WO2021037846A1 - Procédé de fabrication d'une cellule photovoltaïque - Google Patents

Procédé de fabrication d'une cellule photovoltaïque Download PDF

Info

Publication number
WO2021037846A1
WO2021037846A1 PCT/EP2020/073739 EP2020073739W WO2021037846A1 WO 2021037846 A1 WO2021037846 A1 WO 2021037846A1 EP 2020073739 W EP2020073739 W EP 2020073739W WO 2021037846 A1 WO2021037846 A1 WO 2021037846A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
dielectric layer
tunnel oxide
oxide film
layer
Prior art date
Application number
PCT/EP2020/073739
Other languages
English (en)
Inventor
Raphaël CABAL
Bernadette Grange
Original Assignee
Commissariat à l'Energie Atomique et aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'Energie Atomique et aux Energies Alternatives filed Critical Commissariat à l'Energie Atomique et aux Energies Alternatives
Priority to CN202080060011.2A priority Critical patent/CN114303252A/zh
Priority to EP20757928.5A priority patent/EP4022688A1/fr
Publication of WO2021037846A1 publication Critical patent/WO2021037846A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of photovoltaic cells.
  • the invention finds its application in particular in the manufacture of photo voltaic cells of the PERT ("PassivatedEmiter earTotall -diffused") type.
  • a method of manufacturing a photovoltaic cell known from the state of the art, in particular from document FR 3 035 740, comprises the steps: ao) providing a structure comprising:
  • a substrate based on crystalline silicon having a first surface and a second opposite surface
  • a first dielectric layer comprising boron atoms, and formed on the first surface of the substrate
  • step b) is carried out under an oxidizing atmosphere in order to increase the passivation of the structure and allow the conservation of the first and second dielectric layers.
  • passivation is meant the neutralization of electrically active defects at the first and second surfaces of the substrate.
  • the substrate based on crystalline silicon has a density of defects (eg pendant bonds, impurities, discontinuity of the crystal, etc.) which can lead to non-negligible losses linked to the surface recombination of the carriers in the case of an application. photovoltaic.
  • defects eg pendant bonds, impurities, discontinuity of the crystal, etc.
  • Such a method of the state of the art is not entirely satisfactory in terms of passivation of the structure.
  • Those skilled in the art seek to improve the performance of the photovoltaic cell with the highest possible open circuit voltage values V oc.
  • the invention aims to remedy all or part of the aforementioned drawbacks.
  • the invention relates to a method of manufacturing a photovoltaic cell, comprising the steps: a) providing a structure comprising:
  • a substrate based on crystalline silicon having a first surface and a second opposite surface
  • a first dielectric layer comprising boron atoms, and formed on the first surface of the substrate
  • the doped polysilicon layer being intended to be in contact with an electrode E.
  • such a method according to the invention makes it possible to increase the open circuit voltage values V oc with respect to the state of the art thanks to the presence of the tunnel oxide film and of the polysilicon layer which allow a excellent passivation of the second surface of the substrate.
  • the tunnel oxide film makes it possible to limit the diffusion of phosphorus and / or arsenic atoms from the polysilicon layer to the second surface of the substrate. In other words, the tunnel oxide film acts as a diffusion barrier to phosphorus / arsenic atoms towards the substrate.
  • the tunnel oxide film therefore makes it possible to sufficiently dope the polysilicon layer with phosphorus and / or arsenic during step b) in order to obtain an electrical contact, and this without requiring an increase in the thermal budget of step b).
  • An increase in the thermal budget during step b) would in fact not be desirable because it would also increase the depth of diffusion of the boron atoms under the first surface of the substrate, and would therefore degrade the value of the open circuit voltage V oc Electrical contact on the doped polysilicon layer can be carried out, for example, by screen printing.
  • the tunnel oxide film overcomes the difficulties associated with the different diffusion depths between the boron atoms and the phosphorus / arsenic atoms during their co-diffusion in step b), these difficulties being able to take place in the state of the art.
  • substrate is meant the mechanical support, self-supporting, intended for the manufacture of a photovoltaic cell.
  • crystalline is understood to mean the multicrystalline form or the monocrystalline form of silicon, therefore excluding amorphous silicon.
  • the term “based on” is understood to mean that the corresponding material is the main and majority material making up the substrate (or the layer).
  • dielectric is understood to mean that the layer has an electrical conductivity at 300 K of less than 1CT 8 S / cm.
  • tunnel oxide film an oxide thin enough to allow an electric current to flow within it by tunneling.
  • the method according to the invention may include one or more of the following characteristics.
  • step a) is performed so that the tunnel oxide film is a silicon oxide or an aluminum oxide.
  • silicon oxide is meant silicon oxide of formula S1O2 (silicon dioxide) or its non-stoichiometric SiO x derivatives.
  • aluminum oxide is understood to mean aluminum oxide of formula Al2O3 (alumina) or its non-stoichiometric A10 x derivatives.
  • step a) is carried out so that the tunnel oxide film is a silicon oxide formed on the second surface of the substrate by thermal means.
  • an advantage provided is to improve the density of silicon oxide over chemically formed silicon oxide, which improves the diffusion barrier properties to phosphorus / arsenic atoms.
  • step a) is performed so that the tunnel oxide film is an aluminum oxide formed on the second surface of the substrate by deposition of atomic layers.
  • the deposition of atomic layers is conventionally referred to by the acronym ALD for
  • step a) is carried out so that the tunnel oxide film has a thickness less than or equal to 3 nm, preferably less than or equal to 2 nm.
  • step a) is carried out so that:
  • the tunnel oxide film is an aluminum oxide having a thickness less than or equal to 3 nm, preferably less than or equal to 2 nm; the structure comprises an additional tunnel oxide film formed between the first surface of the substrate and the first dielectric layer, the additional tunnel oxide film being an aluminum oxide having a thickness less than or equal to 3 nm, preferably less or equal to 2 nm.
  • an advantage provided by the aluminum oxide, forming the additional tunnel oxide film is to weakly affect the diffusion of boron atoms within it, which makes it possible not to significantly degrade the lateral conductance of the first. doped semiconductor region, unlike silicon oxide.
  • a silicon oxide acts as a diffusion barrier to the boron atoms.
  • step a) is carried out so that the first dielectric layer is based on a silicon oxynitride SiO x N y verifying 0 £ y ⁇ x, preferably hydrogenated.
  • Such a first dielectric layer makes it possible to obtain satisfactory passivation of the first surface of the substrate, more precisely passivation of the interface between the first surface of the substrate and the first dielectric layer.
  • the hydrogenation of silicon oxynitride improves the passivation properties.
  • silicon oxynitride is silicon oxide.
  • step a) is carried out so that the second dielectric layer is based on a silicon oxynitride SiO x N y verifying 0 £ x ⁇ y, preferably hydrogenated.
  • silicon oxynitride is silicon nitride.
  • step b) is carried out by applying thermal annealing to the structure, the thermal annealing exhibiting:
  • an annealing temperature value between 850 ° C and 950 ° C, preferably between 900 ° C and 950 ° C,
  • an annealing time value of between 10 minutes and 1 hour, preferably between 30 minutes and 1 hour.
  • thermal annealing a heat treatment comprising:
  • the method comprises a step consisting in forming a layer based on a silicon oxynitride SiO x N y , verifying 0 £ x ⁇ y, preferably hydrogenated, on the first dielectric layer after the step b).
  • an advantage obtained is to improve both the passivation of the first surface of the substrate, and to form a so-called antireflection optical layer, with a suitable thickness.
  • This step is preferably carried out after step b) in order to easily enrich the first dielectric layer with oxygen when step b) is carried out under an oxidizing atmosphere.
  • G silicon oxynitride is silicon nitride.
  • the method comprises a step consisting in forming a layer based on a silicon oxynitride SiO x N y , verifying 0 £ x ⁇ y, preferably hydrogenated, on the second dielectric layer before the step b).
  • the silicon oxynitride is a silicon nitride.
  • an advantage provided is to prevent exo-diffusion of phosphorus / arsenic atoms from the second dielectric layer.
  • the first and second dielectric layers are retained after step b).
  • an advantage provided is a saving of operating time since it is not necessary to remove these layers and then to form dedicated passivation layers.
  • the subject of the invention is also a photo voltaic cell, comprising: - a substrate based on crystalline silicon, having a first surface and a second opposite surface;
  • a first doped semiconductor region extending below the first surface of the substrate, and comprising boron atoms
  • a first dielectric layer comprising boron atoms in a residual proportion, and formed on the first surface of the substrate;
  • a doped polysilicon layer formed on the tunnel oxide film, and comprising phosphorus and / or arsenic atoms;
  • a second dielectric layer comprising phosphorus and / or arsenic atoms in a residual proportion, and formed on the doped polysilicon layer.
  • Such a photovoltaic cell allows an increase in the value of the open circuit voltage V oc compared to the state of the art, thanks to the presence of the tunnel oxide film and of the polysilicon layer which allow excellent passivation. of the second surface of the substrate.
  • the photovoltaic cell comprises an additional tunnel oxide film formed between the first surface of the substrate and the first dielectric layer.
  • the presence of such an additional tunnel oxide film makes it possible to facilitate the manufacture of the photovoltaic cell by allowing the simultaneous formation of the tunnel oxide film and the additional tunnel oxide film on either side of the substrate, this which reduces operating time.
  • the tunnel oxide film and the additional tunnel oxide film are made of aluminum oxide and have a thickness less than or equal to 3 nm, preferably less than or equal to 2 nm.
  • an advantage provided by the aluminum oxide, forming the additional tunnel oxide film is to weakly affect the diffusion of boron atoms within it, which makes it possible not to significantly degrade the lateral conductance of the first. doped semiconductor region, unlike silicon oxide.
  • a silicon oxide acts as a diffusion barrier to the boron atoms.
  • Figures 1a to 1c are schematic sectional views illustrating different steps of a first embodiment of a method according to the invention.
  • Figures 2a to 2c are schematic sectional views illustrating different steps of a second embodiment of a method according to the invention.
  • Figures 3a to 3d are schematic sectional views illustrating different steps of a third embodiment of a method according to the invention.
  • Figures 4a to 4d are schematic sectional views illustrating different steps of a fourth embodiment of a method according to the invention.
  • An object of the invention is a method of manufacturing a photovoltaic cell, comprising the steps: a) providing a structure comprising:
  • a substrate 1 based on crystalline silicon having a first surface 10 and an opposite second surface 11;
  • a first dielectric layer 2 comprising boron atoms, and formed on the first surface 10 of the substrate 1;
  • Step a) is illustrated in Figures la, 2a, 3a and 4a.
  • Step b) is illustrated in Figures lb, 2b, 3b and 4b.
  • the substrate 1 of the structure provided during step a) is advantageously n-type doped, and the first surface 10 of the substrate 1 is intended to be exposed to light radiation so as to form a standard emitter architecture.
  • the first doped semiconductor region 100 forms the emitter.
  • the substrate 1 is n-type doped.
  • the doped polysilicon layer 4, of the same type of doping as the substrate 1, is of the BSF (“Bach Surface Field”) type.
  • Step a) is advantageously carried out so that the first surface 10 of the substrate 1 is textured in order to reduce the reflection coefficient and the optical losses in the photovoltaic cell.
  • the first surface 10 of the substrate 1 preferably comprises inverted pyramid patterns arranged to create a surface roughness.
  • the texturing is preferably carried out by a chemical attack based on potassium hydroxide KOH.
  • the substrate 1 may have a thickness of the order of 150 ⁇ m.
  • Step a) is advantageously carried out so that the first and second surfaces 10, 11 of the substrate 1 are chemically cleaned beforehand.
  • Step a) is advantageously carried out so that the first dielectric layer 2 is based on a silicon oxynitride SiO x N y verifying 0 £ y ⁇ x, preferably hydrogenated.
  • the first dielectric layer 2 advantageously has a thickness between 3 nm and 50 nm, preferably between 20 nm and 50 nm.
  • the boron atoms advantageously have an atomic proportion in the first dielectric layer 2 of between 10% and 50%, preferably between 10% and 30% before step b).
  • the silicon oxynitride of the first dielectric layer 2 advantageously satisfies 0.2 £ x £ 0.5 and 0.05 £ y £ 0.15 before step b).
  • the method may include a step consisting in forming a layer 2 'based on a silicon oxynitride SiO x N y , verifying 0 £ x ⁇ y, preferably hydrogenated, on the first dielectric layer. 2 after step b).
  • these layers can be formed by chemical vapor deposition (PECVD for "Plasma-E nhanced Chemical Vapor Deposition” in English) from reactive gases comprising silane SiH 4 and nitrous oxide N2O or NH 3 .
  • PECVD chemical vapor deposition
  • reactive gases comprising silane SiH 4 and nitrous oxide N2O or NH 3 .
  • the boron atoms are advantageously incorporated into the hydrogenated silicon oxynitride by injection of diborane B 2 H 6 with the reactive gases.
  • the first dielectric layer 2 is kept after step b), as is layer 2 ’.
  • Step a) is advantageously carried out so that the tunnel oxide film 3 is a silicon oxide or an aluminum oxide.
  • Step a) is advantageously carried out so that the silicon oxide is formed on the second surface 11 of the substrate 1 by thermal means.
  • Step a) is advantageously carried out so that the aluminum oxide is formed on the second surface 11 of the substrate 1 by atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • Step a) is advantageously carried out so that the tunnel oxide film 3 has a thickness less than or equal to 3 nm, preferably less than or equal to 2 nm.
  • step a) is advantageously carried out so that: the tunnel oxide film 3 is an aluminum oxide having a thickness less than or equal to 3 nm, preferably less than or equal to 2 nm;
  • the structure comprises an additional film 3 'of tunnel oxide formed between the first surface 10 of the substrate 1 and the first dielectric layer 2, the additional film 3' of tunnel oxide being an aluminum oxide having a thickness less than or equal at 3 nm, preferably less than or equal to 2 nm.
  • Step a) is advantageously carried out so that the polysilicon layer 4 has a thickness between 30 nm and 200 nm, preferably between 30 nm and 100 nm.
  • Step a) can be carried out so that the polysilicon layer 4 is formed on the tunnel oxide film 3 by depositing an amorphous silicon layer (eg by LPCVD “Eow Pressure Chemical Vapor Deposition” or by PECVD “Plasma-Enhanced Chemical Vapor Deposition”), followed by annealing to crystallize the amorphous silicon layer.
  • an amorphous silicon layer eg by LPCVD “Eow Pressure Chemical Vapor Deposition” or by PECVD “Plasma-Enhanced Chemical Vapor Deposition”
  • Step a) is advantageously carried out so that the second dielectric layer 5 is based on a silicon oxynitride SiO x N y verifying 0 £ x ⁇ y, preferably hydrogenated.
  • the second dielectric layer 5 advantageously has a thickness between 10 nm and 50 nm, preferably between 10 nm and 30 nm.
  • the phosphorus or arsenic atoms advantageously have a proportion by mass in the second dielectric layer 5 of greater than or equal to 4%, preferably between 10% and 30%.
  • the silicon oxynitride of the second dielectric layer 5 advantageously satisfies 0 £ x £ 0.05 and 0.30 £ y £ 0.55 before and after step b).
  • the method may include a step consisting in forming a layer 5 ′ based on a silicon oxynitride SiO x N y , verifying 0 £ x ⁇ y, preferably hydrogenated, on the second dielectric layer. 5 before step b), preferably with a thickness of less than 80 nm.
  • these layers can be formed by chemical vapor deposition (PECVD for "Plasma-E nhanced Chemical Vapor Deposition” in English) from reactive gases comprising silane SiH 4 and NH 3 .
  • PECVD chemical vapor deposition
  • the phosphorus atoms are advantageously incorporated into the hydrogenated silicon oxynitride by injection of phosphine PH 3 with the reactive gases.
  • the arsenic atoms are advantageously incorporated into the hydrogenated silicon oxynitride by injection of arsine AsH 3 with the reactive gases.
  • the second dielectric layer 5 is kept after step b), as is the layer 5 ’.
  • Step b) is advantageously carried out by applying thermal annealing to the structure, the thermal annealing exhibiting:
  • an annealing temperature value between 850 ° C and 950 ° C, preferably between 900 ° C and 950 ° C,
  • an annealing time value of between 10 minutes and 1 hour, preferably between 30 minutes and 1 hour.
  • the thermal annealing applied during step b) is an overall thermal annealing in the sense that it is applied to the whole of the structure provided during step a). It is therefore not a localized thermal annealing applied to a part of said assembly, for example using a laser.
  • Step b) is preferably carried out in an oven.
  • Thermal annealing can be applied in step b) under an oxidizing atmosphere.
  • an advantage provided by the oxidizing atmosphere is to improve the passivation of the first surface of the substrate (i.e. the interface between the first surface and the first dielectric layer) by enriching the first dielectric layer with oxygen.
  • the oxidizing atmosphere advantageously comprises a mixture of dioxygen and a neutral gas chosen from argon, nitrogen, or a mixture of argon and nitrogen.
  • the oxidizing atmosphere is advantageously constituted by a mixture of dioxygen and of a neutral gas chosen from argon, nitrogen, or a mixture of argon and nitrogen.
  • the oxidizing atmosphere is advantageously devoid of a doping agent such as phosphine.
  • thermal annealing can be applied during step b) under a neutral atmosphere, for example comprising N2.
  • the first doped semiconductor region 100 preferably has, at the first surface 10 of the substrate 1, a boron concentration greater than 10 19 at./cm 3 , more preferably between 10 19 at./ cm 3 and 3xl0 20 at./cm 3 , in order to form a good quality electrical contact zone.
  • the doped polysilicon layer 4 preferably has a phosphorus or arsenic concentration greater than 10 20 at./cm 3 , more preferably between 2xl0 20 at./cm 3 and 10 21 at./cm 3 , in order to form a good quality electrical contact zone.
  • the boron atoms advantageously have an atomic proportion in the first dielectric layer 2 of between 1% and 10%, preferably between 3% and 8% after step b).
  • the phosphorus or arsenic atoms advantageously have an atomic proportion in the second dielectric layer 5 of between 1% and 10%, preferably between 1% and 5% after step b).
  • the method may include a step c) consisting in bringing the first doped semiconductor region 100 and the doped polysilicon layer 4 into contact with an electrode E.
  • Step c) advantageously comprises a metallization step, preferably carried out by screen printing.
  • Each electrode E is preferably made of silver and / or aluminum.
  • the subject of the invention is also a photo voltaic cell, comprising:
  • a substrate 1 based on crystalline silicon having a first surface 10 and an opposite second surface 11;
  • first doped semiconductor region 100 extending under the first surface 10 of the substrate 1, and comprising boron atoms;
  • a first dielectric layer 2 comprising boron atoms in a residual proportion, and formed on the first surface 10 of the substrate 1;
  • a doped polysilicon layer 4 formed on the tunnel oxide film 3, and comprising phosphorus and / or arsenic atoms;
  • a second dielectric layer 5 comprising phosphorus and / or arsenic atoms in a residual proportion, and formed on the doped polysilicon layer 4.
  • the photovoltaic cell may include an additional tunnel oxide film 3 'formed between the first surface 10 of the substrate 1 and the first dielectric layer 2.
  • the tunnel oxide film 3 and the additional tunnel oxide film 3' are advantageously produced.
  • aluminum oxide and have a thickness less than or equal to 3 nm, preferably less than or equal to 2 nm.
  • residual proportion is meant that: - the boron atoms have an atomic proportion in the first dielectric layer 2 of between 1% and 10%, preferably between 3% and 8%;
  • the phosphorus or arsenic atoms have an atomic proportion in the second dielectric layer 5 of between 1% and 10%, preferably between 1% and 5%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Ce procédé comporte les étapes : a) prévoir une structure comprenant : - un substrat (1) à base de silicium cristallin; - une première couche diélectrique (2), comprenant des atomes de bore, et formée sur la première surface (10) du substrat (1); - un film d'oxyde tunnel (3), formé sur la seconde surface (11) du substrat; - une couche de polysilicium (4), formée sur le film d'oxyde tunnel (3); - une deuxième couche diélectrique (5), comprenant des atomes de phosphore et/ou d'arsenic, et formée sur la couche de polysilicium (4); b) appliquer un traitement thermique à la structure de manière à : - diffuser les atomes de bore sous la première surface (10) du substrat (1), de manière à former une première région semi-conductrice dopée (100); - diffuser les atomes de phosphore et/ou d'arsenic dans la couche de polysilicium (4), de manière à doper la couche de polysilicium (4).

Description

PROCEDE DE FABRICATION D’UNE CELLULE PHOTOVOLTAÏQUE Domaine technique
L’invention se rapporte au domaine technique des cellules photovoltaïques. L’invention trouve notamment son application dans la fabrication de cellules photo voltaïques de type PERT (« PassivatedEmiter earTotall -diffused » en langue anglaise).
État de l’art
Un procédé de fabrication d’une cellule photovoltaïque connu de l’état de la technique, notamment du document FR 3 035 740, comporte les étapes : ao) prévoir une structure comprenant :
- un substrat à base de silicium cristallin, présentant une première surface et une seconde surface opposée ;
- une première couche diélectrique, comprenant des atomes de bore, et formée sur la première surface du substrat ;
- une deuxième couche diélectrique, comprenant des atomes de phosphore ou d’arsenic, et formée sur la seconde surface du substrat ; bo) appliquer un traitement thermique à la structure de manière à :
- diffuser les atomes de bore depuis la première couche diélectrique sous la première surface du substrat, de manière à former une première région semi-conductrice dopée destinée à être en contact avec une électrode ;
- diffuser les atomes de phosphore ou d’arsenic depuis la seconde couche diélectrique sous la seconde surface du substrat, de manière à former une seconde région semi- conductrice dopée destinée à être en contact avec une électrode. Un tel procédé de l’état de la technique permet de limiter le nombre d’étapes à exécuter grâce à la co-diffusion des atomes de bore et de phosphore/arsenic, et à la conservation des première et deuxième couches diélectriques après l’étape bo). A cet égard, l’étape bo) est exécutée sous une atmosphère oxydante afin d’augmenter la passivation de la structure et autoriser la conservation des première et deuxième couches diélectriques. Par « passivation », on entend la neutralisation de défauts électriquement actifs aux première et seconde surfaces du substrat. En effet, le substrat à base de silicium cristallin comporte une densité de défauts (e.g. liaisons pendantes, impuretés, discontinuité du cristal...) pouvant entraîner des pertes non négligeables liées à la recombinaison en surface des porteurs dans le cas d’une application photo voltaïque. Cependant, un tel procédé de l’état de la technique n’est pas entièrement satisfaisant en termes de passivation de la structure. L’homme du métier recherche à améliorer les performances de la cellule photovoltaïque avec des valeurs de tension de circuit ouvert Voc les plus élevées possible.
Exposé de l’invention
L’invention vise à remédier en tout ou partie aux inconvénients précités. A cet effet, l’invention a pour objet un procédé de fabrication d’une cellule photo voltaïque, comportant les étapes : a) prévoir une structure comprenant :
- un substrat à base de silicium cristallin, présentant une première surface et une seconde surface opposée ;
- une première couche diélectrique, comprenant des atomes de bore, et formée sur la première surface du substrat ;
- un film d’oxyde tunnel, formé sur la seconde surface du substrat ;
- une couche de polysilicium, formée sur le film d’oxyde tunnel ;
- une deuxième couche diélectrique, comprenant des atomes de phosphore et/ou d’arsenic, et formée sur la couche de polysilicium ; b) appliquer un traitement thermique à la structure de manière à :
- diffuser les atomes de bore depuis la première couche diélectrique sous la première surface du substrat, de manière à former une première région semi-conductrice dopée destinée à être en contact avec une électrode ;
- diffuser les atomes de phosphore et/ou d’arsenic depuis la deuxième couche diélectrique dans la couche de polysilicium, de manière à doper la couche de polysilicium, la couche de polysilicium dopée étant destinée à être en contact avec une électrode E.
Ainsi, un tel procédé selon l’invention permet d’augmenter les valeurs de tension de circuit ouvert Voc par rapport à l’état de la technique grâce à la présence du film d’oxyde tunnel et de la couche de polysilicium qui permettent une excellente passivation de la seconde surface du substrat. Le film d’oxyde tunnel permet de limiter la diffusion des atomes de phosphore et/ou d’arsenic depuis la couche de polysilicium vers la seconde surface du substrat. En d’autres termes, le film d’oxyde tunnel agit comme une barrière de diffusion aux atomes de phosphore/ arsenic vers le substrat. Le film d’oxyde tunnel permet donc de doper suffisamment la couche de polysilicium en phosphore et/ou en arsenic lors de l’étape b) afin d’obtenir un contact électrique, et ce sans nécessiter une augmentation du budget thermique de l’étape b). Une augmentation du budget thermique lors de l’étape b) ne serait en effet pas souhaitable car elle augmenterait également la profondeur de diffusion des atomes de bore sous la première surface du substrat, et dégraderait donc la valeur de tension de circuit ouvert Voc· La prise de contact électrique sur la couche de polysilicium dopée pourra s’effectuer par exemple par sérigraphie.
Par ailleurs, le film d’oxyde tunnel permet de s’affranchir de difficultés liées aux profondeurs de diffusion différentes entre les atomes de bore et les atomes de phosphore/arsenic lors de leur co-diffusion de l’étape b), ces difficultés pouvant avoir lieu dans l’état de la technique.
Définitions
- Par « substrat », on entend le support mécanique, autoporté, destiné à la fabrication d’une cellule photovoltaïque.
- Par « cristallin », on entend la forme multicristalline ou la forme monocristalline du silicium, excluant donc le silicium amorphe.
- Par « à base de », on entend que le matériau correspondant est le matériau principal et majoritaire composant le substrat (ou la couche).
- Par « diélectrique », on entend que la couche présente une conductivité électrique à 300 K inférieure à 1CT8 S/cm.
- Par « film d’oxyde tunnel », on entend un oxyde suffisamment fin pour autoriser la circulation d’un courant électrique en son sein par effet tunnel.
Le procédé selon l’invention peut comporter une ou plusieurs des caractéristiques suivantes.
Selon une caractéristique de l’invention, l’étape a) est exécutée de sorte que le film d’oxyde tunnel est un oxyde de silicium ou un oxyde d’aluminium.
Par « oxyde de silicium », on entend l’oxyde de silicium de formule S1O2 (dioxyde de silicium) ou ses dérivés SiOx non-stœchiométriques.
Par « oxyde d’aluminium », on entend l’oxyde d’aluminium de formule AI2O3 (alumine) ou ses dérivés A10x non-stœchiométriques.
Ainsi, un avantage procuré par de tels oxydes est leur propriété de barrière de diffusion aux atomes de phosphore/arsenic. Selon une caractéristique de l’invention, l’étape a) est exécutée de sorte que le film d’oxyde tunnel est un oxyde de silicium formé sur la seconde surface du substrat par voie thermique.
Ainsi, un avantage procuré est d’améliorer la densité de l’oxyde de silicium par rapport à un oxyde de silicium formée par voie chimique, ce qui améliore les propriétés de barrière de diffusion aux atomes de phosphore/ arsenic.
Selon une caractéristique de l’invention, l’étape a) est exécutée de sorte que le film d’oxyde tunnel est un oxyde d’aluminium formé sur la seconde surface du substrat par un dépôt de couches atomiques. Le dépôt de couches atomiques est classiquement désigné par l’acronyme ALD pour
« Atomic l iyer Déposition » en langue anglaise.
Selon une caractéristique de l’invention, l’étape a) est exécutée de sorte que le film d’oxyde tunnel présente une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm.
Selon une caractéristique de l’invention, l’étape a) est exécutée de sorte que :
- le film d’oxyde tunnel est un oxyde d’aluminium présentant une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm ; - la structure comprend un film additionnel d’oxyde tunnel formé entre la première surface du substrat et la première couche diélectrique, le film additionnel d’oxyde tunnel étant un oxyde d’aluminium présentant une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm.
Ainsi, un avantage procuré par l’oxyde d’aluminium, formant le film additionnel d’oxyde tunnel, est de faiblement affecter la diffusion des atomes de bore en son sein, ce qui permet de ne pas dégrader significativement la conductance latérale de la première région semi- conductrice dopée, contrairement à un oxyde de silicium. En effet, un oxyde de silicium agit comme une barrière de diffusion aux atomes de bore.
Par conséquent, l’utilisation d’un oxyde d’aluminium pour le film d’oxyde tunnel et pour le film additionnel d’oxyde tunnel permet de simplifier la mise en œuvre du procédé en autorisant leur formation simultanée de part et d’autre du substrat, ce qui réduit le temps d’opération. Selon une caractéristique de l’invention, l’étape a) est exécutée de sorte que la première couche diélectrique est à base d’un oxynitrure de silicium SiOxNy vérifiant 0£y<x, de préférence hydrogéné.
Une telle première couche diélectrique permet d’obtenir une passivation satisfaisante de la première surface du substrat, plus précisément une passivation de l’interface entre la première surface du substrat et la première couche diélectrique. L’hydrogénation de l’oxynitrure de silicium permet d’améliorer les propriétés de passivation. Lorsque y=0, l’oxynitrure de silicium est un oxyde de silicium.
Selon une caractéristique de l’invention, l’étape a) est exécutée de sorte que la deuxième couche diélectrique est à base d’un oxynitrure de silicium SiOxNy vérifiant 0£x<y, de préférence hydrogéné.
Lorsque x=0, l’oxynitrure de silicium est un nitrure de silicium.
Selon une caractéristique de l’invention, l’étape b) est exécutée en appliquant un recuit thermique à la structure, le recuit thermique présentant :
- une valeur de température de recuit comprise entre 850°C et 950°C, de préférence comprise entre 900°C et 950°C,
- une valeur de durée de recuit comprise entre 10 minutes et 1 heure, de préférence comprise entre 30 minutes et 1 heure.
Par « recuit thermique », on entend un traitement thermique comportant :
- une phase de montée graduelle en température (rampe de montée) jusqu’à atteindre une température dite température de recuit,
- une phase de maintien (plateau) à la température de recuit, pendant une durée dite durée de recuit,
- une phase de refroidissement.
Selon une caractéristique de l’invention, le procédé comporte une étape consistant à former une couche à base d’un oxynitrure de silicium SiOxNy, vérifiant 0£x<y, de préférence hydrogéné, sur la première couche diélectrique après l’étape b).
Ainsi, un avantage procuré est d’améliorer à la fois la passivation de la première surface du substrat, et de former une couche optique dite antireflet, de par une épaisseur adaptée. Cette étape est préférentiellement exécutée après l’étape b) afin d’enrichir aisément en oxygène la première couche diélectrique lorsque l’étape b) est exécutée sous une atmosphère oxydante. Lorsque x=0, G oxynitrure de silicium est un nitrure de silicium. Selon une caractéristique de l’invention, le procédé comporte une étape consistant à former une couche à base d’un oxynitrure de silicium SiOxNy, vérifiant 0£x<y, de préférence hydrogéné, sur la deuxième couche diélectrique avant l’étape b). Lorsque x=0, l’ oxynitrure de silicium est un nitrure de silicium.
Ainsi, un avantage procuré est d’empêcher une exo-diffusion des atomes de phosphore/ arsenic depuis la deuxième couche diélectrique.
Selon une caractéristique de l’invention, les première et deuxième couches diélectriques sont conservées après l’étape b).
Ainsi, un avantage procuré est un gain de temps d’opération puisqu’il n’est pas nécessaire de retirer ces couches puis de former des couches de passivation dédiées.
L’invention a également pour objet une cellule photo voltaïque, comportant : - un substrat à base de silicium cristallin, présentant une première surface et une seconde surface opposée ;
- une première région semi-conductrice dopée, s’étendant sous la première surface du substrat, et comprenant des atomes de bore ;
- une première couche diélectrique, comprenant des atomes de bore dans une proportion résiduelle, et formée sur la première surface du substrat ;
- un film d’oxyde tunnel, formé sur la seconde surface du substrat ;
- une couche de polysilicium dopée, formée sur le film d’oxyde tunnel, et comprenant des atomes de phosphore et/ou d’arsenic ;
- une deuxième couche diélectrique, comprenant des atomes de phosphore et/ou d’arsenic dans une proportion résiduelle, et formée sur la couche de polysilicium dopée.
Ainsi, une telle cellule photovoltaïque autorise une augmentation de la valeur de tension de circuit ouvert Voc par rapport à l’état de la technique, grâce à la présence du film d’oxyde tunnel et de la couche de polysilicium qui permettent une excellente passivation de la seconde surface du substrat.
Selon une caractéristique de l’invention, la cellule photovoltaïque comporte un film additionnel d’oxyde tunnel formé entre la première surface du substrat et la première couche diélectrique. La présence d’un tel film additionnel d’oxyde tunnel permet de faciliter la fabrication de la cellule photovoltaïque en autorisant la formation simultanée du film d’oxyde tunnel et du film additionnel d’oxyde tunnel de part et d’autre du substrat, ce qui réduit le temps d’opération. Selon une caractéristique de l’invention, le film d’oxyde tunnel et le film additionnel d’oxyde tunnel sont réalisés en oxyde d’aluminium et présentent une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm.
Ainsi, un avantage procuré par l’oxyde d’aluminium, formant le film additionnel d’oxyde tunnel, est de faiblement affecter la diffusion des atomes de bore en son sein, ce qui permet de ne pas dégrader significativement la conductance latérale de la première région semi- conductrice dopée, contrairement à un oxyde de silicium. En effet, un oxyde de silicium agit comme une barrière de diffusion aux atomes de bore.
Brève description des dessins D’autres caractéristiques et avantages apparaîtront dans l’exposé détaillé de différents modes de réalisation de l’invention, l’exposé étant assorti d’exemples et de références aux dessins joints.
Figures la à le sont des vues schématiques en coupe illustrant différentes étapes d’un premier mode de mise en œuvre d’un procédé selon l’invention. Figures 2a à 2c sont des vues schématiques en coupe illustrant différentes étapes d’un deuxième mode de mise en œuvre d’un procédé selon l’invention.
Figures 3a à 3d sont des vues schématiques en coupe illustrant différentes étapes d’un troisième mode de mise en œuvre d’un procédé selon l’invention.
Figures 4a à 4d sont des vues schématiques en coupe illustrant différentes étapes d’un quatrième mode de mise en œuvre d’un procédé selon l’invention.
Il est à noter que les dessins décrits ci-avant sont schématiques et ne sont pas à l’échelle par souci de lisibilité et pour simplifier leur compréhension. Exposé détaillé des modes de réalisation
Les éléments identiques ou assurant la même fonction porteront les mêmes références pour les différents modes de réalisation, par souci de simplification. Un objet de l’invention est un procédé de fabrication d’une cellule photovoltaïque, comportant les étapes : a) prévoir une structure comprenant :
- un substrat 1 à base de silicium cristallin, présentant une première surface 10 et une seconde surface 11 opposée ;
- une première couche diélectrique 2, comprenant des atomes de bore, et formée sur la première surface 10 du substrat 1 ;
- un film d’oxyde tunnel 3, formé sur la seconde surface 11 du substrat 1 ;
- une couche de polysilicium 4, formée sur le film d’oxyde tunnel 3 ;
- une deuxième couche diélectrique 5, comprenant des atomes de phosphore et/ou d’arsenic, et formée sur la couche de polysilicium 4 ; b) appliquer un traitement thermique à la structure de manière à :
- diffuser les atomes de bore depuis la première couche diélectrique 2 sous la première surface 10 du substrat 1, de manière à former une première région semi-conductrice dopée 100 destinée à être en contact avec une électrode E ;
- diffuser les atomes de phosphore et/ou d’arsenic depuis la deuxième couche diélectrique 5 dans la couche de polysilicium 4, de manière à doper la couche de polysilicium 4, la couche de polysilicium 4 dopée étant destinée à être en contact avec une électrode E.
L’étape a) est illustrée aux figures la, 2a, 3a et 4a. L’étape b) est illustrée aux figures lb, 2b, 3b et 4b.
Substrat
Le substrat 1 de la structure prévue lors de l’étape a) est avantageusement dopé de type n, et la première surface 10 du substrat 1 est destinée à être exposée à un rayonnement lumineux de manière à former une architecture à émetteur standard. La première région semi- conductrice dopée 100 forme l’émetteur. Autrement dit, lorsque la première région semi- conductrice dopée 100 forme un émetteur standard, alors le substrat 1 est dopé de type n. La couche de polysilicium 4 dopée, du même type de dopage que le substrat 1, est de type BSF (« Bach Surface Field » en langue anglaise).
L’étape a) est avantageusement exécutée de sorte que la première surface 10 du substrat 1 est texturée afin de réduire le coefficient de réflexion et les pertes optiques dans la cellule photo voltaïque. La première surface 10 du substrat 1 comporte préférentiellement des motifs en pyramide inversée agencés pour créer une rugosité de surface. La texturation est préférentiellement exécutée par une attaque chimique à base d’hydroxyde de potassium KOH. A titre d’exemple non limitatif, le substrat 1 peut présenter une épaisseur de l’ordre de 150 pm.
L’étape a) est avantageusement exécutée de sorte que les première et seconde surfaces 10, 11 du substrat 1 sont préalablement nettoyées chimiquement.
Première couche diélectrique
L’étape a) est avantageusement exécutée de sorte que la première couche diélectrique 2 est à base d’un oxynitrure de silicium SiOxNy vérifiant 0£y<x, de préférence hydrogéné. La première couche diélectrique 2 présente avantageusement une épaisseur comprise entre 3 nm et 50 nm, de préférence comprise entre 20 nm et 50 nm. Les atomes de bore présentent avantageusement une proportion atomique dans la première couche diélectrique 2 comprise entre 10% et 50%, de préférence comprise entre 10% et 30% avant l’étape b). L’oxynitrure de silicium de la première couche diélectrique 2 vérifie avantageusement 0,2£x£0,5 et 0,05£y£0,15 avant l’étape b).
Comme illustré aux figures 3c et 4c, le procédé peut comporter une étape consistant à former une couche 2’ à base d’un oxynitrure de silicium SiOxNy, vérifiant 0£x<y, de préférence hydrogéné, sur la première couche diélectrique 2 après l’étape b).
Lorsque la première couche diélectrique 2 et la couche 2’ sont réalisées dans un matériau à base d'un oxynitrure de silicium hydrogéné, ces couches peuvent être formées par un dépôt chimique en phase vapeur (PECVD pour « Plasma-E nhanced Chemical Vapor Déposition » en langue anglaise) à partir de gaz réactifs comportant du silane SiH4 et du protoxyde d'azote N2O ou du NH3. Les atomes de bore sont avantageusement incorporés à l' oxynitrure de silicium hydrogéné par une injection de diborane B2H6 avec les gaz réactifs.
La première couche diélectrique 2 est conservée après l’étape b), de même que la couche 2’.
Film(s) d’oxyde tunnel
L’étape a) est avantageusement exécutée de sorte que le film d’oxyde tunnel 3 est un oxyde de silicium ou un oxyde d’aluminium. L’étape a) est avantageusement exécutée de sorte que l’oxyde de silicium est formé sur la seconde surface 11 du substrat 1 par voie thermique. L’étape a) est avantageusement exécutée de sorte que l’oxyde d’aluminium est formé sur la seconde surface 11 du substrat 1 par un dépôt de couches atomiques (ALD).
L’étape a) est avantageusement exécutée de sorte que le film d’oxyde tunnel 3 présente une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm.
Comme illustré aux figures 2a et 4a, l’étape a) est avantageusement exécutée de sorte que : - le film d’oxyde tunnel 3 est un oxyde d’aluminium présentant une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm ;
- la structure comprend un film additionnel 3’ d’oxyde tunnel formé entre la première surface 10 du substrat 1 et la première couche diélectrique 2, le film additionnel 3’ d’oxyde tunnel étant un oxyde d’aluminium présentant une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm.
Couche de polysilicium
L’étape a) est avantageusement exécutée de sorte que la couche de polysilicium 4 présente une épaisseur comprise entre 30 nm et 200 nm, de préférence comprise entre 30 nm et 100 nm.
L’étape a) peut être exécutée de sorte que la couche de polysilicium 4 est formée sur le film d’oxyde tunnel 3 par un dépôt d’une couche de silicium amorphe (e.g. par LPCVD « Eow Pressure Chemical Vapor Déposition » ou par PECVD «Plasma-E nhanced Chemical Vapor Déposition »), suivi d’un recuit permettant de cristalliser la couche de silicium amorphe.
Deuxième couche diélectrique
L’étape a) est avantageusement exécutée de sorte que la deuxième couche diélectrique 5 est à base d’un oxynitrure de silicium SiOxNy vérifiant 0£x<y, de préférence hydrogéné. La deuxième couche diélectrique 5 présente avantageusement une épaisseur comprise entre 10 nm et 50 nm, de préférence comprise entre 10 nm et 30 nm. Les atomes de phosphore ou d'arsenic présentent avantageusement une proportion massique dans la deuxième couche diélectrique 5 supérieure ou égale à 4%, de préférence comprise entre 10% et 30%. L’oxynitrure de silicium de la deuxième couche diélectrique 5 vérifie avantageusement 0£x£0,05 et 0,30£y£0,55 avant et après l’étape b).
Comme illustré aux figures 3a et 4a, le procédé peut comporter une étape consistant à former une couche 5’ à base d’un oxynitrure de silicium SiOxNy, vérifiant 0£x<y, de préférence hydrogéné, sur la deuxième couche diélectrique 5 avant l’étape b), de préférence avec une épaisseur inférieure à 80 nm.
Lorsque la deuxième couche diélectrique 5 et la couche 5’ sont réalisées dans un matériau à base d'un oxynitrure de silicium hydrogéné, ces couches peuvent être formées par un dépôt chimique en phase vapeur (PECVD pour « Plasma-E nhanced Chemical Vapor Déposition » en langue anglaise) à partir de gaz réactifs comportant du silane SiH4 et du NH3. Les atomes de phosphore sont avantageusement incorporés à l' oxynitrure de silicium hydrogéné par une injection de phosphine PH3 avec les gaz réactifs. Les atomes d’arsenic sont avantageusement incorporés à l'oxynitrure de silicium hydrogéné par une injection d’arsine AsH3 avec les gaz réactifs.
La deuxième couche diélectrique 5 est conservée après l’étape b), de même que la couche 5’.
Traitement thermique
L’étape b) est avantageusement exécutée en appliquant un recuit thermique à la structure, le recuit thermique présentant :
- une valeur de température de recuit comprise entre 850°C et 950°C, de préférence comprise entre 900°C et 950°C,
- une valeur de durée de recuit comprise entre 10 minutes et 1 heure, de préférence comprise entre 30 minutes et 1 heure.
Le recuit thermique appliqué lors de l'étape b) est un recuit thermique global au sens où il est appliqué à l'ensemble de la structure prévue lors de l'étape a). Il ne s'agit donc pas d'un recuit thermique localisé appliqué sur une partie dudit ensemble, par exemple à l'aide d'un laser.
L'étape b) est préférentiellement exécutée dans un four.
Le recuit thermique peut être appliqué lors de l’étape b) sous une atmosphère oxydante. Ainsi, un avantage procuré par l’atmosphère oxydante est d’améliorer la passivation de la première surface du substrat (i.e. l’interface entre la première surface et la première couche diélectrique) en enrichissant en oxygène la première couche diélectrique. L'atmosphère oxydante comporte avantageusement un mélange de dioxygène et d'un gaz neutre choisi parmi l'argon, l'azote, ou un mélange d'argon et d'azote. L'atmosphère oxydante est avantageusement constituée par un mélange de dioxygène et d'un gaz neutre choisi parmi l'argon, l'azote, ou un mélange d'argon et d'azote. L'atmosphère oxydante est avantageusement dépourvue d'agent dopant tel que la phosphine. Selon une alternative, le recuit thermique peut être appliqué lors de l’étape b) sous une atmosphère neutre, comportant par exemple du N2.
Après l'étape b), la première région semi-conductrice dopée 100 présente préférentiellement, à la première surface 10 du substrat 1, une concentration en bore supérieure à 1019 at./cm3, plus préférentiellement comprise entre 1019 at./cm3 et 3xl020 at./cm3, afin de former une zone de contact électrique de bonne qualité.
Après l'étape b), la couche de polysilicium 4 dopée présente préférentiellement une concentration en phosphore ou arsenic supérieure à 1020 at./cm3, plus préférentiellement comprise entre 2xl020 at./cm3 et 1021 at./cm3, afin de former une zone de contact électrique de bonne qualité.
Les atomes de bore présentent avantageusement une proportion atomique dans la première couche diélectrique 2 comprise entre 1% et 10%, de préférence comprise entre 3% et 8% après l’étape b).
Les atomes de phosphore ou d’arsenic présentent avantageusement une proportion atomique dans la deuxième couche diélectrique 5 comprise entre 1% et 10%, de préférence comprise entre 1% et 5% après l’étape b).
Cellule photovoltaïque
Comme illustré aux figures le, 2c, 3d et 4d, le procédé peut comporter une étape c) consistant à mettre en contact la première région semi-conductrice dopée 100 et la couche de polysilicium dopée 4 avec une électrode E. L'étape c) comporte avantageusement une étape de métallisation, de préférence exécutée par sérigraphie. Chaque électrode E est préférentiellement réalisée en argent et/ou aluminium.
L’invention a également pour objet une cellule photo voltaïque, comportant :
- un substrat 1 à base de silicium cristallin, présentant une première surface 10 et une seconde surface 11 opposée ;
- une première région semi-conductrice dopée 100, s’étendant sous la première surface 10 du substrat 1, et comprenant des atomes de bore ;
- une première couche diélectrique 2, comprenant des atomes de bore dans une proportion résiduelle, et formée sur la première surface 10 du substrat 1 ;
- un film d’oxyde tunnel 3, formé sur la seconde surface 11 du substrat 1 ;
- une couche de polysilicium 4 dopée, formée sur le film d’oxyde tunnel 3, et comprenant des atomes de phosphore et/ou d’arsenic ;
- une deuxième couche diélectrique 5, comprenant des atomes de phosphore et/ou d’arsenic dans une proportion résiduelle, et formée sur la couche de polysilicium 4 dopée.
La cellule photovoltaïque peut comporter un film additionnel 3’ d’oxyde tunnel formé entre la première surface 10 du substrat 1 et la première couche diélectrique 2. Le film d’oxyde tunnel 3 et le film additionnel 3’ d’oxyde tunnel sont avantageusement réalisés en oxyde d’aluminium et présentent une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm.
Par « proportion résiduelle », on entend que : - les atomes de bore présentent une proportion atomique dans la première couche diélectrique 2 comprise entre 1% et 10%, de préférence comprise entre 3% et 8% ;
- les atomes de phosphore ou d’arsenic présentent une proportion atomique dans la deuxième couche diélectrique 5 comprise entre 1% et 10%, de préférence comprise entre 1% et 5%.
L’invention ne se limite pas aux modes de réalisation exposés. L’homme du métier est mis à même de considérer leurs combinaisons techniquement opérantes, et de leur substituer des équivalents.

Claims

REVENDICATIONS
1. Procédé de fabrication d’une cellule photo voltaïque, comportant les étapes : a) prévoir une structure comprenant :
- un substrat (1) à base de silicium cristallin, présentant une première surface (10) et une seconde surface (11) opposée ;
- une première couche diélectrique (2), comprenant des atomes de bore, et formée sur la première surface (10) du substrat (1) ;
- un film d’oxyde tunnel (3), formé sur la seconde surface (11) du substrat ;
- une couche de polysilicium (4), formée sur le film d’oxyde tunnel (3) ;
- une deuxième couche diélectrique (5), comprenant des atomes de phosphore et/ou d’arsenic, et formée sur la couche de polysilicium (4) ; b) appliquer un traitement thermique à la structure de manière à :
- diffuser les atomes de bore depuis la première couche diélectrique (2) sous la première surface (10) du substrat (1), de manière à former une première région semi-conductrice dopée (100) destinée à être en contact avec une électrode (E) ;
- diffuser les atomes de phosphore et/ou d’arsenic depuis la deuxième couche diélectrique (5) dans la couche de polysilicium (4), de manière à doper la couche de polysilicium (4), la couche de polysilicium dopée étant destinée à être en contact avec une électrode (E).
2. Procédé selon la revendication 1, dans lequel l’étape a) est exécutée de sorte que le film d’oxyde tunnel (3) est un oxyde de silicium ou un oxyde d’aluminium.
3. Procédé selon la revendication 2, dans lequel l’étape a) est exécutée de sorte que le film d’oxyde tunnel (3) est un oxyde de silicium formé sur la seconde surface (11) du substrat (1) par voie thermique.
4. Procédé selon la revendication 2, dans lequel l’étape a) est exécutée de sorte que le film d’oxyde tunnel (3) est un oxyde d’aluminium formé sur la seconde surface (11) du substrat (1) par un dépôt de couches atomiques.
5. Procédé selon l’une des revendications 1 à 4, dans lequel l’étape a) est exécutée de sorte que le film d’oxyde tunnel (3) présente une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm.
6. Procédé selon l’une des revendications 1 à 5, dans lequel l’étape a) est exécutée de sorte que :
- le film d’oxyde tunnel (3) est un oxyde d’aluminium présentant une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm ;
- la structure comprend un film additionnel (3’) d’oxyde tunnel formé entre la première surface (10) du substrat (1) et la première couche diélectrique (2), le film additionnel (3’) d’oxyde tunnel étant un oxyde d’aluminium présentant une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm.
7. Procédé selon l’une des revendications 1 à 6, dans lequel l’étape a) est exécutée de sorte que la première couche diélectrique (2) est à base d’un oxynitrure de silicium SiOxNy vérifiant 0£y<x, de préférence hydrogéné.
8. Procédé selon l’une des revendications 1 à 7, dans lequel l’étape a) est exécutée de sorte que la deuxième couche diélectrique (5) est à base d’un oxynitrure de silicium SiOxNy vérifiant 0£x<y, de préférence hydrogéné.
9. Procédé selon l’une des revendications 1 à 8, dans lequel l’étape b) est exécutée en appliquant un recuit thermique à la structure, le recuit thermique présentant :
- une valeur de température de recuit comprise entre 850°C et 950°C, de préférence comprise entre 900°C et 950°C,
- une valeur de durée de recuit comprise entre 10 minutes et 1 heure, de préférence comprise entre 30 minutes et 1 heure.
10. Procédé selon l’une des revendications 1 à 9, comportant une étape consistant à former une couche (2’) à base d’un oxynitrure de silicium SiOxNy, vérifiant 0£x<y, de préférence hydrogéné, sur la première couche diélectrique (2) après l’étape b).
11. Procédé selon l’une des revendications 1 à 10, comportant une étape consistant à former une couche (5’) à base d’un oxynitrure de silicium SiOxNy, vérifiant 0£x<y, de préférence hydrogéné, sur la deuxième couche diélectrique (5) avant l’étape b).
12. Procédé selon l’une des revendications 1 à 11, dans lequel les première et deuxième couches diélectriques (2, 5) sont conservées après l’étape b).
13. Cellule photovoltaïque, comportant :
- un substrat (1) à base de silicium cristallin, présentant une première surface (10) et une seconde surface (11) opposée ;
- une première région semi-conductrice dopée (100), s’étendant sous la première surface (10) du substrat (10), et comprenant des atomes de bore ;
- une première couche diélectrique (2), comprenant des atomes de bore dans une proportion résiduelle selon une proportion atomique comprise entre 1% et 10%, et formée sur la première surface (10) du substrat (1) ;
- un film d’oxyde tunnel (3), formé sur la seconde surface (11) du substrat (1) ; - une couche de polysilicium (4) dopée, formée sur le film d’oxyde tunnel (3), et comprenant des atomes de phosphore et/ou d’arsenic ;
- une deuxième couche diélectrique (5), comprenant des atomes de phosphore et/ou d’arsenic dans une proportion résiduelle selon une proportion atomique comprise entre 1% et 10%, et formée sur la couche de polysilicium (4) dopée.
14. Cellule photovoltaïque selon la revendication 13, comportant un film additionnel (3’) d’oxyde tunnel formé entre la première surface (10) du substrat (1) et la première couche diélectrique (2).
15. Cellule photovoltaïque selon la revendication 14, dans lequel le film d’oxyde tunnel (3) et le film additionnel (3’) d’oxyde tunnel sont réalisés en oxyde d’aluminium et présentent une épaisseur inférieure ou égale à 3 nm, de préférence inférieure ou égale à 2 nm.
PCT/EP2020/073739 2019-08-29 2020-08-25 Procédé de fabrication d'une cellule photovoltaïque WO2021037846A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080060011.2A CN114303252A (zh) 2019-08-29 2020-08-25 用于制造光伏电池的方法
EP20757928.5A EP4022688A1 (fr) 2019-08-29 2020-08-25 Procédé de fabrication d'une cellule photovoltaïque

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1909500A FR3100381B1 (fr) 2019-08-29 2019-08-29 Procédé de fabrication d’une cellule photovoltaïque
FRFR1909500 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021037846A1 true WO2021037846A1 (fr) 2021-03-04

Family

ID=68281710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/073739 WO2021037846A1 (fr) 2019-08-29 2020-08-25 Procédé de fabrication d'une cellule photovoltaïque

Country Status (4)

Country Link
EP (1) EP4022688A1 (fr)
CN (1) CN114303252A (fr)
FR (1) FR3100381B1 (fr)
WO (1) WO2021037846A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787541A1 (fr) * 2013-04-03 2014-10-08 LG Electronics, Inc. Cellule solaire
EP3026713A1 (fr) * 2014-11-28 2016-06-01 LG Electronics Inc. Cellule solaire et son procédé de fabrication
CN105895738A (zh) * 2016-04-26 2016-08-24 泰州中来光电科技有限公司 一种钝化接触n型太阳能电池及制备方法和组件、系统
FR3035740A1 (fr) 2015-04-28 2016-11-04 Commissariat Energie Atomique Procede de fabrication d'une cellule photovoltaique.
CN106784074A (zh) * 2017-01-24 2017-05-31 泰州乐叶光伏科技有限公司 N型双面电池结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132275A (en) * 1977-04-25 1978-11-17 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and its production
CN110148636A (zh) * 2018-11-27 2019-08-20 晶澳(扬州)太阳能科技有限公司 一种太阳能电池及其制备方法、光伏组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787541A1 (fr) * 2013-04-03 2014-10-08 LG Electronics, Inc. Cellule solaire
EP3026713A1 (fr) * 2014-11-28 2016-06-01 LG Electronics Inc. Cellule solaire et son procédé de fabrication
FR3035740A1 (fr) 2015-04-28 2016-11-04 Commissariat Energie Atomique Procede de fabrication d'une cellule photovoltaique.
CN105895738A (zh) * 2016-04-26 2016-08-24 泰州中来光电科技有限公司 一种钝化接触n型太阳能电池及制备方法和组件、系统
CN106784074A (zh) * 2017-01-24 2017-05-31 泰州乐叶光伏科技有限公司 N型双面电池结构

Also Published As

Publication number Publication date
FR3100381B1 (fr) 2021-08-20
FR3100381A1 (fr) 2021-03-05
CN114303252A (zh) 2022-04-08
EP4022688A1 (fr) 2022-07-06

Similar Documents

Publication Publication Date Title
EP1903615B1 (fr) Procédé de métallisation de cellules photovoltaïques à multiples recuits
EP1903616B1 (fr) Procédé de recuit de cellules photovoltaiques
FR2906405A1 (fr) Procede de realisation de regions dopees dans un substrat et de cellule photovoltaique
EP3331031B1 (fr) Procede de fabrication d&#39;une cellule photovoltaique et cellule photovoltaique
EP3289616B1 (fr) Cellule photovoltaïque et son procédé de fabrication
EP3682485B1 (fr) Procédé de fabrication d&#39;une cellule photovoltaïque à homojonction
EP3331030B1 (fr) Structure et procede de passivation
EP2979306A1 (fr) Procédé de fabrication d&#39;une structure à multijonctions pour cellule photovoltaïque
EP4030467B1 (fr) Procédé de collage direct hydrophile de substrats
WO2021037846A1 (fr) Procédé de fabrication d&#39;une cellule photovoltaïque
EP3761378B1 (fr) Procede de passivation
FR3114442A1 (fr) Procédé de fabrication d’une cellule photovoltaïque à contacts passivés
EP3316319B1 (fr) Cellules photovoltaïques a contacts arriere et leur procede de fabrication
EP3474335A1 (fr) Procede de fabrication d&#39;une cellule photovoltaïque
EP3289617A1 (fr) Procede de fabrication d&#39;une cellule photovoltaïque
FR3130070A1 (fr) Procédé de fabrication d’une cellule photovoltaïque
FR3129769A1 (fr) Procédé de passivation
WO2024084179A1 (fr) Procede de fabrication d&#39;une couche piezoelectrique sur un substrat
WO2020136344A1 (fr) Procede de fabrication d&#39;un substrat pour un capteur d&#39;image de type face avant
FR3051074A1 (fr) Procede de fabrication d&#39;une cellule photovoltaique a heterojonction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20757928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020757928

Country of ref document: EP

Effective date: 20220329