WO2021036701A1 - 一种导热装置及终端设备 - Google Patents

一种导热装置及终端设备 Download PDF

Info

Publication number
WO2021036701A1
WO2021036701A1 PCT/CN2020/106605 CN2020106605W WO2021036701A1 WO 2021036701 A1 WO2021036701 A1 WO 2021036701A1 CN 2020106605 W CN2020106605 W CN 2020106605W WO 2021036701 A1 WO2021036701 A1 WO 2021036701A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary structure
heat
conducting device
housing
heat conducting
Prior art date
Application number
PCT/CN2020/106605
Other languages
English (en)
French (fr)
Inventor
张军
靳林芳
杨杰
施健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021036701A1 publication Critical patent/WO2021036701A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps

Definitions

  • This application relates to the technical field of heat dissipation equipment, and in particular to a heat conduction device and terminal equipment.
  • the heat pipe technology is a two-phase heat dissipation technology.
  • the heat pipe structure is mainly composed of a tube shell, a liquid absorbing core, and a working fluid. It is functionally divided into three parts: the evaporation section, the adiabatic section, and the condensation section.
  • Its working principle is: when the heat pipe evaporation section is heated The liquid in the capillary wick in this area evaporates and takes away a lot of heat at the same time. The steam flows to the condensation section under a slight pressure difference, and condenses into liquid after releasing heat in the condensation section. The liquid returns to vaporization by the capillary force generated by the liquid wick. This completes a heat conduction cycle, forming a two-way circulation system in which vapor and liquid coexist.
  • the technical solution of the present application provides a heat conduction device and terminal equipment to improve the product yield of the heat conduction device.
  • the technical solution of the present application provides a heat conduction device, the heat conduction device includes a housing, and a capillary structure is arranged in the housing, wherein the inner wall of the housing presses the capillary structure to realize the fixation of the capillary structure.
  • the capillary structure is fixed by means of extrusion, which can effectively avoid the thermal processing steps of the heat-conducting device in the processing process, so that the structure of the heat-conducting device can be made more reliable.
  • the capillary structure can absorb the liquid working medium and make the liquid working medium flow under the action of its capillary force to form a liquid circulation channel; inside the shell, in addition to the space for the capillary structure, other spaces can be used as gas Circulation channel.
  • the liquid circulation channel is connected to the gas circulation channel, so that the liquid working medium evaporates into gas and can enter the gas circulation channel, and the gas condenses into liquid and enters the liquid circulation channel.
  • the technical solution of the present application also provides a terminal device, which includes a display screen, a supporting structure, a back shell, a printed circuit board, and the heat conduction device of the first aspect, wherein: the printed circuit board and the display screen Located on both sides of the supporting structure; heating elements are arranged on the printed circuit board.
  • the heating element cover is provided with a shielding cover, the heating element is in contact with the shielding cover through the thermal interface material, the shielding cover is in contact with the supporting structure through the thermal interface material, and the rear shell is located on one side of the printed circuit board.
  • a accommodating groove can be opened on the supporting structure, and the opening of the accommodating groove is set toward the rear shell, so that the heat conduction device can be accommodated in the accommodating groove and can pass through Adhesive glue is arranged in the accommodating groove to realize the fixation of the heat conducting device.
  • the heat generated by the heating element of the terminal device can be conducted to the shielding cover through the thermal interface material, and then to the heat conducting device through the thermal interface material between the shielding cover and the heat conducting device, and the heat conducting device transfers the heat to the supporting structure.
  • the heat can be conducted to the back shell through the convective radiation of the support structure, and through the convective radiation of the support structure, the heat is transferred to the high thermal conductivity material layer and then to the display screen; finally, the heat is dissipated through the back shell and the display screen.
  • FIG. 1 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a terminal device provided by another embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a terminal device provided by another embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a terminal device provided by another embodiment of this application.
  • FIG. 5 is a manufacturing process flow of a heat conduction device provided by an embodiment of the application.
  • Fig. 6 is a schematic diagram of the threading process of the capillary structure provided by an embodiment of the application.
  • Figure 7 is a view from the A direction of the auxiliary jig in Figure 6;
  • FIG. 8 is a schematic structural diagram of a heat conduction device provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a heat conduction device provided by another embodiment of the application.
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a heat conduction device provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of a cross-sectional structure of a heat conduction device provided by another embodiment of the application.
  • FIG. 12 is a manufacturing process flow of a heat conducting device provided by another embodiment of the application.
  • FIG. 13 is a manufacturing process flow of a heat conducting device provided by another embodiment of the application.
  • FIG. 14 is a schematic diagram of a cross-sectional structure of a heat conduction device provided by another embodiment of the application.
  • FIG. 15 is a schematic diagram of a cross-sectional structure of a heat conduction device provided by another embodiment of the application.
  • 16 is a schematic diagram of a cross-sectional structure of a heat conduction device provided by another embodiment of the application.
  • FIG. 17 is a schematic cross-sectional structure diagram of a heat conduction device provided by another embodiment of the application.
  • FIG. 18 is a schematic cross-sectional structure diagram of a heat conduction device provided by another embodiment of the application.
  • FIG. 19 is a schematic diagram of a cross-sectional structure of a heat conduction device provided by another embodiment of the application.
  • FIG. 20 is a schematic cross-sectional structure diagram of a heat conducting device provided by another embodiment of the application.
  • 21 is a schematic cross-sectional structure diagram of a heat conducting device provided by another embodiment of the application.
  • FIG. 22 is a schematic cross-sectional structure diagram of a heat conducting device provided by another embodiment of the application.
  • FIG. 23 is a schematic diagram of the internal structure of the housing of the heat conducting device provided by an embodiment of the application.
  • the heat conduction device can be installed in terminals such as mobile phones, tablets, and handheld computers (personal digital assistants, PDAs).
  • terminals such as mobile phones, tablets, and handheld computers (personal digital assistants, PDAs).
  • the heat generated by the heating element such as the chip in the terminal device can be dissipated in the terminal device.
  • heating elements include but are not limited to central processing unit (CPU), artificial intelligence (AI) processor, system on chip (SoC), power management unit, or other devices that require heat dissipation .
  • CPU central processing unit
  • AI artificial intelligence
  • SoC system on chip
  • power management unit or other devices that require heat dissipation .
  • the terminal device may include a display screen 1, a supporting structure 2, a rear case 3, a printed circuit board (PCB 4), and a heat conduction device 5.
  • the support structure 2 can be used to carry the PCB 4 and the display screen 1.
  • the display screen 1 and the PCB 4 are located on both sides of the support structure 2, and the rear shell 3 is located on one side of the PCB 4.
  • the component is the CPU 6 as an example for description) is arranged on the PCB 4 and located between the PCB 4 and the supporting structure 2, the CPU 6 is in contact with the supporting structure 2, the heat conducting device 5 is arranged on the supporting structure 2, and the heat conducting device 5 is arranged opposite to the CPU 6.
  • the heat generated by the CPU 6 can be conducted to the supporting structure 2, and then to the heat conducting device 5 through the supporting structure 2, and the heat is dissipated by the heat conducting device 5.
  • heat can also be transferred to the rear housing 3 and the display screen 1 through the convective radiation of the support structure 2 and dissipated to the outside of the terminal device through the rear housing 3 and the display screen 1.
  • a receiving slot 201 opposite to the heating element can be opened in the supporting structure 2, and the opening of the receiving slot 201 faces the display screen 1.
  • the heat-conducting device 5 can be arranged in the accommodating groove 201.
  • the heat-conducting device 5 can be adhered to the bottom of the accommodating groove 201 through an adhesive such as an adhesive.
  • the adhesive can be but not limited to double-sided tape, or the heat-conducting device 5 can also be inserted into the accommodating groove 201. , So that the heat-conducting device 5 can be fixed to the supporting structure 2 to make the connection more reliable. It can be understood that, in addition to the above-mentioned connection methods, the heat conducting device 5 and the supporting structure 2 can also be fixed by welding or the like.
  • a thermal interface material 7 can be arranged between the CPU 6 and the support structure 2, and the CPU 6 is in contact with the support structure 2 through the thermal interface material 7, wherein the thermal interface material 7 can be Tim material (Thermal Interface Material).
  • a layer of high thermal conductivity material such as graphite film (not shown in the figure) can also be arranged between the support structure 2 and the display screen 1, wherein the high thermal conductivity material layer can be bonded to the thermal conduction device 5 and the support through double-sided tape.
  • Structure 2. 1 taking the terminal device provided with the above-mentioned thermal interface material 7 as an example, the conduction of heat generated by the CPU 6 will be described.
  • the heat generated by the CPU 6 can be conducted in the direction indicated by the dashed line with arrows in Figure 1, and the conduction path can be: the heat generated by the CPU 6 is conducted to the support structure 2 through the thermal interface material 7; and then through the support structure 2 Conducted to the heat conduction device 5, where the heat of the part (the hot end) of the heat conduction device 5 and the CPU 6 is more concentrated, and then the heat will be conducted to the condensation end of the heat conduction device 5, so that the heat is dissipated in the support structure 2. .
  • the heat can be transferred to the rear shell 3 and the display screen 1 through the convective radiation of the supporting structure 2; finally, the heat is dissipated to the outside of the terminal device through the rear shell 3 and the display screen 1.
  • a terminal device is also provided. Compared with the terminal device shown in FIG. 1, the terminal device differs from the terminal device in the manner in which the heat conducting device 5 is set in the terminal device.
  • an accommodating groove 201 may be opened on the supporting structure 2, and the opening of the accommodating groove 201 faces the rear shell 3, and the heat conducting device 5 is accommodated in the container. ⁇ 201 ⁇ Set slot 201.
  • a thermal interface material 7 may also be provided between the CPU 6 and the heat conducting device 5, and the thermal interface material 7 is in contact with the CPU 6 and the heat conducting device 5.
  • a high thermal conductivity material layer such as a graphite film can also be attached to the support structure 2, wherein the high thermal conductivity material layer is disposed between the display screen 1 and the support structure 2. Since in this embodiment, the conduction path of the heat generated by the CPU 6 is similar to that of the previous embodiment, it will not be repeated here.
  • a terminal device is also provided.
  • a shielding cover 8 may be provided outside the CPU 6, and the shielding cover 8 may be connected to the ground of the PCB 4. Copper connection.
  • the CPU 6 can contact the shielding cover 8 through the thermal interface material 7, and the shielding cover 8 can also contact the support structure 2 through the thermal interface material 7.
  • the heat generated by the CPU 6 can be conducted to the shielding cover 8 through the thermal interface material 7, and then to the support structure 2 through the thermal interface material 7 between the shielding cover 8 and the support structure 2, and then through the support
  • the structure 2 is conducted to the heat-conducting device 5, and then the heat-conducting device 5 dissipates the heat in the supporting structure 2.
  • the heat can be conducted to the rear shell 3 and the display screen 1 through the convective radiation of the supporting structure 2; finally, the heat is dissipated to the outside of the terminal device through the rear shell 3 and the display screen 1.
  • a terminal device is also provided.
  • the terminal device is different from the foregoing embodiments in that the heat conducting device 5 is arranged on the back shell 3, and the PCB 4 is arranged on the supporting structure 2.
  • the heating element (for ease of description, the following takes the heating element as the CPU 6 as an example for description) is arranged on the PCB 4 and located between the PCB 4 and the rear case 3, and the CPU 6 is in contact with the heat conducting device 5 through the thermal interface material 7.
  • a receiving groove 201 may be provided in the rear shell 3.
  • the opening of the receiving groove 201 is set toward the supporting structure 2, and the heat conducting device 5 is accommodated in the In the accommodating groove 201.
  • the heat-conducting device 5 can be directly inserted into the accommodating groove 201 as shown in FIG. 4, and can be engaged with the groove wall of the accommodating groove 201, or it can be adhered to the accommodating groove by an adhesive such as adhesive glue.
  • the bottom of the groove of 201 so that the heat conducting device 5 can be fixed to the rear shell 3, so that the connection is more reliable.
  • the heat generated by the CPU 6 can be conducted to the heat-conducting device 5, and the heat is dissipated by the heat-conducting device 5 and then conducted to the rear case 3, and then dissipated to the outside of the terminal device through the rear case 3.
  • heat can also be conducted to the supporting structure 2 through the PCB 4, and then through the convective radiation of the supporting structure 2, the heat is transferred to the rear shell 3 and the display screen 1, and then dissipated to the outside of the terminal device through the rear shell 3 and the display screen 1. .
  • FIG. 5 shows a manufacturing process flow of the heat conducting device 5 of a possible embodiment, which is specifically as follows:
  • Step 001 Perform pre-flattening treatment on the pipe.
  • the pipe may be a metal pipe, and the specific material of the metal pipe may be, but not limited to, copper, aluminum, alloy steel, stainless steel, or carbon steel.
  • the cross-sectional shape of the pipe may be a regular shape, such as a circle, a square, etc., or it may be an irregular shape, such as a wave shape.
  • the height of its cross-section can reach 0.5mm (in this application, the pre-flattened height of the pipe is 0.5mm as an example, and the process will be described).
  • Flat can make the cross-sectional shape of the tube flat, which facilitates the subsequent filling of the capillary structure.
  • Step 002 Clean the pre-flattened pipe.
  • the cleaning process can confirm which cleaning scheme is adopted according to the surface condition of the pipe, for example, but not limited to adopting pickling + ultrasonic washing.
  • the materials should be put into use as soon as possible after the cleaning is completed to prevent the oxidation reaction of the surface of the pipe with oxygen in the air for a long time; if it needs to be left for a long time, the pipe material can be placed in a nitrogen box for storage.
  • Step 003 threading the capillary structure.
  • the capillary structure can be conventionally woven with copper wires, with a wire diameter of D0.03/D0.05mm.
  • the number of copper wires varies from tens to hundreds, and can be selected according to needs.
  • the capillary structure may also be a strip structure formed by sintering powder (for example, metal powder).
  • auxiliary jig 11 When specifically inserting the capillary structure 10 on the pre-flattened pipe 9, it can be completed with the aid of an auxiliary jig 11, wherein the auxiliary jig 11 may include two clamping parts 111 arranged oppositely, and the capillary structure 10 may be arranged on In the card slot between the two clamping parts 111.
  • the capillary structure 10 into the slot of the auxiliary jig 11; then, put the auxiliary jig 11 together with the capillary structure 10 into the pre-flattened pipe 9 at the same time, and insert it To the specified depth of the pipe 9; after that, the pipe 9 is flattened twice to the design specification (for example, 0.4mm), and the capillary structure 10 is clamped on the inner wall of the pipe 9; finally, the auxiliary jig 11 is taken out to realize the capillary Structure 10 piercing.
  • the auxiliary jig 11 may be metal or non-metal, such as stainless steel, graphite, and the like.
  • Fig. 7 is an A view of the auxiliary jig 11 provided with the capillary structure 10 in Fig. 6.
  • the width d1 of the auxiliary jig 11 is smaller than the width d2 of the capillary structure 10.
  • the auxiliary jig 11 Since the width d1 of the auxiliary jig 11 is smaller than the width d2 of the capillary structure 10, when the pipe 9 is hit, the auxiliary jig 11 will not be clamped on the inner wall of the pipe 9. In this way, the capillary structure 10 is clamped on the pipe 9 After that, the auxiliary jig 11 can be pulled out relatively easily.
  • Step 004 Seal the effective end. Since the capillary structure needs to be injected with liquid (working fluid) in the subsequent manufacturing process, a liquid injection port must be reserved at the end of the pipe. Blocking the liquid injection port requires part of the boundary space. Therefore, referring to Figure 8, We can call the end used for liquid injection as the invalid end 13 and the other end as the effective end 12. When sealing the effective end 12, the end can be pressed first, and then welding processes such as gas welding, arc welding (such as argon gas shielded welding), resistance welding, laser welding, and induction welding are used to achieve the sealing.
  • gas welding such as gas welding, arc welding (such as argon gas shielded welding), resistance welding, laser welding, and induction welding are used to achieve the sealing.
  • the sealing structure formed by the pressing of the jig is simple and the length L1 of the sealing along the extension direction of the pipe is small, the sealing by pressing and welding can achieve a good sealing effect and ensure the reliable sealing of the cavity
  • the length L1 of the seal along the extension direction of the tube can be controlled within 1 mm by adopting this method, so that the thermal conductivity of the heat conducting device can be effectively improved.
  • Step 005 Restore the pipe.
  • the pipe will be in contact with air, and an oxide layer will be formed on the surface of the pipe.
  • the copper pipe will form cuprous oxide on its surface when placed in the air.
  • the cuprous oxide surface makes the working fluid poor in wettability, resulting in poor overall performance of the formed heat conduction device. Therefore, the copper pipe formed with cuprous oxide can be placed in a high-temperature environment, and a nitrogen-hydrogen mixture gas is introduced, and the hydrogen gas will undergo a reduction reaction with the cuprous oxide inside the pipe, thereby completely replacing the copper with pure copper, which is beneficial for upgrading The thermal conductivity of the formed thermal device.
  • Step 006 Inject liquid into the pipe and vacuum.
  • the injected liquid ie, working fluid
  • the material of the pipe which is mainly a compatibility issue. If the working fluid and the pipe produce a chemical reaction to produce non-condensable gas, the performance of the heat-conducting device will decline or fail.
  • the commonly used pipe is copper or copper alloy, and the compatible working medium can be water, and water is the most economical working medium. Of course, it is understandable that the working medium can also be freon, ammonia, acetone, methanol or ethanol, etc. .
  • the working fluid After being injected into the pipe, the working fluid can flow under the action of the capillary force of the capillary structure.
  • the air inside the pipe can be drawn out of the pipe through a vacuuming device, so that the inside of the pipe is a vacuum environment, so as to avoid affecting the thermal conductivity of the heat conducting device formed.
  • Step 007 Seal the invalid end.
  • the end will be shrunk, so that an invalid area with a length of L2 will be formed at this end Since the ineffective area cannot conduct heat conduction, the smaller the ineffective area is, the better the thermal conductivity of the formed heat conduction device.
  • part of the invalid area can be cut off to make the invalid area of the invalid end 13 smaller; in addition, the invalid end 13 can be pressed together, and then The form of welding it realizes the sealing of the invalid end 13, thereby further reducing the boundary interval occupied by the invalid area of the invalid end 13.
  • the length L2 of the seal of the invalid end 13 along the extension direction of the pipe can be controlled within 0 ⁇ 5mm, or even within 1mm, by pressing and welding.
  • the sealing of the pipe is completed at this point, and the cross-sectional shape is shown in Fig. 10.
  • the capillary structure 10 is clamped inside the pipe under the squeezing action of the pipe wall.
  • the water vapor generated by the boiling of the working fluid can be used to push the residual air inside the pipe to the outside of the pipe by heating the pipe to increase the vacuum degree inside the pipe.
  • the above-mentioned sealed pipe can be bent, and the pipe can be further flattened to realize the fixation of the capillary structure, as shown in the figure 11.
  • the heat conduction device 5 is
  • the manufacturing cost of the heat conduction device is lower, the production yield is higher, and the structural stability of the heat conduction device is better;
  • the effective end and the ineffective end of the pipe can be sealed by pressing and welding, the length of the sealing at both ends along the extension direction of the pipe can be made smaller, so that the overall temperature of the heat transfer device is uniform. Sex has been effectively improved.
  • the manufacturing process flow of the heat conducting device of another possible embodiment of the present application is different from the foregoing embodiment in that the step of reducing the pipe material is further eliminated, that is, step 005 of the foregoing embodiment.
  • the manufacturing cost of the heat-conducting device can be further reduced by eliminating the step of reducing the pipe; in addition, since the entire manufacturing process of the heat-conducting device in this embodiment does not involve a high-temperature process, there is no high-temperature softening of the pipe. Therefore, the overall structural stability of the manufactured heat conducting device can be better, and the production yield rate can be higher.
  • the manufacturing process flow of the heat conducting device of another possible embodiment of the present application is different from the embodiment shown in FIG. 8 in that the reduction tube in the manufacturing process flow shown in FIG. Step (ie step 005) is replaced by heat treatment.
  • the difference between heat treatment and reduction pipes is that a dense oxide layer can be formed on the surface of the metal through heat treatment.
  • the pipe material as copper and the capillary structure as a strip structure made of copper wires as an example, copper and oxygen will generate copper oxide in a high temperature environment, and cuprous oxide in a normal temperature environment.
  • the pipe can be placed in a high-temperature environment, and air or oxygen is introduced to cause the copper and oxygen to oxidize, thereby generating a copper oxide micro-nano structure layer on the inner wall of the pipe and the surface of the capillary structure. Because the surface wettability of the copper oxide micro-nano structure layer is better, the capillary force provided by the capillary structure is stronger, and the heat-conducting device has stronger temperature uniformity and thermal conductivity.
  • the heat conduction device of an embodiment of the present application is obtained through the manufacturing process of the heat conduction device of the above embodiment.
  • the heat conduction device mainly includes a housing 14 and a capillary structure 10 disposed inside the housing 14.
  • the capillary structure 10 is clamped on the inner wall of the housing 14, that is, the inner wall of the housing 14 presses the capillary structure 10 to fix the capillary structure 10 to the housing 14.
  • the capillary structure 10 divides the internal space of the housing 14 into a plurality of sections, the capillary structure 10 adsorbs the liquid working substance to form a liquid circulation channel, and the sections other than the liquid circulation channel form a gas circulation channel 15 It can be understood that the liquid circulation channel is communicated with the gas circulation channel 15.
  • FIG. 14 is a cross-sectional view of the heat conducting device of this embodiment. It can be seen from the figure that the cross section of the housing 14 of the heat conducting device is flat.
  • the cross-sectional shape of the capillary structure can be various, such as a rounded rectangle in FIG. 14, or an elliptical shape as in FIG. 19, or an irregular shape.
  • the extending direction of the longer side of the cross section of the casing 14 may be referred to as the width direction of the casing 14, and the extending direction of the shorter side may be referred to as the height direction of the casing 14.
  • the capillary structure 10 can be, but is not limited to, disposed in the middle area of the width direction of the flat housing 14. By disposing the capillary structure 10 in the middle area of the housing 14, it can be opposite to the height direction of the housing 14.
  • the two walls play a supporting role to help improve the structural stability of the heat-conducting device.
  • a protrusion 16 may also be provided on the inner wall of the housing 14, so that the protrusion 16 can limit the capillary structure 10 .
  • a protrusion 16 may also be provided on the inner wall of the housing 14, so that the protrusion 16 can limit the capillary structure 10 .
  • two protrusions 16 can be provided in the housing 14.
  • the two protrusions 16 are arranged on the wall surface of the same side and are arranged at intervals, and the capillary structure 10 is clamped on the two
  • the movement of the capillary structure 10 in the width direction of the housing 14 is restricted (the movement of the capillary structure 10 in the height direction of the housing 14 is restricted by the wall surface of the housing 14).
  • the bottom of the protrusion 16 is fixed to the inner wall of one side of the housing, and there is a certain distance between the top of the protrusion 16 and the opposite inner wall, so that the capillary structure 10 can be restricted.
  • the material used for the protrusion 16 is reduced, which is beneficial to realize the light and thin design of the heat conducting device.
  • two protrusions 16 may also be provided on two opposite wall surfaces of the housing 14 along the height direction, and the two protrusions 16 may be staggered, so that the capillary structure 10 can be clamped on Between the two protrusions 16.
  • two protrusions 16 may be provided on the two opposite wall surfaces of the housing 14 along the height direction, so that the capillary structure 10 It can be clamped between four protrusions 16 at the same time.
  • protrusions are all arranged at the corners of the capillary structure 10 to limit the position of the capillary structure 10.
  • the protrusions 16 can be provided on an inner wall surface of the housing 14 in the height direction.
  • the protrusion 16 is locked into the capillary structure 10 to limit the movement of the capillary structure 10 along the width direction of the housing 14.
  • a protrusion 16 is provided on the two opposite wall surfaces of the housing 14 along the height direction, and each protrusion 16 is clamped into the capillary structure 10 to realize the limitation of the capillary structure 10. .
  • the capillary structure 10 can also be arranged at the end of the width direction of the housing 14, refer to FIG. 19.
  • the protrusions 16 may only be arranged on one side of the capillary structure 10, and the number of the protrusions 16 can be referred to as shown in FIG. 19 Two, or only one can be provided.
  • the protrusion 16 and the wall surface of the housing 14 simultaneously limit the movement of the capillary structure 10 along the width direction of the housing 14.
  • only one capillary structure 10 is provided in the housing 14 of the heat-conducting device.
  • the capillary structure 10 can also be selected according to the structure of the housing 14 of the heat-conducting device. In order to improve the utilization rate of the internal space of the housing 14 and effectively improve the thermal conductivity of the heat-conducting device.
  • multiple capillary structures 10 can be provided in the housing 14 at the same time, and the capillary structure 10 can be set with reference to Figures 20 to 22 for the arrangement form, arrangement position, and arrangement of the protrusions 16, which are similar to those of only The arrangement of a capillary structure 10 is similar, and will not be repeated here.
  • the protrusion 16 can be formed in a variety of ways.
  • the protrusion 16 and the tube can be integrally processed and formed.
  • the extrusion die can be designed into a corresponding shape, so that various protrusions 16 structures required when the pipe is formed can be processed. Therefore, the processing technology of the heat-conducting device can be simplified, and the structural stability of the heat-conducting device can be improved.
  • a heat conduction device characterized by comprising a casing and a capillary structure penetrating the inside of the casing, wherein:
  • the capillary structure is clamped on the housing, the capillary structure adsorbs a liquid working fluid to form a liquid circulation channel, and the capillary structure divides the internal space of the housing into a plurality of gas circulation channels;
  • the liquid circulation channel is in communication with the gas circulation channel, the liquid working medium evaporates as a gas into the gas circulation channel, and the gas condenses as a liquid into the liquid circulation channel.
  • the heat conducting device according to embodiment 1 or 2, characterized in that the cross-sectional shape of the capillary structure is a rounded rectangle, an ellipse or an irregular shape.
  • thermoelectric device according to any one of embodiments 1 to 5, wherein the heat conduction device further comprises a protrusion provided on the inner wall of the housing, and the protrusion is used to limit the capillary structure. Bit.
  • the heat conduction device according to embodiment 6 or 7, characterized in that there are at least two protrusions, and the at least two protrusions are disposed on two opposite inner walls of the housing,
  • the capillary structure is arranged in the interval defined by the at least two protrusions; or, both of the at least two protrusions are locked into the capillary structure.
  • a terminal device characterized by comprising a display screen, a supporting structure, a back shell, a printed circuit board, and the heat conduction device according to any one of embodiments 1 to 13, wherein:
  • the printed circuit board and the display screen are located on both sides of the supporting structure;
  • the heating element is arranged on the printed circuit board, the heating element is covered with a shielding cover, the heating element is in contact with the shielding cover through a thermal interface material, and the shielding cover is connected to the shielding cover through a thermal interface material.
  • the heat conduction device is in contact, and the rear shell is located on one side of the printed circuit board;
  • the heat conducting device is arranged on the supporting structure.
  • a terminal device characterized by comprising a display screen, a supporting structure, a back shell, a printed circuit board, and the heat conduction device according to any one of embodiments 1 to 13, wherein:
  • the printed circuit board and the display screen are located on both sides of the supporting structure;
  • the heating element is arranged on the printed circuit board, the heating element is in contact with the supporting structure through a thermal interface material, and the back shell is located on one side of the printed circuit board;
  • the heat-conducting device is arranged on the supporting structure, the supporting structure is provided with an accommodating groove, the opening of the accommodating groove faces the display screen, and the heat-conducting device is accommodated in the accommodating groove.
  • a terminal device characterized by comprising a display screen, a supporting structure, a rear case, a printed circuit board, and the heat conduction device according to any one of embodiments 1 to 13, wherein:
  • the printed circuit board and the display screen are located on both sides of the supporting structure;
  • the heating element is arranged on the printed circuit board, the heating element is in contact with the heat conduction device through a thermal interface material, and the back shell is located on one side of the printed circuit board;
  • the heat-conducting device is arranged in the supporting structure, the supporting structure is provided with an accommodating groove, the opening of the accommodating groove faces the rear case, and the heat-conducting device is accommodated in the accommodating groove.
  • a terminal device characterized by comprising a display screen, a supporting structure, a back shell, a printed circuit board, and the heat conduction device according to any one of embodiments 1 to 13, wherein:
  • the printed circuit board and the display screen are located on both sides of the supporting structure;
  • the heating element is arranged on the printed circuit board, the rear shell is located on one side of the printed circuit board, the heating element is arranged between the printed circuit board and the rear shell, and Contact with the heat conducting device through a thermal interface material;
  • the heat-conducting device is arranged in the rear case, the rear case is provided with an accommodating groove, the opening of the accommodating groove faces the display screen, and the heat-conducting device is accommodated in the accommodating groove.

Abstract

本申请提供了一种导热装置及终端设备。涉及散热领域。该导热装置包括壳体,以及设置于壳体内部的毛细结构,其中:毛细结构卡设于壳体,毛细结构吸附液体工质形成液体流通通道,毛细结构将壳体的内部空间划分为多个区间,该多个区间可作为导热装置的气体流通通道;液体流通通道与气体流通通道相连通,这样液体工质蒸发为气体可进入气体流通通道,而气体凝结为液体可进入液体流通通道,从而在壳体内部形成汽、液并存的双向循环系统,以实现导热装置对终端设备内发热元件产生的热量的传导及扩散。

Description

一种导热装置及终端设备
相关申请的交叉引用
本申请要求在2019年08月30日提交中国专利局、申请号为201910819109.0、申请名称为“一种导热装置及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到散热设备技术领域,尤其涉及到一种导热装置及终端设备。
背景技术
随着手机智能化程度越来越高,其主频升级产生更多的热量,过多的热量造成手机温升过高则会影响散热。为了解决手机的散热问题,通常在手机中设置热管。
热管技术属于两相散热技术,热管结构主要由管壳、吸液芯、工质组成,从功能上分为蒸发段、绝热段、冷凝段三部分,其工作原理为:当热管蒸发段受热时该区域毛细芯中的液体蒸发汽化,同时带走大量热量,蒸汽在微小压差下流向冷凝段,并在冷凝段释放热量后凝结成液体,液体再借助吸液芯产生的毛细力作用返回蒸发段,由此完成一次热传导循环,形成一个汽、液并存的双向循环系统。
目前,在制作热管时,热管制造工序繁多,且需经过毛细烧结、还原等多次高温工序,导致热管整体强度较差,整个生产工序、及各工序周转过程中都容易造成产品不良。
发明内容
本申请技术方案提供了一种导热装置及终端设备,以提高导热装置的产品良率。
第一方面,本申请技术方案提供了一种导热装置,该导热装置包括壳体,在壳体内设置有毛细结构,其中,壳体的内壁挤压毛细结构,以实现毛细结构的固定。通过挤压的方式实现毛细结构的固定,可以有效的避免该导热装置在加工过程中的热加工工序,从而可使导热装置的结构较为可靠。
另外,毛细结构可吸附液体工质,并使液体工质在其毛细力的作用下流动以形成液体流通通道;在壳体内部,除用于设置毛细结构的空间外,其它的空间可作为气体流通通道。可以理解的是,液体流通通道与气体流通通道相连通,这样,液体工质蒸发为气体可进入气体流通通道,气体凝结为液体进入液体流通通道。该导热装置在应用于终端设备时,可通过液体工质在液体流通通道与气体流通通道内的汽液循环来实现对终端设备内的发热元件的散热。
第二方面,本申请技术方案还提供了一种终端设备,该终端设备包括显示屏、支撑结构、后壳、印制电路板以及第一方面的导热装置,其中:印制电路板和显示屏位于支撑结构的两侧;发热元件,设置于印制电路板。另外,发热元件罩设有屏蔽罩,发热元件通过热界面材料与屏蔽罩接触,屏蔽罩通过热界面材料与支撑结构接触,后壳位于印制电路板的一侧。在具体将导热装置设置于终端设备时,可以在支撑结构上开设一容置槽,该容置 槽的开口朝向后壳设置,这样即可将导热装置容置于该容置槽,并可以通过在容置槽内设置粘接胶实现导热装置的固定。
在本申请技术方案中,终端设备的发热元件产生的热量可通过热界面材料传导至屏蔽罩,然后通过屏蔽罩与导热装置之间的热界面材料传导至导热装置,导热装置将热量在支撑结构中散开。之后,热量可以通过支撑结构的对流辐射,传导到后壳,及通过支撑结构的对流辐射,把热量传递至高导热材料层后再传导至显示屏;最后,通过后壳和显示屏,把热量散到终端设备外部。
附图说明
图1为本申请一实施例提供的终端设备的结构示意图;
图2为本申请另一实施例提供的终端设备的结构示意图;
图3为本申请另一实施例提供的终端设备的结构示意图;
图4为本申请另一实施例提供的终端设备的结构示意图;
图5为本申请一实施例提供的导热装置的制造工艺流程;
图6为本申请一实施例提供的毛细结构的穿设过程示意图;
图7为图6中辅助治具的A向视图;
图8为本申请一实施例提供的导热装置的结构示意图;
图9为本申请另一实施例提供的导热装置的结构示意图;
图10为本申请一实施例提供的导热装置的截面结构示意图;
图11为本申请另一实施例提供的导热装置的截面结构示意图;
图12为本申请另一实施例提供的导热装置的制造工艺流程;
图13为本申请另一实施例提供的导热装置的制造工艺流程;
图14为本申请另一实施例提供的导热装置的截面结构示意图;
图15为本申请另一实施例提供的导热装置的截面结构示意图;
图16为本申请另一实施例提供的导热装置的截面结构示意图;
图17为本申请另一实施例提供的导热装置的截面结构示意图;
图18为本申请另一实施例提供的导热装置的截面结构示意图;
图19为本申请另一实施例提供的导热装置的截面结构示意图;
图20为本申请另一实施例提供的导热装置的截面结构示意图;
图21为本申请另一实施例提供的导热装置的截面结构示意图;
图22为本申请另一实施例提供的导热装置的截面结构示意图;
图23为本申请一实施例提供的导热装置的壳体的内部结构示意图。
附图标记:
1-显示屏;2-支撑结构;201-容置槽;3-后壳;4-PCB;5-导热装置;6-CPU;7-热界面材料;8-屏蔽罩;9-管材;10-毛细结构;11-辅助治具;12-有效端;13-无效端;14-壳体;15-气体流通通道;16-凸起。
具体实施方式
为了方便理解本申请实施例提供的导热装置,下面首先说明一下本申请实施例提供的 导热装置的应用场景,该导热装置可设置于手机、平板电脑、掌上电脑(personal digital assistant,PDA)等终端设备中,并可将终端设备中的芯片等发热元件产生的热量在终端设备内散开。其中,发热元件包括但不限于中央处理器(central processing unit,CPU)、人工智能(artificial intelligence,AI)处理器、片上系统(system on chip,SoC)、电源管理单元,或其它需要散热的器件。下面结合附图对该导热装置在终端设备中的具体设置方式进行详细的说明,以便于对该导热装置对发热元件进行导热的过程进行理解。
参考图1,在本申请一个实施例中,终端设备可以包括显示屏1、支撑结构2、后壳3,印制电路板(printed circuit board,PCB 4)以及导热装置5。其中,支撑结构2可以用来承载PCB 4和显示屏1,显示屏1和PCB 4位于支撑结构2的两侧,后壳3位于PCB 4的一侧,发热元件(为便于描述,以下以发热元件为CPU 6为例进行说明)设置于PCB 4,且位于PCB4与支撑结构2之间,CPU 6与支撑结构2接触,导热装置5设置于支撑结构2,导热装置5与CPU 6相对设置。这样,CPU 6产生的热量可传导至支撑结构2,再经支撑结构2传导至导热装置5,通过导热装置5将热量散开。另外,热量还可以通过支撑结构2的对流辐射,传递到后壳3和显示屏1,并通过后壳3和显示屏1散到终端设备外部。
参照图1,在将导热装置5具体设置于该终端设备中时,可以在支撑结构2开设一个与发热元件位置相对的容置槽201,该容置槽201的开口朝向显示屏1,这样,可以将导热装置5设置于该容置槽201中。其中,导热装置5可以通过粘接胶等粘接剂粘接于容置槽201的槽底,粘接胶可以但不限于为双面胶,或者导热装置5也可以卡入该容置槽201,以使导热装置5能够固定于支撑结构2,使其连接较为可靠。可以理解的是,除了上述提到的连接方式外,还可以通过焊接等方式实现导热装置5与支撑结构2的固定。
继续参照图1,为了提高发热元件产生的热量的传导效率,可以在CPU 6与支撑结构2之间设置热界面材料7,CPU 6通过该热界面材料7与支撑结构2接触,其中热界面材料7可以为Tim材料(Thermal Interface Material)。另外,还可以在支撑结构2与显示屏1之间设置石墨膜等高导热材料层(图中未示出),其中,该高导热材料层可以通过双面胶粘接于导热装置5以及支撑结构2。参照图1,以终端设备设置有上述的热界面材料7为例,对CPU 6产生的热量的传导进行说明。其中,CPU 6产生的热量可沿图1中带箭头的虚线所表示的方向进行传导,其传导路径可以为:CPU 6产生的热量通过热界面材料7传导到支撑结构2;然后再经支撑结构2传导到导热装置5,其中导热装置5与CPU 6正对的部分(热端)的热量较为集中,之后热量会向导热装置5的冷凝端进行传导,从而使热量在支撑结构2中散开。热量可以通过支撑结构2的对流辐射,传递到后壳3及显示屏1;最后,通过后壳3和显示屏1,把热量散到终端设备外部。
参照图2,在一个可能的实施例中,还提供了一种终端设备,该终端设备与图1中所示的终端设备相比,不同点在于导热装置5在终端设备中的设置方式。
在具体将导热装置5设置于终端设备中的支撑结构2时,可在支撑结构2上开设一容置槽201,该容置槽201的开口朝向后壳3,导热装置5容置于该容置槽201。在该实施例中,还可以在CPU 6与导热装置5之间设置热界面材料7,热界面材料7与CPU 6和导热装置5接触。另外,还可以在支撑结构2上贴附石墨膜等高导热材料层,其中,该高导热材料层设置于显示屏1与支撑结构2之间。由于在该实施例中,CPU 6产生的热量的传导路径与上一实施例的相类似,在此不再赘述。
参照图3,在另一个可能的实施例中,还提供了一种终端设备,在该终端设备中,还 可以在CPU 6的外部罩设一个屏蔽罩8,屏蔽罩8可以与PCB 4的地铜连接。其中,CPU 6可通过热界面材料7与屏蔽罩8接触,屏蔽罩8也可通过热界面材料7与支撑结构2接触。
在该实施例中,其中,CPU 6产生的热量可通过热界面材料7传导至屏蔽罩8,然后通过屏蔽罩8与支撑结构2之间的热界面材料7传导至支撑结构2,再经支撑结构2传导到导热装置5,之后导热装置5将热量在支撑结构2中散开。热量可以通过支撑结构2的对流辐射,传导到后壳3及显示屏1;最后,通过后壳3和显示屏1,把热量散到终端设备外部。
参照图4,在另一个可能的实施例中,还提供了一种终端设备,该终端设备与上述各实施例不同的是,导热装置5设置于后壳3,PCB 4设置于支撑结构2,发热元件(为便于描述,以下以发热元件为CPU 6为例进行说明)设置于PCB 4,且位于PCB 4与后壳3之间,CPU 6通过热界面材料7与导热装置5接触。
继续参照图4,在具体将导热装置5设置于后壳3时,可以在后壳3中设置容置槽201,该容置槽201的开口朝向支撑结构2设置,导热装置5容置于该容置槽201内。例如,导热装置5可以如图4所示直接卡入该容置槽201,并与容置槽201的槽壁相卡接,或者也可以通过粘接胶等粘接剂粘接于容置槽201的槽底,以使导热装置5能够固定于后壳3,使其连接较为可靠。
这样,CPU 6产生的热量可传导至导热装置5,通过导热装置5将热量散开后传导至后壳3,再经后壳3散到终端设备的外部。另外,热量还可以通过PCB 4传导至支撑结构2,然后再通过支撑结构2的对流辐射,将热量传递到后壳3和显示屏1,并通过后壳3和显示屏1散到终端设备外部。
为了理解导热装置5对发热元件进行导热的过程,除了对以上各实施例所展示的导热装置5在终端设备中的设置方式进行了解外,还需要了解导热装置5的结构以及制造工艺,接下来结合附图对导热装置5的制造工艺,以及制造得到的导热装置5的结构进行详细说明。
参照图5,图5展示了一个可能的实施例的导热装置5的制造工艺流程,具体为:
步骤001:对管材进行预打扁处理。其中,管材可以为金属管材,金属管材的具体材质可以但不限于为铜、铝、合金钢、不锈钢或碳钢等。另外,管材的截面形状可以为规则形状,例如:圆形、正方形等,也可以为不规则形状,例如波浪形等。管材经过预打扁工艺后,可以使其截面的高度达到0.5mm(在本申请中以管材经预打扁的高度为0.5mm为例,对该工艺流程进行说明),通过对管材进行预打扁,可以使管材的截面形状呈扁平状,这样方便后续填充毛细结构。
步骤002:对预打扁后的管材进行清洗。其中,清洗工艺可以根据管材表面状况确认采用哪种清洁方案,例如可以但不限于采用酸洗+超声波水洗的方式。
另外,清洗完成后要尽快将物料投入使用,以防止长时间置于空气中管材表面与氧发生氧化反应;如果需要放置较长时间的话,可以将管材物料放置到氮气箱体内存放。
步骤003:毛细结构的穿设。其中,毛细结构可以为常规采用铜丝编织而成,线径D0.03/D0.05mm,铜丝的根数不尽相同,从几十到几百根的都有,可以根据需要进行选择。另外,毛细结构还可以为粉末(例如金属粉末)烧结的条状结构。
在具体将毛细结构10穿设于预打扁的管材9时,可以借助辅助治具11来完成,其中, 辅助治具11可以包括相对设置的两个夹持部111,毛细结构10可设置于两个夹持部111之间的卡槽内。具体的,可参照图6,首先,将毛细结构10放入辅助治具11的卡槽内;然后,将辅助治具11连同毛细结构10同时放入预打扁后的管材9内,并插入至管材9的指定深度;之后,对管材9进行二次打扁至设计规格(例如0.4mm),并使毛细结构10卡设于管材9内壁;最后,将辅助治具11取出即可实现毛细结构10的穿设。值得一提的是,在选择辅助治具11时,辅助治具11可以是金属或非金属,比如不锈钢、石墨等。另外,参照图7,图7为图6中设置有毛细结构10的辅助治具11的A向视图,从图7中可以看出,辅助治具11的宽度d1比毛细结构10的宽度d2小一些。一并参照图6和图7,在毛细结构10随辅助治具11放置于管材9内时,可沿图7中所示的B向打击管材9,从而使管材9挤压毛细结构10,以使毛细结构10卡设于管材9。由于,辅助治具11的宽度d1比毛细结构10的宽度d2小一些,在打击管材9时,辅助治具11不会卡设于管材9的内壁,这样,在毛细结构10卡设于管材9后,可使辅助治具11比较容易拔出来。
步骤004:封有效端。由于在后续制造的过程中需要对毛细结构进行注液(工质),这样就要在管材的端部预留注液口,封堵注液口需要占用部分边界空间,因此,参照图8,我们可以将用于注液的一端称为无效端13,将另一端称为有效端12。在对有效端12进行封口时,可以先对该端进行压合,然后再使用气焊、电弧焊(如:氩气保护焊)、电阻焊、激光焊接和感应焊接等焊接工艺来实现封口。由于,通过治具压合形成的封口结构简单,封口沿管材的延伸方向的长度L1较小,因此,通过压合及焊接的方法进行封口能够取得良好的封合效果,保证空腔密闭的可靠性,并且,采用该方式进行封合的封口沿管材的延伸方向的长度L1可以控制在1mm以内,从而可以有效的提高导热装置的导热性能。
步骤005:还原管材。由于在上述步骤中,管材会与空气接触,会在管材的表面形成氧化层。以管材为铜管材为例,铜管材在空气中放置会在其表面形成氧化亚铜,氧化亚铜表面使工质浸润性差,导致形成的导热装置的整体性能很差。因此,可以将形成有氧化亚铜的铜管材放置于高温环境,通入氮氢混合气体,氢气与管材内部的氧化亚铜发生还原反应,从而将铜完全置换成纯铜,以有利于提升形成的导热装置的导热性能。
步骤006:在管材内注液,以及抽真空。其中,注入的液体(即工质)和管材材质有关,主要是相容性的问题,如果工质与管材发生化学反应产生非凝结性气体会导致导热装置的性能衰退直至失效。目前常用管材是铜或铜合金,与之相容的工质可以为水,并且水是最经济的工质,当然可以理解的是,工质还可以为氟利昂、氨、丙酮、甲醇或乙醇等。工质注入到管材内部后,可以在毛细结构的毛细力的作用下流动。
另外,在对管材内部抽真空时,可以通过抽真空的设备将管材内部的空气抽出至管材外,以使管材内部为真空环境,从而避免影响其形成的导热装置的导热性能。
步骤007:封无效端。继续参照图8,常规情况下,在高温烧结或还原工序前,在对管材进行无效端13的封口时,会对该端进行缩管作业,这样就会在该端形成长度为L2的无效区域,由于该无效区域不能进行热量的传导,因此无效区域越小,形成的导热装置的导热性能越好。针对上述问题,在本方案中,可以在对无效端13进行封口后,将上述无效区域截掉一部分,以使无效端13的无效区域较小;另外,还可以通过压合无效端13,再对其进行焊接的形式实现无效端13的封口,从而进一步的缩小无效端13的无效区域所占用的边界区间。参照图9,通过压合及焊接的方式可以将该无效端13的封口沿管材的延伸方向的长度L2控制在0~5mm,甚至1mm以内,至此即完成管材的密封,得到截面形 状如图10所示的导热装置,在该导热装置中,毛细结构10在管材壁的挤压作用下卡设于管材内部。
另外,在对管材的注液端进行封口前,还可以通过对管材加热以使工质沸腾产生的水蒸气将管材内部的残余空气推出至管材外部,以提高管材内部的真空度。
在该实施例的导热装置的制造工艺流程的最后,还可以根据导热装置的具体应用场景,对上述完成密封的管材进行折弯,以及将管材进一步打扁以实现毛细结构的固定,得到如图11的导热装置5。
在本实施例的导热装置的制造工艺流程中,由于取消了毛细结构的烧结工序,这样会使导热装置的制造成本更低、生产良率更高,并使导热装置的结构稳定性较佳;另外,由于在对管材的有效端以及无效端进行封口时,均可以采用压合及焊接的方式,这样可使得两端的封口沿管材的延伸方向的长度较小,从而使导热装置的整体均温性得到有效的提升。
参照图12,本申请的另一个可能的实施例的导热装置的制造工艺流程,该实施例与上述实施例的不同在于,进一步取消了还原管材的步骤,即上述实施例的步骤005。
在该实施例中,通过取消还原管材的步骤,可以进一步降低导热装置的制造成本;另外,由于在该实施例中的导热装置的整个制造工序中不涉及高温制程,不存在管材的高温软化的问题,从而可使制造的导热装置的整体结构稳定性较佳,生产良率更高。
参照图13,本申请的另一个可能的实施例的导热装置的制造工艺流程,该实施例与图8所示的实施例的不同在于,将图8所示的制造工艺流程中的还原管材的步骤(即步骤005),替换为热处理。
热处理与还原管材相比,不同的地方在于:通过热处理可以在金属表面形成质密的氧化层。以管材为铜,毛细结构为铜丝编制成的条状结构为例,铜与氧在高温环境下会生成氧化铜,而在常温环境下会生成氧化亚铜。这样,可将管材放置于高温环境下,并通入空气或氧气,以使铜与氧发生氧化反应,从而在管材内壁以及毛细结构的表面生成氧化铜微纳米结构层。由于氧化铜微纳米结构层的表面浸润性更好,因此毛细结构可提供的毛细力更强,导热装置的均温性和热传导能力更强。
参照图14,本申请的一个实施例的导热装置,该导热装置经过上述实施例的导热装置制造工艺流程得到,该导热装置主要包括壳体14,以及设置于壳体14内部的毛细结构10,其中,毛细结构10卡设于壳体14内壁,即壳体14的内壁挤压毛细结构10,以使毛细结构10固定于壳体14。在导热装置的壳体14内,毛细结构10将壳体14的内部空间划分为多个区间,毛细结构10吸附液体工质形成液体流通通道,除液体流通通道之外的区间形成气体流通通道15,可以理解的是,液体流通通道与气体流通通道15相连通。
在具体将毛细结构10设置于壳体14内时,继续参照图14,图14为该实施例的导热装置的截面图,从该图中可以看出,导热装置的壳体14的截面呈扁平状,另外,毛细结构的截面形状可以为多种,例如图14中的圆角矩形,或者如图19中的椭圆形,又或者为不规则形状等。在本申请中,可以将壳体14的截面的较长边的延伸方向称为壳体14的宽度方向,将较短边的延伸方向称为壳体14的高度方向。其中,毛细结构10可以但不限于设置于扁平状的壳体14的宽度方向的中间区域,通过将毛细结构10设置于壳体14的中间区域,可以使其对壳体14的高度方向相对的两壁面起到支撑作用,以有利于提升导热装置的结构稳定性。
另外,为了提高毛细结构10与壳体15的内壁卡接的可靠性,继续参照图14,还可以 在壳体14的内壁设置凸起16,以使凸起16能够对毛细结构10进行限位。在实现凸起16对毛细结构10的限位时,具体的:首先将管材预打扁成扁平形状,然后将毛细结构10塞入管材内部,最后再通过打扁方式将管材压扁至设定的厚度规格,这样毛细结构10就可以正确地卡入各凸起16之间。
在具体设置凸起16时,参照图14,可在壳体14内设置两个凸起16,该两个凸起16设置于同侧的壁面上,且间隔设置,毛细结构10卡设于两个凸起16之间,从而使毛细结构10沿壳体14宽度方向的运动被限制(毛细结构10沿壳体14高度方向的运动被壳体14的壁面限制)。另外,继续参照图14,凸起16的底部固定于壳体的一侧内壁,而凸起16的顶部与其相对的内壁之间具有一定的距离,这样可在实现对毛细结构10的限位的基础上,减少凸起16的用料,从而有利于实现导热装置的轻薄化设计。
另外,参照图15,还可以将两个凸起16分别设置于壳体14沿高度方向的相对的两个壁面上,并将两个凸起16交错设置,以使毛细结构10能够卡设于两个凸起16之间。为了进一步提高毛细结构10与壳体14内壁卡接的可靠性,参照图16,还可以在壳体14沿高度方向的相对的两个壁面上各设置两个凸起16,以使毛细结构10能够同时卡设于四个凸起16之间。
上述凸起都是设置于毛细结构10的角部,以实现对毛细结构10的限位。除了上述凸起16的设置方式外,还可以参照图17,在图17所示的实施例中,可以在壳体14的沿高度方向上的一个内壁面上设置凸起16,这时只要使该凸起16卡入毛细结构10即可实现对毛细结构10沿壳体14的宽度方向运动的限位。当然,也可以参照图18,在壳体14沿高度方向的相对的两个壁面上各设置一个凸起16,并使各个凸起16均卡入毛细结构10来实现对毛细结构10的限位。
另外,毛细结构10还可以设置于壳体14的宽度方向的端部,参照图19,此时,凸起16可只设置在毛细结构10的一侧,凸起16的数量可参照图19为两个,也可以只设置一个,凸起16以及壳体14的壁面同时对毛细结构10沿壳体14的宽度方向的运动进行限位。
在上述各实施例中,导热装置的壳体14内只设置了一条毛细结构10,在本申请其它可能的实施例中,还可以根据导热装置的壳体14的结构来选择毛细结构10的条数,以提高壳体14内部空间的利用率,有效的提高导热装置的导热性能。例如,参照图20至图22,可以同时在壳体14内设置多条毛细结构10,并且毛细结构10的设置形式、设置位置以及凸起16的设置可参照图20至图22,其与只有一条毛细结构10的设置方式相类似,此处不再赘述。
其中,凸起16的形成方式可以有多种,例如在对形成壳体14的管材进行加工的时候,可以使凸起16与管材一体加工成型。具体的,参照图23,由于管材是通过挤出方式加工而成,这样可以将挤出模具设计成对应形状,从而使管材成型的时候加工出所需要的各种凸起16结构。从而可简化导热装置的加工工艺,提高导热装置的结构稳定性。
【实施例】
1、一种导热装置,其特征在于,包括壳体,以及穿设于所述壳体内部的毛细结构,其中:
所述毛细结构卡设于所述壳体,所述毛细结构吸附液体工质形成液体流通通道,所述毛细结构将所述壳体的内部空间划分为多个气体流通通道;
所述液体流通通道与所述气体流通通道相连通,所述液体工质蒸发为气体进入所述气 体流通通道,所述气体凝结为液体进入所述液体流通通道。
2、如实施例1所述的导热装置,其特征在于,所述壳体的截面呈扁平状,所述毛细结构设置于所述壳体的中间区域;或,所述毛细结构设置于所述壳体的宽度方向的端部。
3、如实施例1或2所述的导热装置,其特征在于,所述毛细结构的截面形状为圆角矩形、椭圆形或者不规则形状。
4、如实施例1~3任一项所述的导热装置,其特征在于,所述毛细结构为一条,或并排设置的多条。
5、如实施例1~4任一项所述的导热装置,其特征在于,所述液体工质为水、氟利昂、氨、丙酮、甲醇或乙醇。
6、如实施例1~5任一项所述的导热装置,其特征在于,所述导热装置还包括设置于所述壳体内壁的凸起,所述凸起用于对所述毛细结构进行限位。
7、如实施例6所述的导热装置,其特征在于,所述凸起的截面形状为三角形、半圆形、矩形或者不规则形状。
8、如实施例6或7所述的导热装置,其特征在于,所述凸起为一个,所述一个凸起卡入所述毛细结构。
9、如实施例6或7所述的导热装置,其特征在于,所述凸起为至少两个,所述至少两个所述凸起分置于所述壳体的相对的两个内壁,所述毛细结构设置于所述至少两个凸起界定的区间内;或,所述至少两个凸起均卡入所述毛细结构。
10、如实施例7~9任一项所述的导热装置,其特征在于,所述凸起与所述壳体为一体成型结构。
11、如实施例1~10任一项所述的导热装置,其特征在于,所述毛细结构为多条金属线编成;或,所述毛细结构由粉末烧结而成。
12、如实施例1~11任一项所述的导热装置,其特征在于,所述壳体的内壁表面与所述毛细结构表面具有微纳米结构层。
13、如实施例1~12任一项所述的导热装置,其特征在于,所述导热装置的延伸方向的端部具有封口,所述封口沿导热装置的延伸方向的长度为0~2mm。
14、一种终端设备,其特征在于,包括显示屏、支撑结构、后壳、印制电路板以及如实施例1~13任一项所述的导热装置,其中:
所述印制电路板和所述显示屏位于所述支撑结构的两侧;
所述发热元件,设置于所述印制电路板,所述发热元件罩设有屏蔽罩,所述发热元件通过热界面材料与所述屏蔽罩接触,所述屏蔽罩通过热界面材料与所述导热装置接触,所述后壳位于所述印制电路板的一侧;
所述导热装置,设置于所述支撑结构。
15、如实施例14所述的终端设备,其特征在于,所述支撑结构开设有容置槽,所述容置槽的开口朝向所述后壳,所述导热装置容置于所述容置槽。
16、如实施例14或15所述的终端设备,其特征在于,所述导热装置通过粘接胶粘接于所述容置槽的槽底。
17、如实施例14~16任一项所述的终端设备,其特征在于,所述支撑结构上贴附有高导热材料层,所述高导热材料层设置于所述显示屏与所述支撑结构之间。
18、一种终端设备,其特征在于,包括显示屏、支撑结构、后壳、印制电路板以及如 实施例1~13任一项所述的导热装置,其中:
所述印制电路板和所述显示屏位于所述支撑结构的两侧;
所述发热元件,设置于所述印制电路板,所述发热元件通过热界面材料与所述支撑结构接触,所述后壳位于所述印制电路板的一侧;
所述导热装置,设置于所述支撑结构,所述支撑结构开设有容置槽,所述容置槽的开口朝向所述显示屏,所述导热装置容置于所述容置槽。
19、一种终端设备,其特征在于,包括显示屏、支撑结构、后壳、印制电路板以及如实施例1~13任一项所述的导热装置,其中:
所述印制电路板和所述显示屏位于所述支撑结构的两侧;
所述发热元件,设置于所述印制电路板,所述发热元件通过热界面材料与所述导热装置接触,所述后壳位于所述印制电路板的一侧;
所述导热装置,设置于所述支撑结构,所述支撑结构开设有容置槽,所述容置槽的开口朝向所述后壳,所述导热装置容置于所述容置槽。
20、一种终端设备,其特征在于,包括显示屏、支撑结构、后壳、印制电路板以及如实施例1~13任一项所述的导热装置,其中:
所述印制电路板和所述显示屏位于所述支撑结构的两侧;
所述发热元件,设置于所述印制电路板,所述后壳位于所述印制电路板的一侧,所述发热元件设置于所述印制电路板与所述后壳之间,且通过热界面材料与所述导热装置接触;
所述导热装置,设置于所述后壳,所述后壳开设有容置槽,所述容置槽的开口朝向所述显示屏,所述导热装置容置于所述容置槽。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种导热装置,其特征在于,包括壳体,以及设置于所述壳体内部的毛细结构,其中:
    所述毛细结构卡设于所述壳体,所述毛细结构吸附液体工质形成液体流通通道,所述毛细结构将所述壳体的内部空间划分为至少一个气体流通通道;
    所述液体流通通道与所述气体流通通道相连通,所述液体工质蒸发为气体进入所述气体流通通道,所述气体凝结为液体进入所述液体流通通道。
  2. 如权利要求1所述的导热装置,其特征在于,所述壳体的截面呈扁平状,所述毛细结构设置于所述壳体的中间区域;或,所述毛细结构设置于所述壳体的宽度方向的端部。
  3. 如权利要求1或2所述的导热装置,其特征在于,所述毛细结构为一条,或并排设置的多条。
  4. 如权利要求1~3任一项所述的导热装置,其特征在于,所述导热装置还包括设置于所述壳体内壁的凸起,所述凸起用于对所述毛细结构进行限位。
  5. 如权利要求4所述的导热装置,其特征在于,所述凸起为一个,所述一个凸起卡入所述毛细结构。
  6. 如权利要求4所述的导热装置,其特征在于,所述凸起为至少两个,所述至少两个所述凸起分置于所述壳体的相对的两个内壁,所述毛细结构设置于所述至少两个凸起界定的区间内;或,所述至少两个凸起均卡入所述毛细结构。
  7. 如权利要求1~6任一项所述的导热装置,其特征在于,所述壳体的内壁表面与所述毛细结构表面具有微纳米结构层。
  8. 如权利要求1~7任一项所述的导热装置,其特征在于,所述导热装置的延伸方向的端部具有封口,所述封口沿导热装置的延伸方向的长度为0~5mm。
  9. 一种终端设备,其特征在于,包括显示屏、支撑结构、后壳、印制电路板以及如权利要求1~8任一项所述的导热装置,其中:
    所述印制电路板和所述显示屏位于所述支撑结构的两侧;
    所述印制电路板设置有发热元件,所述发热元件罩设有屏蔽罩,所述发热元件通过热界面材料与所述屏蔽罩接触,所述屏蔽罩通过热界面材料与所述导热装置接触,所述后壳位于所述印制电路板的一侧;
    所述导热装置,设置于所述支撑结构。
  10. 如权利要求9所述的终端设备,其特征在于,所述支撑结构开设有容置槽,所述容置槽的开口朝向所述后壳,所述导热装置容置于所述容置槽。
PCT/CN2020/106605 2019-08-30 2020-08-03 一种导热装置及终端设备 WO2021036701A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910819109.0A CN110708925A (zh) 2019-08-30 2019-08-30 一种导热装置及终端设备
CN201910819109.0 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021036701A1 true WO2021036701A1 (zh) 2021-03-04

Family

ID=69193548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106605 WO2021036701A1 (zh) 2019-08-30 2020-08-03 一种导热装置及终端设备

Country Status (2)

Country Link
CN (2) CN110708925A (zh)
WO (1) WO2021036701A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708925A (zh) * 2019-08-30 2020-01-17 华为技术有限公司 一种导热装置及终端设备
CN114562903A (zh) * 2022-03-02 2022-05-31 上海博创空间热能技术有限公司 均温板制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892165A (zh) * 2005-07-08 2007-01-10 富准精密工业(深圳)有限公司 扁平式热管
CN101907415A (zh) * 2009-06-04 2010-12-08 泰硕电子股份有限公司 散热管内设置毛细材料的方法
CN106486435A (zh) * 2016-09-29 2017-03-08 努比亚技术有限公司 一种导热部件的密封方法
CN109631636A (zh) * 2018-12-13 2019-04-16 华为技术有限公司 一种薄型热管、薄型热管的制作方法及电子设备
US20190242655A1 (en) * 2018-02-05 2019-08-08 Tai-Sol Electronics Co., Ltd. Flat heat pipe with composite wick material
CN110278686A (zh) * 2019-06-03 2019-09-24 Oppo广东移动通信有限公司 散热管及其制备方法以及电子设备
CN110708925A (zh) * 2019-08-30 2020-01-17 华为技术有限公司 一种导热装置及终端设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104902727B (zh) * 2015-05-26 2018-06-19 华为技术有限公司 一种移动终端的中框及移动终端
CN107062964B (zh) * 2017-05-09 2023-02-14 华南理工大学 具有纤维束吸液芯结构的多通道铝平板热管的制备方法
CN109504956A (zh) * 2018-11-02 2019-03-22 江西华度电子新材料有限公司 一种提高热管、热板吸液芯表面抗氧化的处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892165A (zh) * 2005-07-08 2007-01-10 富准精密工业(深圳)有限公司 扁平式热管
CN101907415A (zh) * 2009-06-04 2010-12-08 泰硕电子股份有限公司 散热管内设置毛细材料的方法
CN106486435A (zh) * 2016-09-29 2017-03-08 努比亚技术有限公司 一种导热部件的密封方法
US20190242655A1 (en) * 2018-02-05 2019-08-08 Tai-Sol Electronics Co., Ltd. Flat heat pipe with composite wick material
CN109631636A (zh) * 2018-12-13 2019-04-16 华为技术有限公司 一种薄型热管、薄型热管的制作方法及电子设备
CN110278686A (zh) * 2019-06-03 2019-09-24 Oppo广东移动通信有限公司 散热管及其制备方法以及电子设备
CN110708925A (zh) * 2019-08-30 2020-01-17 华为技术有限公司 一种导热装置及终端设备

Also Published As

Publication number Publication date
CN113950232A (zh) 2022-01-18
CN110708925A (zh) 2020-01-17
CN113950232B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
TW201248110A (en) Electronic device
WO2021036701A1 (zh) 一种导热装置及终端设备
WO2022033289A1 (zh) 一种平板热管及其制备方法和换热器
CN201844724U (zh) 一种平板均热板
CN102095323A (zh) 一种平板均热板
CN211429852U (zh) 散热板和具有散热板的电子装置
CN111447792B (zh) 散热装置、散热装置的制备方法及电子设备
WO2021018004A1 (zh) 一种导热装置及终端设备
WO2018161462A1 (zh) 平板热管、微通道散热系统和终端
US20140150263A1 (en) Manufacturing method of thin heat pipe
CN212573389U (zh) 一种具有气液共面特征的超薄相变传热器件
CN107072117B (zh) 一种电子设备机壳
CN213343091U (zh) 均温板和电子设备
CN110149784B (zh) 散热组件及电子设备
TWI604173B (zh) Heat sink device applied to loop heat pipe and manufacturing method of its shell
CN115597412A (zh) 一种环路热管
CN211400897U (zh) 一种新型热管结构
CN201623955U (zh) 薄型化均温板及具有该均温板的散热模块
CN211630673U (zh) 超薄型均温板
CN114423259A (zh) 电子设备及其制作方法
CN209861432U (zh) 一种移动终端
CN112911028A (zh) 均温板、终端设备及均温板的制造方法
CN108601286B (zh) 电子设备
CN114071942A (zh) 一种具有气液共面特征的超薄相变传热器件及其制备方法
CN110582180A (zh) 具有微热导管功能的电子装置机壳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856280

Country of ref document: EP

Kind code of ref document: A1