WO2021035434A1 - 一种海洋地磁日变观测装置及地磁测量方法 - Google Patents

一种海洋地磁日变观测装置及地磁测量方法 Download PDF

Info

Publication number
WO2021035434A1
WO2021035434A1 PCT/CN2019/102335 CN2019102335W WO2021035434A1 WO 2021035434 A1 WO2021035434 A1 WO 2021035434A1 CN 2019102335 W CN2019102335 W CN 2019102335W WO 2021035434 A1 WO2021035434 A1 WO 2021035434A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating body
geomagnetic
observation
wireless communication
marine
Prior art date
Application number
PCT/CN2019/102335
Other languages
English (en)
French (fr)
Inventor
刘浩源
靖建农
郑云爽
Original Assignee
唐山哈船科技有限公司
唐山圣因海洋科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山哈船科技有限公司, 唐山圣因海洋科技有限公司 filed Critical 唐山哈船科技有限公司
Priority to PCT/CN2019/102335 priority Critical patent/WO2021035434A1/zh
Publication of WO2021035434A1 publication Critical patent/WO2021035434A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/40Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for measuring magnetic field characteristics of the earth

Definitions

  • the invention relates to the technical field of ocean geomagnetic field measurement, in particular to a marine geomagnetic diurnal variation observation device and a geomagnetic measurement method.
  • the geomagnetic field refers to the natural magnetic phenomenon existing in the earth. Marching and navigation use the effect of the geomagnetic field on the compass to orientate. People can also search for mineral deposits based on the characteristics of the geomagnetic field on the ground. Changes in the geomagnetic field can affect the propagation of radio waves. When the local magnetic field is strongly disturbed by sunspot activity, long-distance communication will be severely affected or even interrupted. If there is no geomagnetic field, the powerful stream of charged particles from the sun (usually Called the solar wind), it will not be deflected by the geomagnetic field, but will shoot directly at the earth.
  • the geomagnetic field is not a constant value.
  • the daily variation of the geomagnetic field is generally large during the day and small at night.
  • CN201810652737.X discloses an unmanned aerial vehicle-based marine aeromagnetic daily observation station and a geomagnetic measurement method.
  • the UAV installed with geomagnetic equipment is transported to the measurement area in the far sea, and the UAV flight control system controls the UAV's compensation flight, position adjustment and fixed-point hovering, so that the geomagnetic equipment on the UAV can accurately
  • the geomagnetic data of the measurement point is measured.
  • this method also has limitations.
  • the drone must use the measurement ship as the carrier, so that it can only drive to the next measurement point after the measurement is completed at a certain measurement point. To make the measurement efficiency very slow, how to improve the measurement efficiency is a problem to be solved.
  • the purpose of the present invention is to provide a marine geomagnetic diurnal change observation device and a geomagnetic measurement method, so that the observation ship is not restricted by the observation point, and the efficiency of geomagnetic data collection is improved.
  • a marine geomagnetic diurnal observation device comprising an observation ship and a plurality of floating bodies arranged on the observation ship, the floating bodies are equipped with geomagnetic equipment, and the geomagnetic equipment adopts For a proton magnetometer, the floating body includes a positioning device for positioning the position of the floating body;
  • the positioning device adopts a GPS satellite positioning device or a Beidou satellite positioning device.
  • the main body of the buoy of the present application is provided with an automatic navigation system.
  • the purpose of the automatic navigation system is that the GPS satellite positioning device or the Beidou satellite positioning device receives the current status of the mobile body.
  • the location and the data are compared with the user-defined destination, the driving route is calculated by referring to the electronic map, and the information is fed back to the body of the buoy in real time.
  • the driving device is propelled by electric propellers.
  • this application uses two electric propellers for propulsion. When the two electric propellers rotate at a rotating speed, When the rotating speed of the two electric propellers is inconsistent, the forward direction of the moving main body can be adjusted.
  • a control center is provided on the observation ship, and the control center includes a wireless communication unit for wireless communication with each floating body;
  • a storage unit for storing the coordinate information of the predetermined position of each floating body and the geomagnetic information obtained by the geomagnetic equipment
  • Including an alarm device used to remind the staff of the management center that the data collection of the floating subject is complete.
  • the alarm device can be an alarm bell or an alarm lamp, and the alarm device is set in the monitoring room of the control center.
  • both the wireless communication device and the wireless communication unit adopt a Wi-Fi module or a mobile network module.
  • the power supply device adopts a solar power generation module for converting light energy into electrical energy to supply power to the equipment, and a rechargeable battery is also provided on the floating body to store the electrical energy of the solar power generation module.
  • a solar photovoltaic panel on the floating body.
  • a foldable solar photovoltaic panel can be used, so that when the wind on the sea surface is high, the photovoltaic panel can Fold to reduce the wind surface.
  • the floating body is further provided with a wind sensor for sensing the wind speed around the floating body.
  • a method of using a marine geomagnetic diurnal change observation device for geomagnetic measurement includes the following steps:
  • S1 Transport multiple floating bodies to the latitude to be measured in the open sea through the observation ship, and drop the multiple floating bodies to different observation points respectively;
  • the control center sends the coordinate information of its respective measuring point to each floating body through the wireless communication unit, and stores the coordinate information in the storage device of the floating body;
  • the floating body performs compensating swimming, and during the compensating swimming process of the floating main body, the proton magnetometer collects the magnetic field interference information of the floating main body;
  • the geomagnetic device stops data collection, and when the wind speed sensor senses a gentle wind speed, the floating body is pushed back to the measurement point by the driving device, and the geomagnetic device starts to work.
  • multiple floating bodies are placed on the latitude to be measured in the deep sea, and after the proton magnetometer collects the magnetic field interference information of the floating body itself, data collection is performed on the geomagnetic field of this latitude. Since the floating body is floating on the sea surface, There is no need to use the observation ship as the carrier, so that the observation ship can be free from the restriction of the observation point, and multiple floating bodies can be quickly dropped to multiple observation points, thereby greatly improving the efficiency of data collection.
  • Figure 1 is a schematic diagram of the floating body structure of the present invention
  • a marine geomagnetic diurnal observation device including an observation ship and a plurality of floating bodies 1 arranged on the observation ship, the floating body 1 is equipped with a geomagnetic device 2, so The geomagnetic equipment 2 adopts a proton magnetometer, and the floating body 1 includes a positioning device 6 for positioning the position of the floating body 1;
  • the positioning device 6 adopts the GPS satellite positioning device 6 or the Beidou satellite positioning device 6.
  • the buoy body 1 of the present application is provided with an automatic navigation system, and the purpose of the automatic navigation system is to use the GPS satellite positioning device 6 or the Beidou satellite positioning device.
  • the device 6 receives the current position of the mobile body 1 and compares the data with the user-defined destination, calculates the driving route by referring to the electronic map, and feeds the information back to the buoy body 1 in real time.
  • a driving device 3 which is used to push the floating body 1 back to its original position when the floating body 1 deviates from a predetermined position
  • the driving device 3 is propelled by electric propellers. Further, this application uses two electric propellers for propulsion. When the propeller rotates at a rotating speed, it can push the moving body 1 to move forward. When the rotating speeds of the two electric propellers are not consistent, the forward direction of the moving body 1 can be adjusted.
  • a storage device 5 for storing coordinate information of a predetermined position of the floating body 1;
  • a power supply device 8 for supplying power to the floating body 1 and the geomagnetic equipment 2;
  • a control center is provided on the observation ship, and the control center includes a wireless communication unit for wireless communication with each floating body 1;
  • a storage unit for storing the coordinate information of the predetermined position of each floating body 1 and the geomagnetic information obtained by the geomagnetic device 2;
  • the alarm device can be an alarm bell or an alarm lamp, and the alarm device is set in the monitoring room of the control center.
  • the wireless communication device 7 and the wireless communication unit both use a Wi-Fi module or a mobile network module.
  • the power supply device 8 uses a solar power generation module to convert light energy into electrical energy to supply power to the equipment, and a rechargeable battery is also provided on the floating body 1 to store the electrical energy of the solar power generation module. , And when the solar power module is not generating power or the power generation is insufficient, the device is powered.
  • a solar photovoltaic panel is provided on the floating body 1. Further, a foldable solar photovoltaic panel can be used to make the sea surface windy. , The photovoltaic panel can be folded to reduce the wind surface.
  • the floating body 1 is also provided with a wind sensor for sensing the wind speed around the floating body 1.
  • a wind sensor for sensing the wind speed around the floating body 1.
  • the geomagnetic device 2 stops working to ensure The accuracy of the collected data is more energy-saving.
  • the wind speed sensor senses that the wind speed on the sea surface is high, it will blow the floating body 1 away from the observation point, and it is difficult to make the floating body 1 easy to use only by the driving device 3 on the floating body 1 Stay at the observation point, and it will be very electricity consuming.
  • Geomagnetic equipment 2 stops data collection, and when the wind speed sensor senses that the wind speed is flat, it uses GPS navigation to plan the route of the floating body 1 swimming to the observation point at this time, and drives it through the drive device 3. After pushing the floating body 1 back to the measuring point, the geomagnetic device 2 starts to work.
  • a method of using a marine geomagnetic diurnal change observation device for geomagnetic measurement includes the following steps:
  • S1 Transport multiple floating bodies 1 to the latitude to be measured in the far sea by an observation ship, and drop multiple floating bodies 1 to different observation points respectively;
  • the longitude and latitude of the observation point are determined through astronomical observations.
  • the measuring points are divided into re-measurement points and ordinary points.
  • the distance of the re-measurement points is generally two or three hundred kilometers, and the re-measurement is performed once a year.
  • the geomagnetic data of the re-measurement point is mainly used to study the long-term changes of the geomagnetic field. It largely compensates for the lack of geomagnetic stations and the uneven distribution.
  • the distance between ordinary points is generally tens of kilometers, and the data is mainly Used to compile geomagnetic maps;
  • the control center sends the coordinate information of its respective measuring point to each floating body 1 through the wireless communication unit, and stores the coordinate information in the storage device 5 of the floating body 1;
  • the observation ship When the observation ship approaches the observation point, it drops a floating body 1 into the sea, and sends the coordinates of the corresponding observation point to the floating body 1, so that after the floating body 1 plans the driving route, the floating body 1 is moved by the driving device 3 Push to the observation point;
  • the floating body 1 performs compensation swimming, and during the compensation swimming process of the floating body 1, the proton magnetometer collects the magnetic field interference information of the floating body 1;
  • the compensation swimming mode is a mode in which the floating body 1 is swimming in four horizontal directions according to the swimming form of the number 8. Each time the compensation swimming time is not less than 1 minute, and each time the compensation swimming The distance is not less than 10 meters;
  • the driving device 3 under the floating body 1 starts to work and pushes the floating body 1 back to the observation point to ensure the accuracy of the observation data.
  • the collected data can be stored in the floating
  • the storage device 5 of the main body 1 can also be sent to the control center through the wireless communication device 7;
  • the floating body 1 informs the observation ship to recover the floating body 1 through the wireless communication device 7.
  • the floating body 1 can float on the sea, and the geomagnetic field of the observation point changes Perform long-term observations and supplement their own electricity through solar energy, which can maintain the energy required for long-term observations, without the need for observing ships to provide energy, thereby improving the efficiency of geomagnetic data collection.

Abstract

一种海洋地磁日变观测装置及地磁测量方法。装置包括观测船和设置在观测船上的多个浮动主体(1),浮动主体(1)上安装有地磁设备(2),浮动主体(1)包括定位装置(6)、驱动装置(3)、无线通讯装置(7)、数据处理装置(4)、存储装置(5)、电源装置(8),观测船上设置有控制中心,控制中心包括无线通讯单元、数据处理单元、存储单元、报警装置。通过在深海中待测量的纬度上投放多个浮动主体(1),并在质子磁力仪(2)采集浮动主体(1)自身磁场干扰信息后,对该纬度的地磁场进行数据采集,不需要以观测船为载体,从而可以使观测船不受观测点的限制,快速的将多个浮动主体(1)投放至多个观测点,从而大大提高了数据采集的效率。

Description

一种海洋地磁日变观测装置及地磁测量方法 技术领域
本发明涉及海洋地磁场测量技术领域,具体为一种海洋地磁日变观测装置及地磁测量方法。
背景技术
地磁场是指地球内部存在的天然磁性现象,行军、航海利用地磁场对指南针的作用来定向,人们还可以根据地磁场在地面上分布的特征寻找矿藏。地磁场的变化能影响无线电波的传播,当地磁场受到太阳黑子活动而发生强烈扰动时,远距离通讯将受到严重影响,甚至中断,假如没有地磁场,从太阳发出的强大的带电粒子流(通常叫太阳风),就不会受到地磁场的作用发生偏转,而是直射地球。
所以,对地磁场的测量是十分重要的一项科研活动,地磁场不是一定恒定值,地磁场日变化的规律一般是白天变化大,夜间变化小,在地磁场测量过程中,为保证测量数据的精度,一般都需要在测区或测区附近同纬度地区架设地磁日变观测站进行地磁日变同步观测,要求此地磁日变观测站能够控制整个测区,对于陆地地磁场测量,地磁日变观测站选址来说相对比较容易,而对于远海地磁场测量,选址相对困难,对于远海测量,磁日变观测站只能安置于测量船上,由于测量船本身受洋流、海风等影响,测量的位置不固定,进而导致地磁日变观测站达不到所要求的测量精度,CN201810652737.X公开了一种基于无人机的海上航磁日变站及地磁测量方法,其通过船载将安装有地磁设备的无人机运送至远海中的测量区域,并通过无人机飞行控制系统控制无人机的补偿飞行、位置调整以及定点悬停,从而使无人机上的地磁设备能够准确的测量到该测量点的地磁数据,但是,这种方式也存在局限,无人机必须要以测量船作为 载体,这样就只能在某一测量点完全完成测量后在驶向下一测量点,使测量的效率很慢,如何能够提高测量的效率,是有待解决的问题。
发明内容
本发明的目的在于提供一种海洋地磁日变观测装置及地磁测量方法,使观测船不受观测点的限制,提高地磁场数据采集的效率。
为实现上述目的,本发明提供如下技术方案:一种海洋地磁日变观测装置,包括观测船和设置在观测船上的多个浮动主体,所述浮动主体上安装有地磁设备,所述地磁设备采用质子磁力仪,所述浮动主体包括定位装置,用于对浮动主体的位置进行定位;
优选的,所述定位装置采用GPS卫星定位装置或北斗卫星定位装置,本申请的浮标主体设置有自动导航系统,自动导航系统的用途是由GPS卫星定位装置或北斗卫星定位装置接收移动主体的当前位置并将数据跟用户自定义的目的地比较、参照电子地图计算行驶路线,并实时将信息反馈给浮标主体。
包括驱动装置,用于在浮动主体偏离既定位置时将浮动主体推回原来的位置;
优选的,所述驱动装置有若干个,且均匀分布固定在浮动主体的下端,所述驱动装置采用电动螺旋桨推进,进一步的,本申请使用两个电动螺旋桨推进,当两个电动螺旋桨通转速转动时,能够推动移动主体向前移动,当两个电动螺旋桨转速不一致时,可以调整移动主体的前进方向。
包括无线通讯装置,用于与控制中心进行无线通讯;
包括数据处理装置,用于分析处理信息;
包括存储装置,用于存储浮动主体既定位置的坐标信息;
包括电源装置,用于对浮动主体和地磁设备进行供电;
所述观测船上设置有控制中心,所述控制中心包括无线通讯单元,用于与各个浮动主体进行无线通讯;
包括数据处理单元,用于信息的整合、分析、处理;
包括存储单元,用于存储各个浮动主体的既定位置的坐标信息和地磁设备获取的地磁信息;
包括报警装置,用于提醒管理中心的工作人员浮动主体数据采集完成。
优选的,所述报警装置可选用报警铃或报警灯,所述报警装置设置在控制中心的监控室内。
优选的,所述无线通讯装置和无线通讯单元均采用Wi-Fi模块或移动网络模块。
优选的,所述电源装置采用太阳能发电模块,用于将光能转换成电能,为设备进行供电,在浮动主体上还设置有可充电电池,用于存储所述太阳能发电模块的电能,并在所述太阳能发电模块不发电或发电不足时,为设备供电,本申请在浮动主体上设置有太阳能光伏板,进一步的,可使用可折叠的太阳能光伏板,使海面风力较大时,光伏板能够折叠,减小受风面。
优选的,所述浮动主体上还设置有风力传感器,用于感应浮动主体周围的风速。
一种使用海洋地磁日变观测装置进行地磁测量的方法,包括以下步骤:
S1:通过观测船将多个浮动主体运送到远海中待测量的纬度上,将多个浮动主体分别投放至不同的观测点处;
S2:控制中心通过无线通讯单元向每个浮动主体发送其各自测量点的坐标信息,并将坐标信息存储在浮动主体的存储装置内;
S3:浮动主体进行补偿游动,并在所述浮动主体进行补偿游动过程中,质 子磁力仪采集浮动主体自身磁场干扰信息;
S4:在浮动主体的补偿游动结束后,浮动主体静止在测量点处,质子磁力仪开始进行海洋地磁测量,并将采集的数据存储到浮动主体的存储装置内;
S5:当某一测量点的地磁数据采集完成后,浮动主体通过无线通讯装置通知观测船对该浮动主体进行回收。
优选的,所述风速传感器感应到海面风速较大时,地磁设备停止数据采集,并在风速传感器感应到风速平缓时,通过驱动装置将浮动主体推回测量点后,地磁设备开始工作。
与现有技术相比,本发明的有益效果如下:
本发明通过在深海中待测量的纬度上投放多个浮动主体,并在质子磁力仪采集浮动主体自身磁场干扰信息后,对该纬度的地磁场进行数据采集,由于浮动主体是漂浮在海面上,不需要以观测船为载体,从而可以使观测船不受观测点的限制,快速的将多个浮动主体投放至多个观测点,从而大大提高了数据采集的效率。
附图说明
图1为本发明浮动主体结构示意图;
图中:1-浮动主体,2-地磁设备,3-驱动装置,4-数据处理装置,5-存储装置,6-定位装置,7-无线通讯装置,8-电源装置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:一种海洋地磁日变观测装置,包括观测船和设置在观测船上的多个浮动主体1,所述浮动主体1上安装有地磁设备2,所述地磁设备2采用质子磁力仪,所述浮动主体1包括定位装置6,用于对浮动主体1的位置进行定位;
具体来说,所述定位装置6采用GPS卫星定位装置6或北斗卫星定位装置6,本申请的浮标主体1设置有自动导航系统,自动导航系统的用途是由GPS卫星定位装置6或北斗卫星定位装置6接收移动主体1的当前位置并将数据跟用户自定义的目的地比较、参照电子地图计算行驶路线,并实时将信息反馈给浮标主体1。
包括驱动装置3,用于在浮动主体1偏离既定位置时将浮动主体1推回原来的位置;
具体来说,所述驱动装置3有若干个,且均匀分布固定在浮动主体1的下端,所述驱动装置3采用电动螺旋桨推进,进一步的,本申请使用两个电动螺旋桨推进,当两个电动螺旋桨通转速转动时,能够推动移动主体1向前移动,当两个电动螺旋桨转速不一致时,可以调整移动主体1的前进方向。
包括无线通讯装置7,用于与控制中心进行无线通讯;
包括数据处理装置4,用于分析处理信息;
包括存储装置5,用于存储浮动主体1既定位置的坐标信息;
包括电源装置8,用于对浮动主体1和地磁设备2进行供电;
所述观测船上设置有控制中心,所述控制中心包括无线通讯单元,用于与各个浮动主体1进行无线通讯;
包括数据处理单元,用于信息的整合、分析、处理;
包括存储单元,用于存储各个浮动主体1的既定位置的坐标信息和地磁设 备2获取的地磁信息;
包括报警装置,用于提醒管理中心的工作人员浮动主体1数据采集完成,便于对浮动主体1进行回收。
具体来说,所述报警装置可选用报警铃或报警灯,所述报警装置设置在控制中心的监控室内。
具体来说,所述无线通讯装置7和无线通讯单元均采用Wi-Fi模块或移动网络模块。
具体来说,所述电源装置8采用太阳能发电模块,用于将光能转换成电能,为设备进行供电,在浮动主体1上还设置有可充电电池,用于存储所述太阳能发电模块的电能,并在所述太阳能发电模块不发电或发电不足时,为设备供电,本申请在浮动主体1上设置有太阳能光伏板,进一步的,可使用可折叠的太阳能光伏板,使海面风力较大时,光伏板能够折叠,减小受风面。
具体来说,所述浮动主体1上还设置有风力传感器,用于感应浮动主体1周围的风速,当感应到风速较大,浮动主体1不能维持原位时,地磁设备2停止工作,以便保证采集数据的准确性,而且更加节省电能,所述风速传感器感应到海面风速较大时,会将浮动主体1吹离观测点,而且仅靠浮动主体1上的驱动装置3很难使浮动主体1保持在观测点,而且会十分费电,地磁设备2停止数据采集,并在风速传感器感应到风速平缓时,通过GPS导航规划浮动主体1此时游动至观测点的航线,并通过驱动装置3将浮动主体1推回测量点后,地磁设备2开始工作。
一种使用海洋地磁日变观测装置进行地磁测量的方法,包括以下步骤:
S1:通过观测船将多个浮动主体1运送到远海中待测量的纬度上,将多个浮动主体1分别投放至不同的观测点处;
观测点的经纬度是通过天文观测确定的,根据地磁测量的目的和要求,测点又有复测点和普通点之分,复测点的距离一般为二、三百公里,每年复测1次,复测点的地磁资料主要是用来研究地磁场的长期变化,它在很大程度上弥补了地磁台站少、分布不均匀的缺陷,普通点的距离一般为几十公里,其资料主要用来编绘地磁图;
S2:控制中心通过无线通讯单元向每个浮动主体1发送其各自测量点的坐标信息,并将坐标信息存储在浮动主体1的存储装置5内;
观测船在靠近观测点时,即向海中投放一个浮动主体1,并将相对应的观测点的坐标发送至该浮动主体1,便于浮动主体1规划行驶路线后,通过驱动装置3将浮动主体1推送到观测点;
S3:浮动主体1进行补偿游动,并在所述浮动主体1进行补偿游动过程中,质子磁力仪采集浮动主体1自身磁场干扰信息;
所述补偿游动的方式为浮动主体1按照数字8的游动形式分别沿水平四个方向游动的方式,每次所述补偿游动的时间不小于1分钟,每次所述补偿游动的距离不小于10米;
S4:在浮动主体1的补偿游动结束后,浮动主体1静止在测量点处,质子磁力仪开始进行海洋地磁测量,并将采集的数据存储到浮动主体1的存储装置5内;
当浮动主体1由于洋流、海风等原因偏离观测点时,浮动主体1下方的驱动装置3开始工作,将浮动主体1推回观测点,以保证观测数据的准确性,采集的数据可存储在浮动主体1的存储装置5内,也可以通过无线通讯装置7发送到控制中心;
S5:当某一测量点的地磁数据采集完成后,浮动主体1通过无线通讯装置7 通知观测船对该浮动主体1进行回收,浮动主体1可漂浮在海面上,对该观测点的地磁场变化进行长时间的观测,并通过太阳能补充自身的电量,可维持长时间观测所需要的能量,不需要观测船提供能源,从而使提高地磁场数据采集的效率。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种海洋地磁日变观测装置,包括观测船和设置在观测船上的多个浮动主体(1),其特征在于:所述浮动主体(1)上安装有地磁设备(2),所述浮动主体(1)包括定位装置(6),用于对浮动主体(1)的位置进行定位;
    包括驱动装置(3),用于在浮动主体(1)偏离既定位置时将浮动主体(1)推回原来的位置;
    包括无线通讯装置(7),用于与控制中心进行无线通讯;
    包括数据处理装置(4),用于分析处理信息;
    包括存储装置(5),用于存储浮动主体(1)既定位置的坐标信息;
    包括电源装置(8),用于对浮动主体(1)和地磁设备(2)进行供电;
    所述观测船上设置有控制中心,所述控制中心包括无线通讯单元,用于与各个浮动主体(1)进行无线通讯;
    包括数据处理单元,用于信息的整合、分析、处理;
    包括存储单元,用于存储各个浮动主体(1)的既定位置的坐标信息和地磁设备(2)获取的地磁信息;
    包括报警装置,用于提醒管理中心的工作人员浮动主体(1)数据采集完成。
  2. 根据权利要求1所述的一种海洋地磁日变观测装置,其特征在于:所述地磁设备(2)采用质子磁力仪。
  3. 根据权利要求1所述的一种海洋地磁日变观测装置,其特征在于:所述定位装置(6)采用GPS卫星定位装置(6)或北斗卫星定位装置(6)。
  4. 根据权利要求1所述的一种海洋地磁日变观测装置,其特征在于:所述驱动装置(3)有若干个,且均匀分布固定在浮动主体(1)的下端,所述驱动装置(3)采用电动螺旋桨推进。
  5. 根据权利要求1所述的一种海洋地磁日变观测装置,其特征在于:所述无线通讯装置(7)和无线通讯单元均采用Wi-Fi模块或移动网络模块。
  6. 根据权利要求1所述的一种海洋地磁日变观测装置,其特征在于:所述电源装置(8)采用太阳能发电模块,用于将光能转换成电能,为设备进行供电,在浮动主体(1)上还设置有可充电电池,用于存储所述太阳能发电模块的电能,并在所述太阳能发电模块不发电或发电不足时,为设备供电。
  7. 根据权利要求1所述的一种海洋地磁日变观测装置,其特征在于:所述报警装置可选用报警铃或报警灯,所述报警装置设置在控制中心的监控室内。
  8. 根据权利要求1所述的一种海洋地磁日变观测装置,其特征在于:所述浮动主体(1)上还设置有风力传感器,用于感应浮动主体(1)周围的风速。
  9. 一种使用如权利要求1-8任一项所述的海洋地磁日变观测装置进行地磁测量的方法,其特征在于,包括以下步骤:
    S1:通过观测船将多个浮动主体(1)运送到远海中待测量的纬度上,将多个浮动主体(1)分别投放至不同的观测点处;
    S2:控制中心通过无线通讯单元向每个浮动主体(1)发送其各自测量点的坐标信息,并将坐标信息存储在浮动主体(1)的存储装置(5)内;
    S3:浮动主体(1)进行补偿游动,并在所述浮动主体(1)进行补偿游动过程中,质子磁力仪采集浮动主体(1)自身磁场干扰信息;
    S4:在浮动主体(1)的补偿游动结束后,浮动主体(1)静止在测量点处,质子磁力仪开始进行海洋地磁测量,并将采集的数据存储到浮动主体(1)的存储装置(5)内;
    S5:当某一测量点的地磁数据采集完成后,浮动主体(1)通过无线通讯装置(7)通知观测船对该浮动主体(1)进行回收。
  10. 根据权利要求9所述的地磁测量方法,其特征在于,所述方法还包括:所述风速传感器感应到海面风速较大时,地磁设备(2)停止数据采集,并在风速传感器感应到风速平缓时,通过驱动装置(3)将浮动主体(1)推回测量点后,地磁设备(2)开始工作。
PCT/CN2019/102335 2019-08-23 2019-08-23 一种海洋地磁日变观测装置及地磁测量方法 WO2021035434A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102335 WO2021035434A1 (zh) 2019-08-23 2019-08-23 一种海洋地磁日变观测装置及地磁测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102335 WO2021035434A1 (zh) 2019-08-23 2019-08-23 一种海洋地磁日变观测装置及地磁测量方法

Publications (1)

Publication Number Publication Date
WO2021035434A1 true WO2021035434A1 (zh) 2021-03-04

Family

ID=74684335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102335 WO2021035434A1 (zh) 2019-08-23 2019-08-23 一种海洋地磁日变观测装置及地磁测量方法

Country Status (1)

Country Link
WO (1) WO2021035434A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169391A (ja) * 1987-12-24 1989-07-04 Furuno Electric Co Ltd 波高波向測定装置
CN2872384Y (zh) * 2006-02-28 2007-02-21 国家海洋局第一海洋研究所 自持式浮标地磁日变站
CN103147903A (zh) * 2013-02-04 2013-06-12 郑贵林 一种无人驾驶自主导航海洋观测平台
CN103612723A (zh) * 2013-11-11 2014-03-05 江苏科技大学 一种深远海全自主海洋环境监测浮标
CN104820248A (zh) * 2015-05-03 2015-08-05 国家海洋局第一海洋研究所 一种船载磁力探测方法与装置
CN108897054A (zh) * 2018-06-22 2018-11-27 上海通用卫星导航有限公司 一种基于无人机的海上航磁日变站及地磁测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169391A (ja) * 1987-12-24 1989-07-04 Furuno Electric Co Ltd 波高波向測定装置
CN2872384Y (zh) * 2006-02-28 2007-02-21 国家海洋局第一海洋研究所 自持式浮标地磁日变站
CN103147903A (zh) * 2013-02-04 2013-06-12 郑贵林 一种无人驾驶自主导航海洋观测平台
CN103612723A (zh) * 2013-11-11 2014-03-05 江苏科技大学 一种深远海全自主海洋环境监测浮标
CN104820248A (zh) * 2015-05-03 2015-08-05 国家海洋局第一海洋研究所 一种船载磁力探测方法与装置
CN108897054A (zh) * 2018-06-22 2018-11-27 上海通用卫星导航有限公司 一种基于无人机的海上航磁日变站及地磁测量方法

Similar Documents

Publication Publication Date Title
Hine et al. The wave glider: A wave-powered autonomous marine vehicle
CN104369842B (zh) 基于自主水下航行器的水面辅助机器人及使用方法
US10095242B1 (en) Invertible drone for selective power capture
CN106203672A (zh) 一种无人机沿任务航线飞行的充电桩布局方法
CN112290697B (zh) 适用于长航时无人机的激光充电方法
CN105129063A (zh) 一种风光互补水面机器人
CN107272721B (zh) 一种基于昼夜循环飞行的太阳能无人机航迹规划方法
CN111208833A (zh) 一种无人艇与无人机协同测绘的控制系统及其控制方法
US20190009916A1 (en) Invertible Drone for Selective Power Capture
CN113342041A (zh) 一种无人机实现自动化巡检风叶发电设备的方法及系统
CN106314740B (zh) 一种基于互联网的风光互补无人驾驶渡船系统
CN107618383A (zh) 一种基于无线充电的无人机充电方法
CN110531431A (zh) 一种海洋地磁日变观测装置及地磁测量方法
CN110745213B (zh) 一种适用于深海浮标弹性松散式的锚系性能现场监测系统
JP2019140887A (ja) 太陽追尾システムおよび太陽追尾方法
CN106956751A (zh) 波浪能驱动的飞翼式海面滑翔机系统及实施方法
CN104806451A (zh) 飘浮于高空的发电设备
WO2021035434A1 (zh) 一种海洋地磁日变观测装置及地磁测量方法
CN211196528U (zh) 一种近海表层漂流观测浮标
JP2015114709A (ja) 保守点検システム
CN110780441B (zh) 一种基于角反射器的高精度光学跟瞄装置
CN212829061U (zh) 一种土地规划用测量用飞行器
CN109229292A (zh) 一种电动船补给系统
CN108983820B (zh) 一种生态保护红线区勘界方法及系统
CN207389549U (zh) 一种空中发电机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943786

Country of ref document: EP

Kind code of ref document: A1