WO2021036740A1 - 一种llc电源控制电路和电源控制装置 - Google Patents

一种llc电源控制电路和电源控制装置 Download PDF

Info

Publication number
WO2021036740A1
WO2021036740A1 PCT/CN2020/107646 CN2020107646W WO2021036740A1 WO 2021036740 A1 WO2021036740 A1 WO 2021036740A1 CN 2020107646 W CN2020107646 W CN 2020107646W WO 2021036740 A1 WO2021036740 A1 WO 2021036740A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
switch
pin
switch module
power supply
Prior art date
Application number
PCT/CN2020/107646
Other languages
English (en)
French (fr)
Inventor
李锦乐
郑焕伟
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Publication of WO2021036740A1 publication Critical patent/WO2021036740A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present disclosure relates to the technical field of electrical appliances, in particular to an LLC power control circuit and a power control device.
  • the power supplies of various topologies in the power supply industry cannot achieve independent control of multiple power outputs. Therefore, for electrical equipment with different control requirements for electrical energy, a single power output cannot be used to supply power at the same time.
  • the power supply of the LED backlight in the current TV power supply needs to control the current, while the power supply of the movement needs to control the voltage. Therefore, two independent power modules must be used to supply power to the movement and the backlight respectively, which increases the manufacturing cost of the power supply. And it is not easy to use.
  • the purpose of the present disclosure is to provide an LLC power control circuit and a power control device, which can realize independent control or adjustment of multiple power supply voltages, so as to meet the power demand of electrical equipment with different control requirements.
  • An LLC power supply control circuit includes a control module, a voltage output module, a first switch module, a second switch module, and a voltage regulation module, the control module is respectively connected to the first switch module, the second switch module and the voltage An adjustment module, the first switch module and the second switch module are further connected to the voltage output module, and the voltage output module is further connected to the voltage adjustment module;
  • the control module controls the working status of the first switch module and the second switch module; when the first switch module is turned on and the second switch module is turned off, the adjustment module is based on the The first supply voltage output by the voltage output module outputs a first feedback signal to the control module, and the control module controls the on-time of the first switch module based on the first feedback signal to adjust the voltage output module The first power supply voltage currently output;
  • the adjustment module When the first switch module is turned off and the second switch module is turned on, the adjustment module outputs a second feedback signal to the control module based on the second supply voltage output by the voltage output module, and the control module The module controls the on-time of the second switch module based on the second feedback signal to adjust the second supply voltage currently output by the voltage output module.
  • the adjustment module includes a first adjustment unit and a second adjustment unit, the first adjustment unit is respectively connected to the voltage output module and the control module, and the second adjustment unit Are respectively connected to the voltage output module and the control module; the first adjustment unit outputs a first feedback signal to the control module based on the first supply voltage; the second adjustment unit is based on the second power supply The voltage outputs a second feedback signal to the control module.
  • the first adjustment unit includes a first error amplifier, a first photocoupler, and a first switch, and the first pin and the second pin of the first photocoupler are connected to the second An error amplifier, the fourth pin of the first photocoupler is connected to power through a first switch, the third pin of the first photocoupler is connected to the control module, and the first error amplifier is also connected to the voltage Output module.
  • the second adjustment unit includes a second error amplifier, a second photocoupler, and a second switch, and the first pin and the second pin of the second photocoupler are connected to the second Two error amplifiers, the fourth pin of the second photocoupler is connected to power through a second switch, the third pin of the second photocoupler is connected to the control module, and the second error amplifier is also connected to the voltage Output module.
  • the adjustment module further includes a first resistor, one end of the first resistor is connected to electricity, and the other end of the first resistor is connected to the first adjustment unit and the second Adjustment unit.
  • the control module includes an LLC controller, and the FB signal terminal of the LLC control chip is connected to the third pin of the first photocoupler and the third pin of the second photocoupler,
  • the Upgate signal terminal of the LLC controller is connected to the first switch module, and the Lowgate signal terminal of the LLC controller is connected to the second switch module.
  • the control module further includes a first capacitor, one end of the first capacitor is connected to the FB signal terminal of the LLC controller, the third pin and the third pin of the first photocoupler The third pin of the two photocouplers, and the other end of the first capacitor is grounded.
  • the voltage output module includes a transformer, a second capacitor, a third capacitor, a fourth capacitor, a first diode, and a second diode.
  • the fifth pin of the transformer passes through the Two capacitors are grounded, the seventh pin of the transformer is connected to the first switch module and the second switch module, the first pin of the transformer is connected to the anode of the first diode, and the first two poles
  • the negative pole of the tube is connected to one end of the third capacitor and the output end of the first supply voltage, and the other end of the third capacitor is grounded; the second pin and the third pin of the transformer are both grounded, and the fourth pin of the transformer is grounded.
  • the pin is connected to the anode of the second diode, the cathode of the second diode is connected to one end of the fourth capacitor and the output end of the second supply voltage, and the other end of the fourth capacitor is grounded.
  • the first switch module includes a first MOS tube, the gate of the first MOS tube is connected to the Upgate signal terminal of the LLC controller, and the drain of the first MOS tube is The pole is connected to electricity, and the source of the first MOS tube is connected to the second switch module and the voltage output module.
  • the second switch module includes a second MOS tube, the gate of the second MOS tube is connected to the Low gate signal terminal of the LLC controller, and the drain of the second MOS tube is The electrode is connected to the source of the first MOS transistor and the voltage output module, and the source of the second MOS transistor is grounded.
  • the first MOS tube is an N-channel MOS tube.
  • the second MOS transistor is an N-channel MOS transistor.
  • the first MOS transistor is synchronized with the first switch state.
  • the second MOS transistor is synchronized with the second switch state.
  • a power control device includes the above LLC power control circuit.
  • the LLC power supply control circuit includes a control module, a voltage output module, a first switch module, a second switch module, and a voltage regulation module,
  • the control module is respectively connected to the first switch module, the second switch module, and the voltage regulation module, the first switch module and the second switch module are also connected to the voltage output module, and the voltage output
  • the module is also connected to the voltage regulation module; the control module controls the working state of the first switch module and the second switch module; when the first switch module is on and the second switch module is off
  • the adjustment module outputs a first feedback signal to the control module based on the first supply voltage output by the voltage output module, and the control module controls the conduction of the first switch module based on the first feedback signal.
  • the adjustment module On time to adjust the first supply voltage currently output by the voltage output module; when the first switch module is off and the second switch module is on, the adjustment module is based on the output of the voltage output module
  • the second supply voltage outputs a second feedback signal to the control module, and the control module controls the on-time of the second switch module based on the second feedback signal to adjust the second current output of the voltage output module. Power supply voltage, thereby achieving independent control or adjustment of the two power supply voltages to meet the power demand of electrical equipment with different control requirements.
  • FIG. 1 is a structural block diagram of an LLC power supply control circuit provided by the present disclosure
  • Fig. 2 is a circuit schematic diagram of the LLC power supply control circuit provided by the present disclosure
  • FIG. 3 is a waveform diagram of the input voltage of the 7th pin of the transformer in the LLC power supply control circuit provided by the present disclosure
  • FIG. 5 is a waveform diagram of the driving voltage of the first MOS tube, the charging voltage of the first photocoupler, the driving voltage of the second MOS tube, and the charging voltage of the second photocoupler in the LLC power supply control circuit provided by the present disclosure.
  • the purpose of the present disclosure is to provide an LLC power control circuit and a power control device, which can realize independent control or adjustment of multiple power supply voltages, so as to meet the power demand of electrical equipment with different control requirements.
  • the LLC power supply control circuit includes a control module 100, a voltage output module 200, a first switch module 300, a second switch module 400, and a voltage regulation module 500.
  • the control modules 100 are respectively connected to the The first switch module 300, the second switch module 400, and the voltage regulation module 500, the first switch module 300 and the second switch module 400 are also connected to the voltage output module 200, the voltage output module 200 It is also connected to the voltage regulation module 500.
  • the control module 100 controls the working states of the first switch module 300 and the second switch module 400, where the working states of the first switch module 300 and the second switch module 400 represent the first switch module 300 And the conduction state of the second switch module 400, specifically, the control module 100 controls the first switch module 300 and the second switch module 400 to be turned on or off alternately instead of being turned on or off at the same time.
  • the control module 100 controls the first switch module 300 to be turned on, then the corresponding control module 400 turns off the second switch module, and when the control module 100 controls the first switch module 300 to turn off, then the corresponding control The second switch module 400 is turned on to ensure subsequent independent control of the supply voltage output by the voltage output module 200.
  • the adjustment module 500 outputs a first feedback signal to the control based on the first supply voltage V1 output by the voltage output module 200 Module 100, the control module 100 controls the on-time of the first switch module 300 based on the first feedback signal to adjust the first supply voltage V1 currently output by the voltage output module 200; in specific implementation, when When the first supply voltage V1 decreases, the current output by the adjustment module 500 decreases.
  • the control module 100 When the control module 100 detects the feedback signal of the decrease in current, that is, the first feedback signal, the control module 100 will The on-time of the first switch module 300 is controlled to increase, so that the first power supply voltage V1 output by the voltage output module 200 is increased, so as to maintain the stability of the first power supply voltage V1, thereby improving external electrical equipment Stability of work.
  • the adjustment module 500 outputs a second feedback signal to the control based on the second supply voltage V2 output by the voltage output module 200 Module 100, the control module 100 controls the on-time of the second switch module 400 based on the second feedback signal to adjust the second supply voltage V2 currently output by the voltage output module 200; in specific implementation, when When the second supply voltage V2 decreases, the current output by the adjustment module 500 decreases.
  • the control module 100 When the control module 100 detects the feedback signal of the decrease in current, that is, the second feedback signal, the control module 100 will The on-time of the second switch module 400 is controlled to increase, so that the second power supply voltage V2 output by the voltage output module 200 is increased, so as to maintain the stability of the second power supply voltage V2, thereby improving external electrical equipment
  • the stability of work because the voltage output module 200 can output two independent power supply voltages, and the control module 100 controls the first switch module 300 and the second switch module 400 to work alternately, then the first power supply
  • the output adjustments of the voltage V1 and the second supply voltage V2 are also independent of each other, and will not affect each other, so that the electricity demand of electric devices with different control requirements can be met.
  • the adjustment module 500 includes a first adjustment unit 510 and a second adjustment unit 520, and the first adjustment unit 510 is respectively connected to the voltage output module 200 and the control module 100, The second adjustment unit 520 is respectively connected to the voltage output module 200 and the control module 100; the first adjustment unit 510 outputs a first feedback signal to the control module 100 based on the first supply voltage V1; The second adjustment unit 520 outputs a second feedback signal to the control module 100 based on the second supply voltage V2.
  • the first regulating unit 510 is connected to the output terminal of the first power supply voltage V1 of the voltage output module 200
  • the second regulating unit 520 is connected to the output terminal of the second power supply voltage V2 of the voltage output module 200
  • the first adjustment unit 510 may separately output the first feedback signal to the control module 100, and the control module 100 controls the on-time of the first switch module 300 according to the first feedback signal, and then The first power supply voltage V1 output by the voltage output module 200 is increased to maintain the stability of the first power supply voltage V1; when the second power supply voltage V2 is decreased, the second feedback that can be output by the second adjustment unit 520 alone
  • the signal is sent to the control module 100, and the control module 100 controls the on-time of the second switch module 400 according to the second feedback signal, thereby increasing the second power supply voltage V2 output by the voltage output module 200 to maintain the second power supply voltage V2 is stabilized.
  • the first regulating unit 510 and the second regulating unit 520 are separately connected to the output terminal of the first power supply voltage V1 and the output terminal of the second power supply voltage V2, and can individually control and adjust the first power supply voltage V1 and the output terminal of the second power supply voltage V2.
  • the magnitude of the second power supply voltage V2 does not interfere with each other, and thus can meet the electricity demand of electric equipment with different control requirements.
  • the first adjustment unit 510 includes a first error amplifier, a first photocoupler PC1, and a first switch K1.
  • the first pin and the second pin of the first photocoupler PC1 The first error amplifier is connected, the fourth pin of the first photocoupler PC1 is connected to power through the first switch K1, the third pin of the first photocoupler PC1 is connected to the control module 100, and the first photocoupler PC1 is connected to the control module 100.
  • An error amplifier is also connected to the voltage output module 200. It should be noted that the first error amplifier is an existing technology and can be implemented by an existing mature circuit, and its structure and connection relationship are not described here.
  • the first error amplifier is used to sample the first supply voltage V1 and output it to the first photocoupler PC1; wherein, the first photocoupler PC1 can charge the control module 100 by controlling the first switch K1 It should be noted that the working state of the first switch K1 and the first switch module 300 are synchronized. According to FIG. 3, that is, after the first switch module 300 is closed, the first switch K1 is also closed.
  • the current output by the first photocoupler PC1 will also be Decrease, that is, the charging current of the control module 100 will decrease, and the corresponding charging time will increase, so the on-time of the control module 100 controlling the first switch module 300 will also increase, so that the voltage output module 200
  • the output first power supply voltage V1 is increased to maintain the stability of the first power supply voltage V1.
  • the second adjustment unit 520 includes a second error amplifier, a second photocoupler PC2, and a second switch K2, and the first pin and the second pin of the second photocoupler PC2 are connected to the second error amplifier.
  • Amplifier, the fourth pin of the second photocoupler PC2 is connected to power through a second switch K2
  • the third pin of the second photocoupler PC2 is connected to the control module 100
  • the second error amplifier is also connected to Regarding the voltage output module 200
  • the second error amplifier is an existing technology and can be implemented by an existing mature circuit, and its structure and connection relationship are not described here.
  • the second photocoupler PC2 can also charge the control module 100 by controlling the second switch K2.
  • the second switch K2 is synchronized with the working state of the second switch module 400, namely After the second switch module 400 is closed, the second switch K2 is also closed. After the second switch module 400 is closed under the control of the control module 100, that is, the control module 100 enters charging.
  • the control module 100 controls the first
  • the conduction time of the second switch module 400 will also increase, so that the second power supply voltage V2 output by the voltage output module 200 increases, so as to maintain the stability of the second power supply voltage V2.
  • the adjustment module 500 further includes a first resistor R1, one end of the first resistor R1 is connected to electricity, and the other end of the first resistor R1 is respectively connected to one end of the first switch K1 and one end of the second switch K2. Connect, charge the first capacitor C1 odd-numbered times through the first resistor R1, the first switch K1 and the first photocoupler PC1, and charge the first capacitor C1 through the first resistor R1, the second switch K2, and the second photocoupler PC2 The first capacitor C1 is charged an even number of times.
  • the first resistor R1 is a current-limiting resistor, that is, the existence of the first resistor R1 can ensure the safety of charging and improve the stability of the overall circuit operation.
  • control module 100 includes a first capacitor C1 and an LLC controller U1.
  • One end of the first capacitor C1 is connected to the FB signal terminal of the LLC controller U1 and the third photocoupler PC1. Pin and the third pin of the second photocoupler PC2, the other end of the first capacitor C1 is grounded, the Upgate signal end of the LLC controller U1 is connected to the first switch module 300, and the LLC controls The Low gate signal end of the device U1 is connected to the second switch module 400, where the LLC controller U1 is used to control the working status of the first switch module 300 and the second switch module 400.
  • the first switch module 300 and the second switch module 400 are controlled to work alternately, the corresponding charging state of the first capacitor C1 is also alternately performed, and the first capacitor C1 is charged and discharged twice for the LLC power supply control circuit
  • the LLC controller U1 controls the first switch module 300 to turn on
  • the LLC controller U1 U1 controls the second switch module 400 to turn on, and when the first capacitor C1 is charged to a preset value, it stops charging, and the voltage across the first capacitor C1 is pulled down to 0V, and then starts to drop.
  • the charging process of one cycle or the second half cycle that is, through the control module 100 in combination with the adjustment module 500, by controlling the conduction time of the first switch module 300 and the second switch module 400, and then adjust the first supply voltage
  • the stability of the output of V1 and the second supply voltage V2, and the independent control and adjustment of the first supply voltage V1 and the second supply voltage V2 are realized, which can further meet the electricity demand of electric equipment with different control requirements.
  • the voltage output module 200 includes a transformer T1, a second capacitor C2, a third capacitor C3, a fourth capacitor C4, a first diode D1 and a second diode D2, and the fifth capacitor of the transformer T1
  • the pin is grounded through the second capacitor C2, the seventh pin of the transformer T1 is connected to the first switch module 300 and the second switch module 400, and the first pin of the transformer T1 is connected to the first diode D1
  • the cathode of the first diode D1 is connected to one end of the third capacitor C3 and the output end of the first supply voltage V1, and the other end of the third capacitor C3 is grounded; the second end of the transformer T1
  • the pin and the third pin are both grounded, the fourth pin of the transformer T1 is connected to the anode of the second diode D2, and the cathode of the second diode D2 is connected to one end of the fourth capacitor C4 and the second The output terminal of the supply voltage V2, and the other terminal of the fourth capacitor C4 is grounded.
  • the input voltage waveform diagram of the 7th pin of the transformer T1 is shown in Fig. 3.
  • the 3rd pin of the first photocoupler PC1 outputs a first feedback signal, so that The LLC controller U1 controls the turn-on time of the first switch module 300 to increase, and when the turn-on time of the first switch module 300 increases, the positive duty cycle of the input voltage waveform of the 7th pin of the transformer T1 increases.
  • the first capacitor C1 is fully charged in the current half cycle, then the first capacitor C1 will stop charging and enter the second half cycle of charging, that is, the first switch module 300
  • the second switch module 400 is turned on, the upper end of the N3 winding of the transformer T1, that is, the 5th pin of the transformer T1 is a positive voltage terminal, and the lower end of the N3 winding of the transformer T1 is the 7th pin of the transformer T1 Is a negative voltage terminal, then the voltage applied to the N3 winding of the transformer T1 will increase, and then the first supply
  • the second switch module 400 when the second switch module 400 conducts When turned on, the second diode D2 is turned off and the first diode D1 is turned on, the first supply voltage V1 is output, and the turn-on time of the first switch module 300 is controlled to change the transformer
  • the voltage of the N3 winding of T1 further realizes the adjustment of the first supply voltage V1.
  • the low 3 pin of the second photocoupler PC2 outputs a second feedback signal, so that the LLC controller U1 controls the conduction time of the second switch module 400 to increase .
  • the turn-on time of the second switch module 400 increases, the positive duty cycle of the input voltage waveform of the 7th pin of the transformer T1 increases, so the corresponding voltage applied to the second capacitor C2 will increase.
  • the first capacitor C1 stops charging after the charging is completed in the current half cycle and enters the second half cycle of charging, that is, the second switch module 400 is turned off, the first switch module 300 is turned on, and the transformer
  • the upper end of the N3 winding of T1, that is, the 5th pin of the transformer T1 is the positive voltage terminal
  • the lower end of the N3 winding of the transformer T1 that is, the 7th pin of the transformer T1 is the negative voltage terminal
  • the first switch module 300 when the first switch module 300 is turned on, the first diode D1 is turned off and the first diode D1 is turned off.
  • the two diodes D2 are turned on, the second supply voltage V2 is output, and by controlling the turn-on time of the second switch module 400, the voltage of the winding N3 of the transformer T1 is changed, so as to realize the control of the second supply voltage
  • V2 the waveform diagrams of the first feedback signal and the second feedback signal are shown in FIG. 4. Since the first switch module 300 and the second switch module 400 work alternately, the first feedback signal The signal and the second feedback signal are alternately output.
  • the first switch module 300 includes a first MOS transistor Q1, the gate of the first MOS transistor Q1 is connected to the Upgate signal terminal of the LLC controller U1, and the drain of the first MOS transistor Q1 is connected to power,
  • the source of the first MOS transistor Q1 is connected to the second switch module 400 and the 7th pin of the transformer T1.
  • the second switch module 400 includes a second MOS transistor Q2.
  • the gate is connected to the Low gate signal terminal of the LLC controller U1
  • the drain of the second MOS transistor Q2 is connected to the source of the first MOS transistor Q1 and the 7th pin of the transformer T1, the second The source of the MOS transistor Q2 is grounded.
  • the first MOS transistor is an N-channel MOS transistor
  • the second MOS transistor is an N-channel MOS transistor.
  • the first switch K1 is synchronized with the first MOS transistor Q1.
  • the first switch K1 is turned on and the first MOS transistor Q1 is turned on, that is, the first The photocoupler PC1 charges the first capacitor C1.
  • the charging voltage of the first photocoupler PC1 and the driving voltage of the first MOS transistor Q1 are shown in FIG. 5, when the first MOS transistor Q1
  • the on-time of the transformer T1 increases, and the positive duty cycle of the input voltage waveform of the 7th pin of the transformer T1 increases, so the corresponding voltage Vc2 applied to the second capacitor C2 will increase.
  • the charging is stopped, that is, the voltage Vc1 of the first capacitor C1 is 0; after that, the first capacitor C1 enters the second half cycle of charging, and the corresponding first MOS transistor Q1 is turned off.
  • the second MOS transistor Q2 is turned on, then the voltage applied to the N3 winding of the transformer T1 will increase, and then the first supply voltage V1 will increase, that is, by controlling the conduction time of the first MOS transistor Q1, The voltage of the winding N3 of the transformer T1 is changed, thereby realizing the adjustment of the first supply voltage V1.
  • the second switch K2 is synchronized with the second MOS transistor Q2.
  • the second switch is turned on and the second MOS transistor Q2 is turned on , That is, the second photocoupler PC2 charges the first capacitor C1.
  • the charging voltage of the second photocoupler PC2 and the driving voltage of the second MOS transistor Q2 are shown in FIG.
  • the on-time of the second MOS transistor Q2 increases, and the positive duty cycle of the input voltage waveform of the 7th pin of the transformer T1 increases, so the corresponding voltage applied to the second capacitor C2, namely Vc2, will increase.
  • the first capacitor C1 stops charging after the charging is completed in the current half cycle, that is, the voltage Vc1 of the first capacitor C1 is 0 at this time; then the first capacitor C1 enters the second half cycle of charging, and the corresponding second MOS The transistor Q2 is turned off and the first MOS transistor Q1 is turned on.
  • the present disclosure can realize independent control and adjustment of two power supply voltages, and thus can meet the power demand of electrical equipment with different control requirements.
  • the present invention also provides a power supply control device correspondingly.
  • the power supply control device includes the above LLC power supply control circuit. Since the LLC power supply control circuit is described in detail above, it will not be here. Go into details again.
  • the present disclosure provides an LLC power supply control circuit and a power supply control device.
  • the LLC power supply control circuit includes a control module, a voltage output module, a first switch module, a second switch module, and a voltage regulation module.
  • the control module is respectively connected to the first switch module, the second switch module, and the voltage regulation module.
  • the first switch module and the second switch module are also connected to the voltage output module.
  • the voltage output module is also connected to the voltage output module.
  • the control module controls the working state of the first switch module and the second switch module; when the first switch module is turned on and the second switch module is turned off ,
  • the adjustment module outputs a first feedback signal to the control module based on the first supply voltage output by the voltage output module, and the control module controls the conduction time of the first switch module based on the first feedback signal ,
  • the adjustment module is based on the second output voltage output by the voltage output module.
  • the supply voltage outputs a second feedback signal to the control module, and the control module controls the on-time of the second switch module based on the second feedback signal to adjust the second supply voltage currently output by the voltage output module Therefore, independent control or adjustment of the two power supply voltages can be realized to meet the power demand of electrical equipment with different control requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种LLC电源控制电路和电源控制装置,所述LLC电源控制电路包括控制模块(100)、电压输出模块(200)、第一开关模块(300)、第二开关模块(400)和电压调节模块(500),所述控制模块(100)控制第一开关模块(300)和第二开关模块(400)的工作状态;所述第一开关模块(300)导通且第二开关模块(400)断开时,所述调节模块(500)基于电压输出模块(200)输出的第一供电电压(V1)输出第一反馈信号至控制模块(100),进而控制第一开关模块(300)的导通时间,用于调节所述第一供电电压(V1);所述第一开关模块(300)断开且第二开关模块(400)导通时,所述调节模块(500)基于电压输出模块(200)输出的第二供电电压(V2)输出第二反馈信号至控制模块(100),进而控制所述第二开关模块(400)的导通时间,用于调节所述第二供电电压(V2),由此实现对两路供电电压的独立控制或调节。

Description

一种LLC电源控制电路和电源控制装置
优先权
本公开要求申请日为2019年08月27日提交中国专利局、申请号为“201921406456.2”、申请名称为“一种LLC电源控制电路和电源控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电器技术领域,特别涉及一种LLC电源控制电路和电源控制装置。
背景技术
目前电源行业各种拓扑架构的电源中均无法实现对多路电能输出进行独立控制,那么针对电能有不同控制需求的用电设备而言,用单一的电能输出的电源无法实现对其进行同时供电,例如,现在的电视电源中LED背光的供电需要控制电流,而机芯等的供电则需要控制电压,所以必须采用两个独立的电源模块分别给机芯和背光供电,增加了电源的制造成本且不便于使用。
因而现有技术还有待改进和提高。
公开内容
本公开的目的在于提供一种LLC电源控制电路和电源控制装置,能够实现对多路供电电压的独立控制或调节,以满足有不同控制需求的用电设备的用电需求。
为了达到上述目的,本公开采取了以下技术方案:
一种LLC电源控制电路,包括控制模块、电压输出模块、第一开关模块、第二开关模块和电压调节模块,所述控制模块分别连接所述第一开关模块、第二开关模块和所述电压调节模块,所述第一开关模块和所述第二开关模块还与所述电压输出模块连接,所述电压输出模块还与所述电压调节模块连接;
由所述控制模块控制所述第一开关模块和所述第二开关模块的工作状态;当所述 第一开关模块导通且所述第二开关模块断开时,所述调节模块基于所述电压输出模块输出的第一供电电压输出第一反馈信号至所述控制模块,所述控制模块基于所述第一反馈信号控制所述第一开关模块的导通时间,以调节所述电压输出模块当前输出的第一供电电压;
当所述第一开关模块断开且所述第二开关模块导通时,所述调节模块基于所述电压输出模块输出的第二供电电压输出第二反馈信号至所述控制模块,所述控制模块基于所述第二反馈信号控制所述第二开关模块的导通时间,以调节所述电压输出模块当前输出的第二供电电压。
所述的LLC电源控制电路中,所述调节模块包括第一调节单元和第二调节单元,所述第一调节单元分别与所述电压输出模块和所述控制模块连接,所述第二调节单元分别与所述电压输出模块和所述控制模块连接;所述第一调节单元基于所述第一供电电压输出第一反馈信号至所述控制模块;所述第二调节单元基于所述第二供电电压输出第二反馈信号至所述控制模块。
所述的LLC电源控制电路中,所述第一调节单元包括第一误差放大器、第一光电耦合器和第一开关,所述第一光电耦合器的第1脚和第2脚连接所述第一误差放大器,所述第一光电耦合器的第4脚通过第一开关接电,所述第一光电耦合器的第3脚连接所述控制模块,所述第一误差放大器还连接所述电压输出模块。
所述的LLC电源控制电路中,所述第二调节单元包括第二误差放大器、第二光电耦合器和第二开关,所述第二光电耦合器的第1脚和第2脚连接所述第二误差放大器,所述第二光电耦合器的第4脚通过第二开关接电,所述第二光电耦合器的第3脚连接所述控制模块,所述第二误差放大器还连接所述电压输出模块。
所述的LLC电源控制电路中,所述调节模块还包括第一电阻,所述第一电阻的一端接电,所述第一电阻的另一端分别与所述第一调节单元和所述第二调节单元。
所述的LLC电源控制电路中,所述控制模块包括LLC控制器,所述LLC控制芯片的FB信号端连接所述第一光电耦合器的第3脚和第二光电耦合器的第3脚,所述LLC控制器的Up gate信号端连接所述第一开关模块,所述LLC控制器的Low gate信号端连 接所述第二开关模块。
所述的LLC电源控制电路中,所述控制模块还包括第一电容,所述第一电容的一端连接所述LLC控制器的FB信号端、所述第一光电耦合器的第3脚和第二光电耦合器的第3脚,所述第一电容的另一端接地。
所述的LLC电源控制电路中,所述电压输出模块包括变压器、第二电容、第三电容、第四电容、第一二极管和第二二极管,所述变压器的第5脚通过第二电容接地,所述变压器的第7脚连接所述第一开关模块和所述第二开关模块,所述变压器的第1脚连接所述第一二极管的正极,所述第一二极管的负极连接所述第三电容的一端和第一供电电压的输出端,所述第三电容的另一端接地;所述变压器的第2脚和第3脚均接地,所述变压器的第4脚连接所述第二二极管的正极,所述第二二极管的负极连接所述第四电容的一端和第二供电电压的输出端,所述第四电容的另一端接地。
所述的LLC电源控制电路中,所述第一开关模块包括第一MOS管,所述第一MOS管的栅极连接所述LLC控制器的Up gate信号端,所述第一MOS管的漏极接电,所述第一MOS管的源极连接所述第二开关模块和所述电压输出模块。
所述的LLC电源控制电路中,所述第二开关模块包括第二MOS管,所述第二MOS管的栅极连接所述LLC控制器的Low gate信号端,所述第二MOS管的漏极连接所述第一MOS管的源极和所述电压输出模块,所述第二MOS管的源极接地。
所述的LLC电源控制电路中,所述第一MOS管为N沟道MOS管。
所述的LLC电源控制电路中,所述第二MOS管为N沟道MOS管。
所述的LLC电源控制电路中,所述第一MOS管与所述第一开关状态同步。
所述的LLC电源控制电路中,所述第二MOS管与所述第二开关状态同步。
一种电源控制装置,包括如上所述的LLC电源控制电路。
相较于现有技术,本公开提供了一种LLC电源控制电路和电源控制装置,所述LLC电源控制电路包括控制模块、电压输出模块、第一开关模块、第二开关模块和电压调节模块,所述控制模块分别连接所述第一开关模块、第二开关模块和所述电压调节模块,所述第一开关模块和所述第二开关模块还与所述电压输出模块连接,所述电压输出模块 还与所述电压调节模块连接;由所述控制模块控制所述第一开关模块和所述第二开关模块的工作状态;当所述第一开关模块导通且所述第二开关模块断开时,所述调节模块基于所述电压输出模块输出的第一供电电压输出第一反馈信号至所述控制模块,所述控制模块基于所述第一反馈信号控制所述第一开关模块的导通时间,以调节所述电压输出模块当前输出的第一供电电压;当所述第一开关模块断开且所述第二开关模块导通时,所述调节模块基于所述电压输出模块输出的第二供电电压输出第二反馈信号至所述控制模块,所述控制模块基于所述第二反馈信号控制所述第二开关模块的导通时间,以调节所述电压输出模块当前输出的第二供电电压,由此实现对两路供电电压的独立控制或调节,以满足有不同控制需求的用电设备的用电需求。
附图说明
图1为本公开提供的LLC电源控制电路的结构框图;
图2为本公开提供的LLC电源控制电路的电路原理图;
图3为本公开提供的LLC电源控制电路中变压器第7脚的输入电压的波形图;
图4为本公开提供的LLC电源控制电路中第一反馈信号和第二反馈信号的波形图;
图5为本公开提供的LLC电源控制电路中第一MOS管的驱动电压、第一光电耦合器的充电电压、第二MOS管的驱动电压和第二光电耦合器的充电电压的波形图。
具体实施方式
本公开的目的在于提供一种LLC电源控制电路和电源控制装置,能够实现对多路供电电压的独立控制或调节,以满足有不同控制需求的用电设备的用电需求。
为使本公开的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
请参阅图1,本公开提供的LLC电源控制电路,包括控制模块100、电压输出模块200、第一开关模块300、第二开关模块400和电压调节模块500,所述控制模块100分别连接所述第一开关模块300、第二开关模块400和所述电压调节模块500,所述第一 开关模块300和所述第二开关模块400还与所述电压输出模块200连接,所述电压输出模块200还与所述电压调节模块500连接。
由所述控制模块100控制所述第一开关模块300和所述第二开关模块400的工作状态,在此第一开关模块300和第二开关模块400的工作状态表示所述第一开关模块300和第二开关模块400的导通状态,具体地,所述控制模块100控制所述第一开关模块300和第二开关模块400交替导通或断开而并非同时导通或断开,当所述控制模块100控制第一开关模块300导通时,那么对应的则控制所述第二开关模块400断开,当所述控制模块100控制第一开关模块300断开时,那么对应的则控制所述第二开关模块400导通,以保证后续对电压输出模块200输出的供电电压进行独立控制。
当所述第一开关模块300导通且所述第二开关模块400断开时,所述调节模块500基于所述电压输出模块200输出的第一供电电压V1输出第一反馈信号至所述控制模块100,所述控制模块100基于所述第一反馈信号控制所述第一开关模块300的导通时间,以调节所述电压输出模块200当前输出的第一供电电压V1;具体实施时,当所述第一供电电压V1降低时,则所述调节模块500输出的电流减小,当所述控制模块100检测到电流减小的反馈信号即第一反馈信号时,则所述控制模块100会控制所述第一开关模块300的导通时间增加,使得所述电压输出模块200输出的第一供电电压V1升高,以此维持所述第一供电电压V1的稳定,进而提高外部用电设备工作的稳定性。
当所述第一开关模块300断开且所述第二开关模块400导通时,所述调节模块500基于所述电压输出模块200输出的第二供电电压V2输出第二反馈信号至所述控制模块100,所述控制模块100基于所述第二反馈信号控制所述第二开关模块400的导通时间,以调节所述电压输出模块200当前输出的第二供电电压V2;具体实施时,当所述第二供电电压V2降低时,则所述调节模块500输出的电流减小,当所述控制模块100检测到电流减小的反馈信号即第二反馈信号时,则所述控制模块100会控制所述第二开关模块400的导通时间增加,使得所述电压输出模块200输出的第二供电电压V2升高,以此维持所述第二供电电压V2的稳定,进而提高外部用电设备工作的稳定性,由于所述电压输出模块200可输出两路独立的供电电压,且所述控制模块100控制第一开关模块 300和第二开关模块400的工作时交替进行的,那么第一供电电压V1和第二供电电压V2的输出调节也是相互独立的,相互不会影响,进而可满足有不同控制需求的用电设备的用电需求。
进一步地,请继续参阅图1,所述调节模块500包括第一调节单元510和第二调节单元520,所述第一调节单元510分别与所述电压输出模块200和所述控制模块100连接,所述第二调节单元520分别与所述电压输出模块200和所述控制模块100连接;所述第一调节单元510基于所述第一供电电压V1输出第一反馈信号至所述控制模块100;所述第二调节单元520基于所述第二供电电压V2输出第二反馈信号至所述控制模块100。
具体地,所述第一调节单元510连接所述电压输出模块200的第一供电电压V1的输出端,所述第二调节单元520连接所述电压输出模块200的第二供电电压V2的输出端,当所述第一供电电压V1减小时,可由第一调节单元510单独输出第一反馈信号至控制模块100,由控制模块100根据第一反馈信号控制第一开关模块300的导通时间,进而使得所述电压输出模块200输出的第一供电电压V1增大,以维持第一供电电压V1的稳定;当所述第二供电电压V2减小时,可由第二调节单元520单独输出的第二反馈信号至控制模块100,由控制模块100根据第二反馈信号控制第二开关模块400的导通时间,进而使得所述电压输出模块200输出的第二供电电压V2增大,以维持第二供电电压V2的稳定,所述第一调节单元510和第二调节单元520分别单独连接所述第一供电电压V1的输出端和第二供电电压V2的输出端,能够单独控制调整第一供电电压V1和第二供电电压V2的大小,相互不干扰,进而可满足有不同控制需求的用电设备的用电需求。
具体实施时,请参阅图2,所述第一调节单元510包括第一误差放大器、第一光电耦合器PC1和第一开关K1,所述第一光电耦合器PC1的第1脚和第2脚连接所述第一误差放大器,所述第一光电耦合器PC1的第4脚通过第一开关K1接电,所述第一光电耦合器PC1的第3脚连接所述控制模块100,所述第一误差放大器还连接所述电压输出模块200,需要说明的是,所述第一误差放大器为现有技术,可采用现有的成熟电路实 现,此处对其结构与连接关系不做赘述。所述第一误差放大器用于对第一供电电压V1进行采样后输出至第一光电耦合器PC1;其中,所述第一光电耦合器PC1可通过控制第一开关K1实现对控制模块100的充电,需要说明的是所述第一开关K1与所述第一开关模块300的工作状态同步,依据图3中即所述第一开关模块300闭合后,所述第一开关K1也闭合,所述第一开关模块300在控制模块100的控制下闭合后,所述控制模块100便进入充电状态后,当所述第一供电电压V1减小时,所述第一光电耦合器PC1输出的电流也会减小,即所述控制模块100的充电电流会减小,对应的充电时间会增长,则控制模块100控制所述第一开关模块300的导通时间也会增加,使得所述电压输出模块200输出的第一供电电压V1升高,以此维持所述第一供电电压V1的稳定。
进一步地,所述第二调节单元520包括第二误差放大器、第二光电耦合器PC2和第二开关K2,所述第二光电耦合器PC2的第1脚和第2脚连接所述第二误差放大器,所述第二光电耦合器PC2的第4脚通过第二开关K2接电,所述第二光电耦合器PC2的第3脚连接所述控制模块100,所述第二误差放大器还连接所述电压输出模块200,需要说明的是,所述第二误差放大器为现有技术,可采用现有的成熟电路实现,此处对其结构与连接关系不做赘述。同样,所述第二光电耦合器PC2也可通过控制第二开关K2实现对控制模块100的充电,需要说明的是所述第二开关K2与所述第二开关模块400的工作状态同步,即所述第二开关模块400闭合后,所述第二开关K2也闭合,所述第二开关模块400在控制模块100的控制下闭合后,即所述控制模块100进入充电,当所述第二供电电压V2减小时,所述第二光电耦合器PC2输出的电流也会减小,即所述控制模块100的充电电流会减小,对应的充电时间会增长,则控制模块100控制所述第二开关模块400的导通时间也会增加,使得所述电压输出模块200输出的第二供电电压V2升高,以此维持所述第二供电电压V2的稳定。
进一步地,所述调节模块500还包括第一电阻R1,所述第一电阻R1的一端接电,所述第一电阻R1的另一端分别与第一开关K1的一端和第二开关K2的一端连接,通过所述第一电阻R1与第一开关K1和第一光电耦合器PC1给第一电容C1进行奇数次充电,通过所述第一电阻R1与第二开关K2和第二光电耦合器PC2给第一电容C1进行偶数次 充电,所述第一电阻R1为限流电阻,即所述第一电阻R1的存在能够确保充电的安全性,提高整体电路工作的稳定性。
进一步地,所述控制模块100包括第一电容C1和LLC控制器U1,所述第一电容C1的一端连接所述LLC控制器U1的FB信号端、所述第一光电耦合器PC1的第3脚和所述第二光电耦合器PC2的第3脚,所述第一电容C1的另一端接地,所述LLC控制器U1的Up gate信号端连接所述第一开关模块300,所述LLC控制器U1的Low gate信号端连接所述第二开关模块400,其中,所述LLC控制器U1用于控制第一开关模块300和第二开关模块400的工作状态,由于所述LLC控制器U1时控制所述第一开关模块300和第二开关模块400交替工作,对应的所述第一电容C1的充电状态也是交替进行的,且所述第一电容C1充放电2次为LLC电源控制电路的一个工作周期,当所述第一电容C1奇数次充电时,所述LLC控制器U1控制所述第一开关模块300导通,当所述第一电容C1偶数次充电时,所述LLC控制器U1控制所述第二开关模块400导通,而当所述第一电容C1充电至预设值后,则停止充电,所述第一电容C1两端的电压会被拉低至0V,然后开始下一周期或者下半个周期的充电过程,即通过控制模块100结合所述调节模块500通过控制所述第一开关模块300和第二开关模块400的导通时间,进而调节所述第一供电电压V1和第二供电电压V2输出的稳定性,且实现了第一供电电压V1和第二供电电压V2的独立控制和调节,进一步可满足有不同控制需求的用电设备的用电需求。
更进一步地,所述电压输出模块200包括变压器T1、第二电容C2、第三电容C3、第四电容C4、第一二极管D1和第二二极管D2,所述变压器T1的第5脚通过第二电容C2接地,所述变压器T1的第7脚连接所述第一开关模块300和所述第二开关模块400,所述变压器T1的第1脚连接所述第一二极管D1的正极,所述第一二极管D1的负极连接所述第三电容C3的一端和第一供电电压V1的输出端,所述第三电容C3的另一端接地;所述变压器T1的第2脚和第3脚均接地,所述变压器T1的第4脚连接所述第二二极管D2的正极,所述第二二极管D2的负极连接所述第四电容C4的一端和第二供电电压V2的输出端,所述第四电容C4的另一端接地。
所述变压器T1的第7脚的输入电压波形图如图3所示,当所述第一供电电压V1降低时,由所述第一光电耦合器PC1的第3脚输出第一反馈信号,使得所述LLC控制器U1控制第一开关模块300的导通时间增加,而当所述第一开关模块300开通时间增加时,所述变压器T1的第7脚的输入电压波形的正占空比增大,那么对应加在第二电容C2的电压便会升高,此时若第一电容C1在当前半个周期内充电完成后停止充电,进入下半个周期的充电,即第一开关模块300断开,所述第二开关模块400导通,所述变压器T1的N3绕组的上端即变压器T1的第5脚为正电压端,所述变压器T1的N3绕组的下端即变压器T1的第7脚为负电压端,那么加在变压器T1的N3绕组上的电压便会升高,进而所述第一供电电压V1便会升高,与此同时根据同名端,当所述第二开关模块400导通时,所述第二二极管D2截止且所述第一二极管D1导通,所述第一供电电压V1输出,且通过控制第一开关模块300的导通时间,改变所述变压器T1的N3绕组的电压,进而实现对所述第一供电电压V1的调节。
同样,当所述第二供电电压V2降低时,由所述第二光电耦合器PC2的低3脚输出第二反馈信号,使得所述LLC控制器U1控制第二开关模块400的导通时间增加,而当所述第二开关模块400开通时间增加时,所述变压器T1的第7脚的输入电压波形的正占空比增大,那么对应的加在第二电容C2的电压便会升高,此时若第一电容C1在当前半个周期内充电完成后停止充电,进入下半个周期的充电,即第二开关模块400断开,所述第一开关模块300导通,所述变压器T1的N3绕组的上端即变压器T1的第5脚为正电压端,所述变压器T1的N3绕组的下端即变压器T1的第7脚为负电压端,那么加在变压器T1的N3绕组上的电压便会升高,进而所述第二供电电压V2便会升高,与此同时根据同名端,当所述第一开关模块300导通时,所述第一二极管D1截止且所述第二二极管D2导通,所述第二供电电压V2输出,且通过控制第二开关模块400的导通时间,改变所述变压器T1的N3绕组的电压,进而实现对所述第二供电电压V2的调节,对应地,所述第一反馈信号和第二反馈信号的波形图如图4所示,由于所述第一开关模块300和第二开关模块400交替工作,则所述第一反馈信号和第二反馈信号交替输出。
所述第一开关模块300包括第一MOS管Q1,所述第一MOS管Q1的栅极连接所 述LLC控制器U1的Up gate信号端,所述第一MOS管Q1的漏极接电,所述第一MOS管Q1的源极连接所述第二开关模块400和所述变压器T1的第7脚,所述第二开关模块400包括第二MOS管Q2,所述第二MOS管Q2的栅极连接所述LLC控制器U1的Low gate信号端,所述第二MOS管Q2的漏极连接所述第一MOS管Q1的源极和所述变压器T1的第7脚,所述第二MOS管Q2的源极接地,本实施例中,所述第一MOS管为N沟道MOS管,所述第二MOS管为N沟道MOS管。
所述第一开关K1和第一MOS管Q1同步,当所述第一电容C1进入充电状态时,所述第一开关K1导通且所述第一MOS管Q1导通,即所述第一光电耦合器PC1为所述第一电容C1充电,对应地,所述第一光电耦合器PC1的充电电压与第一MOS管Q1的驱动电压如图5所示,当所述第一MOS管Q1的导通时间增加,所述变压器T1的第7脚的输入电压波形的正占空比增大,那么对应的加在第二电容C2的电压Vc2便会升高,此时若第一电容C1在当前半个周期内充电完成后停止充电,即此时第一电容C1的电压Vc1为0;之后第一电容C1进入下半个周期的充电,对应的第一MOS管Q1断开,所述第二MOS管Q2导通,那么加在变压器T1的N3绕组上的电压便会升高,进而所述第一供电电压V1便会升高,即通过控制第一MOS管Q1的导通时间,改变所述变压器T1的N3绕组的电压,进而实现对所述第一供电电压V1的调节。
同样,所述第二开关K2和第二MOS管Q2同步,当所述第一电容C1进入另半个周期的充电状态时,所述第二开关导通且所述第二MOS管Q2导通,即所述第二光电耦合器PC2为所述第一电容C1充电,对应地,所述第二光电耦合器PC2的充电电压与第二MOS管Q2的驱动电压如图5所示,当所述第二MOS管Q2的导通时间增加,所述变压器T1的第7脚的输入电压波形的正占空比增大,那么对应的加在第二电容C2的电压即Vc2便会升高,此时若第一电容C1在当前半个周期内充电完成后停止充电,即此时第一电容C1的电压Vc1为0;之后第一电容C1进入下半个周期的充电,对应的第二MOS管Q2断开,所述第一MOS管Q1导通,那么加在变压器T1的N3绕组上的电压便会升高,进而所述第二供电电压V2便会升高,即通过控制第二MOS管Q2的导通时间,改变所述变压器T1的N3绕组的电压,进而实现对所述第二供电电压V2的调 节,所述第一MOS管Q1和第二MOS管Q2的导通与断开可由所述LLC控制器U1进行单独控制,且所述第一光电耦合器PC1和第二光电耦合器PC2也时分别连接所述第一供电电压V1的输出端和第二供电电压V2的输出端,因此本公开可实现两路供电电压进行单独的控制与调节,进而可满足有不同控制需求的用电设备的用电需求。
基于上述的LLC电源控制电路,本发明还相应提供了电源控制装置,所述电源控制装置包括如上所述的LLC电源控制电路,由于上文对该LLC电源控制电路进行了详细描述,此处不再赘述。
综上所述,本公开提供的一种LLC电源控制电路和电源控制装置,所述LLC电源控制电路包括控制模块、电压输出模块、第一开关模块、第二开关模块和电压调节模块,所述控制模块分别连接所述第一开关模块、第二开关模块和所述电压调节模块,所述第一开关模块和所述第二开关模块还与所述电压输出模块连接,所述电压输出模块还与所述电压调节模块连接;由所述控制模块控制所述第一开关模块和所述第二开关模块的工作状态;当所述第一开关模块导通且所述第二开关模块断开时,所述调节模块基于所述电压输出模块输出的第一供电电压输出第一反馈信号至所述控制模块,所述控制模块基于所述第一反馈信号控制所述第一开关模块的导通时间,以调节所述电压输出模块当前输出的第一供电电压;当所述第一开关模块断开且所述第二开关模块导通时,所述调节模块基于所述电压输出模块输出的第二供电电压输出第二反馈信号至所述控制模块,所述控制模块基于所述第二反馈信号控制所述第二开关模块的导通时间,以调节所述电压输出模块当前输出的第二供电电压,由此实现两路供电电压的独立控制或调节,以满足有不同控制需求的用电设备的用电需求。
可以理解的是,对本领域普通技术人员来说,可以根据本公开的技术方案及其公开构思加以等同替换或改变,而所有这些改变或替换都应属于本公开所附的权利要求的保护范围。

Claims (15)

  1. 一种LLC电源控制电路,其中,包括控制模块、电压输出模块、第一开关模块、第二开关模块和电压调节模块,所述控制模块分别连接所述第一开关模块、所述第二开关模块和所述电压调节模块,所述第一开关模块和所述第二开关模块还与所述电压输出模块连接,所述电压输出模块还与所述电压调节模块连接;
    所述控制模块控制所述第一开关模块和所述第二开关模块的工作状态;所述第一开关模块导通且所述第二开关模块断开时,所述调节模块基于所述电压输出模块输出的第一供电电压输出第一反馈信号至所述控制模块,所述控制模块基于所述第一反馈信号控制所述第一开关模块的导通时间,用于调节所述电压输出模块当前输出的第一供电电压;
    所述第一开关模块断开且所述第二开关模块导通时,所述调节模块基于所述电压输出模块输出的第二供电电压输出第二反馈信号至所述控制模块,所述控制模块基于所述第二反馈信号控制所述第二开关模块的导通时间,用于调节所述电压输出模块当前输出的第二供电电压。
  2. 根据权利要求1所述的LLC电源控制电路,其中,所述调节模块包括第一调节单元和第二调节单元,所述第一调节单元分别与所述电压输出模块和所述控制模块连接,所述第二调节单元分别与所述电压输出模块和所述控制模块连接;所述第一调节单元基于所述第一供电电压输出所述第一反馈信号至所述控制模块;所述第二调节单元基于所述第二供电电压输出所述第二反馈信号至所述控制模块。
  3. 根据权利要求2所述的LLC电源控制电路,其中,所述第一调节单元包括第一误差放大器、第一光电耦合器和第一开关,所述第一光电耦合器的第1脚和第2脚连接所述第一误差放大器,所述第一光电耦合器的第4脚通过所述第一开关接电,所述第一光电耦合器的第3脚连接所述控制模块,所述第一误差放大器还连接所述电压输出模块。
  4. 根据权利要求2所述的LLC电源控制电路,其中,所述第二调节单元包括第二误差放大器、第二光电耦合器和第二开关,所述第二光电耦合器的第1脚和第2脚连接所述第二误差放大器,所述第二光电耦合器的第4脚通过所述第二开关接电,所述第二光电耦合器的第3脚连接所述控制模块,所述第二误差放大器还连接所述电压输出模块。
  5. 根据权利要求2所述的LLC电源控制电路,其中,所述调节模块还包括第一电 阻,所述第一电阻的一端接电,所述第一电阻的另一端分别与所述第一调节单元和所述第二调节单元。
  6. 根据权利要求3所述的LLC电源控制电路,其中,所述控制模块包括LLC控制器,所述LLC控制芯片的FB信号端连接所述第一光电耦合器的第3脚和第二光电耦合器的第3脚所述LLC控制器的Up gate信号端连接所述第一开关模块,所述LLC控制器的Low gate信号端连接所述第二开关模块。
  7. 根据权利要求6所述的LLC电源控制电路,其中,所述控制模块还包括第一电容,所述第一电容的一端连接所述LLC控制器的FB信号端、所述第一光电耦合器的第3脚和第二光电耦合器的第3脚,所述第一电容的另一端接地。
  8. 根据权利要求1所述的LLC电源控制电路,其中,所述电压输出模块包括变压器、第二电容、第三电容、第四电容、第一二极管和第二二极管,所述变压器的第5脚通过所述第二电容接地,所述变压器的第7脚连接所述第一开关模块和所述第二开关模块,所述变压器的第1脚连接所述第一二极管的正极,所述第一二极管的负极连接所述第三电容的一端和所述第一供电电压的输出端,所述第三电容的另一端接地;所述变压器的第2脚和第3脚均接地,所述变压器的第4脚连接所述第二二极管的正极,所述第二二极管的负极连接所述第四电容的一端和所述第二供电电压的输出端,所述第四电容的另一端接地。
  9. 根据权利要求6所述的LLC电源控制电路,其中,所述第一开关模块包括第一MOS管,所述第一MOS管的栅极连接所述LLC控制器的Up gate信号端,所述第一MOS管的漏极接电,所述第一MOS管的源极连接所述第二开关模块和所述电压输出模块。
  10. 根据权利要求9所述的LLC电源控制电路,其中,所述第二开关模块包括第二MOS管,所述第二MOS管的栅极连接所述LLC控制器的Low gate信号端,所述第二MOS管的漏极连接所述第一MOS管的源极和所述电压输出模块,所述第二MOS管的源极接地。
  11. 根据权利要求9所述的LLC电源控制电路,其中,所述第一MOS管为N沟道 MOS管。
  12. 根据权利要求10所述的LLC电源控制电路,其中,所述第二MOS管为N沟道MOS管。
  13. 根据权利要求11所述的LLC电源控制电路,其中,所述第一MOS管与所述第一开关状态同步。
  14. 根据权利要求12所述的LLC电源控制电路,其中,所述第二MOS管与所述第二开关状态同步。
  15. 一种电源控制装置,其中,包括如权利要求1-14任意一项所述的LLC电源控制电路。
PCT/CN2020/107646 2019-08-27 2020-08-07 一种llc电源控制电路和电源控制装置 WO2021036740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921406456.2 2019-08-27
CN201921406456.2U CN210629356U (zh) 2019-08-27 2019-08-27 一种llc电源控制电路和电源控制装置

Publications (1)

Publication Number Publication Date
WO2021036740A1 true WO2021036740A1 (zh) 2021-03-04

Family

ID=70762958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107646 WO2021036740A1 (zh) 2019-08-27 2020-08-07 一种llc电源控制电路和电源控制装置

Country Status (2)

Country Link
CN (1) CN210629356U (zh)
WO (1) WO2021036740A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210629356U (zh) * 2019-08-27 2020-05-26 深圳Tcl新技术有限公司 一种llc电源控制电路和电源控制装置
CN112986785A (zh) * 2021-04-27 2021-06-18 华电(烟台)功率半导体技术研究院有限公司 一种用于功率循环实验的输出数控可调驱动模块及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181259A1 (en) * 2001-05-09 2002-12-05 Thomas Duerbaum Resonant converter
US20030067791A1 (en) * 2001-09-04 2003-04-10 Reinhold Elferich Regulating device for a resonant converter
CN102792576A (zh) * 2010-03-16 2012-11-21 株式会社村田制作所 开关电源装置
CN108123604A (zh) * 2017-12-28 2018-06-05 深圳Tcl新技术有限公司 谐振电源及电子设备
CN110391751A (zh) * 2019-08-06 2019-10-29 深圳创维-Rgb电子有限公司 双反馈数字电源电路及电源
CN210629356U (zh) * 2019-08-27 2020-05-26 深圳Tcl新技术有限公司 一种llc电源控制电路和电源控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181259A1 (en) * 2001-05-09 2002-12-05 Thomas Duerbaum Resonant converter
US20030067791A1 (en) * 2001-09-04 2003-04-10 Reinhold Elferich Regulating device for a resonant converter
CN102792576A (zh) * 2010-03-16 2012-11-21 株式会社村田制作所 开关电源装置
CN108123604A (zh) * 2017-12-28 2018-06-05 深圳Tcl新技术有限公司 谐振电源及电子设备
CN110391751A (zh) * 2019-08-06 2019-10-29 深圳创维-Rgb电子有限公司 双反馈数字电源电路及电源
CN210629356U (zh) * 2019-08-27 2020-05-26 深圳Tcl新技术有限公司 一种llc电源控制电路和电源控制装置

Also Published As

Publication number Publication date
CN210629356U (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
CN102255526B (zh) 一种ac-dc电源转换芯片及电源转换电路
CN201032706Y (zh) 驱动电路
US9444351B2 (en) Electrical power conversion device including normally-off bidirectional switch
US10445281B2 (en) Load detection apparatus and method for USB systems
CN102055341B (zh) 一种开关电源的控制电路及开关电源
WO2021036740A1 (zh) 一种llc电源控制电路和电源控制装置
CN104796015B (zh) 用于对同步整流器驱动电路供电的系统和方法
CN103219893B (zh) 开关电源控制器以及开关电源电路
KR101734210B1 (ko) 양방향 직류-직류 컨버터
CN103152951A (zh) Led驱动控制电路及其驱动电路结构
JP2016116415A (ja) 絶縁型のdc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器、1次側コントローラ
CN104253544B (zh) 一种开关电源控制芯片的补偿电路
TW202414982A (zh) 一種基於輔助繞組為開關電源控制電路供電的電路
TW201306427A (zh) 電源管理電路
CN103647448A (zh) 集成降压-反激式高功率因数恒流电路及装置
JP2016116414A (ja) 絶縁型のdc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器、フィードバックアンプ集積回路
US9564819B2 (en) Switching power supply circuit
CN102185468B (zh) 高压启动开关和检测晶体管复用电路及开关电源
CN201928486U (zh) 一种pwm调光led驱动电路
CN105307305A (zh) 一种led电源控制装置及电视机
CN202178706U (zh) 一种ac-dc电源转换芯片及电源转换电路
CN209571962U (zh) 一种双绕组副边反馈开关电源
CN203691365U (zh) 功率半导体开关驱动电路的自供电电路
CN103633848B (zh) 一种隔离型ac-dc电源的输出电压控制方法及其电路
KR101197078B1 (ko) 능동 스위칭 소자를 구비한 영전압 방전회로 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857736

Country of ref document: EP

Kind code of ref document: A1