WO2021032319A1 - Procédé et système de traitement de gaz naturel - Google Patents

Procédé et système de traitement de gaz naturel Download PDF

Info

Publication number
WO2021032319A1
WO2021032319A1 PCT/EP2020/025379 EP2020025379W WO2021032319A1 WO 2021032319 A1 WO2021032319 A1 WO 2021032319A1 EP 2020025379 W EP2020025379 W EP 2020025379W WO 2021032319 A1 WO2021032319 A1 WO 2021032319A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
membrane separation
hydrocarbons
methane
gas
Prior art date
Application number
PCT/EP2020/025379
Other languages
German (de)
English (en)
Inventor
Werner Leitmayr
Stefan Pleintinger
Anette Franz
Original Assignee
Linde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Gmbh filed Critical Linde Gmbh
Publication of WO2021032319A1 publication Critical patent/WO2021032319A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants

Definitions

  • the invention relates to a method for processing natural gas and a corresponding system according to the preambles of the independent claims.
  • Natural gases are gas mixtures of hydrocarbons and other components, hereinafter referred to as "non-hydrocarbons".
  • the hydrocarbons mainly include methane, but also higher alkanes such as ethane, propane, butane and pentane.
  • the non-hydrocarbons include, in particular, acid gases such as carbon dioxide and sulfur compounds as well as hydrogen, nitrogen, helium and neon.
  • Membrane separation steps can be used to separate corresponding non-hydrocarbons from natural gases.
  • vitreous membranes in appropriate membrane separation steps. If these membranes are used in unconditioned natural gas, the service life, selectivity and capacity of the membrane can be negatively influenced by the typical content of hydrocarbons with three or more carbon atoms.
  • the present invention has the task of specifying improved concepts for processing natural gas using membrane separation steps, in particular when using vitreous membranes. Disclosure of the invention
  • the present invention proposes a method and a system for processing natural gas with the respective features of the independent patent claims. Refinements are the subject of the dependent claims and the following description.
  • hydrocarbons with three or more carbon atoms have a negative effect on the selectivity, capacity and service life, especially of vitreous membranes.
  • complete removal of hydrocarbons with three or more carbon atoms from the natural gas upstream of the membrane separation step is optimal.
  • maximum selectivity can be achieved in the membrane separation step, whereby, for example, the operating costs of multi-stage membrane systems are minimized.
  • the content of hydrocarbons with three or more carbon atoms for the further use of the natural gas downstream of the membrane separation step should usually not be changed to the stated range.
  • a complete removal of hydrocarbons with three or more carbon atoms is disadvantageous from the aspect of the subsequent use of the natural gas.
  • losses of products of value, such as those that occur when hydrocarbons with three or more carbon atoms are separated off, are not acceptable.
  • TSA Temperature swing adsorption
  • natural gas can, for example, also be subjected to oil scrubbing in order to separate off corresponding hydrocarbons.
  • oil scrubbing in order to separate off corresponding hydrocarbons.
  • the washing oil can consist of a short-chain or a long-chain hydrocarbon.
  • the natural gas can be expanded isenthalpically from high to low pressure via a throttle, which cools it down.
  • a throttle which cools it down.
  • only the dew point of the gas can be set.
  • high pressure differentials are necessary, which usually cannot be achieved or can only be achieved with a high compression effort.
  • the present invention solves the problems mentioned at least partially in the proposed method for processing a natural gas containing methane, ethane, higher hydrocarbons and non-hydrocarbons.
  • An essential aspect of the present invention consists in the use of pressure swing adsorption or a corresponding pressure swing adsorption step upstream of the use of the vitreous membrane in a corresponding membrane separation step.
  • the pressure swing adsorption for processing natural gas is basically already known from DE 103 03233 A1.
  • any suitable adsorbent can be used within the scope of the present invention, in particular an adsorbent which is in the form of a bed of activated aluminum oxide.
  • the bed can be designed in the form of a single bed or multi-bed bed.
  • the surface, the bulk density and the chemical composition as well as other parameters can be selected in the most suitable manner and / or taking into account other aspects.
  • the pressure swing adsorption step described with the specified adsorbent allows, in contrast to the other processes mentioned, an almost complete removal of hydrocarbons with three (and more) carbon atoms.
  • the outflowing high-pressure gas from the pressure swing adsorption, freed of hydrocarbons, is ideally conditioned for the use of vitreous membranes.
  • a positive side effect is the greatly reduced dew point of the high pressure gas, so that it remains gaseous during the further treatment steps.
  • a low-pressure or adsorbate stream from pressure swing adsorption contains the separated hydrocarbons with three or more carbon atoms as well as water and part of the carbon dioxide, if contained in the feed gas, in enriched form.
  • a membrane separation insert is provided which, compared to the natural gas, is enriched in methane and ethane and depleted in the higher hydrocarbons and which contains at least some of the non-hydrocarbons from the natural gas .
  • the term “depletion” here and in the following is also intended to include essentially complete removal (in the sense of “depletion to zero”) so that the membrane separation insert is in particular also (essentially) free of higher hydrocarbons. Concrete numerical values are explained below.
  • the "higher hydrocarbons” include, according to the language used here, in particular hydrocarbons with three or more, in particular three, four and five carbon atoms, as they are usually found in natural gas.
  • the non-hydrocarbons include in particular carbon dioxide, helium and / or neon, but at least the latter noble gases. Carbon dioxide is optionally contained in natural gas.
  • the membrane separation insert is subjected to a membrane separation step in which a permeate fraction that is depleted in methane and ethane compared to the membrane separation insert and enriched in the non-hydrocarbons, as well as a retentate fraction that is enriched in methane and ethane compared to the membrane separation insert and in the non-hydrocarbons is depleted, are formed.
  • a permeate fraction that is depleted in methane and ethane compared to the membrane separation insert and enriched in the non-hydrocarbons as well as a retentate fraction that is enriched in methane and ethane compared to the membrane separation insert and in the non-hydrocarbons is depleted.
  • the membrane separation step is carried out using a glass-like membrane.
  • the provision of the membrane separation insert comprises, as mentioned, a pressure swing adsorption step to which at least part of the natural gas is subjected and in which a high-pressure gas that is enriched in methane and ethane compared to the natural gas and contains at least a part of the non-hydrocarbons from the natural gas, as well as a low-pressure gas , which is depleted in methane and ethane compared to the natural gas and enriched in the higher hydrocarbons, with at least a portion of the high pressure gas being used as the membrane separation insert.
  • the pressure swing adsorption step is advantageously operated with an inlet pressure of 30 to 40 bar, the high pressure gas can in particular be formed at the same pressure level, the low pressure gas is advantageously formed at a pressure level of 1.3 to 1.5 bar.
  • the pressure swing adsorption step can be operated at pressures below 10 bar and above 40 bar.
  • the high pressure gas is also the membrane separation insert.
  • the membrane separation insert can be compressed if necessary and is advantageously fed to the membrane separation step at a pressure level of 30 to 100 bar.
  • the retentate fraction can in particular be formed at the same pressure level as the membrane separation insert. This results in particular advantages because these pressures represent the optimal operating window for the pressure swing adsorption step and the membrane separation step.
  • the low-pressure gas in particular at least part of the low-pressure gas can be compressed to the pressure level of the retentate fraction.
  • the Low-pressure gas which contains the separated higher hydrocarbons as well as water and carbon dioxide (if contained in the feed gas) in enriched form, can thus be re-injected with the aid of a compressor, with certain components being able to be added to the retentate stream from the membrane separation step. In this way, the original hydrocarbon composition of the natural gas used can be restored. Any losses of hydrocarbons for possible downstream processes can be avoided in this embodiment of the present invention.
  • At least part of the low-pressure gas or its compressed part can be cooled to a temperature level of greater than 0 to less than 40 ° C. after compression.
  • components condensable at these temperatures such as water and heavy hydrocarbons, can be separated in liquid form.
  • the present invention enables simple adjustment of the dew point of the natural gas used.
  • concentration of higher hydrocarbons in the low-pressure gas results in a significantly higher hydrocarbon and water dew point (if they contain water) after compression than with the same pressure in the natural gas used.
  • the present invention includes that at least some of the higher hydrocarbons are recovered from the low-pressure gas or from its compressed and cooled part, with at least some of the recovered hydrocarbons being able to be added to the retentate fraction.
  • natural gas containing water can be used, the high pressure gas being depleted in water compared to the natural gas and the low pressure gas being enriched in water compared to the natural gas.
  • the recovery of at least a part of the higher hydrocarbons from the low-pressure gas or from its compressed and cooled part can comprise the formation of an aqueous phase, a liquid organic phase and a gaseous phase (which can for example also have non-organic components such as carbon dioxide).
  • a three-phase current can be obtained if water is contained in the natural gas. If this is fed to a three-phase separator, the aqueous phase can be separated from the hydrocarbon-containing phase.
  • At least part of the liquid organic phase and at least part of the gaseous phase can be added to the retentate fraction.
  • the gas phase from the separator can therefore be mixed again with the retentate stream.
  • the resulting mixture typically has a water dew point of -20 ° C or less.
  • the liquid organic phase or a part thereof can be fed to the retentate fraction upstream of the feed of the gaseous phase.
  • the upstream feed takes place in particular so that the fastest possible phase transition can be guaranteed.
  • the remaining hydrocarbon-containing liquid phase can be used as a product of value.
  • At least part of the liquid organic phase can be fed to a further separation.
  • suitable separation processes rectification, distillation
  • the hydrocarbon-rich liquid phase can be conditioned in a targeted manner before it is fed in, in order to achieve maximum added value.
  • the natural gas can contain any molar proportion of methane, any molar proportion of ethane, and any molar proportion of higher hydrocarbons up to the saturation point, and any molar proportion of non-hydrocarbons.
  • the proportion of the respective components in the High-pressure gas can also be any purely physically.
  • the molar fraction of the higher hydrocarbons defined above in the high pressure gas upstream of the membrane separation step should be as small as possible, ideally 0 mol percent.
  • the high pressure gas from the adsorption separation step is fed to a membrane separation step.
  • Glass-like membranes are used in the membrane separation step.
  • Glass-like membranes have polymers which have an amorphous, glass-like state below the glass transition temperature and above which can change, in particular, to a rubber-elastic state. In particular, they are defined in such a way that they are only operated at temperatures below the glass transition temperature of the polymer used.
  • the invention also relates to a plant for processing a natural gas, the features of which are expressly referred to in the corresponding independent patent claim.
  • a plant for processing a natural gas the features of which are expressly referred to in the corresponding independent patent claim.
  • the hydrocarbon dew point, the water dew point and the calorific value of the discharge gas can be set flexibly with the method according to the invention and advantageous embodiments.
  • FIG. 1 A method according to an embodiment of the invention is illustrated in FIG. The explanations apply to a corresponding system in the same way.
  • a natural gas containing methane, ethane, higher hydrocarbons and non-hydrocarbons is provided in the form of a feed stream A.
  • At least part of the natural gas of the feed stream A is subjected to a pressure swing adsorption step 10, in which a high-pressure gas B, which is enriched in methane and ethane compared to the natural gas and contains at least a part of the non-hydrocarbons from the natural gas, and a low-pressure gas C, which compared to the natural gas is depleted in methane and ethane and enriched in the higher hydrocarbons.
  • a high-pressure gas B which is enriched in methane and ethane compared to the natural gas and contains at least a part of the non-hydrocarbons from the natural gas
  • a low-pressure gas C which compared to the natural gas is depleted in methane and ethane and enriched in the higher hydrocarbons.
  • the high pressure gas B is used, at least in part, as the membrane separation insert of a membrane separation step 20 which operates using a vitreous membrane.
  • a permeate fraction D which is depleted in methane and ethane compared to the membrane separation insert or the high-pressure gas B and enriched in the non-hydrocarbons
  • a retentate fraction E which compared to the membrane separation insert in methane and ethane is enriched and depleted in the non-hydrocarbons.
  • the permeate fraction is used to provide a, for example, helium-containing, hydrogen-containing and / or neon-containing non-hydrocarbon product G
  • the retentate fraction E is used to provide a hydrocarbon product F.
  • the low-pressure gas C is compressed to the pressure level of the retentate fraction E using a compressor 1 and then cooled in a heat exchanger 2.
  • a three-phase mixture is formed, which is fed into a three-phase separator 3.
  • an aqueous phase H which can be discarded, is formed, as well as a liquid organic phase I and a gaseous phase K.
  • the liquid organic phase I can, in particular, be separated in further separation steps (not illustrated) or only divided in terms of quantity, with a portion L being fed to the retentate stream E in order to set its dew point and calorific value.
  • the feed takes place upstream of the feed of the gaseous phase K.
  • a residue M of the liquid organic phase I can be discharged from the process 100 as a product of value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'invention concerne un procédé (100) de traitement de gaz naturel qui contient du méthane, de l'éthane, des hydrocarbures supérieurs et des non-hydrocarbures, un insert de séparation sur membrane étant prévu utilisant au moins une partie du gaz naturel, ledit insert de séparation sur membrane étant enrichi en méthane et en éthane et appauvri en hydrocarbures supérieurs par rapport au gaz naturel et contenant au moins une partie des non-hydrocarbures du gaz naturel, et l'insert de séparation sur membrane étant soumis à une étape de séparation sur membrane (20) dans laquelle une fraction de perméat, qui est appauvrie en méthane et en éthane et enrichie en non-hydrocarbures par rapport à l'insert de séparation sur membrane, et une fraction de rétentat, qui est enrichie en méthane et en éthane et appauvrie en non-hydrocarbures par rapport à l'insert de séparation sur membrane, sont formées. Selon l'invention, l'étape de séparation sur membrane (20) est effectuée à l'aide d'une membrane de type verre, la fourniture de l'insert de séparation sur membrane comprend une étape d'adsorption par changement de pression (10), à laquelle est soumise au moins une partie du gaz naturel et dans laquelle un gaz haute pression, qui est enrichi en méthane et en éthane et est appauvri en hydrocarbures supérieurs par rapport au gaz naturel et contient au moins une partie des non-hydrocarbures du gaz naturel, et un gaz basse pression, qui est appauvri en méthane et en éthane et enrichi en hydrocarbures supérieurs par rapport au gaz naturel, sont formés, au moins une partie du gaz haute pression étant utilisée en tant qu'insert de séparation sur membrane. La présente invention concerne également un système correspondant.
PCT/EP2020/025379 2019-08-22 2020-08-19 Procédé et système de traitement de gaz naturel WO2021032319A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19020486 2019-08-22
EP19020486.7 2019-08-22

Publications (1)

Publication Number Publication Date
WO2021032319A1 true WO2021032319A1 (fr) 2021-02-25

Family

ID=67902301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/025379 WO2021032319A1 (fr) 2019-08-22 2020-08-19 Procédé et système de traitement de gaz naturel

Country Status (1)

Country Link
WO (1) WO2021032319A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4306202A1 (fr) 2022-07-11 2024-01-17 Linde GmbH Procédé et installation de traitement de gaz par une solution comprenant des amines

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557030A (en) 1995-03-23 1996-09-17 Uop Process for rejecting heavy hydrocarbons from light hydrocarbons gases
US6444012B1 (en) * 2000-10-30 2002-09-03 Engelhard Corporation Selective removal of nitrogen from natural gas by pressure swing adsorption
US20040103782A1 (en) * 2002-12-02 2004-06-03 L'air Liquide Socie Methane recovery process
DE10303233A1 (de) 2003-01-28 2004-08-05 Linde Ag Verfahren zur adsorptiven Abtrennung von höheren Kohlenwasserstoffen aus Erdgas
DE102006011031A1 (de) 2006-03-09 2007-09-13 Linde Ag TSA-Prozess
US20110185896A1 (en) * 2010-02-02 2011-08-04 Rustam Sethna Gas purification processes
US20130291723A1 (en) 2012-05-01 2013-11-07 Uop Llc Processes and apparatuses for preparing liquified natural gas
WO2014021900A1 (fr) 2012-08-03 2014-02-06 Air Products And Chemicals, Inc. Retrait des hydrocarbures lourds d'un courant de gaz naturel
WO2015116793A1 (fr) 2014-01-31 2015-08-06 Uop Llc Stabilisation et absorption de l'huile pauvre
WO2017020919A1 (fr) 2015-08-04 2017-02-09 Linde Aktiengesellschaft Procédé pour obtenir une fraction de produit riche en hélium
EP3034466B1 (fr) 2014-12-17 2017-10-18 Linde Aktiengesellschaft Procédé combiné d'adsorption modulée en pression pour membrane destiné à la récupération d'hélium
EP3238808B1 (fr) 2016-04-28 2019-03-13 Linde Aktiengesellschaft Procédé et installation technologique destinés à produire de l'helium à partir d'un gaz actif contenant de l'helium
EP3498668A1 (fr) 2017-12-12 2019-06-19 Linde Aktiengesellschaft Procédé et installation destinées à l'obtention des oléfines

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557030A (en) 1995-03-23 1996-09-17 Uop Process for rejecting heavy hydrocarbons from light hydrocarbons gases
US6444012B1 (en) * 2000-10-30 2002-09-03 Engelhard Corporation Selective removal of nitrogen from natural gas by pressure swing adsorption
US20040103782A1 (en) * 2002-12-02 2004-06-03 L'air Liquide Socie Methane recovery process
DE10303233A1 (de) 2003-01-28 2004-08-05 Linde Ag Verfahren zur adsorptiven Abtrennung von höheren Kohlenwasserstoffen aus Erdgas
DE102006011031A1 (de) 2006-03-09 2007-09-13 Linde Ag TSA-Prozess
US20110185896A1 (en) * 2010-02-02 2011-08-04 Rustam Sethna Gas purification processes
US20130291723A1 (en) 2012-05-01 2013-11-07 Uop Llc Processes and apparatuses for preparing liquified natural gas
WO2014021900A1 (fr) 2012-08-03 2014-02-06 Air Products And Chemicals, Inc. Retrait des hydrocarbures lourds d'un courant de gaz naturel
WO2015116793A1 (fr) 2014-01-31 2015-08-06 Uop Llc Stabilisation et absorption de l'huile pauvre
EP3034466B1 (fr) 2014-12-17 2017-10-18 Linde Aktiengesellschaft Procédé combiné d'adsorption modulée en pression pour membrane destiné à la récupération d'hélium
WO2017020919A1 (fr) 2015-08-04 2017-02-09 Linde Aktiengesellschaft Procédé pour obtenir une fraction de produit riche en hélium
EP3238808B1 (fr) 2016-04-28 2019-03-13 Linde Aktiengesellschaft Procédé et installation technologique destinés à produire de l'helium à partir d'un gaz actif contenant de l'helium
EP3498668A1 (fr) 2017-12-12 2019-06-19 Linde Aktiengesellschaft Procédé et installation destinées à l'obtention des oléfines

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Industrial Gases Processing", 2006, WILEY -VCH, article "The Noble Gas Helium"
"Ullmanns Encyclopedia of Industrial Chemistry", 15 March 2001, article "Noble Gases"
B. SHIMEKIT ET AL: "Natural Gas Purification Technologies - Major Advances for CO2 Separation and Future Directions", ADVANCES IN NATURAL GAS TECHNOLOGY, 11 April 2012 (2012-04-11), XP055511494 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4306202A1 (fr) 2022-07-11 2024-01-17 Linde GmbH Procédé et installation de traitement de gaz par une solution comprenant des amines

Similar Documents

Publication Publication Date Title
EP3029019B1 (fr) Procédé de fabrication d'hydrocarbures
DE60225152T2 (de) Verfahren und installation zur fraktionierung eines durch pyrolyse von kohlenwasserstoffen gewonnen gases
DD241015A5 (de) Verfahren zur selektiven trennung von schwefelwasserstoff aus gasgemischen die auch kohlendioxid enthalten
DE1272891B (de) Verfahren zum Reinigen von Gasen oder Daempfen
EP1076638A1 (fr) Procede pour separer un melange d'hydrocarbures c 4?
WO2017020919A1 (fr) Procédé pour obtenir une fraction de produit riche en hélium
EP2503271A2 (fr) Procédé et dispositif destinés au traitement d'un flux de gaz contenant du dioxyde de carbone
EP3498668A1 (fr) Procédé et installation destinées à l'obtention des oléfines
WO2021032319A1 (fr) Procédé et système de traitement de gaz naturel
EP3313779A1 (fr) Procédé et installation pour récupérer de l'hydrogène à partir d'un mélange de charge contenant de l'hydrogène et des hydrocarbures
WO2015154786A2 (fr) Installation destinée à réduire la teneur en dioxyde de carbone d'un flux gazeux contenant du dioxyde carbone et riche en hydrocarbures et procédé correspondant
WO2021058130A1 (fr) Procédé et système pour obtenir des composants à partir de gaz naturel
WO2018228717A1 (fr) Procédé et installation pour fabriquer un produit gazeux contenant du monoxyde de carbone
DE102006013686B3 (de) Verfahren zur Verflüssigung von Erdgas
DE3322473A1 (de) Verfahren und vorrichtung zur vermeidung einer anreicherung unerwuenschter komponenten in einem fluessigen medium
DD159259A3 (de) Verfahren zur herstellung hochreinen ammoniaks
EP3029017A1 (fr) Procédé et système de fabrication d'hydrocarbures
DE102018002247A1 (de) Gewinnung von Helium oder Helium und Neon aus Erdgas
DE102015010164A1 (de) Verfahren zum Abtrennen von Kohlendioxid aus einer Kohlenwasserstoff-reichen Fraktion
WO2022162059A1 (fr) Procédé d'élimination de co2 provenant d'un gaz contenant du méthane
EP2588216A2 (fr) Procédé et dispositif de désorption de solutions détergentes aminées chargées provenant de processus de lavage de gaz
EP1140323B1 (fr) Procede de separation d'hydrocarbures dans un courant gazeux au moyen d'un dispositif de separation a membrane
WO2022013424A1 (fr) Procédé et installation d'obtention d'hydrocarbures
DE102011003391A1 (de) Anlage zum kryotechnischen Verflüssigen eines Gases oder Gasgemischs und zugehöriges Reinigungsverfahren
WO2023030693A1 (fr) Procédé et installation pour traiter un mélange gazeux par technique de séparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20757528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20757528

Country of ref document: EP

Kind code of ref document: A1