WO2021033432A1 - 電動工具 - Google Patents

電動工具 Download PDF

Info

Publication number
WO2021033432A1
WO2021033432A1 PCT/JP2020/025697 JP2020025697W WO2021033432A1 WO 2021033432 A1 WO2021033432 A1 WO 2021033432A1 JP 2020025697 W JP2020025697 W JP 2020025697W WO 2021033432 A1 WO2021033432 A1 WO 2021033432A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic flux
electric motor
strong magnetic
control unit
control mode
Prior art date
Application number
PCT/JP2020/025697
Other languages
English (en)
French (fr)
Inventor
隆司 草川
中原 雅之
尊大 植田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021033432A1 publication Critical patent/WO2021033432A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Definitions

  • the present disclosure relates to electric tools in general, and more particularly to electric tools equipped with electric motors.
  • Patent Document 1 an electric tool capable of controlling the rotation speed of an electric motor is known (for example, Patent Document 1).
  • the electric tool described in Patent Document 1 includes a brushless DC motor (electric motor), a battery voltage detection unit, a rotation position detection unit, and a control unit.
  • the battery voltage detection unit detects the voltage of the battery used to drive the brushless DC motor.
  • the rotation position detection unit detects the rotation position of the brushless DC motor.
  • the control unit controls the drive output to the brushless DC motor by the signal from the rotation position detection unit.
  • the control unit sends the brushless DC motor to the brushless DC motor so that the rotation speed or energizing current of the brushless DC motor becomes the target value corresponding to the battery voltage detected by the battery voltage detection unit. Control the energization angle or advance angle.
  • An object of the present disclosure is to provide an electric tool capable of increasing the upper limit of the operating torque of an electric motor as needed.
  • the power tool includes an electric motor having a permanent magnet and a coil, and a control unit that controls the operation of the electric motor.
  • the control unit has a strong magnetic flux control mode in which a strong magnetic flux current for generating a strong magnetic flux that strengthens the magnetic flux of the permanent magnet is passed through the coil.
  • FIG. 1 is a block diagram of a power tool according to an embodiment.
  • FIG. 2 is a schematic view of the same power tool.
  • FIG. 3 is a graph showing an example of the operation of the same power tool.
  • FIG. 4 is a graph showing another example of the operation of the same power tool.
  • FIG. 1 shows the power tool 1 of the present embodiment.
  • the power tool 1 includes an electric motor 15 having a permanent magnet 131 and a coil 141, and a control unit 4 for controlling the operation of the electric motor 15.
  • the control unit 4 has a strong magnetic flux control mode in which a strong magnetic flux current that strengthens the magnetic flux of the permanent magnet 131 is generated in the coil 141 and flows through the coil 141.
  • the control unit 4 has a strong magnetic flux control mode.
  • the strong magnetic flux control mode a strong magnetic flux that strengthens the magnetic flux of the permanent magnet 131 is generated in the coil 141, and as a result, the upper limit of the operating torque of the electric motor 15 is increased. Therefore, the control unit 4 can increase the upper limit value of the operating torque of the electric motor 15 by executing the strengthening magnetic flux control mode as needed. Therefore, according to the power tool 1, the upper limit of the operating torque of the electric motor 15 can be increased as needed.
  • the power tool 1 of this embodiment is a drill driver.
  • the power tool 1 includes an electric motor 15 and a control unit 4. Further, the power tool 1 includes an inverter circuit unit 51 and a plurality of (two in FIG. 1) current sensors 61 and 62. Further, as shown in FIG. 2, the power tool 1 includes a clutch mechanism 17, a socket 21, a bit rotation measuring unit 22, a torque measuring unit 23, a motor rotation measuring unit 24, an operating unit 25, and a power supply 32. And. Note that FIG. 2 is a schematic view, and the ratio of the size and the thickness of each component in the figure does not necessarily reflect the actual dimensional ratio.
  • the electric motor 15 is a drive source for driving the tip tool.
  • the electric motor 15 has an output shaft 16 that outputs rotational power.
  • the electric motor 15 is an AC electric motor.
  • the electric motor 15 is, for example, a brushless motor.
  • the electric motor 15 is a synchronous motor, and more specifically, a permanent magnet synchronous motor (PMSM (Permanent Magnet Synchronous Motor)).
  • PMSM Permanent Magnet Synchronous Motor
  • the electric motor 15 includes a rotor 13 having a permanent magnet 131 and a stator 14 having a coil 141.
  • the rotor 13 includes an output shaft 16 as shown in FIG. Due to the electromagnetic interaction between the coil 141 and the permanent magnet 131, the rotor 13 rotates with respect to the stator 14.
  • the electric motor 15 is driven by electric power (three-phase voltage) supplied from the inverter circuit unit 51 to generate rotational power.
  • the clutch mechanism 17 includes a first drive transmission unit 18, a second drive transmission unit 19, and an output shaft 20.
  • the first drive transmission unit 18 is connected to the output shaft 16 of the electric motor 15.
  • the second drive transmission unit 19 is connected to the output shaft 20 of the clutch mechanism 17. Further, the first drive transmission unit 18 and the second drive transmission unit 19 are detachably connected to each other.
  • the first drive transmission unit 18 and the second drive transmission unit 19 rotate integrally, so that the electric motor
  • the output shaft 20 of the clutch mechanism 17 rotates with the rotation of the output shaft 16 of 15.
  • the socket 21 is a part to which the tip tool can be detachably attached.
  • the socket 21 is fixed to the tip of the output shaft 20. That is, the electric tool 1 is a tool that drives the tip tool with the driving force of the electric motor 15.
  • the tip tool (also referred to as a bit) is, for example, a screwdriver or a drill.
  • a tip tool according to the application is attached to the socket 21 and used.
  • the tip tool can be replaced according to the application.
  • the tip tool may be directly attached to the output shaft 20. Also, it is not essential that the tip tool be replaceable. For example, in the power tool 1, only a specific tip tool may be available.
  • the bit rotation measuring unit 22 measures the rotation angle of the output shaft 20.
  • the rotation angle of the output shaft 20 is equal to the rotation angle of the tip tool (bit).
  • bit rotation measuring unit 22 for example, a photoelectric encoder or a magnetic encoder can be adopted.
  • the torque measuring unit 23 measures the torque (load torque) of the electric motor 15.
  • the torque measuring unit 23 is, for example, a magnetostrictive strain sensor capable of detecting torsional strain.
  • the magnetostrictive strain sensor detects a change in magnetic permeability according to the strain generated by applying a load torque to the output shaft 16 of the motor 15 with a coil installed in the non-rotating portion of the motor 15, and a voltage proportional to the strain. Output a signal.
  • the motor rotation measuring unit 24 measures the rotation angle of the electric motor 15.
  • a photoelectric encoder or a magnetic encoder can be adopted.
  • the operation unit 25 is an operation unit that receives an operation for controlling the rotation of the electric motor 15 (that is, an operation from the user).
  • the power supply 32 is a power supply for driving the electric motor 15 and the control unit 4 of the electric tool 1.
  • the power supply 32 is a DC power supply.
  • the power supply 32 includes, for example, one or more secondary batteries.
  • the power supply 32 may include one or more primary batteries. Further, the power supply 32 may be replaceable.
  • the control unit 4 is configured to execute overall control of the power tool 1. More specifically, the control unit 4 is configured to control the operation of the electric motor 15.
  • the control unit 4 can be realized by, for example, a computer system including one or more processors (microprocessors) and one or more memories. That is, one or more processors execute one or more programs (applications) stored in one or more memories, thereby functioning as the control unit 4.
  • the program is pre-recorded in the memory of the control unit 4 here, it may be recorded and provided through a telecommunication line such as the Internet or a non-temporary recording medium such as a memory card.
  • the control unit 4 includes a command value generation unit 41, a speed control unit 42, a current control unit 43, a first coordinate converter 44, a second coordinate converter 45, and a magnetic flux. It has a control unit 46, an estimation unit 47, and a step-out detection unit 48.
  • the control unit 4 is used together with the inverter circuit unit 51, and controls the operation of the electric motor 15 by feedback control.
  • Each of the plurality of current sensors 61 and 62 includes, for example, a Hall element current sensor or a shunt resistance element.
  • the plurality of current sensors 61 and 62 measure the current supplied from the inverter circuit unit 51 to the electric motor 15.
  • a three-phase current (U-phase current, V-phase current, and W-phase current) is supplied to the electric motor 15, and the plurality of current sensors 61 and 62 measure at least two-phase currents.
  • the current sensor 61 measures the U-phase current and outputs the measured current value i u 1
  • the current sensor 62 measures the V-phase current and outputs the measured current value i v 1.
  • the estimation unit 47 time-differentiates the rotation angle ⁇ 1 of the electric motor 15 measured by the motor rotation measurement unit 24 to calculate the angular velocity ⁇ 1 of the electric motor 15 (angular velocity of the output shaft 16).
  • the second coordinate converter 45 uses the current measurement values i u 1 and i v 1 measured by the plurality of current sensors 61 and 62 based on the rotation angle ⁇ 1 of the electric motor 15 measured by the motor rotation measurement unit 24. The coordinates are converted and the current measurement values id1 and iq1 are calculated. That is, the second coordinate converter 45 sets the current measured values i u 1 and i v 1 corresponding to the three-phase current, the current measured value id 1 corresponding to the magnetic field component (d-axis current), and the torque component (q-axis). It is converted to the current measured value iq1 corresponding to the current).
  • the command value generation unit 41 generates the command value c ⁇ 1 of the angular velocity of the electric motor 15.
  • the command value generation unit 41 generates, for example, the command value c ⁇ 1 according to the pull-in amount of the operation of pulling the operation unit 25 (see FIG. 2). That is, the command value generation unit 41 increases the command value c ⁇ 1 of the angular velocity as the pull-in amount increases. Therefore, the on / off of the electric motor 15 can be switched by pulling the operation unit 25. Further, the rotation speed of the output shaft 20, that is, the rotation speed of the electric motor 15 can be adjusted by the pull-in amount of the operation of pulling the operation unit 25. The larger the pull-in amount, the faster the rotation speed of the electric motor 15.
  • the control unit 4 rotates or stops the electric motor 15 according to the pull-in amount of the operation of pulling the operation unit 25 by the command value generation unit 41, and also controls the rotation speed of the electric motor 15.
  • the tip tool is attached to the socket 21. Then, the rotation speed of the tip tool is controlled by controlling the rotation speed of the electric motor 15 by operating the operation unit 25.
  • the speed control unit 42 generates the command value ciq1 based on the difference between the command value c ⁇ 1 generated by the command value generation unit 41 and the angular velocity ⁇ 1 calculated by the estimation unit 47.
  • the command value ciq1 is a command value that specifies the magnitude of the torque current (q-axis current) of the electric motor 15.
  • the speed control unit 42 determines the command value ciq1 so as to reduce the difference between the command value c ⁇ 1 and the angular velocity ⁇ 1.
  • the magnetic flux control unit 46 generates a command value cid1 based on the angular velocity ⁇ 1 calculated by the estimation unit 47, the command value cvq1 generated by the current control unit 43, and the current measurement value iq1 (q-axis current). To do.
  • the command value cid1 is a command value that specifies the magnitude of the magnetic flux (magnetic flux in the d-axis direction) of the electric motor 15.
  • the current control unit 43 generates the command value cvd1 based on the difference between the command value cyd1 generated by the magnetic flux control unit 46 and the current measurement value id1 calculated by the second coordinate converter 45.
  • the command value cvd1 is a command value that specifies the magnitude of the d-axis voltage of the electric motor 15.
  • the current control unit 43 determines the command value cvd1 so as to reduce the difference between the command value cid1 and the current measurement value id1.
  • the current control unit 43 generates the command value cvq1 based on the difference between the command value iq1 generated by the speed control unit 42 and the current measurement value iq1 calculated by the second coordinate converter 45.
  • the command value cvq1 is a command value that specifies the magnitude of the q-axis voltage of the electric motor 15.
  • the current control unit 43 generates the command value cvq1 so as to reduce the difference between the command value xiq1 and the current measurement value iq1.
  • the first coordinate converter 44 performs coordinate conversion of the command values cvd1 and cvq1 based on the rotation angle ⁇ 1 of the electric motor 15 measured by the motor rotation measuring unit 24, and the command values cv u 1, cv v 1, cv w. 1 is calculated. That is, the first coordinate converter 44 sets the command value cvd1 corresponding to the magnetic field component (d-axis voltage) and the command value cvq1 corresponding to the torque component (q-axis voltage) to the command value corresponding to the three-phase voltage. Convert to cv u 1, cv v 1, cv w 1.
  • the command value cv u 1 corresponds to the U-phase voltage
  • the command value cv v 1 corresponds to the V-phase voltage
  • the command value cv w 1 corresponds to the W-phase voltage.
  • the inverter circuit unit 51 supplies the electric motor 15 with a three-phase voltage according to the command values cv u 1, cv v 1, and cv w 1.
  • the control unit 4 controls the electric power supplied to the electric motor 15 by controlling the inverter circuit unit 51 by PWM (Pulse Width Modulation).
  • the step-out detection unit 48 detects the step-out of the electric motor 15 based on the current measurement values id1 and iq1 acquired from the second coordinate converter 45 and the command values cvd1 and cvq1 acquired from the current control unit 43. To do. When step-out is detected, the step-out detection unit 48 transmits a stop signal cs1 to the inverter circuit unit 51 to stop the power supply from the inverter circuit unit 51 to the electric motor 15.
  • control unit 4 has a plurality of control modes for controlling the operation of the electric motor 15.
  • the plurality of control modes include a strong magnetic flux control mode and a normal control mode.
  • the strong magnetic flux control mode is a control mode in which a strong magnetic flux current that generates a strong magnetic flux that strengthens the magnetic flux of the permanent magnet 131 is generated in the coil 141 and flows through the coil 141. It can be said that the "strong magnetic flux that strengthens the magnetic flux of the permanent magnet 131" is a magnetic flux having the same direction as the magnetic flux of the permanent magnet 131.
  • the control unit 4 controls the operation of the electric motor 15 by using vector control. In vector control, the control unit 4 independently controls the magnetic flux current (d-axis current) and torque current (q-axis current) supplied to the electric motor 15.
  • the magnetic flux current is a current that affects the magnetic flux generated in the coil 141 of the electric motor 15, and the torque current is a current that affects the operating torque of the electric motor 15.
  • the operating torque is different from the load torque and refers to the torque generated when the electric motor 15 rotates.
  • the d-axis current is used as the stronger magnetic flux current. If the d-axis current is positive, a strong magnetic flux that strengthens the magnetic flux of the permanent magnet 131 is generated in the coil 141. When the d-axis current is a positive value and the absolute value of the d-axis current is larger, the stronger magnetic flux is larger.
  • the control unit 4 sets the target value of the d-axis current to a positive specified value.
  • the magnetic flux control unit 46 sets the command value cid1 to a value corresponding to the target value (positive specified value) of the d-axis current.
  • control unit 4 adjusts the q-axis current based on the operation on the operation unit 25. Specifically, the speed control unit 42 generates the command value ciq1 based on the difference between the command value c ⁇ 1 generated by the command value generation unit 41 and the angular velocity ⁇ 1 calculated by the estimation unit 47.
  • the normal control mode is a control mode in which the degree of strengthening the magnetic flux of the permanent magnet 131 is smaller than that of the strengthening magnetic flux control mode.
  • the normal control mode may be a control mode in which a strong magnetic flux current (d-axis current) smaller than the strong magnetic flux control mode is passed, or a control mode in which the strong magnetic flux current (d-axis current) itself is not passed.
  • the normal control mode is a control mode in which a strong magnetic flux current does not flow.
  • the control unit 4 sets the target value of the d-axis current to 0.
  • the magnetic flux control unit 46 sets the command value cid1 to a value corresponding to the target value of the d-axis current.
  • control unit 4 adjusts the q-axis current based on the operation on the operation unit 25. Specifically, the speed control unit 42 generates the command value ciq1 based on the difference between the command value c ⁇ 1 generated by the command value generation unit 41 and the angular velocity ⁇ 1 calculated by the estimation unit 47.
  • the control unit 4 does not execute the strong magnetic flux control mode in the first operation of rotating the electric motor 15 in the first rotation direction, but rotates the electric motor 15 in the second rotation direction opposite to the first rotation direction.
  • the strengthening magnetic flux control mode is executed.
  • the first rotation direction is the direction in which the fastener is tightened
  • the second rotation direction is the direction in which the fastener is loosened.
  • the fastener is a mechanical element that can be tightened or loosened by the tip tool of the power tool 1. Examples of fasteners include screws, bolts and nuts. Therefore, it can be said that the first operation is a tightening operation and the second operation is a loosening operation.
  • control unit 4 executes only the normal control mode in the first operation.
  • the control unit 4 selectively executes the normal control mode and the strengthening magnetic flux control mode.
  • the control unit 4 first executes the normal control mode.
  • the control unit 4 starts the strengthening magnetic flux control mode when the switching condition is satisfied in the normal control mode.
  • the switching condition is that the load torque of the electric motor 15 is equal to or higher than the threshold value.
  • the control unit 4 ends the normal control mode and starts the strengthening magnetic flux control mode.
  • FIG. 3 shows a change in the torque (operating torque) of the electric motor 15 when the operator tightens the screw (fastener) with the electric tool 1.
  • the electric motor 15 of the electric tool 1 may be rotated in the first rotation direction. That is, the power tool 1 is made to perform the first operation.
  • the control unit 4 executes the normal control mode. Therefore, the control unit 4 sets the target value of the d-axis current to 0, and adjusts the q-axis current based on the operation on the operation unit 25.
  • the operator pulls the operation unit 25 of the electric tool 1 at time t11, whereby a q-axis current starts to flow in the electric motor 15, and the electric motor 15 starts rotating.
  • T1 is an upper limit value of the operating torque of the electric motor 15 in the normal control mode.
  • FIG. 4 shows a change in the torque (operating torque) of the electric motor 15 when the operator loosens the screw (fastener) with the electric tool 1.
  • the electric motor 15 of the electric tool 1 may be rotated in the second rotation direction. That is, the power tool 1 is made to perform the second operation.
  • the control unit 4 first executes the normal control mode. Therefore, the control unit 4 sets the target value of the d-axis current to 0, and adjusts the q-axis current based on the operation on the operation unit 25.
  • the operator pulls the operation unit 25 of the electric tool 1, whereby a q-axis current starts to flow in the electric motor 15, and the electric motor 15 starts rotating.
  • the operating torque of the electric motor 15 has reached T1.
  • the load torque was T1 when the screw was tightened, the screw rotates in the second rotation direction (the screw loosens) unless there is a particular problem.
  • the load torque for loosening the screw may be larger than T1.
  • the load torque becomes T2, which is larger than T1.
  • the upper limit of the operating torque of the electric motor 15 is T1, and the screws cannot be loosened. Therefore, the control unit 4 starts the strengthening magnetic flux control mode when the load torque of the electric motor 15 becomes equal to or higher than the threshold value in the normal control mode.
  • the threshold value is a value greater than T1 and less than or equal to T2.
  • the control unit 4 has started the strengthening magnetic flux control mode.
  • the control unit 4 sets the target value of the d-axis current to a positive specified value, and adjusts the q-axis current based on the operation to the operation unit 25.
  • the control unit 4 increases the upper limit of the operating torque of the electric motor 15 as compared with the normal control mode.
  • the operating torque of the electric motor 15 reaches T2, whereby the screw rotates in the second rotation direction (the screw loosens).
  • the operating torque of the electric motor 15 also decreases.
  • the strengthening magnetic flux control mode is started, thereby setting the upper limit value of the operating torque of the electric motor 15. Increased from normal control mode. Therefore, according to the power tool 1 of the present embodiment, the upper limit of the operating torque of the electric motor 15 can be increased as needed.
  • the control unit 4 may execute the strong magnetic flux control mode even in the first operation.
  • the control unit 4 may first execute the normal control mode. Then, when the switching condition is satisfied, the control unit 4 may start the strengthening magnetic flux control mode.
  • the switching condition is not limited to the fact that the load torque of the electric motor 15 in the above embodiment exceeds the threshold value.
  • the switching condition may be that the difference between the torque (operating torque) of the electric motor 15 and the target value is equal to or greater than the threshold value.
  • the switching condition may be that the difference between the rotation speed of the electric motor 15 and the target value is equal to or greater than the threshold value.
  • the threshold value may be appropriately set in consideration of the difference in the upper limit value of the torque of the electric motor 15 between the normal control mode and the strong magnetic flux control mode.
  • the control unit 4 may determine one or more of a plurality of switching conditions. The plurality of switching conditions of one or more may be selected from the switching conditions relating to the load torque of the motor 15, the switching conditions relating to the operating torque of the motor 15, and the switching conditions relating to the rotation speed of the motor 15.
  • the control unit 4 does not necessarily have to execute the normal control mode in the second operation. That is, in the second operation, the control unit 4 may execute only the strengthening magnetic flux control mode. Alternatively, in the second operation, the control unit 4 may first execute the strengthening magnetic flux control mode. Then, when the second switching condition is satisfied, the control unit 4 may start the normal control mode.
  • the second switching condition may be that the load torque of the electric motor 15 is less than the threshold value.
  • the second switching condition may be that the difference between the operating torque of the electric motor 15 and the target value is less than the threshold value. Further, the switching condition may be that the difference between the rotation speed of the electric motor 15 and the target value is less than the threshold value.
  • the threshold value may be appropriately set in consideration of the difference in the upper limit value of the torque of the electric motor 15 between the normal control mode and the strong magnetic flux control mode.
  • the control unit 4 may determine one or more of a plurality of second switching conditions. The plurality of second switching conditions of one or more may be selected from the second switching condition relating to the load torque of the motor 15, the second switching condition relating to the operating torque of the motor 15, and the second switching condition relating to the rotation speed of the motor 15. ..
  • control unit 4 may change the strong magnetic flux current in the strong magnetic flux control mode. This makes it possible to adjust the upper limit value of the operating torque of the electric motor 15.
  • control unit 4 may perform gradual increase control in which the strong magnetic flux current is increased with the passage of time when the increase condition is satisfied in the strong magnetic flux control mode.
  • control unit 4 may perform gradual reduction control in which the strengthening magnetic flux current is reduced with the passage of time when the reduction condition is satisfied in the strengthening magnetic flux control mode. In this way, the change in the maximum value of the operating torque of the electric motor 15 becomes gradual as compared with the case where the strong magnetic flux current is switched to a binary value, for example, so that the work using the electric tool 1 becomes easy.
  • the strong magnetic flux control mode and the normal control mode of the control unit 4 may be manually switched by operating an operation unit different from the operation unit 25.
  • the control mode of the control unit 4 may be switchable by operating the touch panel display described above.
  • the rotor 13 may have the coil 141, and the permanent magnet 131 may have the stator 14.
  • the power tool 1 is not limited to the drill driver, but may be an impact driver or an impact wrench.
  • the power tool 1 may include an impact mechanism instead of the clutch mechanism 17.
  • the impact mechanism is a mechanism for realizing strong tightening or the like by applying a blow in the rotation direction. Since the impact mechanism may have a conventionally known configuration having a spindle, a hammer, and an anvil, detailed description thereof will be omitted.
  • the power tool 1 is not limited to an impact driver, a drill driver or an impact wrench. Further, the power tool 1 may be a screwdriver or a wrench. Further, the power tool 1 may be a milling cutter, a grinder, a cleaner, or a power tool of other types.
  • the power tool 1 may include an operation unit that accepts an operation for setting parameters related to the operation of the power tool 1.
  • the operation unit may include, for example, a touch panel display that accepts operation inputs and displays related to operations.
  • the rotor 13 may have the coil 141, and the permanent magnet 131 may have the stator 14.
  • the first aspect is an electric tool (1), in which an electric motor (15) having a permanent magnet (131) and a coil (141) and a control unit (4) for controlling the operation of the electric motor (15) are provided. Be prepared.
  • the control unit (4) has a strong magnetic flux control mode in which a strong magnetic flux current that causes a strong magnetic flux that strengthens the magnetic flux of the permanent magnet (131) is generated in the coil (141) is passed through the coil (141). According to this aspect, the upper limit of the operating torque of the electric motor (15) can be increased as needed.
  • the second aspect is the power tool (1) based on the first aspect.
  • the control unit (4) has a normal control mode in which the degree of strengthening the magnetic flux of the permanent magnet (131) is smaller than that of the strong magnetic flux control mode.
  • the control unit (4) starts the enhanced magnetic flux control mode when the switching condition is satisfied in the normal control mode. According to this aspect, the upper limit of the operating torque of the electric motor (15) can be increased as needed.
  • the third aspect is the power tool (1) based on the second aspect.
  • the control unit (4) does not flow the strong magnetic flux current in the normal control mode.
  • the upper limit of the operating torque of the electric motor (15) can be increased as needed.
  • the fourth aspect is the power tool (1) based on the second or third aspect.
  • the control unit (4) controls the operation of the electric motor by utilizing vector control.
  • the strong magnetic flux current is a d-axis current. According to this aspect, the upper limit of the operating torque of the electric motor (15) can be increased as needed.
  • the fifth aspect is the power tool (1) based on the fourth aspect.
  • the power tool (1) further includes an operation unit (25) that receives an operation.
  • the control unit (4) adjusts the q-axis current based on the operation on the operation unit (25). According to this aspect, the operating torque of the electric motor (15) can be adjusted as needed.
  • the sixth aspect is the power tool (1) based on any one of the second to fifth aspects.
  • the switching condition is that the load torque of the electric motor (15) is equal to or higher than the threshold value. According to this aspect, when a large operating torque is required for the electric motor (15), the upper limit value of the operating torque of the electric motor (15) can be increased.
  • the seventh aspect is the power tool (1) based on any one of the second to fifth aspects.
  • the switching condition is that the difference between the operating torque of the electric motor (15) and the target value is equal to or greater than the threshold value. According to this aspect, the upper limit of the operating torque of the electric motor (15) can be increased as needed.
  • the eighth aspect is the power tool (1) based on any one of the second to fifth aspects.
  • the switching condition is that the difference between the rotation speed of the electric motor (15) and the target value is equal to or greater than the threshold value. According to this aspect, the upper limit of the operating torque of the electric motor (15) can be increased as needed.
  • the ninth aspect is the power tool (1) based on any one of the first to eighth aspects.
  • the control unit (4) changes the strong magnetic flux current in the strong magnetic flux control mode. According to this aspect, the upper limit value of the operating torque of the electric motor (15) can be adjusted.
  • the tenth aspect is the power tool (1) based on the ninth aspect.
  • the control unit (4) performs gradual increase control to increase the strong magnetic flux current with the passage of time when the increase condition is satisfied in the strong magnetic flux control mode.
  • the change in the maximum value of the operating torque of the electric motor (15) becomes gradual as compared with the case where the strong magnetic flux current is switched to a binary value, for example, so the work using the electric tool (1) is performed. It will be easier.
  • the eleventh aspect is the power tool (1) based on the ninth aspect.
  • the control unit (4) performs gradual reduction control to reduce the strong magnetic flux current with the passage of time when the reduction condition is satisfied in the strong magnetic flux control mode.
  • the change in the maximum value of the operating torque of the electric motor (15) becomes gradual as compared with the case where the strong magnetic flux current is switched to a binary value, for example, so that the work using the electric tool (1) is performed. It will be easier.
  • the twelfth aspect is the power tool (1) based on any one of the first to eleventh aspects.
  • the control unit (4) does not execute the strong magnetic flux control mode in the first operation of rotating the electric motor (15) in the first rotation direction.
  • the control unit (4) executes the strong magnetic flux control mode in the second operation of rotating the electric motor (15) in the second rotation direction opposite to the first rotation direction. According to this aspect, the upper limit of the operating torque of the electric motor (15) can be increased as needed.
  • the thirteenth aspect is the power tool (1) based on the twelfth aspect.
  • the first rotation direction is the direction in which the fastener is tightened.
  • the second rotation direction is a direction in which the fastener is loosened.

Abstract

課題は、必要に応じて電動機の動作トルクの上限値を増加させることができる電動工具を提供することである。電動工具(1)は、永久磁石(131)及びコイル(141)を有する電動機(15)と、電動機(15)の動作を制御する制御部(4)とを備える。制御部(4)は、永久磁石(131)の磁束を強める強め磁束をコイル(141)に発生させる強め磁束電流をコイル(141)に流す強め磁束制御モードを有する。

Description

電動工具
 本開示は一般に電動工具に関し、より詳細には、電動機を備える電動工具に関する。
 従来、電動機の回転数を制御可能な電動工具が知られている(例えば、特許文献1)。特許文献1に記載の電動工具は、ブラシレスDCモータ(電動機)と、バッテリ電圧検出部と、回転位置検出部と、制御部と、を備える。バッテリ電圧検出部は、ブラシレスDCモータの駆動に用いるバッテリの電圧を検出する。回転位置検出部は、ブラシレスDCモータの回転位置を検出する。制御部は、回転位置検出部からの信号により、ブラシレスDCモータへの駆動出力を制御する。制御部は、ブラシレスDCモータへの駆動出力制御時に、ブラシレスDCモータの回転数若しくは通電電流が、バッテリ電圧検出部にて検出されたバッテリ電圧に対応した目標値になるよう、ブラシレスDCモータへの通電角若しくは進角を制御する。
特開2014-144496号公報
 本開示は、必要に応じて電動機の動作トルクの上限値を増加させることができる電動工具を提供することを目的とする。
 本開示の一態様に係る電動工具は、永久磁石及びコイルを有する電動機と、前記電動機の動作を制御する制御部とを備える。前記制御部は、前記永久磁石の磁束を強める強め磁束を前記コイルに発生させる強め磁束電流を前記コイルに流す強め磁束制御モードを有する。
図1は、一実施形態に係る電動工具のブロック図である。 図2は、同上の電動工具の概略図である。 図3は、同上の電動工具の動作の一例を示すグラフである。 図4は、同上の電動工具の動作の他例を示すグラフである。
 (1)実施形態
 (1-1)概要
 図1は、本実施形態の電動工具1を示す。電動工具1は、永久磁石131及びコイル141を有する電動機15と、電動機15の動作を制御する制御部4とを備える。制御部4は、永久磁石131の磁束を強める強め磁束をコイル141に発生させる強め磁束電流をコイル141に流す強め磁束制御モードを有する。
 このように、制御部4は強め磁束制御モードを有している。強め磁束制御モードでは、永久磁石131の磁束を強める強め磁束がコイル141に発生するため、結果として、電動機15の動作トルクの上限値が増加することになる。よって、制御部4が、必要に応じて強め磁束制御モードを実行することで、電動機15の動作トルクの上限値を増加させることが可能となる。したがって、電動工具1によれば、必要に応じて電動機15の動作トルクの上限値を増加させることができる。
 (1-2)詳細
 以下、本実施形態の電動工具1について図1~図4を参照して更に詳細に説明する。本実施形態の電動工具1は、ドリルドライバである。
 電動工具1は、図1に示すように、電動機15と、制御部4とを備える。更に、電動工具1は、インバータ回路部51と、複数(図1では2つ)の電流センサ61、62とを備える。また、電動工具1は、図2に示すように、クラッチ機構17と、ソケット21と、ビット回転測定部22と、トルク測定部23と、モータ回転測定部24と、操作部25と、電源32とを備える。なお、図2は、模式的な図であり、図中の各構成要素の大きさ及び厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。
 電動機15は、先端工具を駆動する駆動源である。電動機15は、回転動力を出力する出力軸16を有している。電動機15は、交流電動機である。電動機15は、例えばブラシレスモータである。特に、本実施形態では、電動機15は、同期電動機であり、より詳細には、永久磁石同期電動機(PMSM(Permanent Magnet Synchronous Motor))である。図1に示すように、電動機15は、永久磁石131を有する回転子13と、コイル141を有する固定子14と、を含んでいる。回転子13は、図2に示すように、出力軸16を含む。コイル141と永久磁石131との電磁的相互作用により、回転子13は、固定子14に対して回転する。電動機15は、インバータ回路部51から供給された電力(3相電圧)により駆動され、回転動力を発生させる。
 クラッチ機構17は、第1駆動伝達部18と、第2駆動伝達部19と、出力軸20とを備える。第1駆動伝達部18は、電動機15の出力軸16に連結される。第2駆動伝達部19は、クラッチ機構17の出力軸20に連結される。また、第1駆動伝達部18と第2駆動伝達部19とは、着脱自在に連結される。クラッチ機構17は、出力軸20に所定の大きさ以上の負荷(負荷トルク)がかかっていないときには、第1駆動伝達部18と第2駆動伝達部19とが一体となって回転するので、電動機15の出力軸16の回転とともにクラッチ機構17の出力軸20が回転する。一方で、出力軸20に所定の大きさ以上の負荷がかかった時には、第1駆動伝達部18と第2駆動伝達部19との接続が解除され、電動機15の出力軸16が、クラッチ機構17の出力軸20から分離される。これによって、電動工具1で締め付けるねじ等の対象物に過度な力がかかることが防止される。なお、クラッチ機構17は、従来周知の構成であってよいから、クラッチ機構17の詳細な説明は省略する。
 ソケット21は、先端工具が着脱自在に取り付けられる部分である。ソケット21は、出力軸20の先端に固定される。つまり、電動工具1は、先端工具を電動機15の駆動力で駆動する工具である。先端工具(ビットとも言う)は、例えば、ドライバ又はドリル等である。各種の先端工具のうち用途に応じた先端工具が、ソケット21に取り付けられて用いられる。電動工具1では、先端工具を用途に応じて交換可能である。なお、先端工具は、直接的に出力軸20に装着されてもよい。また、先端工具が交換可能であることは必須ではない。例えば、電動工具1では、特定の先端工具のみが利用可能であってよい。
 ビット回転測定部22は、出力軸20の回転角を測定する。ここでは、出力軸20の回転角は、先端工具(ビット)の回転角に等しい。ビット回転測定部22としては、例えば、光電式エンコーダ又は磁気式エンコーダを採用することができる。
 トルク測定部23は、電動機15のトルク(負荷トルク)を測定する。トルク測定部23は、例えば、ねじり歪みの検出が可能な磁歪式歪センサである。磁歪式歪センサは、電動機15の出力軸16に負荷トルクが加わることにより発生する歪みに応じた透磁率の変化を、電動機15の非回転部分に設置したコイルで検出し、歪みに比例した電圧信号を出力する。
 モータ回転測定部24は、電動機15の回転角を測定する。モータ回転測定部24としては、例えば、光電式エンコーダ又は磁気式エンコーダを採用することができる。
 操作部25は、電動機15の回転を制御するための操作(つまり、ユーザからの操作)を受け付ける操作部である。
 電源32は、電動工具1の電動機15及び制御部4を駆動するための電源である。電源32は、直流電源である。電源32は、例えば、1又は複数の2次電池を含む。なお、電源32は、1又は複数の1次電池を含んでよい。また、電源32は、交換可能であってよい。
 制御部4は、電動工具1の全体的な制御を実行するように構成される。より詳細には、制御部4は、電動機15の動作を制御するように構成される。制御部4は、例えば、1以上のプロセッサ(マイクロプロセッサ)と1以上のメモリとを含むコンピュータシステムにより実現され得る。つまり、1以上のプロセッサが1以上のメモリに記憶された1以上のプログラム(アプリケーション)を実行することで、制御部4として機能する。プログラムは、ここでは制御部4のメモリに予め記録されているが、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。
 図1に示すように、制御部4は、指令値生成部41と、速度制御部42と、電流制御部43と、第1の座標変換器44と、第2の座標変換器45と、磁束制御部46と、推定部47と、脱調検出部48とを有する。
 制御部4は、インバータ回路部51と共に用いられ、フィードバック制御により電動機15の動作を制御する。
 複数の電流センサ61,62はそれぞれ、例えば、ホール素子電流センサ又はシャント抵抗素子を含んでいる。複数の電流センサ61,62は、インバータ回路部51から電動機15に供給される電流を測定する。ここで、電動機15には、3相電流(U相電流、V相電流及びW相電流)が供給されており、複数の電流センサ61,62は、少なくとも2相の電流を測定する。図1では、電流センサ61がU相電流を測定して電流測定値i1を出力し、電流センサ62がV相電流を測定して電流測定値i1を出力する。
 推定部47は、モータ回転測定部24で測定された電動機15の回転角θ1を時間微分して、電動機15の角速度ω1(出力軸16の角速度)を算出する。
 第2の座標変換器45は、複数の電流センサ61,62で測定された電流測定値i1,i1を、モータ回転測定部24で測定された電動機15の回転角θ1に基づいて座標変換し、電流測定値id1,iq1を算出する。すなわち、第2の座標変換器45は、3相電流に対応する電流測定値i1,i1を、磁界成分(d軸電流)に対応する電流測定値id1と、トルク成分(q軸電流)に対応する電流測定値iq1とに変換する。
 指令値生成部41は、電動機15の角速度の指令値cω1を生成する。指令値生成部41は、例えば、操作部25(図2参照)を引く操作の引込み量に応じた指令値cω1を生成する。すなわち、指令値生成部41は、上記引込み量が大きいほど、角速度の指令値cω1を大きくする。よって、操作部25を引く操作により、電動機15のオンオフを切替可能である。また、操作部25を引く操作の引込み量で、出力軸20の回転速度、つまり電動機15の回転速度を調整可能である。上記引込み量が大きいほど、電動機15の回転速度が速くなる。制御部4は、指令値生成部41により、操作部25を引く操作の引込み量に応じて、電動機15を回転又は停止させ、また、電動機15の回転速度を制御する。この電動工具1では、先端工具がソケット21に取り付けられる。そして、操作部25への操作によって電動機15の回転速度が制御されることで、先端工具の回転速度が制御される。
 速度制御部42は、指令値生成部41で生成された指令値cω1と推定部47で算出された角速度ω1との差分に基づいて、指令値ciq1を生成する。指令値ciq1は、電動機15のトルク電流(q軸電流)の大きさを指定する指令値である。速度制御部42は、指令値cω1と角速度ω1との差分を小さくするように指令値ciq1を決定する。
 磁束制御部46は、推定部47で算出された角速度ω1と、電流制御部43で生成される指令値cvq1と、電流測定値iq1(q軸電流)と、に基づいて、指令値cid1を生成する。指令値cid1は、電動機15の磁束(d軸方向の磁束)の大きさを指定する指令値である。
 電流制御部43は、磁束制御部46で生成された指令値cid1と第2の座標変換器45で算出された電流測定値id1との差分に基づいて、指令値cvd1を生成する。指令値cvd1は、電動機15のd軸電圧の大きさを指定する指令値である。電流制御部43は、指令値cid1と電流測定値id1との差分を小さくするように指令値cvd1を決定する。
 また、電流制御部43は、速度制御部42で生成された指令値ciq1と第2の座標変換器45で算出された電流測定値iq1との差分に基づいて、指令値cvq1を生成する。指令値cvq1は、電動機15のq軸電圧の大きさを指定する指令値である。電流制御部43は、指令値ciq1と電流測定値iq1との差分を小さくするように指令値cvq1を生成する。
 第1の座標変換器44は、指令値cvd1,cvq1を、モータ回転測定部24で測定された電動機15の回転角θ1に基づいて座標変換し、指令値cv1,cv1,cv1を算出する。すなわち、第1の座標変換器44は、磁界成分(d軸電圧)に対応する指令値cvd1と、トルク成分(q軸電圧)に対応する指令値cvq1とを、3相電圧に対応する指令値cv1,cv1,cv1に変換する。指令値cv1はU相電圧に、指令値cv1はV相電圧に、指令値cv1はW相電圧に対応する。
 インバータ回路部51は、指令値cv1、cv1、cv1に応じた3相電圧を電動機15に供給する。制御部4は、インバータ回路部51をPWM(Pulse Width Modulation)制御することにより、電動機15に供給される電力を制御する。
 脱調検出部48は、第2の座標変換器45から取得した電流測定値id1,iq1と、電流制御部43から取得した指令値cvd1,cvq1と、に基づいて、電動機15の脱調を検出する。脱調が検出された場合は、脱調検出部48は、インバータ回路部51に停止信号cs1を送信して、インバータ回路部51から電動機15への電力供給を停止させる。
 本実施形態では、制御部4は、電動機15の動作を制御する複数の制御モードを有する。特に、複数の制御モードは、強め磁束制御モードと、通常制御モードとを含む。
 強め磁束制御モードは、永久磁石131の磁束を強める強め磁束をコイル141に発生させる強め磁束電流をコイル141に流す制御モードである。「永久磁石131の磁束を強める強め磁束」は、永久磁石131の磁束と向きが同じ磁束であるといえる。本実施形態では、制御部4は、ベクトル制御を利用して、電動機15の動作を制御する。ベクトル制御では、制御部4は、電動機15に供給される磁束電流(d軸電流)とトルク電流(q軸電流)とを独立に制御する。磁束電流は、電動機15のコイル141に発生する磁束に影響する電流であり、トルク電流は、電動機15の動作トルクに影響する電流である。動作トルクは、負荷トルクとは異なり、電動機15が回転の際に発生させるトルクをいう。本実施形態では、d軸電流が、強め磁束電流として用いられる。d軸電流が正であれば、コイル141に、永久磁石131の磁束を強める強め磁束が発生する。d軸電流が正の値であって、d軸電流の絶対値が大きいほど、強め磁束が大きい。逆に、d軸電流が負であれば、コイル141に永久磁石131の磁束を弱める磁束(この磁束を、強め磁束に対して弱め磁束ということがある)が発生する。d軸電流が負の値であって、d軸電流の絶対値が大きいほど、弱め磁束が大きい。本実施形態では、強め磁束制御モードでは、制御部4は、d軸電流の目標値を正の規定値に設定する。具体的には、磁束制御部46が、指令値cid1を、d軸電流の目標値(正の規定値)に対応する値に設定する。一方で、制御部4は、操作部25への操作に基づき、q軸電流を調整する。具体的には、速度制御部42は、指令値生成部41で生成された指令値cω1と推定部47で算出された角速度ω1との差分に基づいて、指令値ciq1を生成する。
 通常制御モードは、強め磁束制御モードよりも永久磁石131の磁束を強める度合いが小さい制御モードである。換言すれば、通常制御モードは、強め磁束制御モードよりも小さい強め磁束電流(d軸電流)を流す制御モード、又は、強め磁束電流(d軸電流)自体を流さない制御モードであってよい。本実施形態では、通常制御モードは、強め磁束電流を流さない制御モードである。この場合、通常制御モードでは、制御部4は、d軸電流の目標値を0に設定する。本実施形態では、磁束制御部46が、指令値cid1を、d軸電流の目標値に対応する値に設定する。一方で、制御部4は、操作部25への操作に基づき、q軸電流を調整する。具体的には、速度制御部42は、指令値生成部41で生成された指令値cω1と推定部47で算出された角速度ω1との差分に基づいて、指令値ciq1を生成する。
 本実施形態では、制御部4は、電動機15を第1回転方向に回転させる第1動作では、強め磁束制御モードを実行しないが、電動機15を第1回転方向と反対の第2回転方向に回転させる第2動作では、強め磁束制御モードを実行する。第1回転方向は、締結具を締める方向であり、第2回転方向は、締結具を緩める方向である。締結具は、電動工具1の先端工具にて締め付け又は緩められる機械要素である。締結具の例としては、ネジ、ボルト、ナットが挙げられる。よって、第1動作は、締め付け動作であるといえ、第2動作は、緩め動作であるといえる。
 より詳細には、制御部4は、第1動作では、通常制御モードのみを実行する。一方で、制御部4は、第2動作では、通常制御モードと強め磁束制御モードとを択一的に実行する。特に、第2動作では、制御部4は、最初は通常制御モードを実行する。そして、制御部4は、通常制御モードにおいて切替条件が満たされると強め磁束制御モードを開始する。本実施形態では、切替条件は、電動機15の負荷トルクが閾値以上になったことである。制御部4は、トルク測定部23で測定された電動機15のトルク(負荷トルク)が閾値以上になると、通常制御モードを終了して強め磁束制御モードを開始する。
 (1-3)動作
 以下、図3及び図4を参照して電動工具1の動作について簡単に説明する。
 図3は、作業者が電動工具1でネジ(締結具)の締め付けを行う際の、電動機15のトルク(動作トルク)の変化を示す。ネジの締め付けを行う場合、電動工具1の電動機15を第1回転方向に回転させればよい。つまり、電動工具1に第1動作を行わせる。この場合、制御部4は、通常制御モードを実行する。よって、制御部4は、d軸電流の目標値を0に設定し、操作部25への操作に基づき、q軸電流を調整する。図3では、作業者は、時刻t11において、電動工具1の操作部25を引く操作をし、これにより電動機15にq軸電流が流れ始め、電動機15が回転を開始する。これによって、ネジが第1回転方向に回転していき(ネジが締め付けられていき)、負荷トルクが大きくなる。これに伴い、電動機15の動作トルクが上昇し、T1になった時点で、ネジの締め付けが終了している。T1は、通常制御モードでの、電動機15の動作トルクの上限値である。
 図4は、作業者が電動工具1でネジ(締結具)の緩めを行う際の、電動機15のトルク(動作トルク)の変化を示す。ネジの緩めを行う場合、電動工具1の電動機15を第2回転方向に回転させればよい。つまり、電動工具1に第2動作を行わせる。この場合、制御部4は、最初は通常制御モードを実行する。よって、制御部4は、d軸電流の目標値を0に設定し、操作部25への操作に基づき、q軸電流を調整する。図4では、作業者は、電動工具1の操作部25を引く操作をし、これにより電動機15にq軸電流が流れ始め、電動機15が回転を開始する。そして、時刻t21では、電動機15の動作トルクがT1に達している。ここで、ネジの締め付けの際には、負荷トルクがT1であったため、特に問題がなければ、ネジは第2回転方向に回転していく(ネジは緩まっていく)。しかし、ネジにさび等が発生していると、ネジを緩めるための負荷トルクがT1より大きくなっている場合がある。例えば、負荷トルクがT1より大きいT2になる。ここで、通常制御モードでは、電動機15の動作トルクの上限値がT1であり、ネジを緩めることができない。そこで、制御部4は、通常制御モードにおいて電動機15の負荷トルクが閾値以上になった場合に、強め磁束制御モードを開始する。ここで、閾値は、T1より大きくT2以下の値である。図4では、時刻t22において、制御部4は、強め磁束制御モードを開始している。強め磁束制御モードでは、制御部4は、d軸電流の目標値を正の規定値に設定し、操作部25への操作に基づき、q軸電流を調整する。これによって、制御部4は、電動機15の動作トルクの上限値を通常制御モードよりも増加させる。そして、図4では、電動機15の動作トルクがT2に達し、これによって、ネジは第2回転方向に回転していく(ネジは緩まっていく)。これによって、負荷トルクの減少とともに、電動機15の動作トルクも減少していく。
 このように、電動工具1では、負荷トルクが大きく現在の電動機15のトルクでは締結具を緩めることができない場合に、強め磁束制御モードを開始し、これによって、電動機15の動作トルクの上限値を通常制御モードよりも増加させる。したがって、本実施形態の電動工具1によれば、必要に応じて電動機15の動作トルクの上限値を増加させることができる。
 (2)変形例
 本開示の実施形態は、上記実施形態に限定されない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下に、上記実施形態の変形例を列挙する。
 一変形例では、制御部4は、第1動作でも、強め磁束制御モードを実行してよい。この場合に、制御部4は、まず、通常制御モードを実行してよい。そして、切替条件が満たされると、制御部4は、強め磁束制御モードを開始してよい。切替条件は、上記実施形態の、電動機15の負荷トルクが閾値以上になったことに限定されない。例えば、切替条件は、電動機15のトルク(動作トルク)と目標値との差が閾値以上になったことであってよい。また、切替条件は、電動機15の回転数と目標値との差が閾値以上になったことであってよい。いずれの場合においても、閾値は、通常制御モードと強め磁束制御モードとでの電動機15のトルクの上限値の差等を考慮して適宜設定されればよい。また、制御部4は、1以上の複数の切替条件を判定してよい。1以上の複数の切替条件は、電動機15の負荷トルクに関する切替条件、電動機15の動作トルクに関する切替条件、及び、電動機15の回転数に関する切替条件から選択されてよい。
 一変形例では、制御部4は、第2動作では、必ずしも通常制御モードを実行しなくてよい。つまり、第2動作では、制御部4は、強め磁束制御モードだけを実行してよい。あるいは、第2動作では、制御部4は、まず、強め磁束制御モードを実行してよい。そして、第2切替条件が満たされると、制御部4は、通常制御モードを開始してよい。第2切替条件は、電動機15の負荷トルクが閾値未満になったことであってよい。あるいは、第2切替条件は、電動機15の動作トルクと目標値との差が閾値未満になったことであってよい。また、切替条件は、電動機15の回転数と目標値との差が閾値未満になったことであってよい。いずれの場合においても、閾値は、通常制御モードと強め磁束制御モードとでの電動機15のトルクの上限値の差等を考慮して適宜設定されればよい。また、制御部4は、1以上の複数の第2切替条件を判定してよい。1以上の複数の第2切替条件は、電動機15の負荷トルクに関する第2切替条件、電動機15の動作トルクに関する第2切替条件、及び、電動機15の回転数に関する第2切替条件から選択されてよい。
 一変形例では、制御部4は、強め磁束制御モードでは、強め磁束電流を変化させてもよい。これによって、電動機15の動作トルクの上限値の調整が可能になる。特に、制御部4は、強め磁束制御モードにおいて、増加条件が満たされると、強め磁束電流を時間経過に伴って大きくする漸増制御を行ってもよい。あるいは、制御部4は、強め磁束制御モードにおいて、減少条件が満たされると、強め磁束電流を時間経過に伴って小さくする漸減制御を行ってもよい。このようにすれば、強め磁束電流が例えば2値的に切り替わる場合と比較して電動機15の動作トルクの最大値の変化が緩やかになるから、電動工具1を用いた作業を行いやすくなる。
 一変形例では、制御部4の強め磁束制御モード及び通常制御モードは、操作部25とは別の操作部への操作により手動で切り替え可能であってもよい。例えば、上記のタッチパネルディスプレイへの操作により制御部4の制御モードが切り替え可能であってもよい。
 一変形例では、電動機15において、回転子13がコイル141を有しており、かつ、永久磁石131が固定子14を有していてもよい。
 一変形例では、電動工具1は、ドリルドライバに限定されず、インパクトドライバ、又はインパクトレンチであってもよい。例えば、電動工具1は、クラッチ機構17の代わりに、インパクト機構を備えてもよい。インパクト機構は、回転方向に打撃を加えることで、強固な締め付け等を実現するための機構である。インパクト機構は、スピンドル、ハンマ、及び、アンビルを有する従来周知の構成であってよいから、詳細な説明は省略する。また、電動工具1は、インパクトドライバ、ドリルドライバ又はインパクトレンチに限らない。また、電動工具1は、ドライバ又はレンチであってもよい。また、電動工具1は、フライス、グラインダ、クリーナ又はこれら以外の種類の電動工具であってもよい。
 一変形例では、電動工具1は、電動工具1の動作に係るパラメータを設定する操作等を受け付ける操作部を備えていてもよい。操作部は、例えば、操作入力の受付けと操作に関わる表示とを行うタッチパネルディスプレイを含んでいてもよい。
 一変形例では、電動機15において、回転子13がコイル141を有しており、かつ、永久磁石131が固定子14を有していてもよい。
 (3)態様
 上記実施形態及び変形例から明らかなように、本開示は、下記の態様を含む。以下では、実施形態との対応関係を明示するためだけに、符号を括弧付きで付している。
 第1の態様は、電動工具(1)であって、永久磁石(131)及びコイル(141)を有する電動機(15)と、前記電動機(15)の動作を制御する制御部(4)とを備える。前記制御部(4)は、前記永久磁石(131)の磁束を強める強め磁束を前記コイル(141)に発生させる強め磁束電流を前記コイル(141)に流す強め磁束制御モードを有する。この態様によれば、必要に応じて電動機(15)の動作トルクの上限値を増加させることができる。
 第2の態様は、第1の態様に基づく電動工具(1)である。第2の態様では、前記制御部(4)は、前記強め磁束制御モードよりも前記永久磁石(131)の磁束を強める度合いが小さい通常制御モードを有する。前記制御部(4)は、前記通常制御モードにおいて切替条件が満たされると前記強め磁束制御モードを開始する。この態様によれば、必要に応じて電動機(15)の動作トルクの上限値を増加させることができる。
 第3の態様は、第2の態様に基づく電動工具(1)である。第3の態様では、前記制御部(4)は、前記通常制御モードでは、前記強め磁束電流を流さない。この態様によれば、必要に応じて電動機(15)の動作トルクの上限値を増加させることができる。
 第4の態様は、第2又は第3の態様に基づく電動工具(1)である。第4の態様では、前記制御部(4)は、ベクトル制御を利用して、前記電動機の動作を制御する。前記強め磁束電流は、d軸電流である。この態様によれば、必要に応じて電動機(15)の動作トルクの上限値を増加させることができる。
 第5の態様は、第4の態様に基づく電動工具(1)である。第5の態様では、前記電動工具(1)は、操作を受け付ける操作部(25)を更に備える。前記制御部(4)は、前記通常制御モード及び前記強め磁束制御モードでは、前記操作部(25)への前記操作に基づき、q軸電流を調整する。この態様によれば、必要に応じて電動機(15)の動作トルクを調整できる。
 第6の態様は、第2~第5の態様のいずれか一つに基づく電動工具(1)である。第6の態様では、前記切替条件は、前記電動機(15)の負荷トルクが閾値以上になったことである。この態様によれば、電動機(15)で大きな動作トルクが必要になった際に電動機(15)の動作トルクの上限値を増加させることができる。
 第7の態様は、第2~第5の態様のいずれか一つに基づく電動工具(1)である。第7の態様では、前記切替条件は、前記電動機(15)の動作トルクと目標値との差が閾値以上になったことである。この態様によれば、必要に応じて電動機(15)の動作トルクの上限値を増加させることができる。
 第8の態様は、第2~第5の態様のいずれか一つに基づく電動工具(1)である。第8の態様では、前記切替条件は、前記電動機(15)の回転数と目標値との差が閾値以上になったことである。この態様によれば、必要に応じて電動機(15)の動作トルクの上限値を増加させることができる。
 第9の態様は、第1~第8の態様のいずれか一つに基づく電動工具(1)である。第9の態様では、前記制御部(4)は、前記強め磁束制御モードでは、前記強め磁束電流を変化させる。この態様によれば、電動機(15)の動作トルクの上限値の調整が可能になる。
 第10の態様は、第9の態様に基づく電動工具(1)である。第10の態様では、前記制御部(4)は、前記強め磁束制御モードにおいて、増加条件が満たされると、前記強め磁束電流を時間経過に伴って大きくする漸増制御を行う。この態様によれば、強め磁束電流が例えば2値的に切り替わる場合と比較して電動機(15)の動作トルクの最大値の変化が緩やかになるから、電動工具(1)を用いた作業を行いやすくなる。
 第11の態様は、第9の態様に基づく電動工具(1)である。第11の態様では、前記制御部(4)は、前記強め磁束制御モードにおいて、減少条件が満たされると、前記強め磁束電流を時間経過に伴って小さくする漸減制御を行う。この態様によれば、強め磁束電流が例えば2値的に切り替わる場合と比較して電動機(15)の動作トルクの最大値の変化が緩やかになるから、電動工具(1)を用いた作業を行いやすくなる。
 第12の態様は、第1~第11の態様のいずれか一つに基づく電動工具(1)である。第12の態様では、前記制御部(4)は、前記電動機(15)を第1回転方向に回転させる第1動作では、前記強め磁束制御モードを実行しない。前記制御部(4)は、前記電動機(15)を前記第1回転方向と反対の第2回転方向に回転させる第2動作では、前記強め磁束制御モードを実行する。この態様によれば、必要に応じて電動機(15)の動作トルクの上限値を増加させることができる。
 第13の態様は、第12の態様に基づく電動工具(1)である。第13の態様では、前記第1回転方向は、締結具を締める方向である。前記第2回転方向は、締結具を緩める方向である。この態様によれば、電動機(15)の動作トルクの上限値を締結具を締める場合よりも締結具を緩める場合で大きくしているから、電動工具(1)で締めた締結具を電動工具(1)で緩めることができない可能性を低減できる。
 1   電動工具
 15  電動機
 131 永久磁石
 141 コイル
 25  操作部
 4   制御部

Claims (13)

  1.  永久磁石及びコイルを有する電動機と、
     前記電動機の動作を制御する制御部と、
     を備え、
     前記制御部は、前記永久磁石の磁束を強める強め磁束を前記コイルに発生させる強め磁束電流を前記コイルに流す強め磁束制御モードを有する、
     電動工具。
  2.  前記制御部は、
      前記強め磁束制御モードよりも前記永久磁石の磁束を強める度合いが小さい通常制御モードを有し、
      前記通常制御モードにおいて切替条件が満たされると前記強め磁束制御モードを開始する、
     請求項1の電動工具。
  3.  前記制御部は、前記通常制御モードでは、前記強め磁束電流を流さない、
     請求項2の電動工具。
  4.  前記制御部は、ベクトル制御を利用して、前記電動機の動作を制御し、
     前記強め磁束電流は、d軸電流である、
     請求項2又は3の電動工具。
  5.  操作を受け付ける操作部を更に備え、
     前記制御部は、前記通常制御モード及び前記強め磁束制御モードでは、前記操作部への前記操作に基づき、q軸電流を調整する、
     請求項4の電動工具。
  6.  前記切替条件は、前記電動機の負荷トルクが閾値以上になったことである、
     請求項2~5のいずれか一つの電動工具。
  7.  前記切替条件は、前記電動機の動作トルクと目標値との差が閾値以上になったことである、
     請求項2~5のいずれか一つの電動工具。
  8.  前記切替条件は、前記電動機の回転数と目標値との差が閾値以上になったことである、
     請求項2~5のいずれか一つの電動工具。
  9.  前記制御部は、前記強め磁束制御モードでは、前記強め磁束電流を変化させる、
     請求項1~8のいずれか一つの電動工具。
  10.  前記制御部は、前記強め磁束制御モードにおいて、増加条件が満たされると、前記強め磁束電流を時間経過に伴って大きくする漸増制御を行う、
     請求項9の電動工具。
  11.  前記制御部は、前記強め磁束制御モードにおいて、減少条件が満たされると、前記強め磁束電流を時間経過に伴って小さくする漸減制御を行う、
     請求項9の電動工具。
  12.  前記制御部は、前記電動機を第1回転方向に回転させる第1動作では、前記強め磁束制御モードを実行せず、前記電動機を前記第1回転方向と反対の第2回転方向に回転させる第2動作では、前記強め磁束制御モードを実行する、
     請求項1~11のいずれか一つの電動工具。
  13.  前記第1回転方向は、締結具を締める方向であり、
     前記第2回転方向は、締結具を緩める方向である、
     請求項12の電動工具。
PCT/JP2020/025697 2019-08-22 2020-06-30 電動工具 WO2021033432A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019152366A JP2021030358A (ja) 2019-08-22 2019-08-22 電動工具
JP2019-152366 2019-08-22

Publications (1)

Publication Number Publication Date
WO2021033432A1 true WO2021033432A1 (ja) 2021-02-25

Family

ID=74660841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025697 WO2021033432A1 (ja) 2019-08-22 2020-06-30 電動工具

Country Status (2)

Country Link
JP (1) JP2021030358A (ja)
WO (1) WO2021033432A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638475A (ja) * 1992-07-16 1994-02-10 Hitachi Ltd 永久磁石回転電機とその制御方法及び制御装置並びにそれを使用した電気自動車
JPH10328952A (ja) * 1997-06-02 1998-12-15 Wako Giken:Kk モータの制御方法及び装置並びにねじ締め方法及び装置
JP2003259680A (ja) * 2002-02-28 2003-09-12 Mitsubishi Electric Corp 同期電動機駆動装置、インバータ装置、同期電動機の制御方法
JP2010110211A (ja) * 2005-03-09 2010-05-13 Nissan Motor Co Ltd 電動機
JP2015133802A (ja) * 2014-01-10 2015-07-23 三菱電機株式会社 同期電動機の制御装置及び制御方法
WO2018230140A1 (ja) * 2017-06-16 2018-12-20 パナソニックIpマネジメント株式会社 電動工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638475A (ja) * 1992-07-16 1994-02-10 Hitachi Ltd 永久磁石回転電機とその制御方法及び制御装置並びにそれを使用した電気自動車
JPH10328952A (ja) * 1997-06-02 1998-12-15 Wako Giken:Kk モータの制御方法及び装置並びにねじ締め方法及び装置
JP2003259680A (ja) * 2002-02-28 2003-09-12 Mitsubishi Electric Corp 同期電動機駆動装置、インバータ装置、同期電動機の制御方法
JP2010110211A (ja) * 2005-03-09 2010-05-13 Nissan Motor Co Ltd 電動機
JP2015133802A (ja) * 2014-01-10 2015-07-23 三菱電機株式会社 同期電動機の制御装置及び制御方法
WO2018230140A1 (ja) * 2017-06-16 2018-12-20 パナソニックIpマネジメント株式会社 電動工具

Also Published As

Publication number Publication date
JP2021030358A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2018230140A1 (ja) 電動工具
JP7357204B2 (ja) 電動工具、制御方法、プログラム
WO2021100843A1 (ja) 電動工具、制御方法、及びプログラム
WO2021002120A1 (ja) インパクト工具
WO2021033432A1 (ja) 電動工具
WO2021100368A1 (ja) インパクト工具、インパクト工具の制御方法及びプログラム
WO2020261756A1 (ja) 電動工具
WO2021215083A1 (ja) 電動工具システム、制御方法、及びプログラム
EP4050790B1 (en) Electric tool
JP7296586B2 (ja) 電動工具、制御方法、及びプログラム
JP7296587B2 (ja) 電動工具、制御方法、及びプログラム
JP7257647B2 (ja) 電動工具
JP2021079509A (ja) 電動工具、制御方法、及びプログラム
JP7228763B2 (ja) 電動工具
WO2021095427A1 (ja) インパクト工具、インパクト工具の制御方法及びプログラム
WO2021095470A1 (ja) 電動工具、制御方法、及びプログラム
CN113710427B (zh) 电动工具
WO2021100844A1 (ja) 電動工具、制御方法、及びプログラム
WO2021039054A1 (ja) 電動工具
JP2023149066A (ja) 電動工具
US20230390901A1 (en) Electric tool
JP7308467B2 (ja) 電動工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855548

Country of ref document: EP

Kind code of ref document: A1