WO2021036586A1 - 背光模组及电子设备 - Google Patents

背光模组及电子设备 Download PDF

Info

Publication number
WO2021036586A1
WO2021036586A1 PCT/CN2020/103071 CN2020103071W WO2021036586A1 WO 2021036586 A1 WO2021036586 A1 WO 2021036586A1 CN 2020103071 W CN2020103071 W CN 2020103071W WO 2021036586 A1 WO2021036586 A1 WO 2021036586A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
infrared light
light guide
backlight module
Prior art date
Application number
PCT/CN2020/103071
Other languages
English (en)
French (fr)
Inventor
贺虎
余俊逸
宋连燕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021036586A1 publication Critical patent/WO2021036586A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the present invention relates to the field of electronic equipment, and in particular to a backlight module and electronic equipment.
  • a fingerprint recognition module is installed under the self-luminous display screen, and the fingerprint recognition module receives the reflections reflected by the finger. Light, and then fingerprint recognition based on the reflected light.
  • the above-mentioned fingerprint identification scheme cannot be directly used. It is usually necessary to add multiple light sources below the backlight module in the electronic device to ensure that the fingerprint identification module can receive the reflected light reflected by the finger that can be used for fingerprint identification.
  • the embodiments of the present application provide a backlight module and electronic equipment.
  • electronic equipment that adopts a non-self-luminous display screen, there is no need to add a light source under the backlight module in the electronic equipment to realize fingerprint recognition under the screen, which is beneficial to reduce The thickness of the electronic device.
  • a backlight module which is applied to an electronic device with a display screen and a fingerprint recognition module, and the backlight module includes:
  • the light guide plate is arranged between the display screen and the fingerprint identification module
  • An infrared light source arranged on the side of the light guide plate, and used to emit infrared light from the side of the light guide plate to the light guide plate;
  • the light guide plate diffuses the infrared light entering the inside of the light guide plate from the side surface thereof.
  • the backlight module also includes a white light source
  • the white light source and the infrared light source are arranged on one side surface of the light guide plate; or, the white light source and the infrared light source are respectively arranged on two side surfaces of the light guide plate.
  • the infrared light source and the white light source are respectively connected to the control unit of the electronic device.
  • the light guide plate includes:
  • a reflective surface is adjacent to the fingerprint identification module;
  • a plurality of light guide points are arranged on the reflecting surface and used to diffuse infrared light.
  • the backlight module further includes:
  • the reflective layer is arranged between the light guide plate and the fingerprint recognition module
  • the transmittance of infrared light through the reflective layer is greater than the transmittance of visible light through the reflective layer.
  • an electronic device including: a display screen, a fingerprint identification module, and the backlight module of any one of the first aspect.
  • the electronic device further includes: a control unit; wherein the control unit is connected to the infrared light source of the backlight module,
  • the control unit is also connected with the fingerprint identification module
  • the control unit is used to obtain the ambient light intensity of infrared light in the natural environment through the fingerprint recognition module, and control the infrared light source of the backlight module to emit infrared light according to the ambient light intensity.
  • the control unit is specifically configured to control the infrared light source of the backlight module to emit infrared light when the ambient light intensity is less than a preset value.
  • the display screen has a fingerprint recognition area; the control unit controls the display screen to display a target interface, and the target interface indicates the location of the fingerprint recognition area so as to perform fingerprint recognition in the fingerprint recognition area.
  • the fingerprint recognition module includes: a photosensitive element array for receiving infrared light from the backlight module;
  • the fingerprint recognition area corresponds to the projected image area on the light-emitting surface and is included in the The photosensitive element array corresponds to the projected image area on the light-emitting surface.
  • the installed infrared light source will not affect the thickness of the backlight module itself, and the infrared light emitted by the infrared light source can be from
  • the side of the light guide plate enters its interior, and the light guide plate can diffuse the infrared light entering from its side, and the diffused infrared light can be used for fingerprint identification.
  • the light guide plate can diffuse the infrared light entering from its side, and the diffused infrared light can be used for fingerprint identification.
  • Fig. 1 is a schematic structural diagram of an electronic device capable of under-screen fingerprint recognition in the prior art.
  • FIG. 2 is a schematic structural diagram of a backlight module provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of another backlight module provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of another electronic device provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the positional relationship between a light guide plate and a light source in a backlight module provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of another electronic device provided by an embodiment of the application.
  • Under-screen fingerprint recognition technology refers to the fact that the fingerprint recognition module is placed under the display screen, and the fingerprint recognition module can be used to collect the fingerprint information of the finger located above the display screen without touching the fingerprint recognition module. And then based on the fingerprint information collected for fingerprint recognition technology. It can be understood that for electronic devices that can realize fingerprint recognition under the screen, there is no need to provide a fingerprint collection area outside the display screen, which is beneficial to increase the screen-to-body ratio of the electronic device.
  • the electronic devices described in the embodiments of the present application include, but are not limited to, mobile phones, notebook computers, tablet computers, and various other types of devices with display screens. These electronic devices can use self-luminous displays to display patterns, such as OLED (Organic Light-Emitting Diode, organic light-emitting diode) displays to display patterns; or use non-self-luminous displays to display patterns, such as LCD (Liquid Crystal Display, liquid crystal display) to display the pattern.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • LCD Liquid Crystal Display, liquid crystal display
  • the non-self-luminous display screen cannot emit light by itself, so it is necessary to configure a backlight module in the electronic device to provide the display screen with light for supporting the display pattern of the display screen through the backlight module.
  • the backlight module usually has a light guide plate, the side of the light guide plate adjacent to the display screen can be called the light exit surface, and the side of the light guide plate opposite to the light exit surface can be called the reflective surface; it depends on the light exit surface and the reflective surface
  • the light guide plate also has one or more side surfaces connected to the edges of the light emitting surface and the reflecting surface at the same time.
  • the light supporting the display pattern of the display screen can usually be transmitted from the light-emitting surface of the light guide plate to the display screen.
  • LCD mainly includes an upper glass substrate provided with a polarizing plate, a lower glass substrate provided with a polarizing plate, a color filter adjacent to the upper glass substrate, a thin film transistor adjacent to the lower glass substrate, and a color filter located adjacent to the lower glass substrate.
  • the liquid crystal layer between the filter and the thin film transistor.
  • Liquid crystal is a special substance between solid and liquid.
  • Thin film transistors can be used to control the voltage applied to the liquid crystal at various positions in the liquid crystal layer. With polarizers and color filters, it can be controlled by the light guide plate in the backlight module. The amount of light that diffuses and penetrates one or more monochromatic visible light at various positions in the display screen, so that the display screen displays the corresponding pattern.
  • the electronic device may have a structure as shown in FIG. 1.
  • a backlight module 20 is provided under the display screen 10
  • a fingerprint recognition module 30 is provided under the backlight module 20, and many surrounding fingerprint recognition modules 30 are provided.
  • a light source 40; the light emitted by the multiple light sources 40 can be transmitted through the backlight module 20 and the display screen 10 to the top of the display screen 10.
  • the finger 50 located above the display screen 20 can reflect the light from the display screen 20 to form The reflected light can be transmitted through the display screen 10 and the backlight module 20 to the fingerprint identification module 30 in turn, so that the fingerprint identification module 30 collects fingerprint information of the finger 50 according to the reflected light it receives, thereby performing fingerprints based on the collected fingerprint information Recognition.
  • the backlight module 20 in the electronic device 100 should also include other modules that assist the electronic device 100 to implement its necessary functions; for example, it may also include a control unit composed of several chips and their peripheral circuits. And the power module that supplies power to each module.
  • the multiple light sources 40 will squeeze a large amount of the design space of other modules in the electronic device 100, and it is usually necessary to increase the thickness of the electronic device 100 to expand the space under the backlight module 20 to accommodate other modules and multiple light sources 40.
  • the installed infrared light source will not affect the thickness of the backlight module itself; moreover, the infrared light emitted by the infrared light source can be emitted from the side of the light guide plate Entering into it, the light guide plate can diffuse the infrared light entering from its side; the diffused infrared light propagates to the display screen, and after being reflected by the finger above the display screen, it can be transmitted through the display screen and the light guide plate to the backlight in turn
  • the fingerprint recognition module below the module is used to perform fingerprint recognition on the finger based on the infrared light received by the fingerprint recognition module. In this way, for electronic devices using non-self-luminous display screens, there is no need to add a light source below the backlight module in the electronic device to realize fingerprint recognition under the screen, which is beneficial to reducing the thickness of the electronic device.
  • embodiments of the present application provide a backlight module and electronic equipment.
  • the backlight module and electronic equipment provided by the embodiments of the present application will be described in detail below.
  • FIG. 2 is a schematic structural diagram of a backlight module provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • the backlight module 20 provided by the embodiment of the present application can be applied to an electronic device 100 having a display screen 10 and a fingerprint identification module 30.
  • the backlight module 20 may at least include: a light guide plate 21, which is arranged between the display screen 10 and the fingerprint recognition module 30; an infrared light source 22, which is arranged on the side of the light guide plate 21, and is used to The side surface of the light guide plate 21 emits infrared light toward the light guide plate 21; wherein, the light guide plate 21 diffuses the infrared light that enters the inside of the light guide plate 21 from the side surface thereof, so that the diffused infrared light can be used for finger Fingerprint recognition.
  • the light guide plate 21 can diffuse the infrared light that enters the interior from its side. After the diffused infrared light is transmitted to the display screen 10 and reflected by the finger, it can be transmitted through the display screen 10 and the light guide plate 21 in turn.
  • the fingerprint identification module 30 can then perform fingerprint identification on the finger according to the infrared light received by the fingerprint identification module 30.
  • the light supporting the display pattern of the non-self-luminous display screen is usually visible light; in the embodiment of the present application, infrared light is used for fingerprint recognition. Therefore, when the display screen 10 displays a pattern, the visible light used to display the pattern will not affect fingerprint recognition, and when fingerprint recognition is performed, infrared light will not affect the pattern displayed on the display screen 10, which can ensure that the electronic device 100 can Perform display tasks and fingerprint recognition tasks without interfering with each other.
  • FIG. 4 is a schematic structural diagram of another backlight module provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of another electronic device provided by an embodiment of the application.
  • the backlight module 20 may further include a white light source 23.
  • the white light source 23 is used to generate white light
  • the white light is a composite light formed by mixing a variety of monochromatic visible lights.
  • the light guide plate 21 can diffuse the white light generated by the white light source 23, and the diffused white light can propagate to the display screen 10. It is a composite light formed by mixing a variety of monochromatic visible lights. By adjusting the amount of light transmission of one or more monochromatic visible lights passing through various positions in the display screen 10, the display screen can display corresponding patterns.
  • the white light source 23 and the infrared light source 22 are integratedly arranged on one side surface of the light guide plate 21.
  • the white light source 23 and the infrared light source 22 can be integrated into a light bar 25, the light bar 25 is arranged on one side of the light guide plate 21, so that the white light source 23 and the infrared light source 22 are both located on the same side of the light guide plate 21 ; In this way, it is beneficial to increase the area of the light emitting surface of the light guide plate, thereby increasing the screen-to-body ratio of the electronic device.
  • multiple white light LEDs Light-Emitting Diode, light-emitting diodes
  • multiple infrared LEDs can be used as the infrared light source 22. Integrate with the infrared LED, at this time, the white light source 23 and the infrared light source 22 can be integrated into a light bar 25.
  • the white light source 23 and the infrared light source 22 are respectively arranged on two sides of the light guide plate 21.
  • a small CCFL Cold Cathode Fluorescent Lamp, cold cathode fluorescent lamp
  • multiple infrared LEDs are used as the infrared light source 22.
  • the white light source 23 and the infrared light source 22 have relatively large structural differences and are difficult to integrate.
  • the white light source 23 and the infrared light source 22 can be arranged on the two sides of the light guide plate 21 respectively.
  • the white light source 23 can also be replaced with one or more light sources used to generate visible light of a specific color.
  • the light guide plate 21 includes a reflective surface, and the reflective surface is adjacent to the fingerprint identification module 30 And, a plurality of light guide points 24 are provided on the reflective surface and used to diffuse the infrared light entering the light guide plate 21.
  • a material with extremely high reflectivity and non-light absorption can be used to set multiple guides on the upper or lower surface of the optical grade acrylic sheet by laser engraving technology, ultraviolet screen printing technology or other technologies.
  • the light spots 24 form the light guide plate 21; the side of the acrylic plate with the light guide points is the reflective surface of the light guide plate, and the side of the acrylic plate opposite to the reflective surface is the light-emitting surface, except for the acrylic plate. All surfaces other than the upper surface and the lower surface are the sides of the light guide plate.
  • the light guide points 24 of different sizes and densities can be set to make the light emitting surface of the light guide plate 21 emit light uniformly; for example, the infrared light source and the white light source are located on the same side of the light guide plate, and the respective guide points arranged on the reflective surface Among the light points, the smaller the distance between a light guide point and the side where the infrared light source and the white light source are located, the smaller the size of the light guide point; for another example, the smaller the distance between the reflective surface and the side where the infrared light source and the white light source are located Area, the greater the density of each light guide point is set.
  • the infrared light generated may propagate in the direction indicated by the arrows in FIG. 5.
  • the infrared light generated by the infrared light source 22 can be transmitted from the light guide plate.
  • the side of 21 enters the light guide plate 21.
  • the light guide point 24 can destroy the total reflection of the infrared light inside the light guide plate 21, so that the infrared light reaching the light guide point 24 The light diffuses in multiple directions at the light guide point 24.
  • the diffused infrared light can pass through the light-emitting surface of the light guide plate (that is, the upper surface adjacent to the display screen 10 of the electronic device 100), and then spread to the display screen 10.
  • the finger 50 When the finger 50 is located in a certain area on the display screen 10, the finger 50 can reflect the infrared light transmitted to the area, and the reflected infrared light can be transmitted through the display screen 10 and the light guide plate 21 to the fingerprint identification module 30 in turn. .
  • the infrared light emitted by the infrared light source 22 may also travel straight in the light guide plate 21 and pass through the light exit surface of the light guide plate 21, and directly diffuse to the display screen 10. .
  • the monochromatic visible light or composite light that enters the light guide plate 21 from the side of the light guide plate 21 a part of it reaches the area not covered by the light guide point on the reflecting surface.
  • This part of the monochromatic visible light or composite light usually has a larger incident angle. Total reflection may occur on the reflective surface, and the monochromatic visible light or composite light that is totally reflected can reach the light-emitting surface of the light guide plate.
  • the monochromatic visible light Or the composite light has a small incident angle in this area, and it may pass through the reflecting surface from the area not covered by the light guide point in this area; part of it reaches the light guide point set on the reflecting surface, under the action of the light guide point Scattering occurs, that is, it diffuses in multiple directions under the action of the light guide point.
  • the scattered monochromatic visible light or composite light can also reach the light exit surface of the light guide plate, but it diffuses and reaches the light guide plate under the action of the light guide point.
  • the monochromatic visible light or composite light on the light-emitting surface there may be a part of monochromatic visible light or composite light that is totally reflected on the light-emitting surface, and the monochromatic visible light or composite light that is totally reflected on the light-emitting surface may not be guided from the reflecting surface.
  • the area covered by the dot 24 penetrates the light guide plate.
  • the monochromatic visible light or composite light may also be reflected by the fingers or other obstacles on the outside of the display screen.
  • the monochromatic visible light or composite light reflected by the fingers or other obstacles passes through the display screen and reaches the light guide plate , With a small incident angle, it may also show through the reflective surface of the light guide plate.
  • the specific process of the infrared light propagating in the light guide plate is the same as the specific process of the above-mentioned visible light propagating in the light guide plate, and will not be repeated here.
  • the backlight module 20 further includes: a reflective layer disposed between the light guide plate 21 and the fingerprint recognition module 30.
  • a reflective layer disposed between the light guide plate 21 and the fingerprint identification module 30.
  • the transmittance of infrared light through the reflective layer is greater than the transmittance of visible light through the reflective layer. It can ensure that the infrared light will not be greatly attenuated when passing through the reflective layer, which is beneficial to increase the intensity of the infrared light transmitted to the fingerprint recognition module.
  • the infrared light emitted by the infrared light source 22 when transmitted to the fingerprint recognition module, the light intensity may be greatly attenuated due to scattering or other reasons.
  • the infrared light emitted by the infrared light source 22 should generally have a relatively high light intensity.
  • the backlight module 20 may further include optical films such as a composite film, a brightness enhancement film, and a diffusion film, which are sequentially stacked and arranged between the display screen 10 and the light guide plate 21.
  • the diffusion film can further diffuse the visible light from the light guide plate 21, so that the visible light that passes through the front of the display screen 10 is more evenly distributed, and prevents the user from directly observing the light guide points of the light guide plate 21 from the front of the display screen 10.
  • the brightness enhancement film can increase the visible light from the diffusion film, and the directivity of the visible light diffused by the diffusion film is relatively poor.
  • the brightness enhancement film can correct the propagation direction of the visible light from the diffusion film and improve the brightness of the front of the display screen 10.
  • the composite film can further increase the visible light from the brightness enhancement film and transmit the increased visible light to the display screen 10 so that the display screen 10 can display images with high quality.
  • the backlight module 20 may further include a supporting structure for fixing the relative positions of the light guide plate 21, the infrared light source 22, the white light source 23, and each optical film in the backlight module 20, such as iron Frame in order to strengthen the overall rigidity of the backlight module 20 and improve the stability of the overall structure of the backlight module 20.
  • a supporting structure for fixing the relative positions of the light guide plate 21, the infrared light source 22, the white light source 23, and each optical film in the backlight module 20, such as iron Frame in order to strengthen the overall rigidity of the backlight module 20 and improve the stability of the overall structure of the backlight module 20.
  • FIG. 7 is a schematic structural diagram of another electronic device provided by an embodiment of this specification.
  • the electronic device 100 provided in the embodiment of the present application includes a display screen 10, a fingerprint identification module 30, and a backlight module provided in any embodiment of the present application.
  • a control unit 60 may be further included, and the control unit 60 is connected to the infrared light source 22 of the backlight module 20.
  • the electronic device 100 takes relatively less time to perform the fingerprint recognition task, and the time to perform the display task is relatively long.
  • the backlight The infrared light source 22 and the white light source 23 of the module 20 can be connected to the control unit 60 of the electronic device 100 respectively.
  • the control unit 60 can separately control the light-emitting conditions of the infrared light source 22 and the white light source 23 to prevent the infrared light source 22 from emitting infrared light for a long time because the electronic device needs to perform a display task for a long time, which is beneficial to reduce the power consumption of the electronic device.
  • the infrared light source 22 can be controlled to emit infrared light through the control unit 60, and when the electronic device 100 does not need to perform a fingerprint recognition task, the infrared light source 22 can be controlled by the control unit 60 to stop emitting infrared light. Light.
  • the infrared light in the natural environment may sequentially pass through the display screen 10 to the light guide point 24 of the light guide plate 21. , And diffuse to the display screen 10 under the action of the light guide point 24; the infrared light diffused to the display screen 10 may also be reflected by the finger, and sequentially pass through the display screen 10 and the light guide plate 21 to reach the fingerprint recognition module 30, namely
  • the infrared light actually received by the fingerprint identification module 30 may include infrared light in a natural environment.
  • control unit 60 and the The fingerprint recognition module 30 is connected; the control unit 60 is used to obtain the ambient light intensity of infrared light in the natural environment through the fingerprint recognition module 30, and control the infrared light source 22 of the backlight module 20 according to the ambient light intensity Emit infrared light.
  • the fingerprint recognition module 30 may receive infrared light in the natural environment; the control unit 60 is connected to the fingerprint recognition module 30, and it can first determine that the fingerprint recognition module 30 actually receives The current light intensity of the infrared light in the natural environment is then based on the infrared light in the natural environment to propagate to the propagation path of the fingerprint recognition module. The light transmittance of each structure (such as the display screen 10 and the light guide plate 21) relative to the infrared light, As well as the determined current light intensity, the ambient light intensity is calculated.
  • the ambient light intensity of the infrared light in the natural environment through modules other than the fingerprint recognition module 30 in the electronic device 100, or through other devices in the natural environment where the electronic device 100 is located.
  • control unit 60 is specifically configured to control the infrared light source 22 of the backlight module 20 to emit infrared light when the ambient light intensity is less than a preset value.
  • the preset value may be an empirical value.
  • the control unit 60 can control the infrared light source 22 to emit infrared light to ensure that the fingerprint identification module 30 can receive infrared light that can be used for fingerprint identification.
  • the infrared light source can also be calculated based on the minimum light intensity that the infrared light received by the fingerprint recognition module 30 should meet when the electronic device 100 performs fingerprint recognition, and the ambient light intensity of the infrared light in the natural environment. 22.
  • the luminous intensity of the infrared light source 22 should be adjusted according to the intensity of the infrared light emitted by the infrared light source 22, so as to prevent the infrared light emitted by the infrared light source 22 from being too strong and increasing the electrons.
  • the power consumption of the device is not limited to the intensity of the infrared light received by the fingerprint recognition module 30 should meet when the electronic device 100 performs fingerprint recognition, and the ambient light intensity of the infrared light in the natural environment. 22.
  • control unit 60 implements the aforementioned control of the infrared light source 22 and/or the white light source 23, and may also rely on a specific circuit; for example, the control unit 60 may be connected to the infrared light source 22 and the white light source through different driving circuits.
  • the control unit 60 can adjust the driving circuit corresponding to the infrared light source 22, so that the driving circuit drives or stops driving the infrared light source 22 to emit infrared light.
  • the display screen 10 has a fingerprint recognition area; the control unit 60 is configured to control the display screen 10 to display a target interface, and the target interface indicates the fingerprint Identify the location of the area for fingerprint identification in the fingerprint identification area.
  • the display screen 10 can be controlled by the control unit 60 to display a target interface to prompt the user to place the finger on the fingerprint recognition area on the display screen 10, thereby improving user experience and facilitating rapid completion of the collection Fingerprint information of the user's finger.
  • the fingerprint recognition module 30 includes an array of photosensitive elements for receiving infrared light from the backlight module.
  • the photosensitive element array may be an array composed of a large number of infrared photodiodes (or called infrared receiving diodes). Each infrared receiving diode can generate an electric signal according to the infrared light it receives, and the generated electric signal is related to the receiving The intensity of the infrared light.
  • the fingerprint recognition module may also include other components, such as a peripheral circuit and a micro-processing unit connected to it.
  • the photosensitive element array After the photosensitive element array receives the infrared light from the backlight module 20, it may image the finger according to the electrical signals generated by each infrared photodiode or obtain the fingerprint information of the finger in other ways, such as the image information of the finger; the fingerprint information of the finger It can be transmitted to the micro-processing unit through the peripheral circuit, and the micro-processing unit executes the extraction of fingerprint features based on the obtained fingerprint information, and performs subsequent fingerprint identification.
  • the micro-processing unit executes the extraction of fingerprint features based on the obtained fingerprint information, and performs subsequent fingerprint identification.
  • the fingerprint recognition module 30 can receive the infrared light reflected by the finger through its photosensitive element array and pass through the display screen and the light guide plate in turn. Light, so as to obtain the fingerprint information of the finger relatively completely and accurately.
  • the photosensitive element array and the fingerprint recognition area are respectively projected to the light guide plate in an orthographic manner.
  • the fingerprint recognition area corresponds to the projected image area A on the light-emitting surface and is included in the projected image area B corresponding to the light-emitting surface of the photosensitive element array.

Abstract

本申请提供了一种背光模组及电子设备。实施例中,背光模组应用于具有显示屏及指纹识别模组的电子设备,背光模组包括:导光板,设置于显示屏及指纹识别模组之间;红外光源,设置于导光板的侧面,并且用于从导光板的侧面向导光板发出红外光;其中,导光板对从其侧面进入其内部的红外光进行扩散,以便利用扩散的红外光对手指进行指纹识别。根据本申请的技术方案,对于采用非自发光显示屏的电子设备,无需在背光模组的下方增加光源,即可实现屏下指纹识别,有利于降低电子设备的厚度。

Description

背光模组及电子设备
本申请要求于2019年08月23日提交中国专利局、申请号为201910784783.X、申请名称为“背光模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子设备领域,尤其涉及背光模组及电子设备。
背景技术
为了尽可能的提高电子设备的屏占比,屏下指纹识别技术得到了更为广泛的研究及应用。
对于采用自发光显示屏的电子设备,通常可利用其能够自发光且具有较高透光率的特性,在自发光显示屏下设置指纹识别模组,通过指纹识别模组接收由手指反射的反射光,进而根据该反射光进行指纹识别。
对于采用非自发光显示屏的电子设备,无法直接利用上述指纹识别方案。通常还需要在电子设备中背光模组的下方增加多个光源,以确保指纹识别模组可以接收到由手指反射的、能够用于进行指纹识别的反射光。
但是,在背光模组下方增加多个光源,将会挤占电子设备中其它模组的设计空间,不利于降低电子设备的厚度。
发明内容
本申请实施例提供了一种背光模组及电子设备,对于采用非自发光显示屏的电子设备,无需在电子设备中背光模组的下方增加光源,即可实现屏下指纹识别,有利于降低电子设备的厚度。
本申请实施例至少提供了如下技术方案:
第一方面,提供了一种背光模组,应用于具有显示屏及指纹识别模组的电子设备,所述背光模组包括:
导光板,设置于所述显示屏及所述指纹识别模组之间;
红外光源,设置于所述导光板的侧面,用于从所述导光板的侧面向所述导光板发出红外光;
其中,所述导光板对从所述导光板的侧面进入其内部的红外光进行扩散。
在一种可能的实施方式中,
所述背光模组还包括白光光源;
所述白光光源和所述红外光源设置于所述导光板的一个侧面;或,所述白光光源和所述红外光源分别设置于所述导光板的两个侧面。
在一种可能的实施方式中,
所述红外光源和所述白光光源与所述电子设备的控制单元分别连接。
在一种可能的实施方式中,
所述导光板包括:
反射面,所述反射面与所述指纹识别模组相邻;以及,
多个导光点,设置于所述反射面上并且用于对红外光进行扩散。
在一种可能的实施方式中,
所述背光模组还包括:
反射层,设置于所述导光板及所述指纹识别模组之间;
其中,红外光透过所述反射层的透光率大于可见光透过所述反射层的透光率。
第二方面,提供了一种电子设备,包括:显示屏、指纹识别模组,以及第一方面中任一所述的背光模组。
在一种可能的实施方式中,
所述电子设备还包括:控制单元;其中,所述控制单元与所述背光模组的红外光源连接,
所述控制单元还与所述指纹识别模组连接;
所述控制单元,用于通过所述指纹识别模组获取自然环境中红外光的环境光照强度,根据环境光照强度控制所述背光模组的红外光源发出红外光。
在一种可能的实施方式中,
所述控制单元,具体用于在环境光照强度小于预设数值的情况下,控制所述背光模组的红外光源发出红外光。
在一种可能的实施方式中,
所述显示屏上具有指纹识别区域;所述控制单元控制所述显示屏显示目标界面,所述目标界面指示了所述指纹识别区域的位置,以便在指纹识别区域进行指纹识别。
在一种可能的实施方式中,
所述指纹识别模组,包括:感光元件阵列,用于接收来自所述背光模组的红外光;
其中,所述感光元件阵列和所述指纹识别区域分别以正投影方式向所述导光板的出光面投影时,所述指纹识别区域对应在所述出光面上的投影图像区域,包含于所述感光元件阵列对应在所述出光面上的投影图像区域内。
根据本申请实施例提供的技术方案,通过在背光模组中导光板的侧面设置红外光源,设置的红外光源不会对背光模组本身的厚度造成影响,而且,红外光源发出的红外光可以从导光板的侧面进入其内部,导光板则可对从其侧面进入的红外光进行扩散,扩散的红外光可用于进行指纹识别。如此,对于采用非自发光显示屏的电子设备,无需在电子设备中背光模组的下方增加光源,即可实现屏下指纹识别,有利于降低电子设备的厚度。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1为现有技术中能够实现屏下指纹识别的电子设备的结构示意图。
图2为本申请实施例提供的一种背光模组的结构示意图。
图3为本申请实施例提供的另一种背光模组的结构示意图。
图4为本申请实施例提供的一种电子设备的结构示意图。
图5为本申请实施例提供的另一种电子设备的结构示意图。
图6为本申请实施例提供的一种背光模组中导光板与光源的位置关系示意图。
图7为本申请实施例提供的又一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
屏下指纹识别技术指的是,将指纹识别模组设置于显示屏下方,无需手指与指纹识别模组接触,即可通过该指纹识别模组,实现采集位于显示屏上方的手指的指纹信息,进而基于采集的指纹信息进行指纹识别的技术。可以理解,对于能够实现屏下指纹识别的电子设备,无需在显示屏以外设置指纹采集区域,从而有利于提高电子设备的屏占比。
需要说明的是,本申请实施例中所述的电子设备,包括但不限于手机、笔记本电脑、平板电脑以及其它各种类型的、具有显示屏的设备。这些电子设备可以采用自发光显示屏来显示图案,比如采用OLED(Organic Light-Emitting Diode,有机发光二极管)显示屏来显示图案;或者采用非自发光显示屏来显示图案,比如采用LCD(Liquid Crystal Display,液晶显示器)来显示图案。应当理解,本申请实施例中按照显示屏自身是否能够发光,将显示屏划分为自发光显示屏和非自发光显示屏两种类型,自发光或非自发光并不用于对显示屏的名称进行限定。
非自发光显示屏自身不能发光,因此需要在电子设备中配置背光模组,通过背光模组向显示屏提供用于支持显示屏显示图案的光。背光模组中通常具有导光板,该导光板上与显示屏相邻的一侧可称为出光面,导光板上与出光面相对的一侧可称为反射面;依赖于出光面和反射面的形状,导光板还具有一个或多个同时与出光面和反射面的边缘相连接的侧面。支持显示屏显示图案的光通常可以从导光板的出光面透出至显示屏。
以LCD为例,LCD主要包括设置有偏光板的上玻璃基板、设置有偏光板的下玻璃基板、与上玻璃基板相邻的彩色滤光片、与下玻璃基板相邻的薄膜晶体管以及位于彩色滤光片和薄膜晶体管之间的液晶层。液晶是一种介于固体和液体之间的特殊物质,可通过薄膜晶体管调控施加于液晶层中各个位置的液晶的电压,配合偏光板及彩色滤光片,实现调控由背光模组中导光板扩散、并透过显示屏中各个位置的一种或多种单色可见光的透光量,从而使得显示屏显示相应的图案。
常规的,对于采用非自发光显示屏的电子设备,如果该电子设备能够实现屏下指纹识别,则该电子设备可能具有如图1所示的结构。请参考图1,采用非自发光显示屏的电子设备100中,显示屏10下设置有背光模组20,背光模组20下设置有指纹识别模组30,以及围绕指纹识别模组30的多个光源40;多个光源40发出的光可透过背光模组20及显示屏10传播至显示屏10的上方,位于显示屏20上方的手指50可对来自显示屏20的光进行反射,形成的反射光可依次透过显示屏10及背光模组20传播至 指纹识别模组30,以便指纹识别模组30根据其接收的反射光采集手指50的指纹信息,从而基于采集的指纹信息进行指纹识别。本领域技术人员应当理解,电子设备100中背光模组20的下方还应当包括辅助电子设备100实现其必要功能的其它模组;比如,还可能包括由若干芯片及其外围电路组成的控制单元,以及向各个模组供电的电源模组。多个光源40将大量挤占电子设备100中其它模组的设计空间,通常需要增加电子设备100的厚度来扩展背光模组20下方的空间,以便容纳其它模组及多个光源40。
本申请实施例中,通过在背光模组中导光板的侧面设置红外光源,设置的红外光源不会对背光模组本身的厚度造成影响;而且,红外光源发出的红外光可以从导光板的侧面进入其内部,导光板则可对从其侧面进入的红外光进行扩散;扩散的红外光传播至显示屏,经过显示屏上方的手指反射之后,即可依次透过显示屏及导光板传播至背光模组下方的指纹识别模组,以便根据指纹识别模组接收的红外光对手指进行指纹识别。如此,对于采用非自发光显示屏的电子设备,无需在电子设备中背光模组的下方增加光源,即可实现屏下指纹识别,有利于降低电子设备的厚度。
具体而言,本申请实施例提供了一种背光模组及电子设备,下面对本申请实施例提供的背光模组及电子设备进行详细说明。
图2为本申请实施例提供的一种背光模组的结构示意图。
图3为本申请实施例提供的一种电子设备的结构示意图。
请参考图2、图3,本申请实施例提供的背光模组20,可以应用于具有显示屏10及指纹识别模组30的电子设备100。该背光模组20至少可以包括:导光板21,设置于所述显示屏10及所述指纹识别模组30之间;红外光源22,设置于所述导光板21的侧面,并且用于从所述导光板21的侧面向所述导光板21发出红外光;其中,所述导光板21对从所述导光板21的侧面进入其内部的红外光进行扩散,以便利用扩散的红外光对手指进行指纹识别。
具体而言,导光板21可对从其侧面进入其内部的红外光进行扩散,扩散的红外光传播至显示屏10并经过手指反射之后,即可依次透过显示屏10及导光板21传播至指纹识别模组30,之后即可根据指纹识别模组30接收的红外光对手指进行指纹识别。
支持非自发光显示屏显示图案的光通常为可见光;在本申请实施例中,使用红外光进行指纹识别。因此,显示屏10显示图案时,用于显示图案的可见光不会对指纹识别造成影响,而且,进行指纹识别时,红外光也不会影响显示屏10所显示的图案,可确保电子设备100能够互不干扰的执行显示任务及指纹识别任务。
图4为本申请实施例提供的另一种背光模组的结构示意图。
图5为本申请实施例提供的另一种电子设备的结构示意图。
为了实现向显示屏10提供支持其显示图案的可见光,请参考图4、图5,在一种可能的实施方式中,背光模组20还可以包括白光光源23。可以理解,白光光源23用于产生白光,白光是由多种单色可见光混合形成的复合光,导光板21可以对白光光源23产生的白光进行扩散,扩散的白光可传播至显示屏10,白光是由多种单色可见光混合形成的复合光,通过调控透过显示屏10中各个位置的一种或多种单色可见光的透光量,即可使显示屏显示相应的图案。
如图6所示,在一个较为具体的示例中,所述白光光源23和所述红外光源22集 成设置于所述导光板21的一个侧面。具体地,可将白光光源23和红外光源22集成为一个灯条25,灯条25设置于导光板21的一个侧面,使得白光光源23和红外光源22均位于所述导光板21的同一个侧面;如此,有利于提高导光板的出光面的面积,从而提高电子设备的屏占比。比如,可采用多个白光LED(Light-Emitting Diode,发光二极管)作为白光光源23,且采用多个红外LED作为红外光源22,白光LED和红外LED外形结构及发光原理相似,易于对各个白光LED和红外LED进行集成,此时,可将白光光源23和红外光源22集成为一个灯条25。
在另一个较为具体的示例中,所述白光光源23和所述红外光源22分别设置于所述导光板21的两个侧面。比如,采用小型CCFL(Cold Cathode Fluorescent Lamp,冷阴极荧光灯管)作为白光光源23,且采用多个红外LED作为红外光源22,此时,白光光源23和红外光源22结构差异相对较大,不易集成,可将白光光源23和红外光源22分别设置于该导光板21的两个侧面。
需要说明的是,在部分用于实现特定业务的电子设备100中,白光光源23还可替换为,一个或多个用于产生特定颜色的可见光的光源。
进一步的,为了实现将红外光源产生的红外光扩散至显示屏,在一种可能的实施方式中,所述导光板21包括:反射面,所述反射面与所述指纹识别模组30相邻;以及,多个导光点24,设置于所述反射面上并且用于对进入所述导光板21内部的红外光进行扩散。
本领域技术人员应当理解,可利用具有极高反射率且不吸光的材料,在光学级亚克力板材的上表面或下表面上,通过激光雕刻技术、紫外线网版印刷技术或其他技术设置多个导光点24,从而形成导光板21;该亚克力板材上设置有导光点的一面即为导光板的反射面,该亚克力板材上与反射面相对的一面即为出光面,该亚克力板上除其上表面和下表面以外的各个面,即为导光板的侧面。而且,可通过设置大小、疏密不一的导光点24,使得导光板21的出光面均匀出光;比如,红外光源和白光光源位于导光板的同一个侧面,设置于反射面上的各个导光点中,一个导光点与红外光源和白光光源所在的侧面距离越小,则该导光点的尺寸越小;又如,反射面上与红外光源和白光光源所在的侧面距离越小的区域,所设置的各个导光点的密度越大。
具体地,以图5为例,当红外光源22产生红外光时,其产生的红外光可能按照图5中各个箭头所指示的方向传播,首先,红外光源22产生的红外光,可从导光板21的侧面进入导光板21内部,当进入导光板21内部的红外光到达导光点24时,导光点24可破坏红外光在导光板21内部的全反射,使得到达导光点24的红外光在导光点24处向多个方向扩散。扩散的红外光可从导光板的出光面(即与电子设备100的显示屏10相邻的上表面)透出,然后传播至显示屏10。当手指50位于显示屏10上的某个区域时,手指50可对传播至该区域的红外光进行反射,反射的红外光可依次透过显示屏10、导光板21传播至指纹识别模组30。
可以理解的,也可在导光板21的反射面上设置除导光点24以外的其它结构,仅需要确保所设置结构能够有利于破坏红外光在导光板21内部的全反射,使得从导光板21的侧面进入其内部的红外光,能够尽可能的被均匀扩散到导光板的出光面,并从导光板21的出光面透出。
需要说明的是,红外光源22发出的红外光,从导光板21的侧面进入其内部之后,也可能在导光板21内直线传播并从导光板21的出光面透出,直接扩散至显示屏10。
对于从导光板21的侧面进入导光板21内部的单色可见光或者复合光,一部分到达反射面上未被导光点覆盖的区域,这部分单色可见光或者复合光通常具有较大的入射角,可能会在反射面发生全反射,发生全反射的单色可见光或者复合光可到达导光板的出光面,但是,对于反射面上与单色可见光源或者白光光源距离较近的区域,单色可见光或者复合光在该区域内具有较小的入射角,可能从该区域中未被导光点覆盖的区域透出反射面;一部分到达反射面上设置的导光点,在导光点的作用下发生散射,即在导光点的作用下向多个方向扩散,发生散射的单色可见光或复合光也可以到达导光板的出光面,但是,在导光点的作用下扩散并到达导光板的出光面的单色可见光或复合光中,可能存在一部分单色可见光或复合光于出光面发生全反射,在出光面发生全反射的单色可见光或复合光则可能从反射面上未被导光点24覆盖的区域透出导光板。而且,单色可见光或者复合光透出显示屏之后,还可能被显示屏外侧的手指或者其它障碍物反射,被手指或其他障碍物反射的单色可见光或复合光透过显示屏到达导光板时,具有较小的入射角,也可能从导光板的反射面透出。
红外光在导光板内传播的具体过程,与上述可见光在导光板内的传播的具体过程相同,这里不再赘述。
有鉴于此,在一种可能的实施方式中,所述背光模组20还包括:反射层,设置于所述导光板21及所述指纹识别模组30之间。通过在导光板21与指纹识别模组30之间设置反射层,透出导光板21的单色可见光或者复合光能够被反射层反射,进而通过导光板21的反射面上未被导光点24覆盖的区域重新回到导光板内部,从而使得单色可见光或者复合光尽可能的从导光板的出光面透出,提高单色可见光或者复合光的使用效率,即提高单色可见光或者复合光的利用率。
在一个更为具体的示例中,红外光透过所述反射层的透光率大于可见光透过所述反射层的透光率。可确保红外光在透过反射层时不会发生较大的衰减,有利于提高传播至指纹识别模组的红外光的光照强度。
需要说明的是,红外光源22发出的红外光传播至指纹识别模组的过程中,可能因发生散射或其他原因导致其光照强度发生较大的衰减。为了确保指纹识别模组30接收的红外光能够用于较好的进行指纹识别,由红外光源22发出的红外光通常应具有相对较高的光照强度。
在一种可能的实施方式中,背光模组20还可以包括依次层叠设置于所述显示屏10及所述导光板21之间的复合膜、增光膜、扩散膜等光学膜片。扩散膜可进一步扩散来自导光板21的可见光,使得透出显示屏10正面的可见光分布更为均匀,避免用户从显示屏10的正面直接观察到导光板21的导光点。增光膜可增益来自扩散膜的可见光,扩散膜扩散的可见光方向性相对较差,增光膜可修正来自扩散膜的可见光的传播方向,提高显示屏10正面的亮度。复合膜可进一步增益来自增光膜的可见光,并将增益后的可见光传输至显示屏10,以便显示屏10高质量的显示图像。
在一种可能的实施方式中,背光模组20还可以包括,用于固定背光模组20中导光板21、红外光源22、白光光源23及各个光学膜片的相对位置的支撑结构,比如铁 框,以便加强背光模组20的整体硬度,提高背光模组20整体结构的稳定性。
图7为本说明书实施例提供的又一种电子设备的结构示意图。
在如图3所示实施例的基础上,如图7所示,本申请实施例提供的电子设备100,除包括显示屏10、指纹识别模组30以及本申请任意一个实施例提供的背光模组20之外,还可以包括控制单元60,控制单元60与所述背光模组20的红外光源22连接。
电子设备100执行指纹识别任务的时间相对较少,执行显示任务的时间相对较多,为了避免红外光源22长时间发出红外光而增加电子设备100的功耗,在一个较为具体的示例中,背光模组20的红外光源22、白光光源23可与电子设备100的控制单元60分别连接。如此,控制单元60可对红外光源22及白光光源23的发光情况进行分别控制,避免红外光源22因电子设备需要长时间执行显示任务而长时间发出红外光,有利于降低电子设备的功耗。
具体地,可在电子设备100需要执行指纹识别任务时,才通过控制单元60控制红外光源22发出红外光,电子设备100不需要执行指纹识别任务时,通过控制单元60控制红外光源22停止发出红外光。
可以理解,电子设备100所在的自然环境中可能存在红外光,自然环境中的红外光直接照射至电子设备100的显示屏10时,可能依次透过显示屏10到达导光板21的导光点24,并在导光点24的作用下扩散至显示屏10;扩散至显示屏10的红外光也可能经手指反射,并依次透过显示屏10及导光板21而到达指纹识别模组30,即指纹识别模组30实际接收的红外光,可能包含自然环境中的红外光。
有鉴于此,为了在指纹识别过程中尽可能的利用自然环境中的红外光,进一步降低电子设备的功耗,请参考图6,在一种可能的实施方式中,所述控制单元60与所述指纹识别模组30连接;所述控制单元60,用于通过所述指纹识别模组30获取自然环境中红外光的环境光照强度,根据环境光照强度控制所述背光模组20的红外光源22发出红外光。
具体地,电子设备100未执行指纹识别任务期间,指纹识别模组30可能接收到自然环境中的红外光;控制单元60与指纹识别模组30连接,可首先确定出指纹识别模组30实际接收的自然环境中红外光的当前光照强度,然后根据自然环境中红外光传播至指纹识别模组的传播路径中,各个结构(比如显示屏10、导光板21)相对于红外光的透光率,以及确定的当前光照强度,计算出环境光照强度。
可以理解,也可能通过电子设备100中除指纹识别模组30以外的其它模组,或者通过电子设备100所处自然环境中的其它设备,获取自然环境中红外光的环境光照强度。
在一个较为具体的示例中,所述控制单元60,具体用于在环境光照强度小于预设数值的情况下,控制所述背光模组20的红外光源22发出红外光。
该示例中,预设数值可以为经验值,在自然环境中红外光的环境光照强度不小于预设数值的情况下,仅利用电子设备100所处自然环境中的红外光,即可使指纹识别模组30接收到能够用于进行指纹识别的红外光,无需开启电子设备100的红外光源22,有利于降低电子设备100的功耗。反之,在环境光照强度小于预设数值的情况下,即可通过控制单元60控制红外光源22发出红外光,确保指纹识别模组30可以接收到 能够用于进行指纹识别的红外光。
在一个更为具体的示例中,还可以根据电子设备100进行指纹识别时,指纹识别模组30接收的红外光应当满足的最低光照强度,以及自然环境中红外光的环境光照强度,计算红外光源22所发出红外光应当满足的光照强度,进而根据红外光源22所发出红外光应当满足的光照强度,调控红外光源22的发光情况,避免红外光源22所发出红外光的光照强度过大而增加电子设备的功耗。
本领域技术人员应当理解,控制单元60实现上述对红外光源22和/或白光光源23的控制,还可能依赖特定的电路;比如,控制单元60可能通过不同的驱动电路分别连接红外光源22及白光光源23,控制单元60可针对与红外光源22对应连接的驱动电路进行调控,使得该驱动电路驱动或停止驱动红外光源22发出红外光。
进一步的,在一种可能的实施方式中,所述显示屏10上具有指纹识别区域;所述控制单元60,用于控制所述显示屏10显示目标界面,所述目标界面指示了所述指纹识别区域的位置,以便在指纹识别区域进行指纹识别。当电子设备100需要进行指纹识别任务时,可通过控制单元60控制显示屏10显示目标界面,以提示用户将手指放置于显示屏10上的指纹识别区域,从而提高用户体验并有利于快速完成采集用户手指的指纹信息。
在一个较为具体的示例中,所述指纹识别模组30,包括:感光元件阵列,用于接收来自所述背光模组的红外光。具体地,感光元件阵列可以由大量的红外光电二极管(或者称为红外接收二极管)组成的阵列,每个红外接收二极管均可根据其接收的红外光产生电信号,且产生的电信号关联于接收的红外光的光照强度。
可以理解,指纹识别模组还可能包括其他组件,比如还可以外围电路及其连接的微处理单元。感光元件阵列接收到来自背光模组20的红外光之后,即可能根据各个红外光电二极管产生的电信号,对手指进行成像或者其它方式得到手指的指纹信息,比如手指的图像信息;手指的指纹信息可通过外围电路传输至微处理单元,由微处理单元执行基于得到的指纹信息提取指纹特征,并进行后续的指纹识别。
相应的,为了确保用户将手指放置于显示屏10的指纹识别区域时,指纹识别模组30能够通过其感光元件阵列较为完整的接收到经手指反射,并依次透过显示屏及导光板的红外光,从而较为完整且准确的获得手指的指纹信息,如图6所示,在一个更为具体的示例中,所述感光元件阵列和所述指纹识别区域分别以正投影方式向所述导光板21的出光面投影时,所述指纹识别区域对应在所述出光面上的投影图像区域A,包含于所述感光元件阵列对应在所述出光面上的投影图像区域B内。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以适合的方式结合。
最后需要说明的是,以上实施例仅用以说明本申请的技术方案,而未对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,依然可以对前述各个实施例所提供的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或替换,并不使相应技术方案的本质脱离本申请各个实施例所提供技术方案的精神和范围。

Claims (10)

  1. 一种背光模组,应用于具有显示屏及指纹识别模组的电子设备,其特征在于,所述背光模组包括:
    导光板,设置于所述显示屏及所述指纹识别模组之间;
    红外光源,设置于所述导光板的侧面,用于从所述导光板的侧面向所述导光板发出红外光;
    其中,所述导光板对从所述导光板的侧面进入其内部的红外光进行扩散。
  2. 根据权利要求1所述的背光模组,其特征在于,所述背光模组还包括白光光源;
    所述白光光源和所述红外光源设置于所述导光板的一个侧面;或,所述白光光源和所述红外光源分别设置于所述导光板的两个侧面。
  3. 根据权利要求2所述的背光模组,其特征在于,
    所述红外光源和所述白光光源与所述电子设备的控制单元分别连接。
  4. 根据权利要求1所述的背光模组,其特征在于,所述导光板包括:
    反射面,所述反射面与所述指纹识别模组相邻;以及,
    多个导光点,设置于所述反射面上并且用于对红外光进行扩散。
  5. 根据权利要求1至4中任一所述的背光模组,其特征在于,所述背光模组还包括:
    反射层,设置于所述导光板及所述指纹识别模组之间;
    其中,红外光透过所述反射层的透光率大于可见光透过所述反射层的透光率。
  6. 一种电子设备,其特征在于,包括:显示屏、指纹识别模组,以及权利要求1至5中任一所述的背光模组。
  7. 根据权利要求6所述的电子设备,其特征在于,所述电子设备还包括:控制单元;其中,所述控制单元与所述背光模组的红外光源连接,所述控制单元还与所述指纹识别模组连接;
    所述控制单元,用于通过所述指纹识别模组获取自然环境中红外光的环境光照强度,根据环境光照强度控制所述背光模组的红外光源发出红外光。
  8. 根据权利要求7所述的电子设备,其特征在于,
    所述控制单元,具体用于在环境光照强度小于预设数值的情况下,控制所述背光模组的红外光源发出红外光。
  9. 根据权利要求7所述的电子设备,其特征在于,所述控制单元控制所述显示屏显示目标界面,所述目标界面指示了指纹识别区域的位置,以便在指纹识别区域进行指纹识别。
  10. 根据权利要求9所述的电子设备,其特征在于,
    所述指纹识别模组,包括:感光元件阵列,用于接收来自所述背光模组的红外光;
    其中,所述感光元件阵列和所述指纹识别区域分别以正投影方式向所述导光板的出光面投影时,所述指纹识别区域对应在所述出光面上的投影图像区域,包含于所述感光元件阵列对应在所述出光面上的投影图像区域内。
PCT/CN2020/103071 2019-08-23 2020-07-20 背光模组及电子设备 WO2021036586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910784783.X 2019-08-23
CN201910784783.XA CN112417933A (zh) 2019-08-23 2019-08-23 背光模组及电子设备

Publications (1)

Publication Number Publication Date
WO2021036586A1 true WO2021036586A1 (zh) 2021-03-04

Family

ID=74684916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103071 WO2021036586A1 (zh) 2019-08-23 2020-07-20 背光模组及电子设备

Country Status (2)

Country Link
CN (1) CN112417933A (zh)
WO (1) WO2021036586A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355668A (zh) * 2021-12-27 2022-04-15 广州华星光电半导体显示技术有限公司 背光模组与显示模组
CN115981045A (zh) * 2023-03-23 2023-04-18 惠科股份有限公司 显示装置及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495378A (zh) * 2021-07-16 2021-10-12 武汉华星光电技术有限公司 显示面板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206339809U (zh) * 2016-11-04 2017-07-18 京东方科技集团股份有限公司 一种背光模组及液晶显示装置
CN109196522A (zh) * 2018-08-24 2019-01-11 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备
CN109902664A (zh) * 2019-03-23 2019-06-18 深圳阜时科技有限公司 红外背光单元、检测模组、背光模组、显示装置及电子设备
CN111222497A (zh) * 2019-09-16 2020-06-02 神盾股份有限公司 具有屏下式红外线生物感测器的电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100241286B1 (ko) * 1996-09-23 2000-02-01 구본준 액정표시소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206339809U (zh) * 2016-11-04 2017-07-18 京东方科技集团股份有限公司 一种背光模组及液晶显示装置
CN109196522A (zh) * 2018-08-24 2019-01-11 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备
CN109902664A (zh) * 2019-03-23 2019-06-18 深圳阜时科技有限公司 红外背光单元、检测模组、背光模组、显示装置及电子设备
CN111222497A (zh) * 2019-09-16 2020-06-02 神盾股份有限公司 具有屏下式红外线生物感测器的电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355668A (zh) * 2021-12-27 2022-04-15 广州华星光电半导体显示技术有限公司 背光模组与显示模组
CN115981045A (zh) * 2023-03-23 2023-04-18 惠科股份有限公司 显示装置及电子设备
CN115981045B (zh) * 2023-03-23 2023-06-23 惠科股份有限公司 显示装置及电子设备

Also Published As

Publication number Publication date
CN112417933A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021036586A1 (zh) 背光模组及电子设备
CN210155481U (zh) 一种背光模组、屏下光学指纹系统、显示模组及电子装置
US11150509B2 (en) Backlight module
WO2016107084A1 (zh) 光学模组和反射型显示装置
US20180059482A1 (en) Light Diffusers for Backlit Displays
JP2009099316A (ja) バックライト装置、液晶表示装置、及びバックライト装置の製造方法
EP2369375B1 (en) Backlight unit with a light guide plate
JP2014082185A (ja) 表示装置用バックライトユニット及びその駆動方法
US20080043488A1 (en) Backlight unit of a liquid crystal display device
JP2018181630A (ja) バックライト
TW201944144A (zh) 顯示設備及其製造方法
WO2016183909A1 (zh) 背光模组及液晶显示装置
WO2021163843A1 (zh) 显示屏组件及电子设备
JP2006134661A (ja) 面状光源及びこれを用いた液晶表示装置
KR102637199B1 (ko) 보더리스타입 표시장치
TW202125032A (zh) 配光控制元件
KR102298380B1 (ko) 백라이트 유닛 및 이를 포함하는 액정표시장치
KR20120087409A (ko) 백라이트 유닛
KR101898211B1 (ko) 백라이트 유닛 및 그를 포함하는 액정표시장치
JP4506358B2 (ja) 液晶表示装置
KR20150062796A (ko) 직하형 백라이트 유닛을 구비한 표시장치 및 그 제조방법
TWI818765B (zh) 反射片、背光模組,及顯示裝置
JP2010038929A (ja) 表示装置
WO2023184097A1 (zh) 一种背光模组及显示装置
JP2010026224A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856695

Country of ref document: EP

Kind code of ref document: A1