WO2021036484A1 - 核电站控制棒驱动机构钩爪动作监测方法及电子设备 - Google Patents

核电站控制棒驱动机构钩爪动作监测方法及电子设备 Download PDF

Info

Publication number
WO2021036484A1
WO2021036484A1 PCT/CN2020/099058 CN2020099058W WO2021036484A1 WO 2021036484 A1 WO2021036484 A1 WO 2021036484A1 CN 2020099058 W CN2020099058 W CN 2020099058W WO 2021036484 A1 WO2021036484 A1 WO 2021036484A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
coil
characteristic point
waveform
starting point
Prior art date
Application number
PCT/CN2020/099058
Other languages
English (en)
French (fr)
Inventor
马军超
李冬冬
周琦
李涛
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Priority to EP20857456.6A priority Critical patent/EP4009335A4/en
Publication of WO2021036484A1 publication Critical patent/WO2021036484A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application relates to the field of nuclear power, in particular to a method for monitoring the action of the claws in a control rod drive mechanism in a nuclear power plant.
  • control rods In the process of nuclear power plant start-up, power conversion and shutdown, by controlling the lifting, inserting and maintaining the movement of the control rod, the reactivity of the reactor is controlled and the reactor is always working in a controlled state.
  • the control rods are usually grouped (such as temperature rod group, power rod group, shutdown rod group, etc.), and the 4 control rods in the same subgroup are symmetrical in the core Arrangement (the control rod in the center of the core is a separate subgroup), and linkage during operation.
  • the lifting, inserting and holding movement of the control rod is realized by a control rod drive mechanism (electromagnetic coil, CRDM), and the control rod drive mechanism is connected with the control rod through a drive rod assembly.
  • the control rod drive mechanism generally adopts a stepping magnetic lifting type, and its coil assembly generally includes 3 electromagnetic coils, namely: a lifting coil (LC coil), a moving coil (MG coil), and a holding coil (SG coil).
  • the electromagnetic coil of the coil assembly and the core parts corresponding to the yoke and claw assembly constitute 3 "electromagnets", from top to bottom are “lift electromagnet", "moving electromagnet” and "holding electromagnet”.
  • the lifting coil (LC coil) is energized, so that the lifting armature is attracted, and the moving hook (MG hook) is raised by one step; (LC coil) is demagnetized to open the lifting armature and drive the moving hook (MG hook) Claw) reset.
  • the moving coil (MG coil) is excited, so that the moving armature is attracted, and the connecting rod is driven to move upward, so that the moving hook (MG hook) swings into the annular groove of the driving rod, and engages with the ring teeth of the driving rod; the MG coil is demagnetized to move
  • the connecting rod is driven to descend, so that the movable claw swings out of the annular groove of the driving rod and disengages from the ring teeth of the driving rod.
  • the holding coil (SG coil) is energized, the holding armature is attracted, and the connecting rod is driven to move upward, so that the holding claw (SG claw) swings into the annular groove of the driving rod and meshes with the ring teeth of the driving rod; the SG coil is demagnetized to keep it
  • the connecting rod is driven to descend, so that the holding claw (SG claw) swings out of the annular groove of the driving rod and disengages from the ring teeth of the driving rod.
  • the control rod control system sends different currents to the three solenoid coils according to the set sequence to control the excitation and demagnetization of the coils, so that the three “electromagnets” in the corresponding hook assembly can be made. Put into operation, so as to control the movement of the drive rod assembly to drive the control rod to lift, insert or hold.
  • the claw action time fails, it will often cause the control rod to lose control, and failures such as sliding rod and rod drop occur. Therefore, it is necessary to monitor the claw action time during the entire process of lifting the rod and inserting the rod, so the claw action needs to be calculated. The start and end time.
  • the purpose of this application is to provide a method for monitoring the claw action of a control rod drive mechanism of a nuclear power plant, electronic equipment and a readable storage medium, which are convenient for detection, accurate for measurement, and high for monitoring accuracy.
  • this application discloses a method for monitoring the action of the claws of the control rod drive mechanism of a nuclear power plant, which includes the following steps: (1) When the rod is collected and the rod is inserted, the current signal of the LC coil, the current signal of the MG coil, and the SG coil are collected.
  • the current signal and the noise generated by the hook action to generate the hook action monitoring waveform (2) Identify the starting point of the MG coil current signal and the LC coil current signal in the monitoring waveform to obtain the characteristic points ma1 and the start of the MG coil closure
  • the characteristic point mb1 at the beginning of the LC coil closure, and the monitoring waveform is determined to be the rod-lifting waveform or the rod-inserting waveform according to the sequence of the characteristic point ma1 and the characteristic point mb1; (3)
  • the rod-lifting waveform or inserting The time sequence of the characteristic points corresponding to the bar waveform, using the characteristic points ma1 and mb1 as the starting point to search for the characteristic points at the beginning of each coil action and the characteristic points at the end of the corresponding hook action in the monitoring waveform, the characteristic points
  • the time sequence is the time sequence of the feature point at the beginning of each coil action and the feature point at the end of the corresponding hook action in the monitored waveform determined according to the preset coil current control sequence corresponding to the
  • the present application separately collects the current of each CRDM coil and the noise generated by the hook action, first collects the starting point of the MG coil current signal and the starting point of the LC coil current signal to obtain the characteristic point ma1 and the LC coil at the beginning of the MG coil closure.
  • the feature point mb1 at the beginning of the closure is based on the feature point ma1 and feature point mb1 to identify the rod or plunger and perform other feature point detection. Because the MG coil and LC coil are often closed at the beginning stage, there is less interference during detection. The test result is stable.
  • the noise signal can accurately determine the stop time point of the claw action, and the measurement is accurate.
  • this application takes the characteristic point ma1 and the characteristic point mb1 as the starting points, and according to the coil current control sequence of the lift rod and the plunger, the starting point of the next coil action is sequentially determined, that is, the starting point of the previous coil action is judged after The starting point of a coil action is not easy to be misidentified due to interference, and the monitoring accuracy is high.
  • the step (3) specifically includes: according to the corresponding time sequence of the characteristic point, starting from the characteristic point ma1 and the characteristic point mb1, the corresponding LC coil current signal, the MG coil current signal, and the SG coil current In the signal waveform, the characteristic point at the beginning of the next coil action is sequentially searched, and the characteristic point at the beginning of each coil action is used as the starting point to search for the characteristic point corresponding to the end of the hook action in the noise waveform.
  • the step (2) specifically includes: identifying the starting point of the MG coil rising from zero current in the monitoring waveform and using it as the characteristic point ma1 of the MG coil closing start, and identifying the starting point in the monitoring waveform
  • the starting point for the LC coil current to increase from zero current is used as the characteristic point mb1 for the start of the special LC coil closure.
  • the sequence of the characteristic point ma1 and the characteristic point mb1 is judged, and the monitoring waveform that the characteristic point ma1 is located before the characteristic point mb1 is determined In order to raise the rod waveform, the monitoring waveform whose characteristic point ma1 is located after the characteristic point mb1 is determined as the plunger waveform.
  • the characteristic point further includes the load transfer characteristic point md generated during the alternate grabbing of the control rod by the SG hook and the MG hook.
  • the alternating process of the SG hook and the MG hook is calculated
  • the step of having the hook claw end time in includes: determining the characteristic point mc2 at which the SG coil is opened in the alternation, and searching for the next noise starting point in the noise waveform as the characteristic point md using the characteristic point mc2 as the starting point, and taking the characteristic point md as the characteristic point md
  • the time value of the starting point plus the preset bias time is the center, and the noise starting point that meets the preset requirements is found within a range of preset points before and after the center as the characteristic point m c2+1 at which the SG hook opens and ends in the alternation.
  • the method for determining the characteristic points at the end of the first N hook claw actions is: taking the characteristic point at the beginning of the coil action as the starting point and making the next noise in the noise waveform The starting point is used as the characteristic point corresponding to the end of the hook action; the method for determining the characteristic point for the end of the hook action after the N+1th is: take the characteristic point corresponding to the beginning of the loop action as the starting point plus the preset time of the hook action The time value of is the center, and the noise starting point is searched in the noise waveform within a range of preset points before and after the center as the characteristic point corresponding to the end of the hook action, and N is equal to 1 or 2.
  • the characteristic points when the rod is first lifted, the characteristic points include according to the time sequence: the characteristic point ma1, the characteristic point ma1+1 where the MG hook claw closes in place, the characteristic points mb1, the MG where the LC coil closes at the beginning.
  • the feature points for the second and second times or above include, according to the time sequence: the feature point ma1 at which the MG claw is initially closed, the feature point ma1+1 where the MG claw is closed in place, and the feature point at which the SG coil is opened.
  • Feature point mc2 load transfer feature point md, feature point mb1 at the start of LC coil closure, feature point mc2+1 at which the SG hook is opened in place, feature point mb1+1 at which the MG hook is lifted into place, and at the start of SG coil closure Feature point mc1, feature point mc1+1 where SG hook is closed in place, feature point ma2 where MG coil is opened, feature point mb2, where LC coil is opened, feature point ma2+1, where MG hook is opened and placed in place, MG hook The characteristic point mb2+1 at which the paw drops into position.
  • the characteristic points when inserting the rod include according to the time sequence: the characteristic point mb1 at the beginning of the LC coil closing, the characteristic point mb1+1 at which the MG hook is lifted into position, the characteristic point ma1 at the beginning of the MG coil closing, and the MG hook being closed in place
  • the first step (3) when the bar is raised for the first time: starting from the characteristic point ma1 and searching for the next noise starting point in the noise waveform as the characteristic point ma1+1; taking the characteristic point mb1 as the starting point on the noise waveform Search for the next noise starting point as the characteristic point mb1+1 in the search; use the characteristic point mb1 as the starting point to search for the starting point where the SG coil rises from zero current in the waveform of the SG coil current signal as the characteristic point mc1; take the characteristic point mc1 as the starting point
  • the noise starting point is searched in the noise waveform within a range of preset points before and after the center as the characteristic point mc1+1; the characteristic point mc1 is used as the starting point in the MG coil current signal
  • the noise starting point is searched in the noise waveform within a range of preset points before and after the center as the characteristic point ma2+1; the characteristic point mb2 is added as the starting point
  • the time value of the preset time Tmb2 is the center, and the noise starting point is searched in the noise waveform as the characteristic point mb2+1 within a range of preset points before and after the center.
  • step (3) in the second and second or more times of raising the rod: starting from the characteristic point ma1, search for the next noise starting point in the noise waveform as the characteristic point ma1+1; take the characteristic point ma1 +1 or feature point ma1 is the starting point in the waveform of the SG coil current signal to search for the starting point of the SG coil from the full current drop as the feature point mc2; starting from the feature point mc2 to search for the next noise starting point in the noise waveform as the feature Point md; take the characteristic point md as the starting point plus the preset offset time TD1 to search for the next noise starting point in the noise waveform as the characteristic point mc2+1; take the characteristic point mb1 as the starting point plus the preset time Tmb1 as the time value Center, in the range of preset points before and after the center, search for the noise starting point in the noise waveform as the characteristic point mb1+1; starting from the characteristic point mb1 in the waveform of the SG coil current signal
  • Feature point ma2+1 take the feature point mb2 as the starting point and the time value of the preset time Tmb2 as the center, and search for the noise starting point in the noise waveform as the feature point mb2+1 within the range of preset points before and after the center.
  • step (3) when inserting the rod: take the time value of the starting point of the feature point mb1 plus the preset time Tmb1 as the center, and search for the noise in the noise waveform within a range of preset points before and after the center.
  • the starting point is used as the characteristic point mb1+1;
  • the characteristic point ma1 is used as the starting point to search for the next noise starting point in the noise waveform as the characteristic point ma1+1;
  • the characteristic point ma1 is used as the starting point to search for the SG coil in the waveform of the SG coil current signal.
  • the starting point where the current begins to decrease is used as the characteristic point mc2; the characteristic point mc2 is used as the starting point plus the time value of the preset time TD2 as the center, and the noise starting point is searched in the noise waveform within the range of preset points before and after the center as the characteristic Point md; take the characteristic point md as the starting point plus the preset bias time TD3 as the starting point to search for the next noise starting point in the noise waveform as the characteristic point mc2+1; take the characteristic point mc2 as the starting point in the waveform of the LC coil current signal Search for the starting point of the LC coil from the half current drop as the characteristic point mb2; take the characteristic point mb2 as the starting point plus the time value of the preset time Tmb2 as the center, and search in the noise waveform within the preset points before and after the center
  • the noise starting point is taken as the characteristic point mb2+1; the characteristic point mb2 is used as the starting point to search
  • the SG jaw opening time and the SG jaw closing time are calculated, and it is judged whether the SG jaw opening time and the SG jaw closing time are less than or equal to the preset time period, if otherwise, a malfunction occurs. Call the police.
  • the method for monitoring the claw action of the control rod drive mechanism of the nuclear power plant further includes the step (5) of generating a monitoring report according to the monitoring signal, printing and deriving the monitoring report.
  • the application also discloses an electronic device, including: a data acquisition system for collecting LC coil current signals, MG coil current signals and SG coil current signals; microphone equipment for collecting noise generated by claw actions; one or more A processor; a memory; and one or more programs, wherein the one or more programs are stored in the memory and are configured to be executed by one or more processors, and the programs include Instructions for the monitoring method of the claw action of the control rod drive mechanism of the nuclear power plant.
  • the application also discloses a computer-readable storage medium, including a computer program used in combination with an electronic device with a memory, and the computer program can be executed by a processor to monitor the claw action monitoring method of the driving mechanism of the nuclear power plant control rod as described above.
  • Fig. 1 is a flowchart of the method for monitoring the action of the claws of the control rod drive mechanism of the nuclear power plant according to the present application.
  • Fig. 2 is a monitoring waveform diagram during the first lifting action of the application.
  • Fig. 3 is a monitoring waveform diagram of the rod lifting action for the second time and after the second time in this application.
  • Figure 4 is a monitoring waveform diagram of the application when the plunger moves.
  • this application discloses a method for monitoring the action of the claws of the drive mechanism of the control rod of a nuclear power plant, which includes the following steps: (S1) When the rod is collected and the rod is inserted, the current signal of the LC coil is related to the production LC waveform and the MG coil.
  • the current signal is used to generate the MG waveform, the SG coil current signal to generate the SG waveform, and the noise generated by the hook action is collected to generate the MICRO waveform (noise waveform), thereby generating the hook including the LC waveform, the MG waveform, the SG waveform and the noise waveform Action monitoring waveform;
  • S2 Identify the starting point of the MG coil current signal and the LC coil current signal in the monitoring waveform to obtain the characteristic point ma1 of the MG coil closing start and the characteristic point mb1 of the LC coil closing start, and according to the characteristics
  • the sequence of the point ma1 and the characteristic point mb1 determines that the monitoring waveform is the rod-lifting waveform or the rod-inserting waveform;
  • S3 According to the time sequence of the characteristic points corresponding to the rod-raising waveform or the rod-inserting waveform, the characteristic points ma1 and The feature point mb1 is the starting point.
  • the characteristic point sequence is a preset value, which is determined according to the preset coil current control sequence corresponding to the rod-lifting waveform or the plunger waveform, the characteristic point at which each coil action starts and the corresponding hook claw action ends in the monitoring waveform.
  • the timing of the characteristic points is determined by the technician based on the preset coil current control timing and the characteristic point timing table obtained from the test.
  • the preset coil current control timing is related to the rod lifting waveform (rod lifting operation process) or plunger waveform (Plug operation process)
  • Corresponding control sequence including the preset control sequence of LC coil, SG coil and MG coil current.
  • the hook actions corresponding to the coil actions are: LC coil closing action corresponds to MG hook claw lifting action, LC coil opening action corresponds to MG claw lowering action, SG coil closing action corresponds to SG claw closing action, and SG coil opening action corresponds to SG claw opening action, MG coil closing action corresponds to MG claw closing action, MG coil opening action corresponds to MG claw opening action.
  • the characteristic point at the beginning of the next coil action is sequentially searched, and the characteristic point at the beginning of each coil action is used as the starting point to search for the characteristic point corresponding to the end of the hook action in the noise waveform.
  • the step (S2) specifically includes: identifying the starting point of the MG coil rising from zero current in the MG waveform and using it as the characteristic point ma1 at the beginning of the closing of the MG coil, and identifying the starting point in the LC waveform.
  • the starting point for the LC coil current to increase from zero current is used as the characteristic point mb1 for the start of the special LC coil closure.
  • the sequence of the characteristic point ma1 and the characteristic point mb1 is judged, and the monitoring waveform that the characteristic point ma1 is located before the characteristic point mb1 is determined In order to raise the rod waveform (as shown in FIG. 2 and FIG.
  • the monitoring waveform with the characteristic point ma1 located after the characteristic point mb1 is determined as the rod waveform (as shown in FIG. 4).
  • a monitored waveform collected is generally a waveform of a rod lifting action or a rod insertion action.
  • the waveform is retained and Intercept the front-end part of the waveform collected in the next segment to make the waveform complete.
  • the feature points also include the load transfer feature points md generated during the alternate grabbing of the control rod by the SG hook and the MG hook.
  • the step (S3) the SG hook and the MG hook are calculated
  • the step of determining the end time of the hook in the claw alternation process includes: determining the characteristic point mc2 at which the SG coil opens during the alternation, and searching for the next noise starting point in the noise waveform as the characteristic point md with the characteristic point mc2 as the starting point.
  • the point md is the starting point plus the time value of the preset offset time as the center. Within the range of preset points before and after the center, find the noise starting point that meets the preset requirements as the characteristic point of the SG hook opening and ending in the alternation m c2 +1.
  • the method for determining the characteristic points of the first N hook claw actions is as follows: taking the characteristic point of the start of the coil action as the starting point, and the next noise starting point in the noise waveform As the characteristic point corresponding to the end of the hook action; the method for determining the characteristic point of the end of the hook action after the N+1 is: starting from the characteristic point corresponding to the beginning of the loop action plus the time of the preset time of the hook action The value is the center, and the noise starting point is searched in the noise waveform within a range of preset points before and after the center as the characteristic point corresponding to the end of the hook action.
  • N is equal to an integer of 1 or 2.
  • the first few hook actions have little noise interference, generally only one hook is in action, so that the next noise start point can be directly searched in the waveform as the corresponding end feature point of the hook action.
  • the “starting point corresponding to the starting point of the loop action plus the time value of the preset time of the hook action as the center for all the feature points at the end of the hook action, and preset a point before and after the center. Search for the starting point of the noise in the noise waveform as the characteristic point corresponding to the end of the hook action within the range of ".”
  • the characteristic points in the first lifting of the rod include, according to the time sequence, the characteristic point ma1, the characteristic point ma1+1 where the MG hook claw is closed in place, and the characteristic point mb1 where the LC coil is closed.
  • step (S3) when the rod is raised for the first time: starting from the characteristic point ma1 and searching for the next noise starting point in the noise waveform as the characteristic point ma1+1; taking the characteristic point mb1 as the starting point at Search for the next noise starting point in the noise waveform as the characteristic point mb1+1; use the characteristic point mb1 as the starting point to search for the starting point where the SG coil rises from zero current in the waveform of the SG coil current signal as the characteristic point mc1; take the characteristic point mc1
  • the time value of the starting point plus the preset time Tmc1 is the center, and the noise starting point is searched in the noise waveform within the range of preset points before and after the center as the characteristic point mc1+1; the characteristic point mc1 is used as the starting point in the MG coil current In the waveform of the signal, search for the starting point of the MG coil from the full current drop as the characteristic point ma2; use the characteristic point ma2 as the starting
  • the characteristic points during the second and second liftings in accordance with the time sequence include: the characteristic point ma1 at which the MG claw is initially closed, the characteristic point ma1+1 where the MG claw is closed in place, and the SG coil is opened.
  • the initial feature point mc2 the load transfer feature point md, the feature point mb1 where the LC coil is closed, the feature point mc2+1 where the SG hook is opened in place, the feature point mb1+1 where the MG hook is lifted into place, and the SG coil is closed.
  • step (S3) during the second and second times of raising the rod: starting from the characteristic point ma1, search for the next noise starting point in the noise waveform as the characteristic point ma1+1; Point ma1+1 or feature point ma1 is the starting point.
  • the feature point mc2 Search for the starting point of the SG coil from the full current drop in the waveform of the SG coil current signal as the feature point mc2; use the feature point mc2 as the starting point to search for the next noise starting point in the noise waveform As the characteristic point md; take the characteristic point md as the starting point plus the preset offset time TD1 to search for the next noise starting point in the noise waveform as the characteristic point mc2+1; take the characteristic point mb1 as the starting point plus the preset time Tmb1 time
  • the value is the center, within a preset range of points before and after the center, search for the noise starting point in the noise waveform as the characteristic point mb1+1; starting from the characteristic point mb1, search for the SG coil from zero current in the waveform of the SG coil current signal
  • the starting point to start lifting is used as the characteristic point mc1; the characteristic point mc1 is used as the starting point plus the time value of the preset time T
  • the starting point is used as the characteristic point ma2+1; the characteristic point mb2 is used as the starting point plus the time value of the preset time Tmb2 as the center, and the noise starting point is searched in the noise waveform within the range of preset points before and after the center as the characteristic point mb2+ 1.
  • the feature points when inserting the rod include: the feature point mb1 at the beginning of the LC coil closure, the feature point mb1+1 at which the MG hook is lifted into position, the feature point ma1, the MG hook at the beginning of the MG coil closure Closed in place feature point ma1+1, SG coil opening start feature point mc2, load transfer feature point md, SG hook open in place feature point mc2+1, LC coil opening start feature point mb2, MG hook down Feature point mb2+1 in place, feature point mc1 at the beginning of SG coil closure, feature point mc1+1 at the beginning of SG hook closure, feature point ma2 at the beginning of MG coil opening, feature point ma2+ at the beginning of MG hook closure 1.
  • step (S3) when inserting the rod: take the time value of the starting point of the feature point mb1 plus the preset time Tmb1 as the center, and search in the noise waveform within a preset range of points before and after the center
  • the noise starting point is used as the characteristic point mb1+1; the noise starting point is searched for the next noise starting point in the noise waveform with the characteristic point ma1 as the starting point as the characteristic point ma1+1; the SG coil is searched in the waveform of the SG coil current signal with the characteristic point ma1 as the starting point
  • the starting point where the full current begins to fall is taken as the characteristic point mc2;
  • the characteristic point mc2 is taken as the starting point plus the time value of the preset time TD2 as the center, and the noise starting point is searched in the noise waveform within a preset range of points before and after the center As the characteristic point md; take the characteristic point md as the starting point plus the preset bias time TD3 as the starting point
  • the SG hook opening time T1 and the SG hook closing time T2 are calculated, and it is determined whether the SG hook opening time and the SG hook closing time are less than or equal to a preset time period, if otherwise Carry out a fault alarm.
  • T1 is greater than 150ms, if it is, a fault alarm is issued, if T2 is greater than 150ms, and if it is, an alarm is issued.
  • the method for monitoring the claw action of the control rod driving mechanism of the nuclear power plant further includes the step (S5) of generating a monitoring report according to the monitoring signal, printing and deriving the monitoring report.
  • the exported monitoring report is a PDF file.
  • the monitoring signal includes the action time of each claw, the action timing of the claw, and so on.
  • the specific feature points and the timing sequence of the feature points are designed and determined by the technical personnel according to actual needs, and are not limited to the above-mentioned embodiments.
  • the application also discloses an electronic device, including: a data acquisition system, a microphone device, one or more processors; a memory; and one or more programs.
  • the data acquisition system is used to collect LC coil current signals and MG coil current signals And the SG coil current signal;
  • the microphone device is used to collect the noise generated by the action of the hook;
  • the one or more programs are stored in the memory and are configured to be executed by one or more processors, and the programs include Instructions for performing the above-mentioned method for monitoring the claw action of the control rod drive mechanism of a nuclear power plant.
  • the electronic equipment is a device for monitoring and diagnosing the action waveform of the claw action of the control rod drive mechanism (CRDM) of a million-kilowatt pressurized water reactor nuclear power plant, which specifically includes a PXI chassis, a measurement chassis, and a signal conversion chassis installed in the monitoring cabinet And related software to collect the noise signal of the hook action and the current signals of the three coils.
  • the software analyzes and processes the signals of all the control rods of each group in real time, and implements the above-mentioned method of monitoring the hook action of the control rod drive mechanism of the nuclear power plant.
  • each CRDM installs a microphone.
  • the range of the number of steps for raising and lowering the control rod is 0-232.
  • the waveform timing is inconsistent with the normal raising, so it will be processed separately.
  • the moving rod speed of the control rod is 6-72step/min, the timing of a moving rod is about 780ms, and the sampling rate of the signal acquisition card is 1KHz. If the control rod runs at the maximum speed (833ms), the acquisition card can still collect the complete moving rod waveform.
  • the monitoring cabinet mainly includes a single cabinet, which is mainly composed of a PXI chassis (including 1 PXIe-8135 controller module, 1 NI 8260 data storage module and 6 PXI-6225 data acquisition modules), signal conversion chassis, power supply chassis, and sensors , Printer, network card, microphone and other parts.
  • the network card is used for the required data communication to export the monitoring report, and the printer is used for printing the monitoring report.
  • the sensor is used to collect the coil current signal
  • the microphone is used to collect the noise
  • the data acquisition module is connected to the sensor and the microphone to transmit the collected coil current signal and noise signal to the signal conversion box, and then the signal conversion box is converted to the controller module for processing
  • the data storage module is used to store data
  • the power supply chassis is used to supply power to the modules of the monitoring cabinet.
  • the data acquisition system includes sensors, microphones and data acquisition modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种核电站控制棒驱动机构钩爪动作监测方法,包括:采集提棒和插棒时LC、MG、SG线圈的电流信号以及钩爪动作产生的噪音,以生成监测波形;在监测波形中识别MG线圈和LC线圈闭合起始的特征点ma1、mb1,并依据特征点ma1、mb1的先后顺序识别提棒或插棒;按照与提棒或插棒对应的特征点时序,以特征点ma1、mb1为起点在监测波形中搜索每一线圈动作起始的特征点和对应钩爪动作结束的特征点;依据特征点计算对应钩爪动作时间,判断钩爪动作时间是否合法并生成监测信号,检测方便,测量准确,监测精准度高。本申请还公开了对应的电子设备和可读存储介质。

Description

核电站控制棒驱动机构钩爪动作监测方法及电子设备 技术领域
本申请涉及一种核电领域,尤其涉及核电站中控制棒驱动机构中钩爪动作监测方法。
背景技术
在核电站启堆、功率转换和停堆过程中,通过控制控制棒的提升、插入和保持运动,从而控制反应堆的反应性,保证反应堆始终工作在受控状态。根据控制棒在堆芯中的不同位置和功能,通常将控制棒分组(如温度棒组、功率棒组、停堆棒组等等),同一子组内的4根控制棒在堆芯中对称布置(堆芯中心的控制棒单独为1个子组),且在运行时联动。
控制棒的提升、插入和保持运动是通过控制棒驱动机构(电磁线圈,CRDM)来实现的,控制棒驱动机构通过驱动杆组件与控制棒连接。控制棒驱动机构一般采用步进式磁力提升型,其线圈组件一般包含3个电磁线圈,即:提升线圈(LC线圈)、移动线圈(MG线圈)、保持线圈(SG线圈)。线圈组件的电磁线圈和磁轭与钩爪组件对应的铁芯部件构成了3个“电磁铁”,从上到下分别是“提升电磁铁”、“移动电磁铁”和“保持电磁铁”。其作用如下:提升线圈(LC线圈)激磁,使提升衔铁吸合,带动移动钩爪(MG钩爪)提升一个步距;(LC线圈)去磁使提升衔铁打开,带动移动钩爪(MG钩爪)复位。移动线圈(MG线圈)激磁,使移动衔铁吸合,带动连杆向上移动,使移动钩爪(MG钩爪)摆入驱动杆环形槽中,与驱动杆环形齿啮合;MG线圈去磁使移动衔铁打开,带动连杆下降,使移动钩爪摆出驱动杆环形槽,与驱动杆环形齿脱离啮合。保持线圈(SG线圈)激磁,使保持衔铁吸合,带动连杆向上移动,使保持钩爪(SG钩爪)摆入驱动杆环形槽中,与驱动杆环形齿啮合;SG线圈去磁使保持衔铁打开,带动连杆下降,使保持钩爪(SG钩爪)摆出驱动杆环形槽,与驱动杆环形齿脱离啮合。
控制棒控制系统按照设定好的顺序分别给3个电磁线圈发送不同的电流从而控制线圈的激磁和去磁,就可以使与之对应的钩爪组件中的3个“电磁铁” 铁芯部件投入运行,从而控制驱动杆组件的运动带动控制棒提升、插入或者保持。当钩爪动作时间出现故障时,往往会导致控制棒失控,出现滑棒、掉棒等故障,故需要对整个提棒插棒过程中,钩爪动作的时间进行监测,故需要计算钩爪动作的起始和结束时间。
参考中国专利CN200610152151.4,公开了压水堆核电站控制棒驱动机构在线监测及故障诊断方法,该专利中求取极值点并对波形进行折线处理,对折线化后的波形端点进行优化处理,然后依据波形变化趋势识别线圈电流的特征点,检查电流大小及波动幅度,依据电流大小及波动幅度判断步序和动作时间,以诊断控制棒动作时间,然而,这种方法具有以下问题:①先折线化处理,再进行识别判断,会使得原始波形失真,再进行特征点识别有可能漏掉某些故障波形,造成诊断不准确。②由于在控制棒内线圈采集时出现干扰,容易出现误识别,直接从波形变化趋势进行动作识别,容易因为控制棒内的环境干扰出现误判断。③线圈去磁不代表着钩爪结束动作,故这种诊断方法并不能准确判断出钩爪动作的时间,测量误差大。
故,急需一种解决上述问题的核电站控制棒驱动机构钩爪动作监测方法。
申请内容
本申请的目的是提供一种核电站控制棒驱动机构钩爪动作监测方法、电子设备及可读存储介质,检测方便,测量准确,监测精准度高。
为了实现上有目的,本申请公开了一种核电站控制棒驱动机构钩爪动作监测方法,包括以下步骤:(1)采集提棒和插棒时,LC线圈电流信号、MG线圈电流信号、SG线圈电流信号,以及钩爪动作产生的噪音,以生成钩爪动作监测波形;(2)在监测波形中识别MG线圈电流信号和LC线圈电流信号的起点以获得MG线圈闭合起始的特征点ma1和LC线圈闭合起始的特征点mb1,并依据所述特征点ma1和特征点mb1的先后顺序确定所述监测波形为提棒波形或插棒波形;(3)按照与所述提棒波形或插棒波形对应的特征点时序,以所述特征点ma1和特征点mb1为起点在所述监控波形中搜索每一线圈动作起始的特征点和对应钩爪动作结束的特征点,所述特征点时序为依据与提棒波形或插棒波形对应的预设线圈电流控制时序确定的监测波形中每一线圈动作起始的特征点和对应钩爪动作结束的特征点的时序;(4)依据所述特征点计算对应钩爪动作时间, 并判断所述钩爪动作时间是否符合预设范围,以生成对应的监测信号。
与现有技术相比,本申请分别采集各个CRDM线圈电流和钩爪动作产生的噪音,先采集MG线圈电流信号和LC线圈电流信号的起点以获得MG线圈闭合起始的特征点ma1和LC线圈闭合起始的特征点mb1,以特征点ma1和特征点mb1为基础,识别提棒或插棒并进行其他特征点检测,由于MG线圈和LC线圈闭合往往处于开始阶段,使得检测时干扰少,检测结果稳定。另一方面,通过噪音信号可以准确确定钩爪动作停止时间点,测量准确。再一方面,本申请以特征点ma1和特征点mb1为起始点,依据提棒和插棒的线圈电流控制顺序,依次判断下一个线圈动作的起始点,即依据前一个线圈动作起始点判断后一个线圈动作起始点,不易由于干扰出现错误识别,监测精准度高。
较佳地,所述步骤(3)具体包括:按照对应的所述特征点时序,以所述特征点ma1和特征点mb1为起点在对应的LC线圈电流信号、MG线圈电流信号、SG线圈电流信号的波形中依次搜索下一线圈动作起始的特征点,并以每一线圈动作起始的特征点为起点在噪音波形中搜索对应钩爪动作结束的特征点。
较佳地,所述步骤(2)具体包括:在监测波形中识别所述MG线圈从零电流开始提升的起点并将其作为MG线圈闭合起始的特征点ma1,在监测波形中识别所述LC线圈电流从零电流开始提升的起点并将其作为特LC线圈闭合起始的征点mb1,判断特征点ma1和特征点mb1的先后顺序,将特征点ma1位于特征点mb1之前的监测波形确定为提棒波形,将所述特征点ma1位于特征点mb1之后的监测波形确定为插棒波形。
较佳地,所述特征点还包括SG钩爪和MG钩爪交替抓取控制棒过程中产生的载荷转移特征点md,所述步骤(3)中,计算SG钩爪和MG钩爪交替过程中的钩爪结束时间具备步骤包括:确定交替中SG线圈打开起始的特征点mc2,并以特征点mc2为起点在噪音波形中搜索下一个噪音起始点为特征点md,以特征点md为起点加上预设偏置时间的时间值为中心,在该中心前后预设个点的范围内寻找符合预设需求的噪音起始点作为交替中SG钩爪打开结束的特征点m c2+1。
较佳地,在一次提棒或一次插棒过程中,前N个钩爪动作结束的特征点确定方法为:以所述线圈动作起始的特征点为起点在所述噪音波形中下一个噪音 起始点作为对应钩爪动作结束的特征点;第N+1个之后的钩爪动作结束的特征点确定方法为:以对应线圈动作起始的特征点为起点加上该钩爪动作预设时间的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为对应钩爪动作结束的特征点,N等于1或2。
其中,第一次提棒时所述特征点按照时序包括:MG钩爪起始闭合的特征点ma1、MG钩爪闭合到位的特征点ma1+1、LC线圈闭合起始的特征点mb1、MG钩爪提升到位的特征点mb1+1、SG线圈闭合起始的特征点mc1、SG钩爪闭合到位的特征点mc1+1、MG线圈打开起始的特征点ma2、LC线圈打开起始的特征点mb2、MG钩爪打开到位的特征点ma2+1、MG钩爪下降到位的特征点mb2+1。
其中,第二次及第二次以上提棒时所述特征点按照时序包括:MG钩爪起始闭合的特征点ma1、MG钩爪闭合到位的特征点ma1+1、SG线圈打开起始的特征点mc2、载荷转移特征点md、LC线圈闭合起始的特征点mb1、SG钩爪打开到位的特征点mc2+1、MG钩爪提升到位的特征点mb1+1、SG线圈闭合起始的特征点mc1、SG钩爪闭合到位的特征点mc1+1、MG线圈打开起始的特征点ma2、LC线圈打开起始的特征点mb2、MG钩爪打开到位的特征点ma2+1、MG钩爪下降到位的特征点mb2+1。
其中,插棒时所述特征点按照时序包括:LC线圈闭合起始的特征点mb1、MG钩爪提升到位的特征点mb1+1、MG线圈闭合起始的特征点ma1、MG钩爪闭合到位的特征点ma1+1、SG线圈打开起始的特征点mc2、载荷转移特征点md、SG钩爪打开到位特征点mc2+1、LC线圈打开起始的特征点mb2、MG钩爪下降到位的特征点mb2+1、SG线圈闭合起始的特征点mc1、SG钩爪闭合到位的特征点mc1+1、MG线圈打开起始的特征点ma2、MG钩爪打开到位的特征点ma2+1。
具体地,所述步骤(3)中在第一次提棒时:以特征点ma1为起点于噪音波形中搜索下一个噪音起始点作为特征点ma1+1;以特征点mb1为起点于噪音波形中搜索下一个噪音起始点作为特征点mb1+1;以特征点mb1为起点于SG线圈电流信号的波形中搜索SG线圈从零电流开始提升的起始点作为特征点mc1;以特征点mc1为起点加上预设时间Tmc1的时间值为中心,在该中心前后预设 个点的范围内于噪音波形中搜索噪音起始点作为特征点mc1+1;以特征点mc1为起点于MG线圈电流信号的波形中搜索MG线圈从全电流开始下降的起始点作为特征点ma2;以特征点ma2为起点于LC线圈电流信号的波形中搜索LC线圈从半电流开始下降的起始点为特征点mb2;以特征点ma2为起点加上预设时间Tma2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点ma2+1;以特征点mb2为起点加上预设时间Tmb2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb2+1。
具体地,所述步骤(3)中在第二次及第二次以上提棒时:以特征点ma1为起点于噪音波形中搜索下一个噪音起始点作为特征点ma1+1;以特征点ma1+1或特征点ma1为起点于SG线圈电流信号的波形中搜索SG线圈从全电流开始下降的起始点作为特征点mc2;以特征点mc2为起点于噪音波形中搜索下一个噪音起始点作为特征点md;以特征点md为起点加上预设偏置时间TD1于噪音波形中搜索下一个噪音起始点作为特征点mc2+1;以特征点mb1为起点加上预设时间Tmb1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb1+1;以特征点mb1为起点于SG线圈电流信号的波形中搜索SG线圈从零电流开始提升的起始点作为特征点mc1;以特征点mc1为起点加上预设时间Tmc1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mc1+1;以特征点mc1为起点于MG线圈电流信号的波形中搜索MG线圈从全电流开始下降的起始点作为特征点ma2;以特征点ma2为起点于LC线圈电流信号的波形中搜索LC线圈从半电流开始下降的起始点为特征点mb2;以特征点ma2为起点加上预设时间Tma2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点ma2+1;以特征点mb2为起点加上预设时间Tmb2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb2+1。
具体地,所述步骤(3)中在插棒时:以特征点mb1起点加上预设时间Tmb1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb1+1;以特征点ma1为起点于噪音波形中搜索下一个噪音起始点作为特征点ma1+1;以特征点ma1为起点于SG线圈电流信号的波形中搜索 SG线圈从全电流开始下降的起始点作为特征点mc2;以特征点mc2为起点加上预设时间TD2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点md;以特征点md为起点加上预设偏置时间TD3为起点于噪音波形中搜索下一个噪音起始点作为特征点mc2+1;以特征点mc2为起点于LC线圈电流信号的波形中搜索LC线圈从半电流开始下降的起始点作为特征点mb2;以特征点mb2为起点加上预设时间Tmb2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb2+1;以特征点mb2为起点于SG线圈电流信号的波形中搜索SG线圈从零电流开始提升的起始点作为特征点mc1;以特征点mc1为起点加上预设时间Tmc1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mc1+1;以特征点mc1为起点于MG线圈电流信号的波形中搜索MG线圈从全电流开始下降的起始点作为特征点ma2;以特征点ma2为起点加上预设时间Tma2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点ma2+1。
较佳地,所述步骤(4)中,计算SG钩爪打开时间和SG钩爪闭合时间,判断所述SG钩爪打开时间和SG钩爪闭合时间是否小于等于预设时长,若否则进行故障报警。
较佳地,所述核电站控制棒驱动机构钩爪动作监测方法还包括步骤(5),依据监测信号生成监测报告,打印并导出所述监测报告。
本申请还公开了一种电子设备,包括:数据采集系统,用于采集LC线圈电流信号、MG线圈电流信号和SG线圈电流信号;麦克风设备,用于采集钩爪动作产生的噪音;一个或多个处理器;存储器;以及一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被配置成由一个或多个处理器执行,所述程序包括用于执行如上所述的核电站控制棒驱动机构钩爪动作监测方法的指令。
本申请还公开了一种计算机可读存储介质,包括与具有存储器的电子设备结合使用的计算机程序,所述计算机程序可被处理器执行如上所述的核电站控制棒驱动机构钩爪动作监测方法。
附图说明
图1是本申请所述核电站控制棒驱动机构钩爪动作监测方法的流程图。
图2是本申请第一次提棒动作时的监测波形图。
图3是本申请第二次及第二次以后提棒动作的监测波形图。
图4是本申请插棒动作时的监测波形图。
具体实施方式
为详细说明本申请的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
参考图1至图4,本申请公开了一种核电站控制棒驱动机构钩爪动作监测方法,包括以下步骤:(S1)采集提棒和插棒时,LC线圈电流信号与生产LC波形、MG线圈电流信号以生成MG波形、SG线圈电流信号以生成SG波形,以及采集钩爪动作产生的噪音以生成MICRO波形(噪音波形),从而生成包含LC波形、MG波形、SG波形和噪音波形的钩爪动作监测波形;(S2)在监测波形中识别MG线圈电流信号和LC线圈电流信号的起点以获得MG线圈闭合起始的特征点ma1和LC线圈闭合起始的特征点mb1,并依据所述特征点ma1和特征点mb1的先后顺序确定所述监测波形为提棒波形或插棒波形;(S3)按照与所述提棒波形或插棒波形对应的特征点时序,以所述特征点ma1和特征点mb1为起点在所述监控波形中搜索每一线圈动作起始的特征点和对应钩爪动作结束的特征点;(S4)依据所述特征点计算对应钩爪动作时间,并判断所述钩爪动作时间是否符合预设范围,以生成对应的监测信号。本申请中,钩爪动作起始的特征点即为对应的线圈闭合的起始点。
其中,所述特征点时序为预设值,是依据与提棒波形或插棒波形对应的预设线圈电流控制时序确定的监测波形中每一线圈动作起始的特征点和对应钩爪动作结束的特征点的时序,是技术人员依据预设的线圈电流控制时序和试验所得的特征点时序表决定的,预设的线圈电流控制时序是与提棒波形(提棒作业工序)或者插棒波形(插棒作业工序)对应的控制时序:包括预先设置的LC线圈、SG线圈和MG线圈电流的控制时序。
其中,线圈动作对应的钩爪动作分别为:LC线圈闭合动作对应MG钩爪提升动作,LC线圈打开动作对应MG钩爪下降动作,SG线圈闭合动作对应SG钩爪闭合动作,SG线圈打开动作对应SG钩爪打开动作,MG线圈闭合动作对 应MG钩爪闭合动作,MG线圈打开动作对应MG钩爪打开动作。
较佳者,按照与提棒波形或插棒波形对应的预设线圈电流控制时序并以所述特征点ma1和特征点mb1为起点在对应的LC线圈电流信号、MG线圈电流信号、SG线圈电流信号的波形中依次搜索下一线圈动作起始的特征点,并以每一线圈动作起始的特征点为起点在噪音波形中搜索对应钩爪动作结束的特征点。当然,也可以直接以前一特征点搜索后一特征点。
较佳者,所述步骤(S2)具体包括:在MG波形中识别所述MG线圈从零电流开始提升的起点并将其作为MG线圈闭合起始的特征点ma1,在LC波形中识别所述LC线圈电流从零电流开始提升的起点并将其作为特LC线圈闭合起始的征点mb1,判断特征点ma1和特征点mb1的先后顺序,将特征点ma1位于特征点mb1之前的监测波形确定为提棒波形(如图2和图3所示),将所述特征点ma1位于特征点mb1之后的监测波形确定为插棒波形(如图4所示)。其中,在波形采集时,采集到的一个监测波形一般为一个提棒动作或插棒动作的波形,当检测发现该监测波形并非为一个提棒或插棒动作的完整波形时,保留该波形并截取下一段采集的前端部分波形,以使该段波形完整。
参考图3和图4,所述特征点还包括SG钩爪和MG钩爪交替抓取控制棒过程中产生的载荷转移特征点md,所述步骤(S3)中,计算SG钩爪和MG钩爪交替过程中的钩爪结束时间具备步骤包括:确定交替中SG线圈打开起始的特征点mc2,并以特征点mc2为起点在噪音波形中搜索下一个噪音起始点为特征点md,以特征点md为起点加上预设偏置时间的时间值为中心,在该中心前后预设个点的范围内寻找符合预设需求的噪音起始点作为交替中SG钩爪打开结束的特征点m c2+1。
其中,在一次提棒或一次插棒过程中,前N个钩爪动作结束的特征点确定方法为:以所述线圈动作起始的特征点为起点在所述噪音波形中下一个噪音起始点作为对应钩爪动作结束的特征点;第N+1个之后的钩爪动作结束的特征点确定方法为:以对应线圈动作起始的特征点为起点加上该钩爪动作预设时间的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为对应钩爪动作结束的特征点。N等于1或2的整数,前几个钩爪动作由于时噪音干扰少,一般只有一个钩爪处于动作中,使得可直接在波形中搜索下一 噪音起始点作为对应的钩爪动作结束特征点。当然,也可以对所有的钩爪动作结束特征点,使用“以对应线圈动作起始的特征点为起点加上该钩爪动作预设时间的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为对应钩爪动作结束的特征点”这一方法进行搜寻。
参考图2,第一次提棒时所述特征点按照时序包括:MG钩爪起始闭合的特征点ma1、MG钩爪闭合到位的特征点ma1+1、LC线圈闭合起始的特征点mb1、MG钩爪提升到位的特征点mb1+1、SG线圈闭合起始的特征点mc1、SG钩爪闭合到位的特征点mc1+1、MG线圈打开起始的特征点ma2、LC线圈打开起始的特征点mb2、MG钩爪打开到位的特征点ma2+1、MG钩爪下降到位的特征点mb2+1。
继续参考图2,所述步骤(S3)中在第一次提棒时:以特征点ma1为起点于噪音波形中搜索下一个噪音起始点作为特征点ma1+1;以特征点mb1为起点于噪音波形中搜索下一个噪音起始点作为特征点mb1+1;以特征点mb1为起点于SG线圈电流信号的波形中搜索SG线圈从零电流开始提升的起始点作为特征点mc1;以特征点mc1为起点加上预设时间Tmc1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mc1+1;以特征点mc1为起点于MG线圈电流信号的波形中搜索MG线圈从全电流开始下降的起始点作为特征点ma2;以特征点ma2为起点于LC线圈电流信号的波形中搜索LC线圈从半电流开始下降的起始点为特征点mb2;以特征点ma2为起点加上预设时间Tma2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点ma2+1;以特征点mb2为起点加上预设时间Tmb2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb2+1。本实施例中,预设个点为50个点。预设时间的取值由经验和历史统计获得,可依据预设的周期按照历史统计数据进行更新。
继续参考图2,在步骤(S4)中,分别计算SG钩爪关闭时间T2=(mc1+1)-(mc1),MG钩爪闭合时间T3=(ma1+1)-(ma1),MG钩爪打开时间T4=(ma2+1)-(ma2),MG钩爪上升时间(即LC上电提升时间)T5=(mb1+1)-(mb1),MG钩爪下降时间(即LC断电下落时间)T7=(mb2+1)-(mb2),并确定上述钩爪动作时间是否超出预设范围,若是则进行报警。
参考图3,第二次及第二次以上提棒时所述特征点按照时序包括:MG钩爪起始闭合的特征点ma1、MG钩爪闭合到位的特征点ma1+1、SG线圈打开起始的特征点mc2、载荷转移特征点md、LC线圈闭合起始的特征点mb1、SG钩爪打开到位的特征点mc2+1、MG钩爪提升到位的特征点mb1+1、SG线圈闭合起始的特征点mc1、SG钩爪闭合到位的特征点mc1+1、MG线圈打开起始的特征点ma2、LC线圈打开起始的特征点mb2、MG钩爪打开到位的特征点ma2+1、MG钩爪下降到位的特征点mb2+1。
继续参考图3,所述步骤(S3)中在第二次及第二次以上提棒时:以特征点ma1为起点于噪音波形中搜索下一个噪音起始点作为特征点ma1+1;以特征点ma1+1或特征点ma1为起点于SG线圈电流信号的波形中搜索SG线圈从全电流开始下降的起始点作为特征点mc2;以特征点mc2为起点于噪音波形中搜索下一个噪音起始点作为特征点md;以特征点md为起点加上预设偏置时间TD1于噪音波形中搜索下一个噪音起始点作为特征点mc2+1;以特征点mb1为起点加上预设时间Tmb1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb1+1;以特征点mb1为起点于SG线圈电流信号的波形中搜索SG线圈从零电流开始提升的起始点作为特征点mc1;以特征点mc1为起点加上预设时间Tmc1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mc1+1;以特征点mc1为起点于MG线圈电流信号的波形中搜索MG线圈从全电流开始下降的起始点作为特征点ma2;以特征点ma2为起点于LC线圈电流信号的波形中搜索LC线圈从半电流开始下降的起始点为特征点mb2;以特征点ma2为起点加上预设时间Tma2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点ma2+1;以特征点mb2为起点加上预设时间Tmb2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb2+1。
继续参考图3,在步骤(S4)中,分别计算SG钩爪打开时间T1=(mc2+1)-(mc2),SG钩爪关闭时间T2=(mc1+1)-(mc1),MG钩爪闭合时间T3=(ma1+1)-(ma1),MG钩爪打开时间T4=(ma2+1)-(ma2),MG钩爪上升时间(即LC上电提升时间)T5=(mb1+1)-(mb1),负荷转移时间T6=(md-)(mc2), MG钩爪下降时间(即LC断电下落时间),T7=(mb2+1)-(mb2),并确定上述钩爪动作时间是否超出预设范围,若是则进行报警。
参考图4,插棒时所述特征点按照时序包括:LC线圈闭合起始的特征点mb1、MG钩爪提升到位的特征点mb1+1、MG线圈闭合起始的特征点ma1、MG钩爪闭合到位的特征点ma1+1、SG线圈打开起始的特征点mc2、载荷转移特征点md、SG钩爪打开到位特征点mc2+1、LC线圈打开起始的特征点mb2、MG钩爪下降到位的特征点mb2+1、SG线圈闭合起始的特征点mc1、SG钩爪闭合到位的特征点mc1+1、MG线圈打开起始的特征点ma2、MG钩爪打开到位的特征点ma2+1。
继续参考图4,所述步骤(S3)中在插棒时:以特征点mb1起点加上预设时间Tmb1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb1+1;以特征点ma1为起点于噪音波形中搜索下一个噪音起始点作为特征点ma1+1;以特征点ma1为起点于SG线圈电流信号的波形中搜索SG线圈从全电流开始下降的起始点作为特征点mc2;以特征点mc2为起点加上预设时间TD2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点md;以特征点md为起点加上预设偏置时间TD3为起点于噪音波形中搜索下一个噪音起始点作为特征点mc2+1;以特征点mc2为起点于LC线圈电流信号的波形中搜索LC线圈从半电流开始下降的起始点作为特征点mb2;以特征点mb2为起点加上预设时间Tmb2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb2+1;以特征点mb2为起点于SG线圈电流信号的波形中搜索SG线圈从零电流开始提升的起始点作为特征点mc1;以特征点mc1为起点加上预设时间Tmc1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mc1+1;以特征点mc1为起点于MG线圈电流信号的波形中搜索MG线圈从全电流开始下降的起始点作为特征点ma2;以特征点ma2为起点加上预设时间Tma2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点ma2+1。
继续参考图4,在步骤(S4)中,分别计算SG钩爪打开时间T1=(mc2+1)-(mc2),SG钩爪关闭时间T2=(mc1+1)-(mc1),MG钩爪闭合时间T3=(ma1+1) -(ma1),MG钩爪打开时间T4=(ma2+1)-(ma2),MG钩爪上升时间(即LC上电提升时间)T5=(mb1+1)-(mb1),负荷转移时间T6=(md-)(mc2),MG钩爪下降时间(即LC断电下落时间)T7=(mb2+1)-(mb2),并确定上述钩爪动作时间是否超出预设范围,若是则进行报警。
较佳者,所述步骤(S4)中,计算SG钩爪打开时间T1和SG钩爪闭合时间T2,判断所述SG钩爪打开时间和SG钩爪闭合时间是否小于等于预设时长,若否则进行故障报警。本实施例中,判断T1是否大于150ms,若是则进行故障报警,T2是否大于150ms,若是则进行报警。
较佳者,所述核电站控制棒驱动机构钩爪动作监测方法还包括步骤(S5),依据监测信号生成监测报告,打印并导出所述监测报告。其中,导出的监测报告为PDF文件。监测信号包括各个钩爪动作时间、钩爪动作时序等等。
其中,具体的特征点有哪些,特征点时序是什么,由技术人员依据实际需要设计确定,并不限于上述实施例。
本申请还公开了一种电子设备,包括:数据采集系统、麦克风设备、一个或多个处理器;存储器;以及一个或多个程序,数据采集系统用于采集LC线圈电流信号、MG线圈电流信号和SG线圈电流信号;麦克风设备用于采集钩爪动作产生的噪音;所述一个或多个程序被存储在所述存储器中,并且被配置成由一个或多个处理器执行,所述程序包括用于执行如上所述的核电站控制棒驱动机构钩爪动作监测方法的指令。
具体地,该电子设备为百万千瓦级压水堆核电站控制棒驱动机构(CRDM)钩爪动作波形监测与诊断的装置,其具体包括安装在监测柜内的PXI机箱、测量机箱、信号转换机箱及相关软件来采集钩爪动作的噪音信号和三个线圈电流信号,软件实时对每一个组的所有控制棒的信号进行分析和处理,执行如上所述的核电站控制棒驱动机构钩爪动作监测方法的指令,以识别控制棒处于第一步提棒、正常提棒、插棒的某一状态,并根据响应的波形识别算法和诊断原理进分析,所有结果以报表的形式打印或者导出到PDF文件。其中,每个CRDM安装一个麦克风。
其中,控制棒提升和下插步数范围是0-232,控制棒由0步第一次提升时,波形时序与普通提升不一致,因此会区别处理。控制棒动棒速度是6-72step/min, 一次动棒时序大概780ms,信号采集卡采样率为1KHz,若控制棒以最大速度(833ms)运行,采集卡仍然能够采集到完整的动棒波形。
监测柜主要包括一个单联机柜,主要由PXI机箱(包含1个PXIe-8135控制器模块、1个NI 8260数据存储模块和6个PXI-6225数据采集模块)、信号转换机箱、电源机箱、传感器、打印机、网卡、麦克风等部分组成。网卡用于进行需要的数据通信以导出监测报告,打印机用于打印监测报告。传感器用于采集线圈电流信号,麦克风用于采集噪音,数据采集模块接传感器和麦克风以将采集到的线圈电流信号和噪音信号输送至信号转换机箱,经由信号转换机箱转换后输送至控制器模块进行处理,数据存储模块用于存储数据,电源机箱用于对监测柜各模块供电。数据采集系统包括传感器、麦克风和数据采集模块。
以上所揭露的仅为本申请的优选实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请申请专利范围所作的等同变化,仍属本申请所涵盖的范围。

Claims (11)

  1. 一种核电站控制棒驱动机构钩爪动作监测方法,其特征在于:包括以下步骤:
    (1)采集提棒和插棒时,LC线圈电流信号、MG线圈电流信号、SG线圈电流信号,以及钩爪动作产生的噪音,以生成钩爪动作监测波形;
    (2)在监测波形中识别MG线圈电流信号和LC线圈电流信号的起点以获得MG线圈闭合起始的特征点ma1和LC线圈闭合起始的特征点mb1,并依据所述特征点ma1和特征点mb1的先后顺序确定所述监测波形为提棒波形或插棒波形;
    (3)按照与所述提棒波形或插棒波形对应的特征点时序,以所述特征点ma1和特征点mb1为起点在所述监控波形中搜索每一线圈动作起始的特征点和对应钩爪动作结束的特征点,所述特征点时序为依据与提棒波形或插棒波形对应的预设线圈电流控制时序确定的监测波形中每一线圈动作起始的特征点和对应钩爪动作结束的特征点的时序;
    (4)依据所述特征点计算对应钩爪动作时间,并判断所述钩爪动作时间是否符合预设范围,以生成对应的监测信号。
  2. 如权利要求1所述的核电站控制棒驱动机构钩爪动作监测方法,其特征在于:所述步骤(3)具体包括:按照对应的所述特征点时序,以所述特征点ma1和特征点mb1为起点在对应的LC线圈电流信号、MG线圈电流信号、SG线圈电流信号的波形中依次搜索下一线圈动作起始的特征点,并以每一线圈动作起始的特征点为起点在噪音波形中搜索对应钩爪动作结束的特征点。
  3. 如权利要求1所述的核电站控制棒驱动机构钩爪动作监测方法,其特征在于:所述步骤(2)具体包括:在监测波形中识别所述MG线圈从零电流开始提升的起点并将其作为MG线圈闭合起始的特征点ma1,在监测波形中识别所述LC线圈电流从零电流开始提升的起点并将其作为特LC线圈闭合起始的征点mb1,判断特征点ma1和特征点mb1的先后顺序,将特征点ma1位于特征点mb1之前的监测波形确定为提棒波形,将所述特征点ma1位于特征点mb1之后的监测波形确定为插棒波形。
  4. 如权利要求1所述的核电站控制棒驱动机构钩爪动作监测方法,其特征在于:所述特征点还包括SG钩爪和MG钩爪交替抓取控制棒过程中产生的载荷转移特征点md,所述步骤(3)中,计算SG钩爪和MG钩爪交替过程中的钩爪结束时间具备步骤包括:确定交替中SG线圈打开起始的特征点mc2,并以特征点mc2为起点在噪音波形中搜索下一个噪音起始点为特征点md,以特征点md为起点加上预设偏置时间的时间值为中心,在该中心前后预设个点的范围内寻找符合预设需求的噪音起始点作为交替中SG钩爪打开结束的特征点mc2+1。
  5. 如权利要求1所述的核电站控制棒驱动机构钩爪动作监测方法,其特征在于:在一次提棒或一次插棒过程中,前N个钩爪动作结束的特征点确定方法为:以所述线圈动作起始的特征点为起点在所述噪音波形中下一个噪音起始点作为对应钩爪动作结束的特征点;第N+1个之后的钩爪动作结束的特征点确定方法为:以对应线圈动作起始的特征点为起点加上该钩爪动作预设时间的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为对应钩爪动作结束的特征点,N等于1或2。
  6. 如权利要求1所述的核电站控制棒驱动机构钩爪动作监测方法,其特征在于:
    第一次提棒所述特征点按照时序包括:MG钩爪起始闭合的特征点ma1、MG钩爪闭合到位的特征点ma1+1、LC线圈闭合起始的特征点mb1、MG钩爪提升到位的特征点mb1+1、SG线圈闭合起始的特征点mc1、SG钩爪闭合到位的特征点mc1+1、MG线圈打开起始的特征点ma2、LC线圈打开起始的特征点mb2、MG钩爪打开到位的特征点ma2+1、MG钩爪下降到位的特征点mb2+1;
    第二次及第二次以上提棒时所述特征点按照时序包括:MG钩爪起始闭合的特征点ma1、MG钩爪闭合到位的特征点ma1+1、SG线圈打开起始的特征点mc2、载荷转移特征点md、LC线圈闭合起始的特征点mb1、SG钩爪打开到位的特征点mc2+1、MG钩爪提升到位的特征点mb1+1、SG线圈闭合起始的特征点mc1、SG钩爪闭合到位的特征点mc1+1、MG线圈打开起始的特征点ma2、LC线圈打开起始的特征点mb2、MG钩爪打开到位的特征点ma2+1、MG钩爪下降到位的特征点mb2+1;
    插棒时所述特征点按照时序包括:LC线圈闭合起始的特征点mb1、MG钩 爪提升到位的特征点mb1+1、MG线圈闭合起始的特征点ma1、MG钩爪闭合到位的特征点ma1+1、SG线圈打开起始的特征点mc2、载荷转移特征点md、SG钩爪打开到位特征点mc2+1、LC线圈打开起始的特征点mb2、MG钩爪下降到位的特征点mb2+1、SG线圈闭合起始的特征点mc1、SG钩爪闭合到位的特征点mc1+1、MG线圈打开起始的特征点ma2、MG钩爪打开到位的特征点ma2+1。
  7. 如权利要求6所述的核电站控制棒驱动机构钩爪动作监测方法,其特征在于:所述步骤(3)中在第一次提棒时:
    以特征点ma1为起点于噪音波形中搜索下一个噪音起始点作为特征点ma1+1;
    以特征点mb1为起点于噪音波形中搜索下一个噪音起始点作为特征点mb1+1;
    以特征点mb1为起点于SG线圈电流信号的波形中搜索SG线圈从零电流开始提升的起始点作为特征点mc1;
    以特征点mc1为起点加上预设时间Tmc1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mc1+1;
    以特征点mc1为起点于MG线圈电流信号的波形中搜索MG线圈从全电流开始下降的起始点作为特征点ma2;
    以特征点ma2为起点于LC线圈电流信号的波形中搜索LC线圈从半电流开始下降的起始点为特征点mb2;
    以特征点ma2为起点加上预设时间Tma2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点ma2+1;
    以特征点mb2为起点加上预设时间Tmb2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb2+1;
    所述步骤(3)中在第二次及第二次以上提棒时:
    以特征点ma1为起点于噪音波形中搜索下一个噪音起始点作为特征点ma1+1;
    以特征点ma1+1或特征点ma1为起点于SG线圈电流信号的波形中搜索SG线圈从全电流开始下降的起始点作为特征点mc2;
    以特征点mc2为起点于噪音波形中搜索下一个噪音起始点作为特征点md;
    以特征点md为起点加上预设偏置时间TD1于噪音波形中搜索下一个噪音起始点作为特征点mc2+1;
    以特征点mb1为起点加上预设时间Tmb1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb1+1;
    以特征点mb1为起点于SG线圈电流信号的波形中搜索SG线圈从零电流开始提升的起始点作为特征点mc1;
    以特征点mc1为起点加上预设时间Tmc1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mc1+1;
    以特征点mc1为起点于MG线圈电流信号的波形中搜索MG线圈从全电流开始下降的起始点作为特征点ma2;
    以特征点ma2为起点于LC线圈电流信号的波形中搜索LC线圈从半电流开始下降的起始点为特征点mb2;
    以特征点ma2为起点加上预设时间Tma2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点ma2+1;
    以特征点mb2为起点加上预设时间Tmb2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb2+1;
    所述步骤(3)中在插棒时:
    以特征点mb1起点加上预设时间Tmb1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb1+1;
    以特征点ma1为起点于噪音波形中搜索下一个噪音起始点作为特征点ma1+1;
    以特征点ma1为起点于SG线圈电流信号的波形中搜索SG线圈从全电流开始下降的起始点作为特征点mc2;
    以特征点mc2为起点加上预设时间TD2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点md;
    以特征点md为起点加上预设偏置时间TD3为起点于噪音波形中搜索下一个噪音起始点作为特征点mc2+1;
    以特征点mc2为起点于LC线圈电流信号的波形中搜索LC线圈从半电流开始下降的起始点作为特征点mb2;
    以特征点mb2为起点加上预设时间Tmb2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mb2+1;
    以特征点mb2为起点于SG线圈电流信号的波形中搜索SG线圈从零电流开始提升的起始点作为特征点mc1;
    以特征点mc1为起点加上预设时间Tmc1的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点mc1+1;
    以特征点mc1为起点于MG线圈电流信号的波形中搜索MG线圈从全电流开始下降的起始点作为特征点ma2;
    以特征点ma2为起点加上预设时间Tma2的时间值为中心,在该中心前后预设个点的范围内于噪音波形中搜索噪音起始点作为特征点ma2+1。
  8. 如权利要求1所述的核电站控制棒驱动机构钩爪动作监测方法,其特征在于:所述步骤(4)中,计算SG钩爪打开时间和SG钩爪闭合时间,判断所述SG钩爪打开时间和SG钩爪闭合时间是否小于等于预设时长,若否则进行故障报警。
  9. 如权利要求1所述的核电站控制棒驱动机构钩爪动作监测方法,其特征在于:还包括步骤(5),依据监测信号生成监测报告,打印并导出所述监测报告。
  10. 一种电子设备,其特征在于:包括:
    数据采集系统,用于采集LC线圈电流信号、MG线圈电流信号和SG线圈电流信号;
    麦克风设备,用于采集钩爪动作产生的噪音;
    一个或多个处理器;
    存储器;以及
    一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被配置成由一个或多个处理器执行,所述程序包括用于执行如权利要求1-9中任一项所述的核电站控制棒驱动机构钩爪动作监测方法的指令。
  11. 一种计算机可读存储介质,包括与具有存储器的电子设备结合使用的计算机程序,其特征在于:所述计算机程序可被处理器执行如权利要求1-9中任一项所述的核电站控制棒驱动机构钩爪动作监测方法。
PCT/CN2020/099058 2019-08-28 2020-06-30 核电站控制棒驱动机构钩爪动作监测方法及电子设备 WO2021036484A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20857456.6A EP4009335A4 (en) 2019-08-28 2020-06-30 METHOD OF MONITORING THE HOOK EFFECT OF THE CONTROL ROD DRIVE MECHANISM OF A NUCLEAR POWER PLANT AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910804971.4A CN110570958B (zh) 2019-08-28 2019-08-28 核电站控制棒驱动机构钩爪动作监测方法及电子设备
CN201910804971.4 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021036484A1 true WO2021036484A1 (zh) 2021-03-04

Family

ID=68776601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099058 WO2021036484A1 (zh) 2019-08-28 2020-06-30 核电站控制棒驱动机构钩爪动作监测方法及电子设备

Country Status (3)

Country Link
EP (1) EP4009335A4 (zh)
CN (1) CN110570958B (zh)
WO (1) WO2021036484A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110570958B (zh) * 2019-08-28 2021-08-17 中广核研究院有限公司 核电站控制棒驱动机构钩爪动作监测方法及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071877A (ja) * 2000-08-29 2002-03-12 Mitsubishi Heavy Ind Ltd モニタリング方法およびその装置
JP2007198954A (ja) * 2006-01-27 2007-08-09 Mitsubishi Heavy Ind Ltd 制御棒駆動装置の健全性評価システム及び健全性評価方法
CN101067976A (zh) * 2006-09-15 2007-11-07 核电秦山联营有限公司 压水堆核电站控制棒驱动机构在线监测及故障诊断方法
CN104332195A (zh) * 2013-07-22 2015-02-04 中国核动力研究设计院 一种用于测量反应堆控制棒落棒时间的方法
CN105070334A (zh) * 2015-06-24 2015-11-18 中国核电工程有限公司 一种基于电流变化判断控制棒驱动机构动作的方法
CN105551543A (zh) * 2016-01-15 2016-05-04 中广核工程有限公司 一种用于核电站的棒控和棒位系统及其故障诊断方法
CN110570958A (zh) * 2019-08-28 2019-12-13 中广核研究院有限公司 核电站控制棒驱动机构钩爪动作监测方法及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511130B2 (ja) * 1989-02-03 1996-06-26 三菱重工業株式会社 制御棒駆動装置の作動分析装置
JPH0954186A (ja) * 1995-08-17 1997-02-25 Mitsubishi Heavy Ind Ltd 制御棒駆動装置の作動解析装置
CN104332196A (zh) * 2013-07-22 2015-02-04 中国核动力研究设计院 一种用于监测反应堆控制棒驱动机构动作点的方法
CN107507656B (zh) * 2017-06-30 2019-06-04 中广核核电运营有限公司 Crdm线圈测试系统及方法
CN109243644A (zh) * 2018-10-16 2019-01-18 中广核研究院有限公司 核电厂控制棒落棒时间检测方法及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071877A (ja) * 2000-08-29 2002-03-12 Mitsubishi Heavy Ind Ltd モニタリング方法およびその装置
JP2007198954A (ja) * 2006-01-27 2007-08-09 Mitsubishi Heavy Ind Ltd 制御棒駆動装置の健全性評価システム及び健全性評価方法
CN101067976A (zh) * 2006-09-15 2007-11-07 核电秦山联营有限公司 压水堆核电站控制棒驱动机构在线监测及故障诊断方法
CN104332195A (zh) * 2013-07-22 2015-02-04 中国核动力研究设计院 一种用于测量反应堆控制棒落棒时间的方法
CN105070334A (zh) * 2015-06-24 2015-11-18 中国核电工程有限公司 一种基于电流变化判断控制棒驱动机构动作的方法
CN105551543A (zh) * 2016-01-15 2016-05-04 中广核工程有限公司 一种用于核电站的棒控和棒位系统及其故障诊断方法
CN110570958A (zh) * 2019-08-28 2019-12-13 中广核研究院有限公司 核电站控制棒驱动机构钩爪动作监测方法及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4009335A4

Also Published As

Publication number Publication date
EP4009335A1 (en) 2022-06-08
CN110570958B (zh) 2021-08-17
CN110570958A (zh) 2019-12-13
EP4009335A4 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
CN109243644A (zh) 核电厂控制棒落棒时间检测方法及电子设备
CN110514957A (zh) 变电站自动巡检方法和平台
CN110366031A (zh) 一种数字化车间mes系统基于视觉的异常状态监测与故障诊断方法
WO2021036483A1 (zh) 电流波形波动起点识别方法及电子设备、可读存储介质
WO2021036484A1 (zh) 核电站控制棒驱动机构钩爪动作监测方法及电子设备
CN107270970A (zh) 高耸电力设备振动监测装置及其进行故障诊断的方法
CN107085156A (zh) 微机型继电保护与自动化测试仪自动检测系统
CN104332195A (zh) 一种用于测量反应堆控制棒落棒时间的方法
CN102436705A (zh) 一种视频监控防窃电的报警装置
CN103983881A (zh) 核探测器的故障诊断方法及装置
CN109188502A (zh) 一种基于自编码器的束流位置监测器异常检测方法及装置
CN111999579A (zh) 一种充电桩自动检测系统及其方法
CN103631245A (zh) 一种配电终端缺陷诊断系统及方法
CN117406026A (zh) 一种适用于分布式电源的配电网故障检测方法
CN106772009B (zh) 基于分合闸线圈电流波形的断路器机械特性分析方法
CN105070334A (zh) 一种基于电流变化判断控制棒驱动机构动作的方法
CN105067997A (zh) 一种开关设备弹簧操动机构故障诊断方法
CN112611309B (zh) 一种控制棒位置精准测量方法
CN116561707A (zh) 一种变压器故障校验、预警方法及系统
CN114152290B (zh) 换流站交流滤波器开关诊断方法
CN112599255B (zh) 控制棒落棒参考信号产生装置及其方法
CN212847703U (zh) 一种控制棒驱动机构监测管理系统
CN109831029B (zh) 智能变电站保护设备高效巡视的方法
CN103995960A (zh) 遥控拒动率分析方法和系统
CN108646084A (zh) 监测反应堆控制棒驱动机构线圈电流上升沿振荡的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020857456

Country of ref document: EP

Effective date: 20220304