WO2021032925A1 - System for treating gas contained within a tank for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship - Google Patents

System for treating gas contained within a tank for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship Download PDF

Info

Publication number
WO2021032925A1
WO2021032925A1 PCT/FR2020/051471 FR2020051471W WO2021032925A1 WO 2021032925 A1 WO2021032925 A1 WO 2021032925A1 FR 2020051471 W FR2020051471 W FR 2020051471W WO 2021032925 A1 WO2021032925 A1 WO 2021032925A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tank
heat exchanger
gaseous state
natural gas
Prior art date
Application number
PCT/FR2020/051471
Other languages
French (fr)
Inventor
Romain NARME
Bernard Aoun
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to KR1020227008973A priority Critical patent/KR20220049030A/en
Priority to CN202080066480.5A priority patent/CN114423691A/en
Priority to EP20772093.9A priority patent/EP4018119A1/en
Publication of WO2021032925A1 publication Critical patent/WO2021032925A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/04Constructional features of bunkers, e.g. structural fuel tanks, or ballast tanks, e.g. with elastic walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/74Large containers having means for heating, cooling, aerating or other conditioning of contents
    • B65D88/744Large containers having means for heating, cooling, aerating or other conditioning of contents heating or cooling through the walls or internal parts of the container, e.g. circulation of fluid inside the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D9/00Apparatus or devices for transferring liquids when loading or unloading ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/002Storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/065Arrangements for producing propulsion of gases or vapours
    • F17D1/07Arrangements for producing propulsion of gases or vapours by compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/16Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • F17C2225/047Localisation of the filling point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0327Heat exchange with the fluid by heating with recovery of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0374Localisation of heat exchange in or on a vessel in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/047Methods for emptying or filling by repeating a process cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/046Enhancing energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/90Mixing of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels

Definitions

  • the present invention relates to the field of ships whose propulsion engines are powered by natural gas and which furthermore make it possible to contain and / or transport liquefied natural gas.
  • Such ships thus conventionally include tanks which contain natural gas in the liquid state. Natural gas is liquid at temperatures below - 160 ° C, at atmospheric pressure. These tanks are never perfectly thermally insulated so that the natural gas at least partially evaporates there. Thus, these tanks comprise both natural gas in liquid form and natural gas in gaseous form. This natural gas in gaseous form forms the vessel head and the pressure of this vessel head must be controlled so as not to damage the vessel. In a known manner, at least part of the natural gas present in the tank in gaseous form is thus used to supply, among other things, the propulsion engines of the ship.
  • the reliquefaction systems currently used are very expensive and the present invention aims to solve this drawback by proposing a gas treatment system comprising fewer components than current systems, thus making it possible to reduce the costs of implementing such systems, while by being at least as efficient.
  • An object of the present invention thus relates to a gas treatment system contained in a tank for storing and / or transporting gas in the liquid state and in the gaseous state, the tank equipping a ship and the system comprising at least : a heat exchanger configured to operate a heat exchange between gas taken from the tank in the gaseous state and compressed gas coming from the tank, a compression member configured to compress the gas in the gaseous state coming from the exchanger thermal, a gas consuming device in the gaseous state configured to wander powered by the compressed gas, a first conduit connecting the compression member to the gas consuming apparatus in the gaseous state, a second conduit connecting the first conduit to an inlet of the heat exchanger, a third conduit connecting an outlet of the heat exchanger to a bottom of the vessel, a bubbling member connected to the third conduit and configured to distribute gas from the heat exchanger in the gaseous state in the bottom of the tank.
  • a heat exchanger configured to operate a heat exchange between gas taken from the tank in the gaseous state and compressed gas
  • bottom of the tank is understood to mean a portion of the tank which extends from a bottom wall of the tank and a plane parallel to this lower bottom wall and arranged, at most, at 20% of a total height. of the tank, this total height being measured along a straight line perpendicular to the bottom bottom wall of the tank between two opposite ends of this tank, along this straight line.
  • the plane parallel to the lower bottom wall which participates in delimiting the “bottom of the tank” can wander arranged at 10% of the total height of the tank.
  • the fear bubbling member wanders fixed to the bottom bottom wall of the tank.
  • the heat exchanger is configured to operate a heat exchange between the evaporated gas taken from the tank and the gas compressed by the compression member.
  • this heat exchanger comprises at least a first pass of which an inlet port is connected to the vessel and of which an outlet port is connected to the compression member and at least a second pass of which an inlet port is connected to the compression member and one outlet port of which is connected to the tank.
  • the bubbling member is more particularly configured to generate gas bubbles and to disperse them in the bottom of the tank. These gas bubbles are then in contact with the liquid gas present in the tank. The temperature difference between these gas bubbles and the liquid gas present in the tank causes condensation of these gas bubbles.
  • the gas treatment system comprises an expansion means and a heat exchanger, the heat exchanger being equipped with at least a first pass supplied with gas taken in the liquid state in the tank and at least one second pass supplied with gas taken in liquid state from the tank and the expansion means being arranged between the tank and the first pass of the heat exchanger.
  • the liquid gas which feeds the first pass undergoes an expansion, that is to say a decrease in its pressure before joining this first pass while the liquid gas which is sent into the second pass of the The heat exchanger rejoins this second pass immediately after leaving the tank, that is to say without having undergone any change in its pressure or in its temperature other than that linked to the pumping itself.
  • this heat exchanger is configured to perform a heat exchange between expanded liquid gas and non-expanded liquid gas.
  • the expanded liquid gas can be expanded to a pressure below atmospheric pressure.
  • the difference in pressure, and therefore in temperature, between the liquid gas circulating in the first pass and the liquid gas circulating in the second pass makes it possible to evaporate the liquid gas circulating in the first pass and to cool the liquid gas circulating in the second pass.
  • an outlet of the second pass of the heat exchanger can be fluidly connected to the tank so that the liquid gas cooled by its passage through the second pass of the heat exchanger can be returned to this tank.
  • injecting liquid gas thus cooled contributes to maintaining a stable temperature in the tank, and thus to limiting the phenomenon of evaporation of the liquid gas contained in the tank.
  • the bubbling member may for example comprise at least one ramp provided with orifices generating gas bubbles.
  • these orifices are distributed over an entire length of the ramp, that is to say the largest dimension of the ramp, so as to allow a homogeneous distribution of the gas bubbles generated in the bottom of the tank.
  • the orifices of the ramp each have a section of between 0.0078 mm2 and 315mm2.
  • a section makes it possible to generate gas bubbles that are small enough for them to condense quickly and thus mix quickly with the liquid gas contained in the tank.
  • At least one expansion member is arranged on the first pipe.
  • the gas which leaves the compression member is expanded before reaching the heat exchanger, which makes it possible in particular to facilitate the heat exchange which takes place in this heat exchanger.
  • the natural gas can join the heat exchanger without undergoing expansion, that is to say that the natural gas then joins the bubbling member at a greater pressure than when it undergoes an expansion before joining the 'heat exchanger.
  • the gas treatment system may comprise a compression device arranged in parallel with the compression member, the compression member being configured to compress a first part of the gas in the gaseous state coming from the heat exchanger and the compression device being configured to compress a second part of the gas in the gaseous state coming from the heat exchanger, the first part of the gas coming from the heat exchanger being distinct from the second part of the gas coming from the 'heat exchanger.
  • the compression device can be used to alleviate a possible failure of the compression member.
  • the gas stored and / or transported in the tank is natural gas.
  • the gas treatment system according to the invention can be used with other types of gas, such as, for example, hydrocarbon or hydrogen gases.
  • the gas treatment system comprises at least a first gas consuming device and at least a second gas consuming device, the first gas consuming device being configured to be supplied with compressed gas. at a first pressure, the second gas consuming apparatus being configured to be supplied with gas compressed at a second pressure and the first pressure being lower than the second pressure.
  • the first gas consuming device is an electrical generator of the DFDE (Dual Fuel Diesel Electric) type, that is to say a gas consuming device configured to ensure the electrical supply of the ship and the second consuming device.
  • gas can be a ship's propulsion engine, such as an ME-GI or XDF engine.
  • the present invention also relates to a liquefied gas transport vessel, comprising at least one tank of a liquefied gas cargo, at least one appliance consuming evaporated gas and at least one gas treatment system according to any one of the claims. previous ones.
  • the present invention also relates to a system for loading or unloading a liquid gas which combines at least one means on land and at least one liquid gas transport vessel according to the invention.
  • the present invention further relates to a method comprising at least the steps of: taking off the gas in the gaseous state in the tank, reheating the gas taken in the gaseous state in the tank by a heat exchange carried out in a heat exchanger with gas compressed by a compression member, compression, by the compression member, heated gas supply of at least one appliance consuming evaporated gas by a first part of the heated and compressed gas cooling of a second part of the heated and compressed gas by a heat exchange carried out in the heat exchanger with the gas taken from the state gas in the tank, distribution of the second part of the cooled gas as it passes through the heat exchanger in a bottom of the tank.
  • the step of distributing the second part of the cooled gas consists of bubbling this second part of the cooled gas.
  • a pressure at the inlet of the third pipe is greater than a pressure measured at the bottom of the tank.
  • the gas treatment process according to the present invention can also comprise at least one step of sub-cooling the natural gas taken in the liquid state from the tank and at least one step of storing the sub-cooled natural gas at the bottom of the tank. tank.
  • the sub-cooling step is carried out by a heat exchange between natural gas taken from the tank in the liquid state and maintained at atmospheric pressure and natural gas taken from the tank in the liquid state. and relaxed below atmospheric pressure.
  • the step of sub-cooling the natural gas taken in the liquid state from the vessel, the step of storing the sub-cooled natural gas in the bottom of the vessel and the step of distributing the second part of the tank. gas cooled by its passage through the heat exchanger in the bottom of the tank are carried out, in this order, at least two consecutive times.
  • the steps of sub-cooling and storage of the sub-cooled liquid natural gas make it possible to lower the temperature of the natural gas present in the liquid state in the tank.
  • the step of distributing the second part of the cooled gas tends to increase the temperature of the natural gas. present in the liquid state in the tank.
  • the steps of sub-cooling and storage of the sub-cooled natural gas make it possible to maintain the temperature of the liquid natural gas contained in the vessel, so as to prevent an excessive quantity of this natural gas.
  • liquid evaporates during the gas distribution step in the bottom of the vessel, which would result in an increase in the quantity of gaseous natural gas present in the vessel head, and therefore an increase in the pressure in the vessel. this tank, which could eventually damage it.
  • the steps of sub-cooling, storage and distribution of natural gas in the vessel therefore participate in the stability of the pressure in this vessel.
  • the present invention finally relates to a method of loading or unloading a liquid gas from a gas transport vessel according to the invention.
  • FIG. 1 illustrates, schematically, a gas treatment system according to the present invention
  • FIG. 2 illustrates, schematically, a first mode of operation of the gas treatment system illustrated in FIG. 1;
  • FIG. 3 illustrates, schematically, a second mode of operation of the gas treatment system illustrated in FIG. 1;
  • FIG. 4 illustrates, schematically, a third mode of operation of the gas treatment system illustrated in FIG. 1;
  • FIG. 5 is a cut-away schematic representation of an LNG vessel tank and a terminal for loading and / or unloading this tank.
  • upstream and downstream are understood in a direction of circulation of a gas in the liquid, gaseous or two-phase state through the element concerned.
  • the solid lines represent circuit lines in which circulates gas in the liquid, gaseous or two-phase state, while the dotted lines represent circuit pipes in which the gas does not circulate.
  • FIGS. 1 to 4 illustrate a system 100 for treating a gas contained in the liquid state and in the gaseous state in a tank 200 as well as various modes of operation of this gas treatment system 100.
  • the space of the vessel 200 occupied by the gas in the gaseous state is referred to as "vessel head 201".
  • FIG. 1 we will first describe the system 100 according to the present invention, at a standstill, that is to say when no gas, whether in the gaseous or liquid state. or two-phase, does not circulate there.
  • FIGS. 2 to 4 we will then describe three distinct operating modes of the gas treatment system 100 according to the invention, among which we will distinguish a first operating mode called “at equilibrium”, a second operating mode. called “forced evaporation” and a third operating mode called “reliquefaction”.
  • the terms “gas treatment system 100” and “system 100” will be used without distinction.
  • the tank 200 contains natural gas. It is understood that this is only an example of application and that the gas treatment system 100 according to the invention can be used with other types of gas, such as, for example, gas. hydrocarbons or hydrogen.
  • FIG. 1 thus first illustrates, schematically, the gas treatment system 100 contained in the tank 200 according to the invention, when stopped.
  • the system 100 comprises at least one heat exchanger 110, at least one compression member 120, at least one gas consuming device 130 and at least one bubbling member 140.
  • the system 100 further comprises a compression device 121, a compression means 122, a heat exchanger 170 and another gas consuming apparatus 131.
  • At least a first pipe 101 is arranged between the compression member 120 and the gas consuming device 130, at least a second pipe 102 is arranged between the first pipe 101 and the heat exchanger 110 and at least a third pipe 103 is arranged between the heat exchanger 110 and a bottom of the tank, that is to say a portion of the tank which extends from a bottom wall 202 of the tank 200 and a plane parallel to this lower bottom wall and arranged, at most, at 20% of the total height h of the tank, this total height h being measured along a straight line perpendicular to the bottom bottom wall of the tank between two opposite ends of this tank, along this straight line.
  • the plane parallel to the lower bottom wall which participates in delimiting the “bottom of the tank” can be arranged at 10% of the total height h of the tank.
  • the bubbling member can be fixed to the bottom bottom wall 202 of the tank.
  • the heat exchanger 110 comprises at least a first pass 111 connected on the one hand to the tank 200, and more particularly to the tank top 201, and on the other hand to the compression member 120 and at least a second pass 112 for its part connected, on the one hand, to the compression member 120 and on the other hand to the tank 200. More particularly, an inlet orifice 113 of the first pass
  • the first pass 111 of the heat exchanger 110 is traversed by natural gas taken from the tank 200, and more particularly from the tank top 201, in the gaseous state, and that the second pass
  • this heat exchanger 110 is traversed by the gas taken from the tank 200, and more particularly from the tank top 201, then compressed by the compression member 120.
  • the heat exchanger 110 is configured to operate a heat exchange between gas taken in the gaseous state in the vessel top 201 and sent directly into the heat exchanger 110 and gas taken in the gaseous state in the vessel head 201 and at least compressed by the member compression 120.
  • sent directly to the heat exchanger 110 means that the gas natural sample taken in the gaseous state does not undergo any change in pressure or temperature, other than that linked to its suction, before joining the heat exchanger 110, and more particularly the first pass 111 of this heat exchanger 110.
  • valve 150 is arranged on the second pipe 102, that is to say between the first pipe 101 and the heat exchanger 110.
  • the valve 150 could be arranged downstream of the heat exchanger 110, c 'That is to say arranged on the third pipe 103. This valve 150 thus controls the supply of gaseous natural gas to the second pass 112 of the heat exchanger 110.
  • the third pipe 103 is connected to the bubbling member 140 which extends in the bottom of the tank.
  • This bubbling member 140 comprises, according to the example illustrated here, a ramp 141 provided with orifices 142 configured to generate bubbles of natural gas 143.
  • each of these orifices 142 has a section of between 0.0078 mm 2 and 315 mm 2 .
  • these natural gas bubbles 143 are thus mixed with the liquid natural gas present in the tank 200, which allows the gaseous natural gas which forms these gas bubbles 143 to condense and thus return to the liquid state.
  • the compression member 120 and the compression device 121 are both connected to the same elements of the system 100, namely they are connected, by the fifth pipe 105, to the first pass 111 of the heat exchanger 110 on the one hand , to a first gas consuming appliance 130 via the first pipe 101 and to a second gas consuming appliance 131 via a sixth pipe 106 on the other hand. More particularly, it is noted that the gaseous natural gas compressed by the compression member 120 and the gaseous natural gas compressed by the compression device 121 can be mixed in a single pipe which then separates to join the first or the second appliance consuming energy. gas 130, 131.
  • the first gas consuming device 130 is an electric generator of the DFDE (Dual Fuel Diesel Electric) type, that is to say a gas consuming device configured for to ensure the electrical power supply of the vessel and the second gas consuming device 131 fear wanders a propulsion engine of the vessel, such as an ME-GI or XDF engine.
  • DFDE Direct Fuel Diesel Electric
  • the sixth pipe 106 is also fluidly connected to the second pipe 102.
  • part of the compressed natural gas intended to supply the second gas consuming device 131 can be diverted to supply the second pass 112 of the heat exchanger. 110.
  • a valve 151 is arranged between the sixth conduit 106 and the heat exchanger 110.
  • the natural gas joins the compression member 120 and / or the compression device 121 in the gaseous state and at a pressure of about 1 bar and this natural gas leaves the 'compression member 120 and / or the compression device 121 in the gaseous state and at high pressure, that is to say a pressure between 1 bar and 400 bar, advantageously between 1 bar and 17 bar, even more advantageously, between 6 bar and 17 bar.
  • the level of compression at the outlet of this compression member 120 and / or of this compression device 121 is set as a function of the type of gas consuming appliance to be supplied.
  • an expansion member 181 can be arranged on the first pipe 101, and more particularly between the compression member 120 and the second pipe 102 so as to effect an expansion of the natural gas which leaves the compression member 120 and / or the compression device 121, before the latter joins the heat exchanger 110 in which, as will be more fully detailed below, the compressed natural gas transfers calories to natural gas in gaseous form directly sent to this heat exchanger 110 from the tank top 201.
  • the sixth pipe 106 has no expansion member.
  • the valve 151 arranged between the sixth pipe 106 and the heat exchanger 110 when the valve 151 arranged between the sixth pipe 106 and the heat exchanger 110 is open to supply the second pass 112 of this heat exchanger 110, the natural gas which feeds this second pass 112 is at a pressure of between 1 bar and 400 bar, advantageously between 1 bar and 17 bar, even more advantageously between 6 bar and 17 bar.
  • the opening of the valve 151 arranged between the sixth pipe 106 and the heat exchanger 110 makes it possible to supply the bubbling member 140 with natural gas at high pressure. It is therefore understood that the valve 150 arranged on the second pipe 102 and the valve 151 arranged between the sixth pipe 106 and the heat exchanger 110 are never open simultaneously.
  • the heat exchanger 170 for its part also comprises a first pass 171 and a second pass 172.
  • the first pass 171 is connected on the one hand to a first pump 210 arranged in the bottom of the tank 200 and on the other hand by means of compression 122 and the second pass 172 is for its part connected on the one hand to a second pump 220 arranged in the bottom of the tank 200 and on the other hand also to the tank 200, and more exactly to a part of the tank 200 in which the natural gas in the liquid state is stored.
  • an inlet 173 of the first pass 171 is connected to the first pump 210, an outlet 174 of the first pass 171 is connected to the compression means 122, an inlet 175 of the second pass 172 is connected to the second pump 220 and an outlet 176 of the second pass 172 is connected to the tank 200.
  • connected to the tank is meant here the fact that a seventh line 107 is connected to the tank. outlet of the second pass 172 of the heat exchanger 170 and that this seventh duct 170 opens into the tank 200.
  • the first pass and the second pass of the heat exchanger can route two erre supplied by the same pump, a bifurcation then being made between this single pump and the orifices inlet of the first and second passes of the heat exchanger.
  • an expansion means 182 is arranged between the first pump 210 and the heat exchanger 170.
  • the gas taken in the liquid state in the tank 200 by the first pump 210 is released before joining the first. pass 171 of the heat exchanger 170.
  • the term “derension” means that the liquid natural gas undergoes a decrease in its pressure. In other words, the natural gas taken from the tank in the liquid state by the first pump 210 joins the heat exchanger 170 at a pressure lower than atmospheric pressure.
  • the second pump 220 is configured to send the natural gas taken in the liquid state in the tank 200 directly into the second pass 172 of the heat exchanger 170, that is to say that the gas natural sample taken in the liquid state in the tank 200 not to undergo any change in temperature or pressure other than that linked to the pumping itself before joining the second pass 172 of the heat exchanger 170.
  • the heat exchanger 170 is thus configured to operate a heat exchange between the gas taken from the tank 200 in the liquid state and having undergone an expansion and the gas taken from the tank in the liquid state and having undergone no change in pressure.
  • the expansion means is arranged downstream of the bifurcation, that is to say between the bifurcation and the first pass of the heat exchanger. It is therefore understood from the above that the liquid natural gas which circulates in the first pass 171 is reheated until it is evaporated while the liquid natural gas which circulates in the second pass 172 is sub-cooled before being returned to the tank. bottom of the tank 200.
  • liquid natural gas flows through the first pass 171 of the heat exchanger 170 at a pressure lower than atmospheric pressure.
  • the compression means 122 arranged between this heat exchanger 170 and the compression member 120 is configured to return the natural gas which leaves this heat exchanger 170 to a pressure close to atmospheric pressure.
  • this compression means 122 is configured to compress natural gas from 0.35 bar to 1 bar. The natural gas thus compressed is then able to join the compression member 120 and / or the compression device 121, in which (s) it (s) it undergoes a second compression.
  • this first operating mode is said to be "at equilibrium”.
  • this first mode of operation corresponds to the perfect case in which the quantity of evaporated natural gas present in the head cap 201 in the gaseous state is identical to the needs of the gas consuming appliance (s) 130, 131.
  • the valves 150, 151 are closed, and the first and second pumps 210, 220 are stopped.
  • the natural gas is thus taken in the gaseous state in the vessel head 201, then sent directly to the compression member 120 and / or the compression device 121, so that its pressure is increased in order to supply the gas-consuming appliance (s) 130, 131.
  • FIG. 3 illustrates a second mode of operation of the system 100 according to the invention, this second mode of operation being called "forced evaporation".
  • This second mode of operation is implemented when the quantity of gaseous natural gas present in the tank top 201 is less than the needs of the gas consuming appliance (s).
  • This second operating mode advantageously makes it possible to generate gaseous natural gas from liquid natural gas in order to be able to supply this (these) device (s).
  • the first pump 210 and the second pump 220 are both activated, while the valves 150, 151 respectively arranged on the second pipe 102 and between the sixth pipe 106 and the heat exchanger 110 are closed, so that the gas compressed natural gas coming from the compression member 120 and / or from the compression device 121 is completely sent to the gas consuming appliance (s).
  • the second pass 112 of the heat exchanger 110 is not supplied and the natural gas taken from the tank in the gaseous state is sent directly to the compression member. 120 and / or the compression device 121.
  • the heat exchanger 170 is in turn fed with natural gas taken from the tank 200 in the liquid state.
  • the first pump 210 sucks liquid natural gas into the tank 200, this liquid natural gas passes through the expansion means 182 in which it undergoes a reduction in its pressure.
  • this expansion to allow the liquid natural gas to pass from atmospheric pressure, that is to say approximately 1 bar, to a pressure below atmospheric pressure, for example to a pressure of approximately 0.35 bar.
  • the first pass 171 of the heat exchanger 170 is supplied with liquid natural gas at low pressure.
  • the second pump 220 also sucks liquid natural gas into the tank 200 to directly supply the second pass 172 of the heat exchanger 170.
  • the second pass 172 of the heat exchanger 170 is thus supplied with pressurized liquid natural gas. atmospheric.
  • a heat exchange then takes place in the heat exchanger 170, between the low pressure liquid natural gas which circulates in the first pass 171 and the liquid natural gas at atmospheric pressure which circulates in the second pass 172 This results in evaporation of the low-pressure liquid natural gas which circulates in the first pass 171 and a sub-cooling of the liquid natural gas at atmospheric pressure which circulates in the second pass 172.
  • the sub-cooled liquid natural gas can then be returned.
  • the compression means 122 makes it possible to pass the gaseous natural gas from a pressure of about 0.35 bar to a pressure of about 1 bar. Gaseous natural gas thus leaves the means of compression 122 at atmospheric pressure and joins the compression member 120 and / or the compression device 121 in which (s) its pressure is still high in order to be able to use this gaseous natural gas as fuel for the (s) gas-consuming appliance (s).
  • the heat exchanger 170 advantageously makes it possible to supply gas consuming devices 130, 131 on the one hand and to store cold in the bottom of the tank 200 on the other hand.
  • the storage of sub-cooled liquid natural gas in the tank 200 makes it possible to lower the temperature of the liquid natural gas contained in the tank 200 so as to reduce the evaporation of this natural gas. liquid contained in the tank 200.
  • the third operating mode corresponds for its part to an operating mode of the system 100 in which the quantity of natural gas present in the gaseous state in the vessel head 201 is greater than the gas requirement of the gas consuming appliance (s) 130, 131.
  • natural gas is taken in the gaseous state from the top of the tank 201 to supply the heat exchanger 110, and more particularly the first pass 111 of this heat exchanger 110.
  • the natural gas in the gaseous state captures calories from the gaseous and compressed natural gas which circulates in the second pass 112 as described above.
  • the natural gas thus leaves the heat exchanger 110 in the gaseous state and at a temperature higher than the temperature that it exhibited in the vessel top 201.
  • This heated gaseous natural gas then joins the compression member 120 and / or the compression device 121 in which it undergoes an increase in its pressure to a value sufficient to supply at least one of the gas consuming devices 130, 131.
  • part of this gas Heated and compressed natural gas feeds the appliance (s) consuming gas 130, 131.
  • At least one of the valves 150, 151 is open to allow another part of this gaseous natural gas heated and compressed to join the second pass 112 of the heat exchanger 110. It is understood that the part of the heated and compressed gaseous natural gas which feeds the gas consuming appliance (s) 130, 131 is distinct from the other part of this heated and compressed gaseous natural gas which joins the second pass 112 of the heat exchanger 110.
  • the gaseous natural gas which circulates in the second pass 112 of the heat exchanger 110 yields calories to the gaseous natural gas which circulates in the first pass 111 of this heat exchanger 110 of so that the gaseous natural gas leaves the heat exchanger 110 and joins the third pipe 103 at a temperature lower than the temperature which it exhibited at the inlet of the second pass 112. It is understood, however, that the natural gas leaves the second pass 112 of the heat exchanger 110 in the gaseous state.
  • the third pipe 103 is connected to the bubbling member 140.
  • the gaseous natural gas which leaves the second pass 112 of the heat exchanger 110 cools and thus joins this bubbling member 140 and passes into the orifices 142 formed. in the ramp 141 of this bubbling member 140, so that gas bubbles 143 are generated and released in the bottom of the tank 200.
  • These gas bubbles 143 are thus found in contact with the liquid natural gas contained in the tank 200 , which leads to the condensation of these gas bubbles which then transform into liquid natural gas which then mixes with the rest of the liquid natural gas present in the tank 200.
  • the orifices 142 of the bubbling member 140 are distributed homogeneously over an entire length of the ramp 141, that is to say the longest dimension of this ramp 141, so that the gas bubbles 143 are also distributed in the bottom of the tank 200, thus increasing the contact surface and the temperature difference between each gas bubble and the liquid natural gas contained in the tank 200. It is understood that the release of these gas bubbles 143 tends to increase the temperature of the liquid natural gas contained in the tank 200.
  • the second operating mode and the third operating mode are advantageously implemented successively.
  • the second operating mode makes it possible to store cold at the bottom of the tank - thanks to the return to the bottom of this tank of natural gas sub-cooled by the heat exchange operated in the heat exchanger 170.
  • the temperature of the liquid natural gas contained in the tank 200 is thus reduced, and the increase in the temperature of this liquid natural gas generated by the release of the liquid natural gas.
  • gas bubbles 143 via the bubbling member 140 during the implementation of the third mode of operation is controlled.
  • the second operating mode makes it possible to store cold in anticipation of an increase in the temperature of the tank. liquid natural gas contained in the tank linked to the release of the gas bubbles 143 by the bubbling member 140 when the system 100 switches to the third operating mode.
  • FIG. 5 is a cutaway view of a ship 70 which shows the tank 200 which contains natural gas in the liquid state and in the gaseous state, this tank 200 being of generally prismatic shape mounted in a double hull 72 of the ship.
  • the wall of the tank 200 comprises a primary sealing membrane intended to be in contact with the liquefied gas contained in the tank, a secondary sealing membrane arranged between the primary sealing membrane and the double hull 72 of the vessel, and two insulating barriers arranged respectively between the primary waterproofing membrane and the secondary waterproofing membrane and between the secondary waterproofing membrane and the double shell 72.
  • Loading and / or unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a marine or port terminal to transfer the cargo of natural gas in liquid state from or to the vessel 1.
  • FIG. 5 also shows an example of a marine terminal comprising a loading and / or unloading station 75, an underwater pipe 76 and an installation on land 77.
  • the loading and / or unloading station 75 is a fixed off installation. -shore comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated pipes 79 which can be connected to the loading and / or unloading pipes 73.
  • the movable arm 74 can be oriented. adapts to all vessel sizes.
  • the loading and unloading station 75 allows the loading and / or unloading of the ship 70 from or to the shore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a great distance, for example 5 km, which makes it possible to keep the vessel 70 at a great distance from the coast during loading and / or unloading operations.
  • the present invention thus provides a gas treatment system which makes it possible to supply gas consuming devices present on a ship with naturally evaporated gas, with liquid gas which has been forcibly evaporated and also to condense the naturally evaporated gas if the latter. was in excess of the energy demand of the gas consuming appliance (s) of the ship, advantageously at a limited cost.
  • the present invention should not however be limited to the means and configurations described and illustrated here and it also extends to any equivalent means and any configuration as well as to any technically operative combination of such means.

Abstract

The present invention relates to a system (100) for treating gas contained within a tank (200) for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship, the system (100) comprising at least: - a heat exchanger (110) configured to operate a heat exchange between gas taken from the tank (200) in the gaseous state and compressed gas from the tank (200), - a compression member (120) configured to compress the gas in the gaseous state from the heat exchanger (110), - an apparatus for consuming gas (130, 131) in the gaseous state, the device being configured to be supplied with the compressed gas, - a first pipe (101) connecting the compression member (120) to the apparatus for consuming gas (130, 131) in the gaseous state, - a second pipe (102) connecting the first pipe (101) to an inlet of the heat exchanger (110), - a third pipe (103) connecting an outlet (116) of the heat exchanger (110) to a tank bottom (200), - a bubbling means (140) connected to the third pipe (103) and configured to distribute gas from the heat exchanger (110) in the gaseous state in the tank bottom (200).

Description

Description Description
Titre : Système de traitement de gaz contenu dans une cuve de stockage et/ou de transport de gaz à l’état liquide et à l’état gazeux équipant un navire Title: Gas treatment system contained in a tank for storing and / or transporting gas in the liquid state and in the gaseous state equipping a ship
La présente invention concerne le domaine des navires dont les moteurs de propulsion sont alimentés par du gaz naturel et qui permettent en outre de contenir et/ou transporter du gaz naturel liquéfié. The present invention relates to the field of ships whose propulsion engines are powered by natural gas and which furthermore make it possible to contain and / or transport liquefied natural gas.
De tels navires comprennent ainsi classiquement des cuves qui contiennent du gaz naturel à l’état liquide. Le gaz naturel est liquide à des températures inférieures à - 160°C, à pression atmosphérique. Ces cuves ne sont jamais parfaitement isolées thermiquement de sorte que le gaz naturel s’y évapore au moins partiellement. Ainsi, ces cuves comprennent à la fois du gaz naturel sous une forme liquide et du gaz naturel sous forme gazeuse. Ce gaz naturel sous forme gazeuse forme le ciel de cuve et la pression de ce ciel de cuve doit être contrôlée afin de ne pas endommager la cuve. De façon connue au moins une partie du gaz naturel présent dans la cuve sous forme gazeuse est ainsi utilisée pour alimenter, entre autres, les moteurs de propulsion du navire. Such ships thus conventionally include tanks which contain natural gas in the liquid state. Natural gas is liquid at temperatures below - 160 ° C, at atmospheric pressure. These tanks are never perfectly thermally insulated so that the natural gas at least partially evaporates there. Thus, these tanks comprise both natural gas in liquid form and natural gas in gaseous form. This natural gas in gaseous form forms the vessel head and the pressure of this vessel head must be controlled so as not to damage the vessel. In a known manner, at least part of the natural gas present in the tank in gaseous form is thus used to supply, among other things, the propulsion engines of the ship.
Toutefois, lorsque le navire est à l’arrêt, la consommation de gaz naturel gazeux par ces moteurs est nulle, ou quasiment nulle, le gaz naturel présent à l’état gazeux dans la cuve n’étant plus consommé par ces moteurs. Des systèmes de reliquéfaction qui permettent de condenser le gaz naturel évaporé présent dans la cuve sont ainsi mis en place sur le navire, afin de le renvoyer vers cette cuve, à l’état liquide. However, when the vessel is stationary, the consumption of gaseous natural gas by these engines is zero, or almost zero, the natural gas present in the gaseous state in the tank is no longer consumed by these engines. Reliquefaction systems which allow the evaporated natural gas present in the tank to be condensed are thus installed on the vessel, in order to return it to this tank, in the liquid state.
Les systèmes de reliquéfaction actuellement utilisés sont très coûteux et la présente invention vise à résoudre cet inconvénient en proposant un système de traitement du gaz comprenant moins de composants que les systèmes actuels, permettant ainsi de réduire les coûts de mise en œuvre de tels systèmes, tout en étant au moins aussi performant.The reliquefaction systems currently used are very expensive and the present invention aims to solve this drawback by proposing a gas treatment system comprising fewer components than current systems, thus making it possible to reduce the costs of implementing such systems, while by being at least as efficient.
Un objet de la présente invention concerne ainsi un système de traitement de gaz contenu dans une cuve de stockage et/ou de transport de gaz à l’état liquide et à l’état gazeux, la cuve équipant un navire et le système comprenant au moins : un échangeur thermique configuré pour opérer un échange de chaleur entre du gaz prélevé dans la cuve à l'état gazeux et du gaz comprimé provenant de la cuve, un organe de compression configuré pour comprimer le gaz à l'état gazeux provenant de l’échangeur thermique, un appareil consommateur de gaz à l'état gazeux configuré pour erre alimenté par le gaz comprimé, une première conduire reliant l’organe de compression à l’appareil consommateur de gaz à l'état gazeux, une deuxième conduire reliant la première conduire à un orifice d’entrée de l’échangeur thermique, une troisième conduire reliant un orifice de sortie de l’échangeur thermique à un fond de la cuve, un organe de bullage connecté à la troisième conduire et configuré pour répartir du gaz issu de l’échangeur thermique à l'état gazeux dans le fond de la cuve. An object of the present invention thus relates to a gas treatment system contained in a tank for storing and / or transporting gas in the liquid state and in the gaseous state, the tank equipping a ship and the system comprising at least : a heat exchanger configured to operate a heat exchange between gas taken from the tank in the gaseous state and compressed gas coming from the tank, a compression member configured to compress the gas in the gaseous state coming from the exchanger thermal, a gas consuming device in the gaseous state configured to wander powered by the compressed gas, a first conduit connecting the compression member to the gas consuming apparatus in the gaseous state, a second conduit connecting the first conduit to an inlet of the heat exchanger, a third conduit connecting an outlet of the heat exchanger to a bottom of the vessel, a bubbling member connected to the third conduit and configured to distribute gas from the heat exchanger in the gaseous state in the bottom of the tank.
On entend par « fond de la cuve » une portion de la cuve qui s’étend depuis une paroi de fond de la cuve et un plan parallèle à cette paroi de fond inférieure et agencé, au maximum, à 20% d’une hauteur totale de la cuve, cette hauteur totale étant mesurée selon une droite perpendiculaire à la paroi de fond inférieure de la cuve entre deux extrémités opposées de cette cuve, le long de cette droite. Avantageusement, le plan parallèle à la paroi de fond inférieure qui participe à délimiter le « fond de la cuve » peur erre agencé à 10% de la hauteur totale de la cuve. Alternativement, l’organe de bullage peur erre fixé à la paroi de fond inférieure de la cuve. On comprend de ce qui précède que l’échangeur thermique est configuré pour opérer un échange de chaleur entre le gaz évaporé prélevé dans la cuve et le gaz comprimé par l’organe de compression. Autrement dit, cet échangeur thermique comprend au moins une première passe dont un orifice d’enrrée est connecté à la cuve et dont un orifice de sortie est connecté à l’organe de compression et au moins une deuxième passe dont un orifice d’enrrée est connecté à l’organe de compression et dont un orifice de sortie est connecté à la cuve. Selon l’invention, l’organe de bullage est plus particulièrement configuré pour générer des bulles de gaz et pour les disperser dans le fond de la cuve. Ces bulles de gaz sont alors en contact avec le gaz liquide présent dans la cuve La différence de température entre ces bulles de gaz et le gaz liquide présent dans la cuve entraîne une condensation de ces bulles de gaz. The term "bottom of the tank" is understood to mean a portion of the tank which extends from a bottom wall of the tank and a plane parallel to this lower bottom wall and arranged, at most, at 20% of a total height. of the tank, this total height being measured along a straight line perpendicular to the bottom bottom wall of the tank between two opposite ends of this tank, along this straight line. Advantageously, the plane parallel to the lower bottom wall which participates in delimiting the “bottom of the tank” can wander arranged at 10% of the total height of the tank. Alternatively, the fear bubbling member wanders fixed to the bottom bottom wall of the tank. It will be understood from the foregoing that the heat exchanger is configured to operate a heat exchange between the evaporated gas taken from the tank and the gas compressed by the compression member. In other words, this heat exchanger comprises at least a first pass of which an inlet port is connected to the vessel and of which an outlet port is connected to the compression member and at least a second pass of which an inlet port is connected to the compression member and one outlet port of which is connected to the tank. According to the invention, the bubbling member is more particularly configured to generate gas bubbles and to disperse them in the bottom of the tank. These gas bubbles are then in contact with the liquid gas present in the tank. The temperature difference between these gas bubbles and the liquid gas present in the tank causes condensation of these gas bubbles.
Selon une caractéristique de la présente invention, le système de traitement du gaz comprend un moyen de détente et un échangeur de chaleur, l’échangeur de chaleur étant équipé d’au moins une première passe alimentée par du gaz prélevé à l’état liquide dans la cuve et d’au moins une deuxième passe alimentée par du gaz prélevé à l’état liquide dans la cuve et le moyen de détente étant agencé entre la cuve et la première passe de l’échangeur de chaleur. According to one characteristic of the present invention, the gas treatment system comprises an expansion means and a heat exchanger, the heat exchanger being equipped with at least a first pass supplied with gas taken in the liquid state in the tank and at least one second pass supplied with gas taken in liquid state from the tank and the expansion means being arranged between the tank and the first pass of the heat exchanger.
Autrement dit, on comprend que le gaz liquide qui alimente la première passe subi une détente, c’est-à-dire une diminution de sa pression avant de rejoindre cette première passe tandis que le gaz liquide qui est envoyé dans la deuxième passe de l’échangeur de chaleur rejoint cette deuxième passe immédiatement après avoir quitté la cuve, c’est-à- dire sans n’avoir subi aucune modification de sa pression ou de sa température autre que celle liée au pompage en lui-même. Autrement dit, on comprend que cet échangeur de chaleur est configuré pour opérer un échange de chaleur entre du gaz liquide détendu et du gaz liquide non détendu. Par exemple, le gaz liquide détendu peut être détendu à une pression inférieure à la pression atmosphérique. Avantageusement, la différence de pression, et donc de température, entre le gaz liquide circulant dans la première passe et le gaz liquide circulant dans la deuxième passe permet d’évaporer le gaz liquide circulant dans la première passe et de refroidir le gaz liquide circulant dans la deuxième passe. Par exemple un orifice de sortie de la deuxième passe de l’échangeur de chaleur peut être fluidiquement raccordé à la cuve de sorte que le gaz liquide refroidi par son passage par la deuxième passe de l’échangeur de chaleur puisse être retourné dans cette cuve. On comprend qu’injecter du gaz liquide ainsi refroidi participe à maintenir une température stable dans la cuve, et ainsi à limiter le phénomène d’évaporation du gaz liquide contenu dans la cuve. Selon l’invention, l’organe de bullage peut par exemple comprendre au moins une rampe pourvue d’orifices générateurs de bulles de gaz. Avantageusement, ces orifices sont répartis sur toute une longueur de la rampe, c’est-à-dire une dimension la plus grande de la rampe, de sorte à permettre une répartition homogène des bulles de gaz générées dans le fond de la cuve. In other words, it is understood that the liquid gas which feeds the first pass undergoes an expansion, that is to say a decrease in its pressure before joining this first pass while the liquid gas which is sent into the second pass of the The heat exchanger rejoins this second pass immediately after leaving the tank, that is to say without having undergone any change in its pressure or in its temperature other than that linked to the pumping itself. In other words, it will be understood that this heat exchanger is configured to perform a heat exchange between expanded liquid gas and non-expanded liquid gas. For example, the expanded liquid gas can be expanded to a pressure below atmospheric pressure. Advantageously, the difference in pressure, and therefore in temperature, between the liquid gas circulating in the first pass and the liquid gas circulating in the second pass makes it possible to evaporate the liquid gas circulating in the first pass and to cool the liquid gas circulating in the second pass. For example, an outlet of the second pass of the heat exchanger can be fluidly connected to the tank so that the liquid gas cooled by its passage through the second pass of the heat exchanger can be returned to this tank. It will be understood that injecting liquid gas thus cooled contributes to maintaining a stable temperature in the tank, and thus to limiting the phenomenon of evaporation of the liquid gas contained in the tank. According to the invention, the bubbling member may for example comprise at least one ramp provided with orifices generating gas bubbles. Advantageously, these orifices are distributed over an entire length of the ramp, that is to say the largest dimension of the ramp, so as to allow a homogeneous distribution of the gas bubbles generated in the bottom of the tank.
Selon un exemple de réalisation de la présente invention, les orifices de la rampe présentent, chacun, une section comprise entre 0,0078 mm2 et 315mm2. Avantageusement, une telle section permet de générer des bulles de gaz suffisamment petites pour qu’elles se condensent rapidement et ainsi se mélangent rapidement au gaz liquide contenu dans la cuve. According to an exemplary embodiment of the present invention, the orifices of the ramp each have a section of between 0.0078 mm2 and 315mm2. Advantageously, such a section makes it possible to generate gas bubbles that are small enough for them to condense quickly and thus mix quickly with the liquid gas contained in the tank.
Selon une caractéristique de la présente invention, au moins un organe de détente est agencé sur la première conduite. Autrement dit, on comprend que le gaz qui quitte l’organe de compression est détendu avant de rejoindre l’échangeur thermique, ce qui permet notamment de faciliter l’échange de chaleur qui s’opère dans cet échangeur thermique. Alternativement, le gaz naturel peut rejoindre l’échangeur thermique sans subir de détente, c’est-à-dire que le gaz naturel rejoint alors l’organe de bullage à une pression plus importante que lorsqu’il subit une détente avant de rejoindre l’échangeur thermique. According to one characteristic of the present invention, at least one expansion member is arranged on the first pipe. In other words, it is understood that the gas which leaves the compression member is expanded before reaching the heat exchanger, which makes it possible in particular to facilitate the heat exchange which takes place in this heat exchanger. Alternatively, the natural gas can join the heat exchanger without undergoing expansion, that is to say that the natural gas then joins the bubbling member at a greater pressure than when it undergoes an expansion before joining the 'heat exchanger.
Selon l’invention, le système de traitement de gaz peut comprendre un dispositif de compression agencé en parallèle de l’organe de compression, l’organe de compression étant configuré pour comprimer une première partie du gaz à l’état gazeux provenant de l’échangeur thermique et le dispositif de compression étant configuré pour comprimer une deuxième partie du gaz à l’état gazeux provenant de l’échangeur thermique, la première partie du gaz provenant de l’échangeur thermique étant distincte de la deuxième partie du gaz provenant de l’échangeur thermique. Alternativement, le dispositif de compression peut être utilisé pour pallier une éventuelle panne de l’organe de compression. Par exemple, le gaz stocké et/ou transporté dans la cuve est du gaz naturel. Alternativement, le système de traitement de gaz selon l’invention peut être utilisé avec d’autres types de gaz, tels que par exemple des gaz d’hydrocarbures ou hydrogène. According to the invention, the gas treatment system may comprise a compression device arranged in parallel with the compression member, the compression member being configured to compress a first part of the gas in the gaseous state coming from the heat exchanger and the compression device being configured to compress a second part of the gas in the gaseous state coming from the heat exchanger, the first part of the gas coming from the heat exchanger being distinct from the second part of the gas coming from the 'heat exchanger. Alternatively, the compression device can be used to alleviate a possible failure of the compression member. For example, the gas stored and / or transported in the tank is natural gas. Alternatively, the gas treatment system according to the invention can be used with other types of gas, such as, for example, hydrocarbon or hydrogen gases.
Selon un exemple de réalisation de la présente invention, le système de traitement de gaz comprend au moins un premier appareil consommateur de gaz et au moins un deuxième appareil consommateur de gaz, le premier appareil consommateur de gaz étant configuré pour être alimenté par du gaz comprimé à une première pression, le deuxième appareil consommateur de gaz étant configuré pour être alimenté par du gaz comprimé à une deuxième pression et la première pression étant inférieure à la deuxième pression. Par exemple, le premier appareil consommateur de gaz est une génératrice électrique de type DFDE (Dual Fuel Diesel Electric), c’est-à-dire un appareil consommateur de gaz configuré pour assurer l’alimenrarion électrique du navire et le deuxième appareil consommateur de gaz peur être un moteur de propulsion du navire, tel qu’un moteur ME-GI ou XDF. According to an exemplary embodiment of the present invention, the gas treatment system comprises at least a first gas consuming device and at least a second gas consuming device, the first gas consuming device being configured to be supplied with compressed gas. at a first pressure, the second gas consuming apparatus being configured to be supplied with gas compressed at a second pressure and the first pressure being lower than the second pressure. For example, the first gas consuming device is an electrical generator of the DFDE (Dual Fuel Diesel Electric) type, that is to say a gas consuming device configured to ensure the electrical supply of the ship and the second consuming device. gas can be a ship's propulsion engine, such as an ME-GI or XDF engine.
La présente invention concerne également un navire de transport de gaz liquéfié, comprenant au moins une cuve d’une cargaison de gaz liquéfié, au moins un appareil consommateur de gaz évaporé et au moins un système de traitement de gaz selon l’une quelconque des revendications précédentes. The present invention also relates to a liquefied gas transport vessel, comprising at least one tank of a liquefied gas cargo, at least one appliance consuming evaporated gas and at least one gas treatment system according to any one of the claims. previous ones.
La présente invention concerne encore un système pour charger ou décharger un gaz liquide qui combine au moins un moyen à terre et au moins un navire de transport de gaz liquide selon l’invention. The present invention also relates to a system for loading or unloading a liquid gas which combines at least one means on land and at least one liquid gas transport vessel according to the invention.
La présente invention concerne en outre un procédé comprenant au moins les étapes de : prélèvement du gaz à l’état gazeux dans la cuve, réchauffage du gaz prélevé à l’état gazeux dans la cuve par un échange de chaleur opéré dans un échangeur thermique avec du gaz comprimé par un organe de compression, compression, par l’organe de compression, du gaz réchauffé alimentation d’au moins un appareil consommateur de gaz évaporé par une première partie du gaz réchauffé et comprimé refroidissement d’une deuxième partie du gaz réchauffé et comprimé par un échange de chaleur opéré dans l’échangeur thermique avec le gaz prélevé à l’état gazeux dans la cuve, répartition de la deuxième partie du gaz refroidi par son passage dans l’échangeur thermique dans un fond de la cuve. The present invention further relates to a method comprising at least the steps of: taking off the gas in the gaseous state in the tank, reheating the gas taken in the gaseous state in the tank by a heat exchange carried out in a heat exchanger with gas compressed by a compression member, compression, by the compression member, heated gas supply of at least one appliance consuming evaporated gas by a first part of the heated and compressed gas cooling of a second part of the heated and compressed gas by a heat exchange carried out in the heat exchanger with the gas taken from the state gas in the tank, distribution of the second part of the cooled gas as it passes through the heat exchanger in a bottom of the tank.
Selon l’invention, l’étape de répartition de la deuxième partie du gaz refroidi consiste en un bullage de cette deuxième partie du gaz refroidi. According to the invention, the step of distributing the second part of the cooled gas consists of bubbling this second part of the cooled gas.
Selon une caractéristique de la présente invention, une pression à l’entrée de la troisième conduite est supérieure à une pression mesurée au fond de la cuve. According to one characteristic of the present invention, a pressure at the inlet of the third pipe is greater than a pressure measured at the bottom of the tank.
Le procédé de traitement de gaz selon la présente invention peut également comprendre au moins une étape de sous-refroidissement du gaz naturel prélevé à l’état liquide dans la cuve et au moins une étape de stockage du gaz naturel sous-refroidi au fond de la cuve. Selon l’invention, l’étape de sous-refroidissement est réalisée par un échange de chaleur entre du gaz naturel prélevé dans la cuve à l’état liquide et maintenu à pression atmosphérique et du gaz naturel prélevé dans la cuve à l’état liquide et détendu en- dessous de la pression atmosphérique. Autrement dit, on comprend de ce qui précède que l’étape de sous-refroidissement du gaz naturel prélevé à l’état liquide dans la cuve est opérée dans l’échangeur de chaleur mentionné ci-dessus. The gas treatment process according to the present invention can also comprise at least one step of sub-cooling the natural gas taken in the liquid state from the tank and at least one step of storing the sub-cooled natural gas at the bottom of the tank. tank. According to the invention, the sub-cooling step is carried out by a heat exchange between natural gas taken from the tank in the liquid state and maintained at atmospheric pressure and natural gas taken from the tank in the liquid state. and relaxed below atmospheric pressure. In other words, it is understood from the above that the step of sub-cooling the natural gas taken in the liquid state from the tank is carried out in the heat exchanger mentioned above.
Avantageusement, l’étape de sous-refroidissement du gaz naturel prélevé à l’état liquide dans la cuve, l’étape de stockage du gaz naturel sous-refroidi dans le fond de la cuve et l’étape de répartition de la deuxième partie du gaz refroidi par son passage dans l’échangeur thermique dans le fond de la cuve sont réalisées, dans cet ordre, au moins deux fois consécutives. Tel que précédemment évoqué, les étapes de sous-refroidissement et de stockage du gaz naturel liquide sous-refroidi permettent d’abaisser la température du gaz naturel présent à l’état liquide dans la cuve. L’étape de répartition de la deuxième partie du gaz refroidi tend quant à elle à augmenter la température du gaz naturel présent à l’état liquide dans la cuve. Autrement dit, les étapes de sous-refroidissement et de stockage du gaz naturel sous-refroidi permettent d’assurer un maintien de la température du gaz naturel liquide contenu dans la cuve, de sorte à éviter qu’une quantité trop importante de ce gaz naturel liquide ne s’évapore lors de l’étape de répartition du gaz dans le fond de la cuve, ce qui résulterait en une augmentation de la quantité de gaz naturel gazeux présent dans le ciel de cuve, et par conséquent une augmentation de la pression dans cette cuve, ce qui pourrait, à terme, endommager cette dernière. Les étapes de sous-refroidissement, stockage et répartition du gaz naturel dans la cuve participent donc à la stabilité de la pression dans cette cuve. Advantageously, the step of sub-cooling the natural gas taken in the liquid state from the vessel, the step of storing the sub-cooled natural gas in the bottom of the vessel and the step of distributing the second part of the tank. gas cooled by its passage through the heat exchanger in the bottom of the tank are carried out, in this order, at least two consecutive times. As previously mentioned, the steps of sub-cooling and storage of the sub-cooled liquid natural gas make it possible to lower the temperature of the natural gas present in the liquid state in the tank. The step of distributing the second part of the cooled gas tends to increase the temperature of the natural gas. present in the liquid state in the tank. In other words, the steps of sub-cooling and storage of the sub-cooled natural gas make it possible to maintain the temperature of the liquid natural gas contained in the vessel, so as to prevent an excessive quantity of this natural gas. liquid evaporates during the gas distribution step in the bottom of the vessel, which would result in an increase in the quantity of gaseous natural gas present in the vessel head, and therefore an increase in the pressure in the vessel. this tank, which could eventually damage it. The steps of sub-cooling, storage and distribution of natural gas in the vessel therefore participate in the stability of the pressure in this vessel.
La présente invention concerne enfin un procédé de chargement ou de déchargement d’un gaz liquide d’un navire de transport de gaz selon l’invention. The present invention finally relates to a method of loading or unloading a liquid gas from a gas transport vessel according to the invention.
D’autres caractéristiques, détails et avantages de l’invention ressortiront plus clairement à la lecture de la description qui suit d’une part, et d’un exemple de réalisation donné à titre indicatif et non limitatif en référence aux dessins annexés d’autre part, sur lesquels : Other characteristics, details and advantages of the invention will emerge more clearly on reading the description which follows on the one hand, and of an exemplary embodiment given by way of indication and not limiting with reference to the appended drawings on the other hand. share, on which:
[Fig. 1] illustre, schématiquement, un système de traitement de gaz selon la présente invention ; [Fig. 1] illustrates, schematically, a gas treatment system according to the present invention;
[Fig. 2] illustre, schématiquement, un premier mode de fonctionnement du système de traitement de gaz illustré sur le figure 1 ; [Fig. 2] illustrates, schematically, a first mode of operation of the gas treatment system illustrated in FIG. 1;
[Fig. 3] illustre, schématiquement, un deuxième mode de fonctionnement du système de traitement de gaz illustré sur la figure 1 ; [Fig. 3] illustrates, schematically, a second mode of operation of the gas treatment system illustrated in FIG. 1;
[Fig. 4] illustre, schématiquement, un troisième mode de fonctionnement du système de traitement de gaz illustré sur la figure 1 ; [Fig. 4] illustrates, schematically, a third mode of operation of the gas treatment system illustrated in FIG. 1;
[Fig. 5] est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement et/ou de déchargement de cette cuve. [Fig. 5] is a cut-away schematic representation of an LNG vessel tank and a terminal for loading and / or unloading this tank.
Dans la suite de la description, les termes « amont » et « aval » s’entendent selon un sens de circulation d’un gaz à l’état liquide, gazeux ou diphasique à travers l’élément concerné. Sur les figures 2 à 4, les traits pleins représentent des conduites de circuit dans lesquelles circule du gaz à l’état liquide, gazeux ou diphasique, tandis que les traits pointillés représentent des conduites de circuit dans lesquelles le gaz ne circule pas.In the remainder of the description, the terms “upstream” and “downstream” are understood in a direction of circulation of a gas in the liquid, gaseous or two-phase state through the element concerned. In Figures 2 to 4, the solid lines represent circuit lines in which circulates gas in the liquid, gaseous or two-phase state, while the dotted lines represent circuit pipes in which the gas does not circulate.
Les figures 1 à 4 illustrent un système 100 de traitement d’un gaz contenu à l’état liquide et à l’état gazeux dans une cuve 200 ainsi que différents modes de fonctionnement de ce système 100 de traitement de gaz. Dans la description qui va suivre, l’espace de la cuve 200 occupé par le gaz à l’état gazeux est appelé « ciel de cuve 201 ». En référence à la figure 1, nous allons dans un premier temps décrire le système 100 selon la présente invention, à l’arrêt, c’est-à-dire lorsqu’aucun gaz, qu’il soit à l’état gazeux, liquide ou diphasique, n’y circule. En référence aux figures 2 à 4, nous décrirons ensuite trois modes de fonctionnement distincts du système 100 de traitement de gaz selon l’invention, parmi lesquels nous distinguerons un premier mode de fonctionnement dit « à l’équilibre », un deuxième mode de fonctionnement dit « évaporation forcée » et un troisième mode de fonctionnement dit « de reliquéfaction ». Dans la suite de la description, les termes « système 100 de traitement de gaz » et « système 100 » seront utilisés sans distinction. FIGS. 1 to 4 illustrate a system 100 for treating a gas contained in the liquid state and in the gaseous state in a tank 200 as well as various modes of operation of this gas treatment system 100. In the following description, the space of the vessel 200 occupied by the gas in the gaseous state is referred to as "vessel head 201". With reference to FIG. 1, we will first describe the system 100 according to the present invention, at a standstill, that is to say when no gas, whether in the gaseous or liquid state. or two-phase, does not circulate there. With reference to FIGS. 2 to 4, we will then describe three distinct operating modes of the gas treatment system 100 according to the invention, among which we will distinguish a first operating mode called “at equilibrium”, a second operating mode. called "forced evaporation" and a third operating mode called "reliquefaction". In the remainder of the description, the terms “gas treatment system 100” and “system 100” will be used without distinction.
La description qui va suivre donne un exemple particulier d’application de la présente invention dans lequel la cuve 200 contient du gaz naturel. Il est entendu qu’il ne s’agit que d’un exemple d’application et que le système 100 de traitement de gaz selon l’invention peut être utilisé avec d’autres types de gaz, tels que par exemple des gaz d’hydrocarbures ou hydrogène. The following description gives a particular example of application of the present invention in which the tank 200 contains natural gas. It is understood that this is only an example of application and that the gas treatment system 100 according to the invention can be used with other types of gas, such as, for example, gas. hydrocarbons or hydrogen.
La figure 1 illustre ainsi tout d’abord, schématiquement, le système 100 de traitement de gaz contenu dans la cuve 200 selon l’invention, à l’arrêt. Selon l’invention, le système 100 comprend au moins un échangeur thermique 110, au moins un organe de compression 120, au moins un appareil consommateur de gaz 130 et au moins un organe de bullage 140. Selon un exemple illustré ici, le système 100 comprend en outre, un dispositif de compression 121, un moyen de compression 122, un échangeur de chaleur 170 et un autre appareil consommateur de gaz 131. FIG. 1 thus first illustrates, schematically, the gas treatment system 100 contained in the tank 200 according to the invention, when stopped. According to the invention, the system 100 comprises at least one heat exchanger 110, at least one compression member 120, at least one gas consuming device 130 and at least one bubbling member 140. According to an example illustrated here, the system 100 further comprises a compression device 121, a compression means 122, a heat exchanger 170 and another gas consuming apparatus 131.
Tel que représenté, au moins une première conduite 101 est agencée entre l’organe de compression 120 et l’appareil consommateur de gaz 130, au moins une deuxième conduite 102 est agencée entre la première conduite 101 et l’échangeur thermique 110 et au moins une troisième conduite 103 est agencée entre l’échangeur thermique 110 et un fond de la cuve, c’est-à-dire une portion de la cuve qui s’étend depuis une paroi de fond 202 de la cuve 200 et un plan parallèle à cette paroi de fond inférieure et agencé, au maximum, à 20% de la hauteur h totale de la cuve, cette hauteur h totale étant mesurée selon une droite perpendiculaire à la paroi de fond inférieure de la cuve entre deux extrémités opposées de cette cuve, le long de cette droite. Avantageusement, le plan parallèle à la paroi de fond inférieure qui participe à délimiter le « fond de la cuve » peut être agencé à 10% de la hauteur h totale de la cuve. Alternativement, l’organe de bullage peut être fixé à la paroi de fond 202 inférieure de la cuve. As shown, at least a first pipe 101 is arranged between the compression member 120 and the gas consuming device 130, at least a second pipe 102 is arranged between the first pipe 101 and the heat exchanger 110 and at least a third pipe 103 is arranged between the heat exchanger 110 and a bottom of the tank, that is to say a portion of the tank which extends from a bottom wall 202 of the tank 200 and a plane parallel to this lower bottom wall and arranged, at most, at 20% of the total height h of the tank, this total height h being measured along a straight line perpendicular to the bottom bottom wall of the tank between two opposite ends of this tank, along this straight line. Advantageously, the plane parallel to the lower bottom wall which participates in delimiting the “bottom of the tank” can be arranged at 10% of the total height h of the tank. Alternatively, the bubbling member can be fixed to the bottom bottom wall 202 of the tank.
On remarque également que l’échangeur thermique 110 comprend au moins une première passe 111 connectée d’une part à la cuve 200, et plus particulièrement au ciel de cuve 201, et d’autre part à l’organe de compression 120 et au moins une deuxième passe 112 quant à elle connectée, d’une part, à l’organe de compression 120 et d’autre part à la cuve 200. Plus particulièrement, un orifice d’entrée 113 de la première passeIt is also noted that the heat exchanger 110 comprises at least a first pass 111 connected on the one hand to the tank 200, and more particularly to the tank top 201, and on the other hand to the compression member 120 and at least a second pass 112 for its part connected, on the one hand, to the compression member 120 and on the other hand to the tank 200. More particularly, an inlet orifice 113 of the first pass
111 est connecté au ciel de cuve 201 par une quatrième conduite 104, un orifice de sortie 114 de la première passe 111 est connecté à l’organe de compression 120 par une cinquième conduite 105, un orifice d’entrée 115 de la deuxième passe 112 est quant à lui connecté à l’organe de compression 120 par la deuxième conduite 102 et un orifice de sortie 116 de cette deuxième passe 112 est connecté au fond de la cuve 200 par la troisième conduite 103. En d’autres termes, on comprend que la première passe 111 de l’échangeur thermique 110 est parcourue par du gaz naturel prélevé dans la cuve 200, et plus particulièrement dans le ciel de cuve 201 , à l’état gazeux, et que la deuxième passe111 is connected to the vessel shell 201 by a fourth pipe 104, an outlet port 114 of the first pass 111 is connected to the compression member 120 by a fifth pipe 105, an inlet port 115 of the second pass 112 is for its part connected to the compression member 120 by the second pipe 102 and an outlet 116 of this second pass 112 is connected to the bottom of the tank 200 by the third pipe 103. In other words, it is understood that the first pass 111 of the heat exchanger 110 is traversed by natural gas taken from the tank 200, and more particularly from the tank top 201, in the gaseous state, and that the second pass
112 de cet échangeur thermique 110 est parcourue par du gaz prélevé dans la cuve 200, et plus particulièrement dans le ciel de cuve 201, puis comprimé par l’organe de compression 120. Autrement dit, l’échangeur thermique 110 est configuré pour opérer un échange de chaleur entre du gaz prélevé à l’état gazeux dans le ciel de cuve 201 et envoyé directement dans l’échangeur thermique 110 et du gaz prélevé à l’état gazeux dans le ciel de cuve 201 et au moins comprimé par l’organe de compression 120. On entend par « envoyé directement dans l’échangeur de chaleur 110 » le fait que le gaz naturel prélevé à l’état gazeux ne subit aucune modification de pression ou de température, autre que celle liée à son aspiration, avant de rejoindre l’échangeur thermique 110, et plus particulièrement la première passe 111 de cet échangeur thermique 110. On note également qu’une vanne 150 est agencée sur la deuxième conduite 102, c’est-à-dire entre la première conduite 101 et l’échangeur thermique 110. Alternativement, la vanne 150 pourrait être agencée en aval de l’échangeur thermique 110, c’est-à-dire agencée sur la troisième conduite 103. Cette vanne 150 contrôle ainsi l’alimentation en gaz naturel gazeux de la deuxième passe 112 de l’échangeur thermique 110. 112 of this heat exchanger 110 is traversed by the gas taken from the tank 200, and more particularly from the tank top 201, then compressed by the compression member 120. In other words, the heat exchanger 110 is configured to operate a heat exchange between gas taken in the gaseous state in the vessel top 201 and sent directly into the heat exchanger 110 and gas taken in the gaseous state in the vessel head 201 and at least compressed by the member compression 120. The term "sent directly to the heat exchanger 110" means that the gas natural sample taken in the gaseous state does not undergo any change in pressure or temperature, other than that linked to its suction, before joining the heat exchanger 110, and more particularly the first pass 111 of this heat exchanger 110. We also note that a valve 150 is arranged on the second pipe 102, that is to say between the first pipe 101 and the heat exchanger 110. Alternatively, the valve 150 could be arranged downstream of the heat exchanger 110, c 'That is to say arranged on the third pipe 103. This valve 150 thus controls the supply of gaseous natural gas to the second pass 112 of the heat exchanger 110.
Par ailleurs, la troisième conduite 103 est connectée à l’organe de bullage 140 qui s’étend dans le fond de la cuve. Cet organe de bullage 140 comprend, selon l’exemple illustré ici, une rampe 141 pourvue d’orifices 142 configurés pour générer des bulles de gaz 143 naturel. Par exemple, chacun de ces orifices 142 présente une section comprise entre 0.0078 mm2 et 315 mm2. Tel que cela sera plus amplement détaillé ci-dessous, notamment en référence au troisième mode de fonctionnement du système 100 selon l’invention, ces bulles de gaz 143 naturel sont ainsi mélangées au gaz naturel liquide présent dans la cuve 200, ce qui permet au gaz naturel gazeux qui forme ces bulles de gaz 143 de se condenser et ainsi de revenir à l’état liquide. Furthermore, the third pipe 103 is connected to the bubbling member 140 which extends in the bottom of the tank. This bubbling member 140 comprises, according to the example illustrated here, a ramp 141 provided with orifices 142 configured to generate bubbles of natural gas 143. For example, each of these orifices 142 has a section of between 0.0078 mm 2 and 315 mm 2 . As will be more fully detailed below, in particular with reference to the third mode of operation of the system 100 according to the invention, these natural gas bubbles 143 are thus mixed with the liquid natural gas present in the tank 200, which allows the gaseous natural gas which forms these gas bubbles 143 to condense and thus return to the liquid state.
L’organe de compression 120 et le dispositif de compression 121 sont tous deux connectés aux mêmes éléments du système 100, à savoir ils sont connectés, par la cinquième conduite 105, à la première passe 111 de l’échangeur thermique 110 d’une part, à un premier appareil consommateur de gaz 130 par la première conduite 101 et à un deuxième appareil consommateur de gaz 131 par une sixième conduite 106 d’autre part. Plus particulièrement on note que le gaz naturel gazeux comprimé par l’organe de compression 120 et le gaz naturel gazeux comprimé par le dispositif de compression 121 peuvent être mélangés dans une unique conduite qui se sépare ensuite pour rejoindre le premier ou le deuxième appareil consommateur de gaz 130, 131. Par exemple, le premier appareil consommateur de gaz 130 est une génératrice électrique de type DFDE (Dual Fuel Diesel Electric), c’est-à-dire un appareil consommateur de gaz configuré pour assurer l’alimenrarion électrique du navire et le deuxième appareil consommateur de gaz 131 peur erre un moteur de propulsion du navire, tel qu’un moteur ME-GI ou XDF. Il est entendu qu’il ne s’agir que d’un exemple de réalisation de la présente invention et qu’on pourra prévoir l'installation d’appareils consommateurs de gaz différents sans sortir du contexte de la présente invention. En outre, la sixième conduire 106 est également connectée fluidiquement à la deuxième conduire 102. Autrement dir, une partie du gaz naturel comprimé destiné à alimenter le deuxième appareil consommateur de gaz 131 peur erre dérivée pour alimenter la deuxième passe 112 de l’échangeur thermique 110. Afin de contrôler cette dérivation du gaz naturel comprimé destiné à alimenter le deuxième appareil 131 consommateur de gaz, une vanne 151 est agencée entre la sixième conduire 106 et l’échangeur thermique 110. The compression member 120 and the compression device 121 are both connected to the same elements of the system 100, namely they are connected, by the fifth pipe 105, to the first pass 111 of the heat exchanger 110 on the one hand , to a first gas consuming appliance 130 via the first pipe 101 and to a second gas consuming appliance 131 via a sixth pipe 106 on the other hand. More particularly, it is noted that the gaseous natural gas compressed by the compression member 120 and the gaseous natural gas compressed by the compression device 121 can be mixed in a single pipe which then separates to join the first or the second appliance consuming energy. gas 130, 131. For example, the first gas consuming device 130 is an electric generator of the DFDE (Dual Fuel Diesel Electric) type, that is to say a gas consuming device configured for to ensure the electrical power supply of the vessel and the second gas consuming device 131 fear wanders a propulsion engine of the vessel, such as an ME-GI or XDF engine. It is understood that this is only an exemplary embodiment of the present invention and that provision can be made for the installation of appliances consuming different gases without departing from the context of the present invention. In addition, the sixth pipe 106 is also fluidly connected to the second pipe 102. In other words, part of the compressed natural gas intended to supply the second gas consuming device 131 can be diverted to supply the second pass 112 of the heat exchanger. 110. In order to control this diversion of the compressed natural gas intended to supply the second gas-consuming appliance 131, a valve 151 is arranged between the sixth conduit 106 and the heat exchanger 110.
Selon différents exemples d’application de la présente invention, on pourra prévoir que seul l’organe de compression 120 fonctionne, le dispositif de compression 121 assurant alors une redondance, c’est- à-dire que ce dispositif de compression 121 permet alors de remplacer l’organe de compression 120 si celui-ci venait à tomber en panne. Alternativement, on peur prévoir que l’organe de compression 120 et le dispositif de compression 121 fonctionnent simultanément, c’est- à-dire qu’une première partie du gaz naturel issu de l’échangeur thermique 110 est alors comprimée par l’organe de compression et qu’une deuxième partie du gaz naturel issu de l’échangeur thermique 110 est quant à elle comprimée par le dispositif de compression 121, la première partie et la deuxième partie du gaz naturel issu de l’échangeur thermique étant distinctes.According to various examples of application of the present invention, provision may be made for only the compression member 120 to operate, the compression device 121 then ensuring redundancy, that is to say that this compression device 121 then makes it possible to replace the compression member 120 if it breaks down. Alternatively, provision can be made for the compression member 120 and the compression device 121 to operate simultaneously, that is to say that a first part of the natural gas issuing from the heat exchanger 110 is then compressed by the member. compression and that a second part of the natural gas from the heat exchanger 110 is itself compressed by the compression device 121, the first part and the second part of the natural gas from the heat exchanger being separate.
Selon l’un quelconque de ces exemples d’application, la gaz naturel rejoint l’organe de compression 120 et/ou le dispositif de compression 121 à l'état gazeux et à une pression d’environ 1 bar et ce gaz naturel quitte l’organe de compression 120 et/ou le dispositif de compression 121 à l'état gazeux et à haute pression, c’est- à-dire une pression comprise entre 1 bar et 400 bar, avantageusement entre 1 bar et 17 bar, encore plus avantageusement, entre 6 bar et 17 bar. Le niveau de compression en sortie de cet organe de compression 120 et/ou de ce dispositif de compression 121 est paramétré en fonction du type d’appareil consommateur de gaz à alimenter. En outre un organe de détente 181 peut être agencé sur la première conduite 101, et plus particulièrement entre l’organe de compression 120 et la deuxième conduite 102 de sorte à opérer une détente du gaz naturel qui quitte l’organe de compression 120 et/ou le dispositif de compression 121, avant que celui-ci ne rejoigne l’échangeur thermique 110 dans lequel, tel que cela sera plus amplement détaillé ci- après, le gaz naturel comprimé cède des calorie au gaz naturel sous forme gazeuse directement envoyé vers cet échangeur thermique 110 depuis le ciel de cuve 201. On note en outre que la sixième conduite 106 est dépourvue d’organe de détente. Autrement dit, lorsque la vanne 151 agencée entre la sixième conduite 106 et l’échangeur thermique 110 est ouverte pour alimenter la deuxième passe 112 de cet échangeur thermique 110, le gaz naturel qui alimente cette deuxième passe 112 est à une pression comprise entre 1 bar et 400 bar, avantageusement entre 1 bar et 17 bar, encore plus avantageusement entre 6 bar et 17 bar. En d’autres termes, l’ouverture de la vanne 151 agencée entre la sixième conduite 106 et l’échangeur thermique 110 permet d’alimenter l’organe de bullage 140 avec du gaz naturel à haute pression. On comprend donc que la vanne 150 agencée sur la deuxième conduite 102 et la vanne 151 agencée entre la sixième conduite 106 et l’échangeur thermique 110 ne sont jamais ouvertes simultanément. According to any one of these application examples, the natural gas joins the compression member 120 and / or the compression device 121 in the gaseous state and at a pressure of about 1 bar and this natural gas leaves the 'compression member 120 and / or the compression device 121 in the gaseous state and at high pressure, that is to say a pressure between 1 bar and 400 bar, advantageously between 1 bar and 17 bar, even more advantageously, between 6 bar and 17 bar. The level of compression at the outlet of this compression member 120 and / or of this compression device 121 is set as a function of the type of gas consuming appliance to be supplied. In addition, an expansion member 181 can be arranged on the first pipe 101, and more particularly between the compression member 120 and the second pipe 102 so as to effect an expansion of the natural gas which leaves the compression member 120 and / or the compression device 121, before the latter joins the heat exchanger 110 in which, as will be more fully detailed below, the compressed natural gas transfers calories to natural gas in gaseous form directly sent to this heat exchanger 110 from the tank top 201. It is further noted that the sixth pipe 106 has no expansion member. In other words, when the valve 151 arranged between the sixth pipe 106 and the heat exchanger 110 is open to supply the second pass 112 of this heat exchanger 110, the natural gas which feeds this second pass 112 is at a pressure of between 1 bar and 400 bar, advantageously between 1 bar and 17 bar, even more advantageously between 6 bar and 17 bar. In other words, the opening of the valve 151 arranged between the sixth pipe 106 and the heat exchanger 110 makes it possible to supply the bubbling member 140 with natural gas at high pressure. It is therefore understood that the valve 150 arranged on the second pipe 102 and the valve 151 arranged between the sixth pipe 106 and the heat exchanger 110 are never open simultaneously.
L’échangeur de chaleur 170 comprend quant à lui également une première passe 171 et une deuxième passe 172. Tel qu’illustré, la première passe 171 est connectée d’une part à une première pompe 210 agencée dans le fond de la cuve 200 et d’autre part au moyen de compression 122 et la deuxième passe 172 est quant à elle connectée d’une part à une deuxième pompe 220 agencée dans le fond de la cuve 200 et d’autre part également à la cuve 200, et plus exactement à une partie de la cuve 200 dans laquelle est stocké le gaz naturel à l’état liquide. Plus particulièrement, un orifice d’entrée 173 de la première passe 171 est connecté à la première pompe 210, un orifice de sortie 174 de la première passe 171 est connecté au moyen de compression 122, un orifice d’entrée 175 de la deuxième passe 172 est connecté à la deuxième pompe 220 et un orifice de sortie 176 de la deuxième passe 172 est connecté à la cuve 200. On entend ici par « connecté à la cuve », le fait qu’une septième conduite 107 est connectée à l’orifice de sortie de la deuxième passe 172 de l’échangeur de chaleur 170 et que cette septième conduite 170 débouche dans la cuve 200. Selon un exemple de réalisation non illustré ici, la première passe et la deuxième passe de l’échangeur de chaleur peuvent routes deux erre alimentées par une même pompe, une bifurcation étant alors ménagée entre cette unique pompe et les orifices d’entrée des première et deuxième passes de l’échangeur de chaleur. En outre, un moyen de détente 182 est agencé entre la première pompe 210 et l’échangeur de chaleur 170. Autrement dir, le gaz prélevé à l'état liquide dans la cuve 200 par la première pompe 210 est dérendu avant de rejoindre le première passe 171 de l’échangeur de chaleur 170. On entend par « dérendu » le fait que le gaz naturel liquide subisse une diminution de sa pression. Autrement dir, le gaz naturel prélevé dans la cuve à l'état liquide par la première pompe 210 rejoint l’échangeur de chaleur 170 à une pression inférieure à la pression atmosphérique. On remarque en revanche que la deuxième pompe 220 est configurée pour envoyer le gaz naturel prélevé à l'état liquide dans la cuve 200 directement dans la deuxième passe 172 de l’échangeur de chaleur 170, c’est- à-dire que le gaz naturel prélevé à l'état liquide dans la cuve 200 ne subir aucune modification de température ni de pression autre que celle liée au pompage lui- même avant de rejoindre la deuxième passe 172 de l’échangeur de chaleur 170. L’échangeur de chaleur 170 est ainsi configuré pour opérer un échange de chaleur entre du gaz prélevé dans la cuve 200 à l'état liquide et ayant subi une détente et du gaz prélevé dans la cuve à l'état liquide et n’ayant subi aucune modification de pression. Selon l’exemple de réalisation non illustré dans lequel la première passe et la deuxième passe de l’échangeur de chaleur sont alimentées par la même pompe, le moyen de détente est agencé en aval de la bifurcation, c’est-à-dire entre la bifurcation et la première passe de l’échangeur de chaleur. On comprend donc de ce qui précède que le gaz naturel liquide qui circule dans la première passe 171 est réchauffé jusqu’à être évaporé tandis que le gaz naturel liquide qui circule dans la deuxième passe 172 est sous- refroidi avant d’êrre retourné dans le fond de la cuve 200. The heat exchanger 170 for its part also comprises a first pass 171 and a second pass 172. As illustrated, the first pass 171 is connected on the one hand to a first pump 210 arranged in the bottom of the tank 200 and on the other hand by means of compression 122 and the second pass 172 is for its part connected on the one hand to a second pump 220 arranged in the bottom of the tank 200 and on the other hand also to the tank 200, and more exactly to a part of the tank 200 in which the natural gas in the liquid state is stored. More specifically, an inlet 173 of the first pass 171 is connected to the first pump 210, an outlet 174 of the first pass 171 is connected to the compression means 122, an inlet 175 of the second pass 172 is connected to the second pump 220 and an outlet 176 of the second pass 172 is connected to the tank 200. By "connected to the tank" is meant here the fact that a seventh line 107 is connected to the tank. outlet of the second pass 172 of the heat exchanger 170 and that this seventh duct 170 opens into the tank 200. According to an exemplary embodiment not illustrated here, the first pass and the second pass of the heat exchanger can route two erre supplied by the same pump, a bifurcation then being made between this single pump and the orifices inlet of the first and second passes of the heat exchanger. In addition, an expansion means 182 is arranged between the first pump 210 and the heat exchanger 170. In other words, the gas taken in the liquid state in the tank 200 by the first pump 210 is released before joining the first. pass 171 of the heat exchanger 170. The term “derension” means that the liquid natural gas undergoes a decrease in its pressure. In other words, the natural gas taken from the tank in the liquid state by the first pump 210 joins the heat exchanger 170 at a pressure lower than atmospheric pressure. On the other hand, note that the second pump 220 is configured to send the natural gas taken in the liquid state in the tank 200 directly into the second pass 172 of the heat exchanger 170, that is to say that the gas natural sample taken in the liquid state in the tank 200 not to undergo any change in temperature or pressure other than that linked to the pumping itself before joining the second pass 172 of the heat exchanger 170. The heat exchanger 170 is thus configured to operate a heat exchange between the gas taken from the tank 200 in the liquid state and having undergone an expansion and the gas taken from the tank in the liquid state and having undergone no change in pressure. According to the example of embodiment not illustrated in which the first pass and the second pass of the heat exchanger are supplied by the same pump, the expansion means is arranged downstream of the bifurcation, that is to say between the bifurcation and the first pass of the heat exchanger. It is therefore understood from the above that the liquid natural gas which circulates in the first pass 171 is reheated until it is evaporated while the liquid natural gas which circulates in the second pass 172 is sub-cooled before being returned to the tank. bottom of the tank 200.
Tel qu’évoqué ci-dessus, le gaz naturel liquide circule dans la première passe 171 de l’échangeur de chaleur 170 à une pression inférieure à la pression atmosphérique. Aussi, afin d’assurer l'écoulement de ce gaz naturel liquide, le moyen de compression 122 agencé entre cet échangeur de chaleur 170 et l’organe de compression 120 est configuré pour ramener le gaz naturel qui quitte cet échangeur de chaleur 170 à une pression avoisinant la pression atmosphérique. Par exemple, ce moyen de compression 122 est configuré pour comprimer le gaz naturel de 0.35 bar à 1 bar. Le gaz naturel ainsi comprimé est alors apte à rejoindre l’organe de compression 120 et/ou le dispositif de compression 121, dans le(s)quel(s) il subit une seconde compression. As mentioned above, liquid natural gas flows through the first pass 171 of the heat exchanger 170 at a pressure lower than atmospheric pressure. Also, in order to ensure the flow of this liquid natural gas, the compression means 122 arranged between this heat exchanger 170 and the compression member 120 is configured to return the natural gas which leaves this heat exchanger 170 to a pressure close to atmospheric pressure. For example, this compression means 122 is configured to compress natural gas from 0.35 bar to 1 bar. The natural gas thus compressed is then able to join the compression member 120 and / or the compression device 121, in which (s) it (s) it undergoes a second compression.
En référence à la figure 2, nous allons maintenant décrire le premier mode de fonctionnement du système 100 selon l’invention. Tel que précédemment évoqué, ce premier mode de fonctionnement est dit « à l’équilibre ». En d’autres termes, ce premier mode de fonctionnement correspond au cas parfait dans lequel la quantité de gaz naturel évaporé présent dans le ciel de cuve 201 à l’état gazeux est identique aux besoins du/des appareils consommateurs de gaz 130, 131. Tel que schématiquement illustré, selon ce premier mode de fonctionnement, les vannes 150, 151 sont fermées, et les première et deuxième pompes 210, 220 sont à l’arrêt. Selon ce premier mode de fonctionnement, le gaz naturel est ainsi prélevé à l’état gazeux dans le ciel de cuve 201, puis directement envoyé vers l’organe de compression 120 et/ou le dispositif de compression 121, de sorte à ce que sa pression soit augmentée en vue d’alimenter le(s) appareil(s) consommateur(s) de gaz 130, 131. With reference to Figure 2, we will now describe the first mode of operation of the system 100 according to the invention. As previously mentioned, this first operating mode is said to be "at equilibrium". In other words, this first mode of operation corresponds to the perfect case in which the quantity of evaporated natural gas present in the head cap 201 in the gaseous state is identical to the needs of the gas consuming appliance (s) 130, 131. As schematically illustrated, according to this first mode of operation, the valves 150, 151 are closed, and the first and second pumps 210, 220 are stopped. According to this first mode of operation, the natural gas is thus taken in the gaseous state in the vessel head 201, then sent directly to the compression member 120 and / or the compression device 121, so that its pressure is increased in order to supply the gas-consuming appliance (s) 130, 131.
La figure 3 illustre un deuxième mode de fonctionnement du système 100 selon l’invention, ce deuxième mode de fonctionnement étant dit « d’évaporation forcée ». Ce deuxième mode de fonctionnement est mis en œuvre lorsque la quantité de gaz naturel gazeux présent dans le ciel de cuve 201 est inférieure aux besoins du(des) appareil (s) consommateur(s) de gaz. Ce deuxième mode de fonctionnement permet avantageusement de générer du gaz naturel gazeux à partir de gaz naturel liquide afin de pouvoir alimenter cet(ces) appareil(s). FIG. 3 illustrates a second mode of operation of the system 100 according to the invention, this second mode of operation being called "forced evaporation". This second mode of operation is implemented when the quantity of gaseous natural gas present in the tank top 201 is less than the needs of the gas consuming appliance (s). This second operating mode advantageously makes it possible to generate gaseous natural gas from liquid natural gas in order to be able to supply this (these) device (s).
Tel que représenté sur la figure 3, selon ce deuxième mode de fonctionnement, la première pompe 210 et la deuxième pompe 220 sont toutes deux activées, tandis que les vannes 150, 151 respectivement agencée sur la deuxième conduite 102 et entre la sixième conduite 106 et l’échangeur thermique 110 sont fermées, de sorte que le gaz naturel gazeux comprimé issu de l’organe de compression 120 et/ou du dispositif de compression 121 soit intégralement envoyé vers le(s) appareil (s) consommateur(s) de gaz. En d’autres termes, selon ce deuxième mode de fonctionnement, la deuxième passe 112 de l’échangeur thermique 110 n’est pas alimentée et le gaz naturel prélevé dans la cuve à l’état gazeux est directement envoyé vers l’organe de compression 120 et/ou le dispositif de compression 121. As shown in Figure 3, according to this second mode of operation, the first pump 210 and the second pump 220 are both activated, while the valves 150, 151 respectively arranged on the second pipe 102 and between the sixth pipe 106 and the heat exchanger 110 are closed, so that the gas compressed natural gas coming from the compression member 120 and / or from the compression device 121 is completely sent to the gas consuming appliance (s). In other words, according to this second mode of operation, the second pass 112 of the heat exchanger 110 is not supplied and the natural gas taken from the tank in the gaseous state is sent directly to the compression member. 120 and / or the compression device 121.
L’échangeur de chaleur 170 est quant à lui alimenté par du gaz naturel prélevé dans la cuve 200 à l’état liquide. Ainsi, la première pompe 210 aspire du gaz naturel liquide dans la cuve 200, ce gaz naturel liquide passe à travers le moyen de détente 182 dans lequel il subit une diminution de sa pression. Par exemple, on pourra prévoir que cette détente permette de passer le gaz naturel liquide d’une pression atmosphérique, c’est-à- dire environ 1 bar, à une pression inférieure à la pression atmosphérique, par exemple à une pression d’environ 0.35 bar. Ainsi, la première passe 171 de l’échangeur de chaleur 170 est alimenté par du gaz naturel liquide à basse pression. The heat exchanger 170 is in turn fed with natural gas taken from the tank 200 in the liquid state. Thus, the first pump 210 sucks liquid natural gas into the tank 200, this liquid natural gas passes through the expansion means 182 in which it undergoes a reduction in its pressure. For example, provision could be made for this expansion to allow the liquid natural gas to pass from atmospheric pressure, that is to say approximately 1 bar, to a pressure below atmospheric pressure, for example to a pressure of approximately 0.35 bar. Thus, the first pass 171 of the heat exchanger 170 is supplied with liquid natural gas at low pressure.
La deuxième pompe 220 aspire également du gaz naturel liquide dans la cuve 200 pour alimenter directement la deuxième passe 172 de l’échangeur de chaleur 170. La deuxième passe 172 de l’échangeur de chaleur 170 est ainsi alimentée par du gaz naturel liquide à pression atmosphérique. Tel que précédemment évoqué, un échange de chaleur s’opère alors dans l’échangeur de chaleur 170, entre le gaz naturel liquide basse pression qui circule dans la première passe 171 et le gaz naturel liquide à pression atmosphérique qui circule dans la deuxième passe 172. Il en résulte une évaporation du gaz naturel liquide basse pression qui circule dans la première passe 171 et un sous- refroidissement du gaz naturel liquide à pression atmosphérique qui circule dans la deuxième passe 172. Le gaz naturel liquide sous-refroidi peut alors être retourné dans le fond de la cuve 200, grâce à la septième conduite 107, tandis que le gaz naturel évaporé quitte la première passe 171 à l’état gazeux pour rejoindre le moyen de compression 122 dans lequel il subit une élévation de sa pression. Ainsi, tel qu’évoqué ci-dessus, le moyen de compression 122 permet de faire passer le gaz naturel gazeux d’une pression d’environ 0,35 bar à une pression d’environ 1 bar. Le gaz naturel gazeux quitte ainsi le moyen de compression 122 à pression atmosphérique et rejoint l’organe de compression 120 et/ou le dispositif de compression 121 dans le(s)quel(s) sa pression est encore élevée afin de pouvoir utiliser ce gaz naturel gazeux comme carburant pour le(s) appareil(s) consommateur(s) de gaz. The second pump 220 also sucks liquid natural gas into the tank 200 to directly supply the second pass 172 of the heat exchanger 170. The second pass 172 of the heat exchanger 170 is thus supplied with pressurized liquid natural gas. atmospheric. As previously mentioned, a heat exchange then takes place in the heat exchanger 170, between the low pressure liquid natural gas which circulates in the first pass 171 and the liquid natural gas at atmospheric pressure which circulates in the second pass 172 This results in evaporation of the low-pressure liquid natural gas which circulates in the first pass 171 and a sub-cooling of the liquid natural gas at atmospheric pressure which circulates in the second pass 172. The sub-cooled liquid natural gas can then be returned. in the bottom of the tank 200, thanks to the seventh pipe 107, while the evaporated natural gas leaves the first pass 171 in the gaseous state to reach the compression means 122 in which it undergoes a rise in its pressure. Thus, as mentioned above, the compression means 122 makes it possible to pass the gaseous natural gas from a pressure of about 0.35 bar to a pressure of about 1 bar. Gaseous natural gas thus leaves the means of compression 122 at atmospheric pressure and joins the compression member 120 and / or the compression device 121 in which (s) its pressure is still high in order to be able to use this gaseous natural gas as fuel for the (s) gas-consuming appliance (s).
On comprend de ce qui précède que, selon le deuxième mode de fonctionnement du système 100 selon l’invention, l’échangeur de chaleur 170 permet avantageusement d’alimenter les appareils consommateurs de gaz 130, 131 d’une part et de stocker du froid dans le fond de la cuve 200 d’autre part. Tel que cela sera plus amplement détaillé ci-dessous, le stockage de gaz naturel liquide sous-refroidi dans la cuve 200 permet d’abaisser la température du gaz naturel liquide contenu dans la cuve 200 de sorte à réduire l’évaporation de ce gaz naturel liquide contenu dans la cuve 200. It will be understood from the above that, according to the second mode of operation of the system 100 according to the invention, the heat exchanger 170 advantageously makes it possible to supply gas consuming devices 130, 131 on the one hand and to store cold in the bottom of the tank 200 on the other hand. As will be more fully detailed below, the storage of sub-cooled liquid natural gas in the tank 200 makes it possible to lower the temperature of the liquid natural gas contained in the tank 200 so as to reduce the evaporation of this natural gas. liquid contained in the tank 200.
Le troisième mode de fonctionnement, dit « de reliquéfaction », illustré sur la figure 4, correspond quant à lui à un mode de fonctionnement du système 100 dans lequel la quantité de gaz naturel présent à l’état gazeux dans le ciel de cuve 201 est supérieure au besoin en gaz du(des) appareil (s) consommateur(s) de gaz 130, 131. The third operating mode, called “reliquefaction”, illustrated in FIG. 4, corresponds for its part to an operating mode of the system 100 in which the quantity of natural gas present in the gaseous state in the vessel head 201 is greater than the gas requirement of the gas consuming appliance (s) 130, 131.
Selon ce troisième mode de fonctionnement, du gaz naturel est prélevé à l’état gazeux dans le ciel de cuve 201 pour alimenter l’échangeur thermique 110, et plus particulièrement la première passe 111 de cet échangeur thermique 110. Dans cet échangeur thermique 110, le gaz naturel à l’état gazeux capte des calories du gaz naturel gazeux et comprimé qui circule dans la deuxième passe 112 tel que décrit ci-dessus. Le gaz naturel quitte ainsi l’échangeur thermique 110 à l’état gazeux et à une température supérieure à la température qu’il présentait dans le ciel de cuve 201. Ce gaz naturel gazeux réchauffé rejoint alors l’organe de compression 120 et/ou le dispositif de compression 121 dans le(s)quel(s) il subit une augmentation de sa pression jusqu’à une valeur suffisante pour alimenter au moins l’un des appareils consommateurs de gaz 130, 131. Ainsi, une partie de ce gaz naturel gazeux réchauffé et comprimé alimente le(s) appareil (s) consommateur(s) de gaz 130, 131. Au moins l’une des vannes 150, 151 est quant à elle ouverte pour permettre à une autre partie de ce gaz naturel gazeux réchauffé et comprimé de rejoindre la deuxième passe 112 de l’échangeur thermique 110. Il est entendu que la partie du gaz naturel gazeux réchauffé et comprimé qui alimente le(s) appareil (s) consommateur(s) de gaz 130, 131 est distincte de l’autre partie de ce gaz naturel gazeux réchauffé et comprimé qui rejoint la deuxième passe 112 de l’échangeur thermique 110. Tel que précédemment décrit, le gaz naturel gazeux qui circule dans la deuxième passe 112 de l’échangeur thermique 110 cède des calories au gaz naturel gazeux qui circule dans la première passe 111 de cet échangeur thermique 110 de sorte que le gaz naturel gazeux quitte l’échangeur thermique 110 et rejoint la troisième conduite 103 à une température inférieure à la température qu’il présentait à l’entrée de la deuxième passe 112. Il est entendu, toutefois, que le gaz naturel quitte la deuxième passe 112 de l’échangeur thermique 110 à l’état gazeux. According to this third operating mode, natural gas is taken in the gaseous state from the top of the tank 201 to supply the heat exchanger 110, and more particularly the first pass 111 of this heat exchanger 110. In this heat exchanger 110, the natural gas in the gaseous state captures calories from the gaseous and compressed natural gas which circulates in the second pass 112 as described above. The natural gas thus leaves the heat exchanger 110 in the gaseous state and at a temperature higher than the temperature that it exhibited in the vessel top 201. This heated gaseous natural gas then joins the compression member 120 and / or the compression device 121 in which it undergoes an increase in its pressure to a value sufficient to supply at least one of the gas consuming devices 130, 131. Thus, part of this gas Heated and compressed natural gas feeds the appliance (s) consuming gas 130, 131. At least one of the valves 150, 151 is open to allow another part of this gaseous natural gas heated and compressed to join the second pass 112 of the heat exchanger 110. It is understood that the part of the heated and compressed gaseous natural gas which feeds the gas consuming appliance (s) 130, 131 is distinct from the other part of this heated and compressed gaseous natural gas which joins the second pass 112 of the heat exchanger 110. As previously described, the gaseous natural gas which circulates in the second pass 112 of the heat exchanger 110 yields calories to the gaseous natural gas which circulates in the first pass 111 of this heat exchanger 110 of so that the gaseous natural gas leaves the heat exchanger 110 and joins the third pipe 103 at a temperature lower than the temperature which it exhibited at the inlet of the second pass 112. It is understood, however, that the natural gas leaves the second pass 112 of the heat exchanger 110 in the gaseous state.
Tel que précédemment évoqué, la troisième conduite 103 est connectée à l’organe de bullage 140. Le gaz naturel gazeux qui quitte la deuxième passe 112 de l’échangeur thermique 110 refroidit rejoint ainsi cet organe de bullage 140 et passe dans les orifices 142 ménagés dans la rampe 141 de cet organe de bullage 140, de sorte que des bulles de gaz 143 sont générées et libérées dans le fond de la cuve 200. Ces bulles de gaz 143 se retrouvent ainsi au contact du gaz naturel liquide contenu dans la cuve 200, ce qui entraîne la condensation de ces bulles de gaz qui se transforment alors en gaz naturel liquide qui se mélange alors au reste du gaz naturel liquide présent dans la cuve 200.As previously mentioned, the third pipe 103 is connected to the bubbling member 140. The gaseous natural gas which leaves the second pass 112 of the heat exchanger 110 cools and thus joins this bubbling member 140 and passes into the orifices 142 formed. in the ramp 141 of this bubbling member 140, so that gas bubbles 143 are generated and released in the bottom of the tank 200. These gas bubbles 143 are thus found in contact with the liquid natural gas contained in the tank 200 , which leads to the condensation of these gas bubbles which then transform into liquid natural gas which then mixes with the rest of the liquid natural gas present in the tank 200.
Avantageusement, les orifices 142 de l’organe de bullage 140 sont répartis de façon homogène sur toute une longueur de la rampe 141, c’est-à-dire une dimension la plus longue de cette rampe 141, de sorte que les bulles de gaz 143 sont également réparties dans le fond de la cuve 200, augmentant ainsi la surface de contact et l’écart de température entre chaque bulle de gaz et le gaz naturel liquide contenu dans la cuve 200. On comprend que la libération de ces bulles de gaz 143 tend à augmenter la température du gaz naturel liquide contenu dans la cuve 200. Advantageously, the orifices 142 of the bubbling member 140 are distributed homogeneously over an entire length of the ramp 141, that is to say the longest dimension of this ramp 141, so that the gas bubbles 143 are also distributed in the bottom of the tank 200, thus increasing the contact surface and the temperature difference between each gas bubble and the liquid natural gas contained in the tank 200. It is understood that the release of these gas bubbles 143 tends to increase the temperature of the liquid natural gas contained in the tank 200.
Selon l’invention, le deuxième mode de fonctionnement et le troisième mode de fonctionnement sont avantageusement mis en œuvre successivement. En effet, tel que décrit en référence à la figure 3, le deuxième mode de fonctionnement permet de stocker du froid au fond de la cuve — grâce au retour dans le fond de cette cuve du gaz naturel sous-refroidi par l’échange de chaleur opéré dans l’échangeur de chaleur 170. La température du gaz naturel liquide contenu dans la cuve 200 est ainsi réduire, et 1’augmentation de la température de ce gaz naturel liquide générée par la libération des bulles de gaz 143 via l’organe de bullage 140 lors de la mise en œuvre du troisième mode de fonctionnement est maîtrisée. En d’autres termes, sans l'étape de stockage de froid préalable, la libération des bulles de gaz 143 par l’organe de bullage 140 entraînerait une augmentation trop importante de la température du gaz naturel liquide contenu dans la cuve 200, ce qui résulterait en une évaporation de ce gaz naturel liquide et donc en une augmentation de la pression qui pourrait endommager la cuve 200. En d’autres termes, le deuxième mode de fonctionnement permet de stocker du froid en prévision d’une augmentation de la température du gaz naturel liquide contenu dans la cuve liée à la libération des bulles de gaz 143 par l’organe de bullage 140 lorsque le système 100 passe sur le troisième mode de fonctionnement. According to the invention, the second operating mode and the third operating mode are advantageously implemented successively. In fact, as described with reference to FIG. 3, the second operating mode makes it possible to store cold at the bottom of the tank - thanks to the return to the bottom of this tank of natural gas sub-cooled by the heat exchange operated in the heat exchanger 170. The temperature of the liquid natural gas contained in the tank 200 is thus reduced, and the increase in the temperature of this liquid natural gas generated by the release of the liquid natural gas. gas bubbles 143 via the bubbling member 140 during the implementation of the third mode of operation is controlled. In other words, without the prior cold storage step, the release of the gas bubbles 143 by the bubbling member 140 would lead to an excessive increase in the temperature of the liquid natural gas contained in the tank 200, which would result in an evaporation of this liquid natural gas and therefore in an increase in pressure which could damage the tank 200. In other words, the second operating mode makes it possible to store cold in anticipation of an increase in the temperature of the tank. liquid natural gas contained in the tank linked to the release of the gas bubbles 143 by the bubbling member 140 when the system 100 switches to the third operating mode.
On comprend de ce qui précède que, pour un fonctionnement optimal du système 100, c’est- à-dire un fonctionnement dans lequel la pression dans le ciel de cuve 201 est maîtrisée, il convient d’alterner entre les deuxième et troisième modes de fonctionnement de ce système 100. It will be understood from the foregoing that, for optimum operation of the system 100, that is to say operation in which the pressure in the tank top 201 is controlled, it is appropriate to alternate between the second and third modes of operation of this system 100.
Enfin, la figure 5 est une vue écorchée d’un navire 70 qui montre la cuve 200 qui contient le gaz naturel à l’état liquide et à l’état gazeux, cette cuve 200 étant de forme générale prismatique montée dans une double coque 72 du navire. La paroi de la cuve 200 comporte une membrane d'étanchéité primaire destinée à être en contact avec le gaz liquéfié contenu dans la cuve, une membrane d'étanchéité secondaire agencée entre la membrane d'étanchéité primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la membrane d'étanchéité primaire et la membrane d'étanchéité secondaire et entre la membrane d'étanchéité secondaire et la double coque 72. Finally, Figure 5 is a cutaway view of a ship 70 which shows the tank 200 which contains natural gas in the liquid state and in the gaseous state, this tank 200 being of generally prismatic shape mounted in a double hull 72 of the ship. The wall of the tank 200 comprises a primary sealing membrane intended to be in contact with the liquefied gas contained in the tank, a secondary sealing membrane arranged between the primary sealing membrane and the double hull 72 of the vessel, and two insulating barriers arranged respectively between the primary waterproofing membrane and the secondary waterproofing membrane and between the secondary waterproofing membrane and the double shell 72.
Des canalisations de chargement et/ou de déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer la cargaison de gaz naturel à l’état liquide depuis ou vers la cuve 1. Loading and / or unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a marine or port terminal to transfer the cargo of natural gas in liquid state from or to the vessel 1.
La figure 5 représente également un exemple de terminal maritime comportant un poste de chargement et/ou de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et/ou de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de canalisations isolées 79 pouvant se connecter aux canalisations de chargement et/ou de déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de navire. Le poste de chargement et de déchargement 75 permet le chargement et/ou le déchargement du navire 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire 70 à grande distance de la côte pendant les opérations de chargement et/ ou de déchargement.FIG. 5 also shows an example of a marine terminal comprising a loading and / or unloading station 75, an underwater pipe 76 and an installation on land 77. The loading and / or unloading station 75 is a fixed off installation. -shore comprising a movable arm 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated pipes 79 which can be connected to the loading and / or unloading pipes 73. The movable arm 74 can be oriented. adapts to all vessel sizes. The loading and unloading station 75 allows the loading and / or unloading of the ship 70 from or to the shore installation 77. The latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75. The underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a great distance, for example 5 km, which makes it possible to keep the vessel 70 at a great distance from the coast during loading and / or unloading operations.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre la ou les pompes de déchargement évoquées plus haut et portées par la tour de chargement et/ou de déchargement de la cuve 200 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75. To generate the pressure necessary for the transfer of the liquefied gas, the unloading pump (s) mentioned above and carried by the loading and / or unloading tower of the tank 200 and / or the pumps equipping the installation at earth 77 and / or pumps fitted to the loading and unloading station 75.
Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrit et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention. Of course, the invention is not limited to the examples which have just been described and numerous modifications can be made to these examples without departing from the scope of the invention.
La présente invention propose ainsi un système de traitement de gaz qui permet d’alimenter les appareils consommateurs de gaz présents sur un navire par du gaz naturellement évaporé, par du gaz liquide évaporé de force et également de condenser le gaz naturellement évaporé si celui-ci était en trop grande quantité par rapport à la demande en énergie du/des appareils consommateurs de gaz du navire, avantageusement pour un coût limité. La présente invention ne saurait toutefois se limiter aux moyens et configurations décrits et illustrés ici et elle s’étend également à tout moyen et toute configuration équivalents ainsi qu’à toute combinaison techniquement opérante de tels moyens. The present invention thus provides a gas treatment system which makes it possible to supply gas consuming devices present on a ship with naturally evaporated gas, with liquid gas which has been forcibly evaporated and also to condense the naturally evaporated gas if the latter. was in excess of the energy demand of the gas consuming appliance (s) of the ship, advantageously at a limited cost. The present invention should not however be limited to the means and configurations described and illustrated here and it also extends to any equivalent means and any configuration as well as to any technically operative combination of such means.

Claims

REVENDICATIONS
1. Système (100) de traitement de gaz contenu dans une cuve (200) de stockage et/ou de transport de gaz à l’état liquide et à l’état gazeux, la cuve équipant un navire et le système (100) comprenant au moins : un échangeur thermique (110) configuré pour opérer un échange de chaleur entre du gaz prélevé dans la cuve (200) à l’état gazeux et du gaz comprimé provenant de la cuve (200), un organe de compression (120) configuré pour comprimer le gaz à l’état gazeux provenant de l’échangeur thermique (110), un appareil consommateur de gaz (130, 131) à l’état gazeux configuré pour être alimenté par le gaz comprimé, une première conduite (101) reliant l’organe de compression (120) à l’appareil consommateur de gaz (130, 131) à l’état gazeux, une deuxième conduite (102) reliant la première conduite (101) à un orifice d’entrée (115) de l’échangeur thermique (110), une troisième conduite (103) reliant un orifice de sortie (116) de l’échangeur thermique (110) à un fond de la cuve (200), un organe de bullage (140) connecté à la troisième conduite (103) et configuré pour répartir du gaz issu de l’échangeur thermique (110) à l’état gazeux dans le fond de la cuve (200). 1. System (100) for treating gas contained in a tank (200) for storing and / or transporting gas in the liquid state and in the gaseous state, the tank equipping a ship and the system (100) comprising at least: a heat exchanger (110) configured to operate a heat exchange between gas taken from the tank (200) in the gaseous state and compressed gas coming from the tank (200), a compression member (120) configured to compress gas in the gaseous state from the heat exchanger (110), a gas consuming apparatus (130, 131) in the gaseous state configured to be supplied with the compressed gas, a first line (101) connecting the compression member (120) to the gas consuming apparatus (130, 131) in the gaseous state, a second pipe (102) connecting the first pipe (101) to an inlet port (115) of the heat exchanger (110), a third pipe (103) connecting an outlet (116) of the heat exchanger (110) to a bottom of the tank (200), a member of e bubbling (140) connected to the third pipe (103) and configured to distribute gas from the heat exchanger (110) in the gaseous state in the bottom of the tank (200).
2. Système (100) de traitement de gaz selon la revendication précédente, comprenant un moyen de détente (182) et un échangeur de chaleur (170), l’échangeur de chaleur (170) étant équipé d’au moins une première passe (171) alimentée par du gaz prélevé à l’état liquide dans la cuve (200) et d’au moins une deuxième passe (172) alimentée par du gaz prélevé à l’état liquide dans la cuve (200) et le moyen de détente (182) étant agencé entre la cuve (200) et la première passe (171) de l’échangeur de chaleur (170). 2. A gas treatment system (100) according to the preceding claim, comprising an expansion means (182) and a heat exchanger (170), the heat exchanger (170) being equipped with at least a first pass ( 171) supplied with gas taken in the liquid state in the tank (200) and at least a second pass (172) supplied with gas taken in the liquid state in the tank (200) and the expansion means (182) being arranged between the tank (200) and the first pass (171) of the heat exchanger (170).
3. Système (100) de traitement de gaz selon l’une quelconque des revendications précédentes, dans lequel l’organe de bullage (140) comprend au moins une rampe (141) pourvue d’orifices (142) générateurs de bulles de gaz (143). 3. The gas treatment system (100) according to any one of the preceding claims, wherein the bubbling member (140) comprises at least one ramp (141) provided with orifices (142) generating gas bubbles ( 143).
4. Système (100) de traitement de gaz selon la revendication précédente, dans lequel les orifices (142) de la rampe (141) présentent, chacun, une section comprise entre 0.0078 mm2 et 315 mm2. 4. Gas treatment system (100) according to the preceding claim, wherein the orifices (142) of the ramp (141) each have a section of between 0.0078 mm 2 and 315 mm 2 .
5. Système (100) de traitement de gaz selon l’une quelconque des revendications précédentes, dans lequel au moins un organe de détente (181) est agencé sur la première conduite (101). 5. A gas treatment system (100) according to any preceding claim, wherein at least one expansion member (181) is arranged on the first pipe (101).
6. Système (100) de traitement de gaz selon l’une quelconque des revendications précédentes, comprenant un dispositif de compression (121) agencé en parallèle de l’organe de compression (120), l’organe de compression (120) étant configuré pour comprimer une première partie du gaz à l’état gazeux provenant de l’échangeur thermique (110) et le dispositif de compression (121) étant configuré pour comprimer une deuxième partie du gaz à l’état gazeux provenant de l’échangeur thermique (110), la première partie du gaz provenant de l’échangeur thermique (110) étant distincte de la deuxième partie du gaz provenant de l’échangeur thermique (110). 6. Gas treatment system (100) according to any one of the preceding claims, comprising a compression device (121) arranged in parallel with the compression member (120), the compression member (120) being configured. for compressing a first part of the gas in the gaseous state from the heat exchanger (110) and the compression device (121) being configured to compress a second part of the gas in the gaseous state from the heat exchanger ( 110), the first part of the gas coming from the heat exchanger (110) being distinct from the second part of the gas coming from the heat exchanger (110).
7. Système (100) de traitement de gaz selon l’une quelconque des revendications précédentes, dans lequel le gaz stocké et/ou transporté dans la cuve (200) est du gaz naturel. 7. A gas treatment system (100) according to any preceding claim, wherein the gas stored and / or transported in the vessel (200) is natural gas.
8. Système (100) de traitement de gaz selon l’une quelconque des revendications précédentes, comprenant au moins un premier appareil consommateur de gaz (130) et au moins un deuxième appareil consommateur de gaz (131), dans lequel le premier appareil consommateur de gaz (130) est configuré pour être alimenté par du gaz comprimé à une première pression, dans lequel le deuxième appareil consommateur de gaz (131) est configuré pour être alimenté par du gaz comprimé à une deuxième pression et dans lequel la première pression est inférieure à la deuxième pression. A gas treatment system (100) according to any preceding claim, comprising at least a first gas consuming apparatus (130) and at least a second gas consuming apparatus (131), wherein the first consuming apparatus gas (130) is configured to be supplied with gas compressed at a first pressure, wherein the second gas consuming apparatus (131) is configured to be supplied with gas compressed at a second pressure and wherein the first pressure is less than the second press.
9. Navire de transport de gaz liquéfié, comprenant au moins une cuve (200) d’une cargaison de gaz liquéfié, au moins un appareil consommateur de gaz (130, 131) évaporé et au moins un système (100) de traitement de gaz selon l’une quelconque des revendications précédentes. 9. Liquefied gas transport vessel, comprising at least one tank (200) of a liquefied gas cargo, at least one appliance consuming evaporated gas (130, 131) and at least one gas treatment system (100). according to any one of the preceding claims.
10. Système (100) pour charger ou décharger un gaz liquide qui combine au moins un moyen à terre et au moins un navire de transport de gaz liquide selon la revendication précédente. 10. System (100) for loading or unloading a liquid gas which combines at least one means on land and at least one liquid gas transport vessel according to the preceding claim.
11. Procédé de traitement d’un gaz contenu dans une cuve (200) équipant un navire, le procédé mettant en œuvre un système (100) de traitement d’un gaz selon l’une quelconque des revendications 1 à 8, le procédé comprenant au moins les étapes de : prélèvement du gaz à l’état gazeux dans la cuve (200), réchauffage du gaz prélevé à l’état gazeux dans la cuve (200) par un échange de chaleur opéré dans un échangeur thermique (110) avec du gaz comprimé par un organe de compression (120), compression, par l’organe de compression (120), du gaz réchauffé alimentation d’au moins un appareil consommateur de gaz (130, 131) évaporé par une première partie du gaz réchauffé et comprimé refroidissement d’une deuxième partie du gaz réchauffé et comprimé par un échange de chaleur opéré dans l’échangeur thermique (110) avec le gaz prélevé à l’état gazeux dans la cuve (200), répartition de la deuxième partie du gaz refroidi par son passage dans l’échangeur thermique (110) dans un fond de la cuve (200). 11. A method of treating a gas contained in a vessel (200) fitted to a ship, the method implementing a system (100) for treating a gas according to any one of claims 1 to 8, the method comprising at least the steps of: taking off the gas in the gaseous state in the tank (200), reheating the gas taken in the gaseous state in the tank (200) by a heat exchange carried out in a heat exchanger (110) with gas compressed by a compression member (120), compression, by the compression member (120), of the heated gas supplying at least one gas consuming device (130, 131) evaporated by a first part of the heated gas and compressed cooling of a second part of the heated and compressed gas by a heat exchange operated in the heat exchanger (110) with the gas taken in the gaseous state in the tank (200), distribution of the second part of the gas cooled by its passage through the heat exchanger (110) in a bottom of the tank (200).
12. Procédé de traitement de gaz selon la revendication précédente, dans lequel l’étape de répartition de la deuxième partie du gaz refroidi consiste en un bullage de cette deuxième partie du gaz refroidi. 12. The gas treatment method according to the preceding claim, wherein the step of distributing the second part of the cooled gas consists of bubbling this second part of the cooled gas.
13. Procédé de traitement de gaz selon l’une quelconque des revendications 11 ou 12 dans lequel une pression à l’entrée de la troisième conduite (103) est supérieure à une pression mesurée au fond de la cuve (200). 13. A gas treatment method according to any one of claims 11 or 12 wherein a pressure at the inlet of the third pipe (103) is greater than a pressure measured at the bottom of the vessel (200).
14. Procédé de traitement de gaz selon l’une quelconque des revendications 11 à 13, comprenant au moins une étape de sous-refroidissement du gaz naturel prélevé à l’état liquide dans la cuve (200) et au moins une étape de stockage du gaz naturel sous- refroidi au fond de la cuve (200). 14. Gas treatment method according to any one of claims 11 to 13, comprising at least one step of sub-cooling the natural gas taken in the liquid state in the tank (200) and at least one step of storing the gas. natural gas sub-cooled at the bottom of the tank (200).
15. Procédé de traitement de gaz selon la revendication précédente, dans lequel l’étape de sous-refroidissement est réalisée par un échange de chaleur entre du gaz naturel prélevé dans la cuve (200) à l'état liquide et maintenu à pression atmosphérique et du gaz naturel prélevé dans la cuve (200) à l’état liquide et détendu en-dessous de la pression atmosphérique. 15. Gas treatment method according to the preceding claim, wherein the sub-cooling step is carried out by heat exchange between natural gas taken from the vessel (200) in the liquid state and maintained at atmospheric pressure and natural gas taken from the tank (200) in the liquid state and expanded below atmospheric pressure.
16. Procédé de traitement de gaz selon l’une quelconque des revendications 14 ou 15, dans lequel l’étape de sous-refroidissement du gaz naturel prélevé à l’état liquide dans la cuve (200), l’étape de stockage du gaz naturel sous- refroidi dans le fond de la cuve (200) et l’étape de répartition de la deuxième partie du gaz refroidi par son passage dans l’échangeur thermique (110) dans le fond de la cuve (200) sont réalisées, dans cet ordre, au moins deux fois consécutives. 16. Gas treatment method according to any one of claims 14 or 15, wherein the step of sub-cooling the natural gas taken in the liquid state from the vessel (200), the step of storing the gas. natural sub-cooled in the bottom of the tank (200) and the step of distributing the second part of the gas cooled by its passage through the heat exchanger (110) in the bottom of the tank (200) are carried out, in this order, at least twice in a row.
17. Procédé de chargement ou de déchargement d’un gaz liquide d’un navire de transport de gaz selon la revendication 9. 17. A method of loading or unloading a liquid gas from a gas transport vessel according to claim 9.
PCT/FR2020/051471 2019-08-19 2020-08-17 System for treating gas contained within a tank for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship WO2021032925A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227008973A KR20220049030A (en) 2019-08-19 2020-08-17 A system mounted on a ship for processing gases contained within tanks for storage and/or transport of gases in liquid and gaseous phases.
CN202080066480.5A CN114423691A (en) 2019-08-19 2020-08-17 System installed on board a ship for treating gas contained in tanks for storing and/or transporting liquid and gaseous gases
EP20772093.9A EP4018119A1 (en) 2019-08-19 2020-08-17 System for treating gas contained within a tank for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1909275A FR3100055B1 (en) 2019-08-19 2019-08-19 Gas treatment system contained in a tank for storing and / or transporting gas in the liquid state and in the gaseous state fitted to a ship
FR1909275 2019-08-19

Publications (1)

Publication Number Publication Date
WO2021032925A1 true WO2021032925A1 (en) 2021-02-25

Family

ID=68581992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051471 WO2021032925A1 (en) 2019-08-19 2020-08-17 System for treating gas contained within a tank for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship

Country Status (5)

Country Link
EP (1) EP4018119A1 (en)
KR (1) KR20220049030A (en)
CN (1) CN114423691A (en)
FR (1) FR3100055B1 (en)
WO (1) WO2021032925A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208003A1 (en) * 2021-04-01 2022-10-06 Gaztransport Et Technigaz Method for cooling a heat exchanger of a gas supply system of a gas consuming apparatus of a ship

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT6266U1 (en) * 2002-05-17 2003-07-25 Steyr Daimler Puch Ag STORAGE CONTAINER FOR LOW-COLD LIQUID GAS WITH DRAWING DEVICE
DE102006031860A1 (en) * 2005-07-08 2007-01-25 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Storage container for deep frozen liquid gas with extraction device has return line from branch via compressor to blower with outlet bores near container floor arranged so emanating gas bubbles have significant horizontal speed component
EP1956285A2 (en) * 2007-02-12 2008-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd A method for treating boil-off gas of an LNG carrier
WO2010055244A1 (en) * 2008-11-17 2010-05-20 Gaztransport Et Technigaz Ship or floating support equipped with a device for attenuating the movements of the free surface inside a liquid-filled hull
WO2013041798A2 (en) * 2011-09-22 2013-03-28 Snecma Method of reheating a cryogenic liquid
US20170363253A1 (en) * 2015-01-30 2017-12-21 Gaztransport Et Technigaz Apparatus for storing and transporting a cryogenic fluid on-board a ship
FR3066257A1 (en) * 2018-01-23 2018-11-16 Gaztransport Et Technigaz CRYOGENIC HEAT PUMP AND ITS USE FOR THE TREATMENT OF LIQUEFIED GAS
FR3066248A1 (en) * 2017-05-12 2018-11-16 Gaztransport Et Technigaz METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP
DE102017211157A1 (en) * 2017-06-30 2019-01-03 Robert Bosch Gmbh Storage tank for a cryogenic medium
FR3077867A1 (en) * 2018-02-09 2019-08-16 Gaztransport Et Technigaz METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881549B (en) * 2010-06-25 2014-02-12 华南理工大学 Re-condensation reclaiming system for evaporated gas of liquefied natural gas receiving station and reclaiming method thereof
WO2016126037A1 (en) * 2015-02-04 2016-08-11 삼성중공업 주식회사 Apparatus and method for treating boil-off gas of vessel
FR3033874B1 (en) * 2015-03-20 2018-11-09 Gaztransport Et Technigaz METHOD FOR COOLING A LIQUEFIED GAS
EP3455545B1 (en) * 2016-05-11 2022-11-09 Gaztransport Et Technigaz Gas storage and treatment installation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT6266U1 (en) * 2002-05-17 2003-07-25 Steyr Daimler Puch Ag STORAGE CONTAINER FOR LOW-COLD LIQUID GAS WITH DRAWING DEVICE
DE102006031860A1 (en) * 2005-07-08 2007-01-25 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Storage container for deep frozen liquid gas with extraction device has return line from branch via compressor to blower with outlet bores near container floor arranged so emanating gas bubbles have significant horizontal speed component
EP1956285A2 (en) * 2007-02-12 2008-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd A method for treating boil-off gas of an LNG carrier
WO2010055244A1 (en) * 2008-11-17 2010-05-20 Gaztransport Et Technigaz Ship or floating support equipped with a device for attenuating the movements of the free surface inside a liquid-filled hull
WO2013041798A2 (en) * 2011-09-22 2013-03-28 Snecma Method of reheating a cryogenic liquid
US20170363253A1 (en) * 2015-01-30 2017-12-21 Gaztransport Et Technigaz Apparatus for storing and transporting a cryogenic fluid on-board a ship
FR3066248A1 (en) * 2017-05-12 2018-11-16 Gaztransport Et Technigaz METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP
DE102017211157A1 (en) * 2017-06-30 2019-01-03 Robert Bosch Gmbh Storage tank for a cryogenic medium
FR3066257A1 (en) * 2018-01-23 2018-11-16 Gaztransport Et Technigaz CRYOGENIC HEAT PUMP AND ITS USE FOR THE TREATMENT OF LIQUEFIED GAS
FR3077867A1 (en) * 2018-02-09 2019-08-16 Gaztransport Et Technigaz METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208003A1 (en) * 2021-04-01 2022-10-06 Gaztransport Et Technigaz Method for cooling a heat exchanger of a gas supply system of a gas consuming apparatus of a ship
FR3121504A1 (en) * 2021-04-01 2022-10-07 Gaztransport Et Technigaz Method for cooling a heat exchanger of a gas supply system of a gas-consuming device of a ship

Also Published As

Publication number Publication date
EP4018119A1 (en) 2022-06-29
FR3100055A1 (en) 2021-02-26
CN114423691A (en) 2022-04-29
KR20220049030A (en) 2022-04-20
FR3100055B1 (en) 2021-07-23

Similar Documents

Publication Publication Date Title
FR3066257B1 (en) CRYOGENIC HEAT PUMP AND ITS USE FOR THE TREATMENT OF LIQUEFIED GAS
EP3433530B1 (en) Facility for feeding fuel gas to a member consuming gas and for liquefying said fuel gas
EP3743651A1 (en) Method and system for processing gas in a gas storage facility for a gas tanker
FR3028306A1 (en) DEVICE AND METHOD FOR COOLING A LIQUEFIED GAS
FR3077867A1 (en) METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP
WO2020109580A1 (en) Gas treatment system of a receiving terminal equipped with a regasification unit and corresponding gas treatment method
EP4018119A1 (en) System for treating gas contained within a tank for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship
WO2021099726A1 (en) System for supplying gas to at least one gas-consuming appliance equipping a ship
WO2022208003A1 (en) Method for cooling a heat exchanger of a gas supply system of a gas consuming apparatus of a ship
EP4281718A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
WO2020188199A1 (en) System for controlling pressure in a liquefied natural gas vessel
FR3004514A1 (en) IMPROVED SYSTEM FOR PROCESSING AND DELIVERING NATURAL GAS COMPRISING A CIRCUIT FOR HEATING THE TANK
WO2021064318A1 (en) Refrigerant fluid intended for a refrigerant fluid circuit of a natural gas treatment system
WO2020109607A1 (en) Device for generating gas in gaseous form from liquefied gas
WO2021064319A1 (en) System for treating a gas contained in a tank for storing and/or transporting gas in the liquid and gaseous state
WO2024084154A1 (en) Method for managing a fluid in liquid form contained in a vessel
FR3108167A1 (en) System for treating natural gas from a vessel of a floating structure configured to supply natural gas as fuel to a device that consumes natural gas
FR3124830A1 (en) Gas supply system for appliances using high and low pressure gas
FR3116507A1 (en) Gas supply system for at least one gas-consuming appliance equipping a ship
WO2022069833A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
FR3114797A1 (en) Gas supply system for appliances using high and low pressure gas
FR3123717A1 (en) Fluid reliquefaction and consumer supply circuit.
FR3122639A1 (en) Floating structure comprising a system for supplying a consumer with a fuel prepared from liquefied natural gas or a mixture of methane and an alkane comprising at least two carbon atoms
WO2023194670A1 (en) Gas supply system for high- and low-pressure gas-consuming devices and method for controlling such a system
FR3123716A1 (en) Fluid Condition Management System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008973

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020772093

Country of ref document: EP

Effective date: 20220321