WO2021037991A1 - Electrochemical energy storage device - Google Patents

Electrochemical energy storage device Download PDF

Info

Publication number
WO2021037991A1
WO2021037991A1 PCT/EP2020/073992 EP2020073992W WO2021037991A1 WO 2021037991 A1 WO2021037991 A1 WO 2021037991A1 EP 2020073992 W EP2020073992 W EP 2020073992W WO 2021037991 A1 WO2021037991 A1 WO 2021037991A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
electrochemical cell
tube
electrolyte
electrochemical
Prior art date
Application number
PCT/EP2020/073992
Other languages
German (de)
French (fr)
Inventor
Cord-Heinrich Dustmann
Michael Bayer
Original Assignee
Battery Consult Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battery Consult Ag filed Critical Battery Consult Ag
Priority to EP20767486.2A priority Critical patent/EP4022699A1/en
Priority to BR112022003552A priority patent/BR112022003552A2/en
Priority to AU2020338256A priority patent/AU2020338256A1/en
Publication of WO2021037991A1 publication Critical patent/WO2021037991A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3954Sodium-sulfur cells containing additives or special arrangement in the sulfur compartment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3963Sealing means between the solid electrolyte and holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical cell for reversible storage of electrical energy using the redox reaction
  • EP 2 541 646 A1 describes a current version of the electrochemical cell here with an electrolyte in the shape of a clover leaf, a complex shim structure that includes the electrolyte, and an anode space for liquid sodium between the ceramic electrolyte and the housing.
  • US 2017/0104244 A1 describes an electrochemical cell of the same type.
  • the current conductor for the positive electrode is arranged centrally and surrounded by the cathode mass.
  • the amount of cathode mass and thus the cell capacity is limited by the size of the ceramic electrolyte and reduced by the volume of the current arrester.
  • WO 94/23467 A2 describes the active components of this type of electrochemical cell.
  • the US 4,722,875 A discloses an electrochemical cell which is based on the known redox system and has an impregnated mixture which has a Forms cathode of the electrochemical cell and is separated from an alkali metal anode by an electrolyte separator in the solid state.
  • NaS battery cells also use a ceramic that is conductive for Na t ions and that with this cell type the negative electrode is arranged inside the ceramic tube and the sulfur electrode is arranged outside the ceramic tube.
  • the reasons for this arrangement are the need for a sodium safety cartridge, which can only be arranged within the ceramic tube, on the one hand, and the installation of the sulfur cathode in the form of preformed shells on the other.
  • the object of the invention is in particular to provide a device for storing large amounts of electrical energy using the above mentioned redox reaction, which has a capacity of 200 Ah to over 300 Ah and at the same time allows a complete discharge in less than or equal to 10 hours .
  • the invention relates to an electrochemical energy storage device, in particular an electrochemical cell, based on the redox Na / MCL, with a Na t ionically conductive ceramic electrolyte and a salt as FLÜS sigen electrolyte, a cathode space outside an electrolyte tube and an anode space within an electrolyte tube is arranged.
  • the electrochemical energy storage device in particular the electrochemical cell, comprises a cell housing which has a hemispherical cell base. This shape of the cell housing advantageously contributes to enabling the electrochemical energy storage device, in particular the electrochemical cell, to have a large capacity.
  • the ceramic electrolyte is the most expensive component of the cell. By arranging the cathode outside the electrolyte tube, significantly more active material can be accommodated relative to the tube, which reduces the costs related to the energy content.
  • the ratio of the volume of the active cathode mass to the volume of the active anode mass is roughly 2 to 1, which is why it is actually unfavorable to arrange the cathode in the limited interior of the electrolyte tube, because this only allows cells with a relatively low capacity to be produced. It is therefore the task of this invention to enable significantly larger capacities when using the same electrochemical system.
  • the active material of the cathode in the form of granules is poured into the cathode compartment and then vacuum-impregnated with a molten salt as a liquid electrolyte.
  • the cathode space is tubular with a closed end, which is why the filling process and the impregnation process can only take place from the upper end. Because of the frequent formation of bubbles when the granulate meets the liquid salt, the impregnation process is considerably hindered. This disadvantage of the known solution is also intended to be eliminated according to the invention.
  • FIG. 1 shows a cross section through a cell 10 according to the invention. It comprises a cathode space 11 arranged outside the ceramic electrolyte 12, an anode space 13 located inside the ceramic electrolyte 12 and a shim tube 14 which has a capillary gap 15 to the ceramic electrolyte forms.
  • the shim tube extends from the beginning of the cylindrical part of the ceramic electrolyte tube 16 to the top, where it narrows to a smaller diameter 14. As a result, the capillary gap widens and the sodium can no longer rise higher.
  • the anode space 13 of a more or less charged cell is filled to a greater or lesser extent with liquid sodium.
  • the shim tube 14 is intimately connected to the cell cover 18, for example by friction welding.
  • the cell cover also serves as the negative pole of the cell.
  • the cell housing 19 is made of a metal whose electrical potential must not be lower than that of nickel.
  • a ring cover 20 closes the cell housing.
  • In the ring lid there is an opening 21 into which the active material is filled in the form of dry granules.
  • a second opening 22 which is used for vacuum impregnation of the active material. After completion of the filling and impregnation process, both openings 21, 22 are metically closed.
  • the cell bottom 23 is hemispherical, whereby this part of the cell also contributes to the capacity.
  • Support ring made of non-ion-conductive ceramic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The invention proceeds from an electrochemical energy storage device, in particular an electrochemical cell (10), based on the redox system Na/MCl2 comprising a ceramic electrolyte (12) that conducts Na+ ions and a salt as liquid electrolyte, wherein a cathode space (11) is arranged outside an electrolyte tube and an anode space (13) is arranged within an electrolyte tube. The invention proposes that the electrochemical energy storage device, in particular the electrochemical cell, comprises a cell housing (19) which has a semi-spherical cell bottom (23).

Description

Elektrochemische Energiespeichervorrichtung Electrochemical energy storage device
Stand der Technik State of the art
Die vorliegende Erfindung betrifft eine elektrochemische Zelle zur reversiblen Spei cherung elektrischer Energie unter Verwendung der Redoxreaktion The present invention relates to an electrochemical cell for reversible storage of electrical energy using the redox reaction
2 NaCI + M <- MCI2 + 2 Na mit M als eines der Übergangsmetalle wie beispielsweise Nickel oder Eisen in Ver bindung mit einem keramischen Elektrolyt aus ß"- Alumina. Dieser Elektrolyt ist im Allgemeinen rohrförmig mit einem geschlossenen Ende. Diese Zellen haben eine Leerlaufspannung von 2,58 V und nach dem Stand der Technik eine Kapazität im Bereich von 20 Ah bis zu etwas über 100 Ah. Diese Kapazität ist vom Innenvolumen des Elektrolyten bestimmt und die Leistung von seiner Oberfläche. Damit wird das Verhältnis von Leistung zu Energie bei grossen Rohrdurchmessern proportional zu 1/r immer kleiner. 2 NaCl + M <- MCI2 + 2 Na with M as one of the transition metals such as nickel or iron in conjunction with a ceramic electrolyte made of β "- alumina. This electrolyte is generally tubular with one closed end. These cells have an open circuit voltage of 2.58 V and, according to the state of the art, a capacity in the range from 20 Ah to a little over 100 Ah. This capacity is determined by the internal volume of the electrolyte and the power by its surface Pipe diameters proportional to 1 / r always smaller.
Die EP 2 541 646 A1 beschreibt eine aktuelle Ausführung der elektrochemischen Zelle hier mit einem kleeblattförmig geformten Elektrolyten, einer komplexen Shim- Struktur, die den Elektrolyten umfasst, und einem Anodenraum für flüssiges Natrium zwischen dem keramischen Elektrolyten und dem Gehäuse. EP 2 541 646 A1 describes a current version of the electrochemical cell here with an electrolyte in the shape of a clover leaf, a complex shim structure that includes the electrolyte, and an anode space for liquid sodium between the ceramic electrolyte and the housing.
Die US 2017/0104244 A1 beschreibt eine elektrochemische Zelle gleichen Typs. Der Stromableiter für die positive Elektrode ist zentral angeordnet und von der Kathoden masse umgeben. Die Menge der Kathodenmasse und damit die Zellkapazität ist durch die Grösse des keramischen Elektrolyten begrenzt und um das Volumen des Stromableiters reduziert. US 2017/0104244 A1 describes an electrochemical cell of the same type. The current conductor for the positive electrode is arranged centrally and surrounded by the cathode mass. The amount of cathode mass and thus the cell capacity is limited by the size of the ceramic electrolyte and reduced by the volume of the current arrester.
Die WO 94/23467 A2 beschreibt die aktiven Komponenten dieses Typs einer elektro chemischen Zelle. WO 94/23467 A2 describes the active components of this type of electrochemical cell.
Die US 4,722,875 A offenbart eine elektrochemische Zelle, welche auf dem bekann ten Redoxsystem basiert und eine imprägnierte Mischung aufweist, welche eine Kathode der elektrochemischen Zelle bildet und von einer Alkalimetallanode durch einen Elektrolytseparator in festem Aggregatzustand getrennt ist. The US 4,722,875 A discloses an electrochemical cell which is based on the known redox system and has an impregnated mixture which has a Forms cathode of the electrochemical cell and is separated from an alkali metal anode by an electrolyte separator in the solid state.
Die GB 2 182 194 A und die US 3,966,492 A offenbaren ebenfalls bereits elektroche mische Zellen. GB 2 182 194 A and US 3,966,492 A also already disclose electrochemical cells.
Aus der Veröffentlichung T. Oshima, M. Kajita, A. Okuno, Development of Sodium- Sulfur Batteries, Int. J. Appl. Ceram. Technol., 1 [3] 269-76 (2004) ist bekannt, dass NaS Batteriezellen auch eine für Nationen leitfähige Keramik verwenden und dass bei diesem Zelltyp die negative Elektrode im Inneren des Keramikrohres und die Schwefelelektrode ausserhalb des Keramikrohres angeordnet sind. Die Gründe für diese Anordnung sind die Notwendigkeit einer Natriumsicherheitskartusche, die nur innerhalb des Keramikrohres angeordnet werden kann, einerseits und der Einbau der Schwefelkathode in Form von vorgeformten Schalen andererseits. Diese Unter schiede machten es für das System NaNiCl2 nicht naheliegend, die Kathode nach ausserhalb des Karamikelektrolyten anzuordnen, weil dies mit einer Reduktion der Leistung verbunden wäre. Im Ergebnis werden Zellen mit hoher Leistungsanforde rung mit innen liegender Kathode und Zellen mit hoher Energieanforderung mit aus sen liegender Kathode ausgeführt. From the publication T. Oshima, M. Kajita, A. Okuno, Development of Sodium-Sulfur Batteries, Int. J. Appl. Ceram. Technol., 1 [3] 269-76 (2004) it is known that NaS battery cells also use a ceramic that is conductive for Na t ions and that with this cell type the negative electrode is arranged inside the ceramic tube and the sulfur electrode is arranged outside the ceramic tube. The reasons for this arrangement are the need for a sodium safety cartridge, which can only be arranged within the ceramic tube, on the one hand, and the installation of the sulfur cathode in the form of preformed shells on the other. These differences made it not obvious for the NaNiCl2 system to position the cathode outside of the caramel electrolyte, because this would result in a reduction in output. As a result, cells with high performance requirements are designed with an internal cathode and cells with high energy requirements with an external cathode.
Die Aufgabe der Erfindung besteht insbesondere darin, eine Vorrichtung zur Spei cherung grosser Mengen elektrischer Energie unter Verwendung der oben genann ten Redoxreaktion bereitzustellen, die eine Kapazität von 200 Ah bis über 300 Ah hat und gleichzeitig eine vollständige Entladung in weniger oder gleich 10 Stunden er möglicht. The object of the invention is in particular to provide a device for storing large amounts of electrical energy using the above mentioned redox reaction, which has a capacity of 200 Ah to over 300 Ah and at the same time allows a complete discharge in less than or equal to 10 hours .
Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 ge löst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können. The object is achieved according to the invention by the features of claim 1, while advantageous embodiments and developments of the invention can be found in the subclaims.
Vorteile der Erfindung Advantages of the invention
Die Erfindung geht aus von einer elektrochemischen Energiespeichervorrichtung, insbesondere einer elektrochemischen Zelle, , basierend auf dem Redoxsystem Na/MCL, mit einem Nationen leitenden Keramikelektrolyten und einem Salz als flüs sigen Elektrolyten, wobei ein Kathodenraum ausserhalb eines Elektrolytrohres und ein Anodenraum innerhalb eines Elektrolytrohres angeordnet ist. Es wird vorgeschlagen, dass die elektrochemische Energiespeichervorrichtung, ins besondere die elektrochemische Zelle, ein Zellgehäuse umfasst, das einen halbku gelförmigen Zellboden aufweist. Diese Form des Zellgehäuses trägt vorteilhaft zur Ermöglichung einer großen Kapazität der elektrochemischen Energiespeichervorrich tung, insbesondere der elektrochemischen Zelle, bei. The invention relates to an electrochemical energy storage device, in particular an electrochemical cell, based on the redox Na / MCL, with a Na t ionically conductive ceramic electrolyte and a salt as FLÜS sigen electrolyte, a cathode space outside an electrolyte tube and an anode space within an electrolyte tube is arranged. It is proposed that the electrochemical energy storage device, in particular the electrochemical cell, comprises a cell housing which has a hemispherical cell base. This shape of the cell housing advantageously contributes to enabling the electrochemical energy storage device, in particular the electrochemical cell, to have a large capacity.
Der keramische Elektrolyt ist die kostenintensivste Komponente der Zelle. Durch die Anordnung der Kathode ausserhalb des Elektrolytrohres kann bezogen auf das Rohr wesentlich mehr Aktivmasse untergebracht werden, wodurch sich die auf den Ener gieinhalt bezogenen Kosten reduzieren. The ceramic electrolyte is the most expensive component of the cell. By arranging the cathode outside the electrolyte tube, significantly more active material can be accommodated relative to the tube, which reduces the costs related to the energy content.
Der Prozess des Vakuumimprägnierens der Aktivmasse mit Flüssigsalz als Flüssige lektrolyt wird durch eine zweite Öffnung unten am Zellgehäuse sehr erleichtert, denn dadurch kann Gas oben austreten, während die Flüssigkeit unten nachströmt. The process of vacuum impregnation of the active material with liquid salt as liquid electrolyte is made much easier by a second opening at the bottom of the cell housing, because this allows gas to escape from the top while the liquid flows in from below.
Das Volumen der aktiven Kathodenmasse verhält sich zum Volumen der aktiven Anodenmasse etwa wie 2 zu 1 , weshalb es eigentlich ungünstig ist, die Kathode im begrenzten Innenraum des Elektrolytrohres anzuordnen, denn dadurch lassen sich nur Zellen mit verhältnismässig geringer Kapazität hersteilen. Es ist daher die Auf gabe dieser Erfindung, wesentlich grössere Kapazitäten bei Verwendung des glei chen elektrochemischen Systems zu ermöglichen. The ratio of the volume of the active cathode mass to the volume of the active anode mass is roughly 2 to 1, which is why it is actually unfavorable to arrange the cathode in the limited interior of the electrolyte tube, because this only allows cells with a relatively low capacity to be produced. It is therefore the task of this invention to enable significantly larger capacities when using the same electrochemical system.
Bei der Fierstellung einer Zelle wird die Aktivmasse der Kathode in Form von Granu lat in den Kathodenraum eingefüllt und anschliessend mit einer Salzschmelze als flüssigem Elektrolyt vakuumimprägniert. Der Kathodenraum ist rohrförmig mit einem geschlossenen Ende, weshalb der Füllprozess und der Imprägnierprozess nur vom oberen Ende her erfolgen kann. Wegen häufig auftretender Blasenbildung beim Zu sammentreffen des Granulates mit dem flüssigen Salz wird der Imprägnierprozess erheblich behindert. Auch dieser Nachteil der bekannten Lösung soll erfindungsge- mäss beseitigt werden. When a cell is set up, the active material of the cathode in the form of granules is poured into the cathode compartment and then vacuum-impregnated with a molten salt as a liquid electrolyte. The cathode space is tubular with a closed end, which is why the filling process and the impregnation process can only take place from the upper end. Because of the frequent formation of bubbles when the granulate meets the liquid salt, the impregnation process is considerably hindered. This disadvantage of the known solution is also intended to be eliminated according to the invention.
Zeichnungen drawings
Figur 1 zeigt einen Querschnitt durch eine erfindungsgemässe Zelle 10. Sie umfasst einen ausserhalb des keramischen Elektrolyten 12 angeordneten Kathodenraum 11 , einen innerhalb des keramischen Elektrolyten 12 gelegenen Anodenraum 13 sowie ein Shim-Rohr 14, welches zum keramischen Elektrolyten einen Kapillarspalt 15 bildet. Das Shim-Rohr reicht vom Beginn des zylindrischen Teiles des keramischen Elektrolytrohres 16 bis nach oben, wo es sich auf einen kleineren Durchmesser ver engt 14. Dadurch weitet sich der Kapillarspalt auf und das Natrium kann nicht mehr höher steigen. Der Anodenraum 13 einer mehr oder weniger geladenen Zelle ist mehr oder weniger hoch mit flüssigem Natrium gefüllt. Dieses Natrium steigt im Ka pillarspalt bis zur Durchmesserverengung des Shim-Rohres, so dass die Glasdich tung 16 zwischen dem Elektrolytrohr und dem keramischen Stützring 17 nicht von flüssigem Natrium benetzt wird, was verlängernd für die Lebensdauer der Dichtung wirkt. Das Shim-Rohr 14 ist beispielsweise durch Reibschweissen mit dem Zelldeckel 18 innig verbunden. Der Zelldeckel dient gleichzeitig als Minuspol der Zelle. Das Zell gehäuse 19 ist aus einem Metall hergestellt, dessen elektrisches Potential nicht ge ringer sein darf als das von Nickel. Ein Ringdeckel 20 verschliesst das Zellgehäuse. Im Ringdeckel befindet sich eine Öffnung 21 , in die die Aktivmasse in Form eines Trockengranulates eingefüllt wird. Am runden Ende des Zellgehäuses befindet sich eine zweite Öffnung 22, die zum Vakuumimprägnieren der Aktivmasse dient. Nach Abschluss des Füll- und Imprägnierprozesses werden beide Öffnungen 21 , 22 her metisch verschlossen. Der Zellboden 23 ist halbkugelförmig ausgeführt, wodurch auch dieser Teil der Zelle zur Kapazität beiträgt. FIG. 1 shows a cross section through a cell 10 according to the invention. It comprises a cathode space 11 arranged outside the ceramic electrolyte 12, an anode space 13 located inside the ceramic electrolyte 12 and a shim tube 14 which has a capillary gap 15 to the ceramic electrolyte forms. The shim tube extends from the beginning of the cylindrical part of the ceramic electrolyte tube 16 to the top, where it narrows to a smaller diameter 14. As a result, the capillary gap widens and the sodium can no longer rise higher. The anode space 13 of a more or less charged cell is filled to a greater or lesser extent with liquid sodium. This sodium rises in the Ka pillarspalt up to the narrowing of the diameter of the shim tube, so that the glass seal device 16 between the electrolyte tube and the ceramic support ring 17 is not wetted by liquid sodium, which extends the life of the seal. The shim tube 14 is intimately connected to the cell cover 18, for example by friction welding. The cell cover also serves as the negative pole of the cell. The cell housing 19 is made of a metal whose electrical potential must not be lower than that of nickel. A ring cover 20 closes the cell housing. In the ring lid there is an opening 21 into which the active material is filled in the form of dry granules. At the round end of the cell housing there is a second opening 22 which is used for vacuum impregnation of the active material. After completion of the filling and impregnation process, both openings 21, 22 are metically closed. The cell bottom 23 is hemispherical, whereby this part of the cell also contributes to the capacity.
Bezugszeichen Reference number
10 Elektrochemische Zelle 10 Electrochemical cell
11 Kathodenraum 11 cathode compartment
12 Keramikelektrolyt 12 ceramic electrolyte
13 Anodenraum 13 anode compartment
14 Shim-Rohr 14 shim tube
15 Kapillarspalt 15 capillary gap
16 Glasdichtung zwischen Elektrolytrohr und keramischem Stützring16 Glass seal between electrolyte tube and ceramic support ring
17 Stützring aus nicht ionenleitender Keramik 17 Support ring made of non-ion-conductive ceramic
18 Zelldeckel 18 cell lids
19 Zellgehäuse 19 cell housing
20 Ringdeckel 20 ring lids
21 Füllöffnung 21 filling opening
22 Imprägnieröffnung 22 Impregnation opening
23 Halbkugelförmiger Zellboden 23 Hemispherical cell floor

Claims

Ansprüche Expectations
1. Elektrochemische Zelle (10), basierend auf dem Redoxsystem Na/MCl2, mit einem Nationen leitenden Keramikelektrolyten (12) und einem Salz als flüs sigen Elektrolyten, wobei ein Kathodenraum (11) der elektrochemischen Zelle (10) ausserhalb eines Elektrolytrohres der elektrochemischen Zelle (10) und ein Anodenraum (13) der elektrochemischen Zelle (10) innerhalb des Elektrolytrohres angeordnet ist, gekennzeichnet durch ein Zellgehäuse (19), das einen halbkugelförmigen Zellboden (23) aufweist. 1. Electrochemical cell (10), based on the redox system Na / MCl2, with a Na t ion conductive ceramic electrolyte (12) and a salt as a liquid electrolyte, a cathode compartment (11) of the electrochemical cell (10) outside an electrolyte tube electrochemical cell (10) and an anode space (13) of the electrochemical cell (10) is arranged within the electrolyte tube, characterized by a cell housing (19) which has a hemispherical cell bottom (23).
2. Elektrochemische Zelle (10) nach Anspruch 1 , dadurch gekennzeichnet, dass der halbkugelförmige Zellboden (23) des Zellgehäuses (19) der elektro chemischen Zelle (10) eine Füllöffnung (21) zum Vakuumimprägnieren einer Aktivmasse aufweist, welche dazu vorgesehen ist, nach Erstarren einer Im prägnierflüssigkeit verschlossen zu sein. 2. Electrochemical cell (10) according to claim 1, characterized in that the hemispherical cell bottom (23) of the cell housing (19) of the electrochemical cell (10) has a filling opening (21) for vacuum impregnation of an active material, which is provided according to Solidification of an impregnating liquid to be closed.
3. Elektrochemische Zelle (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein am Zellgehäuse (19) oben angeordneter Ringdeckel (20) ein Füllloch aufweist, welches zum Einfüllen von Aktivmasse und zum Evaku ieren bei einem Imprägnierprozess vorgesehen ist. 3. Electrochemical cell (10) according to claim 1 or 2, characterized in that a ring cover (20) arranged at the top of the cell housing (19) has a filling hole which is provided for filling in active material and for evacuating during an impregnation process.
4. Elektrochemische Zelle (10) nach Anspruch 3, dadurch gekennzeichnet, dass der am Zellgehäuse (19) oben angeordnete Ringdeckel (20) so geformt ist, dass er gleichzeitig ein Zellverschluss und ein Dichtring einer Glasdich tung (16) der elektrochemischen Zelle ist. 4. Electrochemical cell (10) according to claim 3, characterized in that the ring cover (20) arranged at the top of the cell housing (19) is shaped so that it is simultaneously a cell closure and a sealing ring of a glass seal device (16) of the electrochemical cell.
5. Elektrochemische Zelle (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Zellgehäuse (19) der elektrochemi schen Zelle (10) als ein Stromsammler einer positiven Elektrode dient und ein oben an dem Zellgehäuse (19) angeordneter Ringdeckel (20) einen Plus pol der elektrochemischen Zelle (10) bildet. 5. Electrochemical cell (10) according to one of the preceding claims, characterized in that the cell housing (19) of the electrochemical cell (10) serves as a current collector of a positive electrode and a ring cover (20) arranged on top of the cell housing (19) forms a plus pole of the electrochemical cell (10).
6. Elektrochemische Zelle (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Inneren des Keramikelektrolyten (12) ein Shim-Rohr (14) angeordnet ist, das mit einem Elektrolytrohr einen ringförmi gen Kapillarspalt (15) bildet. 6. Electrochemical cell (10) according to any one of the preceding claims, characterized in that a shim tube (14) is arranged in the interior of the ceramic electrolyte (12), which forms an annular capillary gap (15) with an electrolyte tube.
7. Ein Shim-Rohr (14) in einer elektrochemischen Zelle (10) nach Anspruch 6, dadurch gekennzeichnet, dass das Shim-Rohr (14) am oberen Ende etwa 10 mm unterhalb einer Glasdichtung (16) einen verkleinerten Durchmesser aufweist, so dass flüssiges Natrium nicht höher steigen kann. 7. A shim tube (14) in an electrochemical cell (10) according to claim 6, characterized in that the shim tube (14) has a reduced diameter at the upper end approximately 10 mm below a glass seal (16), so that liquid sodium cannot rise higher.
8. Ein Shim-Rohr (14) in einer elektrochemischen Zelle (10) nach Anspruch 6, dadurch gekennzeichnet, dass das Shim-Rohr (14) aus einem elektrisch gut leitfähigem Material gebildet ist, so dass das Shim-Rohr (14) mit niedri gem elektrischen Widerstand als Stromsammler für den Minuspol dient.8. A shim tube (14) in an electrochemical cell (10) according to claim 6, characterized in that the shim tube (14) is formed from a material with good electrical conductivity, so that the shim tube (14) with niedri gem electrical resistance serves as a current collector for the negative pole.
9. Ein Shim-Rohr (14) in einer elektrochemischen Zelle (10) nach Anspruch 8, dadurch gekennzeichnet, dass das Shim-Rohr (14) metallisch gut leitend mit einem Zelldeckel (18) verbunden ist, so dass der Zelldeckel (18) einen9. A shim tube (14) in an electrochemical cell (10) according to claim 8, characterized in that the shim tube (14) is connected to a cell cover (18) with good metal conductivity, so that the cell cover (18) one
Minuspol der elektrochemischen Zelle (10) bildet. Forms negative pole of the electrochemical cell (10).
PCT/EP2020/073992 2019-08-27 2020-08-27 Electrochemical energy storage device WO2021037991A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20767486.2A EP4022699A1 (en) 2019-08-27 2020-08-27 Electrochemical energy storage device
BR112022003552A BR112022003552A2 (en) 2019-08-27 2020-08-27 Electrochemical energy storage device
AU2020338256A AU2020338256A1 (en) 2019-08-27 2020-08-27 Electrochemical energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1074/19 2019-08-27
CH01074/19A CH716540A1 (en) 2019-08-27 2019-08-27 Electrochemical energy storage device.

Publications (1)

Publication Number Publication Date
WO2021037991A1 true WO2021037991A1 (en) 2021-03-04

Family

ID=67988830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/073992 WO2021037991A1 (en) 2019-08-27 2020-08-27 Electrochemical energy storage device

Country Status (5)

Country Link
EP (1) EP4022699A1 (en)
AU (1) AU2020338256A1 (en)
BR (1) BR112022003552A2 (en)
CH (1) CH716540A1 (en)
WO (1) WO2021037991A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966492A (en) 1975-08-20 1976-06-29 Ford Motor Company Sodium sulfur battery or cell with improved ampere-hour capacity
GB2182194A (en) 1985-09-23 1987-05-07 Lilliwyte Sa Electrochemical cell
WO1994023467A2 (en) 1993-04-02 1994-10-13 Programme 3 Patent Holdings Electrochemical cell
EP2541646A1 (en) 2011-06-30 2013-01-02 General Electric Company Electrochemical cells, and related devices
US20170104244A1 (en) 2015-10-07 2017-04-13 General Electric Company Positive electrode composition for overdischarge protection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966492A (en) 1975-08-20 1976-06-29 Ford Motor Company Sodium sulfur battery or cell with improved ampere-hour capacity
GB2182194A (en) 1985-09-23 1987-05-07 Lilliwyte Sa Electrochemical cell
US4722875A (en) 1985-09-23 1988-02-02 501 Lilliwyte Societe Anonyme Electrochemical cell
WO1994023467A2 (en) 1993-04-02 1994-10-13 Programme 3 Patent Holdings Electrochemical cell
EP2541646A1 (en) 2011-06-30 2013-01-02 General Electric Company Electrochemical cells, and related devices
US20170104244A1 (en) 2015-10-07 2017-04-13 General Electric Company Positive electrode composition for overdischarge protection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. OSHIMAM. KAJITAA. OKUNO: "Development of Sodium-Sulfur Batteries", INT. J. APPL. CERAM. TECHNOL., vol. 1, no. 3, 2004, pages 269 - 76

Also Published As

Publication number Publication date
AU2020338256A1 (en) 2022-03-17
BR112022003552A2 (en) 2022-05-24
CH716540A1 (en) 2021-03-15
EP4022699A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
EP2561578B1 (en) Arrangement for storing electric energy in electrochemical cells with a large diameter and high storage capacity
DE3632130C2 (en) Process for the preparation of a cathode and means for carrying out the process
DE3718918C2 (en) Electrochemical cell and process for its manufacture
DE1571961A1 (en) Gas-tight sealed lead collector with antimony-free grid plates
DE4427218A1 (en) Rechargeable high temperature electrochemical cell
DE2807033B2 (en) Alkaline galvanic cell
CH499884A (en) Process for producing an electrical cell and electrical cell produced by this process
DE2808433B2 (en) Rechargeable electrochemical cell, sealed against the ambient atmosphere, and process for their manufacture
EP0658948B1 (en) Electrical nickel-metall hydride accumulator with electrode of nickelhydroxide comprising graphite
DE3208011A1 (en) ELECTROCHEMICAL CELL
DE2544312C3 (en) Gas- and liquid-tight sealed alkaline accumulator
WO2021037991A1 (en) Electrochemical energy storage device
EP0099492A1 (en) Electrochemical storage cell
DE1496344B2 (en) Accumulator cell that contains a control electrode in addition to the positive and negative main electrodes
DE2819583A1 (en) ELECTROCHEMICAL STORAGE CELL
EP0303793B1 (en) Gas-tight closed alkaline accumulator
EP0096265B1 (en) Electrochemical storage cell
DE102013206740A1 (en) Alkali-oxygen cell with titanate anode
DE3022449A1 (en) ELECTROCHEMICAL STORAGE CELL
DE2948700C2 (en) Circuit for securing memory cells
DE1671864B2 (en) THERMAL ACTIVATED GALVANIC ELEMENT
EP0552441B1 (en) Gastight sealed alkaline accumulator of the button-cell type
DE3222525C2 (en)
WO2022156983A1 (en) Method for producing an electrical energy store, and electrical energy store
DE2438286C3 (en) Porous accumulator electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022003552

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020338256

Country of ref document: AU

Date of ref document: 20200827

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020767486

Country of ref document: EP

Effective date: 20220328

ENP Entry into the national phase

Ref document number: 112022003552

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220224