CN204810610U - 一种非隔离led恒流驱动芯片及电路 - Google Patents

一种非隔离led恒流驱动芯片及电路 Download PDF

Info

Publication number
CN204810610U
CN204810610U CN201520461211.5U CN201520461211U CN204810610U CN 204810610 U CN204810610 U CN 204810610U CN 201520461211 U CN201520461211 U CN 201520461211U CN 204810610 U CN204810610 U CN 204810610U
Authority
CN
China
Prior art keywords
constant current
power switch
driving chip
switch pipe
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520461211.5U
Other languages
English (en)
Inventor
闾建晶
胡津华
沈吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRM ICBG Wuxi Co Ltd
Original Assignee
CR Powtech Shanghai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CR Powtech Shanghai Ltd filed Critical CR Powtech Shanghai Ltd
Priority to CN201520461211.5U priority Critical patent/CN204810610U/zh
Application granted granted Critical
Publication of CN204810610U publication Critical patent/CN204810610U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Led Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本实用新型提供一种非隔离LED恒流驱动芯片及电路,包括:实现恒流控制的功率开关管;产生直流电压的高压供电模块;对流经功率开关管的电流进行采样的浮地电流采样模块;根据流经功率开关管的电流控制功率开关管,进而实现LED灯串的恒流控制的恒流驱动模块。本实用新型采用高压供电技术,从功率开关管的漏端直接产生直流恒定电源给芯片供电,省去了启动电阻,同时VCC电容可改为成本更低的低压电容,节约系统成本和降低系统的复杂度;采用浮地采样技术,去掉了专门的电流采样引脚CS,使得驱动芯片仅为3个引脚,可以采用便宜的封装,大大节约了芯片成本;将开路保护设定集成到芯片内部,避免高阻引脚ROVP易受干扰导致LED闪烁的问题,有效提高性能。

Description

一种非隔离LED恒流驱动芯片及电路
技术领域
本实用新型涉及集成电路设计领域,特别是涉及一种非隔离LED恒流驱动芯片及电路。
背景技术
LED(LightEmittingDiode,发光二极管)是典型的电流型器件,其理想的驱动方式是恒流驱动,对工作电流的稳定性要求很高。非隔离型恒流LED驱动电路凭借其简洁的外围电路和简单的控制方法,受到市场的青睐。
如图1所示为传统的非隔离LED恒流驱动电路,输入交流电压(电压范围为85-264Vrms)经过整流桥和电容C0后得到高压直流电压Vin(称为母线电压),母线电压Vin通过启动电阻Rstart给芯片供电端VCC的电容C2提供充电电流,供电端VCC的电压逐渐上升。当供电端VCC的电压升到欠压锁定(UVLO)解锁电压时,芯片开始工作,控制功率MOS进行周期性的开关动作,向LED灯串传输能量,此时供电端VCC的供电除启动电阻Rstart外,还可以从功率MOS的漏端在每次关断的瞬间耦合获取。由于功率MOS阈值电压一般为3V左右,需要高压驱动,因此供电端VCC的电压通常在10V以上,电容C2需要选取高耐压的电容。
芯片的开路保护设置通过在引脚ROVP和芯片地之间串接的电阻Rovp实现,电阻Rovp设定了参数Tovp:Tovp=k*Rovp,Rovp越大,Tovp越长。芯片检测电感的放电时间Toff并和Tovp进行比较。输出开路时,输出电压持续升高,Toff变小,当Toff小于Tovp时,判定输出开路异常发生,停止开关动作,实现了输出开路的保护。为了减小芯片损耗,电阻Rovp上的电流通常为微安级,即引脚ROVP为高阻引脚,容易受到干扰,误判为输出开路,此时LED闪烁的异常就会出现。
传统的非隔离LED恒流驱动电路的启动及供电需要启动电阻Rstart,开路保护需要开路电压设定电阻Rovp,VCC电容需要采用成本稍贵的高压电容,增加了外围器件成本,而且由于管脚数至少要5个,无法采用便宜的封装,因此传统的驱动器系统的复杂度和BOM成本都偏高。此外,引脚ROVP为高阻引脚,易受干扰,导致LED闪烁。这些问题都严重影响了非隔离LED恒流驱动电路的性能提升,制约了非隔离LED恒流驱动电路的发展。
实用新型内容
鉴于以上所述现有技术的缺点,本实用新型的目的在于提供一种非隔离LED恒流驱动芯片及电路,用于解决现有技术中传统的非隔离LED恒流驱动电路复杂度高、BOM成本高、高阻引脚易受干扰导致LED闪烁等问题。
为实现上述目的及其他相关目的,本实用新型提供一种非隔离LED恒流驱动芯片,所述非隔离LED恒流驱动芯片至少包括:
功率开关管,用于通过所述功率开关管的导通和截止实现LED灯串的恒流控制;
高压供电模块,连接于所述功率开关管的漏端,用于产生直流电压,为所述非隔离LED恒流驱动芯片供电;
浮地电流采样模块,连接于所述直流电压以及所述非隔离LED恒流驱动芯片的参考地之间,用于对流经所述功率开关管的电流进行采样;
恒流驱动模块,连接于所述浮地电流采样模块的输出端以及所述高压供电模块产生的直流电压之间,用于根据流经所述功率开关管的电流控制所述功率开关管,进而实现所述LED灯串的恒流控制。
优选地,所述高压供电模块包括:结型场效应管、第一MOS管、第二MOS管、第一电阻、第二电阻、第三电阻、以及比较器;
其中,所述结型场效应管的漏端连接所述功率开关管的漏端、所述结型场效应管的源端连接所述第一MOS管的漏端、所述结型场效应管的栅端连接所述非隔离LED恒流驱动芯片的参考地;所述第一MOS管的源端通过串联的所述第一电阻和所述第二电阻与所述非隔离LED恒流驱动芯片的参考地连接;所述第一MOS管的源端作为所述直流电压的输出端;所述比较器的正向输入端连接于所述第一电阻及所述第二电阻之间,所述比较器的反向输入端连接一参考电压,所述比较器的输出端连接所述第二MOS管的栅端,所述第二MOS管的源端连接所述非隔离LED恒流驱动芯片的参考地、所述第二MOS管的漏端同时与所述第三电阻的一端及所述第一MOS管的栅端连接,所述第三电阻的另一端连接所述第一MOS管的漏端。
优选地,所述浮地电流采样模块包括第一电容、开关以及减法器;其中,所述减法器的正向输入端和反向输入端分别连接所述第一电容的上极板以及所述直流电压,所述减法器的正向输入端和反向输入端之间通过所述开关连接,所述第一电容的下极板连接所述非隔离LED恒流驱动芯片的参考地。
优选地,还包括集成于所述非隔离LED恒流驱动芯片内的开路保护模块。
为实现上述目的及其他相关目的,本实用新型提供一种非隔离LED恒流驱动电路,所述非隔离LED恒流驱动电路至少包括:
电压输入模块,连接于所述电压输入模块的LED灯串,所述LED灯串的输出端连接电感,所述电感的另一端连接续流二极管的阳极,所述续流二极管的阴极连接所述输入电压,上述非隔离LED恒流驱动芯片中功率开关管的漏端连接于所述电感与所述续流二极管之间;所述非隔离LED恒流驱动芯片的直流电压输出端连接一储能旁路电容,所述非隔离LED恒流驱动芯片的参考地通过采样电阻连接至功率参考地。
优选地,所述电压输入模块包括连接交流电压的整流桥以及并联于所述整流桥输出端的稳压电容。
如上所述,本实用新型的非隔离LED恒流驱动芯片及电路,具有以下有益效果:
1、本实用新型的非隔离LED恒流驱动芯片及电路采用高压供电技术,从功率开关管的漏端直接产生6V的电源给芯片供电,省去了启动电阻,同时VCC电容可改为成本更低的低压电容,降低系统成本和降低系统的复杂度。
2、本实用新型的非隔离LED恒流驱动芯片及电路采用浮地采样技术,去掉了专门的电流采样引脚CS,使得驱动芯片仅为3个引脚,可以采用便宜的封装,大大节约了芯片成本。
3、本实用新型的非隔离LED恒流驱动芯片及电路将开路保护设定集成到芯片内部,省去了ROVP引脚,避免高阻引脚ROVP易受干扰导致LED闪烁的问题,有效提高性能。
附图说明
图1显示为现有技术中的非隔离LED恒流驱动电路结构示意图。
图2显示为本实用新型的非隔离LED恒流驱动电路的结构示意图。
图3显示为本实用新型的高压供电模块的结构示意图。
图4显示为本实用新型的浮地电流采样模块的原理示意图。
图5显示为本实用新型的非隔离LED恒流驱动电路的波形示意图。
元件标号说明
1非隔离LED恒流驱动芯片
11高压供电模块
111比较器
12浮地电流采样模块
121减法器
13恒流驱动模块
2电压输入模块
3LED灯串
具体实施方式
以下通过特定的具体实例说明本实用新型的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本实用新型的其他优点与功效。本实用新型还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本实用新型的精神下进行各种修饰或改变。
请参阅图2~图5。需要说明的是,本实施例中所提供的图示仅以示意方式说明本实用新型的基本构想,遂图式中仅显示与本实用新型中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图2~图5所示,本实用新型提供一种非隔离LED恒流驱动电路,所述非隔离LED恒流驱动电路包括:
电压输入模块2、LED灯串3、电感L1、续流二极管D1、非隔离LED恒流驱动芯片1、储能旁路电容C2以及采样电阻Rcs。
所述电压输入模块2、所述LED灯串3、所述电感L1、所述续流二极管D1以及所述非隔离LED恒流驱动芯片1构成高压BUCK架构LED驱动电路。
如图2所示,所述电压输入模块2的输出端连接所述LED灯串3,所述LED灯串3的输出端连接电感L1的一端,所述电感L1的另一端连接续流二极管D1的阳极,所述续流二极管D1的阴极连接所述电压输入模块2输出端,所述非隔离LED恒流驱动芯片1中功率开关管M0的漏端Drain连接于所述电感L1与所述续流二极管D1之间;所述LED灯串3的两端还连接有输出电容C1和输出电阻Rout。所述非隔离LED恒流驱动芯片的参考地GND通过所述采样电阻Rcs连接至功率参考地VSS,所述非隔离LED恒流驱动芯片的参考地GND的电位高于所述功率参考地VSS的电位。所述非隔离LED恒流驱动芯片1的直流电压VCC输出端还连接一储能旁路电容C2,在本实施例中,所述储能旁路电容C2为外置的贴片电容,所述储能旁路电容C2的上极板连接所述直流电压VCC、下极板连接所述功率参考地VSS。
具体地,所述电压输入模块2包括连接输入交流电压AC的整流桥,连接于所述整流桥输出端的稳压电容C0,其中,所述输入交流电压AC的电压范围为85~264Vrms,所述电压输入模块2最终得到输入电压Vin(即母线电压)。
具体地,所述非隔离LED恒流驱动芯片1包括功率开关管M0、高压供电模块11、浮地电流采样模块12以及恒流驱动模块13。
如图2所示,所述功率开关管M0的漏端连接于所述电感L1与所述续流二极管D1之间,所述功率开关管M0的源端连接所述非隔离LED恒流驱动芯片的参考地GND,所述功率开关管M0的栅端连接于所述非隔离LED恒流驱动芯片1中的恒流驱动模块13的输出端,通过所述功率开关管M0的导通和截止实现LED灯串3的恒流控制。
具体地,所述功率开关管M0的漏端连接于所述电感L1与所述续流二极管D1之间,在本实施例中,所述功率开关管M0为NMOS管,当所述功率开关管M0的栅端连接高电平,所述功率开关管M0导通,所述电感L1处于充电状态,电流从所述LED灯串3流经所述电感L1、所述功率开关管M0及所述采样电阻Rcs后到地;当所述功率开关管M0的栅端连接低电平,所述功率开关管M0截止,所述电感L1处于放电状态,没有电流流过所述功率开关管M0以及所述采样电阻Rcs,所述电感L1为所述LED灯串3供电。
如图2所示,所述高压供电模块11连接于所述功率开关管M0的漏端,用于产生直流电压VCC,为所述非隔离LED恒流驱动芯片1供电。
具体地,如图3所示,所述高压供电模块11包括结型场效应管J1、第一MOS管M1、第二MOS管M2、第一电阻R1、第二电阻R2、第三电阻R3、以及比较器111。所述结型场效应管J1的漏端连接所述功率开关管M0(图中未显示)漏端Drain、源端连接所述第一MOS管M1的漏端、栅端连接非隔离LED恒流驱动芯片的参考地GND。所述第一MOS管M1的源端通过串联的第一电阻R1和第二电阻R2与非隔离LED恒流驱动芯片的参考地GND连接。所述第一MOS管M1的源端作为所述直流电压VCC的输出端。所述比较器111的正向输入端连接于所述第一电阻R1及所述第二电阻R2之间,所述比较器111的反向输入端连接一参考电压Vref,所述比较器111的输出端连接所述第二MOS管M2的栅端,所述第二MOS管M2的源端连接所述非隔离LED恒流驱动芯片的参考地GND、所述第二MOS管M2的漏端同时与所述第三电阻R3一端以及所述第一MOS管M1的栅端相连,所述第三电阻R3的另一端连接所述第一MOS管M1的漏端。在本实施例中,所述第一MOS管M1以及所述第二MOS管M2为NMOS管。
刚上电时,所述直流电压VCC比较低,所述参考电压Vref率先建立,所述第一电阻R1与所述第二电阻R2连接节点处的电压低于所述参考电压Vref,所述比较器111的输出为低电平,所述第二MOS管M2关断,此时所述第三电阻R3上没有电流流过,所述第一MOS管M1的栅漏电压相等,所述第一MOS管M1处于导通状态,电流从所述功率开关管M0的漏端Drain流入,经过所述结型场效应管J1、所述第一MOS管M1流到所述直流电压VCC的储能旁路电容C2上,所述直流电压VCC电压持续升高。当所述第一电阻R1与所述第二电阻R2连接节点处的电压上升超过所述参考电压Vref时,所述比较器111输出变为高电平,所述第二MOS管M2打开。所述第二MOS管M2的漏端,即所述第一MOS管M1的栅端电压变低,所述第一MOS管M1关断,切断充电电流,所述结型场效应管J1的漏端电压升高至所述结型场效应管J1的夹断电压Voff,此时所述第三电阻R3两端的电压为Voff,存在Voff/R3的关断电流。由于芯片的自身损耗,所述直流电压VCC不断下降,当低于设定的电压时,所述比较器111的输出重新变为低电平,重新打开充电电流。周而复始,所述直流电压VCC近似为一个直流恒压源,实现了高压供电。如图1及图2对比可知,本实用新型通过高压供电技术,无需启动电阻Rstart,而且所述直流电压VCC为恒定电压,供电能力较强,可以提供毫安级的供电电流,供电效果极佳,和传统的供电方式相比极具优越性。
如图2所示,所述浮地电流采样模块12连接于所述直流电压VCC以及所述非隔离LED恒流驱动芯片的参考地GND之间,用于对流经所述功率开关管M0的电流进行采样。
具体地,如图4所示,所述浮地电流采样模块12包括第一电容C3、开关S1以及减法器121。所述减法器121的正向输入端和反向输入端分别连接所述第一电容C3的上极板以及所述直流电压VCC,在本实施例中,所述减法器121的正向输入端连接所述第一电容C3的上极板,所述减法器121的反向输入端连接所述直流电压VCC。所述减法器121的两个输入端也可以交换连接,只需要在后续电路中对逻辑进行调整,仍可实现相同的控制效果,不以本实施例为限。所述减法器121的正向输入端和反向输入端之间通过所述开关S1连接,所述第一电容C3的下极板连接所述非隔离LED恒流驱动芯片的参考地GND。
当所述功率开关管M0关断时,所述采样电阻Rcs上无电流流过,两端压降为零,此时所述开关S1导通,所述第一电容C3的上极板电压等于所述直流电压VCC,所述减法器121的正向输入端和反向输入端均输入所述直流电压VCC,所述减法器121的输出Vcs为零,表示采样到的电流为零。当所述功率开关管M0导通时,所述开关S1也随之关断,所述第一电容C3上极板的电压保持为关断时的电压,即所述直流电压VCC,而此时电感电流流过所述采样电阻Rcs,所述采样电阻Rcs两端的压降逐渐升高,所述采样电阻Rcs两端的压降通过所述第一电容C3叠加到所述减法器121的正向输入端,所述功率参考地VSS与所述非隔离LED恒流驱动芯片的参考地GND的压差也越来越高,所述直流电压VCC相对于所述非隔离LED恒流驱动芯片的参考地GND的电压越来越小,其偏离所述功率开关管M0关断时的电压差值会在所述减法器121的输出端得到。上述过程完成了电感电流的采样。如图1及图2对比可知,本实用新型省去了专门的采样引脚CS,以所述非隔离LED恒流驱动芯片的参考地GND为参考,所述非隔离LED恒流驱动芯片的参考地GND实际是悬浮的,因此称为悬浮电流采样技术。
如图2及图4所示,所述恒流驱动模块13的一端与所述浮地电流采样模块12的输出端连接,所述恒流驱动模块13的另一端与所述功率开关管M0的栅端连接,用于根据流经所述功率开关管M0的电流控制所述功率开关管M0,进而实现所述LED灯串3的恒流控制。
具体地,如图4所示,所述恒流驱动模块13连接于所述浮地电流采样模块12的输出端,接收所述浮地电流采样模块12采样得到的电压差Vcs,并根据所述电压差Vcs输出控制所述功率开关管M0开关的脉冲信号。当流经所述功率开关管M0的电流大于第一设定值时,产生关断所述功率开关管M0的信号;当流经所述功率开关管M0的电流小于第二设定值时,产生打开所述功率开关管M0的信号。
如果所述LED灯串3开路,输出电压逐渐升至所述输入电压Vin,所述输出电容C1将不得不采用400V耐压的电容,而同等容值的400V耐压电容较低压电容体积更大,价格更为昂贵。而且开路状态下如果热插拔所述LED灯串3,相当于所述输入电压Vin瞬间加在所述LED灯串3上,形成了短促的电压电流冲击,对所述LED灯串3的可靠性和寿命影响很大。根据驱动原理中,输出电压Vout=Ipk*L/Toff,所述非隔离LED恒流驱动芯片1还包括集成于所述非隔离LED恒流驱动芯片内的开路保护模块(图中未显示),所述开路保护模块在芯片内设定了一个时间基准Tovp,当所述功率开关管M0的关断时间Toff小于Tovp时,即判定输出开路,由于将所述时间基准Tovp固定在芯片内部,不随环境温度,潮湿度等状况变化,抗干扰能力很强。
上述非隔离LED恒流驱动电路的工作原理如下:
功率开关管M0导通,电流经LED灯串3及电感L1流入所述功率开关管M0的漏端,采用高压供电技术直接从所述功率开关管M0的漏端产生直流电压VCC为非隔离LED恒流驱动芯片1供电;流经所述功率开关管M0的电流不断增大,采用浮地电流采样技术对所述电感L1的电流进行采样,当采样电流大于第一设定值时,关断所述功率开关管M0。
具体地,在本实施例中,所述第一设定值为所述电感L1的峰值电流Ipk。
所述功率开关管M0关断,所述电感L1放电为所述LED灯串3供电,采用高压供电技术直接从所述功率开关管M0的漏端产生直流电压VCC为所述非隔离LED恒流驱动芯片1供电;流经所述功率开关管M0的电流减小,采用浮地电流采样技术对所述电感L1的电流进行采样,当采样电流小于第二设定值时,所述功率开关管M0导通,所述功率开关管M0导通后所述采样电流再次逐渐增大,所述采样电流大于所述第一设定值时,所述功率开关管M0关断;所述功率开关管M0关断后所述采样电流再次逐渐减小,所述采样电流小于所述第二设定值时,所述功率开关管M0导通,如此周而复始,实现所述LED灯串3的恒流控制。
具体地,在本实施例中,所述第二设定值为零。
如图2~图5所示,所述LED灯串3、所述电感L1、所述续流二极管D1、所述功率开关管M0以及所述采样电阻Rcs构成了功率通路,所述功率开关管M0导通时,形成输入电压Vin—LED灯串3—电感L1—功率开关管M0—采样电阻Rcs—地VSS的通路,电感电流IL从零开始以(Vin-Vled)/L1的斜率逐渐上升,所述采样电阻Rcs及所述浮地电流采样模块12采样电感电流IL,当电感电流IL超过设定的峰值电流Ipk时,所述功率开关管M0关断。由于电感电流IL不能突变,因此仍会维持原有的电流方向,给所述功率开关管M0的漏端Drain充电,所述功率开关管M0的漏端Drain电压迅速升高,当超过所述输入电压Vin时,使得所述续流二极管D1导通时,所述电感L1进入放电阶段,放电斜率近似为Vled/L1。当电感电流IL下降至零时,所述功率开关管M0再次导通,进入下一个开关周期。由于稳态时所述LED灯串上的电流等于电感电流IL,而观察电感电流IL波形,其平均值为峰值电流Ipk的一半,因此所述LED灯串上的电流也为Ipk的一半,即Iled=Ipk/2,观察这个公式,Iled仅和Ipk有关,和所述输入电压Vin、所述LED灯串上的电压Vled以及电感感量没有关系,表现出优秀的恒流特性。
本实用新型的非隔离LED恒流驱动芯片及电路,具有以下有益效果:
1、本实用新型的非隔离LED恒流驱动芯片及电路采用高压供电技术,从功率开关管的漏断直接产生6V的电源给芯片供电,省去了启动电阻,同时VCC电容可改为成本更低的低压电容,降低系统成本和降低系统的复杂度。
2、本实用新型的非隔离LED恒流驱动芯片及电路采用浮地采样技术,去掉了专门的电流采样引脚CS,使得驱动芯片仅为3个引脚,可以采用便宜的封装,大大节约了芯片成本。
3、本实用新型的非隔离LED恒流驱动芯片及电路将开路保护设定集成到芯片内部,省去了ROVP引脚,避免高阻引脚ROVP易受干扰导致LED闪烁的问题,有效提高性能。
综上所述,本实用新型提供一种非隔离LED恒流驱动芯片,包括:通过导通和截止实现LED灯串恒流控制的功率开关管;产生直流电压的高压供电模块;对流经所述功率开关管的电流进行采样的浮地电流采样模块;根据流经所述功率开关管的电流控制所述功率开关管,进而实现所述LED灯串的恒流控制的恒流驱动模块。本实用新型提供一种非隔离LED恒流驱动电路,包括:电压输入模块,连接于所述电压输入模块的LED灯串,所述LED灯串的输出端连接电感,所述电感的另一端连接续流二极管的阳极,所述续流二极管的阴极连接所述输入电压,上述非隔离LED恒流驱动芯片中功率开关管的漏端连接于所述电感与所述续流二极管之间。本实用新型采用高压供电技术,从功率开关管的漏断直接产生直流恒定电源给芯片供电,省去了启动电阻,同时VCC电容可改为成本更低的低压电容,节约系统成本和降低系统的复杂度;采用浮地采样技术,去掉了专门的电流采样引脚CS,使得驱动芯片仅为3个引脚,可以采用便宜的封装,大大节约了芯片成本;将开路保护设定集成到芯片内部,省去了ROVP引脚,避免高阻引脚ROVP易受干扰导致LED闪烁的问题,有效提高性能。所以,本实用新型有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本实用新型的原理及其功效,而非用于限制本实用新型。任何熟悉此技术的人士皆可在不违背本实用新型的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本实用新型所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本实用新型的权利要求所涵盖。

Claims (6)

1.一种非隔离LED恒流驱动芯片,其特征在于,所述非隔离LED恒流驱动芯片至少包括:
功率开关管,用于通过所述功率开关管的导通和截止实现LED灯串的恒流控制;
高压供电模块,连接于所述功率开关管的漏端,用于产生直流电压,为所述非隔离LED恒流驱动芯片供电;
浮地电流采样模块,连接于所述直流电压以及所述非隔离LED恒流驱动芯片的参考地之间,用于对流经所述功率开关管的电流进行采样;
恒流驱动模块,连接于所述浮地电流采样模块的输出端以及所述高压供电模块产生的直流电压之间,用于根据流经所述功率开关管的电流控制所述功率开关管,进而实现所述LED灯串的恒流控制。
2.根据权利要求1所述的非隔离LED恒流驱动芯片,其特征在于:所述高压供电模块包括:
结型场效应管、第一MOS管、第二MOS管、第一电阻、第二电阻、第三电阻、以及比较器;
其中,所述结型场效应管的漏端连接所述功率开关管的漏端、所述结型场效应管的源端连接所述第一MOS管的漏端、所述结型场效应管的栅端连接所述非隔离LED恒流驱动芯片的参考地;所述第一MOS管的源端通过串联的所述第一电阻和所述第二电阻与所述非隔离LED恒流驱动芯片的参考地连接;所述第一MOS管的源端作为所述直流电压的输出端;所述比较器的正向输入端连接于所述第一电阻及所述第二电阻之间,所述比较器的反向输入端连接一参考电压,所述比较器的输出端连接所述第二MOS管的栅端,所述第二MOS管的源端连接所述非隔离LED恒流驱动芯片的参考地、所述第二MOS管的漏端同时与所述第三电阻的一端及所述第一MOS管的栅端连接,所述第三电阻的另一端连接所述第一MOS管的漏端。
3.根据权利要求1所述的非隔离LED恒流驱动芯片,其特征在于:所述浮地电流采样模块包括第一电容、开关以及减法器;其中,所述减法器的正向输入端和反向输入端分别连接所述第一电容的上极板以及所述直流电压,所述减法器的正向输入端和反向输入端之间通过所述开关连接,所述第一电容的下极板连接所述非隔离LED恒流驱动芯片的参考地。
4.根据权利要求1所述的非隔离LED恒流驱动芯片,其特征在于:还包括集成于所述非隔离LED恒流驱动芯片内的开路保护模块。
5.一种非隔离LED恒流驱动电路,其特征在于,所述非隔离LED恒流驱动电路至少包括:
电压输入模块,连接于所述电压输入模块的LED灯串,所述LED灯串的输出端连接电感,所述电感的另一端连接续流二极管的阳极,所述续流二极管的阴极连接所述输入电压,如权利要求1~4任意一项所述的非隔离LED恒流驱动芯片中功率开关管的漏端连接于所述电感与所述续流二极管之间;所述非隔离LED恒流驱动芯片的直流电压输出端连接一储能旁路电容,所述非隔离LED恒流驱动芯片的参考地通过采样电阻连接至功率参考地。
6.根据权利要求5所述的非隔离LED恒流驱动电路,其特征在于:所述电压输入模块包括连接交流电压的整流桥以及并联于所述整流桥输出端的稳压电容。
CN201520461211.5U 2015-06-30 2015-06-30 一种非隔离led恒流驱动芯片及电路 Active CN204810610U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520461211.5U CN204810610U (zh) 2015-06-30 2015-06-30 一种非隔离led恒流驱动芯片及电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520461211.5U CN204810610U (zh) 2015-06-30 2015-06-30 一种非隔离led恒流驱动芯片及电路

Publications (1)

Publication Number Publication Date
CN204810610U true CN204810610U (zh) 2015-11-25

Family

ID=54595353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520461211.5U Active CN204810610U (zh) 2015-06-30 2015-06-30 一种非隔离led恒流驱动芯片及电路

Country Status (1)

Country Link
CN (1) CN204810610U (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490532A (zh) * 2016-01-06 2016-04-13 李永红 Dc-dc变换器及系统
CN106304484A (zh) * 2016-08-22 2017-01-04 上海晶丰明源半导体有限公司 可控硅调光led驱动电源及其调光控制方法
CN106332390A (zh) * 2015-06-30 2017-01-11 华润矽威科技(上海)有限公司 一种非隔离led恒流驱动芯片、电路及方法
CN106507533A (zh) * 2016-10-19 2017-03-15 芜湖鑫芯微电子有限公司 一种非隔离无极调光led芯片
CN107509276A (zh) * 2017-09-05 2017-12-22 鹰潭阳光照明有限公司 非隔离新型led驱动电路及led灯
CN107660013A (zh) * 2016-07-26 2018-02-02 上海莱托思电子科技有限公司 一种led两端恒流驱动芯片及恒流驱动方法
CN109962620A (zh) * 2017-12-22 2019-07-02 广州金升阳科技有限公司 一种控制芯片的自供电电路
CN116505765A (zh) * 2023-06-25 2023-07-28 中国工程物理研究院应用电子学研究所 一种buck电源的恒流电路

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332390A (zh) * 2015-06-30 2017-01-11 华润矽威科技(上海)有限公司 一种非隔离led恒流驱动芯片、电路及方法
CN106332390B (zh) * 2015-06-30 2019-03-12 华润矽威科技(上海)有限公司 一种非隔离led恒流驱动芯片、电路及方法
CN105490532B (zh) * 2016-01-06 2019-04-12 深圳欧创芯半导体有限公司 Dc-dc变换器及系统
CN105490532A (zh) * 2016-01-06 2016-04-13 李永红 Dc-dc变换器及系统
CN107660013B (zh) * 2016-07-26 2024-04-05 上海莱托思电子科技有限公司 一种led两端恒流驱动芯片及恒流驱动方法
CN107660013A (zh) * 2016-07-26 2018-02-02 上海莱托思电子科技有限公司 一种led两端恒流驱动芯片及恒流驱动方法
CN106304484A (zh) * 2016-08-22 2017-01-04 上海晶丰明源半导体有限公司 可控硅调光led驱动电源及其调光控制方法
CN106304484B (zh) * 2016-08-22 2018-11-13 上海晶丰明源半导体股份有限公司 可控硅调光led驱动电源及其调光控制方法
CN106507533A (zh) * 2016-10-19 2017-03-15 芜湖鑫芯微电子有限公司 一种非隔离无极调光led芯片
CN106507533B (zh) * 2016-10-19 2019-05-03 芜湖鑫芯微电子有限公司 一种非隔离无极调光led芯片
CN107509276A (zh) * 2017-09-05 2017-12-22 鹰潭阳光照明有限公司 非隔离新型led驱动电路及led灯
CN109962620A (zh) * 2017-12-22 2019-07-02 广州金升阳科技有限公司 一种控制芯片的自供电电路
CN109962620B (zh) * 2017-12-22 2024-02-13 广州金升阳科技有限公司 一种控制芯片的自供电电路
CN116505765A (zh) * 2023-06-25 2023-07-28 中国工程物理研究院应用电子学研究所 一种buck电源的恒流电路
CN116505765B (zh) * 2023-06-25 2023-09-22 中国工程物理研究院应用电子学研究所 一种buck电源的恒流电路

Similar Documents

Publication Publication Date Title
CN204810610U (zh) 一种非隔离led恒流驱动芯片及电路
CN106332390B (zh) 一种非隔离led恒流驱动芯片、电路及方法
CN106341925B (zh) Led驱动芯片、可色温调节的led驱动电源系统及led灯具
CN104219840A (zh) Led开关调色温控制器及led驱动电路
CN201700054U (zh) 无残光的发光二极管控制电路
CN103491682A (zh) 一种控制峰值电流的线性开关恒流led驱动电路
CN102076144A (zh) 二线制电子开关的工作电源和功率解决方案
CN106304500A (zh) 一种用于led照明电源管理的驱动芯片与驱动电路
CN208656639U (zh) 用于开关变换器的控制电路及开关变换器
CN104010421A (zh) 一种用于led驱动电路的恒流输出控制装置
CN203225926U (zh) 一种具有自适应驱动电路的led灯和自适应驱动电路
CN204482092U (zh) 一种智能同步整流的非隔离降压型led驱动电路
CN103354685A (zh) 一种led驱动芯片
CN204090236U (zh) Led开关调色温控制器及led驱动电路
CN202799281U (zh) Led小串的控制装置
CN202282885U (zh) Led路灯驱动电源
CN103956899B (zh) 恒流控制器和buck恒流电路
CN102123553B (zh) 一种cot模式led照明驱动电路
CN105007644B (zh) 三引脚临界模式led驱动芯片的过零电流检测电路及其应用
CN106413201A (zh) 一种用于led灯具的多种电流输出的恒流电源
CN203872390U (zh) 恒流驱动器和buck恒流电路
CN104703356B (zh) 一种智能同步整流的非隔离降压型led驱动电路
CN202190220U (zh) 一种同步整流电路
CN206149132U (zh) 一种基于阻容降压电路的开关电源关机快速放电电路
CN205124073U (zh) 一种利用电源开关实现调光的电路和灯具

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210111

Address after: 214135 -6, Linghu Avenue, Wuxi Taihu international science and Technology Park, Wuxi, Jiangsu, China, 180

Patentee after: China Resources micro integrated circuit (Wuxi) Co., Ltd

Address before: 201103 9-10 / F, building 4 (building a), No.100 Zixiu Road, Minhang District, Shanghai

Patentee before: CHINA RESOURCES POWTECH (SHANGHAI) Co.,Ltd.

TR01 Transfer of patent right