WO2021034066A1 - 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템 - Google Patents

무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템 Download PDF

Info

Publication number
WO2021034066A1
WO2021034066A1 PCT/KR2020/010944 KR2020010944W WO2021034066A1 WO 2021034066 A1 WO2021034066 A1 WO 2021034066A1 KR 2020010944 W KR2020010944 W KR 2020010944W WO 2021034066 A1 WO2021034066 A1 WO 2021034066A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
charging
discharge
racks
Prior art date
Application number
PCT/KR2020/010944
Other languages
English (en)
French (fr)
Inventor
정대택
김남훈
Original Assignee
(주)피앤이이노텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피앤이이노텍 filed Critical (주)피앤이이노텍
Publication of WO2021034066A1 publication Critical patent/WO2021034066A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • Embodiments of the present invention relate to a power charging and discharging device for charging and discharging battery racks and an energy storage system including the same, and more particularly, to a power charging and discharging device having an uninterruptible power supply function and an energy storage system including the same. .
  • An energy storage system refers to a system that stores surplus power from a system (or grid) in a battery, and supplies the stored power to a load when the power of the system is insufficient or the price is high.
  • ESS energy storage system
  • the problem to be solved by the present invention is that it is possible to stably and efficiently charge and discharge battery racks in consideration of the generated power supplied from the power generation system in connection with the power generation system, and includes a power charging and discharging device having an uninterruptible power supply function and the same To provide an energy storage system.
  • the power charging/discharging apparatus connected to n determines charging/discharging power for each of n battery racks based on state information of each of n battery racks.
  • a power management device and a power conversion device for charging and discharging n battery racks based on the determined charging and discharging power operates according to any one of a normal mode and an emergency mode, and in the normal mode, n Determine the charging and discharging power for each of the n battery racks so that the reserved capacity of the battery racks is not exhausted, and in the emergency mode, the charging and discharging power for each of the n battery racks is determined so that the reserved capacity of the n battery racks is exhausted. do.
  • a method of performing power charging and discharging using n (n is a natural number of 2 or more) battery racks is, charging for each of n battery racks based on state information of each of n battery racks. Determining discharge power and charging and discharging n battery racks based on the determined charging/discharging power, and determining charging/discharging power for each of the n battery racks includes, in a normal mode, n batteries Determining the charging and discharging power for each of the n battery racks so that the reserved capacity of the racks is not exhausted, and in the emergency mode, determining the charging and discharging power for each of the n battery racks so that the reserved capacity of the n battery racks is exhausted. Includes steps.
  • the apparatus performs charging and discharging of the battery racks in consideration of the reserved capacity of the battery racks, so that power can be stably supplied to the load even in an emergency situation.
  • the apparatus determines the power of the plurality of battery racks using state information of the plurality of battery racks, so that battery racks can be used more efficiently and lifespan of the battery racks is increased. .
  • FIG. 1 shows an energy storage system according to embodiments of the present invention, and a grid and a load connected to the energy storage system.
  • FIG 2 shows an energy storage system according to embodiments of the present invention.
  • FIG. 3 is a flow chart showing a method of operating a power management apparatus according to embodiments of the present invention.
  • FIG. 4 is a view for explaining the operation of the power management apparatus according to embodiments of the present invention.
  • FIG. 5 is a flow chart showing a method of operating a power management apparatus according to embodiments of the present invention.
  • FIG. 6 is a view for explaining the operation of the power management apparatus according to embodiments of the present invention.
  • FIG. 1 shows an energy storage system according to embodiments of the present invention, and a grid and a load connected to the energy storage system.
  • the energy storage system 10 may be connected to the grid 20 and may also be connected to the load 30.
  • the energy storage system 10 may receive power from the grid 20, store the supplied power, and supply power to the load 30 based on the stored power. Accordingly, the energy storage system 10 may control the grid 20 and the load 30 to efficiently consume or produce energy. In addition, the energy storage system 10 may also supply power to the grid 20 based on the stored power.
  • an element used to cut off power transmitted from the energy storage system 10 to the grid 20 between the energy storage system 10 and the grid 20 may be further included.
  • the device may control the power discharged from the energy storage system 10 to not be transferred to the grid 20 when the grid 20 is powered off.
  • the energy storage system 10 may include a power management device 100, a power conversion device 200, and a power source 300.
  • the power management device 100 may monitor the state of the energy storage system 10 and control charging and discharging of the energy storage system 10.
  • charge/discharge includes at least one of “charge” and “discharge”.
  • charge may include the meaning of “discharge” and vice versa.
  • negative charging may mean positive discharge
  • negative discharge may mean positive charging. Accordingly, functions and configurations related to "discharge” in the present specification may also be applied to "charge”.
  • the power management device 100 may be implemented as a circuit, device, or server including a processor having an operation processing function, but is not limited thereto.
  • the power management device 100 and the power conversion device 200 may be implemented as one device.
  • the power conversion device 200 may include the power management device 100.
  • the power management device 100 and the power conversion device 200 may also be referred to as a power charging/discharging device.
  • the power management device 100 may monitor power input to the power conversion device 200 or output from the power conversion device 200, and monitor the state of the power source 300. According to embodiments, the power management apparatus 100 may monitor the amount of power charged and discharged from the power source 300.
  • the power management device 100 may control charging and discharging of the energy storage system 10 according to a result of monitoring, external control (or input), or a preset value. According to embodiments, the power management device 100 may control a charging operation and a discharging operation of the power conversion device 200.
  • the power management apparatus 100 may determine (or calculate) total charging power for charging the power source 300 or total power for discharging the power source 300. Furthermore, the power management device 100 may control the power conversion device 200 so that the power source 300 is charged and discharged according to the determined total charging and discharging power.
  • the power conversion device 200 may receive power from the power source 300 and may transmit power to the power source 300.
  • the power conversion apparatus 200 may receive power (eg, grid power (PGRID)) supplied from the outside, and discharge the power source 300 by using the supplied power.
  • PGRID grid power
  • the power conversion device 200 may use power supplied from the power source 300 and transmit the power to the load 30.
  • the power conversion device 200 appropriately converts power characteristics (frequency, voltage, current, AC/DC, etc.) as necessary to receive power from the power source 300 or convert the power received from the power source 300. Can be transmitted.
  • power characteristics frequency, voltage, current, AC/DC, etc.
  • the power source 300 may transmit power to the power conversion device 200. According to embodiments, the power source 300 may receive power from the power conversion device 200.
  • the power source 300 may include a battery 310 and a power generation system 320.
  • the battery 310 may be charged or discharged by the power conversion device 200.
  • the battery 310 may be a secondary battery, but is not limited thereto.
  • the state information of the battery 310 includes the capacity of the battery 310, the state of charge (SOC) of the battery 310, and the state of health (SOH) of the battery 310. , A depth of discharge (or charge) (DOD) of the battery 310, a temperature of the battery 310, and a voltage of the battery 310.
  • SOC state of charge
  • SOH state of health
  • the capacity of a battery refers to an amount of power that a fully discharged battery can store or an amount of power that a fully charged battery can supply. In general, the capacity of the battery can be determined during manufacture. However, as described later, as the battery is used, the amount of power that the actual battery can store or supply decreases, so the capacity of the battery described herein is the capacity of the battery with a remaining life of 100%, that is, the initial capacity of the battery. It means that this value is a fixed value that does not change.
  • the state of charge of the battery indicates the amount of power currently stored by the battery. That is, when the state of charge of the battery is 100% (that is, the state of discharge is 0%), it means that the battery is fully charged.
  • the remaining life (or health condition) of a battery dictates its usable capacity relative to its (initial) capacity. That is, when the remaining life is reduced as the battery is used, the amount of power that can be charged (or discharged) by the actual battery is reduced than the amount of power that can be initially charged. For example, the usable capacity of a battery with a remaining life of 100% will be the same as the (initial) capacity of the battery, but the usable capacity of a battery with a remaining life of 50% will correspond to half of the capacity of the battery.
  • the depth of discharge of the battery means the amount of discharge relative to the discharge capacity of the battery. That is, when the capacity of the battery is 1000 mAh, when the battery is charged and used (or discharged) to 400 mAh, the depth of discharge becomes 40%, and when the capacity of the battery is 1000 mAh, the battery is charged to 1000 mAh ( In other words, when used with a buffer), the depth of discharge becomes 100%.
  • a generator 320 may generate electric power. According to embodiments, the power generation system 320 may generate power and transmit the generated power to the power conversion device 200.
  • the power generation system 320 may generate power according to a renewable energy generation method.
  • the power generation system 320 may generate power according to at least one of solar power generation, wind power generation, geothermal power generation, tidal power generation, and wave power generation, but is not limited thereto.
  • the energy storage system 10 may include a power generation system 320 as well as a battery 310 for storing power.
  • the grid 20 may mean any system or device capable of supplying power.
  • the grid 20 may refer to an industrial facility, a power plant, or a substation, but is not limited thereto.
  • the grid 20 may supply power to the load 30 or the energy storage system 10.
  • the grid 20 may supply grid power PGRID to the energy storage system 10.
  • Load 30 may refer to any system or device capable of consuming power.
  • the load 30 may receive power from the grid 20 or the energy storage system 10 and consume the supplied power.
  • the load 30 may receive the necessary load power PLOAD from the energy storage system 10.
  • the power conversion device 200 includes an AC/DC converter 210 and a plurality of DC/DC converters 220-1 to 220-n and 230-1 to 230-m; n and m may include a natural number).
  • the AC/DC converter 210 and the plurality of DC/DC converters 220-1 to 220-n and 230-1 to 230-m may be connected.
  • the plurality of DC/DC converters 220-1 to 220-n and 230-1 to 230-m are the first DC/DC converters 220-1 to 220-n and the second DC/DC converters 230- 1 to 230-m) may be included.
  • the battery 310 may include a plurality of battery racks 310-1 to 310-n. Meanwhile, although FIG. 2 shows that the number of the plurality of battery racks 310-1 to 310-n and the number of the first DC/DC converters 220-1 to 220-n are the same, an embodiment of the present invention Are not limited thereto.
  • Each of the plurality of battery racks 310-1 to 310-n may include at least one secondary battery.
  • the properties, types, or electrical characteristics of the batteries constituting each of the plurality of battery racks 310-1 to 310-n may be the same or different from each other.
  • the capacity, type, and remaining life of the batteries constituting the first battery rack 310-1 may be different or the same as the capacity, type and remaining life of the cells constituting the second battery rack 310-2. .
  • the power generation system 320 may include a plurality of generators 320-1 to 320-m. Meanwhile, although FIG. 2 shows that the number of the plurality of generators 320-1 to 320-m and the number of the second DC/DC converters 230-1 to 230-n are the same, an exemplary embodiment of the present invention Are not limited thereto.
  • the power management device 100 may control the power conversion device 200.
  • the output power PPCS may be determined based on the load power PLOAD required by the load 30.
  • the power management apparatus 100 may receive grid power PGRID based on the determined output power PPCS. That is, the output power PPCS means the amount of output power of the power management apparatus 100 determined based on the load power PLOAD. For example, the output power PPCS may be less than or equal to the load power PLOAD required by the load 30.
  • the power management device 100 determines the total power PB for charging and discharging the battery 310 and controls the power conversion device 200 to charge and discharge the battery 310 according to the determined total power PB. I can. According to embodiments, the power management apparatus 100 determines (or calculates) powers PB1 to PBn for charging and discharging each of the plurality of battery racks 310-1 to 310-n from the determined total power PB. ), and the power conversion device 200 may be controlled so that each of the plurality of battery racks 310-1 to 310-n is charged and discharged according to the determined powers PB1 to PBn. That is, the power conversion device 200 may charge and discharge each of the plurality of battery racks 310-1 to 310-n according to the powers PB1 to PBn determined according to the control of the power management device 100.
  • the AC/DC converter 210 may receive grid power (PGRID) and transmit output power (PPCS). According to embodiments, the AC/DC converter 210 may receive grid power PGRID and transmit output power PPCS under the control of the power management device 100.
  • PGRID grid power
  • PPCS transmit output power
  • the AC/DC converter 210 may convert the input AC power (or DC power) into DC power (or AC power) and output the converted DC power (or AC power). According to embodiments, the AC/DC converter 210 converts AC power input from the grid 20 into DC power, and converts the converted DC power into a plurality of DC/DC converters 220-1 to 220-n and 230-1 to 230-m) can be output (e.g., when charging), and converts DC power input from a plurality of DC/DC converters 210-1 to 210-n into AC power, and AC power can be output (for example, during discharge).
  • the AC/DC converter 210 is charged power PB1 for charging each of the plurality of battery racks 310-1 to 310-n under the control of the power management device 100.
  • ⁇ PBn may be delivered (or supplied) to the first DC/DC converters 220-1 to 220-n. That is, during the charging operation of the power conversion device 200, the powers PB1 to PBn correspond to the charging power of each of the plurality of battery racks 310-1 to 310-n.
  • the AC/DC converter 210 is discharged from each of the plurality of battery racks 310-1 to 310-n from the first DC/DC converters 220-1 to 220-n.
  • the discharge powers PB1 to PBn may be received, and the output power PPCS may be output using the received discharge powers PB1 to PBn. That is, during the discharging operation of the power conversion device 200, the powers P1 to Pn correspond to the discharge power of each of the plurality of battery racks 310-1 to 310-n.
  • the plurality of DC/DC converters 220-1 to 220-n and 230-1 to 230-m may convert the input DC power into DC power and output the converted DC power.
  • a plurality of DC/DC converters 220-1 to 220-n and 230-1 to 230-m convert at least one of the voltage and current of the input power, and output the converted power according to the conversion result. can do.
  • the input power and the output power may be kept the same.
  • Each of the first DC/DC converters 220-1 to 220-n may be connected to each of the plurality of battery racks 310-1 to 310-n.
  • Each of the first DC/DC converters 220-1 to 220-n may charge and discharge each of the plurality of battery racks 310-1 to 310-n under the control of the power management device 100.
  • the first DC/DC converter 220-1 may charge and discharge the first battery rack 310-1
  • the nDC/DC converter 220-n may use the nth battery rack 310-n. It can be charged and discharged.
  • each of the first DC/DC converters 220-1 to 220-n is a plurality of battery racks based on the determined (charging) powers PB1 to PBn according to the control of the power management device 100 310-1 ⁇ 310-n) each can be charged.
  • the determined (charging) powers PB1 to PBn may be input from an AC/DC converter.
  • the first DC/DC converters 220-1 to 220-n change at least one of the voltage and current of the input powers PB1 to PBn to change at least one of the plurality of battery racks 310-1 to 310. -n) Each can be charged.
  • the first DC/DC converters 220-1 to 220-n are among the voltage and current of the powers PB1 to PBn in consideration of the state of charge of each of the plurality of battery racks 310-1 to 310-n.
  • Each of the plurality of battery racks 310-1 to 310-n may be charged by changing at least one.
  • each of the first DC/DC converters 220-1 to 220-n is based on the determined (discharge) powers PB1 to PBn according to the control of the power management device 100, and a plurality of battery racks ( 310-1 ⁇ 310-n) each can be discharged.
  • the first DC/DC converters 220-1 to 220-n change at least one of the voltage and current of the input powers PB1 to PBn to change at least one of the plurality of battery racks 310-1 to 310. -n) each can be discharged.
  • the first DC/DC converters 220-1 to 220-n are among the voltage and current of the powers PB1 to PBn in consideration of the state of charge of each of the plurality of battery racks 310-1 to 310-n.
  • Each of the plurality of battery racks 310-1 to 310-n may be discharged by changing at least one.
  • the first DC/DC converters 220-1 to 220-n charge and discharge the plurality of battery racks 310-1 to 310-n based on the powers PB1 to PBn.
  • the first DC/DC converters 220-1 to 220-n have a plurality of battery racks so that the charging/discharging power of the plurality of battery racks 310-1 to 310-n becomes the powers PB1 to PBn ( 310-1 to 310-n) charge/discharge power.
  • Each of the second DC/DC converters 230-1 to 230-m may be connected to each of the plurality of generators 320-1 to 320-m.
  • Each of the second DC/DC converters 230-1 to 230-m may receive the generated power PG1 to PGm generated from the plurality of generators 320-1 to 320-m, and the generated power PG1 to PGm) may be supplied (or transmitted) to the AC/DC converter 210.
  • the second DC/DC converters 230-1 to 220-m change at least one of the voltage and current of the received generated power PG1 to PGm to convert the generated power PG1 to PGm to AC/ It can be supplied (or transmitted) to the DC converter 210.
  • the power management device 100 may determine the output power PPCS of the power conversion device 200 (S110 ).
  • the power management device 100 may determine the output power PPCS of the power conversion device 200 based on the load power PLOAD required by the load 30. For example, the power management apparatus 100 may determine whether to discharge the battery 310 based on the load power PLOAD required by the load 30.
  • Load power (PLOAD), grid power (PGRID), and output power (PPCS) may satisfy Equation 1 below.
  • the power management device 100 may preferentially consider the output power P PCS of the power conversion device 200 when supplying the load power P LOAD required from the load 30.
  • the grid power P GRID may be determined by the load power P LOAD and the output power P PCS.
  • the power management device ( 100) may control the power conversion device 200 so that the power conversion device 200 does not receive power from the grid 20.
  • the power management device 100 is a power conversion device so that the power conversion device 200 can supply power corresponding to the difference between the output power P PCS and the load power P LOAD to the grid 20. 200) can be controlled.
  • the grid power (P GRID ) becomes positive and the power management device 100 is a power conversion device so that the power conversion device 200 receives the power corresponding to the difference between the load power (P LOAD ) and the output power (P PCS ) from the grid 20 as grid power (P GRID ). 200 can be controlled.
  • the power management apparatus 100 may determine whether to supply (or receive) power to the grid 20 based on the load power P LOAD and the output power P PCS. For example, the power management apparatus 100 may determine whether to supply (or receive) power to the grid 20 according to Equation 1 above.
  • the power management device 100 may determine total power P B for charging and discharging the battery 310 (S120). Depending on the embodiments, the power management unit 100 may determine the total power (P B) for charging or discharging the battery 310, the electric power so that the battery 310 is charged and discharged in accordance with the determined total power (P B)
  • the conversion device 200 can be controlled. That is, the power conversion device 200 may charge and discharge the battery 310 by the amount of power corresponding to the total power P B determined according to the control of the power management device 100.
  • the energy storage system 10 includes not only the battery 310 but also the power generation system 320, not only the grid power (P GRID ) but also the power generation system 320 when charging and discharging the battery 310 is controlled.
  • the power produced (or supplied) from) also needs to be considered.
  • the power management device 100 is based on the output power (P PCS ) of the power conversion device 200 and the generated power (P G ) of the power generation system 320, the total power for charging and discharging the battery 310 (P B ) Can be determined.
  • the power management apparatus 100 may determine the total power P B according to Equation 2 below.
  • the power management device 100 may monitor the state of the power generation system 320 and obtain information on the power generation P G of the power generation system 320. According to embodiments, the power management device 100 may measure an amount of power (ie, power generation P G ) transmitted from the power generation system 320 to the power management device 200. For example, the power management apparatus 100 may measure the power generation P G1 to P Gn of each of the generators G1 to Gm.
  • the power management apparatus 100 may determine whether to charge or discharge the battery 310 based on the output power P PCS of the power conversion device 200 and the generated power P G of the power generation system 320. According to embodiments, the power management device 100 does not discharge the battery 310 when the generated power P G of the power generation system 320 is greater than the output power P PCS of the power conversion device 200. Can be determined. For example, surplus power (ie, P G -P PCS ) may be transmitted to the battery 310 or the grid 20.
  • the power management device 100 may determine to discharge the battery 310 when the generated power P G of the power generation system 320 is less than the output power P PCS of the power conversion device 200. .
  • the power management apparatus 100 may calculate a change amount of the generated power P G of the power generation system 320 over time, and determine the total power P B based on the calculated change amount. For example, the power management device 100 uses the generated power P G of the power generation system 320 at the first time point and the generated power P G at a second time point after the first time point. calculating an amount of change in G), and it is possible to calculate the total power (P B) on the basis of the change amount of the calculated power generation electric power (P G).
  • the power management apparatus 100 may determine whether to charge or discharge the battery 310 based on the load power (P LOAD ), and further, secondary power generated by the power source 300 Whether to charge or discharge the battery 310 may be determined based on P G and the output power P PCS of the power conversion device 200. Accordingly, the efficiency of the energy storage system 10 may be increased. For example, even if the load power (P LOAD ) is positive, when the generated power (P G ) of the power generation system 320 is greater than the output power (P PCS ) of the power conversion device 200, the power management device 100 is a battery ( 310) can be determined not to discharge.
  • the power management device 100 may determine the output power (P PCS ) of the power conversion device 200 based on the grid power (P GRID ) and the load power (P LOAD ), Further, the power P B of the battery 310 may be determined based on the output power P PCS of the power conversion device 200 and the generated power P G of the power generation system 320. Accordingly, even if the grid power P GRID and the generated power P G change irregularly, there is an effect of stably supplying power to the load 30.
  • the power management device 100 charges each of the plurality of battery racks 310-1 to 310-n from the total power P B determined based on the state information of the plurality of battery racks 310-1 to 310-n.
  • the powers P B1 to P Bn for discharging may be determined (or calculated) (S130).
  • the power management apparatus 100 acquires state information for each of the plurality of battery racks 310-1 to 310-n, and based on the obtained state information, the power management apparatus 100 For power (P B1 ⁇ P Bn ) can be determined.
  • the power management apparatus 100 may directly monitor the plurality of battery racks 310-1 to 310-n to obtain status information, but the plurality of battery racks 310-1 to 310-n You can also receive status information from As described above, the state information of the plurality of battery racks 310-1 to 310-n includes capacity, charge (or discharge) state (state of charge (SOC)), remaining life (state of health (SOH)), It may include at least one of a depth of discharge (DOD) and temperature and voltage.
  • SOC state of charge
  • SOH state of health
  • DOD depth of discharge
  • the power management apparatus 100 acquires state information of each of the plurality of battery racks 310-1 to 310-n in real time (on-the-fly) or according to a predetermined period, and the power P B1 ⁇ P Bn ) can be determined.
  • the power management apparatus 100 may charge and discharge each of the plurality of battery racks 310-1 to 310 -n based on the determined powers P B1 to P Bn (S140 ). That is, the power management apparatus 100 may control the power conversion apparatus 200 to charge and discharge the plurality of battery racks 310-1 to 310-n according to the determined powers P B1 to P Bn. Since the charging and discharging of the plurality of battery racks 310-1 to 310-n according to the powers P B1 to P Bn by the power conversion device 200 has been described above, a description thereof will be omitted.
  • the power management apparatus 100 determines whether the state of the plurality of battery racks 310-1 to 310-n satisfies the charging/discharging termination condition. It is possible to determine and stop the ongoing charging/discharging operation according to the result of the determination. For example, when the voltage of the plurality of battery racks 310-1 to 310-n reaches a predetermined charging completion voltage or a discharge completion voltage, the power management apparatus 100 may It is possible to control the power conversion device 200 to stop charging and discharging of ).
  • the power management apparatus 100 is based on state information of the plurality of battery racks 310-1 to 310-n while charging and discharging the plurality of battery racks 310-1 to 310-n. It may be determined whether there is a charge/discharge imbalance between the plurality of battery racks 310-1 to 310-n.
  • the power management apparatus 100 may determine that the charge/discharge imbalance exists when at least one voltage among the voltages of the plurality of battery racks 310-1 to 310-n is equal to or greater than a predetermined reference value. .
  • the power management apparatus 100 may adjust the determined individual powers P 1 to P n.
  • the presence of an unbalance between the plurality of battery racks 310-1 to 310-n means that the state information of the plurality of battery racks 310-1 to 310-n is different (or has become different).
  • a specific battery rack may be charged or discharged first, and the specific Since stress may be applied only to the battery rack, compensation (or elimination) of the imbalance is required.
  • the power management apparatus 100 adjusts the determined powers P B1 to P Bn based on state information of each of the plurality of battery racks 310-1 to 310-n, and adjusts the By controlling the power conversion device 200 so that the plurality of battery racks 310-1 to 310-n are charged and discharged again according to the powers P B1 to P Bn, there is an effect of compensating (or eliminating) the imbalance. have.
  • FIG. 4 is a view for explaining the operation of the power management apparatus according to embodiments of the present invention. 1 to 4, charge/discharge capacity (Q 1 to Q n ), remaining life (SOH 1 to SOH n ), and discharge depth (DOD 1 ) for a plurality of battery racks 310-1 to 310-n ⁇ DOD n ) is shown.
  • the effective charge/discharge amount Q f1 to Q fn that the plurality of battery racks 310-1 to 310-n can actually charge and discharge may be calculated by Equation 4 below.
  • Q EEFi is the effective charge/discharge capacity of the i-th battery rack
  • Q i is the charge/discharge capacity of the i-th battery rack
  • SOH i is the i-th battery SOH
  • DOD i is the DOD of the i-th battery rack.
  • the effective charge/discharge capacity (Q f1 ⁇ Q fn ) can be determined based on all of the charge/discharge capacity (Q 1 ⁇ Q n ), the remaining life (SOH 1 ⁇ SOH n ) and the discharge depth (DOD 1 ⁇ DOD n ). have. Even if the charging and discharging capacities (Q 1 to Q n ) of each of the plurality of battery racks 310-1 to 310-n are all the same, the remaining life (SOH 1 to SOH n ) and the discharge depth (DOD 1 to DOD n ) If is different, the effective charge/discharge capacity (Q f1 ⁇ Q fn ) that can be actually charged/discharged differs.
  • the total effective charge/discharge capacity Q EFF in which the plurality of battery racks 310-1 to 310-n can be charged and discharged (or can be supplied by the plurality of battery racks 310-1 to 310-n) is below It can be calculated according to Equation 5.
  • the power management device 100 is based on the effective charge/discharge capacity of each of the plurality of battery racks 310-1 to 310-n, (charge/discharge) for each of the plurality of battery racks 310-1 to 310-n. Power (P B1 ⁇ P Bn ) can be determined.
  • the power (P B1 to P Bn ) for each of the plurality of battery racks 310-1 to 310-n is calculated according to Equation 6 below. I can.
  • P Bi is the charging/discharging power of the i-th battery rack
  • Q i is the charging/discharging capacity of the i-th battery rack
  • SOH i is the SOH of the i-th battery rack
  • DOD i is the DOD of the i-th battery rack.
  • the power management device 100 is based on the discharge capacity, remaining life and discharge depth of each of the plurality of battery racks 310-1 to 310-n from the total power (P B ) a plurality of battery racks 310-1 Since the power P B1 to P Bn for ⁇ 310-n) can be determined, the plurality of battery racks 310-1 to 310-n can be discharged in a balanced manner.
  • the depth of discharge of the battery is a variable that is closely related to the remaining life of the battery, and when discharging is performed in consideration of the depth of discharge of the battery rather than discharging only considering the remaining life of the battery, the life of the battery There is an effect that can increase.
  • the power management apparatus 100 includes a plurality of battery racks 310 from the total power P B according to the charge/discharge state (ie, SOC) of each of the plurality of battery racks 310-1 to 310-n.
  • Power (P B1 ⁇ P Bn ) for -1 ⁇ 310-n) can be determined.
  • the power management apparatus 100 may charge a battery rack having a high SOC with low power and a battery rack having a low SOC with high power.
  • the power management apparatus 100 may discharge a battery rack having a high SOC with high power and a battery rack having a low SOC with low power.
  • power P B1 to P Bn for each of the plurality of battery racks 310-1 to 310 -n may be calculated according to Equation 7 below.
  • P Bi is the charging power of the i-th battery rack
  • SOC i is the SOC of the i-th battery rack
  • Qi is the discharge capacity of the i-th battery rack
  • SOH i is the SOC of the i-th battery rack
  • DOD i is SOC of the i-th battery rack
  • P B is the total charging power of the battery racks.
  • power P B1 to P Bn for each of the plurality of battery racks 310-1 to 310 -n may be calculated according to Equation 7 below.
  • P Bi is the discharge power of the ith battery rack
  • SOC i is the SOC of the ith battery rack
  • SOH i is the SOC of the ith battery rack
  • DOD i is the SOC of the ith battery rack
  • P B is This is the total discharge power of the battery racks.
  • the power management apparatus 100 provides power (P B1 to P Bn ) for the plurality of battery racks 310-1 to 310-n based on the SOC of each of the plurality of battery racks 310-1 to 310-n. Since it can be determined, capacity balance between the plurality of battery racks 310-1 to 310-n can be achieved, and accordingly, there is an effect of increasing the life of the plurality of battery racks 310-1 to 310-n. .
  • FIG. 5 is a flow chart showing a method of operating a power management apparatus according to embodiments of the present invention.
  • An operating method to be described with reference to FIG. 5 is a method of operating the power management device in an emergency situation such as a power outage.
  • grid power P GRID is not supplied from the grid 20. If sufficient amount of power to be supplied to the load 30 is not left in the battery 310, it may not be possible to stably supply power to the load 30.
  • the reserved capacity of the unused battery 310 may be set.
  • the reserved capacity may be determined and set in advance.
  • the power conversion device 200 When such reserved capacity is secured, the power conversion device 200 has an effect of stably supplying power to the load 30 even in an emergency situation such as a power outage.
  • the reserved capacity may be a capacity for an uninterrupted power supply (UPS).
  • UPS uninterrupted power supply
  • the power management device 100 may determine the output power P PCS of the power conversion device 200 (S210 ).
  • the power management device 100 may determine total power PB for charging and discharging the battery 310 (S220). According to embodiments, the power management device 100 may determine the total power PB for charging and discharging the battery 310, and a power conversion device so that the battery 310 is charged and discharged according to the determined total power PB. 200 can be controlled.
  • the power management apparatus 100 may determine whether an emergency situation has occurred (S230). According to embodiments, the power management apparatus 100 may determine whether a power outage has occurred in the grid 20 based on data transmitted from the grid 20. For example, when power is not supplied from the grid 20 for a predetermined period of time, the power management apparatus 100 may determine that an emergency situation has occurred in the grid 20.
  • the power management apparatus 100 may discharge the plurality of battery racks 310-1 to 310-n in a normal mode (S240). According to embodiments, the power management device 100 may control the power conversion device 200 to discharge the plurality of battery racks 310-1 to 310-n in a normal mode.
  • the plurality of battery racks 310-1 to 310-n may be discharged according to discharge powers P B1 to P Bn determined based on an effective discharge amount excluding reserved capacity. That is, although an emergency situation has not occurred, since it is necessary to prepare for an emergency situation, the discharge powers P B1 to P Bn of the plurality of battery racks 310-1 to 310-n may be determined in consideration of the reserved capacity.
  • the power management apparatus 100 may discharge the plurality of battery racks 310-1 to 310-n in the emergency mode (S250). According to embodiments, the power management device 100 may control the power conversion device 200 so that the plurality of battery racks 310-1 to 310-n are discharged in an emergency mode.
  • the plurality of battery racks 310-1 to 310-n may be discharged according to the discharge powers P B1 to P Bn determined by additionally using each reserved capacity. That is, when an emergency situation occurs, since there is no power supply from the grid P GRID , the plurality of battery racks 310-1 to 310-n may be discharged by additionally using the reserved capacity.
  • the power management device 100 (or energy storage system 10) according to the embodiments of the present invention sets a reserve capacity to be used in an emergency situation in advance, and when an emergency situation does not occur, the amount of discharge excluding the reserved capacity
  • the batteries may be discharged based on and, if an emergency situation occurs, the batteries may be discharged based on the reserved capacity. Accordingly, even if an emergency situation occurs, there is an effect of stably supplying power to the load 30.
  • FIG. 6 is a view for explaining the operation of the power management apparatus according to embodiments of the present invention. 1 to 5, charge/discharge capacity (Q 1 to Q n ), remaining life (SOH 1 to SOH n ), discharge depth (DOD 1 ) for a plurality of battery racks 310-1 to 310-n ⁇ DOD n ) and reserve capacity (Q R1 ⁇ Q Rn ) are shown. That is, compared with FIG. 4, FIG. 6 is different in that the reserved capacities Q R1 to Q Rn of the plurality of battery racks 310-1 to 310-n are additionally considered.
  • the reserved capacity (Q R1 ⁇ Q Rn ) means the amount of power to be supplied in an emergency situation such as a failure of the grid 20 or the power generation system 320.
  • the reserved capacity (Q R1 to Q Rn ) may be an amount of power that is not consumed in a general situation. However, in case of an emergency, the reserved capacity (Q R1 ⁇ Q Rn ) should be used immediately.
  • the reserved capacity (Q R1 to Q Rn ) of the plurality of battery racks 310-1 to 310-n must always be reserved, so the plurality of battery racks 310-1 to 310-
  • the effective charging/discharging capacity (Q f1 ⁇ Q fn ) that n) can actually charge and discharge must exclude the reserved capacity (Q R1 ⁇ Q Rn ). That is, the effective charge and discharge capacity (Q f1 ⁇ Q fn ) can be calculated by Equation 9 below.
  • Q EEFi is the effective charge/discharge capacity considering the reserved capacity of the ith battery rack
  • Q i is the charge/discharge capacity of the ith battery rack
  • SOH i is the SOH of the ith battery rack
  • DOD i is the ith This is the DOD of the battery rack
  • Q Ri is the reserved capacity of the ith battery rack.
  • charge/discharge powers P B1 to P Bn of the plurality of battery racks 310-1 to 310 -n may be calculated according to Equation 10 below.
  • P Bi is the power of the i-th battery rack
  • Q i is the charge/discharge capacity of the i-th battery rack
  • SOH i is the SOH of the i-th battery rack
  • DOD i is the DOD of the i-th battery rack
  • Q Ri Is the reserved capacity of the i-th battery rack
  • Q EEFi is the effective charge/discharge capacity considering the reserved capacity of the i-th battery rack.
  • Power management device 100 even if all of the charge and discharge capacities (Q 1 to Q n ) are the same, the remaining life (SOH 1 to SOH n ), the discharge depth (DOD 1 to DOD n ), and the reserved capacity (Q R1 to Q
  • the effective charge/discharge capacity may be determined in consideration of all Rn ), and the (charge/discharge) power P B1 to P Bn for each of the plurality of battery racks 310-1 to 310-n may be determined.
  • the discharge powers P B1 to P Bn of the plurality of battery racks 310-1 to 310 -n may be calculated according to Equation 11 (same as Equation 6) below.
  • P Bi is the charging/discharging power of the i-th battery rack
  • Q i is the charging/discharging capacity of the i-th battery rack
  • SOH i is the SOH of the i-th battery rack
  • DOD i is the DOD of the i-th battery rack.
  • the reserved capacity Q R1 to Q Rn is not reserved when the plurality of battery racks 310-1 to 310-n are discharged.
  • the power management apparatus 100 includes a plurality of battery racks 310-from the total power P B based on the discharge capacity, remaining life, discharge depth, and reserved capacity of each of the plurality of battery racks 310-1 to 310-n. Since power P B1 to P Bn for 1 to 310-n) can be determined, the plurality of battery racks 310-1 to 310-n may be charged and discharged in a balanced manner. In particular, the reserved capacity used in case of an emergency may be additionally considered.
  • the power management apparatus 100 includes a plurality of battery racks 310 from the total power P B according to the charge/discharge state (ie, SOC) of each of the plurality of battery racks 310-1 to 310-n.
  • Power (P B1 ⁇ P Bn ) for -1 ⁇ 310-n) can be determined.
  • the power management device 100 may charge a battery rack having a high SOC with low power and a battery rack having a low SOC with high power.
  • the power management apparatus 100 may discharge a battery rack having a high SOC with high power and a battery rack having a low SOC with low power.
  • the power P B1 to P Bn in which the reserved capacity for each of the plurality of battery racks 310-1 to 310-n is considered may be calculated according to Equation 12 below.
  • P Bi is the charging power of the ith battery rack
  • SOC i is the SOC for the ith battery rack
  • Q i is the charging capacity of the ith battery rack
  • SOH i is the SOH of the ith battery rack
  • DOD i is the DOD of the ith battery rack
  • Q Ri is It is the reserved capacity of the ith battery rack
  • P B is the total charging power of the battery racks.
  • power P B1 to P Bn for each of the plurality of battery racks 310-1 to 310 -n may be calculated according to Equation 13 below.
  • P Bi is the discharge power of the ith battery rack
  • SOC i is the SOC of the ith battery rack
  • Q i is the discharge capacity of the ith battery rack
  • SOH i is the SOH of the ith battery rack
  • DOD i Is the DOD of the ith battery rack
  • Q Ri is It is the reserved capacity of the ith battery rack
  • P B is the total discharge power of the battery racks.
  • the discharge power P B1 to P Bn is also the effective room excluding the reserved capacity. It can be determined based on the total amount.
  • the power (P B1 to P Bn ) for each of the plurality of battery racks 310-1 to 310-n can be calculated according to Equation 14 (same as Equation 8) below. have.
  • P Bi is the discharge power of the ith battery rack
  • SOC i is the SOC of the ith battery rack
  • SOH i is the SOC of the ith battery rack
  • DOD i is the SOC of the ith battery rack
  • P B is This is the total discharge power of the battery racks.
  • the discharge power (P B1 to P Bn ) will also be determined based on the effective discharge amount not excluded from the reserved capacity. I can.
  • the methods according to the embodiments of the present invention may be implemented as instructions stored in a computer-readable storage medium and executed by a processor, and the instructions may be included in a computer program and distributed over an electronic communication network.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

전력 충방전 장치가 개시된다. 상기 전력 충방전 장치는 n개(n은 2이상의 자연수)의 배터리 랙들과 연결되고, n개의 배터리 랙들 각각의 상태 정보에 기초하여 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 전력 관리 장치 및 결정된 충방전 전력에 기초하여 n개의 배터리 랙들을 충방전 하는 전력 변환 장치를 포함하고, 전력 관리 장치는, 일반 모드와 비상 모드 중 어느 하나에 따라 작동하고, 일반 모드에서, n개의 배터리 랙들의 유보 용량이 소진되지 않도록 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하고, 비상 모드에서, n개의 배터리 랙들의 유보 용량이 소진되도록 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정한다.

Description

무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템
본 발명의 실시 예들은 배터리 랙들을 충방전하기 위한 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템에 관한 것으로, 특히, 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템에 관한 것이다.
에너지 저장 시스템(energy storage system (ESS))은 계통(또는 그리드)로부터의 잉여 전력을 배터리에 저장하고, 상기 계통의 전력이 부족하거나 가격이 비싼 경우 저장된 전력을 부하로 공급할 수 있는 시스템을 의미한다. 한편, 최근에는 환경 오염 등의 이유로 다양한 신재생 발전 시스템이 보급되고 있으며, 신재생 발전 방식에 따라 생산되는 에너지의 비율도 증가하고 있다.
이러한 신재생 발전 시스템의 경우 전력 생산량의 변동 폭이 크기 때문에, 발전 시스템과 연계된 에너지 저장 시스템을 운영하는 데 많은 주의가 필요하다.
본 발명이 해결하고자 하는 과제는 발전 시스템과 연계하여 발전 시스템으로부터 공급되는 발전 전력을 고려하여, 안정적이고 효율적으로 배터리 랙들을 충방전할 수 있으며, 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템을 제공하는 것에 있다.
본 발명의 실시 예들에 따른 n개(n은 2이상의 자연수)의 배터리 랙들과 연결된 전력 충방전 장치는, n개의 배터리 랙들 각각의 상태 정보에 기초하여 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 전력 관리 장치 및 결정된 충방전 전력에 기초하여 n개의 배터리 랙들을 충방전 하는 전력 변환 장치를 포함하고, 전력 관리 장치는, 일반 모드와 비상 모드 중 어느 하나에 따라 작동하고, 일반 모드에서, n개의 배터리 랙들의 유보 용량이 소진되지 않도록 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하고, 비상 모드에서, n개의 배터리 랙들의 유보 용량이 소진되도록 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정한다.
본 발명의 실시 예들에 따른 n개(n은 2이상의 자연수)의 배터리 랙들을 이용하여 전력 충방전을 수행하는 방법은, n개의 배터리 랙들 각각의 상태 정보에 기초하여 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 단계 및 결정된 충방전 전력에 기초하여 n개의 배터리 랙들을 충방전하는 단계를 포함하고, n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 단계는, 일반 모드에서, n개의 배터리 랙들의 유보 용량이 소진되지 않도록 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 단계 및 비상 모드에서, n개의 배터리 랙들의 유보 용량이 소진되도록 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 단계를 포함한다.
본 발명의 실시 예들에 따른 장치는, 배터리 랙들의 유보 용량을 고려하여 배터리 랙들의 충방전을 수행하므로, 비상 상황에서도 부하로 전력을 안정적으로 공급할 수 있는 효과가 있다.
본 발명의 실시 예들에 따른 장치는, 복수의 배터리 랙들의 상태 정보를 이용하여 상기 복수의 배터리 랙의 전력을 결정하므로, 배터리 랙들을 더 효율적으로 사용할 수 있으며 배터리 랙들의 수명이 증대되는 효과가 있다.
도 1은 본 발명의 실시 예들에 따른 에너지 저장 시스템(energy storage system) 및 상기 에너지 저장 시스템과 연결된 그리드와 부하를 나타낸다.
도 2는 본 발명의 실시 예들에 따른 에너지 저장 시스템을 나타낸다.
도 3은 본 발명의 실시 예들에 따른 전력 관리 장치의 작동 방법을 나타내는 플로우 차트이다.
도 4는 본 발명의 실시 예들에 따른 전력 관리 장치의 작동을 설명하기 위한 도면이다.
도 5는 본 발명의 실시 예들에 따른 전력 관리 장치의 작동 방법을 나타내는 플로우 차트이다.
도 6은 본 발명의 실시 예들에 따른 전력 관리 장치의 작동을 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예들을 설명한다.
도 1은 본 발명의 실시 예들에 따른 에너지 저장 시스템(energy storage system) 및 상기 에너지 저장 시스템과 연결된 그리드와 부하를 나타낸다. 도 1을 참조하면, 에너지 저장 시스템(10)은 그리드(20)와 연결될 수 있으며, 또한 부하(30)와 연결될 수 있다.
에너지 저장 시스템(10)은 그리드(20)로부터 전력을 공급받고, 공급된 전력을 저장하고, 저장된 전력에 기초하여 부하(30)로 전력을 공급할 수 있다. 이에 따라, 에너지 저장 시스템(10)은 그리드(20)와 부하(30)가 효율적으로 에너지를 소비 또는 생산하도록 제어할 수 있다. 또한, 에너지 저장 시스템(10)은 저장된 전력에 기초하여 그리드(20)로도 전력을 공급할 수 있다.
실시 예들에 따라, 에너지 저장 시스템(10)과 그리드(20) 사이에 에너지 저장 시스템(10)으로부터 그리드(20)로 전달되는 전력을 차단하기 위해 사용되는 소자를 더 포함할 수 있다. 상기 소자는 그리드(20) 정전 시 에너지 저장 시스템(10)으로부터 방전되는 전력이 그리드(20)로 전달되지 않도록 제어할 수 있다.
에너지 저장 시스템(10)은 전력 관리 장치(100), 전력 변환 장치(200) 및 전력원(300)을 포함할 수 있다.
전력 관리 장치(100)는 에너지 저장 시스템(10)의 상태를 모니터링할 수 있고, 에너지 저장 시스템(10)의 충방전을 제어할 수 있다. 본 명세서에서, "충방전"이라 함은 "충전"과 "방전" 중 적어도 하나를 포함한다. 또한, 본 명세서에서 "충전"의 의미는 "방전"의 의미를 포함할 수 있고, 그 역도 성립할 수 있다. 예컨대, 음의(negative) 충전은 양의(positive) 방전을 의미할 수 있고, 음의 방전은 양의 충전을 의미할 수 있다. 따라서, 본 명세서에서 "방전"과 관련된 기능 및 구성은 "충전"에도 적용될 수 있다.
전력 관리 장치(100)는 연산 처리 기능을 가지는 프로세서(processor)를 포함하는 회로, 장치 또는 서버 등으로 구현될 수 있으나, 이에 한정되는 것은 아니다.
비록 도 1에는 전력 관리 장치(100)와 전력 변환 장치(200)가 분리되어 도시되어 있으나, 전력 관리 장치(100)와 전력 변환 장치(200)는 하나의 장치로서 구현될 수 있다. 예컨대, 전력 변환 장치(200)는 전력 관리 장치(100)를 포함할 수 있다. 전력 관리 장치(100)와 전력 변환 장치(200)를 통틀어 전력 충방전 장치라고도 지칭할 수 있다.
전력 관리 장치(100)는 전력 변환 장치(200)로 입력되거나 전력 변환 장치(200)로부터 출력되는 전력을 모니터링할 수 있고, 전력원(300)의 상태를 모니터링할 수 있다. 실시 예들에 따라, 전력 관리 장치(100)는 전력원(300)으로부터 충방전되는 전력의 양을 모니터링할 수 있다.
전력 관리 장치(100)는 모니터링의 결과 또는 외부로부터의 제어(또는 입력) 또는 미리 설정된 값에 따라 에너지 저장 시스템(10)의 충방전을 제어할 수 있다. 실시 예들에 따라, 전력 관리 장치(100)는 전력 변환 장치(200)의 충전 작동과 방전 작동을 제어할 수 있다.
전력 관리 장치(100)는 전력원(300)을 충전하기 위한 총 충전 전력 또는 전력원(300)을 방전하기 위한 총 전력을 결정(또는 계산)할 수 있다. 나아가, 전력 관리 장치(100)는 결정된 총 충방전 전력에 따라 전력원(300)이 충방전되도록 전력 변환 장치(200)를 제어할 수 있다.
전력 변환 장치(200)는 전력원(300)으로부터 전력을 수신할 수 있고, 전력원(300)으로 전력을 전송할 수 있다. 실시 예들에 따라, 전력 변환 장치(200)는 외부로부터 공급되는 전력(예컨대, 그리드 전력(PGRID))을 수신하고, 공급된 전력을 이용하여 전력원(300)을 방전할 수 있다. 또한, 전력 변환 장치(200)는 전력원(300)으로부터 공급되는 전력을 이용하여 부하(30)로 전달할 수 있다.
전력 변환 장치(200)는 필요에 따라 전력의 특성(주파수, 전압, 전류, 교류/직류 등)을 적절히 변환하여 전력원(300)으로부터 전력을 수신하거나 또는 전력원(300)으로부터 수신되는 전력을 전송할 수 있다.
전력원(300)은 전력 변환 장치(200)로 전력을 전송할 수 있다. 실시 예들에 따라, 전력원(300)은 전력 변환 장치(200)로부터 전력을 수신할 수도 있다.
전력원(300)은 배터리(310) 및 발전 시스템(320)을 포함할 수 있다.
배터리(310)는 전력 변환 장치(200)에 의해 충전되거나 또는 방전될 수 있다. 예컨대, 배터리(310)는 2차 전지일 수 있으나 이에 한정되는 것은 아니다.
배터리(310)의 상태 정보는 배터리(310)의 용량, 배터리(310)의 충전(또는 방전) 상태(state of charge (SOC)), 배터리(310)의 잔존 수명(state of health (SOH)), 배터리(310)의 방전(또는 방전) 심도(depth of discharge(or charge) (DOD)), 배터리(310)의 온도 및 배터리(310)의 전압 중 적어도 하나를 포함할 수 있다.
배터리의 용량은, 완전히 방전된 배터리가 저장할 수 있는 전력량 또는 완전히 충전된 배터리가 공급할 수 있는 전력량을 의미한다. 일반적으로, 배터리의 용량은 제조 시 정해질 수 있다. 다만, 후술하는 바와 같이, 배터리가 사용됨에 따라 실제 배터리가 저장 또는 공급할 수 있는 전력량은 감소하므로, 본 명세서에서 설명되는 배터리의 용량은 잔존 수명이 100%인 배터리의 용량, 즉, 배터리의 초기 용량을 의미하며 이 값은 변하지 않는 고정된 값임을 밝힌다.
배터리의 충전 상태는 상기 배터리가 현재 저장하는 전력량을 지시한다. 즉, 배터리의 충전 상태가 100%(즉, 방전 상태가 0%)라 함은 상기 배터리가 완전히 충전되었음을 의미한다.
배터리의 잔존 수명(또는 건강 상태)는 배터리의 (초기) 용량 대비 사용 가능한 용량을 지시한다. 즉, 배터리가 사용됨에 따라 잔존 수명이 감소된 경우, 실제 배터리가 충전(또는 방전) 가능한 전력량은 초기 충전 가능한 전력량보다 감소된다. 예컨대, 잔존 수명이 100%인 배터리의 사용 가능한 용량은 상기 배터리의 (초기) 용량과 동일할 것이나, 잔존 수명이 50%인 배터리의 사용 가능한 용량은 상기 배터리의 용량의 절반에 해당할 것이다.
배터리의 방전 심도는 배터리의 방전 용량에 대한 방전량을 의미한다. 즉, 배터리의 용량이 1000 mAh일 때, 배터리를 400 mAh까지 충전하고 사용(또는 방전)하는 경우는 방전 심도가 40%가 되고, 배터리의 용량이 1000 mAh일 때, 배터리를 1000 mAh 까지 충전(즉, 완충)하고 사용하는 경우는 방전 심도가 100%가 된다.
발전기(generator; 320)는 전력을 생산할 수 있다. 실시 예들에 따라, 발전 시스템(320)은 전력을 생산하고, 생산된 전력을 전력 변환 장치(200)로 전송할 수 있다.
실시 예들에 따라, 발전 시스템(320)은 신재생 에너지 발전 방식에 따라 전력을 생산할 수 있다. 예컨대, 발전 시스템(320)은 태양광 발전, 풍력 발전, 지열 발전, 조력 발전 또는 파력 발전 중 적어도 하나의 방식에 따라 발전할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 실시 예들에 따른 에너지 저장 시스템(10)은 전력을 저장하는 배터리(310) 뿐만 아니라, 발전 시스템(320)을 포함할 수 있다.
그리드(20)는 전력(power)을 공급할 수 있는 임의의 시스템 또는 장치를 의미할 수 있다. 예컨대, 그리드(20)는 산업 설비, 발전소 또는 변전소 등을 의미할 수 있으나, 이에 한정되지 않는다. 그리드(20)는 부하(30) 또는 에너지 저장 시스템(10)으로 전력을 공급할 수 있다. 실시 예들에 따라, 그리드(20)는 그리드 전력(PGRID)을 에너지 저장 시스템(10)으로 공급할 수 있다.
부하(30)는 전력을 소비할 수 있는 임의의 시스템 또는 장치를 의미할 수 있다. 부하(30)는 그리드(20) 또는 에너지 저장 시스템(10)으로부터 전력을 공급받고, 공급된 전력을 소비할 수 있다. 실시 예들에 따라, 부하(30)는 필요한 부하 전력(PLOAD)을 에너지 저장 시스템(10)으로부터 공급받을 수 있다.
도 2는 본 발명의 실시 예들에 따른 에너지 저장 시스템을 나타낸다. 도 1과 도 2를 참조하면, 전력 변환 장치(200)는 AC/DC 컨버터(210) 및 복수의 DC/DC 컨버터들(220-1~220-n 및 230-1~230-m; n 및 m은 자연수)를 포함할 수 있다. AC/DC 컨버터(210)와 복수의 DC/DC 컨버터들(220-1~220-n 및 230-1~230-m)은 연결될 수 있다.
복수의 DC/DC 컨버터들(220-1~220-n 및 230-1~230-m)은 제1DC/DC 컨버터들(220-1~220-n) 및 제2DC/DC 컨버터들(230-1~230-m)을 포함할 수 있다.
배터리(310)는 복수의 배터리 랙들(310-1~310-n)을 포함할 수 있다. 한편, 비록 도 2에는 복수의 배터리 랙들(310-1~310-n)의 수와 제1DC/DC 컨버터들(220-1~220-n)의 수가 동일한 것으로 도시되어 있으나, 본 발명의 실시 예들이 이에 한정되는 것은 아니다.
복수의 배터리 랙들(310-1~310-n) 각각은 적어도 하나의 2차 전지를 포함할 수 있다. 실시 예들에 따라, 복수의 배터리 랙들(310-1~310-n) 각각을 구성하는 전지의 속성, 기종 또는 전기적 특성은 서로 동일하거나 다를 수 있다. 예컨대, 제1배터리 랙(310-1)을 구성하는 전지의 용량, 종류 및 잔존 수명은 제2배터리 랙(310-2)을 구성하는 전지의 용량, 종류 및 잔존 수명과 상이하거나 동일할 수 있다.
발전 시스템(320)은 복수의 발전기들(320-1~320-m)을 포함할 수 있다. 한편, 비록 도 2에는 복수의 발전기들(320-1~320-m)의 수와 제2DC/DC 컨버터들(230-1~230-n)의 수가 동일한 것으로 도시되어 있으나, 본 발명의 실시 예들이 이에 한정되는 것은 아니다.
전력 관리 장치(100)는 전력 변환 장치(200)를 제어할 수 있다. 실시 예들에 따라, 부하(30)에서 요구되는 부하 전력(PLOAD)에 기초하여, 출력 전력(PPCS)을 결정할 수 있다. 전력 관리 장치(100)는 결정된 출력 전력(PPCS)에 기초하여 그리드 전력(PGRID)을 수신할 수 있다. 즉, 출력 전력(PPCS)은 부하 전력(PLOAD)에 기초하여 결정되는 전력 관리 장치(100)의 출력 전력량을 의미한다. 예컨대, 출력 전력(PPCS)은 부하(30)에서 요구되는 부하 전력(PLOAD) 이하일 수 있다.
전력 관리 장치(100)는 배터리(310)를 충방전하기 위한 총 전력(PB)을 결정하고, 결정된 총 전력(PB)에 따라 배터리(310)가 충방전되도록 전력 변환 장치(200)를 제어할 수 있다. 실시 예들에 따라, 전력 관리 장치(100)는 결정된 총 전력(PB)로부터 복수의 배터리 랙들(310-1~310-n) 각각을 충방전하기 위한 전력들(PB1~PBn)을 결정(또는 계산)하고, 결정된 전력들(PB1~PBn)에 따라 복수의 배터리 랙들(310-1~310-n) 각각이 충방전되도록 전력 변환 장치(200)를 제어할 수 있다. 즉, 전력 변환 장치(200)는 전력 관리 장치(100)의 제어에 따라 결정된 전력들(PB1~PBn)에 따라 복수의 배터리 랙들(310-1~310-n) 각각을 충방전할 수 있다.
AC/DC 컨버터(210)는 그리드 전력(PGRID)을 수신할 수 있고, 출력 전력(PPCS)을 전송할 수 있다. 실시 예들에 따라, AC/DC 컨버터(210)는 전력 관리 장치(100)의 제어에 따라 그리드 전력(PGRID)을 수신할 수 있고, 출력 전력(PPCS)을 전송할 수 있다.
AC/DC 컨버터(210)는 입력된 AC 전력(또는 DC 전력)을 DC 전력(또는 AC 전력)으로 변환하고, 변환된 DC 전력(또는 AC 전력)을 출력할 수 있다. 실시 예들에 따라, AC/DC 컨버터(210)는 그리드(20)로부터 입력된 AC 전력을 DC 전력으로 변환하고, 변환된 DC 전력을 복수의 DC/DC 컨버터들(220-1~220-n 및 230-1~230-m)로 출력할 수 있고(예컨대, 충전 시), 복수의 DC/DC 컨버터들(210-1~210-n)로부터 입력된 DC 전력을 AC 전력으로 변환하고, 변환된 AC 전력을 출력할 수 있다(예컨대, 방전 시).
배터리(310)의 충전 동작 시, AC/DC 컨버터(210)는 전력 관리 장치(100)의 제어에 따라 복수의 배터리 랙들(310-1~310-n) 각각을 충전하기 위한 충전 전력들(PB1~PBn)을 제1DC/DC 컨버터들(220-1~220-n)로 전달(또는 공급)할 수 있다. 즉, 전력 변환 장치(200)의 충전 작동 동안, 전력들(PB1~PBn)은 복수의 배터리 랙들(310-1~310-n) 각각의 충전 전력에 해당한다.
배터리(310)의 방전 동작 시, AC/DC 컨버터(210)는 제1DC/DC 컨버터들(220-1~220-n)로부터 복수의 배터리 랙들(310-1~310-n) 각각으로부터 방전된 방전 전력들(PB1~PBn)을 수신하고, 수신된 방전 전력들(PB1~PBn)을 이용하여 출력 전력(PPCS)을 출력할 수 있다. 즉, 전력 변환 장치(200)의 방전 작동 동안, 전력들(P1~Pn)은 복수의 배터리 랙들(310-1~310-n) 각각의 방전 전력에 해당한다.
복수의 DC/DC 컨버터들(220-1~220-n 및 230-1~230-m)은 입력된 DC 전력을 DC 전력으로 변환하고, 변환된 DC 전력을 출력할 수 있다. 예컨대, 복수의 DC/DC 컨버터들(220-1~220-n 및 230-1~230-m)은 입력된 전력의 전압 및 전류 중 적어도 하나를 변환하고, 변환 결과에 따라 변환된 전력을 출력할 수 있다. 이 때, 입력된 전력과 출력된 전력은 동일하게 유지될 수 있다.
제1DC/DC 컨버터들(220-1~220-n) 각각은 복수의 배터리 랙들(310-1~310-n) 각각과 연결될 수 있다. 제1DC/DC 컨버터들(220-1~220-n) 각각은 전력 관리 장치(100)의 제어에 따라 복수의 배터리 랙들(310-1~310-n) 각각을 충방전할 수 있다. 예컨대, 제1DC/DC 컨버터(220-1)는 제1배터리 랙(310-1)을 충방전할 수 있고, 제nDC/DC 컨버터(220-n)는 제n배터리 랙(310-n)을 충방전할 수 있다.
충전 시, 제1DC/DC 컨버터들(220-1~220-n) 각각은 전력 관리 장치(100)의 제어에 따라, 결정된 (충전) 전력들(PB1~PBn)에 기초하여 복수의 배터리 랙들(310-1~310-n) 각각을 충전할 수 있다. 상기 결정된 (충전) 전력들(PB1~PBn)은 AC/DC 컨버터로부터 입력될 수 있다. 실시 예들에 따라, 제1DC/DC 컨버터들(220-1~220-n)은 입력된 전력들(PB1~PBn)의 전압과 전류 중 적어도 하나를 변경하여 복수의 배터리 랙들(310-1~310-n) 각각을 충전할 수 있다. 예컨대, 제1DC/DC 컨버터들(220-1~220-n)은 복수의 배터리 랙들(310-1~310-n) 각각의 충전 상태를 고려하여 전력들(PB1~PBn)의 전압과 전류 중 적어도 하나를 변경하여 복수의 배터리 랙들(310-1~310-n) 각각을 충전할 수 있다.
방전 시, 제1DC/DC 컨버터들(220-1~220-n) 각각은 전력 관리 장치(100)의 제어에 따라, 결정된 (방전) 전력들(PB1~PBn)에 기초하여 복수의 배터리 랙들(310-1~310-n) 각각을 방전할 수 있다. 실시 예들에 따라, 제1DC/DC 컨버터들(220-1~220-n)은 입력된 전력들(PB1~PBn)의 전압과 전류 중 적어도 하나를 변경하여 복수의 배터리 랙들(310-1~310-n) 각각을 방전할 수 있다. 예컨대, 제1DC/DC 컨버터들(220-1~220-n)은 복수의 배터리 랙들(310-1~310-n) 각각의 충전 상태를 고려하여 전력들(PB1~PBn)의 전압과 전류 중 적어도 하나를 변경하여 복수의 배터리 랙들(310-1~310-n) 각각을 방전할 수 있다.
한편, 본 명세서에서, 제1DC/DC 컨버터들(220-1~220-n)이 전력들(PB1~PBn)에 기초하여 복수의 배터리 랙들(310-1~310-n)을 충방전한다 함은, 제1DC/DC 컨버터들(220-1~220-n)이 복수의 배터리 랙들(310-1~310-n)의 충방전 전력이 전력들(PB1~PBn)이 되도록 복수의 배터리 랙들(310-1~310-n)의 충방전 전력을 제어하는 것을 포함한다.
제2DC/DC 컨버터들(230-1~230-m) 각각은 복수의 발전기들(320-1~320-m) 각각과 연결될 수 있다. 제2DC/DC 컨버터들(230-1~230-m) 각각은 복수의 발전기들(320-1~320-m)으로부터 발전된 발전 전력(PG1~PGm)을 수신할 수 있고, 발전 전력(PG1~PGm)을 AC/DC 컨버터(210)로 공급(또는 전송)할 수 있다.
실시 예들에 따라, 제2DC/DC 컨버터들(230-1~220-m)은 수신된 발전 전력(PG1~PGm)의 전압과 전류 중 적어도 하나를 변경하여 발전 전력(PG1~PGm)을 AC/DC 컨버터(210)로 공급(또는 전송)할 수 있다.
도 3은 본 발명의 실시 예들에 따른 전력 관리 장치의 작동 방법을 나타내는 플로우 차트이다. 도 1 내지 도 3을 참조하면, 전력 관리 장치(100)는 전력 변환 장치(200)의 출력 전력(PPCS)을 결정할 수 있다(S110).
실시 예들에 따라, 전력 관리 장치(100)는 부하(30)에서 요구되는 부하 전력(PLOAD)에 기초하여 전력 변환 장치(200)의 출력 전력(PPCS)을 결정할 수 있다. 예컨대, 전력 관리 장치(100)는 부하(30)에서 요구되는 부하 전력(PLOAD)에 기초하여 배터리(310)의 방전 여부를 결정할 수 있다.
부하 전력(PLOAD), 그리드 전력(PGRID) 및 출력 전력(PPCS)은 아래의 수학식 1을 만족할 수 있다.
Figure PCTKR2020010944-appb-img-000001
전력 관리 장치(100)는 부하(30)에서 요구되는 부하 전력(P LOAD) 공급 시, 전력 변환 장치(200)의 출력 전력(P PCS)을 우선적으로 고려할 수 있다. 다시 말하면, 그리드 전력(P GRID)은 부하 전력(P LOAD) 및 출력 전력(P PCS)에 의해 결정될 수 있다.
예컨대, 전력 변환 장치(200)의 출력 전력(P PCS)이 부하(30)에서 요구되는 부하 전력(P LOAD)보다 큰 경우, 그리드 전력(P GRID)은 음(negative)이 되고 전력 관리 장치(100)는 전력 변환 장치(200)가 그리드(20)로부터 전력을 수신하지 않도록 전력 변환 장치(200)를 제어할 수 있다. 오히려, 전력 관리 장치(100)는 전력 변환 장치(200)가 출력 전력(P PCS)과 부하 전력(P LOAD)의 차이에 해당하는 만큼의 전력을 그리드(20)로 공급할 수 있도록 전력 변환 장치(200)를 제어할 수 있다. 이와 반대로, 전력 변환 장치(200)의 출력 전력(P PCS)이 부하(30)에서 요구되는 부하 전력(P LOAD)보다 작은 경우, 그리드 전력(P GRID)은 양(positive) 이 되고 전력 관리 장치(100)는 전력 변환 장치(200)가 그리드(20)로부터 부하 전력(P LOAD)과 출력 전력(P PCS)의 차이에 해당하는 만큼의 전력을 그리드 전력(P GRID)으로서 수신하도록 전력 변환 장치(200)를 제어할 수 있다.
실시 예들에 따라, 전력 관리 장치(100)는 부하 전력(P LOAD) 및 출력 전력(P PCS)에 기초하여, 그리드(20)로 전력을 공급(또는 수신)할지 여부를 결정할 수 있다. 예컨대, 전력 관리 장치(100)는 상기 수학식 1에 따라 그리드(20)로 전력을 공급(또는 수신)할지 여부를 결정할 수 있다.
전력 관리 장치(100)는 배터리(310)를 충방전하기 위한 총 전력(P B)을 결정할 수 있다(S120). 실시 예들에 따라, 전력 관리 장치(100)는 배터리(310)를 충방전하기 위한 총 전력(P B)을 결정할 수 있고, 결정된 총 전력(P B)에 따라 배터리(310)가 충방전되도록 전력 변환 장치(200)를 제어할 수 있다. 즉, 전력 변환 장치(200)는 전력 관리 장치(100)의 제어에 따라 결정된 총 전력(P B)에 해당하는 전력만큼 배터리(310)를 충방전할 수 있다.
본 발명의 실시 예들에 따른 에너지 저장 시스템(10)은 배터리(310) 뿐만 아니라 발전 시스템(320)을 포함하므로, 배터리(310)의 충방전 제어 시 그리드 전력(P GRID) 뿐만아니라 발전 시스템(320)으로부터 생산되는(또는 공급되는) 전력 또한 고려할 필요가 있다.
전력 관리 장치(100)는 전력 변환 장치(200)의 출력 전력(P PCS) 및 발전 시스템(320)의 발전 전력(P G)에 기초하여 배터리(310)를 충방전하기 위한 총 전력(P B)을 결정할 수 있다.
전력 관리 장치(100)는 아래의 수학식 2에 따라 총 전력(P B)을 결정할 수 있다.
Figure PCTKR2020010944-appb-img-000002
전력 관리 장치(100)는 발전 시스템(320)의 상태를 모니터링하고, 발전 시스템(320)의 발전 전력(P G)에 대한 정보를 획득할 수 있다. 실시 예들에 따라, 전력 관리 장치(100)는 발전 시스템(320)으로부터 전력 관리 장치(200)로 전송되는 전력량(즉, 발전 전력(P G))을 측정할 수 있다. 예컨대, 전력 관리 장치(100)는 발전기들(G1~Gm) 각각의 발전 전력(P G1~P Gn)을 측정할 수 있다.
전력 관리 장치(100)는 전력 변환 장치(200)의 출력 전력(P PCS) 및 발전 시스템(320)의 발전 전력(P G)에 기초하여 배터리(310)의 충방전 여부를 결정할 수 있다. 실시 예들에 따라, 전력 관리 장치(100)는 발전 시스템(320)의 발전 전력(P G)이 전력 변환 장치(200)의 출력 전력(P PCS)보다 큰 경우, 배터리(310)를 방전하지 않는 것으로 결정할 수 있다. 예컨대, 잉여 전력(즉, P G-P PCS)은 배터리(310) 또는 그리드(20)로 전송될 수 있다.
또한, 전력 관리 장치(100)는 발전 시스템(320)의 발전 전력(P G)이 전력 변환 장치(200)의 출력 전력(P PCS)보다 작은 경우, 배터리(310)를 방전할 것을 결정할 수 있다.
실시 예들에 따라, 전력 관리 장치(100)는 발전 시스템(320)의 발전 전력(P G)의 시간에 따른 변화량을 계산하고, 계산된 변화량에 기초하여 총 전력(P B)을 결정할 수 있다. 예컨대, 전력 관리 장치(100)는 제1시점에서의 발전 시스템(320)의 발전 전력(P G) 및 제1시점 이후의 제2시점에서의 발전 전력(P G)을 이용하여 발전 전력(P G)의 변화량을 계산하고, 계산된 발전 전력(P G)의 변화량에 기초하여 총 전력(P B)을 계산할 수 있다.
본 발명의 실시 예들에 따른 전력 관리 장치(100)는 일차적으로 부하 전력(P LOAD)에 기초하여 배터리(310)의 충방전 여부를 결정할 수 있고, 나아가, 이차적으로 전력원(300)의 발전 전력(P G)과 전력 변환 장치(200)의 출력 전력(P PCS)에 기초하여 배터리(310)의 충방전 여부를 결정할 수 있다. 이에 따라, 에너지 저장 시스템(10)의 효율이 증대될 수 있다. 예컨대, 부하 전력(P LOAD)이 양이더라도 발전 시스템(320)의 발전 전력(P G)이 전력 변환 장치(200)의 출력 전력(P PCS)보다 큰 경우, 전력 관리 장치(100)는 배터리(310)를 방전하지 않는 것으로 결정할 수 있다.
또한, 본 발명의 실시 예들에 따른 전력 관리 장치(100)는 그리드 전력(P GRID)과 부하 전력(P LOAD)에 기초하여 전력 변환 장치(200)의 출력 전력(P PCS)을 결정할 수 있고, 나아가, 전력 변환 장치(200)의 출력 전력(P PCS)과 발전 시스템(320)의 발전 전력(P G)에 기초하여 배터리(310)의 전력(P B)을 결정할 수 있다. 이에 따라, 그리드 전력(P GRID)과 발전 전력(P G)이 불규칙하게 변화하더라도, 부하(30)에 안정적으로 전력을 공급할 수 있는 효과가 있다.
전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n)의 상태 정보에 기초하여 결정된 총 전력(P B)로부터 복수의 배터리 랙들(310-1~310-n) 각각을 충방전하기 위한 전력들(P B1~P Bn)을 결정(또는 계산)할 수 있다(S130).
전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n) 각각에 대한 상태 정보를 획득하고, 획득된 상태 정보에 기초하여 복수의 배터리 랙들(310-1~310-n)에 대한 전력(P B1~P Bn)을 결정할 수 있다.
실시 예들에 따라, 전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n)을 직접 모니터링하여 상태 정보를 획득할 수도 있으나, 복수의 배터리 랙들(310-1~310-n)로부터 상태 정보를 수신할 수도 있다. 앞에서 설명한 바와 같이, 복수의 배터리 랙들(310-1~310-n)의 상태 정보는 용량, 충전(또는 방전) 상태(state of charge (SOC)), 잔존 수명(state of health (SOH)), 방전 심도(depth of discharge (DOD))) 및 온도 및 전압 중 적어도 하나를 포함할 수 있다.
실시 예들에 따라, 전력 관리 장치(100)는 실시간으로(on-the-fly) 또는 일정 주기에 따라 복수의 배터리 랙들(310-1~310-n) 각각의 상태 정보를 획득하고, 전력(P B1~P Bn)을 결정할 수 있다.
이 때, 결정된 전력들(P B1~P Bn)은 아래 수학식 3을 만족한다.
Figure PCTKR2020010944-appb-img-000003
전력 관리 장치(100)는 결정된 전력들(P B1~P Bn)에 기초하여 복수의 배터리 랙들(310-1~310-n) 각각을 충방전할 수 있다(S140). 즉, 전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n)이 결정된 전력들(P B1~P Bn)에 따라 충방전되도록 전력 변환 장치(200)를 제어할 수 있다. 전력 변환 장치(200)가 전력들(P B1~P Bn)에 따라 복수의 배터리 랙들(310-1~310-n)을 충방전하는 것에 대해서는 앞에서 설명했으므로 이하 설명을 생략한다.
전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n)이 충방전되고 있는 동안, 복수의 배터리 랙들(310-1~310-n)의 상태가 충방전 종료 조건을 만족하는지를 판단하고, 판단의 결과에 따라 진행중인 충방전 작동을 중지할 수 있다. 예컨대, 전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n)의 전압이 미리 결정된 충전 완료 전압 또는 방전 완료 전압에 도달하면, 복수의 배터리 랙들(310-1~310-n)의 충방전을 중지하도록 전력 변환 장치(200)를 제어할 수 있다.
실시 예들에 따라, 전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n)의 충방전되는 동안, 복수의 배터리 랙들(310-1~310-n)의 상태 정보에 기초하여 복수의 배터리 랙들(310-1~310-n)의 사이의 충방전 불평형이 존재하는지를 판단할 수 있다.
예컨대, 전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n)의 전압들 중에서, 가장 높은 전압과 가장 낮은 전압의 차이가 미리 결정된 기준 값 이상일 때, 상기 충방전 불평형이 존재하는 것으로 판단할 수 있다. 또는, 전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n)의 전압들 중 적어도 하나의 전압이 미리 결정된 기준 값 이상일 때, 상기 충방전 불평형이 존재하는 것으로 판단할 수 있다.
복수의 배터리 랙들(310-1~310-n)의 사이의 충방전 불평형이 존재하는 것으로 판단되면, 전력 관리 장치(100)는 결정된 개별 전력들(P 1~P n)을 조절할 수 있다.
복수의 배터리 랙들(310-1~310-n) 사이의 불평형이 존재한다는 것은 복수의 배터리 랙들(310-1~310-n)의 상태 정보가 상이함(혹은 상이해졌음)을 의미한다. 이 경우, 기존 결정된 개별 전력들(P B1~P Bn)에 따라 복수의 배터리 랙들(310-1~310-n)이계속 충방전된다면, 특정 배터리 랙이 먼저 충전되거나 먼저 방전될 수 있으며 상기 특정 배터리 랙에만 스트레스가 가해질 수 있으므로, 상기 불평형의 보상(또는 제거)가 요구된다.
본 발명의 실시 예들에 따른 전력 관리 장치(100)는 결정된 전력들(P B1~P Bn)을 복수의 배터리 랙들(310-1~310-n) 각각의 상태 정보에 기초하여 조절하고, 조절된 전력들(P B1~P Bn)에 따라 복수의 배터리 랙들(310-1~310-n)이 다시 충방전되도록 전력 변환 장치(200)를 제어함으로써 불평형을 보상(또는 해소)할 수 있는 효과가 있다.
도 4는 본 발명의 실시 예들에 따른 전력 관리 장치의 작동을 설명하기 위한 도면이다. 도 1 내지 도 4를 참조하면, 복수의 배터리 랙들(310-1~310-n)에 대한 충방전 용량(Q 1~Q n), 잔존 수명(SOH 1~SOH n) 및 방전 심도(DOD 1~DOD n)가 나타나 있다.
복수의 배터리 랙들(310-1~310-n)이 실제로 충방전할 수 있는 유효 충방전량(Q f1~Q fn)은 아래 수학식 4에 의해 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000004
여기서, Q EEFi는 i번째 배터리 랙의 유효 충방전 용량이고, Q i는 i번째 배터리 랙의 충방전 용량이고, SOH i는 i번째 배터리 SOH이고, DOD i는 i번째 배터리 랙의 DOD이다.
즉, 유효 충방전 용량(Q f1~Q fn)은 충방전 용량(Q 1~Q n), 잔존 수명(SOH 1~SOH n) 및 방전 심도(DOD 1~DOD n) 모두에 기초하여 결정될 수 있다. 복수의 배터리 랙들(310-1~310-n) 각각의 충방전 용량(Q 1~Q n)이 모두 동일하다 하더라도, 잔존 수명(SOH 1~SOH n) 및 방전 심도(DOD 1~DOD n)가 다르게 되면 실제로 충방전할 수 있는 유효 충방전 용량(Q f1~Q fn)은 차이가 있다.
따라서, 복수의 배터리 랙들(310-1~310-n)이 충방전 가능한(또는 복수의 배터리 랙들(310-1~310-n)에 의해 공급 가능한) 총 유효 충방전 용량(Q EFF)은 아래 수학식 5에 따라 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000005
전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n) 각각의 유효 충방전 용량에 기초하여, 복수의 배터리 랙들(310-1~310-n) 각각에 대한 (충방전) 전력(P B1~P Bn)을 결정할 수 있다.
실시 예들에 따라, 수학식 4 및 수학식 5를 이용하면, 복수의 배터리 랙들(310-1~310-n) 각각에 대한 전력(P B1~P Bn)은 아래의 수학식 6에 따라 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000006
여기서, P Bi는 i번째 배터리 랙의 충방전 전력이고, Q i는 i번째 배터리 랙의 충방전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이다.
즉, 전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n) 각각의 방전 용량, 잔존 수명 및 방전 심도에 기초하여 총 전력(P B)으로부터 복수의 배터리 랙들(310-1~310-n)에 대한 전력(P B1~P Bn)을 결정할 수 있으므로, 복수의 배터리 랙들(310-1~310-n)은 균형적으로 방전될 수 있다. 특히, 배터리의 방전 심도는 배터리의 잔존 수명과 밀접하게 관련되어 있는 변수로서, 배터리의 잔존 수명만을 고려하여 방전을 수행하는 것 보다 배터리의 방전 심도를 더 고려하여 방전을 수행하는 경우, 배터리의 수명이 증가할 수 있는 효과가 있다.
실시 예들에 따라, 전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n) 각각의 충방전 상태(즉, SOC)에 따라 총 전력(P B)으로부터 복수의 배터리 랙들(310-1~310-n)에 대한 전력(P B1~P Bn)을 결정할 수 있다. 충전 작동 시, 전력 관리 장치(100)는 SOC가 높은 배터리 랙은 적은 전력으로 충전하고 SOC가 낮은 배터리 랙은 높은 전력으로 충전할 수 있다. 또한, 방전 작동 시, 전력 관리 장치(100)는 SOC가 높은 배터리 랙은 높은 전력으로 방전하고 SOC가 낮은 배터리 랙은 낮은 전력으로 방전할 수 있다.
예컨대, 충전 작동 시, 복수의 배터리 랙들(310-1~310-n) 각각에 대한 전력(P B1~P Bn)은 아래의 수학식 7에 따라 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000007
여기서, P Bi는 i번째 배터리 랙의 충전 전력이고, SOC i는 i번째 배터리 랙의 SOC이고, Qi는 i번째 배터리 랙의 방전 용량이고, SOH i는 i번째 배터리 랙의 SOC이고, DOD i는 i번째 배터리 랙의 SOC이고, P B는 배터리 랙들의 총 충전 전력이다.
예컨대, 방전 작동 시, 복수의 배터리 랙들(310-1~310-n) 각각에 대한 전력(P B1~P Bn)은 아래의 수학식 7에 따라 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000008
여기서, P Bi는 i번째 배터리 랙의 방전 전력이고, SOC i는 i번째 배터리 랙의 SOC이고, SOH i는 i번째 배터리 랙의 SOC이고, DOD i는 i번째 배터리 랙의 SOC이고, P B는 배터리 랙들의 총 방전 전력이다.
전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n) 각각의 SOC에 기초하여 복수의 배터리 랙들(310-1~310-n)에 대한 전력(P B1~P Bn)을 결정할 수 있으므로, 복수의 배터리 랙들(310-1~310-n) 사이의 용량 평형이 달성될 수 있고, 이에 따라 복수의 배터리 랙들(310-1~310-n)의 수명이 증대되는 효과가 있다.
도 5는 본 발명의 실시 예들에 따른 전력 관리 장치의 작동 방법을 나타내는 플로우 차트이다. 도 5를 참조하여 설명될 작동 방법은 정전 등 비상 상황에서의 전력 관리 장치의 작동 방법이다.
그리드(20)에 정전(blackout)이 발생하는 등의 비상 상황이 발생하면 그리드(20)로부터 그리드 전력(P GRID)이 공급되지 않는다. 배터리(310)에 부하(30)로 공급할 수 있을 만큼의 충분한 전력량이 남아있지 않은 경우, 부하(30)로 안정적이 전력 공급이 불가능할 수 있다.
이러한 비상 상황을 대비하여, 비상 상황이 아닌 경우에는 사용되지 않는 배터리(310)의 유보 용량이 설정될 수 있다. 상기 유보 용량은 사전에 결정되어 설정될 수 있다.
이러한 유보 용량이 확보되면, 정전과 같은 비상상황에서도 전력 변환 장치(200)는 부하(30)로 전력을 안정적으로 공급할 수 있는 효과가 있다. 예컨대, 유보 용량은 무정전 전원 장치(uninterrupted power supply (UPS)) 용 용량일 수 있다.
도 1 내지 도 5를 참조하면, 전력 관리 장치(100)는 전력 변환 장치(200)의 출력 전력(P PCS)을 결정할 수 있다(S210).
전력 관리 장치(100)는 배터리(310)를 충방전하기 위한 총 전력(PB)을 결정할 수 있다(S220). 실시 예들에 따라, 전력 관리 장치(100)는 배터리(310)를 충방전하기 위한 총 전력(PB)을 결정할 수 있고, 결정된 총 전력(PB)에 따라 배터리(310)가 충방전되도록 전력 변환 장치(200)를 제어할 수 있다.
전력 관리 장치(100)는 비상상황이 발생했는지 여부를 판단할 수 있다(S230). 실시 예들에 따라, 전력 관리 장치(100)는 그리드(20)로부터 전송되는 데이터에 기초하여 그리드(20)에 정전이 발생했는지 여부를 판단할 수 있다. 예컨대, 전력 관리 장치(100)는 그리드(20)로부터 일정 시간 동안 전력이 공급되지 않는 경우, 그리드(20)에 비상 상황이 발생한 것으로 판단할 수 있다.
비상 상황이 발생하지 않았을 때(S230의 NO), 전력 관리 장치(100)는 일반 모드로 복수의 배터리 랙들(310-1~310-n)을 방전할 수 있다(S240). 실시 예들에 따라, 전력 관리 장치(100)는 일반 모드로 복수의 배터리 랙들(310-1~310-n)이 방전되도록 전력 변환 장치(200)를 제어할 수 있다.
상기 일반 모드에서, 복수의 배터리 랙들(310-1~310-n)은 유보 용량이 제외된 유효 방전량에 기초하여 결정된 방전 전력(P B1~P Bn)에 따라 방전될 수 있다. 즉, 비상 상황이 발생하지 않았지만, 비상 상황을 대비해야 하므로 복수의 배터리 랙들(310-1~310-n)의 방전 전력(P B1~P Bn)은 유보 용량을 고려하여 결정될 수 있다.
비상 상황이 발생했을 때(S230의 YES), 전력 관리 장치(100)는 비상 모드로 복수의 배터리 랙들(310-1~310-n)을 방전할 수 있다(S250). 실시 예들에 따라, 전력 관리 장치(100)는 비상 모드로 복수의 배터리 랙들(310-1~310-n)이 방전되도록 전력 변환 장치(200)를 제어할 수 있다.
상기 비상 모드에서, 복수의 배터리 랙들(310-1~310-n)은 각각의 유보 용량을 추가적으로 사용하여 결정된 방전 전력(P B1~P Bn)에 따라 방전될 수 있다. 즉, 비상 상황이 발생한 경우, 그리드(P GRID)로부터의 전력 공급이 없으므로 복수의 배터리 랙들(310-1~310-n)은 유보된 유보 용량을 추가적으로 사용하여 방전될 수 있다.
본 발명의 실시 예들에 따른 전력 관리 장치(100)(또는 에너지 저장 시스템(10))은 비상 상황 시 사용될 유보 용량을 미리 설정하고, 비상 상황이 발생하지 않는 경우에는 상기 유보 용량이 제외된 방전량에 기초하여 배터리들을 방전하고, 비상 상황이 발생한 경우에는 상기 유보 용량에 기초하여 배터리들을 방전할 수 있다. 이에 따라, 비상 상황이 발생하더라도 부하(30)에 안정적으로 전력을 공급할 수 있는 효과가 있다.
도 6은 본 발명의 실시 예들에 따른 전력 관리 장치의 작동을 설명하기 위한 도면이다. 도 1 내지 도 5를 참조하면, 복수의 배터리 랙들(310-1~310-n)에 대한 충방전 용량(Q 1~Q n), 잔존 수명(SOH 1~SOH n), 방전 심도(DOD 1~DOD n) 및 유보 용량(Q R1~Q Rn)이 나타나 있다. 즉, 도 4와 비교할 때, 도 6은 복수의 배터리 랙들(310-1~310-n)의 유보 용량(Q R1~Q Rn)이 추가적으로 고려된다는 점에서 차이가 있다.
유보 용량(Q R1~Q Rn)은 그리드(20) 또는 발전 시스템(320)의 고장 등 비상 상황 시 공급되어야 할 전력량을 의미한다. 유보 용량(Q R1~Q Rn)은 일반적인 상황에서는 소모되지 않는 전력량일 수 있다. 다만, 비상 상황이 발생한 경우, 유보 용량(Q R1~Q Rn)은 즉각적으로 사용되어야 한다.
비상 상황이 발생하지 않은 일반 모드에서, 복수의 배터리 랙들(310-1~310-n)의 유보 용량(Q R1~Q Rn)은 항상 유보되어야 하므로, 복수의 배터리 랙들(310-1~310-n)이 실제로 충방전할 수 있는 유효 충방전 용량(Q f1~Q fn)은 유보 용량(Q R1~Q Rn)이 제외되어야 한다. 즉, 유효 충방전 용량(Q f1~Q fn)은 아래 수학식 9에 의해 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000009
여기서, Q EEFi는 i번째 배터리 랙의 유보 용량이 고려된 유효 충방전 용량이고, Q i는 i번째 배터리 랙의 충방전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이고, Q Ri는 i번째 배터리 랙의 유보 용량이다.
또한, 비상 상황이 발생하지 않은 일반 모드에서, 복수의 배터리 랙들(310-1~310-n)의 충방전 전력(P B1~P Bn)은 아래 수학식 10에 따라 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000010
여기서, P Bi는 i번째 배터리 랙의 전력이고, Q i는 i번째 배터리 랙의 충방전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이고, Q Ri는 i번째 배터리 랙의 유보 용량이고, Q EEFi는 i번째 배터리 랙의 유보 용량이 고려된 유효 충방전 용량이다.
복수의 배터리 랙들(310-1~310-n) 각각의 충방전 용량(Q 1~Q n)이 모두 동일하다 하더라도, 잔존 수명(SOH 1~SOH n), 방전 심도(DOD 1~DOD n) 및 유보 용량(Q R1~Q Rn)가 다르게 되면 실제로 충방전할 수 있는 유효 충방전 용량(Q f1~Q fn)은 차이가 있고, 전력(P B1~P Bn) 또한 차이가 있을 수 있다.
전력 관리 장치(100)는 충방전 용량(Q 1~Q n)이 모두 동일하다 하더라도, 잔존 수명(SOH 1~SOH n), 방전 심도(DOD 1~DOD n) 및 유보 용량(Q R1~Q Rn)을 모두 고려하여 유효 충방전 용량을 결정할 수 있고, 복수의 배터리 랙들(310-1~310-n) 각각에 대한 (충방전) 전력(P B1~P Bn)을 결정할 수 있다.
한편, 비상 상황이 발생한 경우에는 유보되었던 유보 용량(Q R1~Q Rn)에 기초하여 복수의 배터리 랙들(310-1~310-n)이 방전되어야 한다. 따라서, 이 경우 복수의 배터리 랙들(310-1~310-n)의 방전 전력(P B1~P Bn)은 아래 수학식 11(수학식 6과 동일)에 따라 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000011
여기서, P Bi는 i번째 배터리 랙의 충방전 전력이고, Q i는 i번째 배터리 랙의 충방전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이다.
즉, 비상 상황이 발생한 경우에는 복수의 배터리 랙들(310-1~310-n)의 방전 시 유보 용량(Q R1~Q Rn)이 유보되지 않는다.
전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n) 각각의 방전 용량, 잔존 수명, 방전 심도 및 유보 용량에 기초하여 총 전력(P B)으로부터 복수의 배터리 랙들(310-1~310-n)에 대한 전력(P B1~P Bn)을 결정할 수 있으므로, 복수의 배터리 랙들(310-1~310-n)은 균형적으로 충방전될 수 있다. 특히, 비상 시 사용되는 유보 용량이 추가적으로 고려될 수 있다.
실시 예들에 따라, 전력 관리 장치(100)는 복수의 배터리 랙들(310-1~310-n) 각각의 충방전 상태(즉, SOC)에 따라 총 전력(P B)으로부터 복수의 배터리 랙들(310-1~310-n)에 대한 전력(P B1~P Bn)을 결정할 수 있다. 충전 작동 시, 전력 관리 장치(100)는 SOC가 높은 배터리 랙은 적은 전력으로 충전하고 SOC가 낮은 배터리 랙은 높은 전력으로 충전할 수 있다. 또한, 방전 작동 시, 전력 관리 장치(100)는 SOC가 높은 배터리 랙은 높은 전력으로 방전하고 SOC가 낮은 배터리 랙은 낮은 전력으로 방전할 수 있다.
일반 모드에 따른 충전 작동 시, 복수의 배터리 랙들(310-1~310-n) 각각에 대한 유보 용량이 고려된 전력(P B1~P Bn)은 아래의 수학식 12에 따라 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000012
여기서, P Bi는 i번째 배터리 랙의 충전 전력이고, SOC i는 i번째 배터리 랙에 대한 SOC이고, Q i는 i번째 배터리 랙의 충전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이고, Q Ri i번째 배터리 랙의 유보 용량이고, P B는 배터리 랙들의 총 충전 전력이다.
일반 모드에 따른 방전 작동 시, 복수의 배터리 랙들(310-1~310-n) 각각에 대한 전력(P B1~P Bn)은 아래의 수학식 13에 따라 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000013
여기서, P Bi는 i번째 배터리 랙의 방전 전력이고, SOC i는 i번째 배터리 랙의 SOC이고, Q i는 i번째 배터리 랙의 방전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이고, Q Ri i번째 배터리 랙의 유보 용량이고, P B는 배터리 랙들의 총 방전 전력이다.
일반 모드에서, 복수의 배터리 랙들(310-1~310-n)은 유보 용량이 제외된 유효 방전량에 기초하여 방전되어야 하므로, 방전 전력(P B1~P Bn) 또한 유보 용량이 제외된 유효 방전량에 기초하여 결정될 수 있다.
비상 모드에 따른 방전 작동 시, 복수의 배터리 랙들(310-1~310-n) 각각에 대한 전력(P B1~P Bn)은 아래의 수학식 14(수학식 8과 동일)에 따라 계산될 수 있다.
Figure PCTKR2020010944-appb-img-000014
여기서, P Bi는 i번째 배터리 랙의 방전 전력이고, SOC i는 i번째 배터리 랙의 SOC이고, SOH i는 i번째 배터리 랙의 SOC이고, DOD i는 i번째 배터리 랙의 SOC이고, P B는 배터리 랙들의 총 방전 전력이다.
비상 모드에서, 복수의 배터리 랙들(310-1~310-n)은 유보 용량에 기초하여 방전되어야 하므로, 방전 전력(P B1~P Bn) 또한 유보 용량이 제외되지 않은 유효 방전량에 기초하여 결정될 수 있다.
본 발명의 실시 예들에 따른 방법들은 컴퓨터로 판독 가능한 저장 매체에 저장되어 프로세서에 의해 실행될 수 있는 명령어들로 구현될 수 있고, 상기 명령어들은 컴퓨터 프로그램에 포함되어 전자통신망 상에서 배포될 수 있다.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (9)

  1. n개(n은 2이상의 자연수)의 배터리 랙들과 연결된 전력 충방전 장치에 있어서,
    상기 n개의 배터리 랙들 각각의 상태 정보에 기초하여 상기 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 전력 관리 장치; 및
    결정된 충방전 전력에 기초하여 상기 n개의 배터리 랙들을 충방전 하는 전력 변환 장치를 포함하고,
    상기 전력 관리 장치는,
    일반 모드와 비상 모드 중 어느 하나에 따라 작동하고,
    상기 일반 모드에서, 상기 n개의 배터리 랙들의 유보 용량이 소진되지 않도록 상기 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하고,
    상기 비상 모드에서, 상기 n개의 배터리 랙들의 유보 용량이 소진되도록 상기 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하고,
    상기 상태 정보는 상기 n개의 배터리 랙들의 용량, 잔존 수명(state of health (SOH)) 및 방전 심도(depth of discharge (DOD))를 포함하고,
    상기 일반 모드에서의 상기 n개의 배터리 랙들 각각에 대한 충방전 전력은,
    Figure PCTKR2020010944-appb-img-000015
    (여기서, P B는 n개의 배터리 랙들의 총 전력이고, P Bi는 i번째 배터리 랙의 전력이고, Q i는 i번째 배터리 랙의 충방전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이고, Q Ri는 i번째 배터리 랙의 유보 용량임)
    에 따라 계산되는,
    전력 충방전 장치.
  2. 제1항에 있어서,
    상기 전력 관리 장치는,
    부하 전력에 기초하여 상기 n개의 배터리 랙들의 충방전 여부를 일차적으로 결정하고,
    발전 시스템으로부터 공급되는 발전 전력과 상기 전력 충방전 장치의 출력 전력에 기초하여 상기 n개의 배터리 랙들의 충방전 여부를 이차적으로 결정하는,
    전력 충방전 장치.
  3. 제1항에 있어서,
    상기 상태 정보는 상기 n개의 배터리 랙들의 충전 상태(state of charge (SOC))를 더 포함하고,
    상기 일반 모드에서의 상기 n개의 배터리 랙들 각각에 대한 충전 전력은,
    Figure PCTKR2020010944-appb-img-000016
    (여기서, P B는 n개의 배터리 랙들의 총 충전 전력이고, P Bi는 i번째 배터리 랙의 충전 전력이고, SOC i는 i번째 배터리 랙에 대한 SOC이고, Q i는 i번째 배터리 랙의 충전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이고, Q Ri i번째 배터리 랙의 유보 용량이고, P B는 배터리 랙들의 총 충전 전력임)
    에 따라 계산되는,
    전력 충방전 장치.
  4. 제1항에 있어서,
    상기 상태 정보는 상기 n개의 배터리 랙들의 충전 상태(state of charge (SOC))를 더 포함하고,
    상기 일반 모드에서의 상기 n개의 배터리 랙들 각각에 대한 방전 전력은,
    Figure PCTKR2020010944-appb-img-000017
    (여기서, P B는 n개의 배터리 랙들의 총 방전 전력이고, P Bi는 i번째 배터리 랙의 방전 전력이고, SOC i는 i번째 배터리 랙의 SOC이고, Q i는 i번째 배터리 랙의 방전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이고, Q Ri i번째 배터리 랙의 유보 용량이고, P B는 배터리 랙들의 총 방전 전력임)
    에 따라 계산되는,
    전력 충방전 장치.
  5. 제1항에 있어서,
    상기 비상 모드에서의 상기 n개의 배터리 랙들 각각에 대한 방전 전력은,
    Figure PCTKR2020010944-appb-img-000018
    (여기서, P B는 n개의 배터리 랙들의 총 방전 전력이고, P Bi는 i번째 배터리 랙의 방전 전력이고, SOC i는 i번째 배터리 랙의 SOC이고, SOH i는 i번째 배터리 랙의 SOC이고, DOD i는 i번째 배터리 랙의 SOC이고, P B는 배터리 랙들의 총 방전 전력임)
    에 따라 계산되는,
    전력 충방전 장치.
  6. 제1항에 있어서, 상기 전력 변환 장치는,
    AC/DC 컨버터; 및
    상기 n개의 배터리 랙들과 연결된 복수 개의 제1DC/DC 컨버터들을 포함하는,
    전력 충방전 장치.
  7. n개(n은 2이상의 자연수)의 배터리 랙들을 이용하여 전력 충방전을 수행하는 방법에 있어서,
    상기 n개의 배터리 랙들 각각의 상태 정보에 기초하여 상기 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 단계; 및
    결정된 충방전 전력에 기초하여 상기 n개의 배터리 랙들을 충방전하는 단계를 포함하고,
    상기 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 단계는,
    일반 모드에서, 상기 n개의 배터리 랙들의 유보 용량이 소진되지 않도록 상기 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 단계; 및
    비상 모드에서, 상기 n개의 배터리 랙들의 유보 용량이 소진되도록 상기 n개의 배터리 랙들 각각에 대한 충방전 전력을 결정하는 단계를 포함하고,
    상기 상태 정보는,
    상기 n개의 배터리 랙들의 용량, 잔존 수명(state of health (SOH)) 및 방전 심도(depth of discharge (DOD))를 포함하고,
    상기 일반 모드에서의 상기 n개의 배터리 랙들 각각에 대한 충방전 전력은,
    Figure PCTKR2020010944-appb-img-000019
    (여기서, P B는 n개의 배터리 랙들의 총 전력이고, P Bi는 i번째 배터리 랙의 전력이고, Q i는 i번째 배터리 랙의 충방전 용량이고, SOH i는 i번째 배터리 랙의 SOH이고, DOD i는 i번째 배터리 랙의 DOD이고, Q Ri는 i번째 배터리 랙의 유보 용량임)
    에 따라 계산되는,
    전력 충방전을 수행하는 방법.
  8. 제7항에 있어서,
    상기 방법은,
    부하에서 요구되는 부하 전력에 기초하여 상기 n개의 배터리 랙들의 충방전 여부를 일차적으로 결정하는 단계; 및
    발전 시스템으로부터 공급되는 발전 전력에 기초하여 상기 n개의 배터리 랙들의 충방전 여부를 이차적으로 결정하는 단계를 더 포함하는,
    전력 충방전을 수행하는 방법.
  9. 제7항에 있어서,
    상기 비상 모드에서의 상기 n개의 배터리 랙들 각각에 대한 방전 전력은,
    Figure PCTKR2020010944-appb-img-000020
    (여기서, P B는 n개의 배터리 랙들의 총 방전 전력이고, P Bi는 i번째 배터리 랙의 방전 전력이고, SOC i는 i번째 배터리 랙의 SOC이고, SOH i는 i번째 배터리 랙의 SOC이고, DOD i는 i번째 배터리 랙의 SOC이고, P B는 배터리 랙들의 총 방전 전력임)
    에 따라 계산되는,
    전력 충방전을 수행하는 방법.
PCT/KR2020/010944 2019-08-20 2020-08-18 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템 WO2021034066A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0101901 2019-08-20
KR1020190101901A KR102100104B1 (ko) 2019-08-20 2019-08-20 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템

Publications (1)

Publication Number Publication Date
WO2021034066A1 true WO2021034066A1 (ko) 2021-02-25

Family

ID=70291631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010944 WO2021034066A1 (ko) 2019-08-20 2020-08-18 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템

Country Status (2)

Country Link
KR (1) KR102100104B1 (ko)
WO (1) WO2021034066A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI842119B (zh) * 2022-10-07 2024-05-11 順達科技股份有限公司 充電系統、電壓控制裝置及其電壓控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100104B1 (ko) * 2019-08-20 2020-04-14 (주)피앤이이노텍 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140084917A (ko) * 2012-12-27 2014-07-07 주식회사 포스코아이씨티 전력 관리 시스템
KR20150098120A (ko) * 2014-02-19 2015-08-27 세방전지(주) 무정전 전원기능을 갖는 계통연계형 대용량 에너지저장시스템 및 그 제어방법
JP2016082610A (ja) * 2014-10-10 2016-05-16 株式会社デンソー 蓄電池装置
KR101622511B1 (ko) * 2015-02-11 2016-05-18 엘에스산전 주식회사 배터리 에너지 저장 시스템을 포함하는 전력 공급 시스템
KR101923958B1 (ko) * 2018-08-17 2018-11-30 박훈양 배터리 랙들 각각의 상태에 기초하여 상기 배터리 랙들을 충방전하는 전력 관리 장치 및 이를 포함하는 에너지 저장 시스템
KR102100104B1 (ko) * 2019-08-20 2020-04-14 (주)피앤이이노텍 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101299269B1 (ko) 2011-12-30 2013-08-23 주식회사 포스코아이씨티 배터리 에너지 저장 시스템
KR102400501B1 (ko) * 2015-09-24 2022-05-20 삼성에스디아이 주식회사 무정전 전원 공급장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140084917A (ko) * 2012-12-27 2014-07-07 주식회사 포스코아이씨티 전력 관리 시스템
KR20150098120A (ko) * 2014-02-19 2015-08-27 세방전지(주) 무정전 전원기능을 갖는 계통연계형 대용량 에너지저장시스템 및 그 제어방법
JP2016082610A (ja) * 2014-10-10 2016-05-16 株式会社デンソー 蓄電池装置
KR101622511B1 (ko) * 2015-02-11 2016-05-18 엘에스산전 주식회사 배터리 에너지 저장 시스템을 포함하는 전력 공급 시스템
KR101923958B1 (ko) * 2018-08-17 2018-11-30 박훈양 배터리 랙들 각각의 상태에 기초하여 상기 배터리 랙들을 충방전하는 전력 관리 장치 및 이를 포함하는 에너지 저장 시스템
KR102100104B1 (ko) * 2019-08-20 2020-04-14 (주)피앤이이노텍 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI842119B (zh) * 2022-10-07 2024-05-11 順達科技股份有限公司 充電系統、電壓控制裝置及其電壓控制方法

Also Published As

Publication number Publication date
KR102100104B1 (ko) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2012043919A1 (en) Power conversion system for energy storage system and controlling method of the same
WO2019225834A1 (ko) 에너지 저장 장치와 태양광 발전을 이용한 전력 공급 제어 시스템 및 방법
WO2017043751A1 (ko) 독립형 마이크로그리드 자율제어 시스템 및 방법
WO2018056504A1 (ko) 독립형 마이크로그리드의 주파수 제어방법 및 이를 제어하는 에너지 저장장치용 전력변환장치
WO2017116087A2 (ko) 배터리 관리 장치 및 배터리 에너지 저장 시스템
WO2017082705A1 (ko) 이차 전지의 출력 파라미터를 조정하는 시스템 및 그 방법
WO2021034066A1 (ko) 무정전 전원 공급 기능을 가지는 전력 충방전 장치 및 이를 포함하는 에너지 저장 시스템
WO2012033254A1 (en) Energy storage system and controlling method of the same
WO2020122475A1 (en) Energy storage system and controlling method thereof
WO2013005875A1 (ko) 마이크로그리드용 에너지 저장장치의 협조제어 시스템 및 방법
WO2019031686A1 (ko) 에너지 저장 시스템
WO2018056505A1 (ko) 부하관리 및 무정전 전력공급 기능을 가지는 에너지저장장치의 제어방법 및 제어시스템
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2019107802A1 (ko) 에너지 저장 시스템
WO2021101012A1 (ko) 배터리 관리 시스템 및 그 제어방법
WO2019107806A1 (ko) 계층형 전력 제어 시스템
KR102198040B1 (ko) 전력 관리 장치 및 이를 포함하는 에너지 저장 시스템
WO2018216899A1 (ko) 군용 마이크로그리드 시스템
WO2022196846A1 (ko) 에너지저장시스템 계층형 관리시스템
WO2019221361A1 (ko) 전력 관리 시스템
WO2022103183A1 (ko) 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템
WO2013032147A1 (en) Data transmitting method, data transmitting apparatus, and energy storage system including the same
WO2013125909A1 (ko) 전력저장장치 스케줄링 장치 및 방법
WO2023058908A1 (ko) 태양광 시스템과 연계하는 에너지 저장 시스템 및 에너지 저장 시스템의 제어 방법
WO2023018133A1 (ko) 전력 분배 방법 및 이를 이용하는 에너지 저장 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853833

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20853833

Country of ref document: EP

Kind code of ref document: A1