality of outer plates 21 are joined to each other by brazing.
- a protrusion 212 that protrudes in a cylindrical shape in the Z2 direction is formed at a position corresponding to the first refrigerant tank space T11 in the outer plate 21 with an axis m1 parallel to the Z-axis direction as a center. ing.
- the internal space of the protrusion 212 is a through hole 211 that penetrates the outer plate 21 in the Z-axis direction along the axis m1.
- the inner plate 22 is made of a plate-like member having a cross-sectional shape orthogonal to the Z-axis direction formed in a substantially rectangular shape. As shown in FIG. 3, the inner plate 22 is disposed in a gap between the outer plates 21 and 21 adjacent in the Z-axis direction. The inner plate 22 is joined to the outer plates 21 and 21 adjacent in the Z-axis direction by brazing. As shown in FIG. 4, the inner plate 22 divides a space formed between adjacent outer plates 21 and 21 into independent refrigerant flow paths W1 and cooling water flow paths W2 that are not communicated with each other. Yes.
- the inner plate 22 is formed with a protruding portion 221 that protrudes in a cylindrical shape in the Z1 direction about the axis m1 at a portion corresponding to the through hole 211 of the outer plate 21.
- the protrusion 221 is formed with a burring hole 220 that penetrates the outer plate 21 in the Z-axis direction along the axis m1.
- the burring hole 220 is formed when burring the first refrigerant tank space T11 in the heat exchanger 10.
- the outer peripheral surface of the protrusion 221 is joined to the inner peripheral surface of the through hole 211 of the outer plate 21 by brazing.
- the first refrigerant tank space T11 is configured by connecting the through holes 211 of the plurality of inner plates 22 in the Z-axis direction by such a joining structure. That is, the first refrigerant tank space T11 is formed so as to extend along the axis m1. In the heat exchanger 10 of the present embodiment, the length L of the first refrigerant tank space T11 is set to 110 mm or less.
- the first refrigerant tank space T11 is communicated with a plurality of refrigerant flow paths W1 through an inlet P formed between the inner plate 22 and the outer plate 21.
- the first refrigerant tank space T11 and the cooling water flow path W2 are partitioned by the joint structure of the protrusion 212 of the outer plate 21 and the protrusion 221 of the inner plate 22, so that the first refrigerant tank space T11 and the cooling water flow path W2 Communication is blocked. That is, the first refrigerant tank space T11 communicates only with the plurality of refrigerant flow paths W1.
- the first refrigerant tank orthogonal to the Z-axis direction is provided at the protrusion 221 disposed at a position shifted in the Z2 direction from the intermediate position in the Z-axis direction.
- the narrowed portion 222 is formed so as to partially narrow the cross-sectional area of the space T11.
- the portion corresponding to the tip of the protruding portion 221 is the narrowest. That is, the minimum value of the cross-sectional area of the burring hole 220 orthogonal to the Z-axis direction is “S1” shown in FIG.
- This cross-sectional area S1 corresponds to the minimum value of the cross-sectional area of the first refrigerant tank space T11 in the portion excluding the throttle portion 222.
- the cross-sectional area S2 of the flow hole 222a of the throttle part 222 orthogonal to the Z-axis direction is smaller than the minimum value S1 of the cross-sectional area of the first refrigerant tank space T11.
- the throttle part 222 is not formed in the second refrigerant tank space T12, the first cooling water tank space T21, and the second cooling water tank space T22.
- the second refrigerant tank space T12, the first cooling water tank space T21, and the second cooling water tank space T22 have a similar structure to the first refrigerant tank space T11 except that the throttle portion 222 is not formed. Therefore, a detailed description of their structure is omitted.
- the refrigerant fins 30 are respectively disposed in a plurality of refrigerant flow paths W ⁇ b> 1 formed between the outer plate 21 and the inner plate 22.
- the cooling water fins 40 are respectively disposed in a plurality of cooling water flow paths W ⁇ b> 2 formed between the outer plate 21 and the inner plate 22.
- the refrigerant fin 30 and the cooling water fin 40 for example, corrugated fins formed in a wave shape can be used.
- the refrigerant fin 30 and the cooling water fin 40 have a function of improving the heat exchange performance of the heat exchanger 10 by increasing the heat transfer area.
- the first outermost shell plate 50 is fixed to the inner plate 22 disposed at the extreme end in the Z1 direction by brazing.
- the first outermost shell plate 50 is provided with a refrigerant inflow portion 82 and a cooling water outflow portion 83.
- the first outermost shell plate 50 closes one end of the second refrigerant tank space T12 in the Z1 direction and one end of the second coolant tank space T22 in the Z1 direction.
- the cross-sectional area S3 of the refrigerant inflow portion 82 orthogonal to the Z-axis direction is smaller than the minimum value S1 of the cross-sectional area of the first refrigerant tank space T11.
- the second outermost shell plate 60 is fixed to the outer plate 21 disposed at the endmost portion in the Z2 direction by brazing.
- the second outermost shell plate 60 is assembled with the refrigerant outflow portion 80 and the cooling water inflow portion 81 shown in FIG.
- the second outermost shell plate 60 closes one end portion in the Z2 direction of the first refrigerant tank space T11 and one end portion in the Z1 direction of the first cooling water tank space T21.
- liquid phase refrigerant flows in into refrigerant channel W1 through a plurality of inflow parts P1 arranged in the Z1 direction side rather than throttling part 222 among a plurality of inflow ports P arranged near throttle part 222. Therefore, it is possible to increase the flow rate of the liquid-phase refrigerant flowing from the inflow portion P1 into the refrigerant flow path W1.
- a part of the liquid-phase refrigerant that has become a jet flows through the flow hole 222 a of the throttle portion 222.
- the liquid phase refrigerant flows so as to be folded back in the Z1 direction by reaching the end of the first refrigerant tank space T11 in the Z2 direction due to inertia and colliding with the second outermost shell plate 60.
- the liquid-phase refrigerant that has flowed so as to be folded back reaches the throttle portion 222 and is blocked.
- liquid phase refrigerant flows into refrigerant channel W1 through a plurality of inflow parts P2 arranged in the Z2 direction side rather than throttling part 222 among a plurality of inflow ports P arranged near the restricting part 222. Therefore, it is possible to increase the flow rate of the liquid phase refrigerant flowing from the inflow portion P2 into the refrigerant flow path W1.
- the operations and effects shown in the following (1) to (7) can be obtained.
- the length L of the first refrigerant tank space T11 in the Z-axis direction is set to 110 mm or less.
- a part of the liquid-phase refrigerant that has flowed into the first refrigerant tank space T11 from the refrigerant inflow portion 82 easily collides with the second outermost shell plate 60.
- the flow rate variations in the plurality of refrigerant flow paths W1 are likely to occur. Therefore, it is effective to adopt the structure of the heat exchanger 10 of this embodiment.
- the flow direction of the refrigerant flowing into the first refrigerant tank space T11 from the refrigerant inflow portion 82 is parallel to the axis m1, that is, parallel to the extending direction of the first refrigerant tank space T11.
- a part of the liquid-phase refrigerant that has flowed into the first refrigerant tank space T11 from the refrigerant inflow portion 82 easily collides with the second outermost shell plate 60.
- the flow rate variations in the plurality of refrigerant flow paths W1 are likely to occur. Therefore, it is effective to adopt the structure of the heat exchanger 10 of this embodiment.
- the cross-sectional area S2 of the throttle part 222 orthogonal to the Z-axis direction is based on the minimum value S1 of the cross-sectional area of the portion excluding the throttle part 222 in the cross-sectional area of the first refrigerant tank space T11 orthogonal to the Z-axis direction. Is also small.
- a part of the liquid-phase refrigerant that has flowed into the first refrigerant tank space T11 from the refrigerant inflow portion 82 collides with the throttle portion 222 more reliably.
- the liquid refrigerant flowing so as to be folded back in the Z1 direction by colliding with the second outermost shell plate 60 also collides with the throttle portion 222 more reliably.
- the flow rate of the liquid phase refrigerant flowing into the refrigerant flow path W1 located near the middle of the first refrigerant tank space T11 can be increased more reliably, the liquid phase refrigerant distributed to the plurality of refrigerant flow paths W1. It is possible to more accurately suppress the deviation of the flow rate distribution.
- the first refrigerant tank space T11 and the refrigerant inflow portion 82 are disposed on the same axis m1, and have a cross-sectional shape of the first refrigerant tank space T11 orthogonal to the Z-axis direction.
- the position of the center of gravity coincides with the position of the center of gravity of the cross-sectional shape of the refrigerant inflow portion 82 orthogonal to the Z-axis direction.
- a part of the liquid-phase refrigerant that has flowed into the first refrigerant tank space T11 from the refrigerant inflow portion 82 easily collides with the second outermost shell plate 60.
- the flow rate variations in the plurality of refrigerant flow paths W1 are likely to occur. Therefore, it is effective to adopt the structure of the heat exchanger 10 of this embodiment.
- the cross-sectional area of the flow holes 222a of the throttle parts 222 may be changed. Thereby, for example, it is possible to balance the flow rate of the refrigerant flowing in the Z2 direction through the flow hole 222a of the throttle unit 222 and the flow rate of the refrigerant flowing in the Z1 direction by colliding with the throttle unit 222. It is.
- throttle portions 222 (1) to 222 (3) are provided in the first refrigerant tank space T11 in order from the vicinity of the refrigerant inflow portion 82.
- the cross-sectional areas S21 to S23 of the flow holes 222a of the narrowed portions 222 (1) to 222 (3) have a relationship of “S21> S22> S23”.
- most of the refrigerant that flows into the first refrigerant tank space T11 from the refrigerant inflow portion 82 and reaches the throttle portion 222 (1) does not collide with the throttle portion 222 (1). It flows downstream through the flow hole 222a.
- coolant can be appropriately distributed to the refrigerant
- the refrigerant may flow from the refrigerant inflow portion 82 into the first refrigerant tank space T11 in the form of a jet.
- the cross-sectional areas S21 to S23 of the flow holes 222a of the throttle portions 222 (1) to 222 (3) are in a relationship of “S21 ⁇ S22 ⁇ S23” according to the spread of the jet of refrigerant. You may set as follows.
- the cross-sectional areas S21 to S23 of the flow holes 222a of the throttle portions 222 (1) to 222 (3) are appropriately changed in accordance with the structure of the heat exchanger 10, the refrigerant flow in each refrigerant flow path W1 is changed. Since the distribution can be improved, as a result, the heat exchange performance of the heat exchanger 10 can be improved.
- a first refrigerant tank space T11 is configured by through holes 214 and 224 formed so as to penetrate the mating surface 213a of the outer plate 21 and the mating surface 223a of the inner plate 22, respectively.
- At least one inner plate 22 is formed with a throttle portion 225 so as to partially narrow the cross-sectional area of the first refrigerant tank space T11 orthogonal to the Z-axis direction.
- the portion corresponding to the tip portions of the protruding portions 213 and 223 of the plates 21 and 22 is the narrowest in the portion excluding the throttle portion 225. It has become. That is, of the cross-sectional area of the first refrigerant tank space T11 orthogonal to the Z direction, the minimum value of the cross-sectional area of the portion excluding the throttle portion 225 is “S1” shown in FIG.
- the cross-sectional area S2 of the hole 225a of the throttle portion 225 orthogonal to the Z-axis direction is smaller than the minimum value S1 of the cross-sectional area of the first refrigerant tank space T11.
- the expansion part 225 may be formed in the protrusion part 213 of the outer plate 21.
- the narrowed portion 225 may be formed on both the protruding portion 213 of the outer plate 21 and the protruding portion 223 of the inner plate 22.
- the inventors of the present invention have a conventional heat exchanger that is not provided with a throttle portion, and the flow rate of the refrigerant flowing through the refrigerant flow path disposed near the central portion of the refrigerant tank space is likely to be smaller than other portions. Have been confirmed through experiments and simulations. From the results of experiments, simulations, and the like, it is preferable to arrange the throttle portion near the center of the refrigerant tank space in consideration of the refrigerant distribution in each refrigerant flow path. Hereinafter, a preferable arrangement of the throttle part will be described in detail.
- the inventors have provided between the adjacent refrigerant flow paths W1 and W1 when the refrigerant is introduced from the refrigerant inflow part 82.
- the cooling degree of the cooling water flowing through the cooling water flow path is measured.
- the measurement results are as shown in the bar graph shown in FIG.
- the horizontal axis of the bar graph indicates the number of stages of the cooling water flow paths sequentially attached from the cooling water flow path closest to the refrigerant inflow portion 82. Specifically, numbers from “1” to “14” are assigned as the number of steps in order from the cooling water flow path closest to the refrigerant inflow portion 82.
- the vertical axis of the bar graph indicates the ratio of the cooling degree in each cooling water flow channel to the average value when the average cooling water cooling value in each cooling water flow channel is “1”. For example, a cooling water passage having a cooling ratio exceeding “1” means that the cooling water passage is easier to cool than the average. Conversely, a cooling water channel having a cooling ratio of less than “1” means that the cooling water channel is more difficult to cool than average.
- the cooling ratio of the cooling water flow paths having the number of stages “6” to “13” is less than “1”.
- the cooling water flow path having a cooling ratio of less than “1” it is assumed that the cooling water is more difficult to cool than the average because the flow rate of the refrigerant flowing through the adjacent refrigerant flow path W1 is small.
- the flow rate of the refrigerant flowing through the refrigerant flow paths W1d and W1e adjacent thereto is small.
- the flow rate of the refrigerant in the refrigerant flow path can be increased, it is possible to efficiently improve the refrigerant distribution in the heat exchanger 10.
- increasing the refrigerant flow rate in the refrigerant flow paths W1a to W1g corresponding to the cooling water flow paths having the number of stages “6” to “13” is effective in improving the refrigerant distribution.
- FIG. 10 shows, as an example, the cooling ratio of each cooling water flow path when the throttle portion 222 is provided at a position corresponding to the cooling water flow path having the number of stages “10”.
- the throttle portion 222 when the throttle portion 222 is provided, not only the flow rate of the refrigerant in the refrigerant channels W1d and W1e adjacent to the cooling water channel having the number of stages “10”, but also other refrigerant channels W1a It has been confirmed that the flow rates of the refrigerants W1c, W1f, and W1g also increase.
- the inventors set the length of the refrigerant tank space T11 in the plate stacking direction Z to “L” and the refrigerant tank in the plate stacking direction Z as shown in FIG.
- the position of the space T11 from the refrigerant inflow portion 82 is “x”
- the distribution of the refrigerant in the heat exchanger 10 can be improved by forming the throttle portion 222 at a position that satisfies the following expression f1. And has gained knowledge.
- the operation and effect shown in the following (8) can be obtained.
- the heat exchanger 10 is provided with the throttle 222 so as to satisfy the above formula f1. According to such a configuration, the refrigerant distribution in each refrigerant flow path W1 can be improved, and as a result, the heat exchange performance of the heat exchanger 10 can be further improved.
- the throttle unit 222 may be configured by a component separate from the plate member 20.
- the narrowed portion 222 may be formed on a member 23 separate from the plate member 20, and the member 23 may be joined to the inner surface of the burring hole 220 by brazing or the like.
- the refrigerant outflow part 80, the cooling water inflow part 81, the refrigerant inflow part 82, and the cooling water outflow part 83 may all be provided on the upper surface of the heat exchanger 10. Alternatively, all of the refrigerant outflow portion 80, the cooling water inflow portion 81, the refrigerant inflow portion 82, and the cooling water outflow portion 83 may be provided on the bottom surface of the heat exchanger 10.
- the two types of fluids used for heat exchange in the heat exchanger 10 are not limited to cooling water for cooling the storage battery and refrigerant for cooling the cooling water, but may be any one of hot water and low-temperature refrigerant, etc. Two types of fluids can be used.
- the heat exchanger 10 of each embodiment can be used for arbitrary heat exchange systems.
- the heat exchanger 10 of each embodiment is a heat exchange system that cools cooling water for cooling a battery, a motor generator, an inverter, a substrate, and the like using a refrigerant having a temperature lower than that of the cooling water in the heat pump system. It can be used as a container.
- the heat pump system in which the heat exchanger is used may be a system that uses the exhaust heat of the battery or the like recovered by the heat exchanger for heating the interior of the vehicle through a water-cooled condenser or a heater core. It may be a system that radiates heat to the outside air.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A heat exchanger (10) has a heat exchange unit (HU) constituted by a plurality of laminated plate members (20). The heat exchanger has a tank space (T11) and a throttle part (222). The tank space is formed so as to extend in the plate lamination direction, is in communication with a plurality of first flow paths (W1), and distributes, to the plurality of first flow paths, a refrigerant flowing in from an inflow section (82) and comprising a two-phase state of a gas phase and a liquid phase. The throttle part partially reduces the cross-sectional area of the tank space in a direction orthogonal to the plate lamination direction.
Description
本出願は、2018年5月11日に出願された日本国特許出願2018-092480号と、2019年4月18日に出願された日本国特許出願2019-079353号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
This application is based on Japanese Patent Application No. 2018-092480 filed on May 11, 2018 and Japanese Patent Application No. 2019-079353 filed on April 18, 2019. Claims the benefit of that priority, the entire contents of which are incorporated herein by reference.
本開示は、プレート積層型の熱交換器に関する。
This disclosure relates to a plate stack type heat exchanger.
従来、この種の熱交換器としては、特許文献1に記載の熱交換器がある。特許文献1に記載の熱交換器は、複数のプレート部材が所定の隙間を隔てて積層配置された構造を有している。隣り合うプレート部材の隙間には、オフセットフィンが配置されている。隣り合うプレート部材の隙間は、冷媒の流れる冷媒流路、及び冷却水の流れる冷却水流路を構成している。冷媒流路及び冷却水流路はプレート部材の積層方向に交互に配置されている。
Conventionally, as this type of heat exchanger, there is a heat exchanger described in Patent Document 1. The heat exchanger described in Patent Document 1 has a structure in which a plurality of plate members are stacked and arranged with a predetermined gap therebetween. Offset fins are arranged in the gaps between adjacent plate members. A gap between adjacent plate members constitutes a coolant channel through which a coolant flows and a cooling water channel through which cooling water flows. The refrigerant channel and the cooling water channel are alternately arranged in the stacking direction of the plate members.
複数のプレート部材のうち、積層方向の一端側に配置される第1最端プレート部材には、冷却水入口を構成する第1ジョイント、及び冷却水出口を構成する第1冷却水パイプが設けられている。複数のプレート部材のうち、積層方向の他端側に配置される第2最端プレート部材には、冷媒出口を構成する第2ジョイント、及び冷却水入口を構成する第2冷却水パイプが設けられている。複数の板状部材には、第1ジョイントから流入する冷却水を複数の冷却水流路に分配する冷却水用タンク空間、及び第2ジョイントから流入する冷媒を複数の冷媒流路に分配する冷媒用タンク空間が形成されている。
Among the plurality of plate members, a first outermost plate member disposed on one end side in the stacking direction is provided with a first joint that constitutes a cooling water inlet and a first cooling water pipe that constitutes a cooling water outlet. ing. Among the plurality of plate members, a second outermost plate member disposed on the other end side in the stacking direction is provided with a second joint that constitutes a refrigerant outlet and a second cooling water pipe that constitutes a cooling water inlet. ing. The plurality of plate-like members include a cooling water tank space that distributes the cooling water flowing from the first joint to the plurality of cooling water flow paths, and a refrigerant for distributing the refrigerant flowing from the second joint to the plurality of refrigerant flow paths. A tank space is formed.
特許文献1に記載の熱交換器では、熱交換器に流入する冷媒が液相及び気相の2相状である場合、第2ジョイントから冷媒用タンク空間に流入した液相冷媒は、その慣性により、冷媒用タンク空間の終端の内壁面に衝突して折り返した後に第2ジョイントに向かって戻るように流れる。そのため、冷媒用タンク空間における第2ジョイントの付近の入口部から冷媒流路に分配される液相冷媒の流量、及び冷媒用タンク空間の終端から冷媒流路に分配される液相冷媒の流量が、冷媒用タンク空間のその他の中間部分から冷媒流路に分配される液相冷媒の流量よりも多くなる。このような複数の冷媒流路に分配される液相冷媒の流量の偏りは、特に積層方向の長さが短いプレート積層型の熱交換器に発生し易い。冷媒用タンク空間から複数の冷媒流路に分配される冷媒の流量に偏りが生じると、複数の冷媒流路及び複数の冷却水流路のそれぞれの熱交換量にもばらつきが生じる。これは、熱交換器の熱交換性能を低下させる要因となるため、好ましくない。
In the heat exchanger described in Patent Document 1, when the refrigerant flowing into the heat exchanger is in a liquid phase and gas phase two phases, the liquid phase refrigerant flowing into the refrigerant tank space from the second joint has its inertia. Thus, after colliding with the inner wall surface at the end of the refrigerant tank space and turning back, the refrigerant flows toward the second joint. Therefore, the flow rate of the liquid phase refrigerant distributed to the refrigerant flow path from the inlet portion near the second joint in the refrigerant tank space, and the flow rate of the liquid phase refrigerant distributed to the refrigerant flow path from the end of the refrigerant tank space are as follows. The flow rate of the liquid-phase refrigerant distributed from the other intermediate portion of the refrigerant tank space to the refrigerant flow path is larger. Such a deviation in the flow rate of the liquid-phase refrigerant distributed to the plurality of refrigerant channels tends to occur particularly in a plate-stacked heat exchanger having a short length in the stacking direction. When the flow rate of the refrigerant distributed from the refrigerant tank space to the plurality of refrigerant flow paths is uneven, the heat exchange amounts of the plurality of refrigerant flow paths and the plurality of cooling water flow paths also vary. This is not preferable because it causes a decrease in the heat exchange performance of the heat exchanger.
本開示の目的は、熱交換性能を向上させることの可能なプレート積層型の熱交換器を提供することにある。
An object of the present disclosure is to provide a plate stack type heat exchanger capable of improving heat exchange performance.
本開示の一態様によるプレート積層型の熱交換器は、隙間を有して積層配置される複数のプレート部材により構成される熱交換部を有するとともに、複数のプレート部材の間に冷媒の流れる複数の第1流路、及び所定の流体の流れる複数の第2流路が形成され、第1流路及び第2流路をそれぞれ流れる冷媒と所定の流体との間で熱交換が行われる。熱交換部は、タンク空間と、絞り部と、を有する。タンク空間は、複数のプレート部材が積層配置されている方向をプレート積層方向とするとき、プレート積層方向に延びるように形成され、複数の第1流路に連通されるとともに、流入部から流入する気相及び液相の2相状態からなる冷媒を複数の第1流路に分配する。絞り部は、プレート積層方向に直交する方向におけるタンク空間の断面積を部分的に小さくする。
A plate stacking type heat exchanger according to an aspect of the present disclosure includes a heat exchanging unit including a plurality of plate members that are stacked and arranged with a gap therebetween, and a plurality of refrigerant flows between the plurality of plate members. The first flow path and a plurality of second flow paths through which a predetermined fluid flows are formed, and heat exchange is performed between the refrigerant flowing through the first flow path and the second flow path and the predetermined fluid. The heat exchange part has a tank space and a throttle part. The tank space is formed so as to extend in the plate stacking direction when the direction in which the plurality of plate members are stacked and arranged is the plate stacking direction, communicates with the plurality of first flow paths, and flows from the inflow portion. A refrigerant having a two-phase state of a gas phase and a liquid phase is distributed to the plurality of first flow paths. The throttle part partially reduces the cross-sectional area of the tank space in the direction orthogonal to the plate stacking direction.
この構成によれば、流入部からタンク空間に流入した液相冷媒の一部は絞り部によってせき止められるため、絞り部付近において流入部側に配置される第1流路に流入する液相冷媒の流量が増加する。すなわち、タンク空間の中間付近に位置する第1流路に流入する液相冷媒の流量を増加させることができる。これにより、タンク空間から複数の第1流路に分配される液相冷媒の流量分布の偏りを抑制できるため、熱交換性能を向上させることができる。
According to this configuration, a part of the liquid-phase refrigerant that has flowed into the tank space from the inflow portion is blocked by the throttle portion, so that the liquid-phase refrigerant that flows into the first flow path disposed on the inflow portion side near the throttle portion. The flow rate increases. That is, it is possible to increase the flow rate of the liquid-phase refrigerant flowing into the first flow path located near the middle of the tank space. Thereby, since the deviation of the flow distribution of the liquid phase refrigerant distributed from the tank space to the plurality of first flow paths can be suppressed, the heat exchange performance can be improved.
以下、プレート積層型の熱交換器の一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
<第1実施形態>
はじめに、第1実施形態のプレート積層型熱交換器について説明する。図1に示される熱交換器10は、例えば車両に搭載される蓄電池を冷却するための冷却水と、冷却水よりも温度の低い冷媒との間で熱交換を行うことにより冷却水を冷却する機器として用いられる。この場合、冷却水が、冷媒よりも温度の高い所定の流体に相当する。 Hereinafter, an embodiment of a plate stacked heat exchanger will be described with reference to the drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
<First Embodiment>
First, the plate lamination type heat exchanger according to the first embodiment will be described. Aheat exchanger 10 shown in FIG. 1 cools cooling water by exchanging heat between, for example, cooling water for cooling a storage battery mounted on a vehicle and a refrigerant having a temperature lower than that of the cooling water. Used as equipment. In this case, the cooling water corresponds to a predetermined fluid having a temperature higher than that of the refrigerant.
<第1実施形態>
はじめに、第1実施形態のプレート積層型熱交換器について説明する。図1に示される熱交換器10は、例えば車両に搭載される蓄電池を冷却するための冷却水と、冷却水よりも温度の低い冷媒との間で熱交換を行うことにより冷却水を冷却する機器として用いられる。この場合、冷却水が、冷媒よりも温度の高い所定の流体に相当する。 Hereinafter, an embodiment of a plate stacked heat exchanger will be described with reference to the drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
<First Embodiment>
First, the plate lamination type heat exchanger according to the first embodiment will be described. A
図1に示されるように、熱交換器10は、複数のプレート部材20がZ軸方向に積層された熱交換部HUを有している。すなわち、本実施形態では、Z軸方向がプレート積層方向に相当する。以下では、Z軸方向のうちの一方向を「Z1方向」と称し、その逆の方向を「Z2方向」と称する。
1, the heat exchanger 10 includes a heat exchange unit HU in which a plurality of plate members 20 are stacked in the Z-axis direction. That is, in the present embodiment, the Z-axis direction corresponds to the plate stacking direction. Hereinafter, one direction of the Z-axis direction is referred to as “Z1 direction”, and the opposite direction is referred to as “Z2 direction”.
各プレート部材20の内部には、一点鎖線及び二点鎖線で示されるように、冷媒の流れる冷媒流路W1と、冷却水の流れる冷却水流路W2とが形成されている。これにより、熱交換器10の内部には、複数の冷媒流路W1及び複数の冷却水流路W2が交互に配置されている。本実施形態では、冷媒流路W1が第1流路に相当し、冷却水流路W2が第2流路に相当する。
In each plate member 20, as indicated by the one-dot chain line and the two-dot chain line, a refrigerant flow path W1 through which the refrigerant flows and a cooling water flow path W2 through which the cooling water flows are formed. Thereby, inside the heat exchanger 10, the some refrigerant | coolant flow path W1 and the some cooling water flow path W2 are arrange | positioned alternately. In the present embodiment, the refrigerant flow path W1 corresponds to the first flow path, and the cooling water flow path W2 corresponds to the second flow path.
図2に示されるように、熱交換器10は、Z軸方向に直交する断面形状が略矩形状に形成されている。以下では、熱交換器10の長手方向及び短手方向を「X軸方向」及び「Y軸方向」とそれぞれ称する。また、X軸方向のうちの一方向を「X1方向」と称し、その逆の方向を「X2方向」と称する。
As shown in FIG. 2, the heat exchanger 10 has a substantially rectangular cross-sectional shape perpendicular to the Z-axis direction. Hereinafter, the longitudinal direction and the short direction of the heat exchanger 10 are referred to as “X-axis direction” and “Y-axis direction”, respectively. One direction of the X-axis direction is referred to as “X1 direction”, and the opposite direction is referred to as “X2 direction”.
熱交換器10の4つの隅部のうち、対角線に位置する2つの隅部の内部には、Z軸方向に延びるように第1冷媒タンク空間T11及び第2冷媒タンク空間T12がそれぞれ形成されている。また、対角線上に位置する残りの2つの隅部の内部には、Z軸方向に延びるように第1冷却水タンク空間T21及び第2冷却水タンク空間T22がそれぞれ形成されている。
A first refrigerant tank space T11 and a second refrigerant tank space T12 are formed inside the two corners of the four corners of the heat exchanger 10 so as to extend in the Z-axis direction. Yes. In addition, a first cooling water tank space T21 and a second cooling water tank space T22 are formed in the remaining two corners located on the diagonal line so as to extend in the Z-axis direction.
熱交換器10の上面のX2方向側の端部には、第1冷媒タンク空間T11に連通される冷媒流入部82と、第1冷却水タンク空間T21に連通される冷却水流出部83とが設けられている。図1に示されるように、熱交換器10の底面のX1軸方向側の端部には、第2冷媒タンク空間T12に連通される冷媒流出部80と、第2冷却水タンク空間T22に連通される冷却水流入部81とが設けられている。
At the end of the upper surface of the heat exchanger 10 on the X2 direction side, there are a refrigerant inflow portion 82 communicated with the first refrigerant tank space T11 and a cooling water outflow portion 83 communicated with the first cooling water tank space T21. Is provided. As shown in FIG. 1, at the end of the bottom surface of the heat exchanger 10 on the X1 axis direction side, a refrigerant outflow part 80 communicated with the second refrigerant tank space T12 and a second cooling water tank space T22 communicated. The cooling water inflow portion 81 is provided.
この熱交換器10では、気相及び液相の2相状態からなる冷媒が冷媒流入部82から流入するとともに、冷却水が冷却水流入部81から流入する。図1に一点鎖線で示されるように、冷媒流入部82から第1冷媒タンク空間T11に流入した冷媒は、熱交換器10の内部の複数の冷媒流路W1に分配される。複数の冷媒流路W1をそれぞれ流れた冷媒は、第2冷媒タンク空間T12にて集められた後、冷媒流出部80から流出する。また、図1に二点鎖線で示されるように、冷却水流入部81から第2冷却水タンク空間T22に流入した冷却水は、熱交換器10の内部の複数の冷却水流路W2に分配される。複数の冷却水流路W2をそれぞれ流れた冷却水は、第1冷却水タンク空間T21にて集められた後、冷却水流出部83から流出する。熱交換器10では、冷媒流路W1を流れる冷媒と、冷却水流路W2を流れる冷却水との間で熱交換が行われることにより冷却水が冷却される。
In the heat exchanger 10, a refrigerant having a two-phase state of a gas phase and a liquid phase flows in from the refrigerant inflow portion 82, and cooling water flows in from the cooling water inflow portion 81. As indicated by a one-dot chain line in FIG. 1, the refrigerant that has flowed into the first refrigerant tank space T <b> 11 from the refrigerant inflow portion 82 is distributed to a plurality of refrigerant flow paths W <b> 1 inside the heat exchanger 10. The refrigerant that has flowed through the plurality of refrigerant flow paths W1 is collected in the second refrigerant tank space T12 and then flows out of the refrigerant outflow portion 80. Further, as indicated by a two-dot chain line in FIG. 1, the cooling water that has flowed into the second cooling water tank space T22 from the cooling water inflow portion 81 is distributed to the plurality of cooling water flow paths W2 inside the heat exchanger 10. The The cooling water that has flowed through the plurality of cooling water flow paths W2 is collected in the first cooling water tank space T21 and then flows out from the cooling water outflow portion 83. In the heat exchanger 10, the cooling water is cooled by heat exchange between the refrigerant flowing through the refrigerant flow path W1 and the cooling water flowing through the cooling water flow path W2.
次に、熱交換器10の具体的な構造について説明する。図3に示されるように、熱交換器10は、プレート部材20と、冷媒用フィン30と、冷却水用フィン40と、第1最外殻プレート50と、第2最外殻プレート60とを備えている。これらの部材は、アルミニウム等の金属材料により形成されている。
Next, a specific structure of the heat exchanger 10 will be described. As shown in FIG. 3, the heat exchanger 10 includes a plate member 20, a refrigerant fin 30, a cooling water fin 40, a first outermost shell plate 50, and a second outermost shell plate 60. I have. These members are made of a metal material such as aluminum.
プレート部材20は、アウタープレート21とインナープレート22とにより構成されている。
アウタープレート21は、Z軸方向に直交する断面形状が略矩形状に形成された板状の部材からなる。アウタープレート21の外周縁部には、Z1方向に突出する張出部210が形成されている。複数のアウタープレート21は、それぞれの張出部210の先端部がZ1方向を向くように配置されるとともに、図1に示されるように積層して配置されている。複数のアウタープレート21のそれぞれの張出部210は、互いにろう付けにより接合されている。 Theplate member 20 includes an outer plate 21 and an inner plate 22.
Theouter plate 21 is made of a plate-like member having a cross-sectional shape orthogonal to the Z-axis direction formed in a substantially rectangular shape. On the outer peripheral edge portion of the outer plate 21, an overhang portion 210 protruding in the Z1 direction is formed. The plurality of outer plates 21 are arranged so that the tip portions of the respective overhanging portions 210 face the Z1 direction, and are stacked as shown in FIG. The overhang portions 210 of the plurality of outer plates 21 are joined to each other by brazing.
アウタープレート21は、Z軸方向に直交する断面形状が略矩形状に形成された板状の部材からなる。アウタープレート21の外周縁部には、Z1方向に突出する張出部210が形成されている。複数のアウタープレート21は、それぞれの張出部210の先端部がZ1方向を向くように配置されるとともに、図1に示されるように積層して配置されている。複数のアウタープレート21のそれぞれの張出部210は、互いにろう付けにより接合されている。 The
The
図4に示されるように、アウタープレート21における第1冷媒タンク空間T11に相当する位置には、Z軸方向に平行な軸線m1を中心としてZ2方向に円筒状に突出する突出部212が形成されている。突出部212の内部空間は、軸線m1に沿ってアウタープレート21をZ軸方向に貫通する貫通孔211となっている。
As shown in FIG. 4, a protrusion 212 that protrudes in a cylindrical shape in the Z2 direction is formed at a position corresponding to the first refrigerant tank space T11 in the outer plate 21 with an axis m1 parallel to the Z-axis direction as a center. ing. The internal space of the protrusion 212 is a through hole 211 that penetrates the outer plate 21 in the Z-axis direction along the axis m1.
インナープレート22は、Z軸方向に直交する断面形状が略矩形状に形成された板状の部材からなる。図3に示されるように、インナープレート22は、Z軸方向に隣り合うアウタープレート21,21の間の隙間に配置されている。インナープレート22は、Z軸方向に隣り合うアウタープレート21,21にろう付けにより接合されている。図4に示されるように、インナープレート22は、隣り合うアウタープレート21,21の間に形成される空間を、互いに連通されていない独立した冷媒流路W1と冷却水流路W2とに区画している。
The inner plate 22 is made of a plate-like member having a cross-sectional shape orthogonal to the Z-axis direction formed in a substantially rectangular shape. As shown in FIG. 3, the inner plate 22 is disposed in a gap between the outer plates 21 and 21 adjacent in the Z-axis direction. The inner plate 22 is joined to the outer plates 21 and 21 adjacent in the Z-axis direction by brazing. As shown in FIG. 4, the inner plate 22 divides a space formed between adjacent outer plates 21 and 21 into independent refrigerant flow paths W1 and cooling water flow paths W2 that are not communicated with each other. Yes.
図4に示されるように、インナープレート22には、アウタープレート21の貫通孔211に対応する部分に、軸線m1を中心としてZ1方向に円筒状に突出する突出部221が形成されている。突出部221には、軸線m1に沿ってアウタープレート21をZ軸方向に貫通するバーリング加工孔220が形成されている。バーリング加工孔220は、熱交換器10に第1冷媒タンク空間T11をバーリング加工する際に形成される。突出部221の外周面が、アウタープレート21の貫通孔211の内周面にろう付けにより接合されている。このような接合構造により複数のインナープレート22の貫通孔211がZ軸方向に連通されることで、第1冷媒タンク空間T11が構成されている。すなわち、第1冷媒タンク空間T11は、軸線m1に沿って延びるように形成されている。なお、本実施形態の熱交換器10では、第1冷媒タンク空間T11の長さLが110mm以下に設定されている。
As shown in FIG. 4, the inner plate 22 is formed with a protruding portion 221 that protrudes in a cylindrical shape in the Z1 direction about the axis m1 at a portion corresponding to the through hole 211 of the outer plate 21. The protrusion 221 is formed with a burring hole 220 that penetrates the outer plate 21 in the Z-axis direction along the axis m1. The burring hole 220 is formed when burring the first refrigerant tank space T11 in the heat exchanger 10. The outer peripheral surface of the protrusion 221 is joined to the inner peripheral surface of the through hole 211 of the outer plate 21 by brazing. The first refrigerant tank space T11 is configured by connecting the through holes 211 of the plurality of inner plates 22 in the Z-axis direction by such a joining structure. That is, the first refrigerant tank space T11 is formed so as to extend along the axis m1. In the heat exchanger 10 of the present embodiment, the length L of the first refrigerant tank space T11 is set to 110 mm or less.
第1冷媒タンク空間T11は、インナープレート22とアウタープレート21との間に形成された流入口Pを通じて複数の冷媒流路W1に連通されている。アウタープレート21の突出部212とインナープレート22の突出部221との接合構造により第1冷媒タンク空間T11と冷却水流路W2とが仕切られることで、第1冷媒タンク空間T11と冷却水流路W2との連通が遮断されている。すなわち、第1冷媒タンク空間T11は、複数の冷媒流路W1のみに連通されている。
The first refrigerant tank space T11 is communicated with a plurality of refrigerant flow paths W1 through an inlet P formed between the inner plate 22 and the outer plate 21. The first refrigerant tank space T11 and the cooling water flow path W2 are partitioned by the joint structure of the protrusion 212 of the outer plate 21 and the protrusion 221 of the inner plate 22, so that the first refrigerant tank space T11 and the cooling water flow path W2 Communication is blocked. That is, the first refrigerant tank space T11 communicates only with the plurality of refrigerant flow paths W1.
複数のインナープレート22にそれぞれ形成される突出部221のうち、Z軸方向の中間位置よりもZ2方向にずれた位置に配置される突出部221には、Z軸方向に直交する第1冷媒タンク空間T11の断面積を部分的に狭くするように絞り部222が形成されている。
Of the protrusions 221 formed on the plurality of inner plates 22, the first refrigerant tank orthogonal to the Z-axis direction is provided at the protrusion 221 disposed at a position shifted in the Z2 direction from the intermediate position in the Z-axis direction. The narrowed portion 222 is formed so as to partially narrow the cross-sectional area of the space T11.
具体的には、絞り部222の形成されていないインナープレート22のバーリング加工孔220では、突出部221の先端部にあたる部分で最も狭くなっている。すなわち、Z軸方向に直交するバーリング加工孔220の断面積の最小値は、図5に示される「S1」である。この断面積S1は、絞り部222を除く部分における第1冷媒タンク空間T11の断面積の最小値に相当する。これに対し、Z軸方向に直交する絞り部222の流通孔222aの断面積S2は、第1冷媒タンク空間T11の断面積の最小値S1よりも小さい。
Specifically, in the burring hole 220 of the inner plate 22 where the narrowed portion 222 is not formed, the portion corresponding to the tip of the protruding portion 221 is the narrowest. That is, the minimum value of the cross-sectional area of the burring hole 220 orthogonal to the Z-axis direction is “S1” shown in FIG. This cross-sectional area S1 corresponds to the minimum value of the cross-sectional area of the first refrigerant tank space T11 in the portion excluding the throttle portion 222. On the other hand, the cross-sectional area S2 of the flow hole 222a of the throttle part 222 orthogonal to the Z-axis direction is smaller than the minimum value S1 of the cross-sectional area of the first refrigerant tank space T11.
なお、第2冷媒タンク空間T12、第1冷却水タンク空間T21、及び第2冷却水タンク空間T22には、絞り部222が形成されていない。第2冷媒タンク空間T12、第1冷却水タンク空間T21、及び第2冷却水タンク空間T22は、絞り部222が形成されていない点を除けば第1冷媒タンク空間T11に類似の構造を有しているため、それらの構造の詳細な説明は割愛する。
In addition, the throttle part 222 is not formed in the second refrigerant tank space T12, the first cooling water tank space T21, and the second cooling water tank space T22. The second refrigerant tank space T12, the first cooling water tank space T21, and the second cooling water tank space T22 have a similar structure to the first refrigerant tank space T11 except that the throttle portion 222 is not formed. Therefore, a detailed description of their structure is omitted.
図3に示されるように、冷媒用フィン30は、アウタープレート21とインナープレート22との間に形成される複数の冷媒流路W1にそれぞれ配置されている。冷却水用フィン40は、アウタープレート21とインナープレート22との間に形成される複数の冷却水流路W2にそれぞれ配置されている。冷媒用フィン30及び冷却水用フィン40としては、例えば波状に形成されたコルゲートフィンを用いることができる。冷媒用フィン30及び冷却水用フィン40は、伝熱面積を増加させることにより熱交換器10の熱交換性能を向上させる機能を有している。
As shown in FIG. 3, the refrigerant fins 30 are respectively disposed in a plurality of refrigerant flow paths W <b> 1 formed between the outer plate 21 and the inner plate 22. The cooling water fins 40 are respectively disposed in a plurality of cooling water flow paths W <b> 2 formed between the outer plate 21 and the inner plate 22. As the refrigerant fin 30 and the cooling water fin 40, for example, corrugated fins formed in a wave shape can be used. The refrigerant fin 30 and the cooling water fin 40 have a function of improving the heat exchange performance of the heat exchanger 10 by increasing the heat transfer area.
図3に示されるように、第1最外殻プレート50は、Z1方向の最端部に配置されるインナープレート22にろう付けにより固定されている。第1最外殻プレート50には、図2に示されるように冷媒流入部82及び冷却水流出部83が設けられている。第1最外殻プレート50は、第2冷媒タンク空間T12のZ1方向の一端部及び第2冷却水タンク空間T22のZ1方向の一端部を閉塞している。図4に示されるように、Z軸方向に直交する冷媒流入部82の断面積S3は、第1冷媒タンク空間T11の断面積の最小値S1よりも小さい。
As shown in FIG. 3, the first outermost shell plate 50 is fixed to the inner plate 22 disposed at the extreme end in the Z1 direction by brazing. As shown in FIG. 2, the first outermost shell plate 50 is provided with a refrigerant inflow portion 82 and a cooling water outflow portion 83. The first outermost shell plate 50 closes one end of the second refrigerant tank space T12 in the Z1 direction and one end of the second coolant tank space T22 in the Z1 direction. As shown in FIG. 4, the cross-sectional area S3 of the refrigerant inflow portion 82 orthogonal to the Z-axis direction is smaller than the minimum value S1 of the cross-sectional area of the first refrigerant tank space T11.
図3に示されるように、第2最外殻プレート60は、Z2方向の最端部に配置されるアウタープレート21にろう付けにより固定されている。第2最外殻プレート60には、図1に示される冷媒流出部80及び冷却水流入部81が組み付けられる。第2最外殻プレート60は、第1冷媒タンク空間T11のZ2方向の一端部及び第1冷却水タンク空間T21のZ1方向の一端部を閉塞している。
As shown in FIG. 3, the second outermost shell plate 60 is fixed to the outer plate 21 disposed at the endmost portion in the Z2 direction by brazing. The second outermost shell plate 60 is assembled with the refrigerant outflow portion 80 and the cooling water inflow portion 81 shown in FIG. The second outermost shell plate 60 closes one end portion in the Z2 direction of the first refrigerant tank space T11 and one end portion in the Z1 direction of the first cooling water tank space T21.
次に、本実施形態の熱交換器10の動作例について説明する。
図4に示されるように、熱交換器10では、液相及び気相の2相状態からなる冷媒が冷媒流入部82から第1冷媒タンク空間T11に流入する。液相冷媒が冷媒流入部82から第1冷媒タンク空間T11に流入する際に流路断面積が拡大する。そのため、液相冷媒は噴流となって第1冷媒タンク空間T11に流入する。このとき、図4に矢印F1で示されるように、噴流となった液相冷媒の一部が絞り部222に衝突することにより、一部の液相冷媒の流れが堰き止められる。これにより、絞り部222近傍に配置される複数の流入口Pのうち、絞り部222よりもZ1方向側に配置される複数の流入部P1を通じて冷媒流路W1に液相冷媒が流入する。そのため、流入部P1から冷媒流路W1に流入する液相冷媒の流量を増加させることができる。 Next, an operation example of theheat exchanger 10 of the present embodiment will be described.
As shown in FIG. 4, in theheat exchanger 10, a refrigerant having a liquid phase and a gas phase two-phase state flows from the refrigerant inflow portion 82 into the first refrigerant tank space T <b> 11. When the liquid-phase refrigerant flows into the first refrigerant tank space T11 from the refrigerant inflow portion 82, the flow path cross-sectional area increases. Therefore, the liquid phase refrigerant becomes a jet and flows into the first refrigerant tank space T11. At this time, as indicated by an arrow F <b> 1 in FIG. 4, a part of the liquid-phase refrigerant that has been jetted collides with the throttle portion 222, thereby blocking the flow of some liquid-phase refrigerant. Thereby, liquid phase refrigerant flows in into refrigerant channel W1 through a plurality of inflow parts P1 arranged in the Z1 direction side rather than throttling part 222 among a plurality of inflow ports P arranged near throttle part 222. Therefore, it is possible to increase the flow rate of the liquid-phase refrigerant flowing from the inflow portion P1 into the refrigerant flow path W1.
図4に示されるように、熱交換器10では、液相及び気相の2相状態からなる冷媒が冷媒流入部82から第1冷媒タンク空間T11に流入する。液相冷媒が冷媒流入部82から第1冷媒タンク空間T11に流入する際に流路断面積が拡大する。そのため、液相冷媒は噴流となって第1冷媒タンク空間T11に流入する。このとき、図4に矢印F1で示されるように、噴流となった液相冷媒の一部が絞り部222に衝突することにより、一部の液相冷媒の流れが堰き止められる。これにより、絞り部222近傍に配置される複数の流入口Pのうち、絞り部222よりもZ1方向側に配置される複数の流入部P1を通じて冷媒流路W1に液相冷媒が流入する。そのため、流入部P1から冷媒流路W1に流入する液相冷媒の流量を増加させることができる。 Next, an operation example of the
As shown in FIG. 4, in the
また、図4に矢印F2で示されるように、噴流となった液相冷媒の一部は、絞り部222の流通孔222aを通過する。この液相冷媒は、慣性よりZ2方向における第1冷媒タンク空間T11の端部に到達して第2最外殻プレート60に衝突することにより、Z1方向に折り返すように流れる。この折り返すように流れた液相冷媒は、絞り部222に到達することにより、その流れが堰き止められる。これにより、絞り部222近傍に配置される複数の流入口Pのうち、絞り部222よりもZ2方向側に配置される複数の流入部P2を通じて冷媒流路W1に液相冷媒が流入する。そのため、流入部P2から冷媒流路W1に流入する液相冷媒の流量を増加させることができる。
Further, as indicated by an arrow F 2 in FIG. 4, a part of the liquid-phase refrigerant that has become a jet flows through the flow hole 222 a of the throttle portion 222. The liquid phase refrigerant flows so as to be folded back in the Z1 direction by reaching the end of the first refrigerant tank space T11 in the Z2 direction due to inertia and colliding with the second outermost shell plate 60. The liquid-phase refrigerant that has flowed so as to be folded back reaches the throttle portion 222 and is blocked. Thereby, liquid phase refrigerant flows into refrigerant channel W1 through a plurality of inflow parts P2 arranged in the Z2 direction side rather than throttling part 222 among a plurality of inflow ports P arranged near the restricting part 222. Therefore, it is possible to increase the flow rate of the liquid phase refrigerant flowing from the inflow portion P2 into the refrigerant flow path W1.
以上説明した本実施形態のプレート積層型の熱交換器10によれば、以下の(1)~(7)に示される作用及び効果を得ることができる。
(1)第1冷媒タンク空間T11の中間付近に位置する冷媒流路W1に流入する液相冷媒の流量を増加させることができるため、第1冷媒タンク空間T11の端部付近に位置する冷媒流路W1に流入する液相冷媒の流量と、第1冷媒タンク空間T11の中間付近に位置する冷媒流路W1に流入する液相冷媒の流量とのバランスを取ることができる。すなわち、第1冷媒タンク空間T11から複数の冷媒流路W1に分配される液相冷媒の流量分布の偏りを抑制できるため、熱交換性能を向上させることができる。 According to the plate stacktype heat exchanger 10 of the present embodiment described above, the operations and effects shown in the following (1) to (7) can be obtained.
(1) Since the flow rate of the liquid-phase refrigerant flowing into the refrigerant flow path W1 located near the middle of the first refrigerant tank space T11 can be increased, the refrigerant flow located near the end of the first refrigerant tank space T11 It is possible to balance the flow rate of the liquid phase refrigerant flowing into the path W1 and the flow rate of the liquid phase refrigerant flowing into the refrigerant flow path W1 located near the middle of the first refrigerant tank space T11. That is, since it is possible to suppress an uneven flow distribution of the liquid-phase refrigerant distributed from the first refrigerant tank space T11 to the plurality of refrigerant flow paths W1, it is possible to improve heat exchange performance.
(1)第1冷媒タンク空間T11の中間付近に位置する冷媒流路W1に流入する液相冷媒の流量を増加させることができるため、第1冷媒タンク空間T11の端部付近に位置する冷媒流路W1に流入する液相冷媒の流量と、第1冷媒タンク空間T11の中間付近に位置する冷媒流路W1に流入する液相冷媒の流量とのバランスを取ることができる。すなわち、第1冷媒タンク空間T11から複数の冷媒流路W1に分配される液相冷媒の流量分布の偏りを抑制できるため、熱交換性能を向上させることができる。 According to the plate stack
(1) Since the flow rate of the liquid-phase refrigerant flowing into the refrigerant flow path W1 located near the middle of the first refrigerant tank space T11 can be increased, the refrigerant flow located near the end of the first refrigerant tank space T11 It is possible to balance the flow rate of the liquid phase refrigerant flowing into the path W1 and the flow rate of the liquid phase refrigerant flowing into the refrigerant flow path W1 located near the middle of the first refrigerant tank space T11. That is, since it is possible to suppress an uneven flow distribution of the liquid-phase refrigerant distributed from the first refrigerant tank space T11 to the plurality of refrigerant flow paths W1, it is possible to improve heat exchange performance.
(2)Z軸方向における第1冷媒タンク空間T11の長さLが110mm以下に設定されている。このような構造からなる熱交換器10では、冷媒流入部82から第1冷媒タンク空間T11に流入した液相冷媒の一部が第2最外殻プレート60に衝突し易いため、上記の「発明が解決しようとする課題」で述べたような複数の冷媒流路W1における流量のばらつきが生じ易い。そのため、本実施形態の熱交換器10の構造を採用することは有効である。
(2) The length L of the first refrigerant tank space T11 in the Z-axis direction is set to 110 mm or less. In the heat exchanger 10 having such a structure, a part of the liquid-phase refrigerant that has flowed into the first refrigerant tank space T11 from the refrigerant inflow portion 82 easily collides with the second outermost shell plate 60. However, the flow rate variations in the plurality of refrigerant flow paths W1 are likely to occur. Therefore, it is effective to adopt the structure of the heat exchanger 10 of this embodiment.
(3)冷媒流入部82から第1冷媒タンク空間T11に流入する冷媒の流れ方向が、軸線m1に平行、すなわち第1冷媒タンク空間T11の延びる方向に平行である。このような構造からなる熱交換器10では、冷媒流入部82から第1冷媒タンク空間T11に流入した液相冷媒の一部が第2最外殻プレート60に衝突し易いため、上記の「発明が解決しようとする課題」で述べたような複数の冷媒流路W1における流量のばらつきが生じ易い。そのため、本実施形態の熱交換器10の構造を採用することは有効である。
(3) The flow direction of the refrigerant flowing into the first refrigerant tank space T11 from the refrigerant inflow portion 82 is parallel to the axis m1, that is, parallel to the extending direction of the first refrigerant tank space T11. In the heat exchanger 10 having such a structure, a part of the liquid-phase refrigerant that has flowed into the first refrigerant tank space T11 from the refrigerant inflow portion 82 easily collides with the second outermost shell plate 60. However, the flow rate variations in the plurality of refrigerant flow paths W1 are likely to occur. Therefore, it is effective to adopt the structure of the heat exchanger 10 of this embodiment.
(4)Z軸方向に直交する絞り部222の断面積S2は、Z軸方向に直交する第1冷媒タンク空間T11の断面積のうち、絞り部222を除く部分の断面積の最小値S1よりも小さい。これにより、冷媒流入部82から第1冷媒タンク空間T11に流入した液相冷媒の一部が、より確実に絞り部222に衝突するようになる。また、第2最外殻プレート60に衝突することによりZ1方向に折り返すように流れる液相冷媒も、より確実に絞り部222に衝突するようになる。よって、第1冷媒タンク空間T11の中間付近に位置する冷媒流路W1に流入する液相冷媒の流量をより確実に増加させることができるため、複数の冷媒流路W1に分配される液相冷媒の流量分布の偏りをより的確に抑制することができる。
(4) The cross-sectional area S2 of the throttle part 222 orthogonal to the Z-axis direction is based on the minimum value S1 of the cross-sectional area of the portion excluding the throttle part 222 in the cross-sectional area of the first refrigerant tank space T11 orthogonal to the Z-axis direction. Is also small. As a result, a part of the liquid-phase refrigerant that has flowed into the first refrigerant tank space T11 from the refrigerant inflow portion 82 collides with the throttle portion 222 more reliably. Further, the liquid refrigerant flowing so as to be folded back in the Z1 direction by colliding with the second outermost shell plate 60 also collides with the throttle portion 222 more reliably. Therefore, since the flow rate of the liquid phase refrigerant flowing into the refrigerant flow path W1 located near the middle of the first refrigerant tank space T11 can be increased more reliably, the liquid phase refrigerant distributed to the plurality of refrigerant flow paths W1. It is possible to more accurately suppress the deviation of the flow rate distribution.
(5)第1冷媒タンク空間T11には、絞り部222が一つだけ設けられている。これにより、複数の絞り部222を設ける場合と比較すると、製造コストを低減することができる。
(6)絞り部222は、プレート部材20に一体的に形成されている。これにより、部品点数を増加させることなく、第1冷媒タンク空間T11に絞り部222を設けることができる。 (5) Only onethrottle 222 is provided in the first refrigerant tank space T11. Thereby, compared with the case where the some aperture | diaphragm | squeeze part 222 is provided, manufacturing cost can be reduced.
(6) Thediaphragm 222 is formed integrally with the plate member 20. Thereby, the throttle part 222 can be provided in the first refrigerant tank space T11 without increasing the number of parts.
(6)絞り部222は、プレート部材20に一体的に形成されている。これにより、部品点数を増加させることなく、第1冷媒タンク空間T11に絞り部222を設けることができる。 (5) Only one
(6) The
(7)図4に示されるように、第1冷媒タンク空間T11及び冷媒流入部82は同一の軸線m1上に配置されており、Z軸方向に直交する第1冷媒タンク空間T11の断面形状の重心の位置と、Z軸方向に直交する冷媒流入部82の断面形状の重心の位置とが一致している。このような構造からなる熱交換器10では、冷媒流入部82から第1冷媒タンク空間T11に流入した液相冷媒の一部が第2最外殻プレート60に衝突し易いため、上記の「発明が解決しようとする課題」で述べたような複数の冷媒流路W1における流量のばらつきが生じ易い。そのため、本実施形態の熱交換器10の構造を採用することは有効である。
(7) As shown in FIG. 4, the first refrigerant tank space T11 and the refrigerant inflow portion 82 are disposed on the same axis m1, and have a cross-sectional shape of the first refrigerant tank space T11 orthogonal to the Z-axis direction. The position of the center of gravity coincides with the position of the center of gravity of the cross-sectional shape of the refrigerant inflow portion 82 orthogonal to the Z-axis direction. In the heat exchanger 10 having such a structure, a part of the liquid-phase refrigerant that has flowed into the first refrigerant tank space T11 from the refrigerant inflow portion 82 easily collides with the second outermost shell plate 60. However, the flow rate variations in the plurality of refrigerant flow paths W1 are likely to occur. Therefore, it is effective to adopt the structure of the heat exchanger 10 of this embodiment.
(第1変形例)
次に、第1実施形態の熱交換器10の第1変形例について説明する。
図6に示されるように、本変形例の熱交換器10では、第1冷媒タンク空間T11に複数の絞り部222が設けられている。このような構成によれば、第1冷媒タンク空間T11の中間付近に位置する冷媒流路W1に流入する液相冷媒の流量をより確実に増加させることができるため、複数の冷媒流路W1に分配される液相冷媒の流量分布の偏りをより確実に抑制することができる。 (First modification)
Next, the 1st modification of theheat exchanger 10 of 1st Embodiment is demonstrated.
As shown in FIG. 6, in theheat exchanger 10 of the present modification, a plurality of constricted portions 222 are provided in the first refrigerant tank space T11. According to such a configuration, the flow rate of the liquid-phase refrigerant flowing into the refrigerant flow path W1 located in the vicinity of the middle of the first refrigerant tank space T11 can be more reliably increased. It is possible to more reliably suppress the deviation in the flow rate distribution of the distributed liquid phase refrigerant.
次に、第1実施形態の熱交換器10の第1変形例について説明する。
図6に示されるように、本変形例の熱交換器10では、第1冷媒タンク空間T11に複数の絞り部222が設けられている。このような構成によれば、第1冷媒タンク空間T11の中間付近に位置する冷媒流路W1に流入する液相冷媒の流量をより確実に増加させることができるため、複数の冷媒流路W1に分配される液相冷媒の流量分布の偏りをより確実に抑制することができる。 (First modification)
Next, the 1st modification of the
As shown in FIG. 6, in the
また、第1冷媒タンク空間T11に複数の絞り部222を設ける場合、各絞り部222の流通孔222aの断面積を変化させてもよい。これにより、例えば絞り部222の流通孔222aを通過してZ2方向に流れる冷媒の流量と、絞り部222に衝突することでZ1方向に折り返すように流れる冷媒の流量とのバランスを取ることが可能である。
Further, when a plurality of throttle parts 222 are provided in the first refrigerant tank space T11, the cross-sectional area of the flow holes 222a of the throttle parts 222 may be changed. Thereby, for example, it is possible to balance the flow rate of the refrigerant flowing in the Z2 direction through the flow hole 222a of the throttle unit 222 and the flow rate of the refrigerant flowing in the Z1 direction by colliding with the throttle unit 222. It is.
例えば、図7に示される熱交換器10では、第1冷媒タンク空間T11に、冷媒流入部82の近くから順に絞り部222(1)~222(3)が設けられている。各絞り部222(1)~222(3)の流通孔222aの断面積S21~S23は「S21>S22>S23」の関係を有している。このような構成によれば、冷媒流入部82から第1冷媒タンク空間T11に流入して絞り部222(1)に到達した冷媒の多くが、絞り部222(1)に衝突することなく、その流通孔222aを通過して下流側へと流れる。これにより、絞り部222(1)よりも下流側に配置される冷媒流路W1に冷媒を的確に分配させることができる。
For example, in the heat exchanger 10 shown in FIG. 7, throttle portions 222 (1) to 222 (3) are provided in the first refrigerant tank space T11 in order from the vicinity of the refrigerant inflow portion 82. The cross-sectional areas S21 to S23 of the flow holes 222a of the narrowed portions 222 (1) to 222 (3) have a relationship of “S21> S22> S23”. According to such a configuration, most of the refrigerant that flows into the first refrigerant tank space T11 from the refrigerant inflow portion 82 and reaches the throttle portion 222 (1) does not collide with the throttle portion 222 (1). It flows downstream through the flow hole 222a. Thereby, a refrigerant | coolant can be appropriately distributed to the refrigerant | coolant flow path W1 arrange | positioned downstream from the throttle part 222 (1).
また、冷媒流入部82から第1冷媒タンク空間T11に流入する冷媒の流量が多い場合、冷媒流入部82から第1冷媒タンク空間T11に冷媒が噴流状に流入する可能性がある。このような場合には、冷媒の噴流の広がりに合わせて、各絞り部222(1)~222(3)の流通孔222aの断面積S21~S23を「S21<S22<S23」の関係となるように設定してもよい。このような構成によれば、冷媒流入部82から第1冷媒タンク空間T11に冷媒が噴流状に流入する場合に各冷媒流路W1における冷媒の分配性を向上させることができる。
In addition, when the flow rate of the refrigerant flowing from the refrigerant inflow portion 82 into the first refrigerant tank space T11 is large, the refrigerant may flow from the refrigerant inflow portion 82 into the first refrigerant tank space T11 in the form of a jet. In such a case, the cross-sectional areas S21 to S23 of the flow holes 222a of the throttle portions 222 (1) to 222 (3) are in a relationship of “S21 <S22 <S23” according to the spread of the jet of refrigerant. You may set as follows. According to such a configuration, when the refrigerant flows into the first refrigerant tank space T11 from the refrigerant inflow portion 82 in the form of a jet, the refrigerant distribution in each refrigerant flow path W1 can be improved.
このように、熱交換器10の構造に合わせて各絞り部222(1)~222(3)の流通孔222aの断面積S21~S23を適宜変化させれば、各冷媒流路W1における冷媒の分配性を向上させることができるため、結果として熱交換器10の熱交換性能を向上させることができる。
As described above, if the cross-sectional areas S21 to S23 of the flow holes 222a of the throttle portions 222 (1) to 222 (3) are appropriately changed in accordance with the structure of the heat exchanger 10, the refrigerant flow in each refrigerant flow path W1 is changed. Since the distribution can be improved, as a result, the heat exchange performance of the heat exchanger 10 can be improved.
(第2変形例)
次に、第1実施形態の熱交換器10の第2変形例について説明する。
図8に示されるように、本変形例の熱交換器10は、アウタープレート21における第1冷媒タンク空間T11に相当する部分に、Z軸方向に対して直交する方向に突出する突出部213が形成されている。同様に、インナープレート22における第1冷媒タンク空間T11に相当する部分には、Z軸方向に対して直交する方向に突出する突出部223が形成されている。アウタープレート21の突出部213におけるZ1方向の面213aは、インナープレート22の突出部223におけるZ2方向の面223aに対向している。これらのアウタープレート21の合わせ面213a、及びインナープレート22の合わせ面223aは、ろう付けにより接合されている。アウタープレート21の合わせ面213a、及びインナープレート22の合わせ面223aをそれぞれ貫通するように形成される貫通孔214,224により第1冷媒タンク空間T11が構成されている。 (Second modification)
Next, the 2nd modification of theheat exchanger 10 of 1st Embodiment is demonstrated.
As shown in FIG. 8, in theheat exchanger 10 of the present modification, a protrusion 213 that protrudes in a direction orthogonal to the Z-axis direction is formed in a portion corresponding to the first refrigerant tank space T11 in the outer plate 21. Is formed. Similarly, a protruding portion 223 that protrudes in a direction orthogonal to the Z-axis direction is formed in a portion corresponding to the first refrigerant tank space T11 in the inner plate 22. The Z1 direction surface 213a of the protrusion 213 of the outer plate 21 faces the Z2 direction surface 223a of the protrusion 223 of the inner plate 22. The mating surface 213a of the outer plate 21 and the mating surface 223a of the inner plate 22 are joined by brazing. A first refrigerant tank space T11 is configured by through holes 214 and 224 formed so as to penetrate the mating surface 213a of the outer plate 21 and the mating surface 223a of the inner plate 22, respectively.
次に、第1実施形態の熱交換器10の第2変形例について説明する。
図8に示されるように、本変形例の熱交換器10は、アウタープレート21における第1冷媒タンク空間T11に相当する部分に、Z軸方向に対して直交する方向に突出する突出部213が形成されている。同様に、インナープレート22における第1冷媒タンク空間T11に相当する部分には、Z軸方向に対して直交する方向に突出する突出部223が形成されている。アウタープレート21の突出部213におけるZ1方向の面213aは、インナープレート22の突出部223におけるZ2方向の面223aに対向している。これらのアウタープレート21の合わせ面213a、及びインナープレート22の合わせ面223aは、ろう付けにより接合されている。アウタープレート21の合わせ面213a、及びインナープレート22の合わせ面223aをそれぞれ貫通するように形成される貫通孔214,224により第1冷媒タンク空間T11が構成されている。 (Second modification)
Next, the 2nd modification of the
As shown in FIG. 8, in the
複数のインナープレート22のうち、少なくとも一つのインナープレート22には、Z軸方向に直交する第1冷媒タンク空間T11の断面積を部分的に狭くするように絞り部225が形成されている。
具体的には、Z軸方向に直交する第1冷媒タンク空間T11の断面積のうち、絞り部225を除く部分では、各プレート21,22の突出部213,223の先端部にあたる部分が最も狭くなっている。すなわち、Z方向に直交する第1冷媒タンク空間T11の断面積のうち、絞り部225を除く部分の断面積の最小値は、図8に示される「S1」である。これに対し、Z軸方向に直交する絞り部225の孔225aの断面積S2は、第1冷媒タンク空間T11の断面積の最小値S1よりも小さい。 Of the plurality ofinner plates 22, at least one inner plate 22 is formed with a throttle portion 225 so as to partially narrow the cross-sectional area of the first refrigerant tank space T11 orthogonal to the Z-axis direction.
Specifically, in the cross-sectional area of the first refrigerant tank space T11 orthogonal to the Z-axis direction, the portion corresponding to the tip portions of the protruding portions 213 and 223 of the plates 21 and 22 is the narrowest in the portion excluding the throttle portion 225. It has become. That is, of the cross-sectional area of the first refrigerant tank space T11 orthogonal to the Z direction, the minimum value of the cross-sectional area of the portion excluding the throttle portion 225 is “S1” shown in FIG. On the other hand, the cross-sectional area S2 of the hole 225a of the throttle portion 225 orthogonal to the Z-axis direction is smaller than the minimum value S1 of the cross-sectional area of the first refrigerant tank space T11.
具体的には、Z軸方向に直交する第1冷媒タンク空間T11の断面積のうち、絞り部225を除く部分では、各プレート21,22の突出部213,223の先端部にあたる部分が最も狭くなっている。すなわち、Z方向に直交する第1冷媒タンク空間T11の断面積のうち、絞り部225を除く部分の断面積の最小値は、図8に示される「S1」である。これに対し、Z軸方向に直交する絞り部225の孔225aの断面積S2は、第1冷媒タンク空間T11の断面積の最小値S1よりも小さい。 Of the plurality of
Specifically, in the cross-sectional area of the first refrigerant tank space T11 orthogonal to the Z-axis direction, the portion corresponding to the tip portions of the protruding
このような構成であっても、第1実施形態の熱交換器10と同一又は類似の作用及び効果を得ることが可能である。
なお、本変形例の熱交換器10では、インナープレート22の突出部223に絞り部225を形成する構成について例示したが、絞り部225はアウタープレート21の突出部213に形成されていても良い。また、絞り部225は、アウタープレート21の突出部213及びインナープレート22の突出部223の両方に形成されていてもよい。 Even with such a configuration, it is possible to obtain the same or similar actions and effects as those of theheat exchanger 10 of the first embodiment.
In addition, in theheat exchanger 10 of this modification, although illustrated about the structure which forms the expansion part 225 in the protrusion part 223 of the inner plate 22, the expansion part 225 may be formed in the protrusion part 213 of the outer plate 21. FIG. . Further, the narrowed portion 225 may be formed on both the protruding portion 213 of the outer plate 21 and the protruding portion 223 of the inner plate 22.
なお、本変形例の熱交換器10では、インナープレート22の突出部223に絞り部225を形成する構成について例示したが、絞り部225はアウタープレート21の突出部213に形成されていても良い。また、絞り部225は、アウタープレート21の突出部213及びインナープレート22の突出部223の両方に形成されていてもよい。 Even with such a configuration, it is possible to obtain the same or similar actions and effects as those of the
In addition, in the
<第2実施形態>
次に、熱交換器10の第2実施形態について説明する。
発明者らは、絞り部が設けられていない従来の熱交換器では、冷媒タンク空間の中央部付近に配置される冷媒流路を流れる冷媒の流量が他の部分と比較して少なくなり易いことを実験やシミュレーション等を通じて確認している。この実験やシミュレーション等の結果から、各冷媒流路における冷媒の分配性を考慮すると、冷媒タンク空間の中央部付近に絞り部を配置することが好ましい。以下、絞り部の好ましい配置に関して具体的に説明する。 Second Embodiment
Next, a second embodiment of theheat exchanger 10 will be described.
The inventors of the present invention have a conventional heat exchanger that is not provided with a throttle portion, and the flow rate of the refrigerant flowing through the refrigerant flow path disposed near the central portion of the refrigerant tank space is likely to be smaller than other portions. Have been confirmed through experiments and simulations. From the results of experiments, simulations, and the like, it is preferable to arrange the throttle portion near the center of the refrigerant tank space in consideration of the refrigerant distribution in each refrigerant flow path. Hereinafter, a preferable arrangement of the throttle part will be described in detail.
次に、熱交換器10の第2実施形態について説明する。
発明者らは、絞り部が設けられていない従来の熱交換器では、冷媒タンク空間の中央部付近に配置される冷媒流路を流れる冷媒の流量が他の部分と比較して少なくなり易いことを実験やシミュレーション等を通じて確認している。この実験やシミュレーション等の結果から、各冷媒流路における冷媒の分配性を考慮すると、冷媒タンク空間の中央部付近に絞り部を配置することが好ましい。以下、絞り部の好ましい配置に関して具体的に説明する。 Second Embodiment
Next, a second embodiment of the
The inventors of the present invention have a conventional heat exchanger that is not provided with a throttle portion, and the flow rate of the refrigerant flowing through the refrigerant flow path disposed near the central portion of the refrigerant tank space is likely to be smaller than other portions. Have been confirmed through experiments and simulations. From the results of experiments, simulations, and the like, it is preferable to arrange the throttle portion near the center of the refrigerant tank space in consideration of the refrigerant distribution in each refrigerant flow path. Hereinafter, a preferable arrangement of the throttle part will be described in detail.
発明者らは、図9に示される、絞り部が設けられていない熱交換器のモデルにおいて、冷媒流入部82から冷媒を流入させた際に、隣り合う冷媒流路W1,W1の間に設けられる冷却水流路を流れる冷却水の冷却度合いを計測した。その計測結果は、図9に示される棒グラフの通りである。棒グラフの横軸は、冷媒流入部82に最も近い冷却水流路から順に付された冷却水流路の段数を示している。具体的には、冷媒流入部82に最も近い冷却水流路から順に「1」~「14」までの数字が段数として付されている。棒グラフの縦軸は、各冷却水流路における冷却水の冷却度合いの平均値を「1」としたとき、その平均値に対する各冷却水流路における冷却度合いの比を示したものである。例えば冷却比が「1」を超えている冷却水流路は、平均よりも冷却水が冷え易い冷却水流路であることを意味する。逆に、冷却比が「1」未満の冷却水流路は、平均よりも冷却水が冷え難い冷却水流路であることを意味する。
In the model of the heat exchanger shown in FIG. 9 in which the throttle part is not provided, the inventors have provided between the adjacent refrigerant flow paths W1 and W1 when the refrigerant is introduced from the refrigerant inflow part 82. The cooling degree of the cooling water flowing through the cooling water flow path is measured. The measurement results are as shown in the bar graph shown in FIG. The horizontal axis of the bar graph indicates the number of stages of the cooling water flow paths sequentially attached from the cooling water flow path closest to the refrigerant inflow portion 82. Specifically, numbers from “1” to “14” are assigned as the number of steps in order from the cooling water flow path closest to the refrigerant inflow portion 82. The vertical axis of the bar graph indicates the ratio of the cooling degree in each cooling water flow channel to the average value when the average cooling water cooling value in each cooling water flow channel is “1”. For example, a cooling water passage having a cooling ratio exceeding “1” means that the cooling water passage is easier to cool than the average. Conversely, a cooling water channel having a cooling ratio of less than “1” means that the cooling water channel is more difficult to cool than average.
図9のグラフに示されるように、段数「6」~「13」の冷却水流路では、冷却比が「1」未満となっている。冷却比が「1」未満の冷却水流路では、隣接している冷媒流路W1を流れる冷媒の流量が少ないために、平均よりも冷却水が冷え難くなっていることが想定される。例えば段数「10」の冷却水流路では、それに隣接する冷媒流路W1d,W1eを流れる冷媒の流量が少ないと考えられる。このような冷媒流路における冷媒の流量を多くすることができれば、熱交換器10における冷媒の分配性を効率的に向上させることが可能である。具体的には、段数「6」~「13」の冷却水流路に対応する冷媒流路W1a~W1gの冷媒の流量を増やすことが冷媒の分配性を向上させる上で有効であると考えられる。
As shown in the graph of FIG. 9, the cooling ratio of the cooling water flow paths having the number of stages “6” to “13” is less than “1”. In the cooling water flow path having a cooling ratio of less than “1”, it is assumed that the cooling water is more difficult to cool than the average because the flow rate of the refrigerant flowing through the adjacent refrigerant flow path W1 is small. For example, in the cooling water flow path having the number of stages “10”, it is considered that the flow rate of the refrigerant flowing through the refrigerant flow paths W1d and W1e adjacent thereto is small. If the flow rate of the refrigerant in the refrigerant flow path can be increased, it is possible to efficiently improve the refrigerant distribution in the heat exchanger 10. Specifically, it is considered that increasing the refrigerant flow rate in the refrigerant flow paths W1a to W1g corresponding to the cooling water flow paths having the number of stages “6” to “13” is effective in improving the refrigerant distribution.
図10は、一例として、段数「10」の冷却水流路に対応する位置に絞り部222を設けた場合の各冷却水流路の冷却比を示したものである。図10に示されるように、絞り部222を設けた場合には、段数「10」の冷却水流路に隣接する冷媒流路W1d,W1eの冷媒の流量だけでなく、それ以外の冷媒流路W1a~W1c,W1f,W1gの冷媒の流量も増加することが確認できている。
FIG. 10 shows, as an example, the cooling ratio of each cooling water flow path when the throttle portion 222 is provided at a position corresponding to the cooling water flow path having the number of stages “10”. As shown in FIG. 10, when the throttle portion 222 is provided, not only the flow rate of the refrigerant in the refrigerant channels W1d and W1e adjacent to the cooling water channel having the number of stages “10”, but also other refrigerant channels W1a It has been confirmed that the flow rates of the refrigerants W1c, W1f, and W1g also increase.
以上の実験及びシミュレーション等の結果を基に、発明者らは、図9に示されるように、プレート積層方向Zにおける冷媒タンク空間T11の長さを「L」とし、プレート積層方向Zにおける冷媒タンク空間T11の冷媒流入部82からの位置を「x」とするとき、次式f1を満たす位置に絞り部222を形成すれば、熱交換器10における冷媒の分配性を向上させることが可能であるとの知見を得ている。
Based on the results of the above experiments and simulations, the inventors set the length of the refrigerant tank space T11 in the plate stacking direction Z to “L” and the refrigerant tank in the plate stacking direction Z as shown in FIG. When the position of the space T11 from the refrigerant inflow portion 82 is “x”, the distribution of the refrigerant in the heat exchanger 10 can be improved by forming the throttle portion 222 at a position that satisfies the following expression f1. And has gained knowledge.
0.37×L≦x≦0.85×L (f1)
以上説明した本実施形態のプレート積層型の熱交換器10によれば、以下の(8)に示される作用及び効果を得ることができる。
(8)熱交換器10には、上記の式f1を満たすように絞り部222が配置されている。このような構成によれば、各冷媒流路W1における冷媒の分配性を向上させることができるため、結果的に熱交換器10の熱交換性能を更に向上させることが可能である。 0.37 × L ≦ x ≦ 0.85 × L (f1)
According to the plate laminationtype heat exchanger 10 of this embodiment described above, the operation and effect shown in the following (8) can be obtained.
(8) Theheat exchanger 10 is provided with the throttle 222 so as to satisfy the above formula f1. According to such a configuration, the refrigerant distribution in each refrigerant flow path W1 can be improved, and as a result, the heat exchange performance of the heat exchanger 10 can be further improved.
以上説明した本実施形態のプレート積層型の熱交換器10によれば、以下の(8)に示される作用及び効果を得ることができる。
(8)熱交換器10には、上記の式f1を満たすように絞り部222が配置されている。このような構成によれば、各冷媒流路W1における冷媒の分配性を向上させることができるため、結果的に熱交換器10の熱交換性能を更に向上させることが可能である。 0.37 × L ≦ x ≦ 0.85 × L (f1)
According to the plate lamination
(8) The
<他の実施形態>
なお、各実施形態は、以下の形態にて実施することもできる。
・絞り部222は、プレート部材20とは別体の部品により構成されていてもよい。例えば図11に示されるように、プレート部材20とは別体の部材23に絞り部222を形成するとともに、この部材23をバーリング加工孔220の内面にろう付け等により接合してもよい。 <Other embodiments>
In addition, each embodiment can also be implemented with the following forms.
Thethrottle unit 222 may be configured by a component separate from the plate member 20. For example, as shown in FIG. 11, the narrowed portion 222 may be formed on a member 23 separate from the plate member 20, and the member 23 may be joined to the inner surface of the burring hole 220 by brazing or the like.
なお、各実施形態は、以下の形態にて実施することもできる。
・絞り部222は、プレート部材20とは別体の部品により構成されていてもよい。例えば図11に示されるように、プレート部材20とは別体の部材23に絞り部222を形成するとともに、この部材23をバーリング加工孔220の内面にろう付け等により接合してもよい。 <Other embodiments>
In addition, each embodiment can also be implemented with the following forms.
The
・熱交換器10の上面に、冷媒流出部80、冷却水流入部81、冷媒流入部82、及び冷却水流出部83の全てが設けられていてもよい。あるいは、熱交換器10の底面に、冷媒流出部80、冷却水流入部81、冷媒流入部82、及び冷却水流出部83の全てが設けられていてもよい。
The refrigerant outflow part 80, the cooling water inflow part 81, the refrigerant inflow part 82, and the cooling water outflow part 83 may all be provided on the upper surface of the heat exchanger 10. Alternatively, all of the refrigerant outflow portion 80, the cooling water inflow portion 81, the refrigerant inflow portion 82, and the cooling water outflow portion 83 may be provided on the bottom surface of the heat exchanger 10.
・熱交換器10において熱交換に用いられる2種類の流体は、蓄電池を冷却するための冷却水、及び冷却水を冷却するための冷媒に限らず、高温の水及び低温の冷媒等、任意の2種類の流体を用いることが可能である。
・各実施形態の熱交換器10は、任意の熱交換システムに用いることが可能である。例えば、各実施形態の熱交換器10は、ヒートポンプシステムにおいて、電池やモータジェネレータ、インバータ、基板等を冷却するための冷却水を、冷却水と比較して低温の冷媒を用いて冷却する熱交換器として用いることが可能である。熱交換器が用いられるヒートポンプシステムは、熱交換器で回収された電池等の排熱を水冷コンデンサやヒータコアを通じて車室内の暖房に用いるシステムであっても良いし、上記の排熱を室外機から外気に放熱するシステムであってもよい。 -The two types of fluids used for heat exchange in theheat exchanger 10 are not limited to cooling water for cooling the storage battery and refrigerant for cooling the cooling water, but may be any one of hot water and low-temperature refrigerant, etc. Two types of fluids can be used.
-Theheat exchanger 10 of each embodiment can be used for arbitrary heat exchange systems. For example, the heat exchanger 10 of each embodiment is a heat exchange system that cools cooling water for cooling a battery, a motor generator, an inverter, a substrate, and the like using a refrigerant having a temperature lower than that of the cooling water in the heat pump system. It can be used as a container. The heat pump system in which the heat exchanger is used may be a system that uses the exhaust heat of the battery or the like recovered by the heat exchanger for heating the interior of the vehicle through a water-cooled condenser or a heater core. It may be a system that radiates heat to the outside air.
・各実施形態の熱交換器10は、任意の熱交換システムに用いることが可能である。例えば、各実施形態の熱交換器10は、ヒートポンプシステムにおいて、電池やモータジェネレータ、インバータ、基板等を冷却するための冷却水を、冷却水と比較して低温の冷媒を用いて冷却する熱交換器として用いることが可能である。熱交換器が用いられるヒートポンプシステムは、熱交換器で回収された電池等の排熱を水冷コンデンサやヒータコアを通じて車室内の暖房に用いるシステムであっても良いし、上記の排熱を室外機から外気に放熱するシステムであってもよい。 -The two types of fluids used for heat exchange in the
-The
・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
・ This disclosure is not limited to the above specific examples. Any of the above specific examples that are appropriately modified by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above, and the arrangement, conditions, shape, and the like thereof are not limited to those illustrated, and can be appropriately changed. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.
Claims (11)
- 隙間を有して積層配置される複数のプレート部材(20)により構成される熱交換部(HU)を有するとともに、複数の前記プレート部材の間に冷媒の流れる複数の第1流路(W1)、及び所定の流体の流れる複数の第2流路(W2)が形成され、前記第1流路及び前記第2流路をそれぞれ流れる前記冷媒と前記所定の流体との間で熱交換が行われるプレート積層型の熱交換器(10)であって、
複数の前記プレート部材が積層配置されている方向をプレート積層方向とするとき、
前記熱交換部は、
前記プレート積層方向に延びるように形成され、複数の前記第1流路に連通されるとともに、流入部(82)から流入する気相及び液相の2相状態からなる前記冷媒を複数の前記第1流路に分配するタンク空間(T11)と、
前記プレート積層方向に直交する方向における前記タンク空間の断面積を部分的に小さくする絞り部(222,225)と、を有する
プレート積層型の熱交換器。 A plurality of first flow paths (W1) having a heat exchanging portion (HU) composed of a plurality of plate members (20) arranged in a stack with gaps, and in which a refrigerant flows between the plurality of plate members. And a plurality of second flow paths (W2) through which a predetermined fluid flows, and heat exchange is performed between the refrigerant flowing through the first flow path and the second flow path and the predetermined fluid, respectively. A plate stacked heat exchanger (10),
When a direction in which a plurality of the plate members are stacked is a plate stacking direction,
The heat exchange part is
The refrigerant is formed so as to extend in the plate stacking direction, communicates with the plurality of first flow paths, and includes the refrigerant composed of a two-phase state of a gas phase and a liquid phase flowing in from the inflow portion (82). Tank space (T11) distributed to one flow path;
A plate stacking type heat exchanger comprising: throttle portions (222, 225) that partially reduce a cross-sectional area of the tank space in a direction orthogonal to the plate stacking direction. - 前記プレート積層方向における前記タンク空間の長さが、110mm以下に設定されている
請求項1に記載のプレート積層型の熱交換器。 The plate stacking type heat exchanger according to claim 1, wherein a length of the tank space in the plate stacking direction is set to 110 mm or less. - 前記流入部から前記タンク空間に流入する前記冷媒の流れ方向が、前記タンク空間の延びる方向に平行である
請求項1又は2に記載のプレート積層型の熱交換器。 The plate stacking type heat exchanger according to claim 1 or 2, wherein a flow direction of the refrigerant flowing into the tank space from the inflow portion is parallel to a direction in which the tank space extends. - 複数の前記プレート部材には、前記プレート積層方向に貫通するようにバーリング加工孔(220)がそれぞれ形成されるとともに、
前記タンク空間は、複数の前記プレート部材のそれぞれの前記バーリング加工孔を連通させることにより構成され、
前記プレート積層方向に直交する前記絞り部の断面積は、前記プレート積層方向に直交する前記タンク空間の断面積のうち、前記絞り部を除く部分の断面積の最小値よりも小さい
請求項1~3のいずれか一項に記載のプレート積層型の熱交換器。 Burring holes (220) are respectively formed in the plurality of plate members so as to penetrate in the plate stacking direction,
The tank space is configured by communicating the burring holes of each of the plurality of plate members,
The cross-sectional area of the throttle portion orthogonal to the plate stacking direction is smaller than the minimum value of the cross-sectional area of the portion excluding the throttle portion of the cross-sectional area of the tank space orthogonal to the plate stacking direction. 4. The plate-stacked heat exchanger according to claim 3. - 前記タンク空間は、隣り合う前記プレート部材の合わせ面(213a,223a)を貫通するように形成される貫通孔により構成され、
前記プレート積層方向に直交する前記絞り部の断面積は、前記プレート積層方向に直交する前記タンク空間の断面積のうち、前記絞り部を除く部分の断面積の最小値よりも小さい
請求項1~3のいずれか一項に記載のプレート積層型の熱交換器。 The tank space is constituted by a through hole formed so as to penetrate the mating surfaces (213a, 223a) of the adjacent plate members,
The cross-sectional area of the throttle portion orthogonal to the plate stacking direction is smaller than the minimum value of the cross-sectional area of the portion excluding the throttle portion of the cross-sectional area of the tank space orthogonal to the plate stacking direction. 4. The plate-stacked heat exchanger according to claim 3. - 前記絞り部は、前記タンク空間に一つだけ設けられている
請求項1~5のいずれか一項に記載のプレート積層型の熱交換器。 The plate-stacked heat exchanger according to any one of claims 1 to 5, wherein only one throttle part is provided in the tank space. - 前記絞り部は、前記タンク空間に複数設けられている
請求項1~5のいずれか一項に記載のプレート積層型の熱交換器。 The plate-stacked heat exchanger according to any one of claims 1 to 5, wherein a plurality of the throttle portions are provided in the tank space. - 前記絞り部は、前記プレート部材に一体的に形成されている
請求項1~7のいずれか一項に記載のプレート積層型の熱交換器。 The plate stacked heat exchanger according to any one of claims 1 to 7, wherein the throttle portion is formed integrally with the plate member. - 前記プレート積層方向に直交する前記タンク空間の断面形状の重心の位置と、前記プレート積層方向に直交する前記流入部の断面形状の重心の位置とが一致している
請求項1~8のいずれか一項に記載のプレート積層型の熱交換器。 The position of the center of gravity of the cross-sectional shape of the tank space orthogonal to the plate stacking direction and the position of the center of gravity of the cross-sectional shape of the inflow portion orthogonal to the plate stacking direction coincide with each other. The plate stacked heat exchanger according to one item. - 前記所定の流体として、前記冷媒よりも温度の高い流体が用いられている
請求項1~9のいずれか一項に記載のプレート積層型の熱交換器。 The plate stacked heat exchanger according to any one of claims 1 to 9, wherein a fluid having a temperature higher than that of the refrigerant is used as the predetermined fluid. - 前記プレート積層方向における前記タンク空間の長さをLとし、前記プレート積層方向における前記タンク空間の前記流入部からの位置をxとするとき、次式
0.37×L≦x≦0.85×L
を満たす位置xに前記絞り部が配置されている
請求項1~10のいずれか一項に記載の熱交換器。 When the length of the tank space in the plate stacking direction is L, and the position of the tank space from the inflow portion in the plate stacking direction is x, the following expression 0.37 × L ≦ x ≦ 0.85 × L
The heat exchanger according to any one of claims 1 to 10, wherein the throttle portion is disposed at a position x that satisfies the following conditions.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-092480 | 2018-05-11 | ||
JP2018092480 | 2018-05-11 | ||
JP2019-079353 | 2019-04-18 | ||
JP2019079353A JP2019200039A (en) | 2018-05-11 | 2019-04-18 | Plate lamination type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019216183A1 true WO2019216183A1 (en) | 2019-11-14 |
Family
ID=68466769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017067 WO2019216183A1 (en) | 2018-05-11 | 2019-04-22 | Laminated plate type heat exchanger |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019216183A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001221589A (en) * | 2000-01-08 | 2001-08-17 | Halla Aircon Co Ltd | Laminated heat exchanger plate with improved heat exchanging performance and heat exchanger using it |
JP2001221535A (en) * | 2000-02-08 | 2001-08-17 | Denso Corp | Refrigerant evaporator |
US20090074627A1 (en) * | 2003-10-27 | 2009-03-19 | Velocys Inc. | Manifold designs, and flow control in mulitchannel microchannel devices |
WO2012176336A1 (en) * | 2011-06-24 | 2012-12-27 | 三菱電機株式会社 | Plate heater and refrigeration cycle device |
US20180100706A1 (en) * | 2016-10-11 | 2018-04-12 | Climate Master, Inc. | Enhanced heat exchanger |
-
2019
- 2019-04-22 WO PCT/JP2019/017067 patent/WO2019216183A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001221589A (en) * | 2000-01-08 | 2001-08-17 | Halla Aircon Co Ltd | Laminated heat exchanger plate with improved heat exchanging performance and heat exchanger using it |
JP2001221535A (en) * | 2000-02-08 | 2001-08-17 | Denso Corp | Refrigerant evaporator |
US20090074627A1 (en) * | 2003-10-27 | 2009-03-19 | Velocys Inc. | Manifold designs, and flow control in mulitchannel microchannel devices |
WO2012176336A1 (en) * | 2011-06-24 | 2012-12-27 | 三菱電機株式会社 | Plate heater and refrigeration cycle device |
US20180100706A1 (en) * | 2016-10-11 | 2018-04-12 | Climate Master, Inc. | Enhanced heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6491092B2 (en) | Heat exchanger | |
JP7480487B2 (en) | Heat exchanger | |
US7293604B2 (en) | Heat exchanger | |
US6814135B2 (en) | Stacked-type evaporator | |
JP6554182B2 (en) | Heat exchanger having a plurality of stacked plates | |
JP2019020108A (en) | Heat exchanger | |
JP2019200039A (en) | Plate lamination type heat exchanger | |
US12007183B2 (en) | Heat exchanger | |
WO2019216183A1 (en) | Laminated plate type heat exchanger | |
WO2017195588A1 (en) | Stack type heat exchanger | |
JP6306901B2 (en) | Plate heat exchanger | |
JP2008106969A (en) | Plate type heat exchanger | |
WO2020110639A1 (en) | Heat exchanger | |
JP2018074121A (en) | Laminated heat exchanger | |
WO2018123334A1 (en) | Intercooler | |
US20240200877A1 (en) | Heat exchanger plate, heat exchanger plate laminate, and microchannel heat exchanger | |
WO2022215415A1 (en) | Heat exchanger | |
WO2021039302A1 (en) | Heat exchanger | |
JP2941768B1 (en) | Stacked heat exchanger | |
JP7047577B2 (en) | Heat exchanger | |
WO2020100687A1 (en) | Heat exchanger | |
WO2020149107A1 (en) | Heat exchanger | |
JP6327386B2 (en) | Cold storage heat exchanger | |
JP2006207377A (en) | Integration type heat exchanger | |
WO2018092608A1 (en) | Laminated heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19800481 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19800481 Country of ref document: EP Kind code of ref document: A1 |