WO2021034035A1 - 사각지대없이 전방위 관측이 가능한 관측장치 - Google Patents

사각지대없이 전방위 관측이 가능한 관측장치 Download PDF

Info

Publication number
WO2021034035A1
WO2021034035A1 PCT/KR2020/010854 KR2020010854W WO2021034035A1 WO 2021034035 A1 WO2021034035 A1 WO 2021034035A1 KR 2020010854 W KR2020010854 W KR 2020010854W WO 2021034035 A1 WO2021034035 A1 WO 2021034035A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
observation
rotation
coupled
rotation unit
Prior art date
Application number
PCT/KR2020/010854
Other languages
English (en)
French (fr)
Inventor
김정현
Original Assignee
김정현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김정현 filed Critical 김정현
Priority to US17/636,088 priority Critical patent/US20220291499A1/en
Publication of WO2021034035A1 publication Critical patent/WO2021034035A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight

Definitions

  • It relates to a device that observes objects moving in the sky or space, such as airplanes, drones, rockets, meteorites, satellites, and planets.
  • the celestial sphere is a very large virtual sphere set around the observer, and is a concept widely used in astronomy for the convenience of observation. Most of the celestial bodies, such as stars and galaxies, are so far away from the Earth that the observer appears to be fixed on the celestial sphere. Given that the Earth rotates, it appears to the observer that most celestial bodies move at the Earth's rotational speed. However, among celestial bodies, space objects relatively close to Earth, such as Mercury, Venus, Mars, Jupiter, Saturn, and other planets, comets, and satellites, have been observed as if moving at a different speed than the Earth's rotational speed, and have been treated as unique objects since ancient times. Became.
  • telescopes for observing space objects in a celestial sphere perform tracking observation by gradually rotating a mount that supports it at the rotational speed of the Earth, and it is largely classified into an equatorial consciousness and the theodolite type according to the method of the mount.
  • the equatorial consciousness mount is arranged toward the axis connecting the north and south poles of the celestial sphere so that the main axis of rotation is parallel to the axis of rotation of the Earth. If the main axis of rotation is rotated at the Earth's rotational speed, it is possible to track celestial objects in circular motion. There is an advantage.
  • 10-1513199'Equatorial Equator's Altitude Adjustment Device for Astronomical Telescopes' and Korean Registration Patent No. 10-1513200'Equatorial Worm Wheel Shaft Fixing Device for Astronomical Telescopes' disclose equatorial consciousness mounts.
  • the conventional equatorial conscious mount has a limitation in that observation is difficult because the angle at which the mount is actually rotated increases as compared to the celestial angular distance as the object to be observed is closer to the north or south pole of the celestial sphere where the main axis of rotation is directed.
  • the theodolite mount is a structure that sets the observation direction of the telescope at an azimuth angle rotated by a rotation axis perpendicular to the ground and an altitude angle between 0 and 90 degrees from the ground to the ceiling, and has a mechanically simple and intuitive advantage.
  • These theodolites are applied to large astronomical telescopes installed in research facilities such as observatories, and astronomical objects are tracked and observed under computer control.
  • Korean Patent Registration No. 10-1069258 which is a prior art,'mechanical stopper device of a police woman type large-diameter optical telescope mount' discloses a policeman-type mount.
  • the conventional theodolite mount also has a limitation in that observation is difficult because the angle at which the mount is actually rotated increases compared to the angular distance of the celestial sphere as the object to be observed gets closer to the ceiling portion facing the main rotation axis (azimuth angle axis).
  • one axis of the mount is instantaneously at a maximum of 180 degrees or more. Since a situation that must be rotated may occur, a fast flying object such as a satellite or missile having such an orbit cannot be continuously tracked, resulting in a problem that is missed in the observation field.
  • the present invention was conceived to solve the above-described problem, since the two rotation axes for rotating the observation unit do not intersect at different heights, unlike the existing equatorial consciousness or theodolite ceremony, there is no blind spot, which is a section requiring rapid rotation of the mount. Its purpose is to provide an observation device capable of continuously tracking all observational objects of high speed such as satellites and rockets from low speed observation objects such as planets. It is not limited to the technical problem as described above, and another technical problem may be derived from the following description.
  • An observation apparatus for tracking and measuring an observation object by rotating an observation unit, comprising: a support unit having at least one side surface; And one end is coupled to the support unit through a first shaft rotation unit having a rotation axis perpendicular to the side, the other end is coupled to the observation unit through a second axis rotation unit having a rotation axis perpendicular to the rotation axis of the first axis rotation unit.
  • a rotation unit formed in a shape that is disposed at different heights so that the second shaft rotation part does not intersect with the first shaft rotation part, and the observation unit is clockwise or halfway in the horizontal direction by the first shaft rotation part. It is rotated in a clockwise direction, and the vertical inclination is varied by the second shaft rotation part to perform omnidirectional observation, and the observation object may be continuously tracked by the operation of the first shaft rotation part and the second shaft rotation part.
  • the rotation unit may include a crossbar coupled to the first shaft rotation unit in a direction perpendicular to a side surface of the support unit; And a vertical bar coupled to the cross bar in a direction crossing a point of the cross bar.
  • the rotating unit further includes a connection joint formed at an intersection point of the crossbar and the vertical bar, and the connection joint is fixedly coupled to the crossbar and the vertical bar at an arbitrary position so that the fixed position of the observation unit is changed.
  • the intersection point of the vertical bars may be varied.
  • the crossbar is formed in the form of a pair of rods spaced at a predetermined interval, and is coupled to the opposite side of the vertical surface of the support unit among both sides of the first shaft rotation part in parallel with the floor, and the vertical bars are respectively It is formed in the form of a pair of rods vertically coupled to, it is possible to reduce the vibration of the observation unit.
  • the support unit includes a plate-shaped base portion and a pair of body portions formed at predetermined intervals on an upper portion of the base portion, and the crossbar of the rotation unit is a state in which the first shaft rotation portion is coupled to each end. It may be disposed between the pair of body parts and rotatably coupled to the support unit.
  • the second axial rotation unit is a first axial rotation unit such that the second axial rotation unit whose inclination angle of the observation unit is changed and the first axial rotation unit whose rotation is changed in a clockwise or counterclockwise direction of the observation unit are non-intersecting each other.
  • FIG. 1 is a perspective view of an observation device according to an embodiment of the present invention.
  • FIG. 2 is an assembly diagram of the observation device shown in FIG. 1.
  • FIG. 3 is a diagram illustrating a state in which the observation unit 10 rotates when the first shaft rotation unit 30 of the observation device shown in FIG. 1 is operated.
  • FIG. 4 is a diagram illustrating a state in which the observation unit 10 rotates when the second shaft rotation unit 50 of the observation device shown in FIG. 1 is operated.
  • FIG. 5 is a perspective view of an observation device according to another embodiment of the present invention.
  • observation device capable of omnidirectional observation because there are no blind spots that are difficult to observe unlike the existing equatorial consciousness or theodolite consciousness, and both have a rotating structure capable of continuous tracking at low and high speed.
  • observation device capable of omnidirectional observation without such a blind spot will be briefly referred to as a “observation device”.
  • FIG. 1 is a perspective view of an observation device according to an embodiment of the present invention
  • FIG. 2 is an assembly view of the observation device shown in FIG. 1
  • FIG. 3 is a first axis rotating part 30 of the observation device shown in FIG. Is a state diagram in which the observation unit 10 rotates when the observation unit 10 is operated
  • FIG. 4 is a diagram illustrating a state in which the observation unit 10 rotates when the second shaft rotation unit 50 of the observation apparatus shown in FIG. 1 is operated.
  • the observation device according to the present embodiment includes an observation unit 10, a support unit 20, a first axis rotation unit 30, a second axis rotation unit 50, and a rotation unit 40. ).
  • This embodiment may be installed parallel to the ground, as well as installed on the rear surface of an airplane to check a low-altitude vehicle at high altitude, or as a satellite payload, facing the earth for real-time earth observation. Since the concept of height is meaningless in space, the meaning that the second axis rotation unit is disposed higher than the first axis rotation unit means that the observation unit is disposed so that the view is not limited by the first axis rotation unit.
  • the observation unit 10 refers to a configuration for receiving observation data, such as an image of light emitted or reflected by an object to be observed.
  • the observation unit 10 is a term collectively referring to a configuration for detecting optical data, and a telescope barrel for receiving visible light according to the type of optical data, an antenna for receiving external radio waves, and a laser receiver for receiving a laser transmitted from a satellite. Can be.
  • FIGS. 1 to 4 it is simply expressed as a cylindrical barrel, but is not limited thereto. Therefore, the observation unit 10 is shown on the basis of a generally cylindrical barrel and a finder coupled thereto, and in actual implementation, a device for receiving their observation data as a separate electronic image signal may be further combined. have.
  • the support unit 20 is a configuration in which the rotation unit 40 is rotatably coupled, and the observation unit 10 is configured to support the entire structure so that the observation unit 10 can be stably rotated and observed. Therefore, the support unit 20 is preferably made of a material for minimizing vibration generated by the rotation of the rotating unit 40 or is firmly fixed to a separate structure such as the ground, a mobile vehicle, an airplane or an artificial satellite.
  • the support unit 20 is composed of a base portion 21 and a body portion 22.
  • the support unit 20 shown in FIGS. 1 to 4 is implemented in a form that minimizes vibration due to the rotational operation of the rotating unit 40 or the observation unit 10 as the overall external shape is formed in a lateral cross-section as an example. It could be.
  • the base portion 21 is coupled with the body portion 22 to stably fix the entire structure.
  • a square having a predetermined thickness as shown in FIGS. 1 to 4 It may be a flat plate shape, but is not limited thereto.
  • the base part 21 may be fixedly installed on the floor of the observatory or the top of the tripod by a separate configuration such as an anchor and a bolt so that the observation device is stably supported.
  • the base portion 21 may simply mean a support surface of the body portion 22, and the body itself, such as a mobile vehicle, a trailer, an airplane, or an artificial satellite, is formed integrally with the base portion 21 Can be
  • the body part 22 is provided with a first shaft rotation part 30 through which the rotation unit 40 can rotate in a clockwise or counterclockwise direction.
  • the body part 22 shown in FIGS. 1 to 4 is formed perpendicularly to the upper surface of the base part 21 as an example, and may be implemented in a form in which the first shaft rotation part 30 is installed on the vertical side. .
  • the body portion 22 and the base portion 21 may be coupled by a hinge or a shaft so as to maintain the coupled state at various angles, not necessarily vertical.
  • the body part 22 is properly designed so that the upper part thereof does not obstruct the view of the observation unit 10 and the distance between the portion where the first shaft rotation part 30 is installed and the upper end of the body part 22 is properly designed. Additionally, an electric motor 23 for rotating the first shaft rotation unit 30 and a control circuit for controlling the first shaft rotation unit 30 may be incorporated in the body 22.
  • the rotation unit 40 is coupled with the support unit 20 through a first shaft rotation unit 30 having one end perpendicular to the side surface of the support unit 20, and the other end of the rotation axis of the first shaft rotation unit 30 It is a connection configuration that is coupled to the observation unit 10 through a second shaft rotation unit 50 having a rotation axis perpendicular to and.
  • each of the first shaft rotation unit 30 and the second axis rotation unit 40 is disposed at a different height in the rotation unit 40 so that the first axis rotation unit 30 and the second axis rotation unit 40 do not cross each other. do.
  • the rotation unit 40 includes a crossbar 41 coupled to the first shaft rotation unit 30 in a direction perpendicular to the side surface of the support unit 20, and a vertical bar formed in a direction intersecting with the longitudinal direction of the crossbar 41 ( 42).
  • the observation unit 10 is coupled to the upper part of the vertical bar 42 so that the upper and lower levels are changed through the second shaft rotating part 50.
  • the rotating unit 40 shown in FIGS. 1 to 4 may have a “ ⁇ ” shape in which the crossbar 41 and the vertical bar 42 are perpendicular to each other as an example.
  • the crossbar 41 and the vertical bar 42 may each be implemented in the form of a single bar, and the crossbar 41 and the vertical bar 42 may be integrally implemented as needed.
  • the crossbar 41 is formed in the form of a pair of rods spaced at a predetermined interval, and the vertical bar 42 is vertically coupled to each of the pair of crossbars 41. It can be formed in the form of a pair of rods. In this way, when the crossbar 41 and the vertical bar 42 are formed in the form of a pair of rods, it is possible to minimize the shaking by dispersing the vibration generated during rotation.
  • connection joint 43 is arranged at the intersection of the crossbar 41 and the vertical bar 42 to connect the crossbar 41 and the vertical bar 42.
  • the coupling positions of the crossbar 41 and the vertical bar 42 may be variable, so that the horizontal position or the vertical height of the observation unit 10 may be changed.
  • the connection joint 43 may have a structure in which both the crossbar 41 and the vertical bar 42 are passed through and fastened by bolts.
  • the connecting joint 43 is a structure in which a portion through which the cross bar 41 is penetrated and a portion through which the vertical bar 42 is penetrated are segmented to rotate with each other, and the cross bar 41 and the vertical bar 42 are at various angles. You can keep the bonded state.
  • the first shaft rotation unit 30 is formed in the shape of a square box through which a shaft is rotatably formed, and a crossbar 41 is coupled to one side.
  • the first shaft rotation unit 30 may be equipped with a rotation motor to enable electronic control. As shown in FIG. 3, when the first shaft rotation unit 30 is rotated, the observation unit 10 is rotated clockwise or counterclockwise about a rotation axis parallel to the horizontal direction.
  • the second axis rotation unit 50 is coupled to the side of the observation unit 10 so that the top and bottom of the observation unit 10 is variable, and rotates in a direction perpendicular to the rotation axis of the first axis rotation unit 30.
  • the second shaft rotation unit 50 may also be equipped with a rotation motor to enable electronic control like the first shaft rotation unit 30. As shown in FIG. 4, when the second shaft rotation unit 50 is rotated, the observation unit 10 is rotated up and down so that the inclination is changed.
  • the structure positioned at a different height means that the second shaft rotation part 50 is disposed higher than the first shaft rotation part 30 as in the embodiments shown in FIGS. 1 to 4 in order to be mounted on the ground or a mobile vehicle.
  • the second axis rotation unit 50 is lower than the first axis rotation unit 30 by inverting the embodiment shown in FIGS. Means to be placed.
  • the support unit 20 does not obstruct the view of the horizon portion because the structure does not intersect the two rotation axes as in the existing equatorial consciousness or theodolite ceremony, and the observation is performed without a special blind spot even at the north pole or south pole of the celestial sphere or at the ceiling. can do.
  • the user may perform observation by arranging the present embodiment so that the rotation axis of the first axis rotation unit 50 matches the line between the north and south poles of the celestial sphere at the observation point, but is not limited thereto. Since continuous observation is possible by simultaneously controlling the rotation unit 30 and the second axis rotation unit 50, there is an advantage that there is no limitation in the installation direction of the support unit 20.
  • the rotation angle of the actually rotating mount increases in proportion to the tangent value compared to the celestial angular distance, and objects passing through the area are tracked. In order to do so, there may be a case where the mount must be rotated 180 degrees instantaneously depending on the trajectory of the object, so continuous tracking is impossible.
  • the theodolite observation device is the same that the rotation angle of the mount that is actually rotated is sharply increased in proportion to the tangent value compared to the angular distance on the celestial sphere when it is directed toward the Zenith part parallel to the main rotation axis (azimuth axis) that rotates all 360 degrees.
  • the rotation angle of the mount that is actually rotated is sharply increased in proportion to the tangent value compared to the angular distance on the celestial sphere when it is directed toward the Zenith part parallel to the main rotation axis (azimuth axis) that rotates all 360 degrees.
  • the conventional Korean Patent No. 10-1513199'Equatorial Equator's Altitude Adjustment Device for Astronomical Telescopes' and Korean Registered Patent No. 10-1513200'Equator's Worm Wheel Shaft Fixing Device for Astronomical Telescopes' disclose the equatorial consciousness mount.
  • Republic of Korea Patent Registration No. 10-1069258'mechanical stopper device of the policeman type large-diameter optical manometer mount' discloses a theodolite type mount.
  • Such conventional equatorial consciousness and theodolite mount structure has a problem in that it is difficult to observe the part facing the main rotation axis (the north pole or ceiling of the celestial sphere), and it is required to rapidly rotate the mount according to the trajectory of the object passing through the main rotation axis, making continuous observation impossible. Therefore, it can be seen that in order to continuously observe everything from low-speed observation objects such as stars, galaxies, and planets to high-speed observation objects such as satellites and rockets, a new type of mount structure is required rather than the existing equator and theodolite.
  • the observation device according to the present embodiment is composed of an observation unit 10, a support unit 20, a first axis rotation unit 30, a second axis rotation unit 50, and a rotation unit 40.
  • both ends of the rotating unit 40 are coupled to the support unit 20, it has a stable and robust structure compared to the embodiment shown in FIGS. 1 to 4.
  • a pair of body portions 22 are formed on the upper surface of the flat base portion 21 and the rotation unit 40 is rotatably coupled between the pair of body portions 22.
  • the crossbar 41 of the rotation unit 40 is rotatably coupled with a pair of body portions 22 through the first shaft rotation portion 30, and vertical bars coupled to the crossbar 41 at each end. It is formed with 42. That is, the rotation unit 40 is formed in the shape of a “ ⁇ ” side and is rotatably coupled to the body 22 through the first shaft rotation unit 30 at both ends of the crossbar 41 of the rotation unit 40 Has been. Due to this structure, vibration generated when the observation unit 10 rotates can be greatly reduced.
  • a balancing means having a weight proportional to the mass of the observation unit 10 is further provided at the lower end of the rotation unit 40 opposite the observation unit 10 in order to stably rotate the observation unit 10 It can be installed to reinforce weight balance. In places where gravity acts like Mars or the Moon, as well as Earth, an appropriate weight compensation is required to rotate the observation device.
  • a representative example of such a balancing means may consist of a straight central rod and a weight through which the central rod is penetrated. . The user may variably install the weight along the central rod so that the observation unit 10 and the balance means are in balance.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Telescopes (AREA)

Abstract

관측유닛(10)을 회전시켜 관측대상을 추적하며 측정하는 관측장치에 있어서, 일단이 지지유닛(20)의 측면과 수직한 회전축을 가진 제 1 축 회전부(30)를 통해 지지유닛(20)과 결합되고, 타단이 제 1 축 회전부(30)의 회전축과 수직한 회전축을 가진 제 2 축 회전부(50)를 통해 관측유닛(10)과 결합된 회전유닛(40)으로 구성되어 관측이 어려운 사각지대가 존재하지 않고, 동시에 회전축을 급히 회동할 필요가 없기 때문에 천체나 행성과 같은 저속의 관측대상부터 인공위성, 로켓과 같은 고속의 관측대상까지 연속으로 관측할 수 있다.

Description

사각지대없이 전방위 관측이 가능한 관측장치
비행기, 드론, 로켓, 운석, 인공위성, 행성과 같이 하늘이나 우주에서 움직이는 물체를 관측하는 장치에 관한 것이다.
천구(天球)란 관측자를 중심으로 설정한 가상의 매우 큰 구체로써 관측의 편의를 위해 천문학에 널리 사용되고 있는 개념이다. 별이나 은하같은 천체 중 대부분은 지구와 매우 멀리 떨어져있기 때문에 관측자의 입장에서는 마치 천구에 고정되어있는 것처럼 보인다. 지구가 자전되는 점을 고려하면, 관측자에게는 대부분의 천체가 지구의 자전속도로 움직이는 것처럼 보이게 된다. 단, 천체 중 상대적으로 지구와 가까운 우주물체 예를 들어, 수성, 금성, 화성, 목성, 토성 등의 행성이나 혜성, 인공위성은 지구의 자전속도와 다른 속도로 움직이는 것처럼 관측이 되어 고대부터 독특한 대상으로 취급되었다.
현대에 와서 지구 궤도에서 대기권을 넘나드는 우주위험물체, 인공위성, 로켓 등의 대상이나 비행기, 순항미사일과 같이 대기권에서 비행하는 물체는 천체와는 전혀 별개의 궤도와 속도를 가지게 되어 별도의 추적 관측장비가 요구되고 있다. 또한 드론과 같은 소형 저고도 비행체는 레이더로 검출이 어려우므로 새로운 감시 방식의 필요성이 높아지고 있다.
일반적으로, 천구의 우주물체를 관측하는 망원경은 이를 받치는 가대(mount)가 지구의 자전속도로 서서히 회전됨으로써 추적관측을 수행하는데, 가대(mount)의 방식에 따라 크게 적도의식과 경위대식으로 분류된다. 적도의식 가대는 주 회전축이 지구의 자전축과 평행하도록 천구의 북극과 남극을 잇는 축을 향해 배치된 것으로 지구의 자전속도로 주 회전축을 회전시키면 일주운동을 하는 천체를 추적할 수 있기에 지구에서 먼 천체를 장시간 관측하기 유리한 장점이 있다. 종래기술인 대한민국 등록특허 제10-1513199호 ‘천체망원경용 적도의의 고도조절장치’및 대한민국 등록특허 제10-1513200호 ‘천체망원경용 적도의의 웜휠샤프트 고정장치’는 적도의식 가대를 개시하고 있다. 이러한 종래의 적도의식 가대는 관측대상이 주 회전축이 향하는 천구의 북극 또는 남극지역에 가까워질수록 천구상의 각거리에 비해 실제 가대가 회전되어야 하는 각도가 증가하게 되어 관측이 어려운 한계가 있다.
경위대식 가대는 지면과 수직한 회전축으로 회전되는 방위각과 지면에서 천정까지 0~90도 사이의 고도각으로 망원경의 관측방향을 설정하는 구조로써 기계적으로 단순하고 직관적인 장점이 있다. 이러한 경위대식은 천문대와 같은 연구용 시설물에 설치되는 대형 천체망원경에 적용되기도 하며, 컴퓨터의 제어에 의해 천체를 추적관측하기도 한다. 종래기술인 대한민국 등록특허 제10-1069258호‘경위대 방식 대구경 광학망원경 마운트의 기계적 스톱퍼장치’는 경위대식 가대를 개시하고 있다. 이러한 종래의 경위대식 가대 또한 관측대상이 주 회전축(방위각축)이 향하는 천정 부분에 가까워질수록 천구상의 각거리에 비해 실제 가대가 회전되어야 하는 각도가 증가하게 되어 관측이 어려운 한계가 있다.
정리하면, 종래의 적도의식이나 경위대식 모두 주 회전축이 향하는 천구의 극지역이나 천정 인근(이하 ‘사각지대’로 통칭한다.)을 관통하는 대상을 관측할 경우 순간적으로 가대의 한 축이 최대 180도 이상 급격히 회전되어야 하는 상황이 발생할 수 있으므로 그러한 궤도를 갖는 인공위성이나 미사일과 같은 빠른 비행물체는 연속추적이 불가능하여 관측시야에서 놓치는 문제가 발생한다.
따라서, 별, 은하, 행성과 같은 천구상에 고정된 것처럼 보이는 저속의 관측대상부터 인공위성, 로켓, 드론과 같은 천구의 회전과 전혀 상이한 궤도를 갖는 고속의 관측대상까지 모두 관측하려면 기존의 적도의식과 경위대식이 아닌 새로운 방식의 가대구조가 필요하다 볼 수 있다. 본 발명의 발명가는 이러한 종래의 문제점과 필요성을 해결하기 위해 새로운 방식의 가대를 오랫동안 연구하여 본 발명을 완성하게 되었다.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 관측유닛을 회전시키는 두 회전축이 서로 다른 높이로 교차되지 않음으로써 기존의 적도의식이나 경위대식과 달리 가대의 급회전이 필요한 구간인 사각지대가 없어 천체나 행성과 같은 저속의 관측대상부터 인공위성, 로켓과 같은 고속의 관측대상을 모두 연속추적할 수 있는 관측장치를 제공하는 것을 그 목적으로 한다. 상기된 바와 같은 기술적 과제로 한정되지 않으며 이하의 설명으로부터 또 다른 기술적 과제가 도출될 수도 있다.
본 발명의 일 측면에 따른 관측장치는, 관측유닛을 회전시켜 관측대상을 추적하며 측정하는 관측장치에 있어서, 적어도 하나의 측면을 갖는 지지유닛; 및 일단이 측면과 수직 한 회전축을 가진 제 1 축 회전부를 통해 상기 지지유닛과 결합되고, 타단이 상기 제 1 축 회전부의 회전축과 수직 한 회전축을 가진 제 2 축 회전부를 통해 상기 관측유닛과 결합 되며, 상기 제 2 축 회전부가 상기 제 1 축 회전부와 교차되지 않도록 서로 상이한 높이에 배치되는 형태로 형성된 회전유닛을 포함하고, 상기 관측유닛은 상기 제 1 축 회전부에 의해 가로방향을 축으로 시계 또는 반시계 방향으로 회동되고, 상기 제 2 축 회전부에 의해 상하 기울기가 가변되어 전방위 관측을 하고, 상기 제 1 축 회전부 및 상기 제 2 축 회전부의 작동에 의해 관측대상을 연속추적할 수 있다.
상기 회전유닛은, 상기 지지유닛의 측면에 수직한 방향으로 상기 제 1 축 회전부에 결합된 가로대; 및 상기 가로대의 일지점에 교차되는 방향으로 상기 가로대와 결합된 세로대를 포함할 수 있다.
상기 회전유닛은, 상기 가로대와 상기 세로대의 교차지점에 형성된 연결조인트를 더 포함하고, 상기 연결조인트는 상기 관측유닛의 고정위치가 변경되도록 상기 가로대 및 상기 세로대에 임의 위치에 고정결합되어 상기 가로대와 상기 세로대의 교차지점이 가변될 수 있다.
상기 가로대는 일정 간격 이격된 한 쌍의 봉 형태로 형성되어, 상기 제 1 축 회전부의 양 측면 중 상기 지지유닛의 수직한 면의 반대면에 바닥과 평행하게 결합되고, 상기 세로대는 상기 가로대의 각각에 수직하게 결합된 한 쌍의 봉 형태로 형성되어, 상기 관측유닛의 진동을 감소시킬 수 있다.
상기 지지유닛은 판형태의 베이스부 및 상기 베이스부의 상부에 일정 간격 이격되게 형성된 한 쌍의 바디부를 포함하고, 상기 회전유닛의 가로대는 각 끝단에 상기 제 1 축 회전부가 결합되어 있는 상태로 상기 한 쌍의 바디부 사이에 배치되어 상기 지지유닛과 회전가능하게 결합될 수 있다.
본 발명은, 관측유닛의 경사각이 변경되는 제 2 축 회전부와 관측유닛의 시계 또는 반시계 방향으로 회전이 변경되는 제 1 축 회전부가 서로 비(非)교차되도록 제 2 축 회전부가 제 1 축 회전부보다 높이 배치됨으로써, 종래의 적도의식이나 경위대식과 달리 관측이 어려운 사각지대가 존재하지 않는 전방위 관측이 가능하며, 사각지대를 관통하는 대상을 추적하기 위해 가대의 급회전이 필요 없기에 저속의 관측대상부터 고속의 관측대상까지 연속으로 추적관측을 할 수 있다.
도 1은 본 발명의 일 실시예에 따른 관측장치의 사시도이다.
도 2는 도 1에 도시된 관측장치의 조립도이다.
도 3은 도 1에 도시된 관측장치의 제 1 축 회전부(30)가 작동할 때 관측유닛(10)이 회전되는 상태도이다.
도 4는 도 1에 도시된 관측장치의 제 2 축 회전부(50)가 작동할 때 관측유닛(10)이 회전되는 상태도이다.
도 5는 본 발명의 다른 실시예에 따른 관측장치의 사시도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 이하에서 설명되는 실시예는 기존의 적도의식이나 경위대식과 달리 관측이 어려운 사각지대가 존재하지 않기에 전방위 관측이 가능하며 저속/고속의 관측대상 모두 연속추적이 가능한 회전구조를 가진다. 이하에서는 이러한 사각지대없이 전방위 관측이 가능한 관측장치를 간략하게 “관측장치”라 약칭한다.
도 1은 본 발명의 일 실시예에 따른 관측장치의 사시도이고, 도 2는 도 1에 도시된 관측장치의 조립도이고, 도 3은 도 1에 도시된 관측장치의 제 1 축 회전부(30)가 작동할 때 관측유닛(10)이 회전되는 상태도이고, 도 4는 도 1에 도시된 관측장치의 제 2 축 회전부(50)가 작동할 때 관측유닛(10)이 회전되는 상태도이다. 도 1 내지 도 4를 참고하면, 본 실시예에 따른 관측장치는 관측유닛(10), 지지유닛(20), 제 1 축 회전부(30), 제 2 축 회전부(50), 및 회전유닛(40)으로 구성된다.
본 실시예는 지면에 평행하게 설치되는 것은 물론 고고도에서 저고도 비행체를 확인하기 위해 비행기의 배면에 설치하거나 위성 탑재체로서 실시간 지구관측을 위해 지구를 바라보는 방향으로 설치될 수 있다. 높이의 개념은 우주에서 무의미하므로 제 1 축 회전부보다 제 2 축 회전부가 높이 배치된다는 것의 의미는 관측유닛이 제 1 축 회전부에 의해 시야를 제한받지 않도록 배치된다는 것을 의미한다.
관측유닛(10)은 관측대상이 발광하거나 반사하는 빛의 이미지 등 관측데이터를 수신하는 구성을 의미한다. 관측유닛(10)는 광학데이터를 검출하는 구성을 통칭하는 용어로써, 광학데이터의 종류에 따라 가시광선을 수신하는 망원경의 경통, 외부 전파를 수신하는 안테나, 위성으로부터 전송된 레이저를 수신하는 레이저수신기가 될 수 있다. 이하에서는 설명의 편의상 도 1 내지 도 4에 도시된 바와 같이 간략하게 원기둥 형태의 경통으로 표현하는 것으로 이에 한정되지 않는다. 따라서, 관측유닛(10)은 통상적으로 원기둥 형태의 경통과 그 주변에 결합된 파인더를 기준으로 도시하였으며, 실제 구현 시 이들의 관측데이터를 별도의 전자영상신호로 수신하기 위한 장치가 더 결합될 수 있다.
지지유닛(20)은 회전유닛(40)이 회전가능하게 결합되는 구성으로, 관측유닛(10)이 안정적으로 회전되며 관측할 수 있도록 구조물 전체를 지지하는 구성이다. 따라서, 지지유닛(20)은 회전유닛(40)의 회전에 의해 발생된 진동을 최소화하기 위한 재질로 구성되거나 지면, 이동식 차량, 비행기나 인공위성 같은 별도의 구조물에 견고히 고정설치됨이 바람직하다.
상세하게, 지지유닛(20)은 베이스부(21) 및 바디부(22)로 구성된다. 도 1 내지 도 4에 도시된 지지유닛(20)은 그 일 예시로써 전체적인 외형이 측단면‘자로 형성되어 회전유닛(40)이나 관측유닛(10)의 회전작동에 의한 진동을 최소화하는 형태로 구현될 수도 있다.
베이스부(21)는 바디부(22)와 결합되어 구조물 전체를 안정적으로 고정시키는 구성으로, 베이스부(21)의 대표적인 예시로는 도 1 내지 도 4에 도시된 바와 같이 소정의 두께를 갖는 사각 평판 형태일 수 있으며 반드시 이에 한정되지 않는다. 베이스부(21)는 관측장치가 안정적으로 지지되도록 앵커, 볼트와 같은 별도의 구성에 의해 관측소의 바닥, 삼각대의 상부 등에 고정설치될 수 있다. 더하여, 필요에 따라서 베이스부(21)는 단순히 바디부(22)의 지지면을 의미하는 것일 수 있으며, 이동식 차량, 트레일러, 비행기, 인공위성 등의 몸체 자체가 베이스부(21)와 일체형으로 형성된 형태일 수 있다.
바디부(22)는 회전유닛(40)이 시계 또는 반시계 방향으로 회전가능하도록 제 1 축 회전부(30)가 관통설치되어 있다. 도 1 내지 도 4에 도시된 바디부(22)는 그 일 예시로써 베이스부(21)의 상면에 수직하게 형성되며 수직한 측면에 제 1 축 회전부(30)가 설치되는 형태로 구현될 수 있다. 더하여, 도시되지는 않았으나 바디부(22)와 베이스부(21)는 반드시 수직이 아닌 다양한 각도로 결합상태를 유지할 수 있도록 힌지나 샤프트에 의해 결합될 수 있다.
바디부(22)는 그 상부가 관측유닛(10)의 시야를 방해하지 않도록 제 1 축 회전부(30)가 설치된 부분과 바디부(22)의 상부 끝단 사이의 간격을 적절하게 설계됨이 바람직하다. 추가로, 바디부(22)의 내부는 제 1 축 회전부(30)를 회전시키는 전동모터(23)와 이를 컨트롤하기 위한 제어회로가 내장될 수 있다.
회전유닛(40)은 일단이 지지유닛(20)의 측면과 수직한 회전축을 가진 제 1 축 회전부(30)를 통해 지지유닛(20)과 결합되고, 타단이 제 1 축 회전부(30)의 회전축과 수직한 회전축을 가진 제 2 축 회전부(50)를 통해 관측유닛(10)과 결합되어 있는 연결구성이다. 특히, 제 1 축 회전부(30)와 제 2 축 회전부(40)가 서로 교차되지 않도록 제 1 축 회전부(30) 및 제 2 축 회전부(40) 각각은 회전유닛(40)에서 서로 상이한 높이에 배치된다.
구체적으로, 회전유닛(40)은 지지유닛(20)의 측면과 수직한 방향으로 제 1 축 회전부(30)에 결합된 가로대(41), 가로대(41)의 길이방향과 엇갈리는 방향으로 형성된 세로대(42)로 구성된다. 관측유닛(10)은 세로대(42)의 상부에 제 2 축 회전부(50)를 통해 상하기울기가 변경되도록 결합되어 있다. 도 1 내지 도 4에 도시된 회전유닛(40)은 그 일 예로써 가로대(41)와 세로대(42)가 서로 수직한 “┘”형태일 수 있다. 가로대(41)와 세로대(42)는 각각 단일한 막대 형태로 구현될 수 있으며, 필요에 따라 가로대(41)와 세로대(42)는 일체형으로 구현될 수 있다.
또는, 도 1 내지 도 4에 도시된 바와 같이 가로대(41)는 일정 간격 이격된 한 쌍의 봉 형태로 형성되고, 세로대(42)는 한 쌍의 가로대(41)의 각각에 수직하게 결합된 한 쌍의 봉 형태로 형성될 수 있다. 이와 같이 가로대(41)와 세로대(42)가 한 쌍의 봉 형태로 형성되는 경우, 회전 시 발생되는 진동을 분산시켜 흔들림을 최소화할 수 있다.
연결조인트(43)는 가로대(41)와 세로대(42)의 교차지점에 배치되어 가로대(41)와 세로대(42)를 연결하는 구성이다. 연결조인트(43)는 가로대(41) 및 세로대(42) 각각의 결합위치가 가변될 수 있어 관측유닛(10)의 가로상 위치 또는 세로상 높이가 변경될 수 있다. 대표적으로 연결조인트(43)는 가로대(41)와 세로대(42)가 모두 관통되어 볼트에 의해 조임결합되는 구조일 수 있다. 더하여, 연결조인트(43)는 가로대(41)가 관통된 부분과 세로대(42)가 관통된 부분이 각각 분절되어 서로 회전되도록 결합된 구조로써 가로대(41)와 세로대(42)가 서로 다양한 각도로 결합상태를 유지할 수 있다.
제 1 축 회전부(30)는 샤프트가 회전가능하게 관통 형성된 사각박스 형태로 형성되며, 일측에 가로대(41)가 결합되어 있다. 제 1 축 회전부(30)는 전자 제어가 가능하도록 회전모터가 장착될 수 있다. 도 3에 도시된 바와 같이, 제 1 축 회전부(30)가 회전되면 관측유닛(10)은 가로방향과 평행한 회전축을 중심으로 시계 또는 반시계 방향으로 회전된다.
제 2 축 회전부(50)는 관측유닛(10)의 상하기울기가 가변되도록 관측유닛(10)의 측부에 결합되어 제 1 축 회전부(30)의 회전축과 수직한 방향으로 회전된다. 제 2 축 회전부(50) 또한 제 1 축 회전부(30)와 같이 전자 제어가 가능하도록 회전모터가 장착될 수 있다. 도 4에 도시된 바와 같이, 제 2 축 회전부(50)가 회전되면 관측유닛(10)은 기울기가 변경되도록 위, 아래로 회전된다.
특히, 본 실시예는 제 1 축 회전부(30)와 제 2 축 회전부(50)가 서로 상이한 높이에 위치함으로써 비(非)교차 상태가 되어 사각지대없이 관측이 가능하다. 여기서 상이한 높이에 위치하는 구조는 지면이나 이동식 차량에 장착되기 위해 도 1 내지 도 4에 도시된 실시예와 같이 제 2 축 회전부(50)가 제 1 축 회전부(30)보다 높이 배치되는 것을 의미하고, 비행기의 하면이나 지상을 관측하는 인공위성의 배면에 장착되기 위해 도 1 내지 도 4에 도시된 실시예를 상하 반전하여 거꾸로 설치됨으로써 제 2 축 회전부(50)가 제 1 축 회전부(30)보다 낮게 배치되는 것을 의미한다.
본 실시예는 기존의 적도의식이나 경위대식과 같이 두 회전축이 교차되는 구조가 아닌 점에서 지지유닛(20)이 지평선 부분의 시야를 가리지 않고, 천구의 북극이나 남극 또는 천정 부분에서도 특별한 사각지대 없이 관측을 수행할 수 있다. 제 1 축 회전부(50)와 제 2 축 회전부(50)를 동시에 제어하면 천구상의 별이나 은하와 같은 저속의 우주물체부터 인공위성이나 미사일, 드론과 같은 고속의 비행물체까지 추적하며 관측할 수 있는 장점이 있다. 사용자는 본 실시예를 제 1 축 회전부(50)의 회전축이 관측지점에서 천구의 북극과 남극을 잇는 선이 지표면에 투영되는 선과 일치되도록 배치하여 관측을 수행할 수도 있으나 반드시 이에 국한되지 않고 제 1 축 회전부(30)와 제 2 축 회전부(50)를 동시 제어함에 의해 연속관측이 가능하므로 지지유닛(20)의 설치방향에 제한이 없는 장점이 있다.
기존의 적도의식 가대는 주 회전축(적경축)과 평행한 지역을 망원경이 지향할 경우 천구상의 각거리에 비해 실제로 회전되는 가대의 회전각이 탄젠트값에 비례하여 급격히 증가되고, 그 지역을 관통하는 물체를 추적하려면 그 물체의 궤도에 따라 가대를 순간적으로 180도 회전시켜야 하는 경우가 생길 수도 있기에 연속추적이 불가능한 한계가 있다. 경위대식 관측장치는 360도를 모두 회전하는 주 회전축(방위각축)과 평행한 천정(Zenith) 부분을 지향할 경우 천구상의 각거리에 비해 실제로 회전되는 가대의 회전각이 탄젠트값에 비례하여 급격히 증가되는 동일한 한계가 있고, 천정을 지나는 물체를 추적하려면 적도의식의 한계와 동일하게 순간적으로 방위각을 180도 회전시켜야 하는 경우가 생길 수도 있기에 연속추적이 불가능한 한계가 있다.
종래기술인 대한민국 등록특허 제10-1513199호 ‘천체망원경용 적도의의 고도조절장치’및 대한민국 등록특허 제10-1513200호 ‘천체망원경용 적도의의 웜휠샤프트 고정장치’는 적도의식 가대를 개시하고 있고, 종래기술인 대한민국 등록특허 제10-1069258호‘경위대 방식 대구경 광학만원경 마운트의 기계적 스톱퍼장치’는 경위대식 가대를 개시하고 있다. 이러한 종래의 적도의식, 경위대식 가대 구조는 주 회전축이 향하는 부분(천구의 북극 또는 천정)의 관측이 어렵고 주 회전축을 통과하는 물체의 궤도에 따라 가대의 급격한 회전이 요구되어 연속관측이 불가능한 문제가 있다. 따라서, 별, 은하, 행성 같은 저속의 관측대상부터 인공위성, 로켓과 같이 고속의 관측대상까지 모두 연속적으로 관측하려면 기존의 적도의식과 경위대식이 아닌 새로운 방식의 가대구조가 필요하다 볼 수 있다.
본 실시예는 서로 비(非)교차되는 제 1 축 회전부(30)와 제 2 축 회전부(50)를 갖는 회전유닛(40)을 통해 지지유닛(20)과 관측유닛(10)을 연결함으로써, 관측이 제한되는 사각지대가 존재하지 않고, 제 1 축 회전부(30)나 제 2 축 회전부(50)를 급히 회전시켜야만 하는 영역이 없기에 저속의 물체부터 고속의 물체까지 연속 추적관측이 가능하다.
도 5는 본 발명의 다른 실시예에 따른 관측장치의 사시도이다. 도 5를 참조하면, 본 실시예에 따른 관측장치는 관측유닛(10), 지지유닛(20), 제 1 축 회전부(30), 제 2 축 회전부(50), 및 회전유닛(40)으로 구성되고, 특히 회전유닛(40)의 양단이 지지유닛(20)에 결합됨으로써 도 1 내지 도 4에 도시된 실시예에 비해 안정적이고 견고한 구조를 갖는다.
본 실시예는 평판형의 베이스부(21) 상면에 한 쌍의 바디부(22)가 형성되고 그 한 쌍의 바디부(22) 사이에 회전유닛(40)이 회전가능하게 결합된다. 상세히, 회전유닛(40)의 가로대(41)는 각 끝단이 제 1 축 회전부(30)를 통해 한 쌍의 바디부(22)와 회전가능하게 결합되고, 가로대(41)에 수직하게 결합된 세로대(42)로 형성된다. 즉, 회전유닛(40)은 측면이 “ㅗ”자 형태로 형성되며 회전유닛(40)의 가로대(41)의 양단에 제 1 축 회전부(30)를 통해 바디부(22)와 회전가능하게 결합되어 있다. 이러한 구조로 인해 관측유닛(10)의 회동시 발생되는 진동을 대폭 감소시킬 수 있다.
더하여, 도시되지는 않았으나 관측유닛(10)이 안정적으로 회전되기 위해 관측유닛(10)의 반대편인 회전유닛(40)의 하단에 관측유닛(10)의 질량에 비례하는 무게를 가지는 균형수단이 더 설치되어 무게 균형을 보강할 수도 있다. 지구 뿐 아니라 화성이나 달과 같이 중력이 작용하는 곳이라면 관측장치를 회전하는데 적절한 무게보상이 요구되는데, 이러한 균형수단의 대표적인 예시로는 일자형의 중심봉과 그 중심봉이 관통되는 무게추로 구성될 수 있다. 사용자는 관측유닛(10)과 균형수단이 무게 균형이 맞도록 무게추를 중심봉을 따라 가변 설치할 수 있다.
이제까지 본 발명에 대하여 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
10 ... 관측유닛
20 ... 지지유닛
21 ... 베이스부
22 ... 바디부
23 ... 전동모터
30 ... 제 1 축 회전부
40 ... 회전유닛
41 ... 가로대
42 ... 세로대
43 ... 연결조인트
50 ... 제 2 축 회전부

Claims (5)

  1. 관측유닛(10)을 회전시켜 관측대상을 추적하며 측정하는 관측장치에 있어서,
    적어도 하나의 측면을 갖는 지지유닛(20); 및
    일단이 측면과 수직한 회전축을 가진 제 1 축 회전부(30)를 통해 상기 지지유닛(20)과 결합되고, 타단이 상기 제 1 축 회전부(30)의 회전축과 수직한 회전축을 가진 제 2 축 회전부(50)를 통해 상기 관측유닛(10)과 결합되며, 상기 제 2 축 회전부(50)가 상기 제 1 축 회전부(30)와 교차되지 않도록 서로 상이한 높이에 배치되는 형태로 형성된 회전유닛(40)을 포함하고,
    상기 관측유닛(10)은 상기 제 1 축 회전부(30)에 의해 가로방향을 축으로 시계 또는 반시계 방향으로 회동되고, 상기 제 2 축 회전부(50)에 의해 상하 기울기가 가변되어 전방위 관측을 하고, 상기 제 1 축 회전부(30) 및 상기 제 2 축 회전부(50)의 작동에 의해 관측대상의 연속추적을 할 수 있는 관측장치.
  2. 제 1 항에 있어서,
    상기 회전유닛(40)은,
    상기 지지유닛(20)의 측면에 수직한 방향으로 상기 제 1 축 회전부(30)에 결합된 가로대(41); 및
    상기 가로대(41)의 일지점에 교차되는 방향으로 상기 가로대(41)와 결합된 세로대(42)를 포함하는 관측장치.
  3. 제 2 항에 있어서,
    상기 회전유닛(40)은,
    상기 가로대(41)와 상기 세로대(42)의 교차지점에 형성된 연결조인트(43)를 더 포함하고, 상기 연결조인트(43)는 상기 관측유닛(10)의 고정위치가 변경되도록 상기 가로대(41) 및 상기 세로대(42)에 임의 위치에 고정결합되어 상기 가로대(41)와 상기 세로대(42)의 교차지점이 가변되는 관측장치.
  4. 제 3 항에 있어서,
    상기 가로대(41)는 일정 간격 이격된 한 쌍의 봉 형태로 형성되어, 상기 제 1 축 회전부(30)의 양 측면 중 상기 지지유닛(20)의 수직한 면의 반대면에 바닥과 평행하게 결합되고,
    상기 세로대(42)는 상기 가로대(41)의 각각에 수직하게 결합된 한 쌍의 봉 형태로 형성되어, 상기 관측유닛(10)의 진동을 감소시키는 관측장치.
  5. 제 2 항에 있어서,
    상기 지지유닛(20)은 판형태의 베이스부(21) 및 상기 베이스부(21)의 상부에 일정 간격 이격되게 형성된 한 쌍의 바디부(22)를 포함하고,
    상기 회전유닛(40)의 가로대(41)는 각 끝단에 상기 제 1 축 회전부(30)가 결합되어 있는 상태로 상기 한 쌍의 바디부(22) 사이에 배치되어 상기 지지유닛(20)과 회전가능하게 결합된 관측장치.
PCT/KR2020/010854 2019-08-21 2020-08-19 사각지대없이 전방위 관측이 가능한 관측장치 WO2021034035A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/636,088 US20220291499A1 (en) 2019-08-21 2020-08-19 Observation apparatus capable of omnidirectional observation without blind zone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0102560 2019-08-21
KR1020190102560A KR102085594B1 (ko) 2019-08-21 2019-08-21 사각지대없이 전방위 관측이 가능한 관측장치

Publications (1)

Publication Number Publication Date
WO2021034035A1 true WO2021034035A1 (ko) 2021-02-25

Family

ID=69801989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010854 WO2021034035A1 (ko) 2019-08-21 2020-08-19 사각지대없이 전방위 관측이 가능한 관측장치

Country Status (3)

Country Link
US (1) US20220291499A1 (ko)
KR (1) KR102085594B1 (ko)
WO (1) WO2021034035A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085594B1 (ko) * 2019-08-21 2020-03-09 김정현 사각지대없이 전방위 관측이 가능한 관측장치
KR102359546B1 (ko) 2021-01-27 2022-02-08 주식회사 에스엘랩 세 가지 형태로 추적방식을 변경할 수 있는 추적장치
KR102425910B1 (ko) 2021-05-11 2022-07-28 주식회사 에스엘랩 평면좌표상 이동되는 이동체 제어를 통해 관측방향을 변경하는 관측장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10114534A (ja) * 1996-10-07 1998-05-06 Furukawa Electric Co Ltd:The 光ファイバ用多孔質母材の製造装置及び製造方法
JP2006039191A (ja) * 2004-07-27 2006-02-09 Makoto Kamiya 顕微鏡用カメラアダプタ
JP2017134296A (ja) * 2016-01-28 2017-08-03 株式会社ビクセン 経緯台及び望遠鏡システム
JP6533954B2 (ja) * 2015-10-01 2019-06-26 中国電力株式会社 調整装置
KR102085594B1 (ko) * 2019-08-21 2020-03-09 김정현 사각지대없이 전방위 관측이 가능한 관측장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893746A (en) * 1971-09-02 1975-07-08 Elihu Hassell Mcmahon Tracking mounts for celestial ray detecting devices
JP2790584B2 (ja) * 1992-12-10 1998-08-27 修一 増永 双眼反射望遠鏡
US6445498B1 (en) * 1998-10-26 2002-09-03 Meade Instruments Corporation Upgradeable telescope system
US9223126B2 (en) * 2010-07-19 2015-12-29 Applied Invention, Llc Portable telescope
GB2485596A (en) * 2010-11-20 2012-05-23 Astrotrac Ltd Self-guiding equatorial or altitude/azimuth telescope mount
US8619360B2 (en) * 2012-03-28 2013-12-31 Nanjing Ioptron Scientific Inc. Ltd. Technique for telescope balance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10114534A (ja) * 1996-10-07 1998-05-06 Furukawa Electric Co Ltd:The 光ファイバ用多孔質母材の製造装置及び製造方法
JP2006039191A (ja) * 2004-07-27 2006-02-09 Makoto Kamiya 顕微鏡用カメラアダプタ
JP6533954B2 (ja) * 2015-10-01 2019-06-26 中国電力株式会社 調整装置
JP2017134296A (ja) * 2016-01-28 2017-08-03 株式会社ビクセン 経緯台及び望遠鏡システム
KR102085594B1 (ko) * 2019-08-21 2020-03-09 김정현 사각지대없이 전방위 관측이 가능한 관측장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Passage; 75 years of optics. OPTICS AND OPTICAL INSTRUMENTS ANNUAL CATALOG 2016", 75 YEARS OF OPTICS. OPTICS AND OPTICAL INSTRUMENTS ANNUAL CATALOG 2016, 2016, pages 259,262, XP009526329, Retrieved from the Internet <URL:https://quad2.mydigitalpublication.com/publication/?m=30093&i=285675&view=contentsBrowser> *

Also Published As

Publication number Publication date
US20220291499A1 (en) 2022-09-15
KR102085594B1 (ko) 2020-03-09

Similar Documents

Publication Publication Date Title
WO2021034035A1 (ko) 사각지대없이 전방위 관측이 가능한 관측장치
Johnson et al. Status of solar sail technology within NASA
US4020491A (en) Combination gyro and pendulum weight passive antenna platform stabilization system
US8676503B2 (en) System for determing and controlling inertial attitude, for navigation, and for pointing and/or tracking for an artificial satellite employing and optical sensor and a counter-rotational optical mirror, and terrestrial-based testing system for assessing inertial attitude functions of an artificial satellite
CA1326655C (en) Spacecraft operable in two alternative flight modes
US4085910A (en) Dual mode optical seeker for guided missile control
RU2133210C1 (ru) Беспилотный летательный аппарат
US5884867A (en) Stabilizing apparatus
US8706322B2 (en) Method and computer program product for controlling inertial attitude of an artificial satellite by applying gyroscopic precession to maintain the spin axis perpendicular to sun lines
JP2012531144A (ja) 可動センサー用ホルダー
EP1227037B1 (en) Thruster systems for spacecraft station changing, station keeping and momentum dumping
US20140263845A1 (en) Space Vehicle and Guidance and Control System for Same
EP3521178A1 (en) Satellite, and satellite propulsion method
US12050277B2 (en) Tracking device capable of changing tracking method in three types
US3171612A (en) Satellite attitude control mechanism and method
US3380310A (en) Stabilization system
WO2022240171A1 (ko) 평면좌표상 이동되는 이동체 제어를 통해 관측방향을 변경하는 관측장치
RU2762217C1 (ru) Гиростабилизированная система стабилизации полезной нагрузки беспилотного воздушного судна
RU2814798C1 (ru) Сбалансированное опорно-поворотное устройство
Shibai et al. Balloon-Borne Infrared Telescope for far-infrared spectroscopy
CN116374206B (zh) 一种多转台卫星以及航天器
Socha et al. Development of a small satellite for precision pointing applications
US3768756A (en) Commandable satellite attitude control apparatus
Perry et al. 1.8-m Spacewatch telescope motion control system
Roberts Jr et al. The Debris Disk Explorer: a balloon-borne coronagraph for observing debris disks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853829

Country of ref document: EP

Kind code of ref document: A1