WO2021036570A1 - 一种确定海砂中氯离子含量的检测方法 - Google Patents

一种确定海砂中氯离子含量的检测方法 Download PDF

Info

Publication number
WO2021036570A1
WO2021036570A1 PCT/CN2020/102548 CN2020102548W WO2021036570A1 WO 2021036570 A1 WO2021036570 A1 WO 2021036570A1 CN 2020102548 W CN2020102548 W CN 2020102548W WO 2021036570 A1 WO2021036570 A1 WO 2021036570A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtrate
sea sand
powder
chloride ion
washed
Prior art date
Application number
PCT/CN2020/102548
Other languages
English (en)
French (fr)
Inventor
杨政险
洪荣灿
卢林
蔡水坤
邓长泰
林晓晖
林修清
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Priority to US17/290,784 priority Critical patent/US11940431B2/en
Publication of WO2021036570A1 publication Critical patent/WO2021036570A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/386Other diluting or mixing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration

Definitions

  • the invention belongs to the technical field of chloride ion content detection, and specifically relates to a detection method for determining the chloride ion content in sea sand.
  • sea sand is a better substitute for river sand, with good grain shape, low cost, low mud content and abundant reserves.
  • the rational use of sea sand is of great significance to the construction of infrastructure and the sustainable development of society.
  • chloride salts in sea sand which can accelerate the corrosion of steel bars and greatly reduce the durability of concrete structures.
  • the country allows the use of purified sea sand that meets the requirements of the standard, actual engineering investigations have found that the phenomenon of concrete structure damage caused by chloride ions is still widespread. This is mainly because the purified sea sand has many problems in the detection of chloride ion content. The problems are summarized as follows:
  • the preparation method of the filtrate to be tested is not targeted: the filtrate to be tested for chloride ions can be obtained from sea sand regardless of fresh water purification or grinding and filtration, but the sea sand before and after grinding and crushing has a larger particle size and chloride ion concentration. The difference; if the same method is used to prepare the test solution, it is easy to cause the chloride ion to be incompletely dissolved, and ultimately affect the detection result of the chloride ion content.
  • test result lacks reference and is difficult to correct: In the current chloride ion content test, the same solution is often tested one or more times. Even if the test results are multiple times, the arithmetic average is simply calculated, and the test results often vary. The inability to refer to and compare each other makes it difficult to correct the detection error.
  • the present invention provides a detection method that can accurately measure the chloride ion content in sea sand. It processes sea sand samples in steps, and then detects different filtrates of the same sea sand sample. The quality of chloride ions, and the comparison, analysis and correction of the detection results have significantly improved the accuracy of the detection results of the chloride ion content.
  • a detection method for determining the chloride ion content in sea sand is carried out as follows:
  • Step 1 Prepare water-washed filtrate
  • step 2 After drying the washed sea sand obtained in step 1 until the surface is dry, grind the washed sea sand into a sea sand powder with a fineness of not less than 100 mesh, and then add the sea sand powder to deionized water and fully stir for 5-10 minutes, then Filtering to obtain a powder filtrate; wherein the mass ratio of the dried washed sea sand to the deionized water is 1:1.5 ⁇ 2.5;
  • Step 4 Determine the quality of chloride ions in different filtrates
  • Step 5 Determine the content of chloride ions in sea sand
  • the a is the sum of the chloride ion mass H 1 in the other water-washed filtrate measured in step 4 and the chloride ion mass H 2 in the other powder filtrate measured in step 4
  • the ratio of chloride ion mass H 3 in the mixed filtrate measured in step 4, namely a (H 1 +H 2 )/H 3 ;
  • the remaining water-washed filtrate and another powder filtrate are placed in the same thermostat. (Ensure that the mixed filtrate, water-washed filtrate and powder filtrate have the same temperature during testing). So as to ensure the consistency of the test results of each filtrate.
  • step 4 when the quality of chloride ions in different filtrates is determined by silver nitrate titration, a potassium chromate aqueous solution with a mass fraction of 5% is used as an indicator, and the dropping volume of the potassium chromate aqueous solution is compared with the amount used in the titration.
  • the ratio of the volume of the mixed filtrate, the volume of the other water-washed filtrate to the volume of the other powder filtrate is 1:50.
  • a drying oven with a temperature of 100-110°C is used for drying in the first and second steps; the temperature of the thermostat in the third step is controlled to be 25-35°C.
  • the stirring in step 1 and step 2 adopts a magnetic stirrer
  • the rotation speed of the magnetic stirrer is 800-1500 r/min
  • the maximum heating temperature during the stirring process of the magnetic stirrer is 120°C.
  • the present invention first washes and filters the sea sand to avoid the loss of chloride ions on the surface of the sea sand caused by direct crushing, and then crushes the washed sea sand to promote the sea sand surface to be tightly coated with the film and the chloride ions in the cracks to a greater extent Released from the ground; targeted treatment of sea sand step by step provides a scientific guarantee for the authenticity of the test results of chloride ion content in sea sand.
  • the present invention adopts different methods to prepare the filtrate to be tested before and after the sea sand grinding, which realizes the dissolution of chloride ions to a greater extent, while also greatly shortening the detection time and reducing the detection error of the chloride ion content.
  • the invention provides a detection method for determining the chloride ion content in sea sand.
  • the present invention will be described in detail below in conjunction with specific embodiments.
  • a detection method for determining the chloride ion content in sea sand is carried out as follows:
  • Step 1 Prepare water-washed filtrate
  • step 2 After drying the washed sea sand obtained in step 1 until the surface is dry, grind the washed sea sand into a sea sand powder with a fineness of not less than 100 mesh, and then add the sea sand powder to deionized water and fully stir for 5-10 minutes, then Filtering to obtain a powder filtrate; wherein the mass ratio of the dried washed sea sand to the deionized water is 1:1.5 ⁇ 2.5;
  • Step 4 Determine the quality of chloride ions in different filtrates
  • Step 5 Determine the content of chloride ions in sea sand
  • the a is the sum of the chloride ion mass H 1 in the other water-washed filtrate measured in step 4 and the chloride ion mass H 2 in the other powder filtrate measured in step 4
  • the ratio of chloride ion mass H 3 in the mixed filtrate measured in step 4, namely a (H 1 +H 2 )/H 3 ;
  • the remaining water-washed filtrate and another powder filtrate are placed in the same thermostat. (Ensure that the mixed filtrate, water-washed filtrate and powder filtrate have the same temperature during testing). So as to ensure the consistency of the test results of each filtrate.
  • step 4 when the quality of chloride ions in different filtrates is determined by silver nitrate titration, a potassium chromate aqueous solution with a mass fraction of 5% is used as an indicator, and the dropping volume of the potassium chromate aqueous solution is compared with the amount used in the titration.
  • the ratio of the volume of the mixed filtrate, the volume of the other water-washed filtrate to the volume of the other powder filtrate is 1:50.
  • a drying oven with a temperature of 100-110°C is used for drying in the first and second steps; the temperature of the thermostat in the third step is controlled to be 25-35°C.
  • the stirring in step 1 and step 2 adopts a magnetic stirrer
  • the rotation speed of the magnetic stirrer is 800-1500 r/min
  • the maximum heating temperature during the stirring process of the magnetic stirrer is 120°C.
  • the formula for calculating chloride ion content in sea sand using silver nitrate titration method is:
  • Q is the chloride ion content percentage (%) in the sea sand sample to be tested
  • C is the concentration of silver nitrate standard solution (mol/L)
  • V is the volume of silver nitrate standard solution consumed during titration (mL)
  • D It is the volume (mL) of the silver nitrate standard solution consumed in the blank test
  • 0.03545 is the millimolar mass of chloride ion (g/mmol)
  • is the ratio of the total volume of the solution to be tested to the volume of the solution taken during the silver nitrate titration.
  • the chloride ion content in the sea sand sample to be tested is:
  • V 1 is the volume of silver nitrate standard solution consumed during the titration of the sample of the water-washed filtrate (mL)
  • V 2 is the volume of silver nitrate standard solution consumed during the titration of the powder filtrate sample (mL)
  • V 3 is the mixed filtrate
  • ⁇ 1 is the ratio of the total volume of the washing solution to the volume of the washing solution taken during the silver nitrate titration
  • ⁇ 2 is the total volume of the powder solution and the silver nitrate titration
  • ⁇ 3 is the ratio of the total volume of the mixed solution to the volume of the mixed solution taken during the titration of silver nitrate.
  • the test method in GB/T 14684-2011 "Sand for Construction" is used to calculate the chloride ion content in sea sand. Take 1000g of the sea sand sample from the same source as in the application example 1 above and place it in a drying oven to dry to a constant weight, and then cool it for later use; weigh 500g of dry sand into a ground-mouth flask, and pour 500mL of distilled water into the ground-mouth flask.
  • the test method in GB/T 14684-2011 "Sand for Construction" is used to calculate the chloride ion content in sea sand. Take 1000g of the sea sand sample from the same source as in the application example 2 above and place it in a drying oven to dry it to a constant weight, and then cool it for later use; weigh 500g of dry sand into a ground-mouth flask, and pour 500mL of distilled water into the ground-mouth flask.
  • the test method in GB/T14684-2011 "Sand for Construction” is used to calculate the chloride ion content in sea sand. Take 1000g of the sea sand sample from the same source as in Application Example 3 above and place it in a drying oven to dry to constant weight, and then cool it for later use; weigh 500g of dry sand into a ground-mouth flask, and pour 500mL of distilled water into the ground-mouth flask.
  • breaking the sea sand can promote the release of chloride ions in the tight coating film on the surface of the sea sand and the release of chloride ions in the cracks; at the same time, different methods are used to prepare the filtrate to be tested before and after the sea sand grinding, which can achieve the dissolution of chloride ions to a greater extent. At the same time, it greatly shortens the detection time and reduces the detection error of the chloride ion content.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明涉及一种确定海砂中氯离子含量的检测方法,按如下步骤进行:将烘干至恒重的海砂加入煮沸的去离子水中充分搅拌、静置和过滤,得到水洗海砂和水洗滤液;将水洗海砂研磨为海砂粉末,将海砂粉末加入去离子水中充分搅拌过滤得到粉末滤液;量取一半水洗滤液和一半粉末滤液进行混合搅拌制取混合滤液;采用硝酸银滴定法分别测定水洗滤液、粉末滤液和混合滤液的氯离子含量,并对检测结果进行分析和修正,得到海砂中的氯离子含量。本发明促使海砂表面紧密包覆膜及裂缝中的氯离子较大程度地释放出来,为海砂中氯离子含量检测结果的真实性提供了科学的保障;快速地实现氯离子的溶解,极大地缩短了检测时间,显著地提高了氯离子含量检测结果的准确度。

Description

一种确定海砂中氯离子含量的检测方法 技术领域
本发明属于氯离子含量检测技术领域,具体涉及一种确定海砂中氯离子含量的检测方法。
背景技术
目前,我国砂石资源呈现逐渐减少甚至枯竭的趋势,海砂是一种较好的河砂替代品,其粒形好、成本低、含泥量少以及储量十分丰富。合理利用海砂对基础设施建设和社会的可持续发展具有重大的意义。但是海砂中存在着氯盐杂质,氯盐能加速钢筋的锈蚀,极大的降低了混凝土结构的耐久性。虽然国家允许使用净化处理且符合标准要求的海砂,但实际工程调查发现:由氯离子导致混凝土结构破坏的现象依然普遍存在。这主要是由于经过净化处理的海砂在氯离子含量检测时存在着诸多问题,问题汇总如下:
(1)待测海砂处理不当:现有的氯离子含量检测方法对海砂的处理往往不够彻底,这主要是由于海砂裂缝和孔隙中的氯离子被海洋中的有机物质紧密包裹处于一种稳定状态,而采用常温浸泡或振荡的方法均无法将残留在海砂裂缝和孔隙中的氯离子释放出来,从而使得海砂中氯离子含量的测量值比实际值明显偏低;此类海砂应用到建筑工程中将会导致危害建筑物结构安全问题的发生。
(2)待测滤液的制取方法没有针对性:海砂无论经过淡水净化还是研磨过滤均可得到氯离子待测滤液,但是研磨破碎前后海砂在粒径大小和氯离子浓度上存在较大差别;若采用同种方法制取待测液,容易导致氯离子溶解不彻底,最终影响氯离子含量的检测结果。
(3)检测结果缺乏参照难以修正:现有氯离子含量检测时,往往是对同一溶液进行一次或多次检测,即使是多次检测也只是简单的求取算术平均值,检测结果之间往往不能相互参照和对比,使得检测误差难以修正。
(4)常见的氯离子检测方法花费时间较长,长时间的实验极易让操作人员产生疲劳感,从而增加了出现实验误差的概率。
因此,根据实际需要对确定海砂中氯离子含量的检测方法进行优化具有重要的意义。
发明内容
为了解决现有技术存在的问题,本发明提供了一种能准确测量海砂中氯离子含量的检测方法,它分步骤处理海砂样品,然后分别进行检测同一海砂样品的不同待测滤液的氯离子质量,并对检测结果进行对比、分析及修正,显著地提高了氯离子含量检测结果的准确度。
为了实现上述目的,本发明是通过如下的技术方案来实现:一种确定海砂中氯离子含量的检测方法,按如下步骤进行:
步骤一:制取水洗滤液;
取海砂待测样品烘干至恒重,然后称取质量为G 0的烘干海砂待测样品,之后加入煮沸的去离子水中充分搅拌3~6min,然后静置10~15min,之后过滤得到水洗海砂和水洗滤液;在搅拌过程中通过加热保持去离子水的温度不低于90℃;其中用来混合搅拌的烘干海砂待测样品与所述的去离子水的质量比为1:1.5~2.5;
步骤二:制取粉末滤液;
将步骤一得到的水洗海砂烘干至表面无水后,将水洗海砂研磨为细度不小于100目的海砂粉末,然后将所述海砂粉末加入去离子水中充分搅拌5~10min,之后过滤得到粉末滤液;其中烘干后的水洗海砂与所述的去离子水的质量比为1:1.5~2.5;
步骤三:制取混合滤液;
先将步骤一制得的水洗滤液和步骤二制得的粉末滤液放置于恒温箱中静置15~20min,然后分别将静置后的水洗滤液和静置后的粉末滤液分别平均分成2份,之后将其中一份水洗滤液和其中一份粉末滤液混合得到混合滤液,剩下的另一份水洗滤液和另一份粉末滤液分别单独待用;
步骤四:测定不同滤液中氯离子质量;
取相同体积的步骤三中混合滤液、另一份水洗滤液和另一份粉末滤液,采用硝酸银滴定法分别测定得到另一份水洗滤液中的氯离子质量H 1、另一份粉末滤液中的氯离子质量H 2和混合滤液中氯离子质量H 3
步骤五:确定海砂中氯离子的含量;
首先,计算a值:所述a为步骤四所测得的另一份水洗滤液中的氯离子质量H 1和步骤四所测得的另一份粉末滤液中的氯离子质量H 2之和与步骤四所测得的混合滤液中氯离子质量H 3的比值,即a=(H 1+H 2)/H 3
之后,当0.850≤a≤1.150时,直接按以下三种状况确定海砂中氯离子含量Q;当a值小于0.850或a值大于1.150时,重复步骤四并重新计算a值直到0.850≤a≤1.150时,再按以下三种状况确定海砂中氯离子含量Q:
状况一:当0.850≤a<0.975时,海砂中氯离子总质量H为:H=m(H 1+H 2)+H 3;则海砂中氯离子含量Q为:
Figure PCTCN2020102548-appb-000001
状况二:当0.975≤a≤1.025时,海砂中氯离子总质量H为:H=H 1+H 2+H 3;则海砂中氯离子含量Q为:
Figure PCTCN2020102548-appb-000002
状况三:当1.025<a≤1.150时,海砂中氯离子总质量H为:H=H 1+H 2+nH 3;则海砂中氯离子含量Q为:
Figure PCTCN2020102548-appb-000003
其中:m、n为系数,m=1+(1-a)=2-a;n=1+(a-1)=a。
进一步地,步骤三制备完成混合滤液后,将剩下的另一份水洗滤液和另一份粉末滤液放置于同一个恒温箱中。(保证混合滤液、水洗滤液和粉末滤液在检测时温度相同)。从而能保证各个滤液检测结果的一致性。
进一步地,步骤四采用硝酸银滴定法测定不同滤液中氯离子质量时,采用质量分数为5%的铬酸钾水溶液作为指示剂,所述铬酸钾水溶液的滴入体积与滴定时所使用的混合滤液的体积、另一份水洗滤液的体积和另一份粉末滤液的体积之比均为1:50。
进一步地,所述步骤一和步骤二烘干时采用温度为100~110℃的干燥箱;步骤三所述的恒温箱的温度控制为25~35℃。
进一步地,步骤一和步骤二所述搅拌采用磁力搅拌机,所述磁力搅拌机的转速为800~1500r/min,所述磁力搅拌机搅拌过程中加热的最大温度为120℃。
本发明的有益效果为:
1、本发明先将海砂水洗过滤,避免了直接破碎导致海砂表面氯离子的损失,再将水洗后的海砂破碎,促使海砂表面紧密包覆膜及裂缝中的氯离子较大程度地释放出来;分步骤对海砂进行针对性处理,为海砂中氯离子含量检测结果的真实性提供了科学的保障。
2、本发明在海砂研磨前后采用不同的方法制取待测滤液,较大程度上实现氯离子溶解的同时,还极大地缩短了检测时间,降低了氯离子含量的检测误差。
3、本发明对同一海砂样品得到的不同待测滤液,分别进行检测得到氯离子质量,并对检测结果进行对比、分析及修正,显著地提高了氯离子含量检测结果的准确度。
具体实施方式
本发明提供的是一种确定海砂中氯离子含量的检测方法。为更进一步阐述本发明所采用的技术手段及功效,下面结合具体实施方式,对本发明进行详细的说明。
一)具体实施方式
实施例中一种确定海砂中氯离子含量的检测方法,按如下步骤进行:
步骤一:制取水洗滤液;
取海砂待测样品烘干至恒重,然后称取质量为G 0的烘干海砂待测样品,之后加入煮沸的去离子水中充分搅拌3~6min,然后静置10~15min,之后过滤得到水洗海砂和水洗滤液;在搅拌过程中通过加热保持去离子水的温度不低于90℃;其中用来混合搅拌的烘干海砂待测样品与所述的去离子水的质量比为1:1.5~2.5;
步骤二:制取粉末滤液;
将步骤一得到的水洗海砂烘干至表面无水后,将水洗海砂研磨为细度不小于100目的海砂粉末,然后将所述海砂粉末加入去离子水中充分搅拌5~10min,之后过滤得到粉末滤液;其中烘干后的水洗海砂与所述的去离子水的质量比为1:1.5~2.5;
步骤三:制取混合滤液;
先将步骤一制得的水洗滤液和步骤二制得的粉末滤液放置于恒温箱中静置15~20min,然后分别将静置后的水洗滤液和静置后的粉末滤液分别平均分成2份,之后将其中一份水洗滤液和其中一份粉末滤液混合得到混合滤液,剩下的另一份水洗滤液和另一份粉末滤液分别单独待用;
步骤四:测定不同滤液中氯离子质量;
取相同体积的步骤三中混合滤液、另一份水洗滤液和另一份粉末滤液,采用硝酸银滴定法分别测定得到另一份水洗滤液中的氯离子质量H 1、另一份粉末滤液中的氯离子质量H 2和混合滤液中氯离子质量H 3
步骤五:确定海砂中氯离子的含量;
首先,计算a值:所述a为步骤四所测得的另一份水洗滤液中的氯离子质量H 1和步骤四所测得的另一份粉末滤液中的氯离子质量H 2之和与步骤四所测得的混合滤液中氯离子质量H 3的比值,即a=(H 1+H 2)/H 3
之后,当0.850≤a≤1.150时,直接按以下三种状况确定海砂中氯离子含量Q;当a值小于0.850或a值大于1.150时,重复步骤四并重新计算a值直到0.850≤a≤1.150时,再按以下三种状况确定海砂中氯离子含量Q:
状况一:当0.850≤a<0.975时,海砂中氯离子总质量H为:H=m(H 1+H 2)+H 3;则海砂中氯离子含量Q为:
Figure PCTCN2020102548-appb-000004
状况二:当0.975≤a≤1.025时,海砂中氯离子总质量H为:H=H 1+H 2+H 3;则海砂中氯离子含量Q为:
Figure PCTCN2020102548-appb-000005
状况三:当1.025<a≤1.150时,海砂中氯离子总质量H为:H=H 1+H 2+nH 3;则海砂中氯离子含量Q为:
Figure PCTCN2020102548-appb-000006
其中:m、n为系数,m=1+(1-a)=2-a;n=1+(a-1)=a。
进一步地,步骤三制备完成混合滤液后,将剩下的另一份水洗滤液和另一份粉末滤液放置于同一个恒温箱中。(保证混合滤液、水洗滤液和粉末滤液在检测时温度相同)。从而能保证各个滤液检测结果的一致性。
进一步地,步骤四采用硝酸银滴定法测定不同滤液中氯离子质量时,采用质量分数为5%的铬酸钾水溶液作为指示剂,所述铬酸钾水溶液的滴入体积与滴定时所使用的混合滤液的体积、另一份水洗滤液的体积和另一份粉末滤液的体积之比均为1:50。
进一步地,所述步骤一和步骤二烘干时采用温度为100~110℃的干燥箱;步骤三所述的恒温箱的温度控制为25~35℃。
进一步地,步骤一和步骤二所述搅拌采用磁力搅拌机,所述磁力搅拌机的转速为800~1500r/min,所述磁力搅拌机搅拌过程中加热的最大温度为120℃。
相关理论依据:
采用硝酸银滴定法计算海砂中氯离子含量的公式为:
Figure PCTCN2020102548-appb-000007
式中:Q为海砂待测样品中氯离子含量百分比(%),C为硝酸银标准溶液的浓度(mol/L),V为滴定时消耗的硝酸银标准溶液的体积(mL),D为空白试验时消耗的硝酸银标准溶液的体积(mL),0.03545为氯离子的毫摩尔质量(g/mmol),η为待测溶液总体积与硝酸银滴定时所取溶液的体积之比。
则有海砂中氯离子的总质量H=C×(V-D)×0.03545×η;则海砂待测样品中氯离子含量为:
Figure PCTCN2020102548-appb-000008
利用海砂待测样品制取得到水洗滤液、粉末滤液和混合滤液后,采用硝酸银滴定法分别计算得到水洗滤液、粉末滤液和混合滤液中氯离子质量,其中:水洗滤液中 氯离子质量H 1=C×(V 1-D)×0.03545×η 1;粉末滤液中氯离子质量H 2=C×(V 2-D)×0.03545×η 2;混合滤液中氯离子质量H 3=C×(V 3-D)×0.03545×η 3
式中:V 1为水洗滤液的样品滴定时消耗的硝酸银标准溶液的体积(mL),V 2为粉末滤液的样品滴定时消耗的硝酸银标准溶液的体积(mL),V 3为混合滤液的样品滴定时消耗的硝酸银标准溶液的体积(mL),η 1为水洗溶液总体积与硝酸银滴定时所取水洗溶液的体积之比,η 2为粉末溶液总体积与硝酸银滴定时所取粉末溶液的体积之比,η 3为混合溶液总体积与硝酸银滴定时所取混合溶液的体积之比。
二)实施例
实施例1
将烘干至恒重的400g海砂待测样品倒入800ml煮沸的去离子水中,采用转速为1000r/min的磁力搅拌机充分搅拌5min,在搅拌过程中不断加热保持去离子水的温度为92℃,搅拌完成,静置12min后进行过滤,得到水洗海砂和580ml水洗滤液。将水洗海砂在干燥箱内烘干至表面无水后,采用球磨机将水洗海砂研磨为细度为100目的海砂粉末,将海砂粉末倒入800ml去离子水中充分搅拌10min后过滤得到520ml粉末滤液。将水洗滤液和粉末滤液放置于30℃恒温箱中20min后,分别量取290ml水洗滤液和260ml粉末滤液混合搅拌得到550ml混合滤液;将混合滤液与水洗滤液和粉末滤液放置于同一个恒温箱中,在30℃条件下保温15min。
用移液管分别取50ml的水洗滤液、50ml的粉末滤液和50ml的混合滤液注入三个不同的三角瓶中,在盛有水洗滤液、粉末滤液和混合滤液的三个三角瓶中均滴入质量分数为5%的铬酸钾溶液1.0ml;采用硝酸银滴定法分别得到水洗滤液中氯离子质量为0.264g、粉末滤液中氯离子质量为0.240g和混合滤液中氯离子质量为0.526g;则a值为0.958,利用本发明中状况一的方法计算得到海砂中氯离子含量为0.263%。
对照实例1:
采用GB/T 14684-2011《建设用砂》中的测试方法计算海砂中的氯离子含量。取与上述应用实例1中来源相同的海砂样品1000g置于干燥箱烘干至恒重后,冷却备用;称取500g干砂倒入磨口瓶中,向磨口瓶中注入500mL的蒸馏水,盖上塞子,摇动一次后放置2h,然后每隔5min摇动一次,共摇动3次;将溶液过滤后进行两次硝酸银滴定法测量氯离子含量,计算两次试验结果的算术平均值得到氯离子含量为0.135%。
实施例2
将烘干至恒重的400g海砂倒入600ml煮沸的去离子水中,采用转速为1200r/min的磁力 搅拌机充分搅拌4min,在搅拌过程中不断加热保持去离子水的温度为90℃,搅拌完成,静置10min后进行过滤,得到水洗海砂和380ml水洗滤液。将水洗海砂在干燥箱内烘干至表面无水后,采用球磨机将水洗海砂研磨为细度为120目的海砂粉末,将海砂粉末倒入600ml去离子水中充分搅拌10min后过滤得到350ml粉末滤液。将水洗滤液和粉末滤液放置于30℃恒温箱中20min后,分别量取190ml水洗滤液和175ml粉末滤液混合搅拌得到365ml混合滤液;将混合滤液与水洗滤液和粉末滤液放置于同一个恒温箱中,在30℃条件下保温16min。
用移液管分别取50ml的水洗滤液、50ml的粉末滤液和50ml的混合滤液注入三个不同的三角瓶中,在盛有水洗滤液、粉末滤液和混合滤液的三个三角瓶中均滴入质量分数为5%的铬酸钾溶液1.0ml;采用硝酸银滴定法分别得到水洗滤液中氯离子质量为0.256g、粉末滤液中氯离子质量为0.230g和混合滤液中氯离子质量为0.496g;则a值为0.980,利用本发明中状况二的方法计算得到海砂中氯离子含量为0.246%。
对照实例2:
采用GB/T 14684-2011《建设用砂》中的测试方法计算海砂中的氯离子含量。取与上述应用实例2中来源相同的海砂样品1000g置于干燥箱烘干至恒重后,冷却备用;称取500g干砂倒入磨口瓶中,向磨口瓶中注入500mL的蒸馏水,盖上塞子,摇动一次后放置2h,然后每隔5min摇动一次,共摇动3次;将溶液过滤后进行两次硝酸银滴定法测量氯离子含量,计算两次试验结果的算术平均值得到氯离子含量为0.132%。
实施例3
将烘干至恒重的200g海砂倒入500ml煮沸的去离子水中,采用转速为1000r/min的磁力搅拌机充分搅拌6min,在搅拌过程中不断加热保持去离子水的温度为95℃,搅拌完成,静置15min后进行过滤,得到水洗海砂和370ml水洗滤液。将水洗海砂在干燥箱内烘干至表面无水后,采用球磨机将水洗海砂研磨为细度为120目的海砂粉末,将海砂粉末倒入500ml去离子水中充分搅拌6min后过滤得到340ml粉末滤液。将水洗滤液和粉末滤液放置于30℃恒温箱中20min后,分别量取185ml水洗滤液和170ml粉末滤液混合搅拌得到355ml混合滤液;将混合滤液与水洗滤液和粉末滤液放置于同一个恒温箱中,在30℃条件下保温15min。
用移液管分别取50ml的水洗滤液、50ml的粉末滤液和50ml的混合滤液注入三个不同的三角瓶中,在盛有水洗滤液、粉末滤液和混合滤液的三个三角瓶中均滴入质量分数为5%的铬酸钾溶液1.0ml;采用硝酸银滴定法分别得到水洗滤液的氯离子质量为0.158g、粉末滤液的氯离子质量为0.126g和混合滤液的氯离子质量为0.255g;则a值为1.114,利用本发明中状况三的方法计算得到海砂中氯离子含量为0.284%。
对照实例3:
采用GB/T14684-2011《建设用砂》中的测试方法计算海砂中的氯离子含量。取与上述应用实例3中来源相同的海砂样品1000g置于干燥箱烘干至恒重后,冷却备用;称取500g干砂倒入磨口瓶中,向磨口瓶中注入500mL的蒸馏水,盖上塞子,摇动一次后放置2h,然后每隔5min摇动一次,共摇动3次;将溶液过滤后进行两次硝酸银滴定法测量氯离子含量,计算两次试验结果的算术平均值得到氯离子含量为0.154%。
由此可见,将海砂破碎可以促进海砂表面紧密包覆膜及裂缝中氯离子的释放;同时,在海砂研磨前后采用不同的方法制取待测滤液,较大程度上实现氯离子溶解的同时,还极大地缩短了检测时间,降低了氯离子含量的检测误差。
以上所述,仅为本发明的较佳实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

  1. 一种确定海砂中氯离子含量的检测方法,其特征在于:按如下步骤进行:
    步骤一:制取水洗滤液;
    取海砂待测样品烘干至恒重,然后称取质量为G 0的烘干海砂待测样品,之后加入煮沸的去离子水中充分搅拌3~6min,然后静置10~15min,之后过滤得到水洗海砂和水洗滤液;在搅拌过程中通过加热保持去离子水的温度不低于90℃;其中用来混合搅拌的烘干海砂待测样品与所述的去离子水的质量比为1:1.5~2.5;
    步骤二:制取粉末滤液;
    将步骤一得到的水洗海砂烘干至表面无水后,将水洗海砂研磨为细度不小于100目的海砂粉末,然后将所述海砂粉末加入去离子水中充分搅拌5~10min,之后过滤得到粉末滤液;其中烘干后的水洗海砂与所述的去离子水的质量比为1:1.5~2.5;
    步骤三:制取混合滤液;
    先将步骤一制得的水洗滤液和步骤二制得的粉末滤液放置于恒温箱中静置15~20min,然后分别将静置后的水洗滤液和静置后的粉末滤液分别平均分成2份,之后将其中一份水洗滤液和其中一份粉末滤液混合得到混合滤液,剩下的另一份水洗滤液和另一份粉末滤液分别单独待用;
    步骤四:测定不同滤液中氯离子质量;
    取相同体积的步骤三中混合滤液、另一份水洗滤液和另一份粉末滤液,采用硝酸银滴定法分别测定得到另一份水洗滤液中的氯离子质量H 1、另一份粉末滤液中的氯离子质量H 2和混合滤液中氯离子质量H 3
    步骤五:确定海砂中氯离子的含量;
    首先,计算a值:所述a为步骤四所测得的另一份水洗滤液中的氯离子质量 H 1和步骤四所测得的另一份粉末滤液中的氯离子质量H 2之和与步骤四所测得的混合滤液中氯离子质量H 3的比值,即a=(H 1+H 2)/H 3
    之后,当0.850≤a≤1.150时,直接按以下三种状况确定海砂中氯离子含量Q;当a值小于0.850或a值大于1.150时,重复步骤四并重新计算a值直到0.850≤a≤1.150时,再按以下三种状况确定海砂中氯离子含量Q:
    状况一:当0.850≤a<0.975时,海砂中氯离子总质量H为:H=m(H 1+H 2)+H 3;则海砂中氯离子含量Q为:
    Figure PCTCN2020102548-appb-100001
    状况二:当0.975≤a≤1.025时,海砂中氯离子总质量H为:H=H 1+H 2+H 3;则海砂中氯离子含量Q为:
    Figure PCTCN2020102548-appb-100002
    状况三:当1.025<a≤1.150时,海砂中氯离子总质量H为:H=H 1+H 2+nH 3;则海砂中氯离子含量Q为:
    Figure PCTCN2020102548-appb-100003
    其中:m、n为系数,m=1+(1-a)=2-a;n=1+(a-1)=a。
  2. 根据权利要求1所述的一种确定海砂中氯离子含量的检测方法,其特征在于:步骤三制备完成混合滤液后,将剩下的另一份水洗滤液和另一份粉末滤液放置于同一个恒温箱中。
  3. 根据权利要求1所述的一种确定海砂中氯离子含量的检测方法,其特征在于:步骤四采用硝酸银滴定法测定不同滤液中氯离子质量时,采用质量分数为5%的铬酸钾水溶液作为指示剂,所述铬酸钾水溶液的滴入体积与滴定时所使用的混合滤液的体积、另一份水洗滤液的体积和另一份粉末滤液的体积之比均为1:50。
  4. 根据权利要求1所述的一种确定海砂中氯离子含量的检测方法,其特征在于:所述步骤一和步骤二烘干时采用温度为100~110℃的干燥箱;步骤三所述的 恒温箱的温度控制为25~35℃。
  5. 根据权利要求1所述的一种确定海砂中氯离子含量的检测方法,其特征在于:步骤一和步骤二所述搅拌采用磁力搅拌机,所述磁力搅拌机的转速为800~1500r/min,所述磁力搅拌机搅拌过程中加热的最大温度为120℃。
PCT/CN2020/102548 2019-08-28 2020-07-17 一种确定海砂中氯离子含量的检测方法 WO2021036570A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/290,784 US11940431B2 (en) 2019-08-28 2020-07-17 Detection method for determining content of chlorine ions in marine sand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910802795.0 2019-08-28
CN201910802795.0A CN110455983B (zh) 2019-08-28 2019-08-28 一种确定海砂中氯离子含量的检测方法

Publications (1)

Publication Number Publication Date
WO2021036570A1 true WO2021036570A1 (zh) 2021-03-04

Family

ID=68489657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102548 WO2021036570A1 (zh) 2019-08-28 2020-07-17 一种确定海砂中氯离子含量的检测方法

Country Status (3)

Country Link
US (1) US11940431B2 (zh)
CN (1) CN110455983B (zh)
WO (1) WO2021036570A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455983B (zh) * 2019-08-28 2020-06-09 福州大学 一种确定海砂中氯离子含量的检测方法
CN110736746A (zh) * 2019-11-28 2020-01-31 苏州方正工程技术开发检测有限公司 一种用于测试砂中氯离子含量的快速测试方法
CN111487241A (zh) * 2020-04-20 2020-08-04 河海大学 一种全自动海砂氯离子含量检测装置及其控制方法
CN112114084A (zh) * 2020-08-19 2020-12-22 河海大学 一种混凝土拌合物中氯离子浓度快速检测方法
CN112730733A (zh) * 2020-12-21 2021-04-30 山西省交通建设工程质量检测中心(有限公司) 一种海砂氯离子含量的检测方法
CN113074998B (zh) * 2021-03-23 2024-01-09 毛江鸿 混凝土拌合物或海砂中氯离子浓度检测方法
CN116106392A (zh) * 2023-01-17 2023-05-12 上海城建物资有限公司 建筑用砂中氯离子检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158458A (ja) * 1986-08-04 1988-07-01 Nippon Cement Co Ltd 塩化物イオン濃度測定方法
CN101614718A (zh) * 2009-07-27 2009-12-30 广西大学 一种测定高性能混凝土中氯离子含量的方法
CN107727791A (zh) * 2017-10-17 2018-02-23 广西金川有色金属有限公司 一种石英砂中氯离子的检测分析方法
CN207147980U (zh) * 2017-09-14 2018-03-27 东莞市冠峰混凝土有限公司 一种海砂氯离子含量检测装置
CN108956815A (zh) * 2018-07-05 2018-12-07 科之杰新材料集团有限公司 一种海砂中氯离子含量的测试方法
CN110455983A (zh) * 2019-08-28 2019-11-15 福州大学 一种确定海砂中氯离子含量的检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634856B (zh) * 2015-02-04 2017-09-05 中国建材检验认证集团股份有限公司 海砂中氯离子含量的检测方法
CN110044892A (zh) * 2019-05-22 2019-07-23 南京市产品质量监督检验院 一种食用盐中氯化钠含量的计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158458A (ja) * 1986-08-04 1988-07-01 Nippon Cement Co Ltd 塩化物イオン濃度測定方法
CN101614718A (zh) * 2009-07-27 2009-12-30 广西大学 一种测定高性能混凝土中氯离子含量的方法
CN207147980U (zh) * 2017-09-14 2018-03-27 东莞市冠峰混凝土有限公司 一种海砂氯离子含量检测装置
CN107727791A (zh) * 2017-10-17 2018-02-23 广西金川有色金属有限公司 一种石英砂中氯离子的检测分析方法
CN108956815A (zh) * 2018-07-05 2018-12-07 科之杰新材料集团有限公司 一种海砂中氯离子含量的测试方法
CN110455983A (zh) * 2019-08-28 2019-11-15 福州大学 一种确定海砂中氯离子含量的检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOU YUANQIANG: "Discussion on Effect of Different Determination Standards on Chloride Ion Content in Sea Sand", NEW BUILDING MATERIALS, vol. 46, no. 1, 25 January 2019 (2019-01-25), pages 50 - 52, XP055786156, ISSN: 1001-702X *

Also Published As

Publication number Publication date
US20220412930A1 (en) 2022-12-29
CN110455983B (zh) 2020-06-09
CN110455983A (zh) 2019-11-15
US11940431B2 (en) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2021036570A1 (zh) 一种确定海砂中氯离子含量的检测方法
CN104634856B (zh) 海砂中氯离子含量的检测方法
CN103926300A (zh) 一种水泥净浆或砂浆中自由氯离子测定的改进方法
WO2020233150A1 (zh) 一种食用盐中氯化钠含量的计算方法
Shi et al. Influence of submicron-sheet zinc phosphate synthesised by sol–gel method on anticorrosion of epoxy coating
CN102279183A (zh) 氯耗氧曲线校正-密封消解法测定高氯水体中cod的方法
Lützenkirchen et al. Protonation of different goethite surfaces—unified models for NaNO3 and NaCl media
CN113299350B (zh) 一种利用土壤pH预测苏打盐碱化学指标的方法
CN112730733A (zh) 一种海砂氯离子含量的检测方法
CN112142355B (zh) 膨胀珍珠岩负载型氯离子固化剂及其制备方法和应用
Herrera et al. Electro-chemical chloride extraction: Influence of C3A of the cement on treatment efficiency
CN105067614A (zh) 硅钙钡镁合金中钙、镁、钡含量的连续测定方法
CN112179894B (zh) 一种锂离子电池磷酸铁锂正极浆料中游离铁的检测方法
US9423326B1 (en) Method of obtaining simulated pore water
CN111458394A (zh) 一种土壤酸碱含量的测定方法
Yang et al. Leaching behavior and environmental safety evaluation of fluorine ions from shotcrete with high-fluorine alkali-free liquid accelerator
Chen et al. Study of alternating current impedance of basic magnesium sulfate cement
JP4157793B2 (ja) ベントナイト混合土、セメント改良土等の混合物の成分測定方法
CN108101390A (zh) 碱激发胶凝材料反应程度的评价方法
CN103207171B (zh) 一种电镀铬泥的消解方法
CN113244882A (zh) 一种羟基铁铝改性有机膨润土及其制备方法与应用
CN106248866A (zh) 一种污泥堆肥中阳离子交换容量的测定方法及系统
CN114518428B (zh) 一种超高强水泥基材料中自由氯离子含量的检测方法
Jiang et al. Evolution of silicate species from waterglass in waterglass activated slag (WAS) pastes at early age
CN104677848B (zh) 一种用于测定硅酸盐水泥及熟料中碱金属硫酸盐含量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856049

Country of ref document: EP

Kind code of ref document: A1