WO2021036597A1 - 煤矿密闭巷道启封危险气源智能监测和评价机器人及方法 - Google Patents
煤矿密闭巷道启封危险气源智能监测和评价机器人及方法 Download PDFInfo
- Publication number
- WO2021036597A1 WO2021036597A1 PCT/CN2020/103644 CN2020103644W WO2021036597A1 WO 2021036597 A1 WO2021036597 A1 WO 2021036597A1 CN 2020103644 W CN2020103644 W CN 2020103644W WO 2021036597 A1 WO2021036597 A1 WO 2021036597A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dangerous
- roadway
- gas
- evaluation
- closed
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 78
- 239000003245 coal Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000007789 gas Substances 0.000 claims abstract description 137
- 238000011156 evaluation Methods 0.000 claims abstract description 79
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 206010003497 Asphyxia Diseases 0.000 claims abstract description 24
- 230000005540 biological transmission Effects 0.000 claims abstract description 23
- 238000013500 data storage Methods 0.000 claims abstract description 17
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 34
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 32
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 18
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 17
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 17
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 16
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 claims description 15
- 239000001569 carbon dioxide Substances 0.000 claims description 15
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 15
- 229910021529 ammonia Inorganic materials 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 10
- 239000011435 rock Substances 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 231100001261 hazardous Toxicity 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims 3
- 238000013461 design Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000013467 fragmentation Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D55/00—Endless track vehicles
- B62D55/06—Endless track vehicles with tracks without ground wheels
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/18—Special adaptations of signalling or alarm devices
Definitions
- the invention relates to the technical field of mine intelligent monitoring equipment, in particular to an intelligent monitoring and evaluation robot for unsealing dangerous gas sources in a closed tunnel in a coal mine, and a method for detecting and evaluating the danger of the closed tunnel by using the robot.
- the present invention provides a coal mine closed roadway unsealing dangerous air source intelligent monitoring and evaluation robot and method, and its specific technical scheme is as follows.
- An intelligent monitoring and evaluation robot for unsealing dangerous gas sources in a coal mine closed roadway including a control system, a crawler drive system, a dangerous gas source monitoring system, a dangerous early warning intelligent evaluation system, an operation data storage system, and a navigation system; the control system receives and Processing wireless transmission signals, the crawler drive system and the navigation system control the walking route, the dangerous gas source monitoring system includes a gas detection manipulator and a gas concentration detector. The gas concentration monitor moves up and down with the gas detection manipulator, and the dangerous gas The source monitoring system uses the monitoring data to establish a three-dimensional cloud map of the air field of the closed roadway, and the dangerous early warning intelligent evaluation system judges the danger of the roadway and completes the early warning.
- control system includes a radio signal transmitter, a radio signal receiver and a radio signal anti-interference processor, the radio signal transmitter is installed in the operating handle, and the radio signal receiver is installed in the body; the operating handle A radio signal anti-jamming processor is also provided in the fuselage.
- the gas concentration monitor includes an oxygen detector, a gas detector, a carbon monoxide detector, a carbon dioxide detector, a nitrogen dioxide detector, a sulfur dioxide detector, a hydrogen sulfide detector, and an ammonia gas detector.
- the gas concentration monitor is arranged on the gas detection manipulator, and the gas detection manipulator is also provided with a gas flow velocity detector; the gas detection manipulator is horizontally retractable or vertically lifted to maintain the stable center of gravity of the body.
- the crawler-type drive system includes a power source, a crawler belt, a sprocket, a transmission shaft, a motor, a reducer, a main gear, and a driven gear; the power source provides power to the motor, and the motor drives the main gear through the reducer,
- the transmission shaft is connected with the main gear through a driven gear, and the crawler belt is connected with the transmission shaft through a sprocket.
- the dangerous gas source monitoring system, the dangerous early warning intelligent evaluation system, the operation data storage system and the navigation system are installed on the fuselage using a modular installation method.
- the dangerous early warning intelligent evaluation system includes a dangerous air source data receiving module, a dangerous air source data transmission processing module, a dangerous air source voice alarm module, and a roadway suffocation risk intelligent evaluation module, and the dangerous air source data receiving module receives the detection data. After that, the data is processed by the dangerous air source data transmission processing module and the data is transferred to the roadway suffocation risk intelligent evaluation module, which controls the operation of the dangerous air source voice alarm module.
- control system the crawler drive system, the dangerous air source monitoring system, the intelligent hazard early warning evaluation system, the operation data storage system and the navigation system are all connected to the fault analysis system; the front and rear of the fuselage are equipped with infrared detection The outer surface of the camera, the infrared detection camera is provided with a protective shell.
- An intelligent monitoring and evaluation method for unsealing dangerous gas sources in closed tunnels in coal mines using the above-mentioned intelligent monitoring and evaluating robot for unsealing dangerous gas sources in closed tunnels in coal mines, and the steps include:
- Step 1 After the closed roadway of the coal mine is unsealed, put the intelligent monitoring and evaluation robot for dangerous gas sources in the closed roadway of the coal mine into the original closed roadway;
- Step 2 The crawler drive system and navigation system control the walking route in the closed roadway.
- the dangerous gas source monitoring system detects the concentration of oxygen, gas, carbon monoxide, carbon dioxide, nitrogen dioxide, sulfur dioxide, hydrogen sulfide, and ammonia in the entire roadway. , And obtain the deformation of the roadway and the broken surrounding rock through the infrared detection camera;
- Step 3 The dangerous air source monitoring system uses the monitoring data to establish a three-dimensional cloud image of the air field of the closed roadway. After the dangerous air source data receiving module receives the detection data, it is processed by the dangerous air source data transmission processing module and transmitted to the roadway suffocation danger intelligence Evaluation module, the intelligent evaluation module of roadway suffocation danger controls the operation of the dangerous air source voice alarm module;
- Step 4 Intelligently evaluate the suffocation risk in the entire section of the closed roadway in the coal mine, save the detection data and evaluation results in the closed roadway to the operating data storage system; recover the intelligent monitoring and evaluation robot for unsealing dangerous gas sources in the closed roadway in the coal mine.
- the dangerous gas source voice alarm module in step 3 alarms according to the priority order of oxygen, gas, carbon monoxide, carbon dioxide, nitrogen dioxide, sulfur dioxide, hydrogen sulfide and ammonia, including: oxygen concentration less than 20%, gas concentration
- oxygen concentration less than 20%
- gas concentration When the concentration of carbon monoxide is greater than 1%, the concentration of carbon monoxide is greater than 0.0024%, the concentration of carbon dioxide is greater than 0.5%, the concentration of nitrogen dioxide is greater than 0.00025%, the concentration of sulfur dioxide is greater than 0.0005%, the concentration of hydrogen sulfide is greater than 0.00066% and the ammonia 0.004%, the dangerous gas source voice alarm modules are respectively Call the police.
- (1) Provides an intelligent monitoring and evaluation robot for unsealing dangerous gas sources in closed roadways of coal mines, which cooperate with the control system, crawler drive system, dangerous gas source monitoring system, danger early warning intelligent evaluation system, operation data storage system and navigation system. , To achieve walking, detection, evaluation and recording, the combination of each system to intelligently monitor and evaluate the unsealing of dangerous gas sources in closed tunnels in coal mines; in addition, it also has the advantages of reasonable structural design, simple operation, high intelligence, and good safety performance.
- the robot can monitor the concentration, flow rate and other parameters of O 2 , CH 4 , CO 2 , H 2 S and other gases in the closed roadway in real time, and establish a three-dimensional cloud map of the air field in the closed roadway, so as to better understand the roadway It intelligently evaluates the dangerous gas source, and decides the treatment of the roadway according to the evaluation structure.
- Figure 1 is a schematic diagram of the intelligent monitoring and evaluation robot for unsealing dangerous gas sources in closed roadways of coal mines;
- Figure 2 is a schematic diagram of the composition relationship of the dangerous early warning intelligent evaluation system
- Figure 3 is a diagram of intelligent evaluation of roadway suffocation risk
- the present invention provides an intelligent monitoring and evaluation robot and method for unsealing dangerous gas sources in closed roadways of coal mines and the specific implementation manners thereof are as follows.
- An intelligent monitoring and evaluation robot for unsealing dangerous air sources in coal mines includes a control system 1, a crawler drive system 2, a dangerous air source monitoring system 3, a dangerous early warning intelligent evaluation system 4, an operation data storage system 5, and a navigation system 6.
- the dangerous air source monitoring system, the dangerous early warning intelligent evaluation system, the operation data storage system and the navigation system are installed on the fuselage using a modular installation method, and the crawler drive system drives the robot to move smoothly as a whole.
- the robot realizes walking, detection, evaluation and recording.
- the combination of each system intelligently monitors and evaluates the unsealed dangerous gas source in the closed roadway of the coal mine.
- the control system receives and processes the wireless transmission signal.
- the operator controls the robot by operating the handle at a position far away from the enclosed roadway.
- the control system includes a radio signal transmitter, a radio signal receiver and a radio signal anti-jamming processor, and a radio signal transmitter.
- the device is installed in the operating handle 7, and the radio signal receiver is installed in the body.
- the operating handle and the fuselage are also provided with a radio signal anti-interference processor, so as to avoid the interference of uncertain factors in the enclosed tunnel.
- the hazardous gas source monitoring system 3 includes a gas detection manipulator and a gas concentration detector.
- the gas concentration monitor moves up and down with the gas detection manipulator.
- the hazardous gas source monitoring system uses the monitoring data to establish a three-dimensional cloud image of the air field in a closed tunnel.
- Gas concentration monitors include the following single gas monitors: oxygen detector, gas detector, carbon monoxide detector, carbon dioxide detector, nitrogen dioxide detector, sulfur dioxide detector, hydrogen sulfide detector and ammonia detector, using a single gas
- the detector can ensure the accuracy and precision of data collection of dangerous source gases in closed roadways.
- the gas concentration monitor is installed on the gas detection manipulator.
- the gas detection manipulator is equipped with multiple gas concentration monitor installation spaces.
- the gas detection manipulator is also equipped with a gas flow velocity detector.
- the gas detection manipulator can be horizontally extended or vertically lifted to maintain the machine.
- the body's center of gravity is stable, and the preferred gas monitor parameters are shown in Table 1.
- the robot's dangerous gas source monitoring system can monitor the concentration and flow rate of O 2 , CH 4 , CO 2 , H 2 S and other gas in the closed roadway in real time, and establish a three-dimensional cloud map of the air field in the closed roadway, so as to better In order to understand the situation of the roadway, intelligently evaluate the dangerous gas source, and determine the treatment of the roadway according to the evaluation structure.
- the crawler drive system 2 and the navigation system 6 control the walking route.
- the crawler drive system 2 includes power supply, crawlers, sprocket, drive shaft, motor, reducer, main gear and driven gear.
- the power supply provides power to the motor, and the motor reduces speed.
- the driver drives the main gear, the transmission shaft is connected to the main gear through a driven gear, and the crawler belt is connected to the transmission shaft through a sprocket.
- the power supply can be lead-acid batteries, and multiple battery packs can be connected in series in order to improve the battery life, so as to provide sufficient power to meet the needs of the environment in the complex roadway.
- a body inclination measuring instrument or gyroscope is installed on the body to feed back the body inclination in real time, and the detection manipulator makes corresponding position or height adjustments according to the inclination of the body to ensure a smooth movement process.
- the dangerous early warning intelligent evaluation system 4 judges the danger of the roadway and completes the early warning.
- the dangerous early warning intelligent evaluation system includes a dangerous air source data receiving module, a dangerous air source data transmission processing module, a dangerous air source voice alarm module and a roadway suffocation Dangerous intelligent evaluation module, after receiving the detected data, the dangerous air source data receiving module processes the data through the dangerous air source data transmission processing module and transmits the data to the roadway suffocation risk intelligent evaluation module.
- the roadway suffocation risk intelligent evaluation module controls the dangerous air source voice alarm The module works, the dangerous gas source voice alarm module includes voice prompts and text display.
- control system 1, the crawler drive system 2, the dangerous air source monitoring system 3, the danger early warning intelligent evaluation system 4, the operation data storage system 5 and the navigation system 6 are all connected to the fault analysis system.
- the fault analysis system can determine the robot damage in time. The location and damage of the robot can prevent the robot from malfunctioning due to unknown factors in the enclosed roadway, and facilitate its support work.
- infrared detection cameras are installed on the front and rear of the robot body, and the outer surface of the infrared detection camera is provided with a protective shell; the infrared detection camera can observe the broken surrounding rock of the roadway and the roof fall of the roadway.
- the robot In order to prevent the collapse of the roof of the confined roadway, falling objects, etc., causing the robot to be damaged, causing data transmission to be interrupted; or other factors interfere with the wireless data transmission, the robot is also equipped with a data storage system and a navigation system to realize monitoring, operation data storage and driving position Positioning.
- the actual parameters of the intelligent monitoring and evaluation robot for unsealing dangerous gas sources in this coal mine’s closed roadway are shown in Table 2. It also includes the actual design dimensions of the roadway, the weight with good stability, and the ability to traverse complex terrain, walking speed and control distance. And other parameters.
- the robot also has the advantages of reasonable structural design, easy operation, high degree of intelligence, and good safety performance.
- An intelligent monitoring and evaluation method for unsealing dangerous gas sources in closed tunnels in coal mines uses the above-mentioned intelligent monitoring and evaluation robot for unsealing dangerous gas sources in closed tunnels in coal mines.
- the specific steps include:
- Step 1 After the closed roadway of the coal mine is unsealed, the intelligent monitoring and evaluation robot for dangerous gas sources is put into the original closed roadway.
- Step 2 The crawler drive system and navigation system control the walking route in the closed roadway.
- the dangerous gas source monitoring system detects the concentration of oxygen, gas, carbon monoxide, carbon dioxide, nitrogen dioxide, sulfur dioxide, hydrogen sulfide, and ammonia in the entire roadway. , And obtain the deformation of the roadway and the broken surrounding rock through the infrared detection camera.
- Step 3 The dangerous air source monitoring system uses the monitoring data to establish a three-dimensional cloud image of the air field of the closed roadway. After the dangerous air source data receiving module receives the detection data, it is processed by the dangerous air source data transmission processing module and transmitted to the roadway suffocation danger intelligence Evaluation module, the intelligent evaluation module of roadway suffocation danger controls the operation of the dangerous air source voice alarm module.
- the dangerous gas source voice alarm module alarms according to the priority order of oxygen, gas, carbon monoxide, carbon dioxide, nitrogen dioxide, sulfur dioxide, hydrogen sulfide and ammonia, including: oxygen concentration less than 20%, gas concentration greater than 1%, carbon monoxide
- oxygen concentration less than 20%, gas concentration greater than 1%
- carbon monoxide When the concentration is greater than 0.0024%, the concentration of carbon dioxide is greater than 0.5%, the concentration of nitrogen dioxide is greater than 0.00025%, the concentration of sulfur dioxide is greater than 0.0005%, the concentration of hydrogen sulfide is greater than 0.00066%, and the ammonia is 0.004%, the dangerous gas source voice alarm module will alarm separately.
- the setting situation of the source voice alarm module is shown in Table 3.
- Step 4 Intelligently evaluate the suffocation risk in the entire section of the closed roadway in the coal mine, save the detection data and evaluation results in the closed roadway to the operating data storage system; recover the intelligent monitoring and evaluation robot for unsealing dangerous gas sources in the closed roadway in the coal mine.
- the intelligent evaluation of the suffocation risk in the entire section of the closed roadway in the coal mine is a synthesis of the concentration of dangerous gas in the roadway, the fragmentation of the surrounding rock of the roadway, the air volume and wind speed of the roadway, the oxygen concentration in the roadway, the monitoring data of the volatile dangerous gas in the coal seam, and the roadway slicing Roof fall, coal seam spontaneous combustion tendency, location, speed, and travel time of the guards are comprehensively determined.
- the position, speed and traveling test piece of the passing personnel are set to comprehensively determine the magnitude of the danger.
- Various factors can be considered comprehensively. According to the concentration of dangerous gas in the roadway, the fragmentation of the surrounding rock of the roadway, the air volume and wind speed in the roadway, the oxygen concentration in the roadway, the monitoring data of coal seam volatile dangerous gas, the roof fall of roadway slabs, the tendency of coal seam to spontaneous combustion, the general The priority sequence of the location, speed and travel time of the anti-personnel determines the suffocation risk in the entire section of the closed roadway of the coal mine.
- the air volume in the tunnel is 1500m 3 /min, and the wind speed is 6m/s.
- the monitoring data are: sulfur dioxide concentration is 0.00139%, hydrogen sulfide is 0.00052%, and ammonia is 0.0031%.
- the coal seam has a low tendency to spontaneous combustion and consumes less oxygen. Considering all factors, it is finally determined that the roadway has a suffocation hazard. It is recommended to use local fans for ventilation to ensure that the voice system does not alarm.
- the intelligent monitoring and evaluation method for unsealing dangerous gas sources in closed roadways of coal mines reasonably uses the gas data detected by robots, and sets reasonable parameter warning thresholds and priority sequences, and finally comprehensively judges the suffocation risk of the roadway according to the actual situation of the roadway.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Emergency Alarm Devices (AREA)
Abstract
一种煤矿密闭巷道启封危险气源智能监测和评价机器人及监测和评价方法被公开。该机器人包括控制系统(1)、履带式驱动系统(2)、危险气源监测系统(3)、危险预警智能评价系统(4)、运行数据储存系统(5)和导航系统(6),控制系统(1)接收并处理无线传输信号,履带式驱动系统(2)和导航系统(6)控制行走路线,危险气源监测系统(3)包括气体探测机械手,监测不同高度的O 2、CH 4和NH 3等气体的浓度,危险气源监测系统(3)根据监测数据建立密闭巷道的空气场三维云图,危险预警智能评价系统(4)判断巷道危险性并完成预警,运行数据储存系统(5)对监测和评价结果进行存储。该监测和评价方法利用探测数据综合评价密闭巷道启封危险,解决了如何全面、准确评价密闭巷道启封后窒息危险性的问题。
Description
本发明涉及矿井智能监测设备技术领域,尤其是一种煤矿密闭巷道启封危险气源智能监测和评价机器人,以及利用该机器人检测并评价密闭巷道危险性的方法。
目前,我国煤矿已由浅部开采转向深部开采,深部矿井的巷道布置系统更加复杂,其中根据生产、通风、防火、防水等目的需要设置密闭巷道;为延续矿井生产,需对原先构筑的密闭巷道进行启封。密闭巷道由于是长时间封闭,且是不维护的,所以内部环境极其复杂,且光线不足、危害气体分布与含量不明确,受采动影响,顶底板可能发生片帮、底鼓等。在密闭巷道启封现场,对密闭巷道内顶底板状况判别时,往往根据密闭墙外部顶板完整程度,煤体的坚固性系数f值、节理裂隙发育程度等进行推测;对于密闭前巷道内部铺设的风筒、防火管道等设施的良好状况无法掌握;对密闭巷道内的多源气场往往是通过密闭墙上的观测孔进行监测,仅仅是对观测孔处的气体进行浓度监测,而对于整个密闭巷道的气体成分、浓度分布、压力状况、温度、湿度等不能进行三维立体动态云图还原。
然而,在上述复杂密闭巷道环境下,充满多种未知和不确定气体危险源,直接威胁煤矿通防人员和其他巷道启封人员的生命安全,这就需要一种结构设计合理、使用操作简便且能在密闭巷道复杂环境中对空气场中多种气体的浓度、压力、流速等进行智能监测与危险程度评价,生成密闭巷道三维空气流场云图,为密闭巷道启封现场施工提供最有效的数据支持,进而确保启封人员的安全。
发明内容
为了实现全面、准确评价密闭巷道启封后的危险性,掌握密闭巷道内的空气场情况,本发明提供了一种煤矿密闭巷道启封危险气源智能监测和评价机器人及方法,其具体技术方案如下。
一种煤矿密闭巷道启封危险气源智能监测和评价机器人,包括控制系统、履带式驱动系统、危险气源监测系统、危险预警智能评价系统、运行数据储存系统和导航系统;所述控制系统接收并处理无线传输信号,所述履带式驱动系统和导航系统控制行走路线,所述危险气源监测系统包括气体探测机械手和气体浓度检测仪,气体浓度监测仪随气体探测机械手升降移动,所述危险气源监测系统利用监测数据建立密闭巷道的空气场三维云图,所述危险预警智能评价系统判断巷道危险性并完成预警。
优选的是,控制系统包括无线电信号发射器、无线电接收信号器和无线电信号抗干扰处 理器,所述无线电信号发射器安装在操作手柄内,所述无线电接收信号器设置在机身内;操作手柄和机身内还设置有无线电信号抗干扰处理器。
优选的是,气体浓度监测仪包括氧气检测仪、瓦斯检测仪、一氧化碳检测仪、二氧化碳检测仪、二氧化氮检测仪、二氧化硫检测仪、硫化氢检测仪和氨气检测仪。
进一步优选的是,气体浓度监测仪设置在气体探测机械手上,所述气体探测机械手上还设置有气体流动速度探测仪;所述气体探测机械手水平伸缩或垂直升降维持机身重心稳定。
还优选的是,履带式驱动系统包括电源、履带、链轮、传动轴、电机、减速器、主齿轮和从动齿轮;所述电源为电机提供动力,所述电机通过减速器驱动主齿轮,所述传动轴通过从动齿轮与主齿轮连接,所述履带通过链轮与传动轴连接。
优选的是,危险气源监测系统、危险预警智能评价系统、运行数据储存系统和导航系统采用模块式安装方法设置在机身上。
还优选的是,危险预警智能评价系统包括危险气源数据接收模块、危险气源数据传输处理模块、危险气源语音报警模块和巷道窒息危险智能评价模块,危险气源数据接收模块接收到检测数据后,通过危险气源数据传输处理模块处理并将数据传递至巷道窒息危险智能评价模块,巷道窒息危险智能评价模块控制危险气源语音报警模块工作。
进一步优选是是,控制系统、履带式驱动系统、危险气源监测系统、危险预警智能评价系统、运行数据储存系统和导航系统均与故障分析系统相连;机身的前方和后方均设置有红外检测摄像头,红外检测摄像头外表面设置有防护壳。
一种煤矿密闭巷道启封危险气源智能监测和评价方法,利用上述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,步骤包括:
步骤一:煤矿密闭巷道启封后,将煤矿密闭巷道启封危险气源智能监测和评价机器人放入原密闭巷道内;
步骤二:履带式驱动系统和导航系统控制在密闭巷道内的行走路线,危险气源监测系统对全巷道的氧气、瓦斯、一氧化碳、二氧化碳、二氧化氮、二氧化硫、硫化氢和氨气浓度进行检测,并通过红外检测摄像头获取巷道的变形、及围岩破碎情况;
步骤三:危险气源监测系统利用监测数据建立密闭巷道的空气场三维云图,危险气源数据接收模块接收到检测数据后,通过危险气源数据传输处理模块处理并将数据传递至巷道窒息危险智能评价模块,巷道窒息危险智能评价模块控制危险气源语音报警模块工作;
步骤四:对煤矿密闭巷道全段内的窒息危险性进行智能评价,将密闭巷道内检测数据和评价结果保存至运行数据储存系统;回收煤矿密闭巷道启封危险气源智能监测和评价机器人。
还优选的是,步骤三中危险气源语音报警模块按照氧气、瓦斯、一氧化碳、二氧化碳、 二氧化氮、二氧化硫、硫化氢和氨气的优先级次序报警,包括:氧气浓度小于20%、瓦斯浓度大于1%、一氧化碳浓度大于0.0024%、二氧化碳浓度大于0.5%、二氧化氮浓度大于0.00025%、二氧化硫浓度大于0.0005%、硫化氢浓度大于0.00066%和氨气0.004%时,危险气源语音报警模块分别报警。
本发明的有益效果包括:
(1)提供了一种煤矿密闭巷道启封危险气源智能监测和评价机器人,通过控制系统、履带式驱动系统、危险气源监测系统、危险预警智能评价系统、运行数据储存系统和导航系统相互配合,实现行走、检测、评价和记录,各个系统的组合对煤矿密闭巷道启封危险气源智能监测和评价;另外还具有结构设计合理、操作简便且智能化程度高、安全性能好等优点。
(2)机器人能对密闭巷道内的O
2、CH
4、CO
2、H
2S等气体的浓度、流速等参数进行实时监测,建立密闭巷道内空气场的三维云图,从而更好了了解巷道情况,并对危险气源进行智能评价,根据评价结构决定对巷道的处理。
(3)还提供了一种煤矿密闭巷道启封危险气源智能监测和评价方法,合理利用机器人来检测的气体数据,并设置合理的参数预警阀值及预警优先级顺序,最终根据巷道实际情况综合判定巷道窒息危险性大小。
图1是煤矿密闭巷道启封危险气源智能监测和评价机器人结构示意图;
图2是危险预警智能评价系统组成关系示意图;
图3是巷道窒息危险智能评价关系图;
图中:1-控制系统;2-履带式驱动系统;3-危险气源监测系统;4-危险预警智能评价系统;5-运行数据储存系统;6-导航系统;7-手柄。
结合图1至图3所示,本发明提供的一种煤矿密闭巷道启封危险气源智能监测和评价机器人及方法具体实施方式如下。
一种煤矿密闭巷道启封危险气源智能监测和评价机器人具体包括控制系统1、履带式驱动系统2、危险气源监测系统3、危险预警智能评价系统4、运行数据储存系统5和导航系统6,其中危险气源监测系统、危险预警智能评价系统、运行数据储存系统和导航系统采用模块式安装方法设置在机身上,履带式驱动系统带动机器人整体平稳运动。机器人通过六个系统的相互配合,实现行走、检测、评价和记录,各个系统的组合对煤矿密闭巷道启封危险气源智能监测和评价。
控制系统接1收并处理无线传输信号,操作人员在远离密闭巷道的位置通过操作手柄控 制该机器人,其中控制系统包括无线电信号发射器、无线电接收信号器和无线电信号抗干扰处理器,无线电信号发射器安装在操作手柄7内,无线电接收信号器设置在机身内。操作手柄和机身内还设置有无线电信号抗干扰处理器,从而可以避免密闭巷道内不确定因素的干扰。
危险气源监测系统3包括气体探测机械手和气体浓度检测仪,气体浓度监测仪随气体探测机械手升降移动,危险气源监测系统利用监测数据建立密闭巷道的空气场三维云图。气体浓度监测仪包括以下单一气体监测仪:氧气检测仪、瓦斯检测仪、一氧化碳检测仪、二氧化碳检测仪、二氧化氮检测仪、二氧化硫检测仪、硫化氢检测仪和氨气检测仪,使用单一气体检测仪能够保证密闭巷道危险源气体数据采集的准确性与精度。气体浓度监测仪设置在气体探测机械手上,气体探测机械手上设置有多个气体浓度监测仪安装空间,气体探测机械手上还设置有气体流动速度探测仪,气体探测机械手可以水平伸缩或垂直升降维持机身重心稳定,其中优选的气体监测仪参数如表1所示。机器人的危险气源监测系统能对密闭巷道内的O
2、CH
4、CO
2、H
2S等气体的浓度、流速等参数进行实时监测,建立密闭巷道内空气场的三维云图,从而更好了了解巷道情况,并对危险气源进行智能评价,根据评价结构决定对巷道的处理。
表1危险气源检测仪检测参数
名称 | 分辨率 | 检测范围 |
氧气检测仪 | 0.01% | 0‐30% |
瓦斯检测仪 | 0.01% | 0‐5% |
一氧化碳检测仪 | 1ppm | 0‐10000ppm |
二氧化碳检测仪 | 0.01% | 0‐20% |
二氧化氮检测仪 | 0.1ppm | 0‐1000ppm |
二氧化硫检测仪 | 1ppm | 0‐2000ppm |
硫化氢检测仪 | 0.1ppm | 0‐1000ppm |
氨气检测仪 | 1ppm | 0‐10000ppm |
履带式驱动系统2和导航系统6控制行走路线,履带式驱动系统2包括电源、履带、链轮、传动轴、电机、减速器、主齿轮和从动齿轮,电源为电机提供动力,电机通过减速器驱动主齿轮,传动轴通过从动齿轮与主齿轮连接,履带通过链轮与传动轴连接。其中电源可以采用铅酸电池,为提升续航历程可以采用多个电池组串联的形式,从而可以提供足够的动力,满足复杂巷道内环境的需求。另外履带式驱动系统的行进过程中车身上还设置有车身倾角测量仪或陀螺仪,实时反馈车身倾角,探测机械手根据车身的倾斜情况做出相应的位置或高度调整,从而保证运动过程的平稳。
危险预警智能评价系统4判断巷道危险性并完成预警,如图2所示,危险预警智能评价 系统包括危险气源数据接收模块、危险气源数据传输处理模块、危险气源语音报警模块和巷道窒息危险智能评价模块,危险气源数据接收模块接收到检测数据后,通过危险气源数据传输处理模块处理并将数据传递至巷道窒息危险智能评价模块,巷道窒息危险智能评价模块控制危险气源语音报警模块工作,危险气源语音报警模块包括语音提示和文字显示。
另外,控制系统1、履带式驱动系统2、危险气源监测系统3、危险预警智能评价系统4、运行数据储存系统5和导航系统6均与故障分析系统相连,故障分析系统可以及时判断机器人损坏的位置及受损情况,能够防止机器人在密闭巷道内受未知因素影响导致故障,方便对其开展支援工作。并且在机器人机身的前方和后方均设置有红外检测摄像头,红外检测摄像头外表面设置有防护壳;红外检测摄像头可以观测巷道围岩破碎情况和巷道的片帮冒顶情况。为了防止密闭巷道顶板坍塌、掉落物等导致机器人损坏,造成数据传输中断;或其他因素干扰无线数据传输,机器人还搭载数据储存系统与导航系统,以实现监测、运行的数据保存以及行驶位置的定位。
该煤矿密闭巷道启封危险气源智能监测和评价机器人的实际参数如表2所示,还包括符合巷道实际的设计尺寸,稳定性较好的重量,以及穿越复杂地形的能力,行走速度和控制距离等参数。该机器人还具有结构设计合理、操作简便且智能化程度高、安全性能好等优点
表2密闭巷道启封危险气源智能监测与评价机器人
一种煤矿密闭巷道启封危险气源智能监测和评价方法,利用上述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,具体的步骤包括:
步骤一:煤矿密闭巷道启封后,将煤矿密闭巷道启封危险气源智能监测和评价机器人放 入原密闭巷道内。
步骤二:履带式驱动系统和导航系统控制在密闭巷道内的行走路线,危险气源监测系统对全巷道的氧气、瓦斯、一氧化碳、二氧化碳、二氧化氮、二氧化硫、硫化氢和氨气浓度进行检测,并通过红外检测摄像头获取巷道的变形、及围岩破碎情况。
步骤三:危险气源监测系统利用监测数据建立密闭巷道的空气场三维云图,危险气源数据接收模块接收到检测数据后,通过危险气源数据传输处理模块处理并将数据传递至巷道窒息危险智能评价模块,巷道窒息危险智能评价模块控制危险气源语音报警模块工作。
本步骤中危险气源语音报警模块按照氧气、瓦斯、一氧化碳、二氧化碳、二氧化氮、二氧化硫、硫化氢和氨气的优先级次序报警,包括:氧气浓度小于20%、瓦斯浓度大于1%、一氧化碳浓度大于0.0024%、二氧化碳浓度大于0.5%、二氧化氮浓度大于0.00025%、二氧化硫浓度大于0.0005%、硫化氢浓度大于0.00066%和氨气0.004%时,危险气源语音报警模块分别报警,其中危险气源语音报警模块的设定情况如表3所示。
表3危险气源语音报警系统预设值
名称 | 规定浓度/% | 语音报警范围/% | 报警次序 | 报警语言 |
氧气O 2 | 20 | ﹤20 | 1 | 氧气浓度不足 |
瓦斯CH 4 | 1 | ﹥1 | 2 | 瓦斯浓度过高 |
一氧化碳CO | 0.0024 | ﹥0.0024 | 3 | 一氧化碳浓度过高 |
二氧化碳CO 2 | 0.5 | ﹥0.5 | 4 | 二氧化碳浓度过高 |
二氧化氮NO 2 | 0.00025 | ﹥0.00025 | 5 | 二氧化氮浓度过高 |
二氧化硫SO 2 | 0.0005 | ﹥0.0005 | 6 | 二氧化硫浓度过高 |
硫化氢H 2S | 0.00066 | ﹥0.00066 | 7 | 硫化氢浓度过高 |
氨气NH 3 | 0.004 | ﹥0.004 | 8 | 氨气浓度过高 |
步骤四:对煤矿密闭巷道全段内的窒息危险性进行智能评价,将密闭巷道内检测数据和评价结果保存至运行数据储存系统;回收煤矿密闭巷道启封危险气源智能监测和评价机器人。
其中煤矿密闭巷道全段内窒息危险性进行智能评价,是综合了巷道内危险性气体浓度,巷道围岩破碎情况,巷道风量及风速,巷道内氧气浓度,煤层挥发危险气体监测数据,巷道片帮冒顶情况,煤层自燃倾向性,通防人员位置、速度及行进时间综合确定的,在评价过程中根据巷道内危险性气体的浓度、巷道内氧气浓度、煤层挥发危险气体监测数据确定是否存在危险,当存在危险时,结合巷道围岩破碎情况、巷道片帮冒顶情况,设置通防人员的位置、速度和行进试件,从而综合确定危险性的大小。对各个因素可以进行综合考虑按照巷道内危险性气体浓度,巷道围岩破碎情况,巷道风量及风速,巷道内氧气浓度,煤层挥发危险气体 监测数据,巷道片帮冒顶情况,煤层自燃倾向性,通防人员位置、速度及行进时间的优先级顺序确定煤矿密闭巷道全段内的窒息危险性。
为进一步的说明该评价方法的使用,以某矿6306密闭巷道为例,其巷道长450米,对其进行说明,经过测定得到氧气浓度是13.62%、瓦斯浓度高达4.08%、一氧化碳浓度为0.0965%、二氧化碳浓度是0.3%、二氧化氮浓度是0.00017%、二氧化硫浓度是0.00139%、硫化氢是0.00052%和氨气是0.0031%;巷道围岩破碎情况是:在巷道10.4米处发现顶板变形较大,但没有垮落;在57.8米处巷道单侧出现片帮;巷道完整程度较好,本巷道可再启封利用。巷道风量是1500m
3/min,风速是6m/s。结合巷道密闭最初的空气场数据没有检测到以下几种气体,可判断是煤层挥发出的危险气体,其监测数据为:二氧化硫浓度是0.00139%、硫化氢是0.00052%和氨气是0.0031%。煤层自燃倾向性低,耗氧量较少。综合所有因素,最终判定该巷道的具有窒息危险,建议利用局部风机进行通风,以保证语音系统不报警。
该煤矿密闭巷道启封危险气源智能监测和评价方法,合理利用机器人来检测的气体数据,并设置合理的参数预警阀值及预警优先级顺序,最终根据巷道实际情况综合判定巷道窒息危险性大小。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。
Claims (10)
- 一种煤矿密闭巷道启封危险气源智能监测和评价机器人,其特征在于,包括控制系统、履带式驱动系统、危险气源监测系统、危险预警智能评价系统、运行数据储存系统和导航系统;所述控制系统接收并处理无线传输信号,所述履带式驱动系统和导航系统控制行走路线,所述危险气源监测系统包括气体探测机械手和气体浓度检测仪,气体浓度监测仪随气体探测机械手升降移动,所述危险气源监测系统利用监测数据建立密闭巷道的空气场三维云图,所述危险预警智能评价系统判断巷道危险性并完成预警。
- 根据权利要求1所述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,其特征在于,所述控制系统包括无线电信号发射器、无线电接收信号器和无线电信号抗干扰处理器,所述无线电信号发射器安装在操作手柄内,所述无线电接收信号器设置在机身内;操作手柄和机身内还设置有无线电信号抗干扰处理器。
- 根据权利要求1所述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,其特征在于,所述气体浓度监测仪包括氧气检测仪、瓦斯检测仪、一氧化碳检测仪、二氧化碳检测仪、二氧化氮检测仪、二氧化硫检测仪、硫化氢检测仪和氨气检测仪。
- 根据权利要求3所述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,其特征在于,所述气体浓度监测仪设置在气体探测机械手上,所述气体探测机械手上还设置有气体流动速度探测仪;所述气体探测机械手水平伸缩或垂直升降维持机身重心稳定。
- 根据权利要求1所述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,其特征在于,所述履带式驱动系统包括电源、履带、链轮、传动轴、电机、减速器、主齿轮和从动齿轮;所述电源为电机提供动力,所述电机通过减速器驱动主齿轮,所述传动轴通过从动齿轮与主齿轮连接,所述履带通过链轮与传动轴连接。
- 根据权利要求1所述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,其特征在于,所述危险气源监测系统、危险预警智能评价系统、运行数据储存系统和导航系统采用模块式安装方法设置在机身上。
- 根据权利要求1所述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,其特征在于,所述危险预警智能评价系统包括危险气源数据接收模块、危险气源数据传输处理模块、危险气源语音报警模块和巷道窒息危险智能评价模块,危险气源数据接收模块接收到检测数据后,通过危险气源数据传输处理模块处理并将数据传递至巷道窒息危险智能评价模块,巷道窒息危险智能评价模块控制危险气源语音报警模块工作。
- 根据权利要求1所述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,其特征在于,所述控制系统、履带式驱动系统、危险气源监测系统、危险预警智能评价系统、运行数据储存系统和导航系统均与故障分析系统相连;机身的前方和后方均设置有红外检测摄 像头,红外检测摄像头外表面设置有防护壳。
- 一种煤矿密闭巷道启封危险气源智能监测和评价方法,利用权利要求1至8任一项所述的一种煤矿密闭巷道启封危险气源智能监测和评价机器人,其特征在于,步骤包括:步骤一:煤矿密闭巷道启封后,将煤矿密闭巷道启封危险气源智能监测和评价机器人放入原密闭巷道内;步骤二:履带式驱动系统和导航系统控制在密闭巷道内的行走路线,危险气源监测系统对全巷道的氧气、瓦斯、一氧化碳、二氧化碳、二氧化氮、二氧化硫、硫化氢和氨气浓度进行检测,并通过红外检测摄像头获取巷道的变形、及围岩破碎情况;步骤三:危险气源监测系统利用监测数据建立密闭巷道的空气场三维云图,危险气源数据接收模块接收到检测数据后,通过危险气源数据传输处理模块处理并将数据传递至巷道窒息危险智能评价模块,巷道窒息危险智能评价模块控制危险气源语音报警模块工作;步骤四:对煤矿密闭巷道全段内的窒息危险性进行智能评价,将密闭巷道内检测数据和评价结果保存至运行数据储存系统;回收煤矿密闭巷道启封危险气源智能监测和评价机器人。
- 根据权利要求9所述的一种煤矿密闭巷道启封危险气源智能监测和评价方法,其特征在于,所述步骤三中危险气源语音报警模块按照氧气、瓦斯、一氧化碳、二氧化碳、二氧化氮、二氧化硫、硫化氢和氨气的优先级次序报警,包括:氧气浓度小于20%、瓦斯浓度大于1%、一氧化碳浓度大于0.0024%、二氧化碳浓度大于0.5%、二氧化氮浓度大于0.00025%、二氧化硫浓度大于0.0005%、硫化氢浓度大于0.00066%和氨气0.004%时,危险气源语音报警模块分别报警。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910793396.2A CN110541731B (zh) | 2019-08-27 | 2019-08-27 | 煤矿密闭巷道启封危险气源智能监测和评价机器人及方法 |
CN201910793396.2 | 2019-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021036597A1 true WO2021036597A1 (zh) | 2021-03-04 |
Family
ID=68712147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/103644 WO2021036597A1 (zh) | 2019-08-27 | 2020-07-23 | 煤矿密闭巷道启封危险气源智能监测和评价机器人及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110541731B (zh) |
WO (1) | WO2021036597A1 (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113030391A (zh) * | 2021-03-18 | 2021-06-25 | 中钢集团马鞍山矿山研究总院股份有限公司 | 一种地下空间爆破炮烟有毒有害气体的全段面监测方法 |
CN113033006A (zh) * | 2021-03-31 | 2021-06-25 | 郑州煤机液压电控有限公司 | 煤矿井下开采工作面三维模型还原方法 |
CN113129553A (zh) * | 2021-04-22 | 2021-07-16 | 中滦科技股份有限公司 | 一种基于互联网的选煤厂安全报警系统装置及其报警方法 |
CN113319861A (zh) * | 2021-04-23 | 2021-08-31 | 中铁第一勘察设计院集团有限公司 | 地铁车辆段综合管沟的巡检方法及巡检机器人 |
CN113530604A (zh) * | 2021-07-21 | 2021-10-22 | 广东中人岩土工程有限公司 | 一种地下溶洞爆破用探测器 |
CN113586160A (zh) * | 2021-09-16 | 2021-11-02 | 西安科技大学 | 一种基于人工智能的综放工作面水情监测系统 |
CN113738428A (zh) * | 2021-08-14 | 2021-12-03 | 山西汾西矿业(集团)有限责任公司 | 一种用于煤矿井下局部通风的监测方法 |
CN113982691A (zh) * | 2021-11-11 | 2022-01-28 | 安徽理工大学 | 一种煤矿井下有害气体检测预警系统 |
CN114236090A (zh) * | 2021-12-28 | 2022-03-25 | 山西晋煤集团技术研究院有限责任公司 | 一种用于煤矿瓦斯的警报检测装置和方法 |
CN114483195A (zh) * | 2022-01-27 | 2022-05-13 | 青岛市城市规划设计研究院 | 基于边缘计算的长隧道紧急疏散安全预警指示系统 |
CN115922745A (zh) * | 2022-12-13 | 2023-04-07 | 北京龙德时代技术服务有限公司 | 可移动升降瓦斯巡检机器人的检测方法及系统 |
CN116068133A (zh) * | 2023-03-07 | 2023-05-05 | 江西通慧科技集团股份有限公司 | 隧道有害气体监测方法、系统、可读存储介质及计算机 |
CN117418903A (zh) * | 2023-09-27 | 2024-01-19 | 河南龙宇能源股份有限公司 | 一种沿空留巷巷道变形量监测及报警的智能巡检设备 |
CN117935176A (zh) * | 2024-03-25 | 2024-04-26 | 宁波长壁流体动力科技有限公司 | 一种煤矿园区的管控方法和管控系统 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110541731B (zh) * | 2019-08-27 | 2021-10-22 | 山东科技大学 | 煤矿密闭巷道启封危险气源智能监测和评价机器人及方法 |
CN111272874A (zh) * | 2020-03-04 | 2020-06-12 | 河南理工大学 | 一种巷道冒顶隐患自动检测装置 |
CN111804421B (zh) * | 2020-06-29 | 2022-02-22 | 洛阳智昊工程科技有限公司 | 一种用于骨料破碎设备的无人值守系统及方法 |
CN113090332B (zh) * | 2021-05-08 | 2023-09-19 | 重庆工程职业技术学院 | 一种煤矿用多功能环境监测设备 |
CN114215603A (zh) * | 2021-12-20 | 2022-03-22 | 临沂矿业集团有限责任公司 | 一种基于自动化开采煤矿密闭巷道启封危险气源监测装置 |
CN114910613B (zh) * | 2022-05-24 | 2023-09-12 | 北京中铁诚业工程建设监理有限公司 | 一种隧道施工监理人员防护报警综合设备 |
CN116717304A (zh) * | 2023-05-31 | 2023-09-08 | 中煤科工集团重庆研究院有限公司 | 一种基于液氮灌注的瓦斯矿灭火后的快速启封方法 |
CN117030531B (zh) * | 2023-08-14 | 2024-04-16 | 中国矿业大学 | 一种地下内衬式岩洞储氢库垫层气浓度监测系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06272500A (ja) * | 1993-03-18 | 1994-09-27 | Yamaguchi Shokai:Kk | 交通用誘導案内表示板の清掃システム |
JPH0776999B2 (ja) * | 1985-02-19 | 1995-08-16 | ユナイテッド キングドム アトミック エナ▲下−▼ヂイ オ▲下−▼ソリテイ | レ−ザ−使用設備の安全装置 |
CN201045124Y (zh) * | 2007-05-17 | 2008-04-09 | 张卫国 | 流体车载罐装机器人 |
CN101200218A (zh) * | 2006-12-14 | 2008-06-18 | 山东科技大学 | 危险环境探测、搜救飞行机器人 |
CN103790623A (zh) * | 2012-11-01 | 2014-05-14 | 西安扩力机电科技有限公司 | 一种煤矿井下安全搜救路线探测用搜救机器人 |
CN107389125A (zh) * | 2017-07-07 | 2017-11-24 | 中国有色金属长沙勘察设计研究院有限公司 | 一种地下空间自主定位多传感器智能探测机器人 |
CN110541731A (zh) * | 2019-08-27 | 2019-12-06 | 山东科技大学 | 煤矿密闭巷道启封危险气源智能监测和评价机器人及方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3104486B2 (ja) * | 1993-09-08 | 2000-10-30 | 神鋼電機株式会社 | トンネル内保守システム |
-
2019
- 2019-08-27 CN CN201910793396.2A patent/CN110541731B/zh active Active
-
2020
- 2020-07-23 WO PCT/CN2020/103644 patent/WO2021036597A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0776999B2 (ja) * | 1985-02-19 | 1995-08-16 | ユナイテッド キングドム アトミック エナ▲下−▼ヂイ オ▲下−▼ソリテイ | レ−ザ−使用設備の安全装置 |
JPH06272500A (ja) * | 1993-03-18 | 1994-09-27 | Yamaguchi Shokai:Kk | 交通用誘導案内表示板の清掃システム |
CN101200218A (zh) * | 2006-12-14 | 2008-06-18 | 山东科技大学 | 危险环境探测、搜救飞行机器人 |
CN201045124Y (zh) * | 2007-05-17 | 2008-04-09 | 张卫国 | 流体车载罐装机器人 |
CN103790623A (zh) * | 2012-11-01 | 2014-05-14 | 西安扩力机电科技有限公司 | 一种煤矿井下安全搜救路线探测用搜救机器人 |
CN107389125A (zh) * | 2017-07-07 | 2017-11-24 | 中国有色金属长沙勘察设计研究院有限公司 | 一种地下空间自主定位多传感器智能探测机器人 |
CN110541731A (zh) * | 2019-08-27 | 2019-12-06 | 山东科技大学 | 煤矿密闭巷道启封危险气源智能监测和评价机器人及方法 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113030391A (zh) * | 2021-03-18 | 2021-06-25 | 中钢集团马鞍山矿山研究总院股份有限公司 | 一种地下空间爆破炮烟有毒有害气体的全段面监测方法 |
CN113033006A (zh) * | 2021-03-31 | 2021-06-25 | 郑州煤机液压电控有限公司 | 煤矿井下开采工作面三维模型还原方法 |
CN113033006B (zh) * | 2021-03-31 | 2023-08-08 | 郑州恒达智控科技股份有限公司 | 煤矿井下开采工作面三维模型还原方法 |
CN113129553A (zh) * | 2021-04-22 | 2021-07-16 | 中滦科技股份有限公司 | 一种基于互联网的选煤厂安全报警系统装置及其报警方法 |
CN113319861A (zh) * | 2021-04-23 | 2021-08-31 | 中铁第一勘察设计院集团有限公司 | 地铁车辆段综合管沟的巡检方法及巡检机器人 |
CN113530604A (zh) * | 2021-07-21 | 2021-10-22 | 广东中人岩土工程有限公司 | 一种地下溶洞爆破用探测器 |
CN113530604B (zh) * | 2021-07-21 | 2024-02-09 | 广东中人岩土工程有限公司 | 一种地下溶洞爆破用探测器 |
CN113738428A (zh) * | 2021-08-14 | 2021-12-03 | 山西汾西矿业(集团)有限责任公司 | 一种用于煤矿井下局部通风的监测方法 |
CN113586160B (zh) * | 2021-09-16 | 2023-04-25 | 西安科技大学 | 一种基于人工智能的综放工作面水情监测系统 |
CN113586160A (zh) * | 2021-09-16 | 2021-11-02 | 西安科技大学 | 一种基于人工智能的综放工作面水情监测系统 |
CN113982691B (zh) * | 2021-11-11 | 2023-12-15 | 安徽理工大学 | 一种煤矿井下有害气体检测预警系统 |
CN113982691A (zh) * | 2021-11-11 | 2022-01-28 | 安徽理工大学 | 一种煤矿井下有害气体检测预警系统 |
CN114236090A (zh) * | 2021-12-28 | 2022-03-25 | 山西晋煤集团技术研究院有限责任公司 | 一种用于煤矿瓦斯的警报检测装置和方法 |
CN114483195B (zh) * | 2022-01-27 | 2023-06-02 | 青岛市城市规划设计研究院 | 基于边缘计算的长隧道紧急疏散安全预警指示系统 |
CN114483195A (zh) * | 2022-01-27 | 2022-05-13 | 青岛市城市规划设计研究院 | 基于边缘计算的长隧道紧急疏散安全预警指示系统 |
CN115922745A (zh) * | 2022-12-13 | 2023-04-07 | 北京龙德时代技术服务有限公司 | 可移动升降瓦斯巡检机器人的检测方法及系统 |
CN116068133A (zh) * | 2023-03-07 | 2023-05-05 | 江西通慧科技集团股份有限公司 | 隧道有害气体监测方法、系统、可读存储介质及计算机 |
CN117418903A (zh) * | 2023-09-27 | 2024-01-19 | 河南龙宇能源股份有限公司 | 一种沿空留巷巷道变形量监测及报警的智能巡检设备 |
CN117418903B (zh) * | 2023-09-27 | 2024-04-02 | 河南龙宇能源股份有限公司 | 一种沿空留巷巷道变形量监测及报警的智能巡检设备 |
CN117935176A (zh) * | 2024-03-25 | 2024-04-26 | 宁波长壁流体动力科技有限公司 | 一种煤矿园区的管控方法和管控系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110541731B (zh) | 2021-10-22 |
CN110541731A (zh) | 2019-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021036597A1 (zh) | 煤矿密闭巷道启封危险气源智能监测和评价机器人及方法 | |
CN108267172B (zh) | 矿用智能机器人巡检系统 | |
CN211955374U (zh) | 一种用于检测有限空间作业环境的检测装置、检测系统 | |
CN107137838A (zh) | 一种基于消防机器人的火灾救援闭环控制系统及方法 | |
CN205581549U (zh) | 一种机器人 | |
CN211924249U (zh) | 一种应用于矿井瓦斯检测的自动巡检车 | |
CN106628142A (zh) | 一种用于大气采样检测及易燃易爆气体预警监测的无人机 | |
CN109948935B (zh) | 一种煤矿风险智能分析系统 | |
CN111650344A (zh) | 基于履带式智能机器人的井下信息采集系统及方法 | |
CN201264655Y (zh) | 煤矿救援探测机器人 | |
CN111086014A (zh) | 一种隔爆兼本安型危险气体巡检机器人 | |
CN110703778A (zh) | 矿山智能安全定位巡检机器人装置及系统 | |
KR20190004083A (ko) | Gps 기능을 통한 작업자의 위치추적이 가능한 안전모 | |
CN112173103A (zh) | 一种用于钻爆法施工隧道工作面检测装置及方法 | |
CN211230554U (zh) | 基于多传感器信息融合矿井探测救援系统 | |
CN115880862A (zh) | 一种基于5g和大数据的矿道坍塌实时预警方法和系统 | |
WO2022193565A1 (zh) | 一种地下空间爆破炮烟有毒有害气体的全段面监测方法 | |
CN113702374B (zh) | 一种矿井瓦斯探放设备 | |
CN212459606U (zh) | 基于履带式智能机器人的井下信息采集系统 | |
JP5684100B2 (ja) | プラットフォームを備えた無人走行用の移動体 | |
CN109779686A (zh) | 一种无氧矿山开采系统 | |
Racette et al. | Hybrid UGV and Drone System for Mine Rescue Assistance | |
CN113009088A (zh) | 一种移动式地下空间爆破炮烟监测装置 | |
JP5706803B2 (ja) | 調査用の無人走行移動体 | |
JP5847558B2 (ja) | 採水装置を備えた無人走行用の移動体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20857109 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20857109 Country of ref document: EP Kind code of ref document: A1 |