WO2021035752A1 - 可变电容、反射型移相器和半导体设备 - Google Patents

可变电容、反射型移相器和半导体设备 Download PDF

Info

Publication number
WO2021035752A1
WO2021035752A1 PCT/CN2019/103882 CN2019103882W WO2021035752A1 WO 2021035752 A1 WO2021035752 A1 WO 2021035752A1 CN 2019103882 W CN2019103882 W CN 2019103882W WO 2021035752 A1 WO2021035752 A1 WO 2021035752A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingers
comb
interdigital
variable capacitor
group
Prior art date
Application number
PCT/CN2019/103882
Other languages
English (en)
French (fr)
Inventor
王硕
彭嵘
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/103882 priority Critical patent/WO2021035752A1/zh
Priority to EP19943658.5A priority patent/EP4016567A4/en
Priority to CN201980098604.5A priority patent/CN114127873B/zh
Publication of WO2021035752A1 publication Critical patent/WO2021035752A1/zh
Priority to US17/652,536 priority patent/US20220182015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/38Multiple capacitors, e.g. ganged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • H01G5/011Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C7/00Modulating electromagnetic waves
    • H03C7/02Modulating electromagnetic waves in transmission lines, waveguides, cavity resonators or radiation fields of antennas
    • H03C7/025Modulating electromagnetic waves in transmission lines, waveguides, cavity resonators or radiation fields of antennas using semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/04Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of effective area of electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C2200/00Indexing scheme relating to details of modulators or modulation methods covered by H03C
    • H03C2200/0004Circuit elements of modulators
    • H03C2200/0008Variable capacitors, e.g. a varicap, a varactor or a variable capacitance of a diode or transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/20Two-port phase shifters providing an adjustable phase shift

Definitions

  • This application relates to the field of electronic technology, in particular to a variable capacitor, a reflective phase shifter and a semiconductor device.
  • Phased array technology is the core technology of the fifth generation (5G) communication system.
  • the phase-shifter (PS) is a key module in phased array technology.
  • the reflection-type phase-shifter (RTPS) is favored by many research institutions and industries due to its two-way phase shift characteristics, simple structure, and extremely low power consumption.
  • RTPS includes a hybrid quadrature coupler (hybrid quadrature coupler) and a variable reflection load, and the phase shift is realized by changing the impedance of the variable reflection load.
  • the impedance of the variable reflection load generally has three methods: inductance capacitor (LC) series, LC parallel and ⁇ type. Furthermore, the impedance can be changed by changing the capacitance.
  • variable reflection load can be realized by a varactor. Since the capacitance value of the varactor is sensitive to changes in process, voltage and temperature (PVT), the PVT consistency of the phase shift is caused. Very poor, it will seriously deteriorate the phase shift accuracy and resolution of the phase shifter.
  • PVT process, voltage and temperature
  • the embodiments of the present application provide a variable capacitor, a reflective phase shifter, and a semiconductor device, which are used to solve the problem that the capacitance value of the variable capacitor changes with PVT.
  • a variable capacitor including: a first comb-shaped structure and a first set of interdigital fingers, the first comb-shaped structure includes a plurality of comb teeth, the first set of interdigital fingers includes at least one interdigital The interdigital fingers of a group of interdigital fingers are arranged between at least two comb teeth of the first comb-shaped structure, and the interdigital fingers of the first group of interdigital fingers have no electrical contact with the comb teeth of the first comb-shaped structure.
  • a second comb-shaped structure and a second group of interdigital fingers the second comb-shaped structure includes a plurality of comb teeth, the second group of interdigital fingers includes at least one interdigital finger, and the interdigital fingers of the second group of interdigital fingers are arranged in the first comb-shaped structure Between the at least two comb teeth of the second group of interdigital fingers, the interdigital fingers of the second group of interdigital fingers have no electrical contact with the comb teeth of the second comb-like structure, and at least one interdigital finger and the second group of interdigital fingers used to control the first group of interdigital fingers Whether there is an electrical contact switch between at least one of the fingers.
  • the first comb-shaped structure, the first set of interdigital fingers, the second comb-shaped structure, and the second set of interdigital fingers are all conductive materials.
  • variable capacitor and the reflective phase shifter provided in the embodiments of the application realize the control of the capacitance value of the entire variable capacitor by switching the number of capacitors connected to the circuit of the capacitor array, and can achieve very small capacitor steps. And a relatively large variable capacity range.
  • variable capacitors use array-structured conductive materials (such as metals) and switches, they have strong stability when the PVT changes. Compared with the varactor, it is helpful to alleviate the problem that the capacitance value changes sensitively with the PVT.
  • the first comb-shaped structure and the second comb-shaped structure respectively include N+1 comb teeth
  • the first group of interdigital fingers and the second group of interdigital fingers respectively include N interdigital fingers
  • the nth finger of a group of interdigital fingers is located between the nth comb tooth and the n+1th comb tooth of the first comb-like structure
  • the nth finger of the second group of interdigital fingers is located between the nth comb tooth and the n+1th comb tooth of the second comb-like structure.
  • n and N are both positive integers, and the value of n is less than or equal to the value of N.
  • N switches are connected between the first group of fingers and the second group of fingers, where the first end of the nth switch of the N switches is connected to the first end of the first group of fingers. n fingers, the second end of the nth switch is connected to the nth finger of the second group of fingers.
  • a dielectric is filled between the interdigital fingers of the first set of interdigital fingers and the comb teeth of the first comb-like structure, and the interdigital fingers of the second set of interdigital fingers and the comb teeth of the second comb-shaped structure are different from each other.
  • the space is filled with dielectric. Filling a dielectric between conductive materials can increase the capacitance.
  • the first group of fingers includes a plurality of fingers arranged in sequence, and each of the fingers of the first group of fingers has the same length;
  • the second group of fingers includes a plurality of fingers arranged in sequence , The length of each finger of the second group of fingers is equal.
  • the first group of fingers includes a plurality of fingers arranged in sequence, and the length of each finger of the first group of fingers increases or decreases in the order of arrangement;
  • the second group of fingers includes a plurality of fingers. For sequential fingers, the length of each finger of the second group of fingers increases or decreases according to the order of arrangement.
  • the ratio of the length of the adjacent fingers of the first group of interdigits is between 1.02 times and 1.1 times, and the ratio of the length of the adjacent fingers of the second group of fingers is between 1.02 times and 1.1 times. Between 1.1 times.
  • the change of the capacitance value is non-linear, the phase shift curve of the reflective phase shifter is linear, and a smaller phase shift step can be achieved no matter the capacitance value is large or small.
  • the switch is a metal oxide semiconductor MOS switch.
  • the switch may also be a gallium nitride (GaN) switch.
  • the switch is opened or closed by a set of digital switch code words.
  • the first comb structure, the first set of interdigital structures, the second comb structure, the second set of interdigital structures, and the switch are located in the same metal layer. Compared with being located in different metal layers, the process is simpler.
  • a reflective phase shifter including: a positive input terminal, a positive output terminal, a negative input terminal, a negative output terminal, a first hybrid quadrature coupler, and a second hybrid quadrature coupling
  • the positive input end is connected to the input end of the first hybrid quadrature coupler
  • the positive output end is connected to the isolation end of the first hybrid quadrature coupler
  • the coupling end of the first hybrid quadrature coupler is connected to the first through the first inductor.
  • the first connection terminal of the variable capacitor and the through terminal of the first hybrid quadrature coupler are connected to the first connection terminal of the second variable capacitor through the second inductor.
  • the negative input end is connected to the input end of the second hybrid quadrature coupler, the negative output end is connected to the isolation end of the second hybrid quadrature coupler, and the coupling end of the second hybrid quadrature coupler is connected to the first through a third inductor.
  • the second connection end of the variable capacitor and the through end of the first hybrid quadrature coupler are connected to the second connection end of the second variable capacitor through the fourth inductor.
  • the first hybrid quadrature coupler and the second hybrid quadrature coupler are parallel coupled microstrip line directional couplers, the first inductor is arranged next to the third inductor, and the second inductor is next to the fourth inductor.
  • the first variable capacitor and the second variable capacitor are arranged between the first inductor and the second inductor along the routing direction of the input and output ends of the coupling line of the first hybrid quadrature coupler and the second hybrid quadrature coupler And between the third inductance and the fourth inductance.
  • a semiconductor device including the variable capacitor as described in the first aspect and any one of its embodiments.
  • the variable capacitor as described in the first aspect and any one of its embodiments.
  • FIG. 1A is a schematic structural diagram of a wireless communication system provided by an embodiment of this application.
  • FIG. 1B is a schematic diagram of a part of the structure of a phased array provided by an embodiment of the application;
  • 1C is a schematic structural diagram of a reflective phase shifter provided by an embodiment of the application.
  • FIG. 2 is a first structural diagram of a variable capacitor provided by an embodiment of the application
  • FIG. 3 is a second structural diagram of a variable capacitor provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of an equivalent circuit of a variable capacitor provided by an embodiment of the application.
  • FIG. 5 is a first schematic diagram of a curve of the capacitance value of a variable capacitor changing with the switch code word of a switch provided by an embodiment of the application;
  • FIG. 6 is a first schematic diagram of a phase shift curve of a reflective phase shifter according to an embodiment of the application.
  • FIG. 7 is a third structural diagram of a variable capacitor provided by an embodiment of this application.
  • FIG. 8 is a second schematic diagram showing the change of the capacitance value of a variable capacitor with the switch code word of the switch according to an embodiment of the application;
  • FIG. 9 is a second schematic diagram of a phase shift curve of a reflective phase shifter according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of a process structure of a variable capacitor provided by an embodiment of the application.
  • FIG. 11 is a second structural schematic diagram of a reflective phase shifter provided by an embodiment of the application.
  • FIG. 12 is a third structural diagram of a reflective phase shifter provided by an embodiment of the application.
  • FIG. 1A is a schematic structural diagram of a wireless communication system provided by an embodiment of this application.
  • FIG. 1A shows a wireless communication system 00 composed of a wireless network device 01 and a terminal 02. It should be understood that although FIG. 1A only shows one wireless network device and one terminal, the wireless communication system may also include other numbers of wireless network devices and terminals, and may also include other network devices.
  • the base station's transmit beam set includes transmit beam 1, transmit beam 2 and transmit beam 3, and the terminal's receive beam set includes receive beam a, receive beam b, and receive beam c.
  • the base station can transmit signals through transmit beam 1 to transmit beam 3 in a certain time interval to cover terminals in a certain area.
  • the terminal may also receive the transmission signals carried by the above-mentioned different transmission beams by sequentially passing through the reception beam a to the reception beam c within a certain time interval.
  • the wireless communication system 00 can be used as an example of a mobile communication system based on the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) technical specifications, and can also cover wireless communication systems based on other wireless communication standards, such as the Institute of Electrical and Electronics Engineers ( Institute of Electrical and Electronics Engineers (IEEE) 802 series, such as 802.11, 802.15, 802.20 and other wireless communication standards.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • IEEE Institute of Electrical and Electronics Engineers
  • 802 series such as 802.11, 802.15, 802.20 and other wireless communication standards.
  • the wireless network device is a computing device with wireless communication function, which can generate beams of different directions through beamforming and other technologies to cover the cell 03, and can communicate with terminals in different directions in the cell 03.
  • the wireless network device may be a wireless access network device such as a base station.
  • the base station may also be called a wireless access point (access point, AP) or a transmission reception point (transmission reception point, TRP) sometimes.
  • the base station may specifically be a general node B (generation Node B, gNB) in a 5G mobile communication system, an evolved Node B (evolutional Node B, eNB or eNodeB) in a 4G mobile communication system, and a base station in other possible radio access technologies .
  • gNB general node B
  • eNB evolved Node B
  • eNodeB evolved Node B
  • 4G mobile communication system 4G mobile communication system
  • Micro base stations are sometimes called small base stations or small cells.
  • the terminal may also be called a user equipment (UE), a mobile station (MS) or a subscriber unit (SU).
  • UE user equipment
  • MS mobile station
  • SU subscriber unit
  • the terminal can be, but is not limited to, mobile phones, tablet computers, laptop computers, wearable devices (smart watches, smart bracelets, smart helmets, smart glasses, etc.), and other devices with wireless access.
  • Communication devices with access capabilities such as various Internet of Things devices, including various smart home devices (such as smart meters and smart home appliances) and smart city equipment (such as security or monitoring equipment, smart road traffic facilities), etc.
  • the wireless communication system structure in FIG. 1A is only an exemplary implementation in the embodiment of the present application, and the communication system structure in the embodiment of the present application includes but is not limited to the above communication system structure.
  • a phased array is a phase-controlled electronically scanned antenna array. It uses a large number of antenna elements to form an array. Each antenna element can be controlled by an independent switch. By controlling the amplitude and phase of each antenna element in the array, the electromagnetic wave can be modulated. In order to synthesize a directional focused scanning beam.
  • FIG. 1B is a schematic diagram of a part of the structure of a phased array provided by an embodiment of the application.
  • the phased array includes an antenna array composed of multiple antennas. These antenna arrays can provide multiple transceiver channels for wireless communication, and the number of transceiver channels can be denoted as N. These transmit and receive channels can be used to converge the received signal through a combiner, or split the signal to be sent through a splitter.
  • the phased array In order to control the phase of each antenna element in the antenna array, the phased array naturally needs to include a phase shifter for adjusting the phase change, which is denoted as PS in Figure 1B.
  • FIG. 1B also shows some amplifiers for amplifying signals, including: variable gain amplifier (VGA), power amplifier (power amplifier, PA) and low noise amplifier (low noise amplifier, LNA).
  • VGA variable gain amplifier
  • PA power amplifier
  • LNA low noise amplifier
  • FIG. 1C is a schematic structural diagram of a reflective phase shifter provided by an embodiment of the application, and the reflective phase shifter can be applied to the aforementioned wireless communication system and phased array.
  • the reflective phase shifter may include: a positive input terminal IN_P, a positive output terminal OUT_P, a negative input terminal IN_N, a negative output terminal OUT_N, a first hybrid quadrature coupler 11, a second The hybrid quadrature coupler 12, the first inductor L1, the second inductor L2, the third inductor L3, the fourth inductor L4, the first variable capacitor C1, and the second variable capacitor C2.
  • the forward input terminal IN_P is connected to the input terminal a1 of the first hybrid quadrature coupler 11, the forward output terminal OUT_P is connected to the isolation terminal b1 of the first hybrid quadrature coupler 11, and the coupling terminal c1 of the first hybrid quadrature coupler 11
  • the first connection terminal of the first variable capacitor C1 is connected through the first inductor L1
  • the through terminal d1 of the first hybrid quadrature coupler 11 is connected to the first connection terminal of the second variable capacitor C2 through the second inductor L2.
  • the negative input terminal IN_N is connected to the input terminal a2 of the second hybrid quadrature coupler 12, the negative output terminal OUT_N is connected to the isolation terminal b2 of the second hybrid quadrature coupler 12, and the coupling terminal c2 of the second hybrid quadrature coupler 12
  • the third inductor L3 is connected to the second connection terminal of the first variable capacitor C1, and the through terminal d2 of the first hybrid quadrature coupler 11 is connected to the second connection terminal of the second variable capacitor C2 through the fourth inductor L4.
  • the first variable capacitor C1 and the second variable capacitor C2 involved in the foregoing may be the following variable capacitors:
  • the variable capacitor includes: a first comb structure 23, a second comb structure 24, a first group of interdigital fingers 25, a second group of interdigital fingers 26, and at least one switch K.
  • it further includes a first connecting end 21 and a second connecting end 22.
  • the first connecting end 21 is connected to the first comb structure 23, and the second connecting end 22 is connected to the second comb structure 24.
  • the first comb-shaped structure 23 includes a plurality of comb teeth
  • the first group of interdigital fingers 25 includes at least one interdigital finger
  • the interdigital fingers of the first group of interdigital fingers 25 are arranged between at least two comb teeth of the first comb-shaped structure 23
  • the interdigital fingers of the first set of interdigital fingers 25 have no electrical contact with the comb teeth of the first comb-shaped structure 23.
  • the interdigital fingers of the first group of interdigital fingers 25 are arranged between at least two adjacent comb teeth of the first comb-shaped structure 23.
  • the second comb structure 24 includes a plurality of comb teeth
  • the second group of interdigital fingers 26 includes at least one interdigital finger, wherein the interdigital fingers of the second group of interdigital fingers 26 are arranged between at least two comb teeth of the first comb structure 23. Meanwhile, the interdigital fingers of the second set of interdigital fingers 26 have no electrical contact with the comb teeth of the second comb-shaped structure 24. Further, the interdigital fingers of the second group of interdigital fingers 26 are arranged between at least two adjacent comb teeth of the first comb-shaped structure 23.
  • At least one switch K is used to control whether there is electrical contact between at least one finger of the first set of fingers 25 and at least one finger of the second set of fingers 26.
  • At least one switch K is closed, there is electrical contact between at least one finger of the first set of fingers 26 and at least one finger of the second set of fingers 26, and when at least one switch K is opened, the first set of fingers There is no electrical contact between the corresponding fingers of the finger 26 and the corresponding fingers of the second set of fingers 26.
  • at least one finger of the first set of fingers 25 and at least one finger of the second set of fingers 26 can be in direct electrical contact, that is, the communication between the corresponding two fingers is not controlled by a switch. Off.
  • the first comb-shaped structure 23, the first set of interdigital fingers 25, the second comb-shaped structure 24, and the second set of interdigital fingers 26 are all conductive materials. Further, the first comb-shaped structure 23, the second comb-shaped structure 24, the first set of interdigital fingers 25, and the second set of interdigital fingers 26 are metal.
  • the metal may be copper, aluminum, gold, or the like.
  • the at least one switch K may be a metal oxide semiconductor (MOS) switch or a gallium nitride (GaN) switch, etc., which is not limited in this application.
  • MOS metal oxide semiconductor
  • GaN gallium nitride
  • the electrical contact involved in the present application can be understood as a state in which conductive materials are in contact with each other to allow current to pass.
  • the comb structure involved in the present application can be understood as an E-shaped conductive material with one end connected to the other end without connection, and the interdigital fingers involved in the embodiments of the present application can be understood as the conductive material between the two comb teeth of the comb structure.
  • the interdigital fingers shown in FIG. 2 are strip-shaped, the interdigital fingers of the embodiment of the present application may not be limited to the strip shape shown in FIG. 2 as long as the interdigital fingers and the two comb teeth of the comb-like structure constitute The capacitor required by the embodiment of the application is sufficient.
  • the number of comb teeth included in the first comb-like structure 23 is greater than the number of fingers included in the first group of fingers 25.
  • the number of comb teeth included in the second comb structure 24 is greater than the number of fingers included in the second group of fingers 26.
  • the number of fingers included in the first group of fingers 25 or the number of fingers included in the second group of fingers 26 is greater than or equal to the number of switches in at least one switch K.
  • the two comb-like structures 24 respectively include 10 comb teeth
  • the first group of interdigital fingers 25 and the second group of interdigital fingers 26 respectively include 6 interdigital fingers
  • at least one switch K includes 4 switches.
  • the first comb-shaped structure 23 and the second comb-shaped structure 24 respectively include N+1 comb teeth, and the first set of interdigital fingers 25 and the second set of interdigital fingers 26 Each includes N interdigital fingers.
  • the at least one switch K includes N switches K 1 -K N , and the N switches K 1 -K N are connected between the first set of interdigital fingers 25 and the second set of interdigital fingers 26.
  • the first set 25 of interdigitated interdigital a n n positioned in the first comb structure of the comb teeth n S n and n + 1, between the comb teeth of the n + 1 S 23, and the first set of interdigital 25 n-th a n interdigitated comb-like structure with a first comb-S n the n-th and the n + 1 th comb teeth 23 is S n + 1 without electrical contact.
  • the nth finger b n in the second group of interdigital fingers 26 is located between the nth comb tooth T n and the n+1th comb tooth T n+1 of the second comb structure 24, and the second group of interdigital fingers 26 first n b n interdigital comb-like structure with a second comb-shaped n-th and the n T n + 1 of the comb teeth T n + 1 24 without electrical contact.
  • a dielectric is filled between the interdigital fingers of the first group of interdigital fingers 25 and the comb teeth of the first comb-shaped structure 23, and a dielectric is filled between the interdigital fingers of the second group of interdigital fingers 26 and the comb teeth of the second comb-shaped structure 24.
  • a first set of interdigital filled via 25 between the n-th a n interdigitated comb-like structure 23 and the first n-th comb-S n and S n + 1 n + 1 th comb-shaped dielectric substance A dielectric is filled between the n-th interdigit b n in the second group of interdigital fingers 26 and the n-th comb tooth T n and the n+1-th comb tooth T n+1 of the second comb structure 24.
  • the nth interdigit refers to one end of b n.
  • n and N are both positive integers, and the value of n is less than or equal to the value of N.
  • variable capacitance equivalent circuit As shown in FIG. 4, the above-mentioned variable capacitance equivalent circuit is shown, the n-th interdigit a n in the first group of interdigital fingers 25 and the n-th comb tooth S n and the n+th comb tooth of the first comb structure 23 are shown.
  • a capacitor C 1n is formed between one comb tooth S n+1 , the nth interdigit b n in the second group of interdigital fingers 26 and the nth comb tooth T n and the n+1th comb tooth T n and n+1 of the second comb structure 24
  • a capacitor C 2n is formed between the comb teeth T n+1 .
  • the capacitor C 1n and the capacitor C 2n are connected in series.
  • the capacitance value of the capacitor C n corresponding to the closed switch K n is (C 1n *C 2n )/(C 1n +C 2n ).
  • the capacitance value of the capacitance C n corresponding to the switch K n is C 1n /2 or C 2n /2.
  • the switch K n in the capacitor structure, the smallest change value of the capacitance can be made (C 1n *C 2n )/(C 1n +C 2n ), which is smaller than the capacitance C 1n or the capacitance C 2n , so the capacitance can be reduced.
  • the capacitance adjustment accuracy of the variable capacitance is smaller than the capacitance C 1n or the capacitance C 2n , so the capacitance can be reduced.
  • the capacitors corresponding to the closed switches are connected in parallel, and the capacitance of the entire variable capacitor is the sum of the capacitors connected in parallel.
  • the capacitance value of the variable capacitor can be changed.
  • the capacitance corresponding to the switch K 1 is C 1
  • the capacitance corresponding to the switch K n is C n . If the switches K 1 and K n are closed, the capacitance value of the entire variable capacitor is C 1 +C n .
  • variable capacitor and the reflective phase shifter provided in the embodiments of the application realize the control of the capacitance value of the entire variable capacitor by switching the number of capacitors connected to the circuit of the capacitor array, and can achieve very small capacitor steps. And a relatively large variable capacitance range, the capacitance step can be 2fF ⁇ 3fF, and the variable capacitance ratio can reach 3.4. Moreover, since the above-mentioned variable capacitor adopts the conductive material (such as metal) of the array structure, it has strong stability when the PVT changes, which solves the problem of the capacitance value being sensitive to the PVT change.
  • FIG. 4 shows that all the fingers in the first group of fingers 25 have the same length, and all the fingers in the second group of fingers 26 have the same length, that is, the first group of fingers 25 includes A plurality of fingers arranged in sequence, each of the first group of fingers 25 has the same length; the second group of fingers 26 includes a plurality of fingers arranged in sequence, each of the fingers of the second group 26 has the same length
  • the length is equal.
  • this application does not limit the length of the fingers in the first group of fingers 25 or the second group of fingers 26.
  • the fingers in the first group of fingers 25 or the second group of fingers 26 can be of equal length or unequal length.
  • the length can be alternated between long and short, and the length can be gradually increased or decreased as described below: that is, the first group of interdigital fingers 25 includes a plurality of sequentially arranged interdigital fingers, and the length of each interdigital finger of the first group of interdigital fingers 25 is in the order of arrangement Increasing or decreasing; the second group of fingers 26 includes a plurality of fingers arranged in sequence, and the length of each finger of the second group of fingers 26 increases or decreases according to the sequence of arrangement.
  • the switch K is controlled to open or close by a set of digital switch code words.
  • the capacitance value of the variable capacitor changes with the switch code word of the switch K.
  • the capacitance value of the variable capacitance switch with the curve K 1 -K N switch changes the codeword
  • the codeword switch is the switch K 1 -K N corresponding to the binary representation, for example, one bit corresponds to a switch Switch status. If this bit is 0, it means the switch is off. If this bit is 1, it means the switch is closed. Switches K 1 -K N are expressed from low to high bits. Then 0010 can indicate switches K 1 , K 3 , K 4 is opened and switch K 2 is closed.
  • phase shift characteristic of the reflective phase shifter is as shown in the following formula 1.
  • W is the frequency
  • L is the inductance value of the inductor connected in series with the variable capacitor
  • Z 0 is the characteristic impedance
  • C n is the capacitance value when the nth switch K n of the variable capacitor is turned on.
  • phase shift of reflective phase shifter It is essentially the arctangent function of 1/C n .
  • the phase shift curve of the corresponding reflective phase shifter is shown in Fig. 6. It can be seen that the phase shift of the reflective phase shifter It is non-linear, which means that the phase shift step is also non-linear, and the phase shift step decreases with the increase of n, and the maximum is when n is small, which is useful for achieving high resolution (high resolution)
  • the reflective phase shifter is very disadvantageous.
  • the total capacitance value of the variable capacitor (that is, the n-th interdigit a n in the first group of interdigital fingers 25 and the n-th comb tooth S of the first comb structure 23
  • the capacitance formed between the n+1th comb tooth T n+1 is the following value:
  • W is the frequency
  • L is the inductance value of the inductor connected in series with the variable capacitor
  • Z 0 is the characteristic impedance
  • the first group of adjacent interdigitated interdigital 25 e.g. a n + 1 interdigitated interdigital and a n
  • the second group interdigitated with 26 The ratio of the lengths of the adjacent fingers (for example, the fingers b n+1 to the fingers b n ) is between 1.02 times and 1.1 times.
  • the structure of the optimized variable capacitor is shown in Figure 7, and the curve of the capacitance value of the optimized variable capacitor with the switch code word of switches K 1 -K N is shown in Figure 8.
  • the corresponding reflective phase shifter The phase shift curve is shown in Figure 9.
  • the comb-like structure and the interdigital structure can be etched in the same metal layer, that is, the first comb-like structure 23, the first set of interdigital 25, the second comb-like structure 24, the second set of interdigital 26, and the switch K are located on the same metal layer Or, the first comb-shaped structure 23, the first set of interdigital fingers 25 are located in the first metal layer, the second comb-shaped structure 24, the second set of interdigital fingers 26 are located in the second metal layer, and the switch K may be located in the first metal layer. In the metal layer or the second metal layer, the switch K and the fingers in the other metal layer can be conducted through vias.
  • FIG. 10 a process structure of a variable capacitor is shown, and the comb-shaped structure and interdigital structure can be etched in the metal layer 8.
  • the figure only shows the first comb tooth S 1 , the second comb tooth S 2 , the third comb tooth S 3 of the first comb structure 23 and the interdigits a 1 and the interdigits of the first group of interdigital fingers 25. Refers to a 2 .
  • a capacitor is formed between adjacent comb teeth and interdigital fingers. It should be noted that this application is not limited to only adopting the above-mentioned process structure.
  • the first hybrid quadrature coupler 11 includes a capacitor Cc1, a capacitor Cc2, a capacitor Cg1, a capacitor Cg2, a capacitor Cg3, a capacitor Cg4, an inductor Lg1, and an inductor Lg2.
  • the input terminal a1 of the first hybrid quadrature coupler 11 is connected to the first terminal of the capacitor Cc1, the first terminal of the capacitor Cg1, and the first terminal of the inductor Lg1;
  • the input terminal c1 of the first hybrid quadrature coupler 11 is connected to the first terminal of the capacitor Cc1
  • the through end d1 of the first hybrid quadrature coupler 11 is connected to the first end of the capacitor Cc2, the first end of the capacitor Cg2, and the second end of the inductor Lg1
  • the output terminal b1 of the first hybrid quadrature coupler 11 is connected to the second terminal of the capacitor Cc2, the first terminal of
  • the second hybrid quadrature coupler 12 includes a capacitor Cc3, a capacitor Cc4, a capacitor Cg5, a capacitor Cg6, a capacitor Cg7, a capacitor Cg8, an inductor Lg3, and an inductor Lg4.
  • the input terminal a2 of the second hybrid quadrature coupler 12 is connected to the first terminal of the capacitor Cc3, the first terminal of the capacitor Cg5, and the first terminal of the inductor Lg3;
  • the input terminal c2 of the second hybrid quadrature coupler 12 is connected to the first terminal of the capacitor Cc3
  • the second end, the first end of the capacitor Cg7, the first end of the inductor Lg4; the through end d2 of the second hybrid quadrature coupler 12 is connected to the first end of the capacitor Cc4, the first end of the capacitor Cg6, and the second end of the inductor Lg3
  • the output terminal b2 of the second hybrid quadrature coupler 12 is connected to the second terminal of the capacitor Cc4, the first terminal
  • the first hybrid quadrature coupler 11 and the second hybrid quadrature coupler 12 are parallel coupled microstrip line directional couplers
  • the first hybrid quadrature coupler 11 includes a first coupled microstrip line Line 111 and the second coupled microstrip line 112.
  • the second hybrid quadrature coupler 12 includes a third coupled microstrip line 121 and a fourth coupled microstrip line 122.
  • the first end a1 of the first coupled microstrip line 111 is connected to the forward input terminal IN_P, the second end d1 of the first coupled microstrip line 111 is connected to the first end of the second inductor L2; the second coupled microstrip line The first terminal c1 of the 112 is connected to the first terminal of the first inductor L1, and the second terminal b1 of the second coupled microstrip line 112 is connected to the forward output terminal OUT_P.
  • the first end a2 of the third coupled microstrip line 121 is connected to the negative input terminal IN_N, the second end d2 of the third coupled microstrip line 121 is connected to the first end of the fourth inductor L4; the fourth coupled microstrip line
  • the first terminal c2 of 122 is connected to the first terminal of the third inductor L3, and the second terminal b2 of the fourth coupled microstrip line 122 is connected to the negative output terminal OUT_N.
  • the first inductance L1 is arranged next to the third inductance L3, the second inductance L2 is arranged next to the fourth inductance L4, the first variable capacitor C1 and the second variable capacitor C2 are arranged along the first hybrid quadrature coupler 11 and the second hybrid quadrature
  • the input end and the output end of the coupling line of the coupler 12 are arranged between the first inductance L1 and the second inductance L2 and between the third inductance L3 and the fourth inductance L4.
  • the layout of the reflective phase shifter shown in FIG. 12 uses the space between the two couplers to arrange the variable capacitance, which can effectively reduce The area of the overall layout of the reflective phase shifter.
  • the embodiments of the present application also provide a semiconductor device, which may include the variable capacitor described above.
  • the semiconductor device may be a complete device such as a mobile phone or a base station, or an integrated circuit product in the complete device, such as a chip applied to radio frequency communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本申请公开了一种可变电容、反射型移相器和半导体设备,涉及电子技术领域,用于解决可变电容的电容值随PVT变化敏感的问题。可变电容包括:第一梳状结构和第一组叉指,第一梳状结构包括多个梳齿,第一组叉指包括至少一个叉指,其中第一组叉指的叉指设置在第一梳状结构的至少两个梳齿之间并且无电接触;第二梳状结构和第二组叉指,第二梳状结构包括多个梳齿,第二组叉指包括至少一个叉指,其中第二组叉指的叉指设置在第一梳状结构的至少两个梳齿之间并且无电接触;以及用于控制第一组叉指的至少一个叉指和第二组叉指的至少一个叉指之间是否有电接触的开关;其中,第一梳状结构、第一组叉指、第二梳状结构以及第二组叉指均为导电材料。

Description

可变电容、反射型移相器和半导体设备 技术领域
本申请涉及电子技术领域,尤其涉及一种可变电容、反射型移相器和半导体设备。
背景技术
相控阵技术是第五代(5th generation,5G)通信系统的核心技术。移相器(phase-shifter,PS)是相控阵技术中的关键模块。其中,反射型移相器(reflection-type phase-shifter,RTPS)由于其双向相移特性、架构简单、极低功耗等优点受到诸多研究机构和产业界的青睐。RTPS包括混合正交耦合器(hybrid quadrature coupler)和可变反射负载,通过改变可变反射负载的阻抗实现移相。可变反射负载的阻抗一般有电感电容(LC)串联、LC并联和π型三种方式,进一步的,可以通过改变电容来改变阻抗。
现有技术中,可变反射负载可以采用变容二极管(varactor)实现,由于变容二极管的电容值随工艺、电压和温度(process voltage and temperature,PVT)变化敏感,导致相移的PVT一致性很差,会严重恶化移相器的相移精度和分辨率。
发明内容
本申请实施例提供一种可变电容、反射型移相器和半导体设备,用于解决可变电容的电容值随PVT变化敏感的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种可变电容,包括:第一梳状结构和第一组叉指,第一梳状结构包括多个梳齿,第一组叉指包括至少一个叉指,其中第一组叉指的叉指设置在第一梳状结构的至少两个梳齿之间,第一组叉指的叉指与第一梳状结构的梳齿无电接触。第二梳状结构和第二组叉指,第二梳状结构包括多个梳齿,第二组叉指包括至少一个叉指,其中第二组叉指的叉指设置在第一梳状结构的至少两个梳齿之间,第二组叉指的叉指与第二梳状结构的梳齿无电接触,以及用于控制第一组叉指的至少一个叉指和第二组叉指的至少一个叉指之间是否有电接触的开关。其中,第一梳状结构、第一组叉指、第二梳状结构以及第二组叉指均为导电材料。
本申请实施例提供的可变电容和反射型移相器,通过开关控制电容阵列接入电路的电容的数目,来实现对整个可变电容的电容值的控制,可以实现非常小的电容步进和比较大的变容范围。而且由于上述可变电容采用阵列结构的导电材料(例如金属)和开关,在PVT变化时具有较强的稳定性,相对于变容管而言,有利于缓解电容值随PVT变化敏感的问题。
在一种可能的实施方式中,第一梳状结构和第二梳状结构分别包括N+1个梳齿,第一组叉指和第二组叉指分别包括N个叉指;其中,第一组叉指的第n个叉指位于第一梳状结构的第n个梳齿和第n+1梳齿之间,第二组叉指的第n个叉指位于第二梳状结构的第n个梳齿和第n+1梳齿之间,n和N均为正整数,n的取值小于或等于N的 取值。
在一种可能的实施方式中,第一组叉指和第二组叉指之间连接有N个开关,其中,N个开关的第n个开关的第一端连接第一组叉指的第n个叉指,第n个开关的第二端连接第二组叉指的第n个叉指。
在一种可能的实施方式中,第一组叉指的叉指与第一梳状结构的梳齿之间填充有电介质,第二组叉指的叉指与第二梳状结构的梳齿之间填充有电介质。导电材料之间填充电介质可以提高电容容量。
在一种可能的实施方式中,第一组叉指包括多个顺序排列的叉指,第一组叉指的每个叉指的长度相等;第二组叉指包括多个顺序排列的叉指,第二组叉指的每个叉指的长度相等。
在一种可能的实施方式中,第一组叉指包括多个顺序排列的叉指,第一组叉指的每个叉指的长度依排列顺序递增或递减;第二组叉指包括多个顺序排列的叉指,第二组叉指的每个叉指的长度依排列顺序递增或递减。
在一种可能的实施方式中,第一组叉指的相邻叉指的长度之比在1.02倍至1.1倍之间,第二组叉指的相邻叉指的长度之比在1.02倍至1.1倍之间。虽然电容值的变化是非线性的,但是反射型移相器的相移曲线是线性的,并且无论电容值大或小均可以实现较小的相移步进。
在一种可能的实施方式中,开关为金属氧化物半导体MOS开关。开关还可以为氮化镓(GaN)开关。
在一种可能的实施方式中,开关由一组数字开关码字控制断开或闭合。
在一种可能的实施方式中,第一梳状结构、第一组叉指、第二梳状结构、第二组叉指以及开关位于同一金属层中。相对于位于不同金属层,工艺更简单。
第二方面,提供了一种反射型移相器,包括:正向输入端、正向输出端、负向输入端、负向输出端、第一混合正交耦合器、第二混合正交耦合器、第一电感、第二电感、第三电感、第四电感、第一可变电容和第二可变电容,其中,第一可变电容和第二可变电容为如第一方面及其任一实施方式所述的可变电容。正向输入端连接第一混合正交耦合器的输入端,正向输出端连接第一混合正交耦合器的隔离端,第一混合正交耦合器的耦合端通过第一电感连接至第一可变电容的第一连接端,第一混合正交耦合器的直通端通过第二电感连接至第二可变电容的第一连接端。负向输入端连接第二混合正交耦合器的输入端,负向输出端连接第二混合正交耦合器的隔离端,第二混合正交耦合器的耦合端通过第三电感连接至第一可变电容的第二连接端,第一混合正交耦合器的直通端通过第四电感连接至第二可变电容的第二连接端。
在一种可能的实施方式中,第一混合正交耦合器和第二混合正交耦合器为平行耦合微带线定向耦合器,第一电感紧邻第三电感布置,第二电感紧邻第四电感布置,第一可变电容和第二可变电容沿第一混合正交耦合器和第二混合正交耦合器的耦合线输入端和输出端走线方向布置在第一电感与第二电感之间以及第三电感与第四电感之间。
第三方面,提供了一种半导体设备,包括如第一方面及其任一实施方式所述的可变电容。关于第二方面和第三方面的技术效果,见第一方面及其任一实施方式。
附图说明
图1A为本申请实施例提供的一种无线通信系统的结构示意图;
图1B为本申请实施例提供的一种相控阵的部分结构示意图;
图1C为本申请实施例提供的一种反射型移相器的结构示意图;
图2为本申请实施例提供的一种可变电容的结构示意图一;
图3为本申请实施例提供的一种可变电容的结构示意图二;
图4为本申请实施例提供的一种可变电容的等效电路示意图;
图5为本申请实施例提供的一种可变电容的电容值随开关的开关码字变化的曲线示意图一;
图6为本申请实施例提供的一种反射型移相器的相移曲线的示意图一;
图7为本申请实施例提供的一种可变电容的结构示意图三;
图8为本申请实施例提供的一种可变电容的电容值随开关的开关码字变化的曲线示意图二;
图9为本申请实施例提供的一种反射型移相器的相移曲线的示意图二;
图10为本申请实施例提供的一种可变电容的工艺结构示意图;
图11为本申请实施例提供的一种反射型移相器的结构示意图二;
图12为本申请实施例提供的一种反射型移相器的结构示意图三。
具体实施方式
下面结合附图并举实施例,对本申请提供的技术方案作进一步说明。应理解,本申请实施例中提供的系统结构和业务场景主要是为了解释本申请的技术方案的一些可能的实施方式,不应被解读为对本申请的技术方案的唯一性限定。本领域普通技术人员可以知晓,随着系统的演进,以及更新的业务场景的出现,本申请提供的技术方案对于相同或类似的技术问题仍然可以适用。
图1A为本申请实施例提供的一种无线通信系统的结构示意图。图1A示出了一个由无线网络设备01和终端02组成的无线通信系统00。应理解,虽然图1A仅示出了一个无线网络设备和一个终端,该无线通信系统也可以包括其他数目的无线网络设备和终端,还可以包括其他网络设备。
参见图1A所示,基站的发射波束集合中有发射波束1、发射波束2以及发射波束3,终端的接收波束集合中有接收波束a、接收波束b以及接收波束c。基站可以通过在一定的时间间隔内依次通过发射波束1至发射波束3来发射信号,以覆盖一定区域内的终端。终端也可以通过在一定的时间间隔内依次通过接收波束a至接收波束c来接收由上述不同发射波束承载的发射信号。
无线通信系统00可以作为基于第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)技术规范的移动通信系统的一个示例,也可以涵盖基于其他无线通信标准的无线通信系统,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列,如802.11、802.15、802.20等无线通信标准。
其中,无线网络设备是一种具备无线通信功能的计算设备,可以通过波束赋形等技术生成不同指向的波束,以覆盖小区03,可以与处于小区03内不同方位的终端通信。应理解的是,无线网络设备可以是像基站这样的无线接入网设备。应理解,基站 有时也可以被称为无线接入点(access point,AP),或发送接收点(transmission reception point,TRP)。基站具体可以是5G移动通信系统中的通用节点B(generation Node B,gNB),4G移动通信系统的演进节点B(evolutional Node B,eNB或eNodeB),以及其他可能的无线接入技术中的基站。基站的物理形态和发射功率也可以有多种,例如宏基站(macro base station)或微基站(micro base station)。微基站有时也被称为小基站或小小区(small cell)。
终端也可以被称为用户设备(user equipment,UE),移动台(mobile station,MS)或订户单元(subscriber unit,SU)。终端具体可以是但不限于移动电话、平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(智能手表、智能手环,智能头盔,智能眼镜等),以及其他具备无线接入能力的通信设备,如各种物联网设备,包括各种智能家居设备(比如智能电表和智能家电)以及智能城市设备(比如安防或监控设备,智能道路交通设施)等。
可以理解的是,图1A中的无线通信系统结构只是本申请实施例中的一种示例性的实施方式,本申请实施例中的通信系统结构包括但不仅限于以上通信系统结构。
应理解,图1A中的这些发射波束和接收波束可以通过基站和终端的相控阵来产生。相控阵是一种相位控制电子扫描的天线阵列,利用大量的天线单元排成阵列组成,每个天线单元都可有独立的开关控制,通过控制阵列中各天线单元的幅度和相位,调制电磁波的辐射方向,以合成具有指向性的聚焦扫描的波束。
图1B为本申请实施例提供的一种相控阵的部分结构示意图。如图1B所示,所述相控阵包括有多个天线组成的天线阵列。这些天线阵列可以为无线通信提供多个收发通道,收发通道的个数可记为N。这些收发通道可以通过合路器将接收信号汇聚,也可以通过分路器将待发送信号拆分。为了控制天线阵列中各天线单元的相位,相控阵自然需要包含用于调整相位变化的移相器,图1B中记为PS。除PS外,图1B中还示出了用于放大信号的一些放大器,包括:可变增益放大器(variable gain amplifier,VGA),功率放大器(power amplifier,PA)和低噪声放大器(low noise amplifier,LNA)。应理解,图1B仅为示意,本申请实施例的相控阵还可包含其他器件。
图1C为本申请实施例提供的一种反射型移相器的结构示意图,该反射型移相器可以应用于前述无线通信系统和相控阵。如图1C所示,该反射型移相器可包括:正向输入端IN_P、正向输出端OUT_P、负向输入端IN_N、负向输出端OUT_N、第一混合正交耦合器11、第二混合正交耦合器12、第一电感L1、第二电感L2、第三电感L3、第四电感L4、第一可变电容C1和第二可变电容C2。
正向输入端IN_P连接第一混合正交耦合器11的输入端a1,正向输出端OUT_P连接第一混合正交耦合器11的隔离端b1,第一混合正交耦合器11的耦合端c1通过第一电感L1连接至第一可变电容C1的第一连接端,第一混合正交耦合器11的直通端d1通过第二电感L2连接至第二可变电容C2的第一连接端。
负向输入端IN_N连接第二混合正交耦合器12的输入端a2,负向输出端OUT_N连接第二混合正交耦合器12的隔离端b2,第二混合正交耦合器12的耦合端c2通过第三电感L3连接至第一可变电容C1的第二连接端,第一混合正交耦合器11的直通端d2通过第四电感L4连接至第二可变电容C2的第二连接端。
前文涉及的第一可变电容C1和第二可变电容C2可以为以下可变电容:
如图2所示,该可变电容包括:第一梳状结构23、第二梳状结构24、第一组叉指25、第二组叉指26和至少一个开关K。可选的,还包括第一连接端21和第二连接端22。其中,第一连接端21连接第一梳状结构23,第二连接端22连接第二梳状结构24。
第一梳状结构23包括多个梳齿,第一组叉指25包括至少一个叉指,其中,第一组叉指25的叉指设置在第一梳状结构23的至少两个梳齿之间,第一组叉指25的叉指与第一梳状结构23的梳齿无电接触。进一步地,第一组叉指25的叉指设置在第一梳状结构23的至少两个相邻梳齿之间。
第二梳状结构24包括多个梳齿,第二组叉指26包括至少一个叉指,其中,第二组叉指26的叉指设置在第一梳状结构23的至少两个梳齿之间,第二组叉指26的叉指与第二梳状结构24的梳齿无电接触。进一步地,第二组叉指26的叉指设置在第一梳状结构23的至少两个相邻梳齿之间。
至少一个开关K用于控制第一组叉指25的至少一个叉指和第二组叉指26的至少一个叉指之间是否有电接触。当至少一个开关K闭合时,第一组叉指26的至少一个叉指和第二组叉指26的至少一个叉指之间有电接触,当至少一个开关K断开时,第一组叉指26的对应叉指和第二组叉指26的对应叉指之间无电接触。需要说明的是,第一组叉指25的至少一个叉指和第二组叉指26的至少一个叉指之间可以直接电接触,即不通过开关来控制对应两个叉指之间的通断。
第一梳状结构23、第一组叉指25、第二梳状结构24以及第二组叉指26均为导电材料。进一步地,第一梳状结构23、第二梳状结构24、第一组叉指25、第二组叉指26为金属,例如,该金属可以为铜、铝、金等。
至少一个开关K可以为金属氧化物半导体(metal oxide semiconductor,MOS)管开关或氮化镓(GaN)开关等,本申请不作限定。
需要说明的是,本申请涉及的电接触可以理解为导电材料相互接触以使电流通过的状态。本申请涉及的梳状结构可以理解为一端共连接另一端无连接的E形导电材料,本申请实施例涉及的叉指可以理解为梳状结构的两个梳齿间的导电材料。应理解,虽然图2中示出的叉指是条状的,但是本申请实施例的叉指可以不仅限于图2所示的条状,只要该叉指和梳状结构的两个梳齿构成本申请实施例所需的电容即可。
本申请实施例中,第一梳状结构23包括的梳齿的数量大于第一组叉指25包括的叉指的数量。第二梳状结构24包括的梳齿的数量大于第二组叉指26包括的叉指的数量。第一组叉指25包括的叉指的数量或者第二组叉指26包括的叉指的数量大于等于至少一个开关K中开关的数量。即在一些相邻的梳齿之间可以无叉指,在第一组叉指25和第二组叉指26一些相对的叉指之间可以无开关,例如,第一梳状结构23和第二梳状结构24分别包括10个梳齿,第一组叉指25和第二组叉指26分别包括6个叉指,至少一个开关K包括4个开关。
在一种可能的实施方式中,如图3所示,第一梳状结构23和第二梳状结构24分别包括N+1个梳齿,第一组叉指25和第二组叉指26分别包括N个叉指。至少一个开关K包括N个开关K 1-K N,这N个开关K 1-K N连接在第一组叉指25和第二组叉指26之间。
第一组叉指25中第n个叉指a n位于第一梳状结构23的第n个梳齿S n和第n+1个梳齿S n+1之间,并且第一组叉指25中第n个叉指a n与第一梳状结构23的第n个梳齿S n和第n+1个梳齿S n+1无电接触。
第二组叉指26中第n个叉指b n位于第二梳状结构24的第n个梳齿T n和第n+1个梳齿T n+1之间,并且第二组叉指26中第n个叉指b n与第二梳状结构24的第n个梳齿T n和第n+1个梳齿T n+1无电接触。
第一组叉指25的叉指与第一梳状结构23的梳齿之间填充有电介质,第二组叉指26的叉指与第二梳状结构24的梳齿之间填充有电介质。具体的,第一组叉指25中第n个叉指a n与第一梳状结构23的第n个梳齿S n和第n+1个梳齿S n+1之间填充介电质,第二组叉指26中第n个叉指b n与第二梳状结构24的第n个梳齿T n和第n+1个梳齿T n+1之间填充介电质。
N个开关的第n个开关K n的第一端连接第一组叉指25中第n个叉指a n的一端,第n个开关K n的第二端连接第二组叉指26中第n个叉指b n的一端。
其中,n和N均为正整数,n的取值小于或等于N的取值。
如图4所示,示出了上述可变电容等效电路,第一组叉指25中第n个叉指a n与第一梳状结构23的第n个梳齿S n和第n+1个梳齿S n+1之间形成电容C 1n,第二组叉指26中第n个叉指b n与第二梳状结构24的第n个梳齿T n和第n+1个梳齿T n+1之间形成电容C 2n
当第n个开关K n闭合时,电容C 1n和电容C 2n串联,此时闭合开关K n对应的电容C n的电容值为(C 1n*C 2n)/(C 1n+C 2n)。特别地,当电容C 1n与电容C 2n相等时,开关K n对应的电容C n的电容值为C 1n/2或C 2n/2。因此,通过在该电容结构中引入开关K n,可以使得电容的最小变化值为(C 1n*C 2n)/(C 1n+C 2n),小于电容C 1n或电容C 2n,因此能够降低可变电容的电容调整精度。
当超过1个开关闭合时,闭合开关对应的电容并联,整个可变电容的电容值为并联的电容之和。通过闭合不同数量的开关,可以实现可变电容的电容值的改变。例如,开关K 1对应的电容为C 1,开关K n对应的电容为C n,如果开关K 1和K n闭合,则整个可变电容的电容值为C 1+C n
本申请实施例提供的可变电容和反射型移相器,通过开关控制电容阵列接入电路的电容的数目,来实现对整个可变电容的电容值的控制,可以实现非常小的电容步进和比较大的变容范围,其电容步进可以为2fF~3fF,变容比可以达到3.4。而且由于上述可变电容采用阵列结构的导电材料(例如金属),在PVT变化时具有较强的稳定性,解决了电容值随PVT变化敏感的问题。
需要说明的是,图4中示出的是第一组叉指25中的所有叉指等长,第二组叉指26中的所有叉指等长的情况,即第一组叉指25包括多个顺序排列的叉指,第一组叉指25的每个叉指的长度相等;第二组叉指26包括多个顺序排列的叉指,第二组叉指26的每个叉指的长度相等。但是本申请对第一组叉指25或第二组叉指26中叉指的长度不限定,例如,第一组叉指25或第二组叉指26中的叉指可以等长或不等长,可以长短相间,还可以如下面描述的长度逐渐递增或递减:即第一组叉指25包括多个顺序排列的叉指,第一组叉指25的每个叉指的长度依排列顺序递增或递减;第二组叉指 26包括多个顺序排列的叉指,第二组叉指26的每个叉指的长度依排列顺序递增或递减。
开关K由一组数字开关码字控制断开或闭合,相应地,可变电容的电容值随开关K的开关码字变化。如图5所示,为可变电容的电容值随开关K 1-K N的开关码字变化的曲线,开关码字指开关K 1-K N对应的二进制表示,例如一个比特对应一个开关的开关状态,该比特位为0表示开关断开,该比特位为1表示开关闭合,开关K 1-K N按照从低到高比特位来表示,则0010可以表示开关K 1、K 3、K 4断开,开关K 2闭合。
从图4的曲线可以看出,可变电容的电容值变化为线性的。
反射型移相器的相移特性如下面公式1。
Figure PCTCN2019103882-appb-000001
其中,
Figure PCTCN2019103882-appb-000002
为相移量,W为频率,L为与可变电容串联的电感的电感值,Z 0为特征阻抗,C n为可变电容第n个开关K n导通时的电容值。
上述公式中
Figure PCTCN2019103882-appb-000003
为可变电容的所有开关都断开时的初始相移,是一个常数。反射型移相器的相移
Figure PCTCN2019103882-appb-000004
实质上为1/C n的反正切函数,当可变电容的电容值如图5所示呈线性变化时,对应的反射型移相器的相移曲线如图6所示。从中可以看出,反射型移相器的相移
Figure PCTCN2019103882-appb-000005
是非线性的,这就意味着相移步进也是非线性的,并且相移步进随着n的增大不断减小,在n很小的时候最大,这对于实现高分辨率(high resolution)反射型移相器是非常不利的。
为了解决这一问题,可以通过合理地设置第n个开关闭合时的电容值C n,把公式1拟合成近似正切函数,这样,通过合理控制电容步进就可以得到线性的相移曲线和较小的相移步进。
可选的,第n个开关K n闭合时,可变电容的总电容值(即第一组叉指25中第n个叉指a n与第一梳状结构23的第n个梳齿S n和第n+1个梳齿S n+1之间形成的电容,以及,第二组叉指26中第n个叉指b n与第二梳状结构24的第n个梳齿T n和第n+1个梳齿T n+1之间形成的电容,这二者之和)为如下值:
Figure PCTCN2019103882-appb-000006
其中,
Figure PCTCN2019103882-appb-000007
为相移量,W为频率,L为与该可变电容串联的电感的电感值,Z 0为特征阻抗。
根据上述公式,第一组叉指25的相邻叉指(例如叉指a n+1与叉指a n)的长度之比在1.02倍至1.1倍之间,第二组叉指26的相邻叉指(例如叉指b n+1与叉指b n)的长度之比在1.02倍至1.1倍之间。优化后的可变电容的结构如图7所示,优化后的可变电容的电容值随开关K 1-K N的开关码字变化的曲线如图8所示,对应的反射型移相器的相移曲线如图9所示。
从中可以看出,虽然电容值的变化是非线性的,但是反射型移相器的相移曲线是线性的,并且无论电容值大或小均可以实现较小的相移步进。
可以在同一金属层中刻蚀梳状结构和叉指,即第一梳状结构23、第一组叉指25、 第二梳状结构24、第二组叉指26以及开关K位于同一金属层中;或者,第一梳状结构23、第一组叉指25位于第一金属层中,第二梳状结构24、第二组叉指26位于第二金属层中,开关K可以位于第一金属层或第二金属层中,开关K与另一金属层中的叉指之间可以通过通孔导通。
示例性地,如图10所示,示出了一种可变电容的工艺结构,可以在金属层8中刻蚀梳状结构和叉指。图中仅示出了第一梳状结构23的第1个梳齿S 1、第2个梳齿S 2、第3个梳齿S 3以及第一组叉指25的叉指a 1和叉指a 2。相邻梳齿和叉指之间形成电容。需要说明的是,本申请并不限定只能采用上述工艺结构。
如图11所示,当第一混合正交耦合器11和第二正交耦合器12为集中LC耦合器时:
第一混合正交耦合器11包括电容Cc1、电容Cc2、电容Cg1、电容Cg2、电容Cg3、电容Cg4、电感Lg1、电感Lg2。第一混合正交耦合器11的输入端a1连接电容Cc1的第一端、电容Cg1的第一端、电感Lg1的第一端;第一混合正交耦合器11的输入端c1连接电容Cc1的第二端、电容Cg3的第一端、电感Lg2的第一端;第一混合正交耦合器11的直通端d1连接电容Cc2的第一端、电容Cg2的第一端、电感Lg1的第二端;第一混合正交耦合器11的输出端b1连接电容Cc2的第二端、电容Cg4的第一端、电感Lg2的第二端;电容Cg1的第二端、电容Cg2的第二端、电容Cg3的第二端、电容Cg4的第二端接地。
第二混合正交耦合器12包括电容Cc3、电容Cc4、电容Cg5、电容Cg6、电容Cg7、电容Cg8、电感Lg3、电感Lg4。第二混合正交耦合器12的输入端a2连接电容Cc3的第一端、电容Cg5的第一端、电感Lg3的第一端;第二混合正交耦合器12的输入端c2连接电容Cc3的第二端、电容Cg7的第一端、电感Lg4的第一端;第二混合正交耦合器12的直通端d2连接电容Cc4的第一端、电容Cg6的第一端、电感Lg3的第二端;第二混合正交耦合器12的输出端b2连接电容Cc4的第二端、电容Cg8的第一端、电感Lg4的第二端;电容Cg5的第二端、电容Cg6的第二端、电容Cg7的第二端、电容Cg8的第二端接地。
如图12所示,当第一混合正交耦合器11和第二混合正交耦合器12为平行耦合微带线定向耦合器时,第一混合正交耦合器11包括第一条耦合微带线111和第二条耦合微带线112。第二混合正交耦合器12包括第三条耦合微带线121和第四条耦合微带线122。第一条耦合微带线111的第一端a1连接正向输入端IN_P,第一条耦合微带线111的第二端d1连接第二电感L2的第一端;第二条耦合微带线112的第一端c1连接第一电感L1的第一端,第二条耦合微带线112的第二端b1连接正向输出端OUT_P。第三条耦合微带线121的第一端a2连接负向输入端IN_N,第三条耦合微带线121的第二端d2连接第四电感L4的第一端;第四条耦合微带线122的第一端c2连接第三电感L3的第一端,第四条耦合微带线122的第二端b2连接负向输出端OUT_N。
第一电感L1紧邻第三电感L3布置,第二电感L2紧邻第四电感L4布置,第一可变电容C1和第二可变电容C2沿第一混合正交耦合器11和第二混合正交耦合器12的耦合线输入端和输出端走线方向布置在第一电感L1与第二电感L2之间以及第三电感L3与第四电感L4之间。
图12所示的反射型移相器的布局方式相对于图11所示的反射型移相器的布局方式,利用了两个耦合器之间的空间来布置可变电容,可有有效地降低反射型移相器整体版图的面积。
本申请实施例还提供了一种半导体设备,可以包括前文所述的可变电容。其所能达到的有益效果可参考上文所提供的实施方式中的有益效果,此处不再赘述。所述半导体设备既可以是例如手机或基站这样的整机设备,也可以是整机设备中的集成电路产品,例如应用于射频通信的芯片等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种可变电容,其特征在于,包括:
    第一梳状结构和第一组叉指,所述第一梳状结构包括多个梳齿,所述第一组叉指包括至少一个叉指,其中所述第一组叉指的叉指设置在所述第一梳状结构的至少两个梳齿之间,所述第一组叉指的叉指与所述第一梳状结构的梳齿无电接触;
    第二梳状结构和第二组叉指,所述第二梳状结构包括多个梳齿,所述第二组叉指包括至少一个叉指,其中所述第二组叉指的叉指设置在所述第一梳状结构的至少两个梳齿之间,所述第二组叉指的叉指与所述第二梳状结构的梳齿无电接触;以及
    用于控制所述第一组叉指的至少一个叉指和所述第二组叉指的至少一个叉指之间是否有电接触的开关;
    其中,所述第一梳状结构、所述第一组叉指、所述第二梳状结构以及所述第二组叉指均为导电材料。
  2. 根据权利要求1所述的可变电容,其特征在于:
    所述第一梳状结构和所述第二梳状结构分别包括N+1个梳齿,所述第一组叉指和所述第二组叉指分别包括N个叉指;
    其中,所述第一组叉指的第n个叉指位于所述第一梳状结构的第n个梳齿和第n+1梳齿之间,所述第二组叉指的第n个叉指位于所述第二梳状结构的第n个梳齿和第n+1梳齿之间,n和N均为正整数,n的取值小于或等于N的取值。
  3. 根据权利要求2所述的可变电容,其特征在于:
    所述第一组叉指和所述第二组叉指之间连接有N个开关,其中,所述N个开关的第n个开关的第一端连接所述第一组叉指的第n个叉指,所述第n个开关的第二端连接所述第二组叉指的第n个叉指。
  4. 根据权利要求1至3任一项所述的可变电容,其特征在于:
    所述第一组叉指的叉指与所述第一梳状结构的梳齿之间填充有电介质,所述第二组叉指的叉指与所述第二梳状结构的梳齿之间填充有电介质。
  5. 根据权利要求1至4任一项所述的可变电容,其特征在于:
    所述第一组叉指包括多个顺序排列的叉指,所述第一组叉指的每个叉指的长度相等;
    所述第二组叉指包括多个顺序排列的叉指,所述第二组叉指的每个叉指的长度相等。
  6. 根据权利要求1至4任一所述的可变电容,其特征在于:
    所述第一组叉指包括多个顺序排列的叉指,所述第一组叉指的每个叉指的长度依排列顺序递增或递减;
    所述第二组叉指包括多个顺序排列的叉指,所述第二组叉指的每个叉指的长度依排列顺序递增或递减。
  7. 根据权利要求6所述的可变电容,其特征在于:
    所述第一组叉指的相邻叉指的长度之比在1.02倍至1.1倍之间,所述第二组叉指的相邻叉指的长度之比在1.02倍至1.1倍之间。
  8. 根据权利要求1至7任一所述的可变电容,其特征在于:
    所述开关为金属氧化物半导体MOS开关。
  9. 根据权利要求1至8任一所述的可变电容,其特征在于:
    所述开关由一组数字开关码字控制断开或闭合。
  10. 根据权利要求1至9任一所述的可变电容,其特征在于:
    所述第一梳状结构、所述第一组叉指、所述第二梳状结构、所述第二组叉指以及所述开关位于同一金属层中。
  11. 一种反射型移相器,其特征在于,包括:
    正向输入端、正向输出端、负向输入端、负向输出端、第一混合正交耦合器、第二混合正交耦合器、第一电感、第二电感、第三电感、第四电感、第一可变电容和第二可变电容,其中,所述第一可变电容和所述第二可变电容为权利要求1至10任一项所述的可变电容,
    所述正向输入端连接所述第一混合正交耦合器的输入端,所述正向输出端连接所述第一混合正交耦合器的隔离端,所述第一混合正交耦合器的耦合端通过所述第一电感连接至所述第一可变电容的第一连接端,所述第一混合正交耦合器的直通端通过所述第二电感连接至所述第二可变电容的第一连接端;
    所述负向输入端连接所述第二混合正交耦合器的输入端,所述负向输出端连接所述第二混合正交耦合器的隔离端,所述第二混合正交耦合器的耦合端通过所述第三电感连接至所述第一可变电容的第二连接端,所述第一混合正交耦合器的直通端通过所述第四电感连接至所述第二可变电容的第二连接端。
  12. 根据权利要求11所述的反射型移相器,其特征在于:
    所述第一混合正交耦合器和所述第二混合正交耦合器为平行耦合微带线定向耦合器,所述第一电感紧邻所述第三电感布置,所述第二电感紧邻所述第四电感布置,所述第一可变电容和所述第二可变电容沿所述第一混合正交耦合器和所述第二混合正交耦合器的耦合线输入端和输出端走线方向布置在所述第一电感与所述第二电感之间以及所述第三电感与所述第四电感之间。
  13. 一种半导体设备,其特征在于,包括如权利要求1至10任一项所述的可变电容。
PCT/CN2019/103882 2019-08-30 2019-08-30 可变电容、反射型移相器和半导体设备 WO2021035752A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/103882 WO2021035752A1 (zh) 2019-08-30 2019-08-30 可变电容、反射型移相器和半导体设备
EP19943658.5A EP4016567A4 (en) 2019-08-30 2019-08-30 VARIABLE CAPACITOR, REFLECTIVE PHASE SHIFTER AND SEMICONDUCTOR DEVICE
CN201980098604.5A CN114127873B (zh) 2019-08-30 2019-08-30 可变电容、反射型移相器和半导体设备
US17/652,536 US20220182015A1 (en) 2019-08-30 2022-02-25 Variable Capacitor, Reflection-Type Phase Shifter, and Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103882 WO2021035752A1 (zh) 2019-08-30 2019-08-30 可变电容、反射型移相器和半导体设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/652,536 Continuation US20220182015A1 (en) 2019-08-30 2022-02-25 Variable Capacitor, Reflection-Type Phase Shifter, and Semiconductor Device

Publications (1)

Publication Number Publication Date
WO2021035752A1 true WO2021035752A1 (zh) 2021-03-04

Family

ID=74684474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103882 WO2021035752A1 (zh) 2019-08-30 2019-08-30 可变电容、反射型移相器和半导体设备

Country Status (4)

Country Link
US (1) US20220182015A1 (zh)
EP (1) EP4016567A4 (zh)
CN (1) CN114127873B (zh)
WO (1) WO2021035752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230095788A1 (en) * 2021-09-25 2023-03-30 Qualcomm Incorporated Compact low-loss reflection type phase shifter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880921A (en) * 1997-04-28 1999-03-09 Rockwell Science Center, Llc Monolithically integrated switched capacitor bank using micro electro mechanical system (MEMS) technology
CN101030666A (zh) * 2006-02-28 2007-09-05 株式会社Ntt都科摩 可变滤波器
CN101127513A (zh) * 2007-08-24 2008-02-20 东南大学 基于微机械电容式串联开关的可变叉指电容网络及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274805A (ja) * 1998-03-20 1999-10-08 Ricoh Co Ltd 高周波スイッチ並びに製造方法、及び集積化高周波スイッチアレイ
US7292124B2 (en) * 2004-02-03 2007-11-06 Ntt Docomo, Inc. Variable resonator and variable phase shifter
JP2007532060A (ja) * 2004-03-31 2007-11-08 エックスコム ワイアレス インコーポレイテッド 電子制御されたデジタル/アナログ混載移相器
US8248302B2 (en) * 2008-05-12 2012-08-21 Mediatek Inc. Reflection-type phase shifter having reflection loads implemented using transmission lines and phased-array receiver/transmitter utilizing the same
FR2940503B1 (fr) * 2008-12-23 2011-03-04 Thales Sa Condensateur commute compact mems
US20100177457A1 (en) * 2009-01-10 2010-07-15 Simon Edward Willard Interdigital capacitor with Self-Canceling Inductance
US8436698B2 (en) * 2009-11-02 2013-05-07 Harris Corporation MEMS-based tunable filter
CN203300770U (zh) * 2013-06-20 2013-11-20 成都国腾电子技术股份有限公司 一种基于微机械电子技术的微波移相器
US10187030B2 (en) * 2016-04-25 2019-01-22 Kumu Networks, Inc. High quality factor time delay filters using multi-layer fringe capacitors
US10269490B2 (en) * 2017-05-01 2019-04-23 Qualcomm Incorporated Metal-oxide-metal capacitor using vias within sets of interdigitated fingers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880921A (en) * 1997-04-28 1999-03-09 Rockwell Science Center, Llc Monolithically integrated switched capacitor bank using micro electro mechanical system (MEMS) technology
CN101030666A (zh) * 2006-02-28 2007-09-05 株式会社Ntt都科摩 可变滤波器
CN101127513A (zh) * 2007-08-24 2008-02-20 东南大学 基于微机械电容式串联开关的可变叉指电容网络及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230095788A1 (en) * 2021-09-25 2023-03-30 Qualcomm Incorporated Compact low-loss reflection type phase shifter
US11736150B2 (en) * 2021-09-25 2023-08-22 Qualcomm Incorporated Compact low-loss reflection type phase shifter

Also Published As

Publication number Publication date
EP4016567A4 (en) 2022-09-07
US20220182015A1 (en) 2022-06-09
CN114127873B (zh) 2022-09-23
EP4016567A1 (en) 2022-06-22
CN114127873A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
Shin et al. Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS for 5G applications
Meng et al. A 57-to-64-GHz 0.094-mm 2 5-bit passive phase shifter in 65-nm CMOS
Byeon et al. A low-loss compact 60-GHz phase shifter in 65-nm CMOS
US9577847B2 (en) Non-reciprocal components with balanced distributedly modulated capacitors (DMC)
CN105633575A (zh) 天线互耦消除设备、方法以及无线通信装置
Lee et al. Continuous true-time delay phase shifter using distributed inductive and capacitive Miller effect
US20220294404A1 (en) Bidirectional variable gain amplifiers for radio frequency communication systems
US7015773B2 (en) Electronic phase shifter with enhanced phase shift performance
WO2021035752A1 (zh) 可变电容、反射型移相器和半导体设备
EP3065293B1 (en) Distributed amplifier
Li et al. Nonreciprocal time-varying transmission line with carrier boosting technique for low-noise RF front ends
Voisin et al. A 25-50 GHz Digitally Controlled Phase-Shifter
KR102306512B1 (ko) 밀리미터파 신호를 위한 전송 라인 구조물
CN116191041A (zh) 太赫兹光子晶体慢波喇叭天线
Peng et al. Π-type reconfigurable coupler based on a complementary tunable method
Pochernyaev et al. Broadband switch on partially filled by dielectric rectangular waveguide
CN211295344U (zh) 一种x波段固态气象雷达发射机小型化电桥
Wang et al. Broadband high‐efficiency power amplifier with compact coupling matching network
Abdaoui et al. Microstrip band pass filter bank for 60 GHz UWB impulse radio multi band architectures
CN214203990U (zh) 天线装置及电子设备
CN213243961U (zh) 射频开关电路、无线装置及移动终端
Park et al. Wide‐band duplexer based on electrical balance of hybrid transformer having two notches
US20230216473A1 (en) Dispersive delay line with piezoelectric substrate and lamb wave propagation
Liu et al. A 36–91 GHz Broadband Beamforming Transmitter Architecture With Phase Error Between 1.2$^\circ $–2.8$^\circ $ for Joint Communication and Sensing
Schless The Relevance of Low Temperature Co-fired Ceramic Module Packaging in the 5G Market

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019943658

Country of ref document: EP

Effective date: 20220315