WO2021036750A1 - 高压电池的充放电控制方法及其装置 - Google Patents

高压电池的充放电控制方法及其装置 Download PDF

Info

Publication number
WO2021036750A1
WO2021036750A1 PCT/CN2020/107838 CN2020107838W WO2021036750A1 WO 2021036750 A1 WO2021036750 A1 WO 2021036750A1 CN 2020107838 W CN2020107838 W CN 2020107838W WO 2021036750 A1 WO2021036750 A1 WO 2021036750A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage battery
charging
threshold
state
charge value
Prior art date
Application number
PCT/CN2020/107838
Other languages
English (en)
French (fr)
Inventor
钱超
张南
李雷
刘宝
宋丹丹
孙兆略
宋海军
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP20859321.0A priority Critical patent/EP4011688A4/en
Publication of WO2021036750A1 publication Critical patent/WO2021036750A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the technical field of hybrid electric vehicles, and in particular to methods, devices, equipment and media for controlling the charging and discharging of high-voltage batteries.
  • Hybrid electric vehicles can not only achieve energy saving and emission reduction, but also meet the customer's driving range requirements. Therefore, hybrid electric vehicles have become a more suitable solution for the development of new energy vehicles.
  • control strategy has always been a key area of R&D and design. Energy management is the core part of the strategy development of hybrid electric vehicles, and the charge and discharge control of the whole vehicle is the top priority of energy management. Therefore, reasonable charging and discharging timing is particularly important.
  • the control of the timing of charging and discharging is mostly implemented based on a simple logic threshold strategy.
  • the high-voltage battery SOC State of Charge, nuclear power state
  • the vehicle speed is higher than a certain threshold
  • the engine speed is higher than a certain threshold. If the torque request is less than a certain threshold or the accelerator pedal opening is less than a certain threshold, the engine drives the motor to charge the high-voltage battery to drive or assist the motor under severe working conditions.
  • FIG. 1 shows a schematic diagram of a charging and discharging control method for a high-voltage battery of a hybrid electric vehicle according to an embodiment of the prior art.
  • the required torque threshold at the current engine speed and the battery charge at the current speed State threshold value establish the charge and discharge control strategy partition map in the current state, and comprehensively control the charge and discharge timing and the size of the charge and discharge power.
  • control strategy based on logic thresholds is relatively simple to control, but it is not refined enough to achieve staged control based on parameter thresholds, and it is impossible to achieve a higher-voltage battery power change according to different working conditions of each stage. Take advantage of.
  • embodiments of the present disclosure provide a method for controlling the charge and discharge of a high-voltage battery of a hybrid electric vehicle, including: determining a state-of-charge value and an expected state-of-charge value of the high-voltage battery of the hybrid electric vehicle; Based on the state of charge value of the high voltage battery or the difference between the state of charge value of the high voltage battery and the expected state of charge value, the charge and discharge mode of the high voltage battery is controlled; based on the charge and discharge mode of the high voltage battery And vehicle parameters, control the charging current or discharging current of the high-voltage battery.
  • the method further includes: in response to the temperature of the high-voltage battery being lower than a preset threshold, controlling the high-voltage battery to enter a heating mode.
  • the charging and discharging modes include: a discharging mode, a power retention mode, an efficiency charging mode, and a forced charging mode.
  • the discharging mode includes: an active discharging mode and a passive discharging mode;
  • the efficiency charging mode includes: a general efficiency charging mode and a high efficiency charging mode.
  • the controlling the charge and discharge mode of the high voltage battery based on the state of charge value of the high voltage battery or the difference between the state of charge value of the high voltage battery and the expected state of charge value includes: In response to the state-of-charge value of the high-voltage battery being greater than the discharge threshold, or the difference between the state-of-charge value of the high-voltage battery and the expected state-of-charge value is greater than the discharge difference threshold, the high-voltage battery is controlled to enter the Discharge mode; in response to the state-of-charge value of the high-voltage battery being less than the discharge threshold and greater than the power retention threshold, or the difference between the state-of-charge value of the high-voltage battery and the expected state-of-charge value is less than the discharging Control the high-voltage battery to enter the power retention mode if the difference threshold is greater than the power retention difference threshold; in response to the state of charge value of the high-voltage battery being less than the power retention threshold and greater than the forced charging threshold, or the
  • the controlling the charge and discharge mode of the high voltage battery based on the state of charge value of the high voltage battery or the difference between the state of charge value of the high voltage battery and the expected state of charge value includes: In response to the state of charge value of the high voltage battery being greater than the active discharge threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is greater than the active discharge difference threshold, the high voltage battery is controlled to enter the Active discharge mode; in response to the state of charge value of the high voltage battery being less than the active discharge threshold and greater than the passive discharge threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is less than the value The active discharge difference threshold and greater than the passive discharge difference threshold, control the high-voltage battery to enter the passive discharge mode; in response to the state-of-charge value of the high-voltage battery being less than the passive discharge threshold and greater than the power retention threshold, or The difference between the state-of-charge value of the high-voltage battery and the
  • the determining the charging current or the discharging current of the high-voltage battery based on the charging and discharging mode of the high-voltage battery and vehicle parameters includes: responding to the entire vehicle The required torque is less than the engine start torque threshold and the accelerator pedal opening is less than the engine start pedal opening threshold, and the discharge current of the high-voltage battery is determined based on the motor torque being equal to the vehicle demand torque; in response to the vehicle demand torque being greater than the engine start torque threshold or The accelerator pedal opening is greater than the engine start pedal opening threshold, and the discharge current of the high-voltage battery is determined based on the motor torque being equal to the vehicle demand torque minus the engine demand torque; after controlling the high-voltage battery to enter the power retention mode, the Based on the charging and discharging mode of the high-voltage battery and vehicle parameters, determining the charging current or discharging current of the high-voltage battery includes: determining the charging current of the high-voltage battery based on
  • the determining the charging current or the discharging current of the high-voltage battery based on the charging and discharging mode of the high-voltage battery and vehicle parameters includes: responding to the adjustment When the required torque of the vehicle is less than the maximum torque of the motor and the accelerator pedal opening is less than the engine start pedal opening threshold and the vehicle speed is lower than the engine start speed threshold, the discharge current of the high-voltage battery is determined based on the motor torque being equal to the vehicle demand torque; in response to the vehicle The required torque is greater than the maximum torque of the motor or the accelerator pedal opening is greater than the engine start pedal opening threshold or the vehicle speed is higher than the engine start vehicle speed threshold.
  • determining the charging current or discharging current of the high-voltage battery based on the charging and discharging mode of the high-voltage battery and vehicle parameters includes: responding to the vehicle demand torque being less than the engine starting torque threshold and the accelerator pedal opening degree Less than the engine start pedal opening threshold, determine the discharge current of the high-voltage battery based on the motor torque being equal to the vehicle demand torque; in response to the vehicle demand torque being greater than the engine starting torque threshold or the accelerator pedal opening greater than the engine starting pedal opening threshold, Determine the discharge current of the high-voltage battery based on the motor torque equal to the vehicle demand torque minus the engine request torque; after controlling the high-voltage battery to enter the power retention mode, the high-voltage battery based on the charging and discharging mode and vehicle parameters , Determining the charging current or discharging current of the high-voltage battery includes: determining the charging current of the high-voltage
  • the embodiment of the present disclosure also provides a charging and discharging control device for a high-voltage battery of a hybrid electric vehicle, wherein the device includes a state of charge value determining module, a charging and discharging mode control module, and a charging and discharging current control module.
  • the state value determination module determines the state-of-charge value and the expected state-of-charge value of the high-voltage battery of the hybrid electric vehicle; the charge-discharge mode control module is based on the state-of-charge value of the high-voltage battery, or the state-of-charge value of the high-voltage battery and The difference of the expected state of charge value controls the charging and discharging mode of the high voltage battery; the charging and discharging current control module controls the charging current or discharging current of the high voltage battery based on the charging and discharging mode of the high voltage battery and vehicle parameters.
  • the device further includes a temperature control module that controls the high-voltage battery to enter a heating mode in response to the temperature of the high-voltage battery being lower than a preset threshold.
  • the technical solution provided by the embodiments of the present disclosure solves the problem that the control strategy based on logic thresholds is relatively simple and not precise enough, based on the state-of-charge value of the high-voltage battery of the hybrid electric vehicle, or the state-of-charge value of the high-voltage battery and the expected charge
  • the staged precise control of the single parameter of the difference of the electric state value controls the charge and discharge mode of the high-voltage battery.
  • Different charge and discharge modes adopt different charging and discharging strategies to achieve a more sufficient charge for the high-voltage battery under different working conditions at each stage. Utilization, better economic efficiency, and a wide range of applications, can be applied to hybrid vehicles of various architectures.
  • FIG. 1 shows a schematic diagram of a charging and discharging control method of a high-voltage battery of a hybrid electric vehicle according to an embodiment of the prior art
  • Fig. 2 shows a schematic flow chart of a method for controlling the charging and discharging of a high-voltage battery of a hybrid electric vehicle according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of the division of charge and discharge control modes according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic flow chart of a method for controlling charging and discharging of a high-voltage battery of a hybrid electric vehicle according to another embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of the division of charge and discharge control modes according to another embodiment of the present disclosure
  • FIG. 6 shows a schematic flow chart of a method for controlling charging and discharging of a high-voltage battery of a hybrid electric vehicle according to another embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a temperature curve of a high-voltage battery provided by an embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of the composition of a charging and discharging control device for a high-voltage battery of a hybrid electric vehicle provided by an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of the composition of a charging and discharging control device for a high-voltage battery of a hybrid electric vehicle provided by another embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of the composition of a charging and discharging control device for a high-voltage battery of a hybrid electric vehicle provided by another embodiment of the present disclosure.
  • FIG. 11 schematically shows a block diagram of a charging and discharging control device of a high-voltage battery for executing the method according to the present application.
  • Fig. 12 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • “plurality” means two or more than two, unless specifically defined otherwise.
  • a hybrid vehicle refers to a vehicle in which the vehicle drive system is composed of two or more single drive systems that can operate at the same time.
  • the driving power of the vehicle is provided separately or jointly by a single drive system according to the actual vehicle driving state.
  • traditional engines diesel or gasoline engines
  • electric motors are used as power sources, some engines have been modified to use other alternative fuels, such as compressed natural gas, propane and ethanol fuels.
  • FIG. 2 shows a schematic flow chart of a method for controlling the charging and discharging of a high-voltage battery of a hybrid electric vehicle according to an embodiment of the present disclosure, which includes the following steps.
  • step S110 the state of charge value and the expected state of charge value of the high-voltage battery of the hybrid electric vehicle are determined.
  • the state-of-charge value SOC is the ratio of the remaining capacity of a battery after a period of use or long-term storage and its fully charged state, and is usually expressed as a percentage.
  • the expected state of charge value also called the expected SOC
  • the expected SOC is the expected state of charge value of the entire vehicle. During the normal operation of the entire vehicle, the high-voltage battery SOC can be maintained at the desired SOC. The expected SOC is related to the driving mode and vehicle speed. The temperature of the high-voltage battery, the ambient temperature, and the power of the high-voltage accessories will also affect the expected SOC.
  • the EV mode is a pure electric exercise mode, the engine does not start, and the expected SOC is meaningless.
  • AWD mode all terrain driving mode
  • Sport mode power mode
  • Auto mode automatic driving mode
  • Save mode power saving mode
  • Sport mode the engine runs all the time, mainly providing power output, and electricity is only used for power compensation. Therefore, the Sport mode requires higher driving performance. In order to ensure sufficient power, it is expected that the SOC should be 10-20% higher than the AUTO mode.
  • the expected SOC is set to the amount of power that the user expects to be charged under the condition of non-insertion gun charging. Theoretically, the expected SOC is greater than 50%.
  • the AWD mode has a rear axle motor, which is a four-wheel drive mode.
  • a rear axle motor which is a four-wheel drive mode.
  • the consumption increases accordingly to ensure driving and passing conditions.
  • the SOC should rise by 20-30% compared to the expected SOC of the SPORT mode.
  • the expected SOC should be appropriately increased.
  • the ambient temperature is low or high, considering the reduction in the available power of the high-voltage battery and the increase in potential electrical load, the expected SOC should be appropriately increased.
  • the expected SOC should be appropriately increased to ensure that sufficient power is used for the consumption of the high-voltage accessory. That is, when the power of high-voltage accessories such as DCDC (direct current converter), PTC (Power Temperature, thermistor heater), CMP (Compressor, compressor) is greater than the power threshold, and the high-voltage battery temperature is less than a certain value, the expected SOC should be appropriately increased.
  • DCDC direct current converter
  • PTC Power Temperature, thermistor heater
  • CMP Compressor, compressor
  • step S120 the charge and discharge mode of the high voltage battery is controlled based on the state of charge value of the high voltage battery or the difference between the state of charge value of the high voltage battery and the expected state of charge value.
  • the charging and discharging modes of the high-voltage battery are divided into four types: discharge mode, power retention mode, charging mode, forced
  • the charging mode is shown in FIG. 3, which shows a schematic diagram of the division of the charging and discharging control modes provided by an embodiment of the present disclosure.
  • the setting of each threshold is determined according to the desired SOC and the lowest available SOC and the highest available SOC defined by the high-voltage battery.
  • the mandatory charge threshold SOC2 is set as the sum of the lowest available SOC1 and the first compensation value.
  • the interval between the forced charging threshold SOC2 and the battery retention threshold S0C4 is the efficiency charging interval.
  • the power retention threshold SOC4 is generally set to the desired SOC.
  • the discharge threshold SOC5 is set to the sum of the power retention threshold SOC4 and the second compensation value or the difference between the highest available SOC and the third compensation value. Each compensation value is set based on experience.
  • the setting of each difference threshold is the difference between each threshold and the expected SOC. In different driving modes, there will be different expected SOCs, so the difference judgment condition can ensure that different driving modes have different entry conditions, and the state of charge values that can be maintained are also different.
  • the high voltage battery in response to the state of charge value of the high voltage battery being greater than the discharge threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is greater than the discharge difference threshold, the high voltage battery is controlled to enter the discharge mode.
  • the high voltage In response to the state of charge value of the high voltage battery being less than the discharge threshold and greater than the power retention threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is less than the discharge difference threshold and greater than the power retention difference threshold, the high voltage is controlled The battery enters the power retention mode.
  • the high voltage battery In response to the state of charge value of the high voltage battery being less than the forced charging threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is less than the forced charging difference threshold, the high voltage battery is controlled to enter the forced charging mode.
  • step S130 the charging current or discharging current of the high-voltage battery is controlled based on the charging and discharging mode of the high-voltage battery and the vehicle parameters.
  • the motor charges the high-voltage battery, and different charging and discharging strategies can be used to achieve precise control in stages.
  • the motor torque is equal to the torque required for the power consumption of the high-voltage accessory, and the power generation of the motor can maintain the SOC value of the high-voltage battery.
  • the charging torque of the motor is determined according to the optimal working range of the engine, so that the engine is in a high-efficiency working area.
  • the SOC of the high-voltage battery is very low, regardless of the working range of the engine, use as much motor torque as possible to charge the high-voltage battery.
  • the specific charging and discharging strategy should also consider the specific vehicle parameters, the specific strategy is as follows.
  • the charging power meets the power consumption of high-voltage accessories such as DCDC, PTC, CMP, etc., and the charging current of the high-voltage battery is determined based on the torque of the motor equal to the torque required for the power consumption of the high-voltage accessory.
  • the charging power After the high-voltage battery is controlled to enter the efficient charging mode, the charging power not only meets the power consumption of high-voltage accessories such as DCDC, PTC, CMP, etc., but also determines the charging and boosting state of the motor according to the engine's high-efficiency operating range.
  • the charging current of the high-voltage battery is determined based on the electric motor torque being equal to the required torque of the engine minus the optimal torque of the current engine speed. When the motor torque is positive, the motor is in the assist state, and when the motor torque is negative, the motor is in the power generation state.
  • the SOC is close to the lower threshold of the high-voltage battery SOC, so there is no need to consider the high-efficiency operating range of the engine, and the charging power of the motor is increased as much as possible to realize the fast charging of the high-voltage battery.
  • the charging current of the high-voltage battery is determined.
  • the technical solution provided by this embodiment solves the problem that the control strategy based on logic thresholds is relatively simple and not precise enough, based on the state-of-charge value of the high-voltage battery of a hybrid electric vehicle, or the state-of-charge value of the high-voltage battery and the expected charge
  • the staged precise control of the single parameter of the difference of the state value controls the charge and discharge mode of the high voltage battery.
  • Different charge and discharge modes adopt different charge and discharge strategies to realize the full utilization of the high voltage battery power in different working conditions at each stage. , It improves the economy better, and has a wide range of applications, which can be applied to hybrid vehicles of various architectures.
  • FIG. 4 shows a schematic flow chart of a method for controlling the charging and discharging of a high-voltage battery of a hybrid electric vehicle according to an embodiment of the present disclosure, which includes the following steps.
  • step S110 the state of charge value and the expected state of charge value of the high-voltage battery of the hybrid electric vehicle are determined.
  • Step S110 is the same as S110 in the above-mentioned embodiment of FIG. 2 and will not be described again.
  • step S220 the charge and discharge mode of the high voltage battery is controlled based on the state of charge value of the high voltage battery or the difference between the state of charge value of the high voltage battery and the desired state of charge value.
  • a front axle motor and a rear axle motor are configured at the same time.
  • the charge and discharge modes are divided into There are six types: active discharge mode, passive discharge mode, power retention mode, general efficiency charging mode, high efficiency charging mode, and forced charging mode.
  • the high-efficiency mode the charging torque of the motor is greater.
  • the general-efficiency charging mode and the high-efficiency charging mode can be combined. As shown in FIG. 5, FIG. 5 shows a schematic diagram of the division of charge and discharge control modes according to an embodiment of the present disclosure.
  • the setting of each threshold is determined according to the desired SOC and the lowest available SOC and the highest available SOC defined by the high-voltage battery.
  • the mandatory charge threshold SOC2 is set as the sum of the lowest available SOC1 and the first compensation value.
  • the interval between the forced charging threshold SOC2 and the power retention threshold SOC4 is the interval between normal efficiency charging and high efficiency charging.
  • the efficiency charging threshold SOC3 is set based on experience.
  • the passive discharge threshold SO5 is set as the sum of the charge retention threshold SOC4 and the second compensation value.
  • the active discharge threshold SOC6 is set to the highest available SOC of the high-voltage battery minus the third compensation value.
  • Each compensation value is set based on experience. Among them, the power retention threshold SOC4 is generally set to the desired SOC.
  • the high voltage battery in response to the state of charge value of the high voltage battery being greater than the active discharge threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is greater than the active discharge difference threshold, the high voltage battery is controlled to enter the active discharge mode.
  • Control the high-voltage battery In response to the state of charge value of the high voltage battery being less than the efficiency charging threshold and greater than the mandatory charging threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is less than the efficiency charging difference threshold and greater than the mandatory charging difference threshold, Control the high-voltage battery to enter a high-efficiency charging mode.
  • the high voltage battery In response to the state of charge value of the high voltage battery being less than the forced charging threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is less than the forced charging difference threshold, the high voltage battery is controlled to enter the forced charging mode.
  • step S230 the charging current or discharging current of the high-voltage battery is controlled based on the charging and discharging mode of the high-voltage battery and the vehicle parameters.
  • the motor charges the high-voltage battery, and different charging and discharging strategies can be used to achieve precise control in stages.
  • the positive torque of the motor is actively requested, and the motor is used to meet the required torque of the vehicle as much as possible.
  • the motor torque is equal to the torque required for the power consumption of the high-voltage accessory, and the power generation of the motor can maintain the SOC value of the high-voltage battery.
  • the charging torque of the motor is determined according to the optimal working range of the engine, so that the engine is in a high-efficiency working area.
  • the charging torque of the motor is larger than that of the general-efficiency charging mode.
  • the SOC of the high-voltage battery is very low, regardless of the working range of the engine, use as much motor torque as possible to charge the high-voltage battery.
  • the specific charging and discharging strategy should also consider the specific vehicle parameters, the specific strategy is as follows.
  • the high-voltage battery After controlling the high-voltage battery to enter the active discharge mode, it responds to the vehicle's required torque is less than the maximum torque of the motor and the accelerator pedal opening is less than the engine start pedal opening threshold and the vehicle speed is lower than the engine start speed threshold. At this time, it is pure electric drive. , Only motor drive, based on the motor torque equal to the vehicle's required torque, determine the discharge current of the high-voltage battery. In response to the vehicle's required torque being greater than the motor's maximum torque or the accelerator pedal opening greater than the engine start pedal opening threshold, or the vehicle speed is higher than the engine starting speed threshold, it is hybrid drive. The high-voltage battery discharge is prioritized. Based on the motor torque equal to the motor maximum torque, Determine the discharge current of the high-voltage battery.
  • the high-voltage battery After the high-voltage battery is controlled to enter the passive discharge mode, in response to the vehicle demand torque is less than the engine start torque threshold and the accelerator pedal opening is less than the engine start pedal opening threshold, it is pure electric drive at this time. Based on the motor torque equal to the vehicle demand torque, determine The discharge current of a high-voltage battery. In response to the vehicle demand torque being greater than the engine start torque threshold or the accelerator pedal opening is greater than the engine start pedal opening threshold, it is hybrid drive, giving priority to the motor torque distribution, high-voltage battery discharge, based on the motor torque equal to the vehicle demand torque minus the engine request Torque determines the discharge current of the high-voltage battery.
  • the charging power meets the power consumption of high-voltage accessories such as DCDC, PTC, CMP, etc., and the charging current of the high-voltage battery is determined based on the torque of the motor equal to the torque required for the power consumption of the high-voltage accessory.
  • the charging power After controlling the high-voltage battery to enter the general efficiency charging mode, the charging power not only meets the power consumption of high-voltage accessories such as DCDC, PTC, CMP, etc., but also determines the charging and boosting state of the motor according to the engine's high-efficiency working range.
  • the charging current of the high-voltage battery is determined based on the electric motor torque being equal to the required torque of the engine minus the optimal torque of the current engine speed. When the motor torque is positive, the motor is in the assist state, and when the motor torque is negative, the motor is in the power generation state.
  • the charging current of the high-voltage battery is determined based on the motor torque equal to the required torque of the engine minus the optimal torque of the current engine speed and the high-efficiency charging compensation torque. When the motor torque is positive, the motor is in the assist state, and when the motor torque is negative, the motor is in the power generation state.
  • the SOC is close to the lower threshold of the high-voltage battery SOC, so there is no need to consider the high-efficiency operating range of the engine, and the charging power of the motor is increased as much as possible to realize the fast charging of the high-voltage battery.
  • the charging current of the high-voltage battery is determined.
  • the technical solution provided in this embodiment as a further improvement, further refines the charge and discharge modes. Different charge and discharge modes that you like adopt different charge and discharge strategies, which can realize the full utilization of the high-voltage battery power in different working conditions at each stage. Good to improve economy.
  • FIG. 6 shows a schematic flow chart of a method for controlling the charging and discharging of a high-voltage battery of a hybrid electric vehicle according to another embodiment of the present disclosure.
  • the method further includes step S140, in response to the temperature of the high-voltage battery being lower than the preset threshold, controlling the high-voltage battery to enter the heating mode.
  • FIG. 7 shows a schematic diagram of a temperature curve of a high-voltage battery provided by an embodiment of the present disclosure.
  • a certain low temperature threshold Temporal Low
  • the vehicle enters the battery heating mode. In this mode, the battery is charged and discharged periodically to rapidly increase the temperature of the high-voltage battery until the high-voltage battery The temperature is higher than a certain high temperature threshold (TempHigh), which improves the working efficiency of the high-voltage battery.
  • the straight line 41 is the temperature of the high-voltage battery
  • the curve 42 is the current of the high-voltage battery
  • I1 is the maximum discharge current of the high-voltage battery when the battery is heated
  • I2 is the maximum charging current of the high-voltage battery when the battery is heated.
  • step S140 it has a higher priority. No matter which of the preceding steps is executed, it is detected that the temperature of the high-voltage battery is lower than the preset threshold. All can go to step S140.
  • An electronic device includes a memory, a processor, and a computer program that is stored on the memory and can run on the processor, and the processor executes the above-mentioned method when the program is executed.
  • the memory as a non-transitory computer readable memory, can be used to store software programs, computer executable programs, and modules.
  • the processor executes various functional applications and data processing of the electronic device by running the software programs, instructions, and modules stored in the storage cutoff, that is, realizing the methods described in the foregoing embodiments.
  • the memory may include a storage program area and a storage data area, where the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the electronic device, and the like.
  • the memory may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the storage may optionally include storage remotely provided with respect to the processor, and these remote storages may be connected to the electronic device through a network.
  • FIG. 8 shows a schematic diagram of the composition of a charging and discharging control device for a high-voltage battery of a hybrid electric vehicle provided by an embodiment of the present disclosure, which includes a state of charge value determination module 100, a charging and discharging mode control module 200, and a charging and discharging current control module 300.
  • the state of charge value determination module 100 determines the state of charge value and the expected state of charge value of the high-voltage battery of the hybrid electric vehicle.
  • the charge-discharge mode control module 200 controls the charge-discharge mode of the high-voltage battery based on the state-of-charge value of the high-voltage battery or the difference between the state-of-charge value of the high-voltage battery and the expected state-of-charge value.
  • the charge and discharge current control module 300 controls the charge current or discharge current of the high voltage battery based on the charge and discharge mode of the high voltage battery and vehicle parameters.
  • FIG. 9 shows a schematic diagram of the composition of a charging and discharging control device for a high-voltage battery of a hybrid electric vehicle provided by another embodiment of the present disclosure, including a state of charge value determination module 100, a charging and discharging mode control module 200, a charging and discharging current control module 300, and temperature Control module 400.
  • the state of charge value determination module 100 determines the state of charge value and the expected state of charge value of the high-voltage battery of the hybrid electric vehicle.
  • the charge-discharge mode control module 200 controls the charge-discharge mode of the high-voltage battery based on the state-of-charge value of the high-voltage battery or the difference between the state-of-charge value of the high-voltage battery and the expected state-of-charge value.
  • the charge and discharge current control module 300 controls the charge current or discharge current of the high voltage battery based on the charge and discharge mode of the high voltage battery and vehicle parameters.
  • the temperature control module 400 controls the high-voltage battery to enter the heating mode in response to the temperature of the high-voltage battery being lower than the preset threshold.
  • FIG. 10 shows a schematic diagram of the composition of a charging and discharging control device for a high-voltage battery of a hybrid electric vehicle provided by another embodiment of the present disclosure, which includes a state of charge value determination module 100, a charging and discharging mode control module 200, and a charging and discharging current control module 300.
  • the state of charge value determination module 100 determines the state of charge value and the expected state of charge value of the high-voltage battery of the hybrid electric vehicle.
  • the charge-discharge mode control module 200 controls the charge-discharge mode of the high-voltage battery based on the state-of-charge value of the high-voltage battery or the difference between the state-of-charge value of the high-voltage battery and the expected state-of-charge value.
  • the charge and discharge current control module 300 controls the charge current or discharge current of the high voltage battery based on the charge and discharge mode of the high voltage battery and vehicle parameters.
  • the charge and discharge mode control module 200 includes an active discharge mode control module 210, a passive discharge mode control module 220, a power retention mode control module 230, a general efficiency charging mode control module 240, a high efficiency charging mode control module 250, and a forced charging mode control module 260 .
  • the active discharge mode control module 210 responds to the state of charge value of the high voltage battery being greater than the active discharge threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is greater than the active discharge difference threshold, and controls the high voltage battery to enter active discharge mode.
  • the passive discharge mode control module 220 responds that the state of charge value of the high voltage battery is less than the active discharge threshold and greater than the passive discharge threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is less than the active discharge difference threshold and greater than The passive discharge difference threshold controls the high-voltage battery to enter the passive discharge mode.
  • the power retention mode control module 230 responds that the state of charge value of the high voltage battery is less than the passive discharge threshold and greater than the power retention threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is less than the passive discharge difference threshold and greater than The power retention difference threshold controls the high-voltage battery to enter power retention mode.
  • the general efficiency charging mode control module 240 responds that the state of charge value of the high voltage battery is less than the power retention threshold and greater than the efficiency charging threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value is less than the power retention difference threshold and If it is greater than the efficiency charging difference threshold, the high-voltage battery is controlled to enter the general efficiency charging mode.
  • the high-efficiency charging mode control module 250 responds that the state-of-charge value of the high-voltage battery is less than the efficiency charging threshold and greater than the mandatory charging threshold, or the difference between the state-of-charge value of the high-voltage battery and the expected state-of-charge value is less than the efficiency charge difference threshold and Greater than the mandatory charge difference threshold, the high-voltage battery is controlled to enter a high-efficiency charging mode.
  • the forced charging mode control module 260 controls the high-voltage battery to enter the forced charging in response to the state of charge value of the high voltage battery being less than the forced charging threshold, or the difference between the state of charge value of the high voltage battery and the expected state of charge value being less than the forced charging difference threshold. mode.
  • the charging and discharging current control module 300 includes an active discharging module 310, a passive discharging module 320, a power retention module 330, a general efficiency charging module 340, a high efficiency charging module 350, and a forced charging module 360.
  • the active discharge module 310 responds to the vehicle demand torque being less than the maximum motor torque and the accelerator pedal opening is less than the engine start pedal opening threshold and the vehicle speed is lower than the engine start speed threshold, based on the motor torque being equal to the vehicle demand torque, Determine the discharge current of the high-voltage battery.
  • the high-voltage battery discharge current is determined based on the motor torque being equal to the motor maximum torque.
  • the passive discharge module 320 determines the discharge current of the high-voltage battery based on the motor torque equal to the vehicle required torque in response to the vehicle demand torque being less than the engine start torque threshold and the accelerator pedal opening is less than the engine start pedal opening threshold. In response to the vehicle demand torque being greater than the engine start torque threshold or the accelerator pedal opening degree greater than the engine start pedal opening threshold, the discharge current of the high-voltage battery is determined based on the motor torque being equal to the vehicle demand torque minus the engine request torque.
  • the power retention module 330 determines the charging current of the high-voltage battery based on the torque of the motor equal to the torque required for the power consumption of the high-voltage accessory.
  • the general efficiency charging module 340 determines the charging current of the high-voltage battery based on the motor torque being equal to the required torque of the engine minus the optimal torque at the current engine speed.
  • the high-efficiency charging module 350 determines the charging current of the high-voltage battery based on the motor torque being equal to the engine demand torque minus the optimal torque of the current engine speed and the high-efficiency charging compensation torque.
  • the forced charging module 360 determines the charging current of the high-voltage battery based on the motor torque equal to the torque required for the forced charging power at the current speed.
  • the technical solution provided by the embodiment of the present disclosure controls the charge and discharge mode of the high voltage battery based on the state of charge value parameter of the high voltage battery of the hybrid electric vehicle.
  • Different charge and discharge modes use different charge and discharge strategies to achieve precise control in stages, The economy is better improved, and the scope of application is wide, and it can be applied to hybrid vehicles of various architectures.
  • the various component embodiments of the present application may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) can be used in practice to implement some or all of the functions of some or all of the components in the high-voltage battery charge and discharge control device according to the embodiments of the present application.
  • This application can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present application may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 11 shows a charging and discharging control device of a high-voltage battery that can implement the method according to the present application.
  • the charging and discharging control device of the high-voltage battery traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing the program code 1031 of any method step in the above method.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method.
  • These program codes can be read from or written into one or more computer program products.
  • These computer program products include hard disks, compact disks
  • Program code carrier such as (CD), memory card or floppy disk.
  • a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 12.
  • the storage unit may have a storage section, storage space, etc. arranged similarly to the memory 1020 in the charge and discharge control device of the high-voltage battery of FIG. 11.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when operated by the charge and discharge control device of the high-voltage battery, cause the charge and discharge of the high-voltage battery to be controlled.
  • the device executes the steps in the method described above.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the application can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims that list several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混合动力汽车高压电池的充放电控制方法及其装置。所述方法包括:确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值;基于高压电池的荷电状态值、或者所述高压电池的荷电状态值与所述期望荷电状态值的差值,控制高压电池的充放电模式;基于所述高压电池的充放电模式及车辆参数,控制高压电池的充电电流或放电电流。基于混合动力汽车的高压电池的参数,控制高压电池的充放电模式,不同充放电模式采用不同的充放电策略,实现分阶段的精确控制,更好的提高经济性,且适用范围广泛,可以应用于各种架构的混合动力汽车。

Description

高压电池的充放电控制方法及其装置
本申请要求在2019年08月27日提交中国专利局、申请号为201910796910.8、发明名称为“高压电池的充放电控制方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及混合动力汽车技术领域,具体涉及高压电池的充放电控制方法、装置、设备及介质。
背景技术
随着全球环境的日益恶化,各国对汽车的能耗和排放要求越来越高,因此新能源汽车已经成为各国发展的重点方向。混合动力汽车不仅可以实现节能减排,而且能满足客户续驶里程的要求,因此混合动力汽车成为目前新能源汽车发展的较为合适的方案。控制策略作为混合动力汽车的核心技术,一直是研发设计的重点领域。能量管理作为混合动力汽车策略开发的核心部分,整车的充放电控制更是能量管理的重中之重,因此合理充放电时机就显得尤为重要。
现有的混合动力汽车,对充放电时机的控制,大多是基于简单的逻辑门限策略实现的。在电池状态、发动机状态、电机状态都正常的情况下,当高压电池荷电状态SOC(State of Charge,核电状态)低于一定阈值,车速高于一定阈值,发动机转速高于一定阈值,整车转矩请求小于一定阈值或者加速踏板开度小于一定阈值,发动机通过带动电机给高压电池充电,以在恶劣工况进行电机驱动或者助力。
图1示出了现有技术一实施例的混合动力汽车高压电池的充放电控制方法示意图,如图1所示,根据当前发动机转速下的需求转矩门限值、当前转速下的电池荷电状态门限值,建立当前状态下的充放电控制策略分区图,综合控制充放电时机和充放电功率大小。
发明人发现,上述基于逻辑门限的控制策略,控制相对比较简单,但是其不够精细,无法实现根据参数阈值的分阶段控制,也就无法实现根据各阶段的不同工况的对高压电池电量的更充分利用。
为此,本领域急需一种高压电池的充放电控制方案,能够实现分阶段的精确控制,更好的提高经济性,且适用范围广泛,可以应用于各种架构的混合动力汽车。
背景技术部分的内容仅仅是公开人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
有鉴于现有技术缺陷中的至少一个,本公开实施例提供一种混合动力汽车高压电池的充放电控制方法,包括:确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值;基于所述高压电池的荷电状态值、或者所述高压电池的荷电状态值与所述期望荷电状态值的差值,控制高压电池的充放电模式;基于所述高压电池的充放电模式及车辆参数,控制高压电池的充电电流或放电电流。
根据本公开的一个方面,所述方法还包括:响应于所述高压电池的温度低于预设阈值,控制所述高压电池进入加热模式。
根据本公开的一个方面,所述充放电模式包括:放电模式、电量保持模式、效率充电模式、强制充电模式。
根据本公开的一个方面,所述放电模式包括:主动放电模式、被动放电模式;所述效率充电模式包括:一般效率充电模式、高效率充电模式。
根据本公开的一个方面,所述基于高压电池的荷电状态值、或者所述高压电池的荷电状态值与所述期望荷电状态值的差值,控制高压电池的充放电模式,包括:响应于所述高压电池的荷电状态值大于放电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值大于放电差值阈值,控制所述高压电池进入所述放电模式;响应于所述高压电池的荷电状态值小于所述放电阈值且大于电量保持阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述放电差值阈值且大于电量保持差值阈值,控制所述高压电池进入所述电量保持模式;响应于所述高压电池的荷电状态值小于所述电量保持阈值且大于强制充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述电量保持差值阈值且大于强制充电差值阈值,控制所述高压电池进入所述效率充电模式;响应于所述高压电池的荷电状态值小于所述强制充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述强制充电差值阈值,控制所述高压电池进 入所述强制充电模式。
根据本公开的一个方面,所述基于高压电池的荷电状态值、或者所述高压电池的荷电状态值与所述期望荷电状态值的差值,控制高压电池的充放电模式,包括:响应于所述高压电池的荷电状态值大于主动放电阈值,或者高压电池的荷电状态值与所述期望荷电状态值的差值大于主动放电差值阈值,控制所述高压电池进入所述主动放电模式;响应于所述高压电池的荷电状态值小于所述主动放电阈值且大于被动放电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述主动放电差值阈值且大于被动放电差值阈值,控制所述高压电池进入所述被动放电模式;响应于所述高压电池的荷电状态值小于所述被动放电阈值且大于电量保持阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述被动放电差值阈值且大于电量保持差值阈值,控制所述高压电池进入所述电量保持模式;响应于所述高压电池的荷电状态值小于所述电量保持阈值且大于效率充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述电量保持差值阈值且大于效率充电差值阈值,控制所述高压电池进入所述一般效率充电模式;响应于所述高压电池的荷电状态值小于所述效率充电阈值且大于强制充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述效率充电差值阈值且大于强制充电差值阈值,控制所述高压电池进入所述高效率充电模式;响应于所述高压电池的荷电状态值小于所述强制充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述强制充电差值阈值,控制所述高压电池进入所述强制充电模式。
根据本公开的一个方面,所述控制所述高压电池进入放电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:响应于整车需求扭矩小于发动机启动扭矩阈值且加速踏板开度小于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩,确定所述高压电池的放电电流;响应于整车需求扭矩大于发动机启动扭矩阈值或加速踏板开度大于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩减去发动机请求扭矩,确定所述高压电池的放电电流;所述控制所述高压电池进入电量保持模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:基于电机扭矩等于高压附件消耗功率所需扭矩,确定所述高压电池的充电电流;所述控制所述高压电 池进入效率充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩,确定所述高压电池的充电电流;所述控制所述高压电池进入强制充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:基于电机扭矩等于当前转速下的强制充电功率所需扭矩,确定所述高压电池的充电电流。
根据本公开的一个方面,所述控制所述高压电池进入主动放电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:响应于整车需求扭矩小于电机最大扭矩且加速踏板开度小于发动机启动踏板开度阈值且车速低于发动机启动车速阈值,基于电机扭矩等于整车需求扭矩,确定所述高压电池的放电电流;响应于整车需求扭矩大于电机最大扭矩或加速踏板开度大于发动机启动踏板开度阈值或车速高于发动机启动车速阈值,基于电机扭矩等于电机最大扭矩,确定所述高压电池的放电电流;所述控制所述高压电池进入被动放电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:响应于整车需求扭矩小于发动机启动扭矩阈值且加速踏板开度小于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩,确定所述高压电池的放电电流;响应于整车需求扭矩大于发动机启动扭矩阈值或加速踏板开度大于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩减去发动机请求扭矩,确定所述高压电池的放电电流;所述控制所述高压电池进入电量保持模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:基于电机扭矩等于高压附件消耗功率所需扭矩,确定所述高压电池的充电电流;所述控制所述高压电池进入一般效率充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩,确定所述高压电池的充电电流;所述控制所述高压电池进入高效率充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩及高效率充电补偿扭矩,确定所述高压电池的充电电流;所述控制所述高压电池进入强制充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:基于电机扭矩等于当前转速下的强制充电功率所需扭矩,确定 所述高压电池的充电电流。
本公开实施例还提供一种混合动力汽车高压电池的充放电控制装置,其特征在于,所述装置包括荷电状态值确定模块、充放电模式控制模块、充放电电流控制模块,所述荷电状态值确定模块确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值;所述充放电模式控制模块基于高压电池的荷电状态值、或者所述高压电池的荷电状态值与所述期望荷电状态值的差值,控制高压电池的充放电模式;所述充放电电流控制模块基于所述高压电池的充放电模式及车辆参数,控制高压电池的充电电流或放电电流。
根据本公开的一个方面,所述装置还包括温度控制模块,所述温度控制模块响应于所述高压电池的温度低于预设阈值,控制所述高压电池进入加热模式。
本公开实施例提供的技术方案,解决了基于逻辑门限的控制策略控制相对简单、不够精细的问题,基于混合动力汽车的高压电池的荷电状态值、或者高压电池的荷电状态值与期望荷电状态值的差值的单一参数的分阶段的精确控制,控制了高压电池的充放电模式,不同充放电模式采用不同的充放电策略,实现了各阶段不同工况对高压电池电量的更充分利用,更好的提高了经济性,且适用范围广泛,可以应用于各种架构的混合动力汽车。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了现有技术一实施例的混合动力汽车高压电池的充放电控制方法示意图;
图2示出了本公开一实施例的混合动力汽车高压电池的充放电控制方 法流程示意图;
图3示出了本公开一实施例提供的充放电控制模式划分示意图;
图4示出了本公开另一实施例的混合动力汽车高压电池的充放电控制方法流程示意图;
图5示出了本公开另一实施例提供的充放电控制模式划分示意图;
图6示出了本公开另一实施例提供的混合动力汽车高压电池的充放电控制方法流程示意图;
图7是本公开一实施例提供的高压电池温度曲线示意图;
图8示出了本公开一实施例提供的混合动力汽车高压电池的充放电控制装置组成示意图;
图9示出了本公开另一实施例提供的混合动力汽车高压电池的充放电控制装置组成示意图;
图10示出了本公开又一实施例提供的混合动力汽车高压电池的充放电控制装置组成示意图。
图11示意性地示出了用于执行根据本申请的方法的高压电池的充放电控制设备的框图;以及
图12示意性地示出了用于保持或者携带实现根据本申请的方法的程序代码的存储单元。
附图标记列表:
100荷电状态值确定模块;200充放电模式控制模块;210主动放电模式控制模块;220被动放电模式控制模块;230电量保持模式控制模块;240一般效率充电模式控制模块;250高效率充电模式控制模块;260强制充电模式控制模块;300充放电电流控制模块;310主动放电模块;320被动放电模块;330电量保持模块;340一般效率充电模块;350高效率充电模块;360强制充电模块;400温度控制模块。
具体实施例
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本公开的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本公开的描述中,需要理解的是,术语"第一"、"第二"仅用于描述目 的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本公开的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
下文的公开提供了许多不同的实施方式或例子用来实现本公开的不同结构。为了简化本公开的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
以下结合附图对本公开的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本公开,并不用于限定本公开。
混合动力汽车(Hybrid Vehicle)是指车辆驱动系统由两个或多个能同时运转的单个驱动系统联合组成的车辆,车辆的行驶功率依据实际的车辆行驶状态由单个驱动系统单独或共同提供。即采用传统的发动机(柴油机或汽油机)和电动机作为动力源,也有的发动机经过改造使用其他替代燃料,例如压缩天然气、丙烷和乙醇燃料等。
第一实施例
图2示出了本公开一实施例提供的混合动力汽车高压电池的充放电控制方法流程示意图,包括以下步骤。
在步骤S110中,确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值。
荷电状态值SOC是蓄电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值,常用百分数表示。其取值范围为0~1,当SOC=0时表示电池放电完全,当SOC=1时表示电池完全充满。
期望荷电状态值,也称为期望SOC,是整车被期望的荷电状态值,整车正常运行过程中,高压电池SOC可以维持在该期望SOC。期望SOC跟驾驶模式和车速相关,高压电池温度、环境温度、高压附件的功率也会影响期望SOC。
同一驾驶模式下,车速越高,期望SOC应该适当提高,车速越高电量消耗越大,相应地应该提高充电。
同一车速,不同驾驶模式根据驾驶性要求不同,应该有不同的期望 SOC。例如,EV模式为纯电动行使模式,发动机不启动,期望SOC无意义。AWD模式(全地形驾驶模式)的期望SOC>Sport模式(动力模式)的期望SOC>Auto模式(自动驾驶模式)的期望SOC,Save模式(节电模式)期望SOC根据用户要求设定,最小为50%。
在Auto模式中,期望SOC的设置,在保证整车用电量前提下,尽可能的使用高压电池电量,以达到更好的经济性。
Sport模式时,发动机一直运行,主要提供动力输出,电力仅用于动力补偿。所以Sport模式对驾驶性要求较高,为保证有充足的动力,期望SOC应该较AUTO模式上浮10-20%。
Save模式时,与AUTO模式基本一致,需要保留一部分电量,用于城市工况纯电动行使。在Save模式时,期望SOC设置为在非插枪充电条件下,用户期望可充到的电量,理论上期望SOC大于50%。
AWD模式有后桥电机,为四驱模式,为了应对恶劣的路面,保证更好的通过性,更多的电量需要用到后桥电机,因此消耗相应增加,保证驾驶性和通过性条件下,应对较差的极限工况,应该较SPORT模式期望SOC上浮20-30%。
高压电池温度低时,电池可用功率低,效率低,应适当提高期望SOC。环境温度较低或者较高,考虑高压电池可用功率降低以及潜在用电负载增加,应适当提高期望SOC。
高压附件消耗功率较大时,应适当提高期望SOC,保证充足电量用于高压附件消耗。即当DCDC(直流转换器)、PTC(Power Temperature,热敏电阻加热器)、CMP(Compressor,压缩机)等高压附件功率大于功率阈值,高压电池温度小于一定值时,应该适当提高期望SOC。
在步骤S120中,基于高压电池的荷电状态值、或者高压电池的荷电状态值与期望荷电状态值的差值,控制高压电池的充放电模式。
基于高压电池的荷电状态值、或者高压电池的荷电状态值与期望荷电状态值的差值,将高压电池的充放电模式划分成四种:放电模式、电量保持模式、充电模式、强制充电模式,如图3所示,图3示出了本公开一实施例提供的充放电控制模式划分示意图。
参见图3,根据期望SOC和高压电池限定的最低可用SOC和最高可用SOC,来确定各个阈值的设置。
强制充电阈值SOC2设置为最低可用SOC1与第一补偿值的和。强制充 电阈值SOC2到电量保持阈值S0C4之间的区间即为效率充电区间。电量保持阈值SOC4一般设置为期望SOC。放电阈值SOC5设置为电量保持阈值SOC4与第二补偿值的和或者最高可用SOC与第三补偿值的差。各个补偿值根据经验设置。
而各个差值阈值的设置为各个阈值与期望SOC的差。在不同驾驶模式,会有不同的期望SOC,因而差值判断条件就可以保证不同驾驶模式有不同的进入条件,可以保持的荷电状态值也不同。
具体而言,响应于高压电池的荷电状态值大于放电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值大于放电差值阈值,控制高压电池进入放电模式。
响应于高压电池的荷电状态值小于放电阈值且大于电量保持阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于放电差值阈值且大于电量保持差值阈值,控制高压电池进入电量保持模式。
响应于高压电池的荷电状态值小于电量保持阈值且大于强制充电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于电量保持差值阈值且大于强制充电差值阈值,控制高压电池进入效率充电模式。
响应于高压电池的荷电状态值小于强制充电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于强制充电差值阈值,控制高压电池进入强制充电模式。
在步骤S130中,基于高压电池的充放电模式及车辆参数,控制高压电池的充电电流或放电电流。
不同充放电模式,电机给高压电池充电,可以有不同的充放电策略来实现分阶段的精确控制。
放电模式下,根据策略情况使用电量。尽可能用发动机来满足整车需求扭矩。
电量保持模式下,电机扭矩等于高压附件消耗功率所需扭矩,电机的发电量可以维持高压电池的SOC值。
效率充电模式下,根据发动机最优工作区间,确定电机的充电扭矩,使发动机处于高效率工作区。
强制充电模式下,高压电池SOC很低,不考虑发动机工作区间,尽可能采用大的电机扭矩给高压电池充电。
具体的充放电策略还要考虑到具体的车辆参数,具体策略如下。
具体而言,控制高压电池进入放电模式后,响应于整车需求扭矩小于发动机启动扭矩阈值且加速踏板开度小于发动机启动踏板开度阈值,此时为纯电驱动,基于电机扭矩等于整车需求扭矩,确定高压电池的放电电流。响应于整车需求扭矩大于发动机启动扭矩阈值或加速踏板开度大于发动机启动踏板开度阈值,则为混合驱动,优先电机分配扭矩,高压电池放电,基于电机扭矩等于整车需求扭矩减去发动机请求扭矩,确定高压电池的放电电流。
控制高压电池进入电量保持模式后,充电功率满足DCDC、PTC、CMP等高压附件功率消耗,基于电机扭矩等于高压附件消耗功率所需扭矩,确定高压电池的充电电流。
控制高压电池进入效率充电模式后,充电功率除了满足DCDC、PTC、CMP等高压附件功率消耗外,还要根据发动机高效率工作区间,来确定电机的充电和助力状态。基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩,确定高压电池的充电电流。电机扭矩为正时,电机为助力状态,电机扭矩为负时,电机为发电状态。
控制高压电池进入强制充电模式后,此时,SOC已经接近高压电池SOC下限阈值,因此不需要考虑发动机高效率工作区间,尽可能提高电机的充电功率,实现高压电池的快速充电。基于电机扭矩等于当前转速下的强制充电功率所需扭矩,确定高压电池的充电电流。
本实施例提供的技术方案,解决了基于逻辑门限的控制策略控制相对简单、不够精细的问题,基于混合动力汽车的高压电池的荷电状态值、或者高压电池的荷电状态值与期望荷电状态值的差值的单一参数的分阶段的精确控制,控制了高压电池的充放电模式,不同充放电模式采用不同的充放电策略,实现了各阶段不同工况对高压电池电量的更充分利用,更好的提高了经济性,且适用范围广泛,可以应用于各种架构的混合动力汽车。
图4示出了本公开一实施例提供的混合动力汽车高压电池的充放电控制方法流程示意图,包括以下步骤。
在步骤S110中,确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值。
步骤S110与图2上述实施例的S110相同,不再赘述。
在步骤S220中,基于高压电池的荷电状态值、或者高压电池的荷电状 态值与期望荷电状态值的差值,控制高压电池的充放电模式。
对于四驱架构的车辆,同时配置有前桥电机和后桥电机,基于高压电池的荷电状态值、或者高压电池的荷电状态值与期望荷电状态值的差值,将充放电模式分为六种:主动放电模式、被动放电模式、电量保持模式、一般效率充电模式、高效率充电模式、强制充电模式。高效率模式下,电机的充电扭矩更大,可选地,也可以将一般效率充电模式和高效率充电模式合并。如图5所示,图5示出了本公开一实施例提供的充放电控制模式划分示意图。
参见图5,根据期望SOC和高压电池限定的最低可用SOC和最高可用SOC,来确定各个阈值的设置。
强制充电阈值SOC2设置为最低可用SOC1与第一补偿值的和。强制充电阈值SOC2到电量保持阈值S0C4之间的区间即为一般效率充电和高效率充电的区间。而效率充电阈值SOC3则是根据经验设置。被动放电阈值SO5设置为电量保持阈值SOC4与第二补偿值的和。而主动放电阈值SOC6就设置为高压电池最高可用SOC减去第三补偿值。各个补偿值根据经验设置。其中,电量保持阈值SOC4一般设置为期望SOC。
具体而言,响应于高压电池的荷电状态值大于主动放电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值大于主动放电差值阈值,控制高压电池进入主动放电模式。
响应于高压电池的荷电状态值小于主动放电阈值且大于被动放电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于主动放电差值阈值且大于被动放电差值阈值,控制高压电池进入被动放电模式。
响应于高压电池的荷电状态值小于被动放电阈值且大于电量保持阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于被动放电差值阈值且大于电量保持差值阈值,控制高压电池进入电量保持模式。
响应于高压电池的荷电状态值小于电量保持阈值且大于效率充电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于电量保持差值阈值且大于效率充电差值阈值,控制高压电池进入一般效率充电模式。
响应于高压电池的荷电状态值小于效率充电阈值且大于强制充电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于效率充电差值阈值且大于强制充电差值阈值,控制高压电池进入高效率充电模式。
响应于高压电池的荷电状态值小于强制充电阈值,或者高压电池的荷 电状态值与期望荷电状态值的差值小于强制充电差值阈值,控制高压电池进入强制充电模式。
在步骤S230中,基于高压电池的充放电模式及车辆参数,控制高压电池的充电电流或放电电流。
不同充放电模式,电机给高压电池充电,可以有不同的充放电策略来实现分阶段的精确控制。
主动放电模式下,主动请求电机正扭矩,尽可能用电机来满足整车需求扭矩。
被动放电模式下,根据策略情况使用电量。尽可能用电机来满足整车需求扭矩。
电量保持模式下,电机扭矩等于高压附件消耗功率所需扭矩,电机的发电量可以维持高压电池的SOC值。
一般效率充电模式下,根据发动机最优工作区间,确定电机的充电扭矩,使发动机处于高效率工作区。
高效率充电模式下,相比于一般效率充电模式,电机的充电扭矩更大。
强制充电模式下,高压电池SOC很低,不考虑发动机工作区间,尽可能采用大的电机扭矩给高压电池充电。
具体的充放电策略还要考虑到具体的车辆参数,具体策略如下。
具体而言,控制高压电池进入主动放电模式后,响应于整车需求扭矩小于电机最大扭矩且加速踏板开度小于发动机启动踏板开度阈值且车速低于发动机启动车速阈值,此时为纯电驱动,仅电机驱动,基于电机扭矩等于整车需求扭矩,确定高压电池的放电电流。响应于整车需求扭矩大于电机最大扭矩或加速踏板开度大于发动机启动踏板开度阈值,或车速高于发动机启动车速阈值,则为混合驱动,优先高压电池放电,基于电机扭矩等于电机最大扭矩,确定高压电池的放电电流。
控制高压电池进入被动放电模式后,响应于整车需求扭矩小于发动机启动扭矩阈值且加速踏板开度小于发动机启动踏板开度阈值,此时为纯电驱动,基于电机扭矩等于整车需求扭矩,确定高压电池的放电电流。响应于整车需求扭矩大于发动机启动扭矩阈值或加速踏板开度大于发动机启动踏板开度阈值,则为混合驱动,优先电机分配扭矩,高压电池放电,基于电机扭矩等于整车需求扭矩减去发动机请求扭矩,确定高压电池的放电电 流。
控制高压电池进入电量保持模式后,充电功率满足DCDC、PTC、CMP等高压附件功率消耗,基于电机扭矩等于高压附件消耗功率所需扭矩,确定高压电池的充电电流。
控制高压电池进入一般效率充电模式后,充电功率除了满足DCDC、PTC、CMP等高压附件功率消耗外,还要根据发动机高效率工作区间,来确定电机的充电和助力状态。基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩,确定高压电池的充电电流。电机扭矩为正时,电机为助力状态,电机扭矩为负时,电机为发电状态。
控制高压电池进入高效率充电模式后,此时,SOC已经低于期望SOC阈值,因此需要根据发动机高效率工作区间,适当提高电机的充电功率,降低助力功率。基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩及高效率充电补偿扭矩,确定高压电池的充电电流。电机扭矩为正时,电机为助力状态,电机扭矩为负时,电机为发电状态。
控制高压电池进入强制充电模式后,此时,SOC已经接近高压电池SOC下限阈值,因此不需要考虑发动机高效率工作区间,尽可能提高电机的充电功率,实现高压电池的快速充电。基于电机扭矩等于当前转速下的强制充电功率所需扭矩,确定高压电池的充电电流。
本实施例提供的技术方案,作为进一步改进,更加细化了充放电模式,喜欢的不同充放电模式采用不同的充放电策略,可以实现各阶段不同工况对高压电池电量的更充分利用,更好的提高经济性。
图6示出了本公开另一实施例提供的混合动力汽车高压电池的充放电控制方法流程示意图。
在上述图2或图4提供的实施例的基础上,还包括步骤S140,响应于高压电池的温度低于预设阈值,控制高压电池进入加热模式。
电池加热模式下,利用周期性充放电,进行高压电池加热。
图7示出了本公开一实施例提供的高压电池温度曲线示意图。如图7所示,当高压电池的温度低于一定的低温阈值(TempLow)时,车辆进入电池加热模式,该模式下通过给电池周期性充放电,来迅速提高高压电池的温度,直至高压电池的温度高于一定的高温阈值(TempHigh),提高高压电池的工作效率。其中,直线41是高压电池的温度,曲线42是高压电池的电 流,I1是电池加热时高压电池的放电电流的最大值,I2是电池加热时高压电池充电电流的最大值。
需要指出的是,步骤的实现并不以箭头方向为限,以步骤S140为例,其具有较高的优先级,不管前述哪个步骤执行时,检测到高压电池的温度低于了预设阈值,都可以进入步骤S140。
一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行所述程序时执行上述所述的方法。
一种计算机可读存储介质,其上存储有处理器程序,处理器程序用于执行上述所述的方法。
存储器作为一种非暂态计算机可读存储器,可用于存储软件程序、计算机可执行程序以及模块。
处理器通过运行存储在存储截止中的软件程序、指令以及模块,从而执行电子设备的各种功能应用以及数据处理,即实现上述实施例描述的方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子器件的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态性固态存储器件。在一些实施例中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。
第二实施例
图8示出了本公开一实施例提供的混合动力汽车高压电池的充放电控制装置组成示意图,包括荷电状态值确定模块100、充放电模式控制模块200、充放电电流控制模块300。
荷电状态值确定模块100确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值。充放电模式控制模块200基于高压电池的荷电状态值、或者高压电池的荷电状态值与期望荷电状态值的差值,控制高压电池的充放电模式。充放电电流控制模块300基于高压电池的充放电模式及车辆参数,控制高压电池的充电电流或放电电流。
图9示出了本公开另一实施例提供的混合动力汽车高压电池的充放电控 制装置组成示意图,包括荷电状态值确定模块100、充放电模式控制模块200、充放电电流控制模块300、温度控制模块400。
荷电状态值确定模块100确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值。充放电模式控制模块200基于高压电池的荷电状态值、或者高压电池的荷电状态值与期望荷电状态值的差值,控制高压电池的充放电模式。充放电电流控制模块300基于高压电池的充放电模式及车辆参数,控制高压电池的充电电流或放电电流。温度控制模块400响应于高压电池的温度低于预设阈值,控制高压电池进入加热模式。
图10示出了本公开又一实施例提供的混合动力汽车高压电池的充放电控制装置组成示意图,包括荷电状态值确定模块100、充放电模式控制模块200、充放电电流控制模块300。
荷电状态值确定模块100确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值。充放电模式控制模块200基于高压电池的荷电状态值、或者高压电池的荷电状态值与期望荷电状态值的差值,控制高压电池的充放电模式。充放电电流控制模块300基于高压电池的充放电模式及车辆参数,控制高压电池的充电电流或放电电流。
充放电模式控制模块200包括主动放电模式控制模块210、被动放电模式控制模块220、电量保持模式控制模块230、一般效率充电模式控制模块240、高效率充电模式控制模块250、强制充电模式控制模块260。
主动放电模式控制模块210响应于高压电池的荷电状态值大于主动放电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值大于主动放电差值阈值,控制高压电池进入主动放电模式。
被动放电模式控制模块220响应于高压电池的荷电状态值小于主动放电阈值且大于被动放电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于主动放电差值阈值且大于被动放电差值阈值,控制高压电池进入被动放电模式。
电量保持模式控制模块230响应于高压电池的荷电状态值小于被动放电阈值且大于电量保持阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于被动放电差值阈值且大于电量保持差值阈值,控制高压电池进入电量保持模式。
一般效率充电模式控制模块240响应于高压电池的荷电状态值小于电量保持阈值且大于效率充电阈值,或者高压电池的荷电状态值与期望荷电状 态值的差值小于电量保持差值阈值且大于效率充电差值阈值,控制高压电池进入一般效率充电模式。
高效率充电模式控制模块250响应于高压电池的荷电状态值小于效率充电阈值且大于强制充电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于效率充电差值阈值且大于强制充电差值阈值,控制高压电池进入高效率充电模式。
强制充电模式控制模块260响应于高压电池的荷电状态值小于强制充电阈值,或者高压电池的荷电状态值与期望荷电状态值的差值小于强制充电差值阈值,控制高压电池进入强制充电模式。
充放电电流控制模块300包括主动放电模块310、被动放电模块320、电量保持模块330、一般效率充电模块340、高效率充电模块350、强制充电模块360。
主动放电模块310在主动放电模式中,响应于整车需求扭矩小于电机最大扭矩且加速踏板开度小于发动机启动踏板开度阈值且车速低于发动机启动车速阈值,基于电机扭矩等于整车需求扭矩,确定高压电池的放电电流。响应于整车需求扭矩大于电机最大扭矩或加速踏板开度大于发动机启动踏板开度阈值或车速高于发动机启动车速阈值,基于电机扭矩等于电机最大扭矩,确定高压电池的放电电流。
被动放电模块320在被动放电模式中,响应于整车需求扭矩小于发动机启动扭矩阈值且加速踏板开度小于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩,确定高压电池的放电电流。响应于整车需求扭矩大于发动机启动扭矩阈值或加速踏板开度大于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩减去发动机请求扭矩,确定高压电池的放电电流。
电量保持模块330在电量保持模式中,基于电机扭矩等于高压附件消耗功率所需扭矩,确定高压电池的充电电流。
一般效率充电模块340在一般效率充电模式中,基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩,确定高压电池的充电电流。
高效率充电模块350在高效率充电模式中,基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩及高效率充电补偿扭矩,确定高压电池的充电电流。
强制充电模块360在强制充电模式中,基于电机扭矩等于当前转速下的 强制充电功率所需扭矩,确定高压电池的充电电流。
本公开的实施例提供的技术方案,基于混合动力汽车的高压电池的荷电状态值参数,控制高压电池的充放电模式,不同充放电模式采用不同的充放电策略,实现分阶段的精确控制,更好的提高了经济性,且适用范围广泛,可以应用于各种架构的混合动力汽车。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的高压电池的充放电控制设备中的一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图11示出了可以实现根据本申请的方法的高压电池的充放电控制设备。该高压电池的充放电控制设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘
(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图12所述的便携式或者固定存储单元。该存储单元可以具有与图11的高压电池的充放电控制设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由高压电池的充放电控制设备运行时,导致该高压电池的充放电控 制设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上所述仅为本公开的优选实施例而已,并不用于限制本公开,尽管参照前述实施例对本公开进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种混合动力汽车高压电池的充放电控制方法,其特征在于,所述方法包括:
    确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值;
    基于所述高压电池的荷电状态值、或者所述高压电池的荷电状态值与所述期望荷电状态值的差值,控制高压电池的充放电模式;
    基于所述高压电池的充放电模式及车辆参数,控制高压电池的充电电流或放电电流。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于所述高压电池的温度低于预设阈值,控制所述高压电池进入加热模式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述充放电模式包括:放电模式、电量保持模式、效率充电模式、强制充电模式。
  4. 根据权利要求3所述的方法,其特征在于,
    所述放电模式包括:主动放电模式、被动放电模式;
    所述效率充电模式包括:一般效率充电模式、高效率充电模式。
  5. 根据权利要求3所述的方法,其特征在于,所述基于高压电池的荷电状态值、或者所述高压电池的荷电状态值与所述期望荷电状态值的差值,控制高压电池的充放电模式,包括:
    响应于所述高压电池的荷电状态值大于放电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值大于放电差值阈值,控制所述高压电池进入所述放电模式;
    响应于所述高压电池的荷电状态值小于所述放电阈值且大于电量保持阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述放电差值阈值且大于电量保持差值阈值,控制所述高压电池进入所述电量保持模式;
    响应于所述高压电池的荷电状态值小于所述电量保持阈值且大于强制充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述电量保持差值阈值且大于强制充电差值阈值,控制所述高压电池进入所述效率充电模式;
    响应于所述高压电池的荷电状态值小于所述强制充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述强制充电差值 阈值,控制所述高压电池进入所述强制充电模式。
  6. 根据权利要求4所述的方法,其特征在于,所述基于高压电池的荷电状态值、或者所述高压电池的荷电状态值与所述期望荷电状态值的差值,控制高压电池的充放电模式,包括:
    响应于所述高压电池的荷电状态值大于主动放电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值大于主动放电差值阈值,控制所述高压电池进入所述主动放电模式;
    响应于所述高压电池的荷电状态值小于所述主动放电阈值且大于被动放电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述主动放电差值阈值且大于被动放电差值阈值,控制所述高压电池进入所述被动放电模式;
    响应于所述高压电池的荷电状态值小于所述被动放电阈值且大于电量保持阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述被动放电差值阈值且大于电量保持差值阈值,控制所述高压电池进入所述电量保持模式;
    响应于所述高压电池的荷电状态值小于所述电量保持阈值且大于效率充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述电量保持差值阈值且大于效率充电差值阈值,控制所述高压电池进入所述一般效率充电模式;
    响应于所述高压电池的荷电状态值小于所述效率充电阈值且大于强制充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述效率充电差值阈值且大于强制充电差值阈值,控制所述高压电池进入所述高效率充电模式;
    响应于所述高压电池的荷电状态值小于所述强制充电阈值,或者所述高压电池的荷电状态值与所述期望荷电状态值的差值小于所述强制充电差值阈值,控制所述高压电池进入所述强制充电模式。
  7. 根据权利要求5所述的方法,其特征在于,
    所述控制所述高压电池进入放电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    响应于整车需求扭矩小于发动机启动扭矩阈值且加速踏板开度小于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩,确定所述高压电池的放电电流;
    响应于整车需求扭矩大于发动机启动扭矩阈值或加速踏板开度大于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩减去发动机请求扭矩,确定所述高压电池的放电电流;
    所述控制所述高压电池进入电量保持模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    基于电机扭矩等于高压附件消耗功率所需扭矩,确定所述高压电池的充电电流;
    所述控制所述高压电池进入效率充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩,确定所述高压电池的充电电流;
    所述控制所述高压电池进入强制充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    基于电机扭矩等于当前转速下的强制充电功率所需扭矩,确定所述高压电池的充电电流。
  8. 根据权利要求6所述的方法,其特征在于,
    所述控制所述高压电池进入主动放电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    响应于整车需求扭矩小于电机最大扭矩且加速踏板开度小于发动机启动踏板开度阈值且车速低于发动机启动车速阈值,基于电机扭矩等于整车需求扭矩,确定所述高压电池的放电电流;
    响应于整车需求扭矩大于电机最大扭矩或加速踏板开度大于发动机启动踏板开度阈值或车速高于发动机启动车速阈值,基于电机扭矩等于电机最大扭矩,确定所述高压电池的放电电流;
    所述控制所述高压电池进入被动放电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    响应于整车需求扭矩小于发动机启动扭矩阈值且加速踏板开度小于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩,确定所述高压电池的放电电流;
    响应于整车需求扭矩大于发动机启动扭矩阈值或加速踏板开度大于发动机启动踏板开度阈值,基于电机扭矩等于整车需求扭矩减去发动机请求扭矩,确定所述高压电池的放电电流;
    所述控制所述高压电池进入电量保持模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    基于电机扭矩等于高压附件消耗功率所需扭矩,确定所述高压电池的充电电流;
    所述控制所述高压电池进入一般效率充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩,确定所述高压电池的充电电流;
    所述控制所述高压电池进入高效率充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    基于电机扭矩等于发动机需求扭矩减去发动机当前转速最优扭矩及高效率充电补偿扭矩,确定所述高压电池的充电电流;
    所述控制所述高压电池进入强制充电模式后,所述基于所述高压电池的充放电模式及车辆参数,确定高压电池的充电电流或放电电流,包括:
    基于电机扭矩等于当前转速下的强制充电功率所需扭矩,确定所述高压电池的充电电流。
  9. 一种混合动力汽车高压电池的充放电控制装置,其特征在于,所述装置包括:
    荷电状态值确定模块,确定混合动力汽车的高压电池的荷电状态值和期望荷电状态值;
    充放电模式控制模块,基于高压电池的荷电状态值、或者所述高压电池的荷电状态值与所述期望荷电状态值的差值,控制高压电池的充放电模式;
    充放电电流控制模块,基于所述高压电池的充放电模式及车辆参数,控制所述高压电池的充电电流或放电电流。
  10. 根据权利要求9所述的装置,还包括:
    温度控制模块,响应于所述高压电池的温度低于预设阈值,控制所述高压电池进入加热模式。
  11. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在高压电池的充放电控制设备上运行时,导致所述高压电池的充放电控制设备执行根据权利要求1-8中的任一个所述的高压电池的充放电控制方法。
  12. 一种计算机可读介质,其中存储了如权利要求11所述的计算机程序。
PCT/CN2020/107838 2019-08-27 2020-08-07 高压电池的充放电控制方法及其装置 WO2021036750A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20859321.0A EP4011688A4 (en) 2019-08-27 2020-08-07 CHARGE AND DISCHARGE CONTROL METHOD FOR HIGH VOLTAGE BATTERY, AND ASSOCIATED DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910796910.8A CN111532174A (zh) 2019-08-27 2019-08-27 高压电池的充放电控制方法及其装置
CN201910796910.8 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021036750A1 true WO2021036750A1 (zh) 2021-03-04

Family

ID=71974888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107838 WO2021036750A1 (zh) 2019-08-27 2020-08-07 高压电池的充放电控制方法及其装置

Country Status (3)

Country Link
EP (1) EP4011688A4 (zh)
CN (1) CN111532174A (zh)
WO (1) WO2021036750A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210281101A1 (en) * 2020-03-06 2021-09-09 Hyundai Motor Company Hybrid vehicle and control method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114204163B (zh) * 2020-09-02 2023-10-27 威马智慧出行科技(上海)有限公司 电动汽车电池包加热方法及电子设备
CN114312735A (zh) * 2020-09-30 2022-04-12 深圳臻宇新能源动力科技有限公司 混合动力车辆的能量管理方法、装置和整车控制器
JP7432064B2 (ja) 2021-09-08 2024-02-15 寧徳時代新能源科技股▲分▼有限公司 動力電池を充電する方法及び電池管理システム
CN114604130B (zh) * 2022-03-21 2024-02-02 西安领充无限新能源科技有限公司 车辆的充电方法、系统、电子设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269207A (ja) * 2006-03-31 2007-10-18 Mazda Motor Corp 車両のハイブリッドシステム
CN103419614A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 混合动力汽车、混合动力汽车的动力系统及电池加热方法
CN105517868A (zh) * 2014-02-03 2016-04-20 日立建机株式会社 混合动力式工程机械
CN106143482A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车及其控制方法和装置
CN106143467A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
CN107342619A (zh) * 2015-11-30 2017-11-10 株式会社斯巴鲁 车辆用电源装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340121B2 (en) * 2011-04-14 2016-05-17 GM Global Technology Operations LLC Method and system for heating a vehicle battery
US9126496B2 (en) * 2013-06-26 2015-09-08 GM Global Technology Operations LLC Control method to bias hybrid battery state-of-charge to improve autostop availability for light-electrification vehicles
FR3030768B1 (fr) * 2014-12-22 2018-04-06 Renault S.A.S Procede de gestion d'energie d'une batterie de traction d'un vehicule hybride rechargeable.
KR101806179B1 (ko) * 2016-06-02 2017-12-07 현대자동차 주식회사 하이브리드 차량의 토크 저감 제어 방법
US10532647B2 (en) * 2016-12-14 2020-01-14 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269207A (ja) * 2006-03-31 2007-10-18 Mazda Motor Corp 車両のハイブリッドシステム
CN103419614A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 混合动力汽车、混合动力汽车的动力系统及电池加热方法
CN105517868A (zh) * 2014-02-03 2016-04-20 日立建机株式会社 混合动力式工程机械
CN106143482A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车及其控制方法和装置
CN106143467A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
CN107342619A (zh) * 2015-11-30 2017-11-10 株式会社斯巴鲁 车辆用电源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4011688A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210281101A1 (en) * 2020-03-06 2021-09-09 Hyundai Motor Company Hybrid vehicle and control method thereof
US11658506B2 (en) * 2020-03-06 2023-05-23 Hyundai Motor Company Hybrid vehicle and control method thereof

Also Published As

Publication number Publication date
CN111532174A (zh) 2020-08-14
EP4011688A1 (en) 2022-06-15
EP4011688A4 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2021036750A1 (zh) 高压电池的充放电控制方法及其装置
US9573483B2 (en) Driving control method for hybrid vehicle
US10160307B2 (en) System and method for controlling motor temperature for green car
US10077040B2 (en) Hybrid electrical vehicle and method for controlling same
CN110696810B (zh) 混合动力汽车的能量管理方法、装置、车辆及存储介质
US10406887B2 (en) Heating control apparatus and method for plug-in hybrid electric vehicle
CN102815295B (zh) 一种混联式混合动力车辆的动力控制方法
KR101628516B1 (ko) 하이브리드 차량의 직류변환장치 전압 가변제어 방법
WO2024103627A1 (zh) 一种混动车辆控制方法、控制系统和混动车辆
WO2022121268A1 (zh) 一种功率分配方法及分配系统
US11913395B2 (en) Intelligent control method, apparatus, storage medium and device for engine initiation
CN112428881B (zh) 一种用于混合动力车辆的电池加热方法及加热系统
US20190070972A1 (en) Apparatus for controlling charging of environment-friendly vehicle, system including the same, and method thereof
CN110015192B (zh) 一种燃料电池混合动力系统、供电单元及充电控制方法
CN114670805A (zh) 一种用于并联式混合动力车辆的扭矩分配方法和分配装置
WO2021052023A1 (zh) 发动机的扭矩控制方法及控制装置
CN110723132B (zh) 一种混合动力车及其控制方法、存储介质
US11739721B2 (en) Method of controlling for engine running
CN110803123A (zh) 一种汽车能源管理系统及方法、汽车
WO2024198723A1 (zh) 一种针对混合动力车辆的控制方法、装置、车辆和介质
JP6119600B2 (ja) ハイブリッド車制御装置
KR101294060B1 (ko) 하이브리드 차량의 엔진 시동 제어장치 및 방법
US20230001822A1 (en) Systems and methods for predictive energy management for high-voltage and low-voltage rechargeable energy storage systems of vehicles
US10351123B2 (en) Method for controlling hybrid vehicle
Sun et al. Optimization of Energy Saving and Fuel-Cell Durability for Range-Extended Electric Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020859321

Country of ref document: EP

Effective date: 20220309