WO2021036608A1 - 一种深井接地极及深井接地极监控系统 - Google Patents

一种深井接地极及深井接地极监控系统 Download PDF

Info

Publication number
WO2021036608A1
WO2021036608A1 PCT/CN2020/103908 CN2020103908W WO2021036608A1 WO 2021036608 A1 WO2021036608 A1 WO 2021036608A1 CN 2020103908 W CN2020103908 W CN 2020103908W WO 2021036608 A1 WO2021036608 A1 WO 2021036608A1
Authority
WO
WIPO (PCT)
Prior art keywords
grounding electrode
deep well
feed rod
cable
downhole
Prior art date
Application number
PCT/CN2020/103908
Other languages
English (en)
French (fr)
Inventor
刘刚
屈路
张义
胡上茂
胡泰山
廖民传
贾磊
李立浧
饶宏
蔡汉生
冯瑞发
刘浩
梅琪
施健
祁汭晗
Original Assignee
南方电网科学研究院有限责任公司
中国南方电网有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司, 中国南方电网有限责任公司 filed Critical 南方电网科学研究院有限责任公司
Priority to US17/638,807 priority Critical patent/US20220334005A1/en
Publication of WO2021036608A1 publication Critical patent/WO2021036608A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/66Connections with the terrestrial mass, e.g. earth plate, earth pin

Definitions

  • the invention relates to the technical field of direct current transmission, in particular to a deep well grounding electrode and a deep well grounding electrode monitoring system.
  • the grounding electrode is a key component in the operation of the DC transmission project.
  • the grounding electrode technology used in the grounding electrode in the direct current transmission project mainly has two kinds of horizontal grounding electrode and vertical grounding electrode (shallow buried). These two grounding electrode technologies mostly choose to build on the ground surface or where the shallow layer resistivity is low, and both choose to disperse the current on the ground surface.
  • the current spreads in the vertical and horizontal directions, and the horizontal spread has a greater impact on the surface environment, such as the DC biasing of the central grounding transformer, and the acceleration of shallow buried metal (pipelines, buildings (structures)) corrosion, etc.
  • due to the vertical contact area a large amount of land is required.
  • the concept of "deep well grounding electrode” in the prior art mostly refers to vertical grounding electrodes within 100m.
  • the grounding depth mentioned in the method is relatively shallow, mostly within a few tens of meters, and it is impossible to construct a deep well grounding electrode of several hundred meters or even thousands of meters according to the above-mentioned design scheme.
  • the embodiment of the present invention provides a deep well grounding electrode and a deep well grounding electrode monitoring system, which can achieve the purpose of enhancing the diffusion of the direct current in the deep well-conducting stratum, and greatly reduce the grounding electrode's impact on the ground surface environment.
  • the first embodiment of the present invention provides a deep well grounding electrode, which is located in a well, and includes: a feed rod, a feed head, a steel casing with a diameter smaller than the borehole of the well, a temperature measuring optical cable, and an exhaust Pipes and drainage cables;
  • the steel casing is located inside the well body, the distance between the top of the steel casing and the ground is the first clearance distance, and the steel casing is covered with an insulating and anticorrosive layer from a certain depth to the top;
  • the power feed head is located at the bottom of the steel sleeve, and the power feed head includes a grouting device capable of pumping coke liquid;
  • the feed rod, the temperature measuring optical cable, the exhaust pipe and the drainage cable are located inside the steel sleeve;
  • the distance between the top of the feed rod and the ground is a second clearance distance, and the feed rod extends from the bottom of the steel sleeve to the second clearance distance;
  • the temperature measuring optical cable extends from the bottom end of the feed rod to the monitoring module
  • the exhaust pipe extends from the bottom end of the feed rod to the ground;
  • One end of the drainage cable is welded to the feed rod through a heat-dissipating welding spot, the other end extends to the monitoring module, and the drainage cable is fixed on the feed rod through a bolt.
  • the bottom of the steel sleeve is a flower tube structure with holes.
  • it also includes: taking a certain depth as the insulation depth, taking the ground to the insulation depth as the insulation section, and taking the insulation depth to the bottom of the steel sleeve as the diffusing section; the insulation section Filled with gravel; and filled with coke in the diffuse flow section.
  • the exterior of the insulating and anticorrosive layer is coated with an anticorrosive sleeve, and the anticorrosive sleeve is a PE sleeve.
  • the three cables are exothermicly welded to the feed rod at three depths of 400m, 600m, and 800m of the well, and at the same time the exothermic solder joints are sealed with epoxy resin.
  • the temperature measuring optical cable is fixed on the feed rod through a hoop.
  • the second embodiment of the present invention provides a deep well grounding electrode, including the deep well grounding electrode according to any one of the first embodiment of the present invention, and further including the monitoring module;
  • the monitoring module includes a downhole grouting control unit, a downhole exhaust control unit, and a downhole temperature monitoring unit;
  • the downhole grouting control unit controls the grouting device to perform grouting
  • the downhole exhaust control unit controls the exhaust pipe to exhaust
  • the downhole temperature monitoring unit monitors the downhole temperature data collected by the temperature measuring optical cable, and gives an early warning according to a preset temperature threshold.
  • a deep well grounding electrode and a deep well grounding electrode monitoring system provided by the embodiments of the present invention have the following beneficial effects:
  • the temperature measurement cable is used to monitor the downhole temperature rise during the feeding process.
  • the downhole temperature monitoring unit can automatically alarm when the preset temperature threshold is reached, prompting to stop the power operation; the downhole grouting control unit and the downhole exhaust control unit can control the downhole Grouting and exhausting ensure the stability and safety of the deep well grounding electrode.
  • FIG. 1 is a schematic structural diagram of a deep well grounding electrode provided by Embodiment 1 of the present invention.
  • Fig. 2 is a schematic structural diagram of a deep well grounding electrode provided by a specific embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a deep well grounding electrode monitoring system provided by the second embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a deep well grounding electrode provided by an embodiment of the present invention. It is located in a well body and includes: a feed rod (1), a feed head (2), and a borehole wall with a diameter smaller than that of the well body Steel casing (3), temperature measuring optical cable (4), exhaust pipe (5) and drainage cable (6);
  • the steel casing (3) is located inside the well body, the distance between the top of the steel casing (3) and the ground is the first clearance distance, and the steel casing (3) is covered with an insulating anticorrosive layer (7) from a certain depth to the top ;
  • the feed head (2) is located at the bottom of the steel casing (3), and the feed head (2) includes a grouting device capable of pumping coke liquid;
  • the feed rod (1), the temperature measuring optical cable (4), the exhaust pipe (5) and the drainage cable (6) are located inside the steel casing (3);
  • the distance between the top of the feed rod (1) and the ground is the second clearance distance, and the feed rod (1) extends from the bottom of the steel sleeve (3) to the second clearance distance;
  • the temperature measuring optical cable (4) extends from the bottom end of the feed rod (1) to the monitoring module;
  • the exhaust pipe (5) extends from the bottom end of the feed rod (1) to the ground;
  • One end of the drainage cable (6) is welded to the feed rod (1) through a heat release welding spot (8), the other end extends to the monitoring module, and the drainage cable (6) is fixed on the feed rod (1) by bolts.
  • a geotextile is used to wind the exhaust pipe with openings.
  • the bottom of the steel casing (3) is a flower tube structure with holes.
  • it also includes: taking a certain depth as the insulating depth, taking the ground to the insulating depth as the insulating section, and using the insulating depth to the bottom of the steel casing (3) as the dispersing section; the insulating section is filled with gravel; the dispersing section is Fill the coke.
  • the exterior of the insulating and anticorrosive layer (7) is coated with an anticorrosive sleeve, and the anticorrosive sleeve is a PE sleeve.
  • the drainage cable (6) includes 3 drainage cables (6), each of which shares 1/3 of the rated current into the ground; the drainage cable (6) has a rated current carrying capacity of not less than 630A; and the 3 cables are respectively in the well
  • the three depths of 400m, 600m, and 800m are exothermicly welded with the feed rod (1), and the exothermic solder joints are sealed with epoxy resin. So as to realize the anti-corrosion of solder joints.
  • the temperature measuring optical cable (4) is fixed on the feed rod (1) through a hoop.
  • the temperature measuring optical cable (4) adopts a non-metallic high-strength bored temperature measuring optical cable (4).
  • the insulating sleeve is wrapped on the feed rod (1).
  • a thousand-meter-deep well is drilled on the natural surface.
  • the surface 0-50m adopts reaming technology, the hole diameter is 630mm, and the hole diameter is 480mm after cementing; the lower part is 50m-400m well.
  • the wall hole diameter is 410mm, and the bottom hole diameter of 400m-1000m is 380mm.
  • arm guard casing or mud is used to ensure that the well wall does not collapse or leak; after the drilling is completed, the steel casing with a diameter of 340mm is first lowered (3) The wall thickness is 10mm, the total length of the steel casing (3) is 990m, the first clearance distance is 10m, and the steel casing (3) is covered with an insulating anticorrosive layer (7) from the depth of 400m to the top and is protected by PE casing ; After the steel casing (3) is lowered, lower the feeder head (2) inside the steel casing (3), the feeder head (2) has a grouting device, and then weld the feeder rods (1) one by one , The feed rod (1) is a hollow steel tube with a length of 950m, and the second clearance distance is 50m.
  • the drain cable (6) is welded at 400m, 600m, and 800m of the feed rod (1), respectively, and fixed with bolts.
  • the drainage cable (6) is connected to the control center tower to ensure centralized control of the lead current; the feeder rod (1) 50m-400m adopts an insulating sleeve (7) for ground surface insulation.
  • the optical fiber temperature measurement cable (4) (2) and the exhaust pipe (5) (3) are installed simultaneously.
  • the temperature measurement cable (4) is mainly used to measure and warn the temperature control of the full section of the deep well.
  • the double-row exhaust pipe (5) is mainly used to prevent gas from being generated in the well when the feed rod (1) is drained, and to prevent the occurrence of "air resistance effect".
  • the temperature measuring optical cable (4) and the exhaust pipe (5) are fixed to the feed rod by bolts (1); After the power feed rod (1), the drainage cable (6), the temperature measuring optical cable (4), and the exhaust pipe (5) are all installed, the equipment performance debugging and testing shall be carried out, and the coke liquid grouting shall be carried out after being qualified;
  • the grouting adopts the hole bottom grouting method, and the deep well coke liquid is pumped through the feed rod (1) and the grouting device of the feed head (2), so that the deep well diffuse section (400m-1000m) is filled with coke; After the coke in the flow section is filled, gravel is filled in the insulating section (0m-400m), and the gravel is filled to the natural ground for reclamation and vegetation restoration.
  • the second embodiment of the present invention provides a deep well grounding electrode monitoring system, including the deep well grounding electrode as described in any one of the first embodiment of the present invention, and further including the monitoring module;
  • the monitoring module includes a downhole grouting control unit, a downhole exhaust control unit, and a downhole temperature monitoring unit;
  • the downhole grouting control unit controls the grouting device to perform grouting
  • the downhole exhaust control unit controls the exhaust pipe (5) to exhaust
  • the downhole temperature monitoring unit monitors the downhole temperature data collected by the temperature measuring optical cable (4), and gives an early warning according to a preset temperature threshold.
  • the coke slurry is pumped through the feeder head (2) grouting device; the water-cement ratio of the coke slurry pumped this time is 1:1 to 1:1.2, the coke slurry density is 1.20 to 1.40g/cm3, and the coke slurry is injected.
  • the grout pressure is 8-12MPa, and the downhole grouting unit will be fully filled in the diffusion section, including between the steel casing (3) and the well wall, between the feed rod (1) and the steel casing (3), and the feed rod (1) Internal space.
  • a deep well grounding electrode and a deep well grounding electrode monitoring system provided by the embodiments of the present invention have the following beneficial effects:
  • the temperature measurement cable is used to monitor the downhole temperature rise during the feeding process.
  • the downhole temperature monitoring unit can automatically alarm when the preset temperature threshold is reached, prompting to stop the power operation; the downhole grouting control unit and the downhole exhaust control unit can control the downhole Grouting and exhausting ensure the stability and safety of the deep well grounding electrode.
  • the device embodiments described above are only illustrative, and the units described as separate parts may or may not be physically separated, and the parts displayed as units may or may not be physically separate. Units can be located in one place or distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines. Those of ordinary skill in the art can understand and implement it without creative work.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种深井接地极及深井接地极监控系统。所述深井接地极包括馈电棒(1)、馈电头部(2)、直径小于井体的井壁孔径的钢套管(3)、测温光缆(4)、排气管(5)和引流电缆(6);钢套管(3)位于井体内部,钢套管(3)从某一深度至顶部外覆绝缘防腐层(7);馈电头部(2)位于钢套管(3)的底部,馈电头部(2)包括可泵送焦炭液的注浆装置;馈电棒(1)、测温光缆(4)、排气管(5)和引流电缆(6)位于钢套管(3)内部;测温光缆(4)自馈电棒(1)的底端延伸至监控模块;排气管(5)自馈电棒(1)的底端延伸至地面;引流电缆(6)的一端焊接于馈电棒(1)上,另一端延伸至监控模块,且引流电缆(6)通过螺栓固定于馈电棒(1)上。通过上述深井接地极的构造方法,能够实现增强直流电流深部良导地层扩散的目的,并极大降低接地极对地表环境及影响。

Description

一种深井接地极及深井接地极监控系统 技术领域
本发明涉及直流输电技术领域,尤其涉及一种深井接地极及深井接地极监控系统。
背景技术
接地极是直流输电工程中单极大地运行中关键组成部分。目前,直流输电工程中的接地极采用的接地极技术主要有水平接地极和垂直接地极(浅埋)两种。此两种接地极技术多选择在地表或浅层电阻率较低的地方进行建设,而且均选择在地表散流。电流在垂向和水平向扩散,水平扩散对地表环境造成较大影响,如对中心点接地变压器的直流偏磁、加速浅埋金属(管线、建(构)筑物)腐蚀等。此外,受垂向接触面积限制,需占用大量的土地。
现有技术中的“深井接地极”概念多指100m以内的垂直接地极。如(1)直流输电组合式深井接地极,由多个良导体接在引流电缆上,在组成本体的引流电缆和排气管之间填充碳基填料;(2)直流输电深井接地极的构造方法,利用焦炭体将电流引入到地下深层量导电层,避免接地极电流在地表扩散;(3)新型直埋式深井接地极,在井体内部设置接地极本体,由接地极管体和接地极引线组成,内部充填防腐剂和降阻剂。目前实际工程应用中,方法所提及的接地极埋深均较浅,多在几十米以内,而无法按上述的设计方案来构造几百米甚至上千米的深井接地极。
因此急需一种深井接地极和深井接地极的监测系统。
发明内容
本发明实施例提供一种深井接地极及深井接地极监控系统,能够实现增强直 流电流深部良导地层扩散的目的,并极大降低接地极对地表环境及影响。
本发明实施例一提供了一种深井接地极,位于一井体中,包括:馈电棒、馈电头部、直径小于所述井体的井壁孔径的钢套管、测温光缆、排气管和引流电缆;
所述钢套管位于所述井体内部,所述钢套管的顶部与地面的距离为第一留空距离,所述钢套管从某一深度至顶部外覆绝缘防腐层;
所述馈电头部位于所述钢套管的底部,所述馈电头部包括可泵送焦炭液的注浆装置;
所述馈电棒、测温光缆、排气管和引流电缆位于所述钢套管内部;
所述馈电棒的顶部与地面的距离为第二留空距离,所述馈电棒自所述钢套管的底部延伸至所述第二留空距离处;
所述测温光缆自所述馈电棒的底端延伸至监控模块;
所述排气管自所述馈电棒的底端延伸至地面;
所述引流电缆的一端通过放热焊点焊接于所述馈电棒上,另一端延伸至所述监控模块,且所述引流电缆通过螺栓固定于所述馈电棒上。
作为上述方案的改进,所述钢套管的底部为有孔的花管结构。
作为上述方案的改进,还包括:将某一深度作为绝缘深度,将地面至所述绝缘深度作为绝缘段,将所述绝缘深度至所述钢套管的底部作为散流段;所述绝缘段中填充砂砾;所述散流段中填充焦炭。
作为上述方案的改进,所述绝缘防腐层的外部包覆有防腐套管,所述防腐套管为PE套管。
作为上述方案的改进,包括3根引流电缆,每根所述引流电缆分担额定入地电流值的1/3;
所述3根电缆分别在所述井体的400m,600m,800m三个深度与所述馈电棒进行放热焊接,同时对所述放热焊点处采用铅封及环氧树脂包覆。
作为上述方案的改进,所述测温光缆通过抱箍件固定于所述馈电棒上。
本发明实施例二提供了一种深井接地极,包括如本发明实施例一中任意一项所述的一种深井接地极,还包括所述监控模块;
所述监控模块包括井下注浆控制单元、井下排气控制单元和井下温度监控单元;
所述井下注浆控制单元控制所述注浆装置进行注浆;
所述井下排气控制单元控制所述排气管进行排气;
所述井下温度监控单元监测所述测温光缆采集的井下温度数据,并根据预设的温度阈值进行预警。
本发明实施例提供的一种深井接地极及深井接地极监控系统,与现有技术相比,具有如下有益效果:
1、将钻孔深井隔离成上部绝缘段及下部散流段,采用与钻孔深度等长的低碳合金钢馈电棒将电流接引至孔底,通过对馈电棒上部进行绝缘处理,形成绝缘段,控制散流区段,减小地表散流扩散;通过底部压浆的方式,将焦炭混合液注至深井中散流区段,通过焦炭建立馈电棒与地层的电子流通通路;设计土工布缠绕开孔的排气管,排出井底馈电过程中产生的气体,防止发生“气阻效应”;可实现将直流输电电流从一端(如受端)快速接引至地球深部的良导层,通过地球深部传导,从另一端(如送端)流出,形成电流循环回路;直流输电电流在地球浅层流进、流出均通过馈电棒实现,馈电棒上部经绝缘处理后,电流不能从馈电棒中直接散入地表,散流区段上覆的高阻层可阻止深层的电流不流入地表,如此可现实地表扩散电流小、大范围内电位差低,从而实现极大降低接地极对地表环境影响的目的;
2、采用测温光缆监测馈电过程中井下温升情况,井下温度监控单元达到预设的温度阈值可自动报警,提示停止电力运行;井下注浆控制单元和井下排气控制单元能够控制井下的注浆和排气,确保深井接地极的稳定和安全。
附图说明
图1是本发明实施例一提供的一种深井接地极的结构示意图。
图2是本发明一具体实施例提供的一种深井接地极的结构示意图。
图3是本发明实施例二提供的一种深井接地极监控系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,是本发明实施例提供的一种深井接地极的结构示意图,位于一井体中,包括:馈电棒(1)、馈电头部(2)、直径小于井体的井壁孔径的钢套管(3)、测温光缆(4)、排气管(5)和引流电缆(6);
钢套管(3)位于井体内部,钢套管(3)的顶部与地面的距离为第一留空距离,钢套管(3)从某一深度至顶部外覆绝缘防腐层(7);
馈电头部(2)位于钢套管(3)的底部,馈电头部(2)包括可泵送焦炭液的注浆装置;
馈电棒(1)、测温光缆(4)、排气管(5)和引流电缆(6)位于钢套管(3)内部;
馈电棒(1)的顶部与地面的距离为第二留空距离,馈电棒(1)自钢套管(3)的底部延伸至第二留空距离处;
测温光缆(4)自馈电棒(1)的底端延伸至监控模块;
排气管(5)自馈电棒(1)的底端延伸至地面;
引流电缆(6)的一端通过放热焊点(8)焊接于馈电棒(1)上,另一端延伸至监控模块,且引流电缆(6)通过螺栓固定于馈电棒(1)上。
优选的,采用土工布缠绕开孔的排气管。
进一步的,钢套管(3)的底部为有孔的花管结构。
进一步的,还包括:将某一深度作为绝缘深度,将地面至绝缘深度作为绝缘段,将绝缘深度至钢套管(3)的底部作为散流段;绝缘段中填充砂砾;散流段中填充焦炭。
进一步的,绝缘防腐层(7)的外部包覆有防腐套管,防腐套管为PE套管。
进一步的,包括3根引流电缆(6),每根引流电缆(6)分担额定入地电流值的1/3;引流电缆(6)额定载流量不小于630A;3根电缆分别在井体的400m,600m,800m三个深度与馈电棒(1)进行放热焊接,同时对放热焊点处采用铅封及环氧树脂包覆。从而实现焊点的防腐。
进一步的,测温光缆(4)通过抱箍件固定于馈电棒(1)上。
优选的,测温光缆(4)采用非金属高强钻孔测温光缆(4)。
进一步的,还包括绝缘套;绝缘套包覆于馈电棒(1)上。
在一个具体的实施例中,参见图2,首先在自然地面进行千米深井钻孔,地表0-50m采用扩孔技术,孔径为630mm,固井后井壁孔径为480mm;下部50m-400m井壁孔径为410mm,底部400m-1000m井壁孔径380mm,钻井过程中通过采用护臂套管或者泥浆保证井壁不产生塌孔及漏浆;钻孔完毕后,首先下放直径为340mm的钢套管(3),壁厚10mm,钢套管(3)总长990m,第一留空距离为10m,钢套管(3)从400m深度至顶部外覆绝缘防腐层(7)并采用PE套管防护;钢套管(3)下放完毕后,在钢套管(3)内部下放馈电头部(2),馈电头部(2)有注浆装置,然后逐根焊接下放馈电棒(1),馈电棒(1)为中空钢管,长度为950m,第二留空距离为50m,分别在馈电棒(1)的400m,600m,800m采用放热焊点焊接引流电缆(6),并用螺栓固定于馈电棒(1),引流电缆 (6)集中连接至控制中心塔,保证接引电流集中控制;馈电棒(1)50m-400m采用绝缘套(7)进行地表绝缘。馈电棒(1)安装时同步进行光纤测温光缆(4)(2)和排气管(5)(3)安装,测温光缆(4)主要是测量和预警深井全断面的温控情况,双排排气管(5)主要为了防止馈电棒(1)引流时在井内产生气体,防止“气阻效应”发生,测温光缆(4)及排气管(5)通过螺栓固定于馈电棒(1);待馈电棒(1)、引流电缆(6)、测温光缆(4)、排气管(5)全部安装完毕后,进行设备性能调试和检测,合格后进行焦炭液注浆;注浆采用孔底压浆法,通过馈电棒(1)和馈电头部(2)的注浆装置进行深井焦炭液的泵送,使得深井散流段(400m-1000m)填充焦炭,;散流段焦炭填充完毕后,在绝缘段(0m-400m)填充砂砾,砂砾填充至自然地面,进行复垦和植被恢复。
本发明实施例二提供了一种深井接地极监控系统,包括如本发明实施例一任意一项所述的一种深井接地极,还包括所述监控模块;
所述监控模块包括井下注浆控制单元、井下排气控制单元和井下温度监控单元;
所述井下注浆控制单元控制所述注浆装置进行注浆;
所述井下排气控制单元控制所述排气管(5)进行排气;
所述井下温度监控单元监测所述测温光缆(4)采集的井下温度数据,并根据预设的温度阈值进行预警。
优选的,通过馈电头部(2)注浆装置将焦炭浆液进行泵送;本次泵送焦炭浆液水灰比1:1~1:1.2,焦炭浆液密度为1.20~1.40g/cm3,注浆压力8~12MPa,井下注浆单元将在扩散段全部填充,包括钢套管(3)与井壁之间,馈电棒(1)与钢套管(3)之间以及馈电棒(1)内部空间。
本发明实施例提供的一种深井接地极及深井接地极监控系统,与现有技术相比,具有如下有益效果:
1、将钻孔深井隔离成上部绝缘段及下部散流段,采用与钻孔深度等长的低 碳合金钢馈电棒将电流接引至孔底,通过对馈电棒上部进行绝缘处理,形成绝缘段,控制散流区段,减小地表散流扩散;通过底部压浆的方式,将焦炭混合液注至深井中散流区段,通过焦炭建立馈电棒与地层的电子流通通路;设计土工布缠绕开孔的排气管,排出井底馈电过程中产生的气体,防止发生“气阻效应”;可实现将直流输电电流从一端(如受端)快速接引至地球深部的良导层,通过地球深部传导,从另一端(如送端)流出,形成电流循环回路;直流输电电流在地球浅层流进、流出均通过馈电棒实现,馈电棒上部经绝缘处理后,电流不能从馈电棒中直接散入地表,散流区段上覆的高阻层可阻止深层的电流不流入地表,如此可现实地表扩散电流小、大范围内电位差低,从而实现极大降低接地极对地表环境影响的目的;
2、采用测温光缆监测馈电过程中井下温升情况,井下温度监控单元达到预设的温度阈值可自动报警,提示停止电力运行;井下注浆控制单元和井下排气控制单元能够控制井下的注浆和排气,确保深井接地极的稳定和安全。
需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (8)

  1. 一种深井接地极,位于一井体中,其特征在于,包括:馈电棒、馈电头部、直径小于所述井体的井壁孔径的钢套管、测温光缆、排气管和引流电缆;
    所述钢套管位于所述井体内部,所述钢套管的顶部与地面的距离为第一留空距离,所述钢套管从某一深度至顶部外覆绝缘防腐层;
    所述馈电头部位于所述钢套管的底部,所述馈电头部包括可泵送焦炭液的注浆装置;
    所述馈电棒、测温光缆、排气管和引流电缆位于所述钢套管内部;
    所述馈电棒的顶部与地面的距离为第二留空距离,所述馈电棒自所述钢套管的底部延伸至所述第二留空距离处;
    所述测温光缆自所述馈电棒的底端延伸至监控模块;
    所述排气管自所述馈电棒的底端延伸至地面;
    所述引流电缆的一端通过放热焊点焊接于所述馈电棒上,另一端延伸至所述监控模块,且所述引流电缆通过螺栓固定于所述馈电棒上。
  2. 如权利要求1所述的一种深井接地极,其特征在于,所述钢套管的底部为有孔的花管结构。
  3. 如权利要求2所述的一种深井接地极,其特征在于,还包括:将某一深度作为绝缘深度,将地面至所述绝缘深度作为绝缘段,将所述绝缘深度至所述钢套管的底部作为散流段;所述绝缘段中填充砂砾;所述散流段中填充焦炭。
  4. 如权利要求3所述的一种深井接地极,其特征在于,所述绝缘防腐层的外部包覆有防腐套管,所述防腐套管为PE套管。
  5. 如权利要求4所述的一种深井接地极,其特征在于,包括3根引流电缆,每根所述引流电缆分担额定入地电流值的1/3;
    所述3根电缆分别在所述井体的400m,600m,800m三个深度与所述馈电棒进行放热焊接,同时对所述放热焊点处采用铅封及环氧树脂包覆。
  6. 如权利要求5所述的一种深井接地极,其特征在于,所述测温光缆通过抱箍件固定于所述馈电棒上。
  7. 如权利要求6所述的一种深井接地极,其特征在于,还包括:绝缘套;所述绝缘套包覆于所述馈电棒上。
  8. 一种深井接地极监控系统,包括如权利要求1~7任意一项所述的一种深井接地极,其特征在于,还包括所述监控模块;
    所述监控模块包括井下注浆控制单元、井下排气控制单元和井下温度监控单元;
    所述井下注浆控制单元控制所述注浆装置进行注浆;
    所述井下排气控制单元控制所述排气管进行排气;
    所述井下温度监控单元监测所述测温光缆采集的井下温度数据,并根据预设的温度阈值进行预警。
PCT/CN2020/103908 2019-08-26 2020-07-24 一种深井接地极及深井接地极监控系统 WO2021036608A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/638,807 US20220334005A1 (en) 2019-08-26 2020-07-24 Deep well grounding electrode and deep well grounding electrode monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910789076.XA CN110600901B (zh) 2019-08-26 2019-08-26 一种深井接地极及深井接地极监控系统
CN201910789076.X 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021036608A1 true WO2021036608A1 (zh) 2021-03-04

Family

ID=68855597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103908 WO2021036608A1 (zh) 2019-08-26 2020-07-24 一种深井接地极及深井接地极监控系统

Country Status (3)

Country Link
US (1) US20220334005A1 (zh)
CN (1) CN110600901B (zh)
WO (1) WO2021036608A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600901B (zh) * 2019-08-26 2021-07-30 南方电网科学研究院有限责任公司 一种深井接地极及深井接地极监控系统
CN112098758B (zh) * 2020-09-18 2022-06-24 国网湖南省电力有限公司 用于特高压直流深井接地极的试验平台及试验方法
CN113406532A (zh) * 2021-05-21 2021-09-17 中国电力科学研究院有限公司 一种具备状态监测功能的直流接地极电极元件
CN117005852B (zh) * 2023-09-28 2024-01-16 邹城市巨力机械有限公司 一种基于海拔测量的深井液位监测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080773A (en) * 1990-05-11 1992-01-14 Cathodic Engineering Equipment Co., Inc. Ground electrode backfill
CN1848526A (zh) * 2006-03-22 2006-10-18 国家电网公司 直流输电深井接地极的构造方法
CN106813803A (zh) * 2017-01-22 2017-06-09 中国能源建设集团广东省电力设计研究院有限公司 直流输电深井型接地极测温装置、温度在线监测系统及其监测方法
CN109103621A (zh) * 2018-08-24 2018-12-28 国网湖南省电力有限公司 一种特高压直流输电深井接地极
CN109295976A (zh) * 2018-09-20 2019-02-01 广东科诺勘测工程有限公司 一种适用深井接地极馈电棒的底部注浆系统及注浆方法
CN209144815U (zh) * 2018-09-20 2019-07-23 广东科诺勘测工程有限公司 一种适用深井接地极钢套管的底部注浆系统
CN110086062A (zh) * 2019-04-22 2019-08-02 中国能源建设集团广东省电力设计研究院有限公司 一种适用深井型接地极的电缆与馈电体的连接方法
CN110600901A (zh) * 2019-08-26 2019-12-20 南方电网科学研究院有限责任公司 一种深井接地极及深井接地极监控系统
CN210576509U (zh) * 2019-08-26 2020-05-19 南方电网科学研究院有限责任公司 一种深井接地极

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2281593C1 (ru) * 2005-01-19 2006-08-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Устройство заземляющего электрода и способ его установки
CN205104914U (zh) * 2015-10-15 2016-03-23 中国电力工程顾问集团中南电力设计院有限公司 高压直流垂直型接地极布置结构
CN207967352U (zh) * 2018-01-17 2018-10-12 南方电网科学研究院有限责任公司 一种连接件和深井型垂直接地极
CN109546366B (zh) * 2018-10-29 2020-10-30 中国能源建设集团广东省电力设计研究院有限公司 深井型接地极的上端部绝缘构造

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080773A (en) * 1990-05-11 1992-01-14 Cathodic Engineering Equipment Co., Inc. Ground electrode backfill
CN1848526A (zh) * 2006-03-22 2006-10-18 国家电网公司 直流输电深井接地极的构造方法
CN106813803A (zh) * 2017-01-22 2017-06-09 中国能源建设集团广东省电力设计研究院有限公司 直流输电深井型接地极测温装置、温度在线监测系统及其监测方法
CN109103621A (zh) * 2018-08-24 2018-12-28 国网湖南省电力有限公司 一种特高压直流输电深井接地极
CN109295976A (zh) * 2018-09-20 2019-02-01 广东科诺勘测工程有限公司 一种适用深井接地极馈电棒的底部注浆系统及注浆方法
CN209144815U (zh) * 2018-09-20 2019-07-23 广东科诺勘测工程有限公司 一种适用深井接地极钢套管的底部注浆系统
CN110086062A (zh) * 2019-04-22 2019-08-02 中国能源建设集团广东省电力设计研究院有限公司 一种适用深井型接地极的电缆与馈电体的连接方法
CN110600901A (zh) * 2019-08-26 2019-12-20 南方电网科学研究院有限责任公司 一种深井接地极及深井接地极监控系统
CN210576509U (zh) * 2019-08-26 2020-05-19 南方电网科学研究院有限责任公司 一种深井接地极

Also Published As

Publication number Publication date
CN110600901A (zh) 2019-12-20
CN110600901B (zh) 2021-07-30
US20220334005A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
WO2021036608A1 (zh) 一种深井接地极及深井接地极监控系统
CN202954093U (zh) 地下管道系统用馈电装置施工系统
CN101728661A (zh) 可监测低阻值模块接地装置
CN103326139B (zh) 可装配式空心铝合金管接地装置
CN102610935B (zh) 一种土壤非开挖接地降阻方法
CN103219597A (zh) 接地线装置
RU2571104C1 (ru) Способ катодной защиты обсадных колонн скважин и нефтепромысловых трубопроводов от коррозии и устройство для его осуществления
JP2011258529A (ja) 接地抵抗低減剤注入式接地極及びこれを用いた接地工事方法
CN101740886B (zh) 一种防腐接地装置
CN210576509U (zh) 一种深井接地极
RU2521927C1 (ru) Способ выполнения анодного заземления
CN103117459B (zh) 一种输电线路杆塔加强型接地散流装置
CN113007611B (zh) 燃气管道穿越河底的监测系统
CN201294271Y (zh) 可监测低阻值模块接地装置
CN107394428B (zh) 一种屏蔽型直流接地极与换流站接地网共址的接地系统
CN201383556Y (zh) 深井接地降阻装置
CN219513357U (zh) 一种施工现场临时用电接地体
RU2407824C1 (ru) Устройство горизонтального анодного заземления в грунтах с высоким электрическим сопротивлением
RU148646U1 (ru) АКТИВНЫЙ ЗАЗЕМЛИТЕЛЬ (AVG) С ПРИМЕНЕНИЕМ МНОГОКОМПОНЕНТНОЙ ТОКОПРОВОДЯЩЕЙ СМЕСИ "AVGaktiv"
CN114016912B (zh) 一种煤矿井下定向钻进随钻水位探测装置及方法
CN109136938A (zh) 地下管道阴极保护防腐蚀方法
CN213936569U (zh) 一种杆塔接地装置
CN104562043B (zh) 基于脉冲电流的油井套管阴极保护系统及电极布位方法
CN113899425A (zh) 一种中线法尾矿库浸润线在线监测装置及方法
CN110277661B (zh) 不用二次挖沟槽可持续维护保养的防雷接地施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857856

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20857856

Country of ref document: EP

Kind code of ref document: A1