WO2021036216A1 - 一种微型车灯模组 - Google Patents

一种微型车灯模组 Download PDF

Info

Publication number
WO2021036216A1
WO2021036216A1 PCT/CN2020/076903 CN2020076903W WO2021036216A1 WO 2021036216 A1 WO2021036216 A1 WO 2021036216A1 CN 2020076903 W CN2020076903 W CN 2020076903W WO 2021036216 A1 WO2021036216 A1 WO 2021036216A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
reflective surface
lamp module
vehicle lamp
Prior art date
Application number
PCT/CN2020/076903
Other languages
English (en)
French (fr)
Inventor
陆剑清
仇智平
李聪
李辉
祝贺
桑文慧
Original Assignee
华域视觉科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921383103.5U external-priority patent/CN210219615U/zh
Priority claimed from CN201910785676.9A external-priority patent/CN112413532A/zh
Application filed by 华域视觉科技(上海)有限公司 filed Critical 华域视觉科技(上海)有限公司
Publication of WO2021036216A1 publication Critical patent/WO2021036216A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors

Definitions

  • the invention relates to the technical field of vehicle lighting, in particular to a miniature vehicle lamp module.
  • a vehicle lamp module refers to a device that has a lens or equivalent structure as the final light emitting element and is used for low beam or high beam illumination of automobile headlights.
  • the types of car lamp modules have become more and more diversified, and more and more requirements have been put forward in terms of the overall performance of car lamp modules, such as car headlights.
  • the low beam shape formed by the car lamp module includes a central area A, a widened area B, a III area C, a 50L dark area D, and a cut-off line E, as shown in Figure 2.
  • the widened area B and the central area A partially overlap to increase the low beam irradiation range.
  • the vehicle lamp module has an optical structure for forming the light shape of each zone.
  • the car lamp module in the prior art mainly has the following defects.
  • the brightness of the central area of the light shape is low.
  • the reflector of the existing car light module has only one smooth reflecting surface, and the diffusion angle of the light reflected by the reflecting surface is basically the same, and the diffusion angle reflected to the final car light shape is also the same, resulting in the light reaching the center of the light shape
  • the light in the area is not concentrated enough, and the brightness of the light shape in the central area is not high enough.
  • the brightness of the central area of the light shape is as high as possible within the range allowed by laws and regulations, so as to improve the visibility of the driver’s road surface.
  • the reflecting surface of the mirror cannot meet this requirement.
  • the existing car lamp module with reflector as the primary optical element uses LED light source, and its luminous flux per unit area is only 300-400lm/mm 2. If you want to obtain a light shape that meets the legal brightness, you need to install multiple LED light sources, resulting in a light-emitting area. It needs a mirror with a larger reflecting surface to match. Correspondingly, the focal length of the mirror is longer, and the size of the lens matching the mirror is also larger, usually 50mm high and 70mm wide. In order to ensure the light effect, the lens The focal length is also longer, which makes the entire car light module bulky.
  • the accuracy of the optical system is low.
  • the primary optical element and radiator are positioned and installed, and the lens and lens holder are positioned.
  • the lens and lens holder are positioned.
  • This positioning installation method causes multiple assembly errors between the primary optical element and the lens, and the manufacturing accuracy and positioning and installation accuracy are very high. It is difficult to ensure that the accuracy of the optical system is low.
  • the optical structures of the existing car lamp module used to form the cut-off line, 50L dark zone and III zone are all set on the lens holder.
  • the front end of the lens holder is used to install the lens, and the rear end is used to fix the radiator. Connection is equivalent to the need to ensure the relative position accuracy of the primary optical element, the lens holder and the lens in order to obtain a light shape that meets the requirements of the law.
  • the relative position accuracy of the three is more difficult to guarantee, and the accuracy of the optical system is also more difficult to guarantee.
  • the dispersion phenomenon is serious.
  • the thickness of the upper and lower ends of the lens used in the existing car lamp module is very thin, and the light that hits the upper and lower ends of the lens will be greatly deflected, causing serious dispersion phenomenon, and does not meet the requirements of laws and regulations.
  • the technical problem to be solved by the present invention is to provide a miniature vehicle lamp module, which can improve the brightness of the central area of the light shape, so as to overcome the above-mentioned defects of the prior art.
  • a miniature car lamp module includes a light source, a reflective structure and a lens.
  • the light emitted by the light source is reflected by the reflective structure and then emitted from the lens to form an illuminating light shape.
  • the light source is a laser.
  • the light source, the reflective structure includes a first reflective surface used to form the light shape of the central area and a second reflective surface used to form the light shape of the expanded area, the light diffusion angle reflected by the first reflective surface is smaller than the light diffusion angle reflected by the second reflective surface .
  • a step is formed between the first reflective surface and the second reflective surface.
  • the curvature of the first reflecting surface is greater than the curvature of the second reflecting surface.
  • the reflective structure further includes a third reflective surface and a fourth reflective surface. Part of the light emitted by the light source is reflected by the third reflective surface to the fourth reflective surface, and is reflected by the fourth reflective surface and then emitted from the lens to form zone III Light shape.
  • the first reflecting surface, the second reflecting surface, and the third reflecting surface are sequentially connected from back to front to form a reflecting mirror, and the third reflecting surface and the first reflecting surface, and the third reflecting surface and the second reflecting surface are all located at Different ellipsoid surfaces.
  • the front end of the reflector is provided with a reflector connection portion
  • the rear end of the lens is provided with a lens connection portion
  • the reflector connection portion and the lens connection portion are matedly connected, so that the reflector and the lens are relatively fixed.
  • the light source is arranged on the circuit board, the circuit board is provided with a positioning hole, and the rear end of the reflector is provided with a positioning pin that is inserted and matched with the positioning hole.
  • the fourth reflecting surface and the reflecting mirror are an integrated structure.
  • it further includes a cut-off line structure for forming a light-shaped cut-off line, and the cut-off line structure and the reflector are integrated as an integral structure.
  • it further includes a shielding block for controlling the brightness of the 50L dark area of the light shape, and the shielding block and the reflector are integrated as an integral structure.
  • it further includes a light shield, which is connected with the lens.
  • the radius of curvature of the lens is R
  • the height of the lens is H and satisfies: H ⁇ 4R/3.
  • the height of the lens is 5mm-15mm.
  • the focal length of the lens is 10mm-20mm.
  • the light source adopts a laser light source with a small luminous area and high luminous intensity per unit area, which can greatly reduce the size and focal length of the reflector and lens, and the structure is compact and compact, so that the volume of the entire car light module is greatly reduced. , The corresponding manufacturing cost is also greatly reduced.
  • Figure 1 is a schematic diagram of the low beam light shape.
  • Fig. 2 is a schematic diagram of the central area and the expanded area of the low beam shape.
  • Fig. 3 is a schematic diagram of optical components of a miniature vehicle lamp module according to an embodiment of the present invention.
  • FIG. 4 is a schematic longitudinal cross-sectional view of the reflection structure of the miniature vehicle lamp module according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the light path of the light reflected by the first reflecting surface in the miniature car lamp module of the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the light path of the light reflected by the second reflecting surface in the miniature car lamp module according to the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the light path of the light reflected by the third reflecting surface and the fourth reflecting surface in the miniature car lamp module of the embodiment of the present invention.
  • FIG. 8 is a schematic view of the structure of the miniature vehicle lamp module of the embodiment of the present invention from a perspective.
  • Fig. 9 is a schematic view of another view of the structure of the miniature vehicle lamp module according to the embodiment of the present invention.
  • Fig. 10 is a schematic longitudinal cross-sectional view of a miniature vehicle lamp module according to an embodiment of the present invention.
  • Fig. 11 is an exploded schematic diagram of a miniature vehicle lamp module according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the connection structure between the lens and the reflector in the miniature vehicle lamp module of the embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the connection structure of the lens, the reflector and the circuit board in the miniature car lamp module of the embodiment of the present invention.
  • Fig. 14 is a schematic longitudinal cross-sectional view of Fig. 13.
  • FIG. 15 is a schematic structural diagram of a viewing angle when the reflector is used to form a low-beam light shape in the miniature car light module according to the embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of another view angle when the reflector is used to form a low-beam light shape in the miniature car light module according to the embodiment of the present invention.
  • Reflector mirror 2a the first reflective surface
  • Lens 3a The light-emitting surface of the lens
  • the miniature vehicle lamp module of this embodiment is used to form the light shape of the vehicle lamp illumination.
  • the low beam shape formed by the miniature car light module of this embodiment includes a central area A, a widened area B, a III area C, a 50L dark area D, and a cut-off line E.
  • the area B overlaps with the central area A, and is used to increase the low beam irradiation range.
  • the miniature car lamp module of this embodiment includes a light source 1, a reflective structure, and a lens 3.
  • the light emitted by the light source 1 is reflected by the reflective structure and then enters the lens 3, and is refracted by the lens 3 from the lens 3.
  • the light-emitting surface 3a of the light-emitting surface is emitted to form an illuminating light shape.
  • the side closer to the light source 1 and away from the lens 3 is defined as the back, and the side closer to the lens 3 and away from the light source 1 is defined as the front.
  • the reflective structure includes a first reflective surface 2a and a second reflective surface 2b.
  • the first reflective surface 2a is used to form the light shape of the central area A
  • the second reflective surface 2b is used to form the light shape of the expanded area B.
  • a first part of the light beam emitted by the light source 1 is directed to the first reflective surface 2a, is reflected by the first reflective surface 2a and then directed to the lens 3, and is refracted by the lens 3 and exits from the light-emitting surface 3a of the lens 3, forming a center Area A is light-shaped.
  • a second part of the light beam emitted by the light source 1 is directed to the second reflective surface 2b, reflected by the second reflective surface 2b, and then directed to the lens 3, after being refracted by the lens 3, it is emitted from the light-emitting surface 3a of the lens 3, forming The light shape of the broadened area B.
  • the diffusion angle of the light reflected by the first reflective surface 2a is smaller than the diffusion angle of the light reflected by the second reflective surface 2b.
  • the luminous flux per unit area of the light source 1 is a laser light source, a laser light source up / about 1200lm mm 2, only a laser light source can be shaped to achieve brightness, the light emitting area is very small regulatory requirements, therefore, with
  • the matching optical components can be made small in size, thereby forming a miniature car light module with a compact and small structure, which greatly reduces the volume of the entire car light module and the corresponding manufacturing cost. Greatly reduced.
  • a step can be formed between the first reflective surface 2a and the second reflective surface 2b, the first reflective surface 2a and the second reflective surface 2b can be connected, and the first reflective surface 2a and the second reflective surface 2b can be connected.
  • the first reflective surface 2a and the second reflective surface 2b are not on the same smooth surface, and the first reflective surface 2a and the second reflective surface 2b are located on different ellipsoidal surfaces, so that the first reflective surface 2a and the second reflective surface 2a are located on different ellipsoidal surfaces.
  • the surface 2b After the surface 2b reflects light, different light diffusion angles can be formed, and the diffusion angle of the light reflected by the first reflection surface 2a is smaller than the diffusion angle of the light reflected by the second reflection surface 2b.
  • the first reflective surface 2a and the second reflective surface 2b can also be connected without forming a step, but it is satisfied that the curvature of the first reflective surface 2a is greater than the curvature of the second reflective surface 2b, so that the first reflective surface 2a can also be realized.
  • the diffusion angle of the reflected light is smaller than the diffusion angle of the light reflected by the second reflecting surface 2b.
  • the curvature of the first reflective surface 2a and the second reflective surface 2b can also be the same. On the same smooth surface, such a reflective structure is easier to process, but the light shape of the formed central area A has a relatively low brightness.
  • the reflective structure further includes a third reflective surface 2c and a fourth reflective surface 2d.
  • the third reflective surface 2c and the fourth reflective surface 2d are used to jointly form the III zone C light shape.
  • a third part of the light beam emitted by the light source 1 is directed to the third reflective surface 2c, is reflected by the third reflective surface 2c and then directed to the fourth reflective surface 2d, and is reflected by the fourth reflective surface 2d and directed to the lens 3.
  • the fourth reflective surface 2d can be any one of a flat surface, an inner concave curved surface, and an outer convex curved surface, as long as it can form a light shape of Zone III C that meets the requirements of regulations.
  • the first reflective surface 2a, the second reflective surface 2b, and the third reflective surface 2c are sequentially connected from back to front to form a reflective mirror 2.
  • the first reflective surface 2a and the second reflective surface 2a The interface between the reflective surfaces 2b causes a step difference between the first reflective surface 2a and the second reflective surface 2b. Since the light reflected by the third reflective surface 2c needs to be reflected on the fourth reflective surface 2d and then shot to the lens 3, the light reflected by the first reflective surface 2a and the second reflective surface 2b is directly shot to the lens 3. Therefore, the third reflective surface 2c and the first reflective surface 2a, the third reflective surface 2c and the second reflective surface 2b are all located on different ellipsoidal surfaces.
  • the front end of the reflector 2 is provided with a reflector connecting portion 21, the rear end of the lens 3 is provided with a lens connecting portion 31, the reflector connecting portion 21 and the lens connecting portion 31 are matedly connected,
  • the mirror 2 and the lens 3 are relatively fixed.
  • the mirror 2 and the lens 3 are assembled into an integral structure to directly determine the relative position of the two, and the relationship between the mirror 2 and the lens 3 is realized. Direct positioning.
  • the mini-vehicle lamp module of this embodiment when the reflector 2 and lens 3 are assembled on the circuit board 4 and the heat sink 5, due to the fixed assembly and positioning relationship between the reflector 2 and the lens 3, there is no Due to the assembly with the circuit board 4 and the heat sink 5, a positioning error occurs between the two, that is, multiple assembly errors are reduced, so the positioning accuracy and installation reliability of the mirror 2 and the lens 3 can be ensured, which has a higher The accuracy of the optical system.
  • the reflector and the lens holder of this embodiment are integrated, and the structure is very complicated.
  • the integrated structure of the reflector in the prior art extends a long length from back to front, which is difficult to process and difficult to ensure optical accuracy.
  • the reflector 2 and the lens 3 in this embodiment are directly positioned and connected, and the structure is simple, and the reflector 2 is easy to process, and the optical system has high precision.
  • the mating connection mode of the mirror connecting portion 21 and the lens connecting portion 31 may be any one of screw connection, riveting, adhesive bonding, and welding.
  • the mirror connecting portion 21 and the lens connecting portion 31 are mated and connected by riveting, which has the advantages of convenient operation and accurate positioning.
  • the mirror connecting portion 21 is provided with a first connecting hole 22
  • the lens connecting portion 31 is provided with a first connecting pin 32
  • the first connecting pin 32 is inserted into the first connecting hole 22.
  • the mirror connecting portion 21 is opposed to the lens connecting portion 31, and the first connecting pin 32 is inserted into the first connecting hole 22 and can be riveted with the first connecting hole 22 to realize the mirror connecting portion 21 and the lens connecting portion
  • the positioning connection between 31, that is, the positioning connection between the mirror 2 and the lens 3 is realized.
  • two first connecting holes 22 may be provided on the mirror connecting portion 21, and correspondingly, the lens connecting portion 31 is provided with two first connecting pins 32 that are plug-in-fitted with the two first connecting holes 22.
  • One of the two first connecting holes 22 is a circular hole or a waist-shaped hole whose diameter matches the diameter of the corresponding first connecting pin 32, and is used to realize the positioning of the relative position of the reflector 2 and the lens 3;
  • the first connecting hole 22 is a round hole with a diameter larger than the diameter of the corresponding first connecting pin 32, and is used to realize the riveting of the mirror connecting portion 21 and the lens connecting portion 31.
  • a mirror connecting portion 21 is respectively provided above and below the front end of the mirror 2, and each mirror connecting portion 21 is respectively provided with two first connecting holes 22, preferably two diagonal first connecting holes.
  • the holes 22 are used as positioning holes for positioning. To avoid over-positioning, one of them is a round hole and the other is a waist-shaped hole.
  • a lens connecting portion 31 is provided above and below the rear end of the lens 3 for assembly.
  • the upper mirror connection portion 21 is opposed to the upper lens connection portion 31, and the lower mirror connection portion 21 is opposed to the lower lens connection portion 31, thus, through two pairs of connected reflections
  • the mirror connecting portion 21 and the lens connecting portion 31 jointly define the relative position of the mirror 2 and the lens 3, which can ensure the accuracy of positioning of the mirror 2 and the lens 3 and the stability of the assembly.
  • the light source 1 is arranged on the circuit board 4, the circuit board 4 is provided with a positioning hole 41, the rear end of the reflector 2 is provided with a positioning pin 23, and the positioning pin 23 is inserted into the positioning hole 41 Cooperate.
  • the relative position of the reflector 2 and the circuit board 4 can be defined by the insertion and fit of the positioning pin 23 and the positioning hole 41, and accurate positioning between the two can be achieved. Therefore, through the plug-in connection of the positioning pin 23 and the positioning hole 41, the reflector 2 and the circuit board 4 are assembled together to determine the relative position of the two, and the direct connection between the reflector 2 and the circuit board 4 is realized. Positioning.
  • the mini-vehicle lamp module of this embodiment only needs to ensure accurate positioning between the lens 3 and the reflector 2, and between the reflector 2 and the circuit board 4.
  • the performance can ensure the accuracy of the optical system, reduce multiple assembly errors, and make precise assembly easier.
  • the circuit board 4 may be provided with two positioning holes 41.
  • the rear end of the reflector 2 is provided with two positioning pins 23, and the two positioning pins 23 are respectively mated with the two positioning holes 41. Increase the positioning accuracy and assembly stability between the mirror 2 and the circuit board 4.
  • the circuit board 4 and the heat sink 5 are connected and positioned.
  • the reflector 2, the circuit board 4 and the heat sink 5 can be fixedly connected by a mounting screw 6 (the through hole on the circuit board 4 for the mounting screw 6 to pass through is not shown in the figure).
  • the miniature car lamp module of this embodiment further includes a hood 7, which is connected to the lens 3, and the lens 3 is housed in the hood 7, with only the light-emitting surface 3a exposed Outside, the light shield 7 can prevent the light from exiting from the side of the lens 3.
  • the connection between the light shield 7 and the lens 3 can be any one of screw connection, riveting, glue connection, and welding.
  • the light shield 7 and the lens 3 are connected by riveting, which has the advantages of convenient operation and accurate positioning.
  • the hood 7 is provided with a second connecting hole 71
  • the lens connecting portion 31 of the lens 3 is provided with a second connecting pin 33
  • the second connecting pin 33 is inserted into the second connecting hole 71.
  • two second connecting holes 71 may be provided on the light shield 7.
  • the lens connecting portion 31 is provided with two second connecting pins 33 that are respectively inserted and fitted with the two second connecting holes 71.
  • One of the two second connecting holes 71 is a round hole or a waist-shaped hole whose diameter matches the diameter of the corresponding second connecting pin 33, and is used to realize the positioning of the relative position of the hood 7 and the lens 3;
  • the second connecting hole 71 is a round hole with a diameter larger than the diameter of the corresponding second connecting pin 33, and is used to realize the riveting of the light shield 7 and the lens 3.
  • a lens connecting portion 31 is provided above and below the rear end of the lens 3
  • two second connecting pins 33 are respectively provided on each lens connecting portion 31, and the rear end of the light shield 7 is above and below the rear end respectively.
  • Two second connecting holes 71 are provided, preferably two diagonally opposite second connecting holes 71 are used as positioning holes for positioning. In order to avoid over-positioning, one of them is a round hole and the other is a waist-shaped hole. Ensure the accuracy of the positioning of the hood 7 and the lens 3 and the stability of the assembly.
  • the fourth reflecting surface 2d and the reflecting mirror 2 are formed as an integral structure.
  • the first reflective surface 2a, the second reflective surface 2b, the third reflective surface 2c, and the fourth reflective surface 2d in the reflective structure have a relatively fixed positional relationship, which will not be caused by the assembly between the mirror 2 and the lens 3. Therefore, it is only necessary to ensure the assembly accuracy between the mirror 2 and the lens 3 to ensure the accuracy of the optical system.
  • the fourth reflecting surface 2d may be arranged on the reflecting mirror connecting portion 21 whose front end of the reflecting mirror 2 is located below.
  • the miniature vehicle lamp module of this embodiment further includes a cut-off line structure 8 and a blocking block 9.
  • the cut-off line structure 8 is used to form a light-shaped cut-off line E.
  • the light from the light source 1 to the first reflective surface 2a is reflected by the first reflective surface 2a, is cut off by the cut-off line structure 8, and then radiates to the lens 3, and passes through the lens 3. After refraction, it is emitted from the light-emitting surface 3a of the lens 3 to form a light shape in the central area A with a cut-off line E; the light from the light source 1 to the second reflective surface 2b is reflected by the second reflective surface 2b and is cut off by the cut-off line structure 8.
  • the blocking block 9 is used to control the brightness of the 50L dark area D of the light shape.
  • the blocking block 9 can block part of the light before the cut-off line structure 8 cuts off, so that the illuminance of the 50L dark area D of the low beam light shape is reduced to a value that meets the legal requirements. , Thereby achieving the control of the brightness of the 50L dark area D of the light shape.
  • the blocking block 9 may be cylindrical or slope-shaped convex.
  • the prior art shielding blocks mostly use bumps or rectangular blocks, but the bumps will make the 50L dark area a dark spot, which is relatively abrupt; the rectangular block will cause another inflection point besides the original inflection point to appear near the cut-off line.
  • the blocking block 9 adopts cylindrical or slope-shaped protrusions, which can avoid the phenomenon of abrupt light shape or misappropriation of the inflection point.
  • the cut-off line structure 8 and the reflecting mirror 2 may be an integrated structure, and the blocking block 9 and the reflecting mirror 2 may also be an integrated structure.
  • the cut-off line structure 8, the blocking block 9 and the mirror 2 have a relatively fixed positional relationship, and there will be no errors due to the assembly relationship between the mirror 2 and the lens 3. Therefore, only the mirror 2 and the lens 3 need to be ensured.
  • the accuracy of the assembly can ensure the accuracy of the optical system.
  • the cut-off line structure 8 and the blocking block 9 are integrated with the reflector 2 as an integral structure. Both the cut-off line structure 8 and the blocking block 9 can be arranged on the mirror connecting portion 21 with the front end of the reflector 2 located below. .
  • the fourth reflecting surface 2d, the cut-off line structure 8, and the blocking block 9 are integrated with the reflecting mirror 2 as an integral structure. Then, the positional relationship of the first reflecting surface 2a, the second reflecting surface 2b, the third reflecting surface 2c, the fourth reflecting surface 2d, the cut-off line structure 8 and the blocking block 9 are all fixed, which will not be caused by the reflecting mirror 2 and the lens 3. The assembly relationship between the two leads to errors, and it is only necessary to ensure the assembly accuracy between the mirror 2 and the lens 3 to ensure the accuracy of the optical system.
  • the miniature vehicle light module of this embodiment can realize low beam and high beam.
  • the shape of the cut-off line structure 8 is the same as the cut-off line shape of the low beam light shape, which has a step difference (see FIG. 16).
  • the shape of the cut-off line structure 8 can be smooth without step, or it can be the same shape as the cut-off line shape of the low beam light shape.
  • the shape of the cut-off line structure 8 can be set according to the shape of the lower boundary of the high beam shape.
  • the radius of curvature of the lens 3 is R
  • the height of the lens 3 is H and satisfies: H ⁇ 4R/3.
  • the height H can be cut off the upper and lower ends of the existing lens, leaving only the middle
  • the thicker part is realized, which can reduce the size of the lens 3 under the premise of ensuring the light effect of the lens 3, so that the volume of the entire car light module is greatly reduced, forming a miniature car light module, and the corresponding manufacturing cost Also greatly reduced. If the size of the optical element of the car lamp module in the prior art is simply reduced proportionally, the reduced car lamp module has the disadvantages of unsatisfactory light shape effect, poor light efficiency, and inability to provide a good lighting effect for the driver.
  • This embodiment does not simply reduce the size of the lens 3 proportionally, but cuts off its upper and lower ends on the basis of the existing lens, and reduces the upper and lower height dimensions of the lens 3 under the same curvature, thereby ensuring the lens 3, and reduce the size of lens 3.
  • the thickness of the middle part of the lens 3 of this embodiment is relatively thick, which weakens the serious dispersion caused by the thin lens thickness, and can effectively improve the dispersion phenomenon.
  • the upper and lower ends of the existing lens can be cut to the same size, and the height of the obtained lens 3 from the center to the upper and lower ends is H/2.
  • the upper and lower ends of the existing lens The cut-off size of the lower ends can also be different.
  • the left and right width of the lens can be relatively long without affecting the dispersion. Therefore, the front projection of the lens 3 in this embodiment is a horizontal rectangle.
  • the light source 1 adopts a laser light source and is equipped with the above-mentioned optical component structure, which greatly reduces the volume of the vehicle light module.
  • the luminous flux per unit area of the laser light source can reach about 1200lm/mm 2 , and only one laser light source can achieve the light shape brightness required by the regulations, and the light-emitting area is small. Therefore, the size of the reflector 2 can also be small.
  • the size of the lens 3 can also be made small.
  • the focal length of the reflector 2 in this embodiment can be 10mm-20mm, preferably 10mm, while the focal length of the reflector in the prior art can only be 30mm-40mm.
  • the lens 3 can achieve: the upper and lower height H is 5mm-15mm, preferably 10mm; the width is 15mm-35mm, preferably 30mm.
  • the focal length of the lens 3 is also reduced accordingly.
  • the focal length of the lens 3 in this embodiment can be 10mm-20mm, while the focal length of the lens in the prior art can only be 30mm-40mm.
  • the length of the entire car lamp module in the front and rear direction is greatly reduced, and the length can be about 80mm, while the length of the car lamp module in the prior art is about 130mm-150mm; similarly, the entire car lamp module
  • the width and height of the group will also be reduced, which can be about 35mm wide and 40mm high, while the car light module of the prior art has a width of about 90mm-100mm and a height of about 90mm-100mm.
  • the volume of the entire vehicle light module of this embodiment is greatly reduced, and it belongs to a miniature vehicle light module of a size.
  • the miniature car lamp module of this embodiment adopts a laser light source with a small luminous area and high luminous intensity per unit area, so that the size and focal length of the reflector 2 and the lens 3 are greatly reduced, and the structure is compact and small, making the whole The volume of the lamp module is greatly reduced, and the corresponding manufacturing cost is also greatly reduced.
  • the miniature car light module is very suitable for the development trend of vehicle styling, and can even make the existing headlights disappear, and the car light module can be arranged in an inconspicuous position for vehicle lighting. For example, bumpers, grilles, etc., help to further enhance the appearance of the car.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种微型车灯模组,包括光源(1)、反射结构和透镜(3),光源(1)发出的光线经反射结构反射后从透镜(3)射出,形成照明光形,光源(1)为激光光源,反射结构包括用于形成中心区域光形的第一反射面(2a)和用于形成展宽区域光形的第二反射面(2b),第一反射面(2a)反射的光线扩散角度小于第二反射面(2b)反射的光线扩散角度。可以有效提高由第一反射面(2a)形成的中心区域光形的亮度,从而提高驾驶员的路面可视性。光源(1)采用发光面积小且单位面积发光强度高的激光光源,可使得反射镜(2)和透镜(3)的尺寸和焦距都大大减小,结构紧凑、小巧,使得整个车灯模组的体积大大减小,相应制造成本也大大降低。

Description

一种微型车灯模组 技术领域
本发明涉及车辆照明技术领域,尤其涉及一种微型车灯模组。
背景技术
在车灯技术领域,车灯模组是指具有透镜或相当结构的零件作为最终出光元件,且用于汽车前照灯的近光或远光照明的装置。近几年,随着汽车行业的发展逐渐成熟和稳定,车灯模组的种类越来越多样化,在车灯模组的综合性能方面提出了越来越多的要求,比如汽车前照灯的近光或远光光形均匀性、近光的可视性、散热性能、远光的亮度以及模组的结构、重量和体积等。
以近光照明为例,根据法规,如图1所示,车灯模组形成的近光光形包括中心区域A、展宽区域B、Ⅲ区C、50L暗区D以及截止线E,如图2所示,展宽区域B与中心区域A部分重合,用于提高近光照射范围。相应地,车灯模组具有用于形成各区光形的光学结构。现有技术中的车灯模组主要存在以下缺陷。
(1)光形中心区域的亮度低。现有车灯模组的反射镜只有一个顺滑的反射面,该反射面反射的光线扩散角度大小基本一致,反映到最终形成的车灯光形的扩散角度也是一致的,导致射至光形中心区域的光线不够集中,中心区域的光形亮度不够高,但是,光形中心区域的亮度在法规允许范围内越高越好,以提高驾驶员的路面可视性,现有车灯模组的反射镜的反射面无法满足此要求。
(2)体积较大。现有以反射镜作为初级光学元件的车灯模组采用LED光源,其单位面积的光通量只有300-400lm/mm 2,若想得到符合法规亮度的光形,需要设置多颗LED光源,导致发光面积很大,需要反射面较大的反射镜来匹配,相应地,反射镜的焦距较长,与反射镜匹配的透镜尺寸也较大,通常为高50mm、宽70mm,为了保证光效,透镜的焦距也较长,从而使得整个车灯模组的体积很大。
(3)光学系统精度低。一方面,若要得到理想的车灯光形,需要保证初级光学元件和透镜的相对位置精度,而现有车灯模组,其初级光学元件和散热器进行定位、安装,透镜和透镜支架进行定位、安装后,再与散热器定位、安装或者再经由一个过渡支架与散热器定位、安装,这种定位安装方法使得初级光学元件和透镜之间存在多次装配误差,制造精度和定位 安装精度很难保证,使得光学系统精度较低。另一方面,现有车灯模组用于形成截止线、50L暗区和III区等的光学结构均设置在透镜支架上,透镜支架前端用于安装透镜,后端用于和散热器进行固定连接,相当于需要保证初级光学元件、透镜支架和透镜三者的相对位置精度,才能得到符合法规要求的光形,而三者的相对位置精度更难保证,导致光学系统精度也更难保证。
(4)色散现象严重。现有车灯模组采用的透镜上下两端的厚度很薄,射至透镜上下两端的光线会产生较大偏折,造成严重的色散现象,不符合法规要求。
发明内容
本发明要解决的技术问题是提供一种微型车灯模组,能够提高光形中心区域的亮度,以克服现有技术的上述缺陷。
为了解决上述技术问题,本发明采用如下技术方案:一种微型车灯模组,包括光源、反射结构和透镜,光源发出的光线经反射结构反射后从透镜射出,形成照明光形,光源为激光光源,反射结构包括用于形成中心区域光形的第一反射面和用于形成展宽区域光形的第二反射面,第一反射面反射的光线扩散角度小于第二反射面反射的光线扩散角度。
优选地,第一反射面与第二反射面之间形成段差。
优选地,第一反射面的曲率大于第二反射面的曲率。
优选地,反射结构还包括第三反射面和第四反射面,光源发出的光线有部分经第三反射面反射至第四反射面,并经第四反射面反射后从透镜射出,形成Ⅲ区光形。
优选地,第一反射面、第二反射面和第三反射面从后至前依次相连接构成反射镜,且第三反射面与第一反射面、第三反射面与第二反射面均位于不同椭球面上。
优选地,反射镜的前端设有反射镜连接部,透镜的后端设有透镜连接部,反射镜连接部与透镜连接部配合连接,使反射镜与透镜相对固定。
优选地,光源设于电路板上,电路板上设有定位孔,反射镜的后端设有与定位孔插接配合的定位销。
优选地,第四反射面与反射镜为一体设置的整体结构。
优选地,还包括用于形成光形的截止线的截止线结构,截止线结构与反射镜为一体设置的整体结构。
优选地,还包括用于控制光形的50L暗区亮度的遮挡块,遮挡块与反射镜为一体设置的 整体结构。
优选地,还包括遮光罩,遮光罩与透镜相连接。
优选地,透镜的曲率半径为R,透镜的高度为H且满足:H≤4R/3。
优选地,透镜的高度为5mm-15mm。
优选地,透镜的焦距为10mm-20mm。
与现有技术相比,本发明具有显著的进步:
在相同的光通量下,光线扩散角度越小,光线越汇聚,所形成光形的亮度越高。本发明中,第一反射面反射的光线扩散角度小于第二反射面反射的光线扩散角度,由此,可以有效提高由第一反射面形成的中心区域光形的亮度,从而提高驾驶员的路面可视性。本发明中,光源采用发光面积小且单位面积发光强度高的激光光源,可使得反射镜和透镜的尺寸和焦距都大大减小,结构紧凑、小巧,使得整个车灯模组的体积大大减小,相应制造成本也大大降低。
附图说明
图1是近光光形示意图。
图2是近光光形的中心区域与展宽区域示意图。
图3是本发明实施例微型车灯模组的光学组件示意图。
图4是本发明实施例微型车灯模组的反射结构的纵剖面示意图。
图5是本发明实施例微型车灯模组中,经第一反射面反射的光线的光路示意图。
图6是本发明实施例微型车灯模组中,经第二反射面反射的光线的光路示意图。
图7是本发明实施例微型车灯模组中,经第三反射面、第四反射面反射的光线的光路示意图。
图8是本发明实施例微型车灯模组一个视角的结构示意图。
图9是本发明实施例微型车灯模组另一个视角的结构示意图。
图10是本发明实施例微型车灯模组的纵剖面示意图。
图11是本发明实施例微型车灯模组的分解示意图。
图12是本发明实施例微型车灯模组中,透镜与反射镜的连接结构示意图。
图13是本发明实施例微型车灯模组中,透镜、反射镜与电路板的连接结构示意图。
图14是图13的纵剖面示意图。
图15是本发明实施例微型车灯模组中,反射镜用于形成近光光形时一个视角的结构示意图。
图16是本发明实施例微型车灯模组中,反射镜用于形成近光光形时另一个视角的结构示意图。
其中,附图标记说明如下:
A、中心区域                            B、展宽区域
C、Ⅲ区                                D、50L暗区
E、截止线                              1、光源
2、反射镜                              2a、第一反射面
2b、第二反射面                         2c、第三反射面
2d、第四反射面                         21、反射镜连接部
22、第一连接孔                         23、定位销
3、透镜                                3a、透镜的出光面
31、透镜连接部                         32、第一连接销
33、第二连接销                         4、电路板
41、定位孔                             5、散热器
6、安装螺钉                            7、遮光罩
71、第二连接孔                         8、截止线结构
9、遮挡块
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细说明。这些实施方式仅用于说明本发明,而并非对本发明的限制。
在本发明的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1至图16所示,本发明的微型车灯模组的一种实施例。本实施例的微型车灯模组用于形成车灯照明光形。如图1和图2所示,根据法规,本实施例的微型车灯模组形成的近光光形包括中心区域A、展宽区域B、Ⅲ区C、50L暗区D以及截止线E,展宽区域B与中心区域A部分重合,用于提高近光照射范围。
参见图3和图4,本实施例的微型车灯模组包括光源1、反射结构和透镜3,光源1发出的光线经反射结构反射后射入透镜3,并经透镜3折射后从透镜3的出光面3a射出,形成照明光形。本文中,定义靠近光源1、远离透镜3的一方为后,靠近透镜3、远离光源1的一方为前。本实施例中,反射结构包括第一反射面2a和第二反射面2b,第一反射面2a用于形成中心区域A光形,第二反射面2b用于形成展宽区域B光形。参见图5,光源1发出的光线有第一部分光束射向第一反射面2a,经第一反射面2a反射后射向透镜3,经透镜3折射后从透镜3的出光面3a射出,形成中心区域A光形。参见图6,光源1发出的光线有第二部分光束射向第二反射面2b,经第二反射面2b反射后射向透镜3,经透镜3折射后从透镜3的出光面3a射出,形成展宽区域B光形。在相同的光通量下,光线扩散角度越小,光线越汇聚,所形成光形的亮度越高。本实施例中,第一反射面2a反射的光线扩散角度小于第二反射面2b反射的光线扩散角度。由此,可以有效提高由第一反射面2a形成的中心区域A光形的亮度,从而提高驾驶员的路面可视性。本实施例中,光源1为激光光源,激光光源的单位面积的光通量可达1200lm/mm 2左右,只需要一颗激光光源即可达到法规要求的光形亮度,发光面积很小,因此,与之相配的光学元件(反射结构和透镜3)尺寸可以做到很小,从而形成尺寸微型的车灯模组,结构紧凑、小巧,使得整个车灯模组的体积大大减小,相应制造成本也大大降低。
参见图4,本实施例中,第一反射面2a与第二反射面2b之间可以形成段差,第一反射面2a与第二反射面2b之间可以相连接,并通过衔接面使第一反射面2a与第二反射面2b之间具有段差。由此,第一反射面2a与第二反射面2b不在同一顺滑面上,且第一反射面2a与第二反射面2b位于不同的椭球面上,使得第一反射面2a与第二反射面2b反射光线后可以形 成不同的光线扩散角度,并实现第一反射面2a反射的光线扩散角度小于第二反射面2b反射的光线扩散角度。第一反射面2a与第二反射面2b之间也可以相连接且不形成段差,但满足第一反射面2a的曲率大于第二反射面2b的曲率,由此也可以实现第一反射面2a反射的光线扩散角度小于第二反射面2b反射的光线扩散角度。当然,第一反射面2a与第二反射面2b的曲率也可以相同,在同一顺滑面上,这样的反射结构更容易加工,但形成的中心区域A光形的亮度相对较低。
参见图3和图4,本实施例中,反射结构还包括第三反射面2c和第四反射面2d,第三反射面2c和第四反射面2d用于共同形成Ⅲ区C光形。参见图7,光源1发出的光线有第三部分光束射向第三反射面2c,经第三反射面2c反射后射向第四反射面2d,经第四反射面2d反射后射向透镜3,经透镜3折射后从透镜3的出光面3a射出,形成Ⅲ区C光形。第四反射面2d可以为平面、内凹曲面、外凸曲面中的任意一种,只要能够形成符合法规要求的Ⅲ区C光形即可。
参见图8、图9和图10,优选地,第一反射面2a、第二反射面2b和第三反射面2c从后至前依次相连接构成反射镜2,第一反射面2a与第二反射面2b之间的衔接面使第一反射面2a与第二反射面2b之间具有段差。由于经第三反射面2c反射后的光线需要先射至第四反射面2d反射后再射至透镜3,而经第一反射面2a和第二反射面2b反射后的光线是直接射至透镜3,因此,第三反射面2c与第一反射面2a、第三反射面2c与第二反射面2b均位于不同椭球面上。
参见图10和图11,本实施例中,反射镜2的前端设有反射镜连接部21,透镜3的后端设有透镜连接部31,反射镜连接部21与透镜连接部31配合连接,使反射镜2与透镜3相对固定。由此,通过反射镜连接部21与透镜连接部31的配合连接,将反射镜2与透镜3装配成一整体结构而直接确定了两者的相对位置,实现了反射镜2与透镜3之间的直接定位。因此,本实施例的微型车灯模组中,将反射镜2与透镜3装配到电路板4和散热器5上时,由于反射镜2与透镜3之间存在固定的装配定位关系,不会因与电路板4及散热器5的装配而使两者之间产生定位误差,即减少了多次装配误差,因此能够保证反射镜2与透镜3的定位精度和安装可靠性,从而具有较高的光学系统精度。需要说明的是,现有技术中有一种实施方式是将反射镜和透镜支架作为一体后再与透镜直接定位,这种实施方式的反射镜和透镜支架作为一体,结构非常复杂,而且由于反射镜作为重要的光学元件,要保证其加工精度才能保证较高的光学系统精度,但是现有技术的反射镜一体结构从后向前的长度延伸很长,加工 难度大,光学精度较难保证。相比现有技术,本实施例中的反射镜2和透镜3直接定位连接,结构简单,而且反射镜2加工容易,光学系统精度较高。
反射镜连接部21与透镜连接部31的配合连接方式可以为螺纹连接、铆接、胶接、焊接中的任意一种。较佳地,本实施例中,反射镜连接部21与透镜连接部31通过铆接的方式配合连接,具有操作方便、定位准确的优点。
具体地,参见图11和图12,反射镜连接部21上设有第一连接孔22,透镜连接部31上设有第一连接销32,第一连接销32与第一连接孔22插接配合。装配时,反射镜连接部21与透镜连接部31相对接,第一连接销32插入第一连接孔22,并可与第一连接孔22铆接,用于实现反射镜连接部21与透镜连接部31之间的定位连接,即实现反射镜2与透镜3的定位连接。优选地,反射镜连接部21上可以设有两个第一连接孔22,相应地,透镜连接部31上设有两个分别与两个第一连接孔22插接配合的第一连接销32。两个第一连接孔22其中一个第一连接孔22为直径与对应第一连接销32直径相匹配的圆孔或腰形孔,用于实现反射镜2与透镜3相对位置的定位;另一个第一连接孔22则为直径大于对应第一连接销32的直径的圆孔,用于实现反射镜连接部21与透镜连接部31的铆接。优选地,在反射镜2的前端上、下方分别设有一个反射镜连接部21,每个反射镜连接部21上分别设有两个第一连接孔22,优选对角的两个第一连接孔22作为用于定位的定位孔,为避免过定位,其中一个为圆孔,另一个为腰形孔,相应地,在透镜3的后端上、下方分别设有一个透镜连接部31,装配时,位于上方的反射镜连接部21与位于上方的透镜连接部31相对接、位于下方的反射镜连接部21与位于下方的透镜连接部31相对接,由此,通过两对相连接的反射镜连接部21与透镜连接部31来共同限定反射镜2与透镜3相对位置,可以保证反射镜2与透镜3定位的精准性和装配的稳固性。
参见图11、图13和图14,光源1设于电路板4上,电路板4上设有定位孔41,反射镜2的后端设有定位销23,定位销23与定位孔41插接配合。将反射镜2装配到电路板4上时,通过定位销23与定位孔41的插接配合,可以限定反射镜2与电路板4的相对位置,实现两者之间的准确定位。由此,通过定位销23与定位孔41的插接配合连接,将反射镜2与电路板4装配在一起而确定了两者的相对位置,实现了反射镜2与电路板4之间的直接定位。由于透镜3也是与反射镜2装配成一整体结构而直接定位,因此本实施例的微型车灯模组只需保证透镜3与反射镜2之间、反射镜2与电路板4之间的定位准确性即可保证光学系统精度,减少了多次装配误差,使得精准装配更为简便。优选地,电路板4上可以设有两个定位孔41, 相应地,反射镜2的后端设有两个定位销23,两个定位销23分别与两个定位孔41插接配合,可以增加反射镜2与电路板4之间的定位准确性和装配稳固性。
本实施例中,电路板4与散热器5相连接定位。参见图11,反射镜2、电路板4与散热器5之间可以通过安装螺钉6固定连接(图中电路板4上供安装螺钉6穿过的穿孔未示出)。
参见图10和图11,优选地,本实施例的微型车灯模组还包括遮光罩7,遮光罩7与透镜3相连接,透镜3容置于遮光罩7内,仅有出光面3a裸露在外,通过遮光罩7可以防止光线从透镜3的侧面射出。遮光罩7与透镜3的连接方式可以为螺纹连接、铆接、胶接、焊接中的任意一种。较佳地,本实施例中,遮光罩7与透镜3通过铆接的方式连接,具有操作方便、定位准确的优点。
具体地,参见图10和图11,遮光罩7上设有第二连接孔71,透镜3的透镜连接部31上设有第二连接销33,第二连接销33与第二连接孔71插接配合。装配时,遮光罩7套设在透镜3上,第二连接销33插入第二连接孔71,并可与第二连接孔71铆接,用于实现遮光罩7与透镜3之间的定位连接。优选地,遮光罩7上可以设有两个第二连接孔71,相应地,透镜连接部31上设有两个分别与两个第二连接孔71插接配合的第二连接销33。两个第二连接孔71其中一个第二连接孔71为直径与对应第二连接销33直径相匹配的圆孔或腰形孔,用于实现遮光罩7与透镜3相对位置的定位;另一个第二连接孔71则为直径大于对应第二连接销33的直径的圆孔,用于实现遮光罩7与透镜3的铆接。优选地,对应于透镜3的后端上、下方分别设有一个透镜连接部31、每个透镜连接部31上分别设有两个第二连接销33,遮光罩7的后端上、下方分别设有两个第二连接孔71,优选对角的两个第二连接孔71作为用于定位的定位孔,为避免过定位,其中一个为圆孔,另一个为腰形孔,由此可以保证遮光罩7与透镜3定位的精准性和装配的稳固性。
参见图13和图14,本实施例中,优选地,第四反射面2d与反射镜2为一体设置的整体结构。由此使得反射结构中的第一反射面2a、第二反射面2b、第三反射面2c和第四反射面2d具有相对固定的位置关系,不会因为反射镜2与透镜3之间的装配关系而产生误差,因此只需要保证反射镜2与透镜3之间的装配精度即可确保光学系统精度。较佳地,第四反射面2d可以设置在反射镜2的前端位于下方的反射镜连接部21上。
参见图15和图16,本实施例的微型车灯模组还包括截止线结构8和遮挡块9。截止线结构8用于形成光形的截止线E,光源1射至第一反射面2a的光线经第一反射面2a反射后,经截止线结构8截止后再射至透镜3,经透镜3折射后从透镜3的出光面3a射出,形成具有 截止线E的中心区域A光形;光源1射至第二反射面2b的光线经第二反射面2b反射后,经截止线结构8截止后再射至透镜3,经透镜3折射后从透镜3的出光面3a射出,形成展宽区域B光形。遮挡块9用于控制光形的50L暗区D的亮度,遮挡块9可遮挡经截止线结构8截止之前的部分光线,使近光光形的50L暗区D的照度降低到符合法规要求值,由此实现控制光形的50L暗区D的亮度。遮挡块9可以呈柱面体状或者坡状凸起。现有技术的遮挡块多采用凸点或矩形块,但是,凸点会使50L暗区为一暗点,比较突兀;矩形块则会使截止线附近出现除原有拐点外的另一个拐点,容易导致在配光捕捉拐点时,误捉拐点而影响配光效果。因此,遮挡块9采用柱面体状或者坡状凸起,可以避免光形突兀或者误捉拐点的现象发生。
本实施例中,截止线结构8与反射镜2可以为一体设置的整体结构,遮挡块9与反射镜2也可以为一体设置的整体结构。由此使得截止线结构8、遮挡块9与反射镜2具有相对固定的位置关系,不会因为反射镜2与透镜3之间的装配关系而产生误差,因此只需要保证反射镜2与透镜3之间的装配精度即可确保光学系统精度。较佳地,截止线结构8和遮挡块9均与反射镜2为一体设置的整体结构,截止线结构8和遮挡块9均可以设置在反射镜2的前端位于下方的反射镜连接部21上。
最佳地,第四反射面2d、截止线结构8、遮挡块9均与反射镜2为一体设置的整体结构。则,第一反射面2a、第二反射面2b、第三反射面2c、第四反射面2d、截止线结构8及遮挡块9的位置关系均为固定,不会因为反射镜2与透镜3之间的装配关系而产生误差,只需要保证反射镜2与透镜3之间的装配精度即可确保光学系统精度。
本实施例的微型车灯模组可以实现近光,也可以实现远光。当该微型车灯模组应用于主近光时,截止线结构8的形状与近光光形的明暗截止线形状相同,其具有段差(参见图16)。当该微型车灯模组应用于辅助近光时,截止线结构8的形状可以为平滑的、不具有段差的,也可以是与近光光形的明暗截止线形状相同的形状。当该微型车灯模组应用于远光时,截止线结构8的形状可以根据远光光形的下边界的形状来设置。
本实施例中,透镜3的曲率半径为R,透镜3的高度为H且满足:H≤4R/3,该高度H可以通过将现有透镜的上、下两端截掉,只留取中间厚度较厚的部分来实现,由此可以在保证透镜3光效的前提下减小透镜3的尺寸,从而使得整个车灯模组的体积大大减小,构成微型车灯模组,相应制造成本也大大降低。如果只是单纯的按比例缩小现有技术的车灯模组光学元件尺寸,缩小后的车灯模组存在光形效果不理想、光效差、不能为驾驶员提供良好的照明效果的缺点。本实施例不是单纯的按比例缩小透镜3的尺寸,而是在现有透镜的基础上截掉 其上、下两端,在相同曲率下减小透镜3的上下高度尺寸,由此确保了透镜3的光效,并减小了透镜3的尺寸。同时,本实施例的透镜3因留取的中间部分厚度较厚,弱化了因透镜厚度过薄带来的严重色散,能够有效改善色散现象。实际应用中,将现有透镜的上、下两端截掉的尺寸可以相同,则得到的透镜3从中心向上、下两端延伸的高度均为H/2,当然,将现有透镜的上、下两端截掉的尺寸也可以不同。透镜的左右宽度可以较长,不影响色散,故,本实施例中的透镜3的正向投影为横置的长方形。
本实施例的微型车灯模组,其光源1采用激光光源,配以上述光学组件结构,大大减小了车灯模组的体积。激光光源的单位面积的光通量可达1200lm/mm 2左右,只需要一颗激光光源即可达到法规要求的光形亮度,发光面积很小,因此,反射镜2的尺寸也可以做到很小,相应地,透镜3的尺寸也可以做到很小。本实施例中反射镜2的焦距可以做到10mm-20mm,优选为10mm,而现有技术中反射镜的焦距只能做到30mm-40mm。本实施例中透镜3可以做到:上下高度H为5mm-15mm,优选为10mm;宽度为15mm-35mm,优选30mm。为了使反射镜2反射的光线尽可能多地射入透镜3,透镜3的焦距也相应减小。本实施例中透镜3的焦距可以做到10mm-20mm,而现有技术中透镜的焦距只能做到30mm-40mm。因此,本实施例中,整个车灯模组前后方向的长度大大减小,长度可以做到约80mm,而现有技术的车灯模组的长度约为130mm-150mm;同样,整个车灯模组的宽度和高度也会减小,可以做到宽约35mm、高约40mm,而现有技术的车灯模组的宽约90mm-100mm、高约90mm-100mm。综上,相较现有技术,本实施例的整个车灯模组的体积大大减小,属于尺寸微型车灯模组。
由此,本实施例的微型车灯模组因采用发光面积小且单位面积发光强度高的激光光源,使得反射镜2和透镜3的尺寸和焦距都大大减小,结构紧凑、小巧,使得整个车灯模组的体积大大减小,相应制造成本也大大降低。同时具有良好的商业价值前景,因为微型车灯模组十分适应车辆造型的发展趋势,甚至能够使现有的大灯消失,将车灯模组布置在不显眼的位置以用于车辆的照明,比如保险杠、格栅等位置,有助于进一步提升汽车外形美观度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (14)

  1. 一种微型车灯模组,包括光源(1)、反射结构和透镜(3),所述光源(1)发出的光线经所述反射结构反射后从所述透镜(3)射出,形成照明光形,其特征在于,所述光源(1)为激光光源,所述反射结构包括用于形成中心区域(A)光形的第一反射面(2a)和用于形成展宽区域(B)光形的第二反射面(2b),所述第一反射面(2a)反射的光线扩散角度小于所述第二反射面(2b)反射的光线扩散角度。
  2. 根据权利要求1所述的微型车灯模组,其特征在于,所述第一反射面(2a)与所述第二反射面(2b)之间形成段差。
  3. 权利要求1所述的微型车灯模组,其特征在于,所述第一反射面(2a)的曲率大于所述第二反射面(2b)的曲率。
  4. 根据权利要求1所述的微型车灯模组,其特征在于,所述反射结构还包括第三反射面(2c)和第四反射面(2d),所述光源(1)发出的光线有部分经所述第三反射面(2c)反射至所述第四反射面(2d),并经所述第四反射面(2d)反射后从所述透镜(3)射出,形成Ⅲ区(C)光形。
  5. 根据权利要求4所述的微型车灯模组,其特征在于,所述第一反射面(2a)、所述第二反射面(2b)和所述第三反射面(2c)从后至前依次相连接构成反射镜(2),且所述第三反射面(2c)与所述第一反射面(2a)、所述第三反射面(2c)与所述第二反射面(2b)均位于不同椭球面上。
  6. 根据权利要求5所述的微型车灯模组,其特征在于,所述反射镜(2)的前端设有反射镜连接部(21),所述透镜(3)的后端设有透镜连接部(31),所述反射镜连接部(21)与所述透镜连接部(31)配合连接,使所述反射镜(2)与所述透镜(3)相对固定。
  7. 根据权利要求6所述的微型车灯模组,其特征在于,所述光源(1)设于电路板(4)上,所述电路板(4)上设有定位孔(41),所述反射镜(2)的后端设有与所述定位孔(41)插接配合的定位销(23)。
  8. 根据权利要求5所述的微型车灯模组,其特征在于,所述第四反射面(2d)与所述反射镜(2)为一体设置的整体结构。
  9. 根据权利要求5或8所述的微型车灯模组,其特征在于,还包括用于形成光形的截止线(E)的截止线结构(8),所述截止线结构(8)与所述反射镜(2)为一体设置的整体结构。
  10. 根据权利要求5或8所述的微型车灯模组,其特征在于,还包括用于控制光形的50L暗 区(D)亮度的遮挡块(9),所述遮挡块(9)与所述反射镜(2)为一体设置的整体结构。
  11. 根据权利要求1所述的微型车灯模组,其特征在于,还包括遮光罩(7),所述遮光罩(7)与所述透镜(3)相连接。
  12. 根据权利要求1所述的微型车灯模组,其特征在于,所述透镜(3)的曲率半径为R,所述透镜(3)的高度为H且满足:H≤4R/3。
  13. 根据权利要求1所述的微型车灯模组,其特征在于,所述透镜(3)的高度为5mm-15mm。
  14. 根据权利要求1所述的微型车灯模组,其特征在于,所述透镜(3)的焦距为10mm-20mm。
PCT/CN2020/076903 2019-08-23 2020-02-27 一种微型车灯模组 WO2021036216A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921383103.5 2019-08-23
CN201921383103.5U CN210219615U (zh) 2019-08-23 2019-08-23 一种微型车灯模组
CN201910785676.9 2019-08-23
CN201910785676.9A CN112413532A (zh) 2019-08-23 2019-08-23 一种微型车灯模组

Publications (1)

Publication Number Publication Date
WO2021036216A1 true WO2021036216A1 (zh) 2021-03-04

Family

ID=74684977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076903 WO2021036216A1 (zh) 2019-08-23 2020-02-27 一种微型车灯模组

Country Status (1)

Country Link
WO (1) WO2021036216A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129362A (ja) * 2003-10-23 2005-05-19 Koito Mfg Co Ltd 車両用前照灯
CN207350141U (zh) * 2017-06-22 2018-05-11 上海小糸车灯有限公司 一种用于汽车前照灯近光模组的遮光板及汽车前照灯
CN208566545U (zh) * 2018-10-19 2019-03-01 丹阳亿诺光电科技有限公司 一种led远近光模组
CN109668111A (zh) * 2019-02-14 2019-04-23 华域视觉科技(上海)有限公司 车用近光灯及包含其的汽车
US20190126808A1 (en) * 2017-06-16 2019-05-02 Koito Manufacturing Co., Ltd. Vehicle lamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129362A (ja) * 2003-10-23 2005-05-19 Koito Mfg Co Ltd 車両用前照灯
US20190126808A1 (en) * 2017-06-16 2019-05-02 Koito Manufacturing Co., Ltd. Vehicle lamp
CN207350141U (zh) * 2017-06-22 2018-05-11 上海小糸车灯有限公司 一种用于汽车前照灯近光模组的遮光板及汽车前照灯
CN208566545U (zh) * 2018-10-19 2019-03-01 丹阳亿诺光电科技有限公司 一种led远近光模组
CN109668111A (zh) * 2019-02-14 2019-04-23 华域视觉科技(上海)有限公司 车用近光灯及包含其的汽车

Similar Documents

Publication Publication Date Title
US12013092B2 (en) Automotive lamp optical element and automotive headlamp
JP4405279B2 (ja) プロジェクタ型車両用灯具
WO2020173129A1 (zh) 车灯模组及应用其的汽车
WO2021147732A1 (zh) 前照灯光学元件、前照灯模组、车灯及车辆
EP4006408A1 (en) Vehicle light optical element assembly, vehicle lighting device, vehicle light and vehicle
WO2022100058A1 (zh) 远近光一体车灯光学元件、车灯模组、车灯及车辆
WO2020233297A1 (zh) 车灯光学元件组件、车辆照明模组、车灯及车辆
CN210462861U (zh) 车灯模组及反射结构
TWM615055U (zh) 車用照明裝置
CN210219616U (zh) 一种微型车灯照明模块组件
WO2023208065A1 (zh) 投射组件、车灯和车辆
WO2021036216A1 (zh) 一种微型车灯模组
CN210219615U (zh) 一种微型车灯模组
WO2021036218A1 (zh) 微型车灯模组及反射结构
WO2022012211A1 (zh) 车灯光学元件、车灯模组和车辆
WO2022068212A1 (zh) 车灯光学元件、车灯模组及车灯
CN112413532A (zh) 一种微型车灯模组
WO2021147731A1 (zh) 前照灯光学元件、车灯模组、车灯及车辆
CN212132312U (zh) 初级光学元件组件、车辆照明装置、车灯和车辆
CN112413533A (zh) 微型车灯模组及反射结构
WO2021036159A1 (zh) 用于形成车灯近光中部区域光形的照明组件
KR101754167B1 (ko) 발광모듈
KR101716129B1 (ko) 발광모듈
CN213542362U (zh) 车灯光学组件、车灯模组和车辆
CN216644082U (zh) 光学系统、车灯模组、车灯和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858376

Country of ref document: EP

Kind code of ref document: A1