WO2021036405A1 - Indoor unit, air conditioner, and air conditioner control method - Google Patents
Indoor unit, air conditioner, and air conditioner control method Download PDFInfo
- Publication number
- WO2021036405A1 WO2021036405A1 PCT/CN2020/095226 CN2020095226W WO2021036405A1 WO 2021036405 A1 WO2021036405 A1 WO 2021036405A1 CN 2020095226 W CN2020095226 W CN 2020095226W WO 2021036405 A1 WO2021036405 A1 WO 2021036405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- volute
- air
- indoor unit
- channel
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0011—Indoor units, e.g. fan coil units characterised by air outlets
- F24F1/0014—Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
- F24F1/0025—Cross-flow or tangential fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
- F24F1/0033—Indoor units, e.g. fan coil units characterised by fans having two or more fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0043—Indoor units, e.g. fan coil units characterised by mounting arrangements
- F24F1/0057—Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/02—Ducting arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
- F24F13/14—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
- F24F13/14—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
- F24F13/1426—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
- F24F13/14—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
- F24F13/1426—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
- F24F2013/1433—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means with electric motors
Definitions
- This application relates to the technical field of air-conditioning equipment, and in particular, to an indoor unit, an air conditioner, and a method for controlling the air conditioner.
- This application claims the priority of the patent application filed to the State Intellectual Property Office of China on August 26, 2019, with the application number 201910791909.6 and the invention title of "Indoor Unit, Air Conditioner and Air Conditioner Control Method".
- the existing wall-mounted air conditioner internal unit often has only one air outlet, and the air supply range and performance are limited. Moreover, the air intake of the air inlet is limited, which cannot meet people's diverse life needs.
- the air conditioner with upper and lower air outlets not only has a wide range of air outlets, but also can open the upper air outlet or lower air outlet according to user needs.
- the air supply mode is diverse, but it is limited by the air inlet area. , The performance of upper and lower outlet air conditioners is difficult to be greatly improved.
- the main purpose of this application is to provide an indoor unit, an air conditioner, and a method for controlling the air conditioner, so as to solve the problem of small air intake of the air conditioner in the prior art.
- an indoor unit which includes: a housing, the housing has an accommodation cavity, and the accommodation cavity is provided with a ventilation channel; a volute switching part, the volute switching part is movably arranged In the accommodating cavity, so that the volute switching part has a first position and a second position.
- the volute switching part When the volute switching part is in the first position, the volute switching part cooperates with the ventilation channel to form an air inlet channel, and the volute switching part is located at the first position.
- the volute switching part cooperates with the ventilation channel to form an air outlet channel.
- the cross-sectional area of the air inlet of the air inlet channel is larger than the cross-sectional area of the air outlet of the air outlet channel.
- the ventilation channel includes an upper ventilation channel and a lower ventilation channel
- the volute switching part includes an upper volute switching part
- the indoor unit includes: a heat exchanger, which is arranged in the housing to divide the containing cavity into an upper cavity And the lower cavity, the upper ventilation channel communicates with the upper cavity, the lower ventilation channel communicates with the lower cavity, the upper volute switching part is arranged at the opening of the upper ventilation channel, the upper volute switching part has a first position and a first position Two positions.
- volute switching part further includes a lower volute switching part, the lower volute switching part is arranged at the opening of the lower ventilation channel, and the lower volute switching part has a first position and a second position.
- the lower volute switching part is at the second position, and when the upper volute switching part is at the second position, the lower volute switching part is at the first position.
- the upper volute switching part includes: a first rotating volute, the first rotating volute is movably connected with the side wall of the upper ventilation channel; a first driving part, the first driving part is connected with the first rotating volute , The first driving part can drive the first rotating volute to be located at the first position or the second position.
- the first rotating volute has a first air passage surface.
- the first air passage surface and the side wall of the upper ventilation passage enclose an air inlet passage.
- the volute is located in the second position, the first air duct surface and the side wall of the upper ventilation channel are enclosed to form an air outlet channel.
- connection between the first air duct surface and the side wall of the upper ventilation channel is a curved transitional setting.
- the lower volute switching part includes: a second rotary volute, which is movably connected to the side wall of the lower ventilation channel; a second driving part, which is connected to the second rotary volute , The second driving part can drive the second rotating volute to be located at the first position or the second position.
- the second rotating volute has a second air passage surface, and when the second rotating volute is located at the first position, the second air passage surface and the side wall of the lower ventilation passage surround the air inlet passage. When the volute is located at the second position, the second air duct surface and the side wall of the lower ventilation channel are enclosed to form an air outlet channel.
- connection between the second air duct surface and the side wall of the lower ventilation channel is a curved transitional setting.
- the indoor unit further includes: a first volute tongue, the first volute tongue is arranged in the upper cavity, and the first volute tongue is arranged opposite to the first rotating volute.
- the first volute tongue is rotatably arranged with respect to the housing, so that the first volute tongue has a first closed position and a first open position. When the first volute tongue is located in the first closed position, the first volute tongue will be upward.
- the opening of the ventilation passage is closed, and when the first volute tongue is located at the first open position, the first volute tongue, at least one of the upper ventilation passage and the first rotating volute are enclosed to form an air inlet passage or an air outlet passage.
- the indoor unit further includes: a second volute tongue, the second volute tongue is arranged in the lower cavity, and the second volute tongue is arranged opposite to the second rotating volute.
- the second volute tongue is rotatably arranged relative to the housing, so that the second volute tongue has a second closed position and a second open position.
- the second volute tongue When the second volute tongue is located in the second closed position, the second volute tongue will be lowered.
- the opening of the ventilation passage is closed, and when the second volute tongue is located in the second open position, the second volute tongue, at least one of the lower ventilation passage and the second rotating volute are enclosed to form an air inlet passage or an air outlet passage.
- the indoor unit further includes: a first fan part, the first fan part is arranged in the upper cavity; a second fan part, the second fan part is arranged in the lower cavity; wherein, the first fan part and the second fan part are At least one is a cross-flow fan, and the axis of the cross-flow fan is arranged in a horizontal direction.
- an air conditioner including an indoor unit, the indoor unit being the aforementioned indoor unit.
- the air conditioner includes a cooling mode and a heating mode.
- the air conditioner includes a cooling mode and a heating mode.
- the upper ventilation channel realizes the air outlet
- the lower ventilation channel realizes the air inlet.
- the upper ventilation channel realizes the air inlet and the lower ventilation channel realizes the air outlet.
- the method further includes the following steps: the controller can control the working state of the first fan part and the second fan part according to the indoor temperature; when the air conditioner is in the cooling mode, when the indoor temperature is within the first preset value, the controller controls The first fan unit and the second fan unit operate at the same time. When the indoor temperature is lower than the first preset value, the controller controls one of the first fan unit and the second fan unit to stop operation; when the air conditioner is in heating mode, When the indoor temperature is within the second preset value, the controller controls the first fan section and the second fan section to operate at the same time. When the indoor temperature is higher than the first preset value, the controller controls the first fan section and the second fan section One of them stopped the job.
- the controller controls the air conditioner to be in the cooling mode, the upper volute switching part is at the second position and the lower volute switching part is at the first position; the controller controls the first fan part to perform blowing operations, and the controller controls the second The fan unit stops blowing operation.
- the air conditioner also includes a heating mode.
- the controller controls the air conditioner to be in the heating mode, the upper volute switching part is at the first position, the lower volute switching part is at the second position, and the controller controls the first fan part to stop For blowing operation, the controller controls the second fan unit to perform blowing operation.
- the air conditioner when the air conditioner is in a cooling mode, the air conditioner is in an oblique upward air outlet mode, and when the air conditioner is in a heating mode, the air conditioner is in an oblique downward air outlet.
- the size of the air inlet area of the ventilation channel of the indoor unit is changed by setting the volute switching part, thereby selecting whether the corresponding ventilation channel is the air outlet channel or the air inlet channel according to the working mode of the indoor unit.
- This setting can effectively increase the air intake and air output of the indoor unit, and effectively improve the user experience.
- Fig. 1 shows a schematic structural diagram of a first embodiment of an indoor unit according to the present application
- Fig. 2 shows a schematic structural diagram of a second embodiment of an indoor unit according to the present application
- Fig. 3 shows a schematic structural diagram of a third embodiment of an indoor unit according to the present application.
- Fig. 4 shows a schematic structural diagram of a fourth embodiment of an indoor unit according to the present application.
- Fig. 5 shows a schematic structural diagram of a fifth embodiment of an indoor unit according to the present application.
- an indoor unit is provided.
- the indoor unit includes a casing 10 and a volute switching part.
- the housing 10 has an accommodation cavity, and the accommodation cavity is provided with a ventilation channel.
- the volute switching part is movably arranged in the accommodating cavity so that the volute switching part has a first position and a second position. When the volute switching part is at the first position or the second position, the volute switching part and the ventilation channel Cooperate to form an air inlet channel or an air outlet channel.
- the size of the air inlet area of the ventilation channel of the indoor unit is changed by setting the volute switch part, thereby selecting whether the corresponding ventilation channel is the air outlet channel or the air inlet channel according to the working mode of the indoor unit.
- the volute switch part as an air outlet channel, it can extend the length of the air outlet channel, making the wind speed at the air outlet higher, and this setting can effectively increase the air inlet and outlet of the indoor unit. , Effectively improve the user experience.
- the volute switching part when the volute switching part is at the first position, the volute switching part cooperates with the ventilation channel to form an air inlet channel, and when the volute switching part is at the second position, the volute switching part cooperates with the ventilation channel to form an air outlet channel.
- the cross-sectional area of the air inlet of the air inlet channel is larger than the cross-sectional area of the air outlet of the air outlet channel.
- the ventilation channel includes an upper ventilation channel 11 and a lower ventilation channel 12.
- the volute switching part includes an upper volute switching part 31, and the indoor unit includes a heat exchanger 20.
- the heat exchanger 20 is disposed in the housing 10 to divide the containing cavity into an upper cavity 40 and a lower cavity 50.
- the upper ventilation channel 11 communicates with the upper cavity 40
- the lower ventilation channel 12 communicates with the lower cavity 50
- the upper volute switching portion 31 is provided at the opening of the upper ventilation channel 11
- the upper volute switching portion 31 has a first position And the second position.
- the volute switching part further includes a lower volute switching part 32, which is disposed at the opening of the lower ventilation passage 12, and the lower volute switching part 32 has a first position and a second position. This arrangement can effectively increase the air intake volume of the lower ventilation channel 12.
- the lower volute switching portion 32 when the upper volute switching portion 31 is located at the first position, the lower volute switching portion 32 is located at the second position.
- the upper volute switching portion 31 when the upper volute switching portion 31 is located at the second position, the lower volute switching portion 32 is located at the first position. That is, in this embodiment, the airflow outside the shell can be introduced from the lower ventilation channel 12, or the airflow outside the shell can be introduced into the shell from the upper ventilation channel 11 to exchange heat with the heat exchanger, which effectively improves the indoor The practicality of the machine.
- the upper volute switching part 31 includes a first rotating volute 311 and a first driving part.
- the first rotating volute 311 is movably connected with the side wall of the upper ventilation channel 11.
- the first driving part is connected with the first rotating volute 311, and the first driving part can drive the first rotating volute 311 to be located at the first position or the second position.
- D1 is the rotation center of the first rotating volute 311, and the first driving part may be a stepping motor, and the stepping motor drives the first rotating volute 311 to rotate around the rotation center.
- the first rotating volute 311 is provided with a first air duct surface 312.
- the first air duct surface 312 and the side wall of the upper ventilation passage 11 form an air inlet channel.
- the first rotating volute 311 is at the second position, the first wind The road surface 312 and the side wall of the upper ventilation channel 11 are enclosed to form an air outlet channel.
- the connection between the first air duct surface 312 and the side wall of the upper ventilation channel 11 is a curved transitional setting.
- the lower volute switching part 32 includes a second rotating volute 321 and a second driving part.
- the second rotating volute 321 is movably connected with the side wall of the lower ventilation channel 12.
- the second driving part is connected with the second rotating volute 321, and the second driving part can drive the second rotating volute 321 to be located at the first position or the second position.
- This arrangement makes the structure of the lower volute switching portion 32 simple and easy to process.
- the structure of the lower volute switching portion 32 can be arranged in the same manner as the structure of the upper volute switching portion 31, which can reduce the processing cost of the indoor unit.
- D2 is the rotation center of the second rotating volute 321.
- the second driving part can be a stepping motor.
- the stepping motor drives the second rotating volute 321 to rotate around the center of rotation.
- the C side is the indoor The installation side of the machine.
- the second rotating volute 321 has a second air duct surface 322.
- the second air duct surface 322 and the side wall of the lower ventilation channel 12 form an air inlet channel.
- the second rotating volute 321 is at the second position, the second wind The road surface 322 and the side wall of the lower ventilation channel 12 are enclosed to form an air outlet channel.
- the connection between the second air passage surface 322 and the side wall of the lower ventilation channel 12 is a curved transitional setting.
- the indoor unit further includes a first volute tongue 60 and a second volute tongue 70.
- the first volute tongue 60 is disposed in the upper cavity 40, and the first volute tongue 60 is disposed opposite to the first rotating volute 311.
- the second volute tongue 70 is disposed in the lower cavity 50, and the second volute tongue 70 is disposed opposite to the second rotating volute 321. This arrangement can increase the air blowing distance of the indoor unit.
- the first volute tongue 60 is rotatably disposed relative to the housing 10, so that the first volute tongue 60 has a first closed position and a first open position.
- the first volute tongue 60 closes the opening of the upper ventilation passage 11.
- the first volute tongue 60 and at least one of the upper ventilation passage 11 and the first rotating volute 311 are enclosed to form an air inlet channel or an air outlet channel. This arrangement can prevent external dust or foreign objects from entering the indoor unit and affecting the life of the indoor unit.
- the second volute tongue 70 may also be arranged to be rotatably arranged relative to the housing 10 so that the second volute tongue 70 has a second closed position and a second open position.
- the second volute tongue 70 closes the opening of the lower ventilation passage 12.
- the second volute tongue 70 and at least one of the lower ventilation channel 12 and the second rotating volute 321 are enclosed to form an air inlet channel or an air outlet channel. This arrangement can effectively prevent foreign objects from entering the indoor unit and improve the service life of the indoor unit.
- the indoor unit also includes a first fan part 80 and a second fan part 90.
- the first fan part 80 is disposed in the upper cavity 40.
- the second fan part 90 is disposed in the lower cavity 50.
- at least one of the first fan part 80 and the second fan part 90 is a cross-flow fan, and the axis of the cross-flow fan is arranged in a horizontal direction.
- the first fan part 80 and the second fan part 90 are both cross-flow fans. This arrangement can effectively improve the air output and heat exchange performance of the indoor unit.
- the indoor unit in the above embodiment can also be used in the technical field of air conditioning equipment, that is, according to another aspect of the present application, an air conditioner is provided.
- the air conditioner includes an indoor unit, and the indoor unit is the indoor unit in the above-mentioned embodiment.
- the air conditioner has an air supply mode of air supply from the upper air outlet and air from the lower air outlet.
- the volute at the air inlet is rotated to increase the air inlet area, increase the air inlet volume of the air conditioner, and improve the performance of the air conditioner.
- the indoor unit adopting this structure can select upper air outlet or lower air outlet according to needs, and at the same time, rotate the volute at the air inlet according to the upper air outlet or the lower air outlet mode to increase the air inlet area.
- the air inlet area can be increased, and the large air volume can be achieved, which helps to improve the air conditioning performance.
- the upper and lower air outlets can choose different air outlets according to cooling and heating, which is beneficial to improve the uniformity of the room temperature distribution and enhance the comfort of the room.
- the first rotating volute can rotate around the center of rotation of the volute
- the second rotating volute can rotate around the center of rotation of the volute.
- Two cross-flow fan blades are respectively arranged on the upper and lower sides of the heat exchanger of the air conditioner, and the two volute tongues are respectively arranged at the air outlet area of the corresponding cross-flow fan blades.
- the air conditioner has an upper air outlet and a lower air outlet.
- the first volute rotates clockwise around the rotation center of the volute, and the airflow enters from the upper air outlet, and blows out from the lower air outlet after heat exchange through the evaporator.
- point A is the upper air vent
- point B is the lower air vent.
- the two rotating volutes do not rotate in the position shown.
- the air conditioner is refrigerated, as shown in Figure 2, the upper cross-flow fan blades operate, and the lower cross-flow fan blades do not operate.
- the second volute rotates counterclockwise around the center of rotation of the volute to the position shown in the figure.
- the first volute does not rotate, and the air inlet area of the down vent increases.
- the airflow enters from the down vent passes through the evaporator and blows out from the up vent .
- the first volute tongue also functions to extend the air duct, and the wind speed from the upper air outlet is higher, and the airflow can blow out a longer distance.
- this air conditioner has a larger air intake, a higher position of the upper air outlet, better performance of the air conditioner, better shower-style air supply effect, better cooling effect of the air conditioner, and more uniform temperature drop.
- the air conditioner When the air conditioner is heating, as shown in Figure 3.
- the lower cross flow fan blades operate, and the upper cross flow fan blades do not operate.
- the first volute rotates clockwise around the center of rotation of the volute to the position shown in the figure, the second volute does not rotate, the air inlet area of the upper air inlet increases, and the airflow enters from the upper air outlet, passes through the evaporator and blows out from the lower air outlet ,
- the second volute tongue also plays the role of extending the air duct, the wind speed of the lower air outlet is higher, and the air flow can blow out a longer distance.
- the air conditioner has a larger air intake, lower air outlet position, better performance of the air conditioner, better carpet air supply effect, better heating effect of the air conditioner, and more uniform temperature rise.
- the air conditioner includes a cooling mode and a heating mode.
- the air conditioner includes a cooling mode and a heating mode.
- the upper ventilation channel 11 realizes air outlet
- the lower ventilation channel 12 realizes air inlet.
- the upper ventilation channel 11 realizes air inlet and the lower ventilation channel 12 realizes air outlet.
- the controller can control the working state of the first fan part 80 and the second fan part 90 according to the indoor temperature.
- the air conditioner is in the cooling mode, when the indoor temperature is within the first preset value, the controller controls the first fan part 80 and the second fan part 90 to operate at the same time.
- the controller controls One of the first fan unit 80 and the second fan unit 90 stops working; when the air conditioner is in heating mode, when the indoor temperature is within the second preset value, the controller controls the first fan unit 80 and the second fan unit 90 At the same time, when the indoor temperature is higher than the first preset value, the controller controls one of the first fan part 80 and the second fan part 90 to stop the operation. Wherein, the controller can control the forward rotation and reverse rotation of the first fan part 80 and the second fan part 90.
- the air conditioner also includes a heating mode.
- the controller controls the air conditioner to be in the heating mode, the upper volute switching part 31 is at the first position, the lower volute switching part 32 is at the second position, and the controller controls the first fan part 80 to stop.
- the controller controls the second fan unit 90 to perform the blowing operation.
- the air conditioner is in the cooling mode, the air conditioner is in the oblique upward air outlet mode, and when the air conditioner is in the heating mode, the air conditioner is in the oblique downward air outlet.
- spatially relative terms can be used here, such as “above”, “above”, “above the surface”, “above”, etc., to describe as shown in the figure Shows the spatial positional relationship between one device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described in the figure. For example, if the device in the drawing is turned upside down, then a device described as “above other devices or structures” or “above other devices or structures” will then be positioned as “below the other devices or structures” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations), and the relative description of the space used here will be explained accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
本申请涉及空调设备技术领域,具体而言,涉及一种室内机、空调器及空调器控制的方法。本申请要求于2019年8月26日提交至中国国家知识产权局、申请号为201910791909.6、发明名称为“室内机、空调器及空调器控制的方法”的专利申请的优先权。This application relates to the technical field of air-conditioning equipment, and in particular, to an indoor unit, an air conditioner, and a method for controlling the air conditioner. This application claims the priority of the patent application filed to the State Intellectual Property Office of China on August 26, 2019, with the application number 201910791909.6 and the invention title of "Indoor Unit, Air Conditioner and Air Conditioner Control Method".
现有的壁挂式空调内机往往只有一个出风口,送风范围和性能有限。且进风口的进风量有限,不能满足人们多样的生活需求。具有上、下两个出风口的空调,不仅出风范围广,而且能够根据用户需求开启上出风口送风或者下出风口送风模式,送风方式具有多样性,但是受限于进风面积,上、下出风空调的性能很难得到大幅度提升。The existing wall-mounted air conditioner internal unit often has only one air outlet, and the air supply range and performance are limited. Moreover, the air intake of the air inlet is limited, which cannot meet people's diverse life needs. The air conditioner with upper and lower air outlets not only has a wide range of air outlets, but also can open the upper air outlet or lower air outlet according to user needs. The air supply mode is diverse, but it is limited by the air inlet area. , The performance of upper and lower outlet air conditioners is difficult to be greatly improved.
发明内容Summary of the invention
本申请的主要目的在于提供一种室内机、空调器及空调器控制的方法,以解决现有技术中空调器的进风量小的问题。The main purpose of this application is to provide an indoor unit, an air conditioner, and a method for controlling the air conditioner, so as to solve the problem of small air intake of the air conditioner in the prior art.
为了实现上述目的,根据本申请的一个方面,提供了一种室内机,包括:壳体,壳体具有容纳腔,容纳腔设置有通风通道;蜗壳切换部,蜗壳切换部可活动地设置于容纳腔内,以使蜗壳切换部具有第一位置和第二位置,蜗壳切换部位于第一位置时,蜗壳切换部与通风通道相配合形成进风通道,蜗壳切换部位于第二位置时,蜗壳切换部与通风通道相配合形成出风通道。In order to achieve the above objective, according to one aspect of the present application, an indoor unit is provided, which includes: a housing, the housing has an accommodation cavity, and the accommodation cavity is provided with a ventilation channel; a volute switching part, the volute switching part is movably arranged In the accommodating cavity, so that the volute switching part has a first position and a second position. When the volute switching part is in the first position, the volute switching part cooperates with the ventilation channel to form an air inlet channel, and the volute switching part is located at the first position. In the second position, the volute switching part cooperates with the ventilation channel to form an air outlet channel.
进一步地,进风通道的进风口的横截面积大于出风通道的出风口的横截面积。Further, the cross-sectional area of the air inlet of the air inlet channel is larger than the cross-sectional area of the air outlet of the air outlet channel.
进一步地,通风通道包括上通风通道和下通风通道,蜗壳切换部包括上蜗壳切换部,室内机包括:换热器,换热器设置于壳体内,以将容纳腔分隔成上腔体和下腔体,上通风通道与上腔体相连通,下通风通道与下腔体相连通,上蜗壳切换部设置于上通风通道的开口处,上蜗壳切换部具有第一位置和第二位置。Further, the ventilation channel includes an upper ventilation channel and a lower ventilation channel, the volute switching part includes an upper volute switching part, and the indoor unit includes: a heat exchanger, which is arranged in the housing to divide the containing cavity into an upper cavity And the lower cavity, the upper ventilation channel communicates with the upper cavity, the lower ventilation channel communicates with the lower cavity, the upper volute switching part is arranged at the opening of the upper ventilation channel, the upper volute switching part has a first position and a first position Two positions.
进一步地,蜗壳切换部还包括:下蜗壳切换部,下蜗壳切换部设置于下通风通道的开口处,下蜗壳切换部具有第一位置和第二位置。Further, the volute switching part further includes a lower volute switching part, the lower volute switching part is arranged at the opening of the lower ventilation channel, and the lower volute switching part has a first position and a second position.
进一步地,当上蜗壳切换部位于第一位置时,下蜗壳切换部位于第二位置,当上蜗壳切换部位于第二位置时,下蜗壳切换部位于第一位置。Further, when the upper volute switching part is at the first position, the lower volute switching part is at the second position, and when the upper volute switching part is at the second position, the lower volute switching part is at the first position.
进一步地,上蜗壳切换部包括:第一旋转蜗壳,第一旋转蜗壳与上通风通道的侧壁可活动地连接;第一驱动部,第一驱动部与第一旋转蜗壳相连接,第一驱动部可驱动第一旋转蜗壳位于第一位置或第二位置。Further, the upper volute switching part includes: a first rotating volute, the first rotating volute is movably connected with the side wall of the upper ventilation channel; a first driving part, the first driving part is connected with the first rotating volute , The first driving part can drive the first rotating volute to be located at the first position or the second position.
进一步地,第一旋转蜗壳具有第一风道面,当第一旋转蜗壳位于第一位置时,第一风道面与上通风通道的侧壁围设成进风通道,当第一旋转蜗壳位于第二位置时,第一风道面与上通风通道的侧壁围设成出风通道。Further, the first rotating volute has a first air passage surface. When the first rotating volute is located at the first position, the first air passage surface and the side wall of the upper ventilation passage enclose an air inlet passage. When the volute is located in the second position, the first air duct surface and the side wall of the upper ventilation channel are enclosed to form an air outlet channel.
进一步地,第一风道面与上通风通道的侧壁的连接处为弧面过渡设置。Further, the connection between the first air duct surface and the side wall of the upper ventilation channel is a curved transitional setting.
进一步地,下蜗壳切换部包括:第二旋转蜗壳,第二旋转蜗壳与下通风通道的侧壁可活动地连接;第二驱动部,第二驱动部与第二旋转蜗壳相连接,第二驱动部可驱动第二旋转蜗壳位于第一位置或第二位置。Further, the lower volute switching part includes: a second rotary volute, which is movably connected to the side wall of the lower ventilation channel; a second driving part, which is connected to the second rotary volute , The second driving part can drive the second rotating volute to be located at the first position or the second position.
进一步地,第二旋转蜗壳具有第二风道面,当第二旋转蜗壳位于第一位置时,第二风道面与下通风通道的侧壁围设成进风通道,当第二旋转蜗壳位于第二位置时,第二风道面与下通风通道的侧壁围设成出风通道。Further, the second rotating volute has a second air passage surface, and when the second rotating volute is located at the first position, the second air passage surface and the side wall of the lower ventilation passage surround the air inlet passage. When the volute is located at the second position, the second air duct surface and the side wall of the lower ventilation channel are enclosed to form an air outlet channel.
进一步地,第二风道面与下通风通道的侧壁的连接处为弧面过渡设置。Further, the connection between the second air duct surface and the side wall of the lower ventilation channel is a curved transitional setting.
进一步地,室内机还包括:第一蜗舌,第一蜗舌设置于上腔体内,第一蜗舌与第一旋转蜗壳相对地设置。Further, the indoor unit further includes: a first volute tongue, the first volute tongue is arranged in the upper cavity, and the first volute tongue is arranged opposite to the first rotating volute.
进一步地,第一蜗舌相对壳体可转动地设置,以使第一蜗舌具有第一关闭位置和第一打开位置,当第一蜗舌位于第一关闭位置时,第一蜗舌将上通风通道的开口关闭,当第一蜗舌位于第一打开位置时,第一蜗舌与上通风通道和第一旋转蜗壳中的至少一个围设成进风通道或出风通道。Further, the first volute tongue is rotatably arranged with respect to the housing, so that the first volute tongue has a first closed position and a first open position. When the first volute tongue is located in the first closed position, the first volute tongue will be upward. The opening of the ventilation passage is closed, and when the first volute tongue is located at the first open position, the first volute tongue, at least one of the upper ventilation passage and the first rotating volute are enclosed to form an air inlet passage or an air outlet passage.
进一步地,室内机还包括:第二蜗舌,第二蜗舌设置于下腔体内,第二蜗舌与第二旋转蜗壳相对地设置。Further, the indoor unit further includes: a second volute tongue, the second volute tongue is arranged in the lower cavity, and the second volute tongue is arranged opposite to the second rotating volute.
进一步地,第二蜗舌相对壳体可转动地设置,以使第二蜗舌具有第二关闭位置和第二打开位置,当第二蜗舌位于第二关闭位置时,第二蜗舌将下通风通道的开口关闭,当第二蜗舌位于第二打开位置时,第二蜗舌与下通风通道和第二旋转蜗壳中的至少一个围设成进风通道或出风通道。Further, the second volute tongue is rotatably arranged relative to the housing, so that the second volute tongue has a second closed position and a second open position. When the second volute tongue is located in the second closed position, the second volute tongue will be lowered. The opening of the ventilation passage is closed, and when the second volute tongue is located in the second open position, the second volute tongue, at least one of the lower ventilation passage and the second rotating volute are enclosed to form an air inlet passage or an air outlet passage.
进一步地,室内机还包括:第一风机部,第一风机部设置于上腔体内;第二风机部,第二风机部设置于下腔体内;其中,第一风机部和第二风机部中的至少一个为贯流风机,贯流风机的轴线沿水平方向设置。Further, the indoor unit further includes: a first fan part, the first fan part is arranged in the upper cavity; a second fan part, the second fan part is arranged in the lower cavity; wherein, the first fan part and the second fan part are At least one is a cross-flow fan, and the axis of the cross-flow fan is arranged in a horizontal direction.
根据本申请的另一方面,提供了一种空调器,包括室内机,室内机为上述的室内机。According to another aspect of the present application, there is provided an air conditioner, including an indoor unit, the indoor unit being the aforementioned indoor unit.
根据本申请的另一方面,提供了一种空调器控制的方法,方法用于控制上述中的空调器,方法包括以下步骤:空调器包括制冷模式和制热模式,当空调器的控制器控制空调器处于制冷模式时,上通风通道实现出风,下通风通道实现进风,当空调器处于制热模式,上通风通道实现进风,下通风通道实现出风。According to another aspect of the present application, there is provided a method for controlling an air conditioner. The method is used to control the above-mentioned air conditioner. The method includes the following steps: the air conditioner includes a cooling mode and a heating mode. When the air conditioner is in the cooling mode, the upper ventilation channel realizes the air outlet, and the lower ventilation channel realizes the air inlet. When the air conditioner is in the heating mode, the upper ventilation channel realizes the air inlet and the lower ventilation channel realizes the air outlet.
进一步地,方法还包括以下步骤:控制器可根据室内温度控制第一风机部和第二风机部的工作状态;空调器处于制冷模式时,当室内温度在第一预设值内,控制器控制第一风机部 和第二风机部同时作业,当室内温度低于第一预设值时,控制器控制第一风机部和第二风机部中的一个停止作业;当空调器处于制热模式,当室内温度在第二预设值内,控制器控制第一风机部和第二风机部同时作业,当室内温度高于第一预设值时,控制器控制第一风机部和第二风机部中的一个停止作业。Further, the method further includes the following steps: the controller can control the working state of the first fan part and the second fan part according to the indoor temperature; when the air conditioner is in the cooling mode, when the indoor temperature is within the first preset value, the controller controls The first fan unit and the second fan unit operate at the same time. When the indoor temperature is lower than the first preset value, the controller controls one of the first fan unit and the second fan unit to stop operation; when the air conditioner is in heating mode, When the indoor temperature is within the second preset value, the controller controls the first fan section and the second fan section to operate at the same time. When the indoor temperature is higher than the first preset value, the controller controls the first fan section and the second fan section One of them stopped the job.
进一步地,当控制器控制空调器处于制冷模式时,上蜗壳切换部位于第二位置,下蜗壳切换部位于第一位置;控制器控制第一风机部进行吹风作业,控制器控制第二风机部停止吹风作业。Further, when the controller controls the air conditioner to be in the cooling mode, the upper volute switching part is at the second position and the lower volute switching part is at the first position; the controller controls the first fan part to perform blowing operations, and the controller controls the second The fan unit stops blowing operation.
进一步地,空调器还包括制热模式,当控制器控制空调器处于制热模式,上蜗壳切换部位于第一位置,下蜗壳切换部位于第二位置,控制器控制第一风机部停止吹风作业,控制器控制第二风机部进行吹风作业。Further, the air conditioner also includes a heating mode. When the controller controls the air conditioner to be in the heating mode, the upper volute switching part is at the first position, the lower volute switching part is at the second position, and the controller controls the first fan part to stop For blowing operation, the controller controls the second fan unit to perform blowing operation.
进一步地,空调器为制冷模式时,空调器为斜向上出风模式,空调器为制热模式时,空调器为斜向下出风。Further, when the air conditioner is in a cooling mode, the air conditioner is in an oblique upward air outlet mode, and when the air conditioner is in a heating mode, the air conditioner is in an oblique downward air outlet.
应用本申请的技术方案,通过设置蜗壳切换部改变室内机的通风通道的进风面积的大小,从而根据室内机的工作模式选择相应通风通道是出风通道还是进风通道。这样设置能够有效地增加了室内机的进风量和出风量,有效地提高了用户的使用体验。Applying the technical solution of the present application, the size of the air inlet area of the ventilation channel of the indoor unit is changed by setting the volute switching part, thereby selecting whether the corresponding ventilation channel is the air outlet channel or the air inlet channel according to the working mode of the indoor unit. This setting can effectively increase the air intake and air output of the indoor unit, and effectively improve the user experience.
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings of the specification forming a part of the application are used to provide a further understanding of the application, and the exemplary embodiments and descriptions of the application are used to explain the application, and do not constitute an improper limitation of the application. In the attached picture:
图1示出了根据本申请的室内机的第一实施例的结构示意图;Fig. 1 shows a schematic structural diagram of a first embodiment of an indoor unit according to the present application;
图2示出了根据本申请的室内机的第二实施例的结构示意图;Fig. 2 shows a schematic structural diagram of a second embodiment of an indoor unit according to the present application;
图3示出了根据本申请的室内机的第三实施例的结构示意图;Fig. 3 shows a schematic structural diagram of a third embodiment of an indoor unit according to the present application;
图4示出了根据本申请的室内机的第四实施例的结构示意图;Fig. 4 shows a schematic structural diagram of a fourth embodiment of an indoor unit according to the present application;
图5示出了根据本申请的室内机的第五实施例的结构示意图。Fig. 5 shows a schematic structural diagram of a fifth embodiment of an indoor unit according to the present application.
其中,上述附图包括以下附图标记:Among them, the above drawings include the following reference signs:
10、壳体;11、上通风通道;12、下通风通道;10. Shell; 11. Upper ventilation channel; 12. Lower ventilation channel;
20、换热器;20. Heat exchanger;
31、上蜗壳切换部;311、第一旋转蜗壳;312、第一风道面;31. Upper volute switching part; 311, first rotating volute; 312, first air duct surface;
32、下蜗壳切换部;321、第二旋转蜗壳;322、第二风道面;32. Lower volute switching part; 321, second rotating volute; 322, second air duct surface;
40、上腔体;40. Upper cavity;
50、下腔体;50. Lower cavity;
60、第一蜗舌;60. The first tongue;
70、第二蜗舌;70. The second tongue;
80、第一风机部;90、第二风机部。80. The first fan section; 90. The second fan section.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that the embodiments in this application and the features in the embodiments can be combined with each other if there is no conflict. Hereinafter, the present application will be described in detail with reference to the drawings and in conjunction with the embodiments.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terms used here are only for describing specific embodiments, and are not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly indicates otherwise, the singular form is also intended to include the plural form. In addition, it should also be understood that when the terms "comprising" and/or "including" are used in this specification, they indicate There are features, steps, operations, devices, components, and/or combinations thereof.
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the specification and claims of the application and the above-mentioned drawings are used to distinguish similar objects, and not necessarily used to describe a specific sequence or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application described herein can be implemented in an order other than those illustrated or described herein, for example. In addition, the terms "including" and "having" and any variations of them are intended to cover non-exclusive inclusions. For example, a process, method, system, product, or device that includes a series of steps or units is not necessarily limited to those clearly listed. Those steps or units may include other steps or units that are not clearly listed or are inherent to these processes, methods, products, or equipment.
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。Now, exemplary embodiments according to the present application will be described in more detail with reference to the accompanying drawings. However, these exemplary embodiments can be implemented in a variety of different forms, and should not be construed as being limited to the embodiments set forth herein. It should be understood that these embodiments are provided to make the disclosure of this application thorough and complete, and to fully convey the concept of these exemplary embodiments to those of ordinary skill in the art. In the drawings, for clarity, it may be enlarged. The thicknesses of the layers and regions are shown, and the same reference numerals are used to denote the same devices, so their description will be omitted.
结合图1至图3所示,根据本申请的具体实施例,提供了一种室内机。As shown in FIG. 1 to FIG. 3, according to a specific embodiment of the present application, an indoor unit is provided.
具体地,如图1所示,该室内机包括壳体10和蜗壳切换部。壳体10具有容纳腔,容纳腔设置有通风通道。蜗壳切换部可活动地设置于容纳腔内,以使蜗壳切换部具有第一位置和第二位置,当蜗壳切换部位于第一位置或第二位置时,蜗壳切换部与通风通道相配合以形成进风通道或出风通道。Specifically, as shown in FIG. 1, the indoor unit includes a
在本实施例中,通过设置蜗壳切换部改变室内机的通风通道的进风面积的大小,从而根据室内机的工作模式选择相应通风通道是出风通道还是进风通道。同时通过将蜗壳切换部设置成出风通道的方式,能够起到延长出风通道长度的作用,使得出风口处的风速更高,这样设置能够有效地增加了室内机的进风量和出风量,有效地提高了用户的使用体验。In this embodiment, the size of the air inlet area of the ventilation channel of the indoor unit is changed by setting the volute switch part, thereby selecting whether the corresponding ventilation channel is the air outlet channel or the air inlet channel according to the working mode of the indoor unit. At the same time, by setting the volute switch part as an air outlet channel, it can extend the length of the air outlet channel, making the wind speed at the air outlet higher, and this setting can effectively increase the air inlet and outlet of the indoor unit. , Effectively improve the user experience.
其中,蜗壳切换部位于第一位置时,蜗壳切换部与通风通道相配合形成进风通道,蜗壳切换部位于第二位置时,蜗壳切换部与通风通道相配合形成出风通道,进风通道的进风口的横截面积大于出风通道的出风口的横截面积。通过选择横截面积大的通风通道作为进风通道,能够有效地增加室内机的进风量,继而有效地提高了室内机的出风量,提高了室内机的换热性能。Wherein, when the volute switching part is at the first position, the volute switching part cooperates with the ventilation channel to form an air inlet channel, and when the volute switching part is at the second position, the volute switching part cooperates with the ventilation channel to form an air outlet channel. The cross-sectional area of the air inlet of the air inlet channel is larger than the cross-sectional area of the air outlet of the air outlet channel. By selecting a ventilation channel with a large cross-sectional area as the air inlet channel, the air intake of the indoor unit can be effectively increased, and then the air output of the indoor unit can be effectively increased, and the heat exchange performance of the indoor unit can be improved.
如图1所示,通风通道包括上通风通道11和下通风通道12。蜗壳切换部包括上蜗壳切换部31,室内机包括换热器20。换热器20设置于壳体10内,以将容纳腔分隔成上腔体40和下腔体50。上通风通道11与上腔体40相连通,下通风通道12与下腔体50相连通,上蜗壳切换部31设置于上通风通道11的开口处,上蜗壳切换部31具有第一位置和第二位置。这样设置能够使得该室内机的结构简单,易于加工。As shown in FIG. 1, the ventilation channel includes an
具体地,蜗壳切换部还包括下蜗壳切换部32,下蜗壳切换部32设置于下通风通道12的开口处,下蜗壳切换部32具有第一位置和第二位置。这样设置能够有效地提高下通风通道12的进风量。Specifically, the volute switching part further includes a lower
其中,当上蜗壳切换部31位于第一位置时,下蜗壳切换部32位于第二位置。当上蜗壳切换部31位于第二位置时,下蜗壳切换部32位于第一位置。即在本实施例中,可以将壳体外部气流从下通风通道12处引入,也可以使得壳体外的气流从上通风通道11处引入壳体内与换热器进行热交换,有效地提高了室内机的实用性。Wherein, when the upper
进一步地,上蜗壳切换部31包括第一旋转蜗壳311和第一驱动部。第一旋转蜗壳311与上通风通道11的侧壁可活动地连接。第一驱动部与第一旋转蜗壳311相连接,第一驱动部可驱动第一旋转蜗壳311位于第一位置或第二位置。如图1中D1所示,D1处为第一旋转蜗壳311的旋转中心,第一驱动部可以是步进电机,步进电机驱动第一旋转蜗壳311绕旋转中心转动。Further, the upper
为了减小进风和出风的风阻,第一旋转蜗壳311设置有第一风道面312。当第一旋转蜗壳311位于第一位置时,第一风道面312与上通风通道11的侧壁围设成进风通道,当第一旋转蜗壳311位于第二位置时,第一风道面312与上通风通道11的侧壁围设成出风通道。第一风道面312与上通风通道11的侧壁的连接处为弧面过渡设置。In order to reduce the wind resistance of the air inlet and outlet, the first
在本实施例中,下蜗壳切换部32包括第二旋转蜗壳321和第二驱动部。第二旋转蜗壳321与下通风通道12的侧壁可活动地连接。第二驱动部与第二旋转蜗壳321相连接,第二驱动部可驱动第二旋转蜗壳321位于第一位置或第二位置。这样设置使得下蜗壳切换部32的结构简单,容易加工。其中,可以将下蜗壳切换部32的结构设置成与上蜗壳切换部31的结构相同的方式,这样设置能够减小室内机的加工成本。如图1中D2所示,D2处为第二旋转蜗壳321的旋转中心,第二驱动部可以是步进电机,步进电机驱动第二旋转蜗壳321绕旋转中心转动,C侧为室内机的安装侧。In this embodiment, the lower
为了进一步地减小室内机的进风和出风的风阻,第二旋转蜗壳321具有第二风道面322。当第二旋转蜗壳321位于第一位置时,第二风道面322与下通风通道12的侧壁围设成进风通 道,当第二旋转蜗壳321位于第二位置时,第二风道面322与下通风通道12的侧壁围设成出风通道。第二风道面322与下通风通道12的侧壁的连接处为弧面过渡设置。In order to further reduce the wind resistance of the inlet and outlet of the indoor unit, the second
在本实施例中,室内机还包括第一蜗舌60和第二蜗舌70。第一蜗舌60设置于上腔体40内,第一蜗舌60与第一旋转蜗壳311相对地设置。第二蜗舌70设置于下腔体50内,第二蜗舌70与第二旋转蜗壳321相对地设置。这样设置能够提高室内机的送风距离。In this embodiment, the indoor unit further includes a
根据本申请的另一个实施例,如图4所示,第一蜗舌60相对壳体10可转动地设置,以使第一蜗舌60具有第一关闭位置和第一打开位置。当第一蜗舌60位于第一关闭位置时,第一蜗舌60将上通风通道11的开口关闭。当第一蜗舌60位于第一打开位置时,第一蜗舌60与上通风通道11和第一旋转蜗壳311中的至少一个围设成进风通道或出风通道。这样设置能够防止外部灰尘或异物进入室内机内部,影响室内机的寿命的问题。According to another embodiment of the present application, as shown in FIG. 4, the
进一步地,如图5所示,第二蜗舌70也可以设置成相对壳体10可转动地设置方式,以使第二蜗舌70具有第二关闭位置和第二打开位置。当第二蜗舌70位于第二关闭位置时,第二蜗舌70将下通风通道12的开口关闭。当第二蜗舌70位于第二打开位置时,第二蜗舌70与下通风通道12和第二旋转蜗壳321中的至少一个围设成进风通道或出风通道。这样设置能够有效地避免异物进入室内机内部,提高了室内机的使用寿命。Further, as shown in FIG. 5, the
室内机还包括第一风机部80和第二风机部90。第一风机部80设置于上腔体40内。第二风机部90设置于下腔体50内。其中,第一风机部80和第二风机部90中的至少一个为贯流风机,贯流风机的轴线沿水平方向设置。如图1至图3所示,第一风机部80和第二风机部90均为贯流风机。这样设置能够有效地提高室内机的出风量和换热性能。The indoor unit also includes a
上述实施例中的室内机还可以用于空调设备技术领域,即根据本申请的另一方面,提供了一种空调器。该空调器包括室内机,室内机为上述实施例中的室内机。The indoor unit in the above embodiment can also be used in the technical field of air conditioning equipment, that is, according to another aspect of the present application, an air conditioner is provided. The air conditioner includes an indoor unit, and the indoor unit is the indoor unit in the above-mentioned embodiment.
具体地,该空调具有上风口送风和下风口送风的送风模式,同时通过旋转进风口处的蜗壳增大进风面积,增加空调的进风量,提升空调的性能。采用该结构的室内机可根据需要选择上出风或者下出风,同时根据上出风或下出风方式旋转进风口处的蜗壳,增大进风面积。Specifically, the air conditioner has an air supply mode of air supply from the upper air outlet and air from the lower air outlet. At the same time, the volute at the air inlet is rotated to increase the air inlet area, increase the air inlet volume of the air conditioner, and improve the performance of the air conditioner. The indoor unit adopting this structure can select upper air outlet or lower air outlet according to needs, and at the same time, rotate the volute at the air inlet according to the upper air outlet or the lower air outlet mode to increase the air inlet area.
通过旋转进风口处的蜗壳(第一旋转蜗壳和第二旋转蜗壳),以改变蜗壳位置,可以增大进风面积,实现大风量送风,有助于提升空调性能,同时采用上下出风方式,可根据制冷、制热选择不同的出风口,有益于提升房间温度分布的均匀性,提升房间舒适性。By rotating the volute at the air inlet (the first rotating volute and the second rotating volute) to change the position of the volute, the air inlet area can be increased, and the large air volume can be achieved, which helps to improve the air conditioning performance. The upper and lower air outlets can choose different air outlets according to cooling and heating, which is beneficial to improve the uniformity of the room temperature distribution and enhance the comfort of the room.
如图1所示。第一旋转蜗壳可绕蜗壳旋转中心转动,第二旋转蜗壳可绕蜗壳旋转中心转动。两个贯流风叶分别布置在空调的换热器上下两侧位置,两个蜗舌分别对应布置在对应的贯流风叶的出风区域处,该空调有上风口和下风口,需要从上风口出风时,第二蜗壳绕蜗壳旋转中心逆时针旋转,气流从下风口进入,经过蒸发器换热后从上风口吹出。需要从下风口出风时,第一蜗壳绕蜗壳旋转中心顺时针旋转,气流从上风口进入,经过蒸发器换热后从下风口吹出。如图1中所示,A处为上风口,B处为下风口。As shown in Figure 1. The first rotating volute can rotate around the center of rotation of the volute, and the second rotating volute can rotate around the center of rotation of the volute. Two cross-flow fan blades are respectively arranged on the upper and lower sides of the heat exchanger of the air conditioner, and the two volute tongues are respectively arranged at the air outlet area of the corresponding cross-flow fan blades. The air conditioner has an upper air outlet and a lower air outlet. When the wind is out, the second volute rotates counterclockwise around the center of rotation of the volute, and the airflow enters from the lower air outlet, and blows out from the upper air outlet after heat exchange through the evaporator. When the wind needs to be discharged from the lower air outlet, the first volute rotates clockwise around the rotation center of the volute, and the airflow enters from the upper air outlet, and blows out from the lower air outlet after heat exchange through the evaporator. As shown in Figure 1, point A is the upper air vent, and point B is the lower air vent.
空调处于关闭状态时,如图1所示,两个旋转蜗壳在图示位置不做旋转运动。空调制冷时,如图2所示,上贯流风叶运转,下贯流风叶不运转。第二蜗壳绕蜗壳旋转中心逆时针旋转至图示位置,第一蜗壳不做旋转运动,下风口进风面积增大,气流从下风口进入,经过蒸发器换热后从上风口吹出。第一蜗舌还起到了延长风道的作用,上出风口出风风速更高,气流可以吹出更远的距离。相比一般空调,该空调的进风量更大,上出风口位置更高,空调的性能更好,淋浴式送风效果更好,空调制冷效果更佳,温降更均匀。When the air conditioner is in the off state, as shown in Figure 1, the two rotating volutes do not rotate in the position shown. When the air conditioner is refrigerated, as shown in Figure 2, the upper cross-flow fan blades operate, and the lower cross-flow fan blades do not operate. The second volute rotates counterclockwise around the center of rotation of the volute to the position shown in the figure. The first volute does not rotate, and the air inlet area of the down vent increases. The airflow enters from the down vent, passes through the evaporator and blows out from the up vent . The first volute tongue also functions to extend the air duct, and the wind speed from the upper air outlet is higher, and the airflow can blow out a longer distance. Compared with general air conditioners, this air conditioner has a larger air intake, a higher position of the upper air outlet, better performance of the air conditioner, better shower-style air supply effect, better cooling effect of the air conditioner, and more uniform temperature drop.
空调制热时,如图3所示。下贯流风叶运转,上贯流风叶不运转。第一蜗壳绕蜗壳旋转中心顺时针旋转至图示位置,第二蜗壳不做旋转运动,上风口进风面积增大,气流从上风口进入,经过蒸发器换热后从下风口吹出,第二蜗舌还起到了延长风道的作用,下出风口出风风速更高,气流可以吹出更远的距离。相比一般空调,该空调的进风量更大,下出风口位置更低,空调的性能更好,地毯式送风效果更好,空调制热效果更佳,温升更均匀。When the air conditioner is heating, as shown in Figure 3. The lower cross flow fan blades operate, and the upper cross flow fan blades do not operate. The first volute rotates clockwise around the center of rotation of the volute to the position shown in the figure, the second volute does not rotate, the air inlet area of the upper air inlet increases, and the airflow enters from the upper air outlet, passes through the evaporator and blows out from the lower air outlet , The second volute tongue also plays the role of extending the air duct, the wind speed of the lower air outlet is higher, and the air flow can blow out a longer distance. Compared with general air conditioners, the air conditioner has a larger air intake, lower air outlet position, better performance of the air conditioner, better carpet air supply effect, better heating effect of the air conditioner, and more uniform temperature rise.
根据本申请的另一方面,提供了一种空调器控制的方法,方法用于控制上述中的空调器,方法包括以下步骤:空调器包括制冷模式和制热模式,当空调器的控制器控制空调器处于制冷模式时,上通风通道11实现出风,下通风通道12实现进风,当空调器处于制热模式,上通风通道11实现进风,下通风通道12实现出风。控制器可根据室内温度控制第一风机部80和第二风机部90的工作状态。空调器处于制冷模式时,当室内温度在第一预设值内,控制器控制第一风机部80和第二风机部90同时作业,当室内温度低于第一预设值时,控制器控制第一风机部80和第二风机部90中的一个停止作业;当空调器处于制热模式,当室内温度在第二预设值内,控制器控制第一风机部80和第二风机部90同时作业,当室内温度高于第一预设值时,控制器控制第一风机部80和第二风机部90中的一个停止作业。其中,控制器可以控制第一风机部80和第二风机部90正转和反转。According to another aspect of the present application, there is provided a method for controlling an air conditioner. The method is used to control the above-mentioned air conditioner. The method includes the following steps: the air conditioner includes a cooling mode and a heating mode. When the air conditioner is in the cooling mode, the
当控制器控制空调器处于制冷模式时,上蜗壳切换部31位于第二位置,下蜗壳切换部32位于第一位置;控制器控制第一风机部80进行吹风作业,控制器控制第二风机部90停止吹风作业。空调器还包括制热模式,当控制器控制空调器处于制热模式,上蜗壳切换部31位于第一位置,下蜗壳切换部32位于第二位置,控制器控制第一风机部80停止吹风作业,控制器控制第二风机部90进行吹风作业。其中,空调器为制冷模式时,空调器为斜向上出风模式,空调器为制热模式时,空调器为斜向下出风。When the controller controls the air conditioner to be in the cooling mode, the upper
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。For ease of description, spatially relative terms can be used here, such as "above", "above", "above the surface", "above", etc., to describe as shown in the figure Shows the spatial positional relationship between one device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described in the figure. For example, if the device in the drawing is turned upside down, then a device described as "above other devices or structures" or "above other devices or structures" will then be positioned as "below the other devices or structures" or "on Under other devices or structures". Thus, the exemplary term "above" can include both orientations "above" and "below". The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations), and the relative description of the space used here will be explained accordingly.
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。In addition to the above, it should be noted that the "one embodiment", "another embodiment", "embodiment", etc. referred to in this specification refer to specific features, structures, or features described in conjunction with the embodiment. The features are included in at least one embodiment described generally in this application. The occurrence of the same expression in multiple places in the specification does not necessarily refer to the same embodiment. Furthermore, when describing a specific feature, structure, or characteristic in combination with any embodiment, it is claimed that the combination of other embodiments to realize such a feature, structure, or characteristic also falls within the scope of the present application.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above-mentioned embodiments, the description of each embodiment has its own focus. For parts that are not described in detail in an embodiment, reference may be made to related descriptions of other embodiments.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the application, and are not intended to limit the application. For those skilled in the art, the application can have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included in the protection scope of this application.
Claims (22)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910791909.6 | 2019-08-26 | ||
| CN201910791909.6A CN110410867B (en) | 2019-08-26 | 2019-08-26 | Indoor unit, air conditioner and air conditioner control method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021036405A1 true WO2021036405A1 (en) | 2021-03-04 |
Family
ID=68368613
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2020/095226 Ceased WO2021036405A1 (en) | 2019-08-26 | 2020-06-09 | Indoor unit, air conditioner, and air conditioner control method |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN110410867B (en) |
| WO (1) | WO2021036405A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116182250A (en) * | 2021-11-26 | 2023-05-30 | 广州联动万物科技有限公司 | A temperature-controlled airflow adjustment device and a temperature-controlled airflow adjustment method |
| WO2024118858A1 (en) | 2022-12-02 | 2024-06-06 | Merck Sharp & Dohme Llc | Preparation of fused azole derivatives as novel diacylglyceride o-acyltransferase 2 inhibitors |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110410867B (en) * | 2019-08-26 | 2023-12-08 | 珠海格力电器股份有限公司 | Indoor unit, air conditioner and air conditioner control method |
| CN110410870A (en) * | 2019-08-26 | 2019-11-05 | 珠海格力电器股份有限公司 | Indoor unit and air conditioner with same |
| CN110887207A (en) * | 2019-11-08 | 2020-03-17 | 珠海格力电器股份有限公司 | Air guide structure, control method thereof and air conditioner |
| CN111006316B (en) * | 2019-12-11 | 2023-09-12 | 珠海格力电器股份有限公司 | Cross-flow fan, air conditioner indoor unit, air conditioner and air port control method |
| CN111076292B (en) * | 2019-12-27 | 2025-04-04 | 珠海格力电器股份有限公司 | Air conditioner indoor unit and air conditioner |
| CN111076293A (en) * | 2019-12-27 | 2020-04-28 | 珠海格力电器股份有限公司 | Indoor unit and air conditioner |
| CN111141016B (en) * | 2020-01-06 | 2023-12-15 | 珠海格力电器股份有限公司 | Wind shielding mechanism, air supply system with same, air conditioner and control method |
| CN111288558A (en) * | 2020-03-27 | 2020-06-16 | 珠海格力电器股份有限公司 | Indoor unit, air conditioner and control method of air conditioner |
| CN113915730B (en) * | 2020-07-09 | 2025-01-28 | 珠海格力电器股份有限公司 | Wind direction control method, device and air supply equipment |
| CN111895511A (en) * | 2020-08-10 | 2020-11-06 | 珠海格力电器股份有限公司 | Indoor unit of air conditioner |
| CN112628858A (en) * | 2020-12-24 | 2021-04-09 | 珠海格力电器股份有限公司 | Air conditioner indoor unit, air conditioner and control method of air conditioner indoor unit |
| CN112539470A (en) * | 2020-12-28 | 2021-03-23 | 珠海格力电器股份有限公司 | Indoor unit and air conditioner with same |
| CN112577175B (en) * | 2020-12-29 | 2025-06-06 | 珠海格力电器股份有限公司 | Air guide component and air conditioner having the same |
| CN112555990A (en) * | 2020-12-29 | 2021-03-26 | 珠海格力电器股份有限公司 | Fan structure and air conditioner |
| CN114151372B (en) * | 2021-12-08 | 2022-08-02 | 珠海格力电器股份有限公司 | Reversible double-air-duct structure of air conditioner, air conditioner and control method of air conditioner |
| CN114909337A (en) * | 2022-05-31 | 2022-08-16 | 广东美的制冷设备有限公司 | Fan assembly, air duct machine, air conditioner and air outlet control method |
| CN118757835A (en) * | 2024-09-05 | 2024-10-11 | 格力电器(赣州)有限公司 | Air conditioner and control method of air conditioner |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011016152A1 (en) * | 2009-08-05 | 2011-02-10 | 三菱電機株式会社 | Wall-hanging air conditioner |
| CN204786792U (en) * | 2015-06-23 | 2015-11-18 | 美的集团股份有限公司 | Indoor unit of air conditioner |
| CN106969418A (en) * | 2017-04-25 | 2017-07-21 | 珠海格力电器股份有限公司 | Air conditioner |
| CN109114675A (en) * | 2018-11-05 | 2019-01-01 | 珠海格力电器股份有限公司 | Air conditioning equipment and ducted air conditioner |
| CN109140592A (en) * | 2018-11-05 | 2019-01-04 | 珠海格力电器股份有限公司 | Air conditioning equipment and ducted air conditioner |
| CN110410867A (en) * | 2019-08-26 | 2019-11-05 | 珠海格力电器股份有限公司 | Indoor unit, air conditioner and air conditioner control method |
| CN210740548U (en) * | 2019-08-26 | 2020-06-12 | 珠海格力电器股份有限公司 | Indoor unit and air conditioner with same |
| CN111288558A (en) * | 2020-03-27 | 2020-06-16 | 珠海格力电器股份有限公司 | Indoor unit, air conditioner and control method of air conditioner |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB935934A (en) * | 1961-04-06 | 1963-09-04 | Smith & Sons Australia Pty Ltd | Improvements in or relating to air distributor fans |
| JP2009257709A (en) * | 2008-04-21 | 2009-11-05 | Panasonic Corp | Air conditioner |
| JP4631941B2 (en) * | 2008-07-18 | 2011-02-16 | 株式会社デンソー | Centrifugal blower |
| CN202792245U (en) * | 2012-07-20 | 2013-03-13 | 广东美的制冷设备有限公司 | Vertical air-blowing cross-flow type indoor unit of air conditioner |
| CN202993386U (en) * | 2012-12-20 | 2013-06-12 | 珠海格力电器股份有限公司 | Air conditioner indoor unit and air conditioner with same |
| CN104456887B (en) * | 2014-10-29 | 2017-06-30 | 珠海格力电器股份有限公司 | Air outlet device, air conditioner and control method of air outlet device |
| CN105570972B (en) * | 2016-02-23 | 2019-02-12 | 奥普家居股份有限公司 | Switch the two fans heater with fresh air function of wind direction by an air door |
| CN107816751B (en) * | 2016-09-12 | 2020-11-03 | 青岛海尔空调器有限总公司 | Indoor unit of wall mounted air conditioner |
| CN108332289B (en) * | 2018-01-29 | 2021-12-21 | 重庆海尔空调器有限公司 | Vertical air conditioner indoor unit |
| CN109114676B (en) * | 2018-11-05 | 2023-02-24 | 珠海格力电器股份有限公司 | Air conditioning equipment and ducted air conditioner |
| CN110145799A (en) * | 2019-05-08 | 2019-08-20 | 珠海格力电器股份有限公司 | Wall-mounted unit with upper air outlet and lower air outlet, air outlet control method of wall-mounted unit and air conditioner |
-
2019
- 2019-08-26 CN CN201910791909.6A patent/CN110410867B/en active Active
-
2020
- 2020-06-09 WO PCT/CN2020/095226 patent/WO2021036405A1/en not_active Ceased
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011016152A1 (en) * | 2009-08-05 | 2011-02-10 | 三菱電機株式会社 | Wall-hanging air conditioner |
| CN204786792U (en) * | 2015-06-23 | 2015-11-18 | 美的集团股份有限公司 | Indoor unit of air conditioner |
| CN106969418A (en) * | 2017-04-25 | 2017-07-21 | 珠海格力电器股份有限公司 | Air conditioner |
| CN109114675A (en) * | 2018-11-05 | 2019-01-01 | 珠海格力电器股份有限公司 | Air conditioning equipment and ducted air conditioner |
| CN109140592A (en) * | 2018-11-05 | 2019-01-04 | 珠海格力电器股份有限公司 | Air conditioning equipment and ducted air conditioner |
| CN110410867A (en) * | 2019-08-26 | 2019-11-05 | 珠海格力电器股份有限公司 | Indoor unit, air conditioner and air conditioner control method |
| CN210740548U (en) * | 2019-08-26 | 2020-06-12 | 珠海格力电器股份有限公司 | Indoor unit and air conditioner with same |
| CN111288558A (en) * | 2020-03-27 | 2020-06-16 | 珠海格力电器股份有限公司 | Indoor unit, air conditioner and control method of air conditioner |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116182250A (en) * | 2021-11-26 | 2023-05-30 | 广州联动万物科技有限公司 | A temperature-controlled airflow adjustment device and a temperature-controlled airflow adjustment method |
| WO2024118858A1 (en) | 2022-12-02 | 2024-06-06 | Merck Sharp & Dohme Llc | Preparation of fused azole derivatives as novel diacylglyceride o-acyltransferase 2 inhibitors |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110410867A (en) | 2019-11-05 |
| CN110410867B (en) | 2023-12-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2021036405A1 (en) | Indoor unit, air conditioner, and air conditioner control method | |
| CN108332289B (en) | Vertical air conditioner indoor unit | |
| CN105485783B (en) | Air conditioner indoor unit | |
| CN106196291B (en) | Air conditioner indoor unit and air conditioner with same | |
| JP2021139620A (en) | Indoor unit of air conditioner | |
| JP2004354040A (en) | Ventilation and air conditioning system | |
| WO2021051895A1 (en) | Indoor unit, air conditioner, and air conditioner control method | |
| JP6283939B2 (en) | Embedded ceiling air conditioner | |
| JP2004092950A (en) | Air conditioner indoor unit | |
| WO2021036415A1 (en) | Indoor unit and air conditioner having same | |
| CN210740548U (en) | Indoor unit and air conditioner with same | |
| KR100665999B1 (en) | Duct type air conditioner for ventilation | |
| CN114413335A (en) | Air outlet mechanism, air conditioner and air supply control method | |
| JP6668552B2 (en) | Air conditioner indoor unit | |
| CN105180287B (en) | Cross-flow duct type air conditioner unit and air supply method | |
| CN206222503U (en) | air conditioner | |
| CN206361810U (en) | Air conditioner | |
| CN110469911A (en) | Indoor unit and air conditioner with it | |
| CN202973367U (en) | Air-conditioner indoor unit | |
| CN110410868A (en) | Indoor unit and air conditioner with same | |
| CN213747011U (en) | Air conditioner indoor unit and air conditioner | |
| CN108758800A (en) | Air conditioner indoor unit and its outlet air method of adjustment | |
| CN205939429U (en) | Air conditioner indoor unit and air conditioner with same | |
| CN115218278B (en) | Air guide assembly and air conditioner | |
| WO2020172940A1 (en) | Air conditioner indoor unit, air conditioner, and control method for air conditioner |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20856967 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20856967 Country of ref document: EP Kind code of ref document: A1 |