WO2021031980A1 - 无线链路监测方法及相关装置 - Google Patents

无线链路监测方法及相关装置 Download PDF

Info

Publication number
WO2021031980A1
WO2021031980A1 PCT/CN2020/108953 CN2020108953W WO2021031980A1 WO 2021031980 A1 WO2021031980 A1 WO 2021031980A1 CN 2020108953 W CN2020108953 W CN 2020108953W WO 2021031980 A1 WO2021031980 A1 WO 2021031980A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
reference signal
terminal device
lbt
network device
Prior art date
Application number
PCT/CN2020/108953
Other languages
English (en)
French (fr)
Inventor
吴霁
张佳胤
贾琼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021031980A1 publication Critical patent/WO2021031980A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • This application relates to the field of communication technology, and in particular to a wireless link monitoring method and related devices.
  • the user equipment (UE) connected to the radio resource control layer will continuously monitor the downlink reference configured by the LTE base station (eNodeB, eNB) for the UE Signals (such as channel state information-reference signal (CSI-RS)) are used to evaluate the quality (or state) of the radio link between the UE itself and the base station.
  • the basic working process of radio link (quality) monitoring (RLM) in LTE is: when the UE continuously receives N CSI-RS signals, the reference signal received power (RSRP) and/or reference When the signal received quality (reference signal received quality, RSRQ) is lower than the set threshold, the timer T310 is started.
  • N and M are positive integers
  • N is the threshold of counter N310
  • M is the threshold of counter N311.
  • the basic workflow of the RLM in the new radio (NR) of the fifth-generation mobile communication is similar to the workflow of the RLM in the LTE, and will not be described here.
  • 5G NR NR in unlicensed spectrum, NR-U
  • the base station (gNodeB, gNB) of NR-U needs to use listen-before-talk before sending data.
  • LBT LBT
  • the channel contention access mechanism monitors whether the channel is idle. When the channel is idle, the channel can be occupied and data can be transmitted.
  • the bandwidth for NR-U to perform LBT is 20MHz, that is, when one or more 20MHz bandwidth passes through the LBT, the gNB or UE can perform data transmission on the successful bandwidth of the LBT. Therefore, when the transmission bandwidth of CSI-RS is greater than 20MHz (such as 80MHz, 160MHz), gNB may only transmit part of the CSI-RS because only part of the bandwidth of the transmission bandwidth is transmitted through LBT, and LTE and NR base stations do not need to transmit data before sending data. With LBT, the base station can transmit a complete reference signal, so the existing LTE or NR RLM cannot be applied to the NR-U scenario.
  • the embodiments of the present application provide a wireless link monitoring method and related devices, which can provide a wireless link monitoring solution suitable for NR-U scenarios.
  • an embodiment of the present application provides a wireless link monitoring method, which is applicable to a terminal device in wireless link monitoring, and the method includes: the terminal device receives a first indication message from a network device, and receives a first indication message from the network device.
  • the second indication message is to perform wireless link monitoring according to the COT of the reference signal, the successful channel identifier of the LBT and the configuration parameters of the reference signal.
  • the first indication message is used to indicate the configuration parameters of the reference signal
  • the second indication message is used to indicate the COT of the reference signal and the channel identifier of successful LBT.
  • the terminal device determines to perform wireless link monitoring only on the channel where the LBT is successful by receiving various indication messages, without the need to perform wireless link monitoring on all channels between the terminal device and the network device Road monitoring provides a wireless link monitoring solution suitable for NR-U scenarios.
  • the aforementioned configuration parameters include an initial transmission time, a transmission period, and a transmission channel
  • each channel identified by the aforementioned LBT successful channel identifier is a channel in the transmission channel.
  • the terminal device performing wireless link monitoring according to the COT of the reference signal, the successful channel identifier of the LBT, and the configuration parameters of the reference signal may include: when it is determined that the network device is in the reference signal based on the initial transmission time and transmission period of the reference signal.
  • the terminal device can perform radio link monitoring on each channel identified by the successful channel identifier of the LBT.
  • the transmission channel configured by the network device for the reference signal is exactly the same as the successful channel of the network device LBT, the terminal device only needs to perform wireless link monitoring on the successful channel of the LBT, providing a wireless link monitoring solution in a specific situation .
  • the method for the terminal device to perform wireless link monitoring on each channel identified by the LBT successful channel identifier may specifically be: when the reference signal is based on any channel identified by the LBT successful channel identifier.
  • the terminal device can perform a first update operation on the first counter N310; when the reference signal is measured on each channel identified by the LBT successful channel identifier
  • the terminal device may set the value of the first counter N310 to 0.
  • the terminal device can start the timer T310, and can perform the wireless link after the timer T310 expires (indicating that the wireless link between the terminal device and the network device fails) Road reconstruction.
  • the first counter N310 is updated, which can shorten the time for the counter N310 to reach the preset threshold (the first threshold), and thus can quickly discover wireless The link fails, shortening the time for monitoring the quality of the wireless link.
  • the terminal device performing the first update operation on the first counter N310 may specifically include: the terminal device may determine the weight of each channel in each channel identified by the successful channel identifier of the LBT, and may use the The sum of the weights of the channels whose channel quality is less than the above-mentioned first threshold value among the channels identified by the successful LBT channel identifier, and the value of the first counter N310 is updated. For example, the value of the first counter N310 is increased by the weight. The terminal device updates the value of the counter N310 according to the weight of the channel, making the update of the counter N310 more diversified.
  • the way for the terminal equipment to perform wireless link monitoring on each channel identified by the LBT successful channel identifier can also be: if the terminal equipment is on each channel identified by the LBT successful channel identifier If no reference signal is received, the terminal device may increase the value of the first counter N310 by a fixed value (such as 1). If the terminal device receives the reference signal on any channel identified by the aforementioned LBT successful channel identifier, the terminal device may set the value of the first counter N310 to 0. When the value of the first counter N310 is greater than the first threshold, the terminal device can start the timer T310, and can perform the wireless link after the timer T310 expires (indicating that the wireless link between the terminal device and the network device fails) Road reconstruction. Provides a condition that may trigger the update of the counter N310, that is, a possible solution for wireless link monitoring on each channel where the LBT is successful.
  • the terminal device may receive a third indication message from the network device when the wireless link is reestablished, and the third indication message may include the random access parameter corresponding to the reference signal, and may be based on the The random access parameter sends a preamble sequence to the network device to reestablish the wireless link.
  • the terminal device directly receives the random access parameters (that is, the time-frequency resource for random access) for wireless link reconstruction from the network device, without the terminal device to obtain a specific time-frequency resource for random access, which can shorten the wireless link The time to rebuild the road, quickly restore the wireless link.
  • the above configuration parameters may also include a sending time window.
  • the terminal device may perform wireless link monitoring within the transmission time window of the reference signal according to the COT of the reference signal and the successful channel identifier of the LBT.
  • the terminal device only monitors the quality of the wireless link within the sending time window and does not need to continuously monitor the entire COT, which reduces the number of terminal device monitoring, thereby reducing the power consumption of the terminal device.
  • the aforementioned configuration parameters include the initial transmission time, the transmission period, and the transmission channel, and each channel identified by the successful LBT channel identifier has a channel that is different from each channel in the transmission channel.
  • the terminal device performing wireless link monitoring according to the COT of the reference signal, the successful channel identifier of the LBT, and the configuration parameters of the reference signal may include: when it is determined that the network device is in the reference signal based on the initial transmission time and transmission period of the reference signal.
  • the terminal device may determine the same channel as each channel of the transmission channel among the channels identified by the successful channel identifier of the LBT as the first channel, and the first channel may include at least One channel; the terminal equipment can perform wireless link monitoring on each channel of the first channel.
  • the transmission channel configured by the network equipment for the reference signal is not exactly the same as the successful channel of the network equipment LBT, the terminal equipment can only perform wireless link monitoring on the same channel as the LBT successful channel and the transmission channel, providing another specific Case
  • embodiments of the present application provide a wireless link monitoring method, which is suitable for network equipment in wireless link monitoring, and the method includes: the network equipment may send a first indication message to a terminal device and send a second indication The message and the configuration parameters based on the reference signal send the reference signal on each channel where the LBT succeeds.
  • the first indication message includes the configuration parameters of the reference signal
  • the reference signal is used for radio link monitoring
  • the second indication message includes the successful channel identifier of the network device LBT and the channel occupation time COT of the reference signal.
  • the network device assists the terminal device in wireless link monitoring by sending various indication messages, providing a wireless link monitoring solution suitable for the NR-U scenario.
  • the above configuration parameters include the initial transmission time, the transmission period, and the transmission channel.
  • the network device Based on the configuration parameters of the reference signal, the network device sends the reference signal on each channel where the LBT succeeds. Specifically: the network device can send the reference signal on each channel where the LBT succeeds based on the transmission start time, the transmission period, and the COT of the reference signal.
  • the reference signal is transmitted on the same channel as each channel of the transmission channel.
  • the above-mentioned configuration parameters include a sending time window, and the sending time window is used to perform wireless link monitoring in combination with the above-mentioned reference signal.
  • the method further includes: the network device may generate a third indication message, and may send the third indication message to the terminal device.
  • the third indication message includes random access parameters corresponding to the reference signal, and the random access parameters are used for radio link reconstruction.
  • an embodiment of the present application provides a terminal device, which includes a unit for executing the radio link monitoring method provided by the foregoing first aspect and/or any one of the possible implementations of the first aspect, and / Or module, therefore, the beneficial effects (or advantages) of the wireless link monitoring method provided in the first aspect can also be achieved.
  • an embodiment of the present application provides a network device, which includes a unit for executing the radio link monitoring method provided by the foregoing second aspect and/or any one of the possible implementations of the second aspect, and / Or module, therefore, the beneficial effects (or advantages) of the wireless link monitoring method provided by the second aspect can also be achieved.
  • embodiments of the present application provide a terminal device, including a processor, a transceiver, and a memory, where the memory is used to store a computer program, the computer program includes program instructions, and when the processor runs the program instructions, Perform the wireless link monitoring method of the first aspect described above.
  • an embodiment of the present application provides a network device including a processor, a transceiver, and a memory, where the memory is used to store a computer program, the computer program includes program instructions, and when the processor runs the program instructions, Perform the wireless link monitoring method of the second aspect described above.
  • an embodiment of the present application provides a computer-readable storage medium that stores computer program instructions in the computer-readable storage medium, and when the computer program instructions are executed on the computer, the computer executes the above-mentioned first aspect Wireless link monitoring method.
  • an embodiment of the present application provides a computer-readable storage medium that stores computer program instructions, and when the computer program instructions are executed on the computer, the computer program instructions Wireless link monitoring method.
  • inventions of the present application provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the wireless link monitoring method of the first aspect.
  • an embodiment of the present application provides a computer program product, the computer program product includes computer program code, when the computer program code runs on a computer, the computer executes the wireless link monitoring method of the second aspect.
  • an embodiment of the present application provides a communication device, which has the function of a terminal device in any possible implementation manner of the foregoing first aspect.
  • These functions can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units (or modules) corresponding to these functions.
  • an embodiment of the present application provides a communication device that has the function of a network device in any possible implementation manner of the foregoing first aspect.
  • These functions can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units (or modules) corresponding to these functions.
  • an embodiment of the present application provides a chip including a processor.
  • the processor is configured to read and execute a computer program stored in the memory to execute the wireless link monitoring method in any possible implementation manner of the first aspect or the second aspect.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • the implementation of the embodiments of the present application can provide a wireless link monitoring solution suitable for NR-U scenarios on the one hand, and on the other hand can shorten the time for judging the quality of a wireless link under an unlicensed spectrum, and improve the monitoring efficiency of RLM.
  • Figure 1 is a system architecture diagram of the NR-U system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a wireless link monitoring method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of LBT provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a terminal device provided by an embodiment of the present application receiving a reference signal
  • FIG. 5 is another schematic flowchart of a wireless link monitoring method provided by an embodiment of the present application.
  • Fig. 6 is another schematic diagram of LBT provided by an embodiment of the present application.
  • FIG. 7 is another schematic diagram of a terminal device provided by an embodiment of the present application receiving a reference signal
  • FIG. 8 is a schematic flowchart of a first update operation provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of updating the first counter N310 according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a terminal device RLM provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a system architecture diagram of the NR-U system provided by an embodiment of the present application.
  • UE1 ⁇ UE6 and a base station (BS) can form an NR-U communication system.
  • the frequency band for communication between UE1 ⁇ UE6 and the BS is an unlicensed spectrum (such as 5.925GHz-6.425GHz and 6.525GHz-6.875GHz) one or more frequency bands.
  • UE1 to UE6 can send uplink data to the BS, the BS can receive the uplink data sent by UE1 to UE6, and the BS can also send downlink information to UE1 to UE6.
  • UE4 to UE6 may form a small communication system.
  • the frequency band for communication between UE4 to UE6 may also be a frequency band in an unlicensed spectrum.
  • UE1, UE2, UE3, and UE5 can send uplink data to the BS, and the BS can send downlink information to UE1, UE2, UE3, and UE5; UE4 and UE6 can send uplink data to UE5, and UE5 can also send downlink information to UE4 and UE6.
  • UE1, UE2, UE3, and UE5 can respectively monitor the radio link status with the BS.
  • UE1, UE2, UE3, and UE5 are all terminal devices, and the BS is a network device; UE4 and UE6 can also monitor the status of the radio link with UE5 respectively.
  • the wireless link status between UE4 and UE6 are both terminal devices, and UE5 is a network device.
  • the embodiments of the present application take the radio link between UE5 and BS as an example for description.
  • UE5 is a terminal device and BS is a network device.
  • the frequency band used is one or more of the unlicensed spectrum (such as 5.925GHz-6.425GHz and 6.525GHz-6.875GHz) Frequency bands.
  • the BS can configure UE5 with reference signals for monitoring the quality (or status) of the radio link (the transmission bandwidth of the reference signal can be broadband, that is, the transmission bandwidth is greater than 20MHz), such as CSI-RS or synchronization signal block (synchronization signal/PBCH) block, SS/PBCH block), and may generate a first indication message based on the configured reference signal, and the first indication message may include configuration parameters of the reference signal (for example, time domain parameters and frequency domain parameters).
  • the BS may send the first indication message to UE5. As a device working in an unlicensed spectrum, it is necessary to detect whether the channel is idle and access the channel for work before sending a signal.
  • each device working in the unlicensed spectrum uses the LBT channel competition access mechanism before sending data (LBT is also called carrier sense multiple access). , CSMA)) to avoid conflicts. Therefore, the BS needs to perform LBT before sending data and send data on the channel where LBT is successful.
  • the BS may perform LBT before sending the reference signal, and may generate a second indication message based on the channel where the LBT is successful, and the second indication message may include the channel identifier of the LBT success and the channel occupancy time of the reference signal (channel occupancy time, COT).
  • the BS can perform downlink transmission on the channel where the LBT is successful, or schedule UE5 associated with the BS to perform uplink transmission on the channel where the LBT is successful.
  • the BS may send the second indication message to UE5.
  • the BS may send the configured reference information on each channel where the LBT succeeds based on the configuration parameters of the reference signal.
  • the UE5 may receive the first indication message from the BS, and may receive the second indication message from the BS.
  • the UE5 performs radio link monitoring according to the configuration parameters of the reference signal in the first indication message, the COT of the reference signal in the second indication message, and the channel identifier of successful LBT.
  • the second indication message may be sent in the form of downlink control channel (physical downlink control channel, PDCCH) signaling or RRC signaling, for example, group-common downlink control channel (group-common PDCCH, GC-PDCCH) signaling or UE-specific downlink control channel (UE-specific PDCCH) signaling.
  • PDCCH physical downlink control channel
  • RRC Radio Resource Control
  • the transmission bandwidth of the reference signal is greater than 20MHz (that is, the transmission bandwidth is broadband, such as 80MHz or 160NHz, etc.)
  • multiple different indication messages are sent to the UE through the BS, and the UE is based on the various indication messages received
  • Monitoring the quality (or status) of the radio link between the UE and the BS on the UE side provides a radio link monitoring solution suitable for NR-U scenarios.
  • the terminal equipment in the embodiments of this application may refer to the entity used by the user side to receive and/or send signals, such as UE; the network equipment in the embodiments of this application may refer to the network side used for transmitting and / Or the entity receiving the signal, such as a base station.
  • the wireless link monitoring method provided in the embodiments of the present application can be used to monitor the quality or status of the wireless link between the terminal device and the network device.
  • the channels mentioned in the embodiments of the present application may be equivalent to subbands or carriers, and the bandwidth of each channel/subband/subcarrier is 20 MHz.
  • the number of channels included in the transmission channel is the same as the number of subbands included in the transmission bandwidth.
  • the transmission bandwidth may also be referred to as a bandwidth part (BWP), that is, the BWP may include one or more subbands.
  • BWP bandwidth part
  • the wireless link monitoring method provided in the embodiments of the present application will be described below by taking a channel as an example.
  • FIG. 2 is a schematic flowchart of a wireless link monitoring method provided by an embodiment of the present application.
  • the wireless link monitoring method provided by the embodiment of the present application may include the steps:
  • the network device sends a first indication message to the terminal device.
  • the terminal device receives the first indication message.
  • the above-mentioned first indication message may include configuration parameters of the reference signal.
  • the reference signal can be a CSI-RS or a synchronization signal block.
  • Configuration parameters can include the initial transmission time, transmission period, transmission port, initial sequence, transmission bandwidth (and/or transmission channel), frame/subframe/symbol, starting resource block (RB) location, duration Time domain and/or frequency domain parameters such as the number of RBs.
  • the foregoing first indication message may be sent to the terminal device in the form of signaling.
  • the first indication message is RRC signaling for CSI-RS configuration: NZP-CSI-RS-Resource information element.
  • the network device may configure the terminal device with a reference signal for monitoring the status of the wireless link, and may generate the first indication message based on the configuration parameters of the reference signal.
  • the network device may send the first indication message to the terminal device.
  • the first indication message may be used to indicate the configuration parameters of the reference signal (or resource information of the reference signal).
  • the network device works in an unlicensed frequency spectrum communication system (such as an NR-U system)
  • the above-mentioned first indication message may be sent by the network device on the unlicensed frequency band. Therefore, before sending the first indication message, the network device may listen and then speak LBT, and after the LBT of a certain channel is successful, the first indication message may be sent on the channel where the LBT is successful.
  • the transmission bandwidth of the reference signal configured by the network device for the terminal device may be greater than 20 MHz, that is, the reference signal is a broadband reference signal, and the transmission channel of the reference signal includes multiple channels, and the bandwidth of each channel is 20 MHz.
  • the transmission bandwidth of the reference signal is 80 MHz
  • the transmission channel of the reference signal includes 4 channels.
  • the broadband reference signal in the embodiment of the present application may refer to a reference signal with a transmission bandwidth greater than 20 MHz.
  • the network device may configure the terminal device with a reference signal set for monitoring the status of the wireless link.
  • the transmission bandwidth of each reference signal in the reference signal set may be 20 MHz, that is, each reference signal is a narrowband reference signal, the transmission channel of each reference signal may include one channel, and the transmission channel of each reference signal is different.
  • the network device may generate a first indication message based on the configuration parameters of each reference signal in the reference signal set, and may send the first indication message to the terminal device.
  • the first indication message may be used to indicate the configuration parameters of the reference signal (or resource information of the reference signal).
  • the number of channels (or the number of subbands) for communication between the network device and the terminal device may be determined by the frequency band used for communication between the network device and the terminal device.
  • the frequency band used for communication between network equipment and terminal equipment is 6.1GHz-6.18GHz, with a total bandwidth of 80MHz.
  • the reference signal set includes 4 narrowband reference signals.
  • the narrowband reference signal in the embodiment of the present application may refer to a reference signal with a transmission bandwidth of 20 MHz.
  • the difference between the wideband reference signal and the narrowband reference signal is that the transmission bandwidth, the transmission channel, the start RB position of the frequency domain, and the number of sustained RBs are different.
  • S202 The network device sends a second indication message to the terminal device.
  • the terminal device receives the second indication message.
  • the second indication message may include the channel identifier of the primary channel (primary channel) on which the network device LBT succeeds and the channel occupation time COT of the reference signal.
  • the primary channel may be a channel randomly selected from the transmission channels of the reference signal.
  • the COT of the aforementioned reference signal may be used to indicate the maximum occupied time for the network device to occupy the main channel to send the reference signal.
  • the foregoing second indication message may be sent to the terminal device in the form of signaling.
  • the second indication message is sent to the terminal device in any of the following ways: (a) Group common downlink control channel GC-PDCCH signaling in downlink control channel PDCCH signaling or UE-specific downlink control channel (UE-specific PDCCH) Signaling; (b) Or add the channel identifier of the primary channel for successful LBT and the COT of the above reference signal in the RRC signaling (NZP-CSI-RS-Resource information element) of the CSI-RS configuration; (c) or a new one RRC signaling (specially used to indicate the channel identifier of the main channel for successful LBT and the COT RRC signaling of the reference signal).
  • RRC signaling NZP-CSI-RS-Resource information element
  • the network device since the frequency band used for communication between the network device and the terminal device is an unlicensed frequency band, the network device needs to perform LBT before sending data (or sending downlink information) to avoid data collision.
  • the network device For a wideband reference signal (that is, a reference signal with a transmission bandwidth greater than 20 MHz), the network device can randomly select a channel on the transmission channel of the reference signal, and can use the selected channel as the main channel.
  • the network device may determine the backoff priority (ie, LBT priority) according to the importance and data size of the reference signal to be sent on the main channel, and then may determine a backoff number according to the backoff priority.
  • the number of backoffs is the number of time slots to wait for listening to idle channels.
  • the network device may also determine the COT of the reference signal according to the backoff priority.
  • the network device only performs backoff listening on the selected main channel. When several timeslots of the backoff are all idle continuously detected on the selected main channel, it indicates that the main channel is idle at this time, and the main channel LBT is successful (or the main channel passes LBT), and the network device can be based on LBT success
  • the channel identifier of the primary channel and the COT of the reference signal generate a second indication message, and the second indication message may be sent to the terminal device.
  • the second indication message may be used to indicate a successful LBT channel identifier and COT of the reference signal.
  • the network equipment can also perform a one-slot idle channel assessment on other channels (other channels except the main channel) while the backoff slots are all idle. (25us clear channel assessment, CCA) look back (check whether the channel is idle at the end of the last backoff slot). If you see that a certain channel is idle, data transmission can be performed on this channel, and if you see that a certain channel is not idle, then this channel cannot perform data transmission at this time.
  • CCA clear channel assessment
  • FIG. 3 is a schematic diagram of LBT provided by an embodiment of the present application.
  • the transmission channel of the above reference signal includes 4 channels, which are channels 0, 1, 2, and 3 respectively.
  • the network device randomly selects channel 0 as the main channel from channels 0, 1, 2, and 3, the network device determines that the backoff number on channel 0 is 5, and the determined COT of the reference signal is 5 ms.
  • the network device listens to whether 5 consecutive time slots are free on channel 0. If the network device detects that 5 consecutive time slots are idle on channel 0, it means that the LBT of channel 0 is successful, and the network device can occupy channel 0 for downlink information transmission or schedule terminal equipment for uplink data transmission within 5 ms.
  • the network device When the network device detects that 5 consecutive time slots are idle on channel 0, the network device can perform one-slot CCA review on channels 1, 2, and 3 respectively, as shown in Figure 3.
  • Channel 1 and Channel 2 are idle, and when you see that Channel 3 is not idle, data transmission can be performed on Channel 1 and Channel 2, which means that Channel 1 and Channel 2 are also successful channels for LBT, and data cannot be transmitted on Channel 3 at this time.
  • Channel 3 is the channel where LBT fails.
  • the network device may generate GC-PDCCH signaling based on the channel identifier (channel 0) of the primary channel (channel 0) of successful LBT and the COT (5 ms) of the reference signal, and may send the GC-PDCCH signaling to the terminal device.
  • the network device detects that one of the 5 consecutive time slots is not free on channel 0, it means that the LBT of channel 0 has failed, and the network device can reselect the main channel and backoff number, and perform LBT again .
  • the network device when the time that the network device actually occupies the primary channel reaches the COT of the reference signal, the network device needs to perform LBT again to re-determine the primary channel, that is, the primary channel can change over time. Every time the main channel changes, the network device can notify the terminal device through the second indication message.
  • the strategy that the main channel changes over time may be: the same channel cannot be selected as the main channel within a period of time (for example, within 10 ms).
  • the network device may configure a primary channel for each terminal device associated with the network device, and the primary channel configured for each terminal device may be the same or different.
  • the network equipment configures the terminal equipment with a reference signal set for monitoring the status of the wireless link.
  • the reference signal set includes multiple narrowband reference signals. Each narrowband reference signal in the reference signal set can be transmitted on a channel. Moreover, the transmission channel of each narrowband reference signal in the reference signal set may be different.
  • the network device may select a narrowband reference signal from the reference signal set for RLM, and may use the selected transmission channel of the narrowband reference signal as the main channel.
  • the network device can perform LBT on the main channel, and can generate a second indication message based on the channel identifier of the main channel where the LBT is successful and the COT of the narrowband reference signal determined during the LBT process, and can send the second indication to the terminal device news.
  • the network device sends the reference signal on the main channel where the LBT (Listen Before Speak) is successful based on the configuration parameters of the reference signal.
  • the terminal device receives the reference signal.
  • the network device can send the reference signal to the terminal device on the main channel where the LBT is successful according to the configuration parameters (time domain and frequency domain parameters) of the reference signal, but not on other channels where the LBT is successful. Send reference signal.
  • the network device sends the reference signal corresponding to the main channel on the main channel of the LBT success according to the configuration parameters of the above reference signal.
  • the broadband reference signal is a sequence s 0 , s 1 , s 2 ,..., s n-1 , and this sequence is distributed on the 4 channels 0, 1, 2 and 3 for transmission.
  • the partial sequence of this sequence is configured on each channel, and the partial sequences configured on channels 0, 1, 2, and 3 are different.
  • channel 0 is configured with the broadband reference signal part 0 sequence (part0 sequence) s 0 , s 1 , s 2 ,..., s i-1 , i is less than n-1;
  • channel 1 is configured with the first broadband reference signal Partial sequence (part1sequence) s i , s i+1 , s i+2 ,..., s j , j is greater than i and less than n-1;
  • the second partial sequence (part2sequence)s of the broadband reference signal is configured on channel 2 j+1 ,s j+2 ,s j+3 ,...,s k , k is greater than j and less than n-1;
  • the third part sequence (part3sequence) s k+1 of the broadband reference signal is configured on channel 3, s k+2 ,s k+3 ,...,s n-1 .
  • the length of each partial sequence in the broadband reference signal may be the same or different.
  • channel 0 is the main channel
  • the network device sends the 0th part sequence of the broadband reference signal to the terminal device on the channel 0 (main channel) where the LBT is successful according to the configuration parameters of the broadband reference signal, namely s 0 , s 1 , s 2 ,...,s i-1 , that is, when the transmission bandwidth of the reference signal is greater than 20 MHz, the network device sends a part sequence of the complete reference signal (sequence) on the main channel of LBT success.
  • the network device sends the corresponding main channel on the main channel of the successful LBT according to the configuration parameters of the reference signal corresponding to the main channel above. Reference signal.
  • the main channel is channel 0, and the narrowband reference signal configured on the main channel is S0 (S0 includes the sequence: s0 0 , s0 1 , s0 2 ,...,s0 n-1 ), and the network device uses the narrowband reference signal S0 Send the narrowband reference signal S0 (that is, the sequence s0 0 , s0 1 , s0 2 ,..., s0 n-1 ) to the terminal device on the channel 0 (main channel) where the LBT is successful.
  • S0 includes the sequence: s0 0 , s0 1 , s0 2 ,...,s0 n-1
  • S0 includes the sequence: s0 0 , s0 1 , s0 2 ,...,s0 n-1
  • the network device uses the narrowband reference signal S0
  • Send the narrowband reference signal S0 that is, the sequence s0 0 , s0 1 , s0 2 ,..., s0 n-1
  • the terminal device performs wireless linking on the main channel of successful LBT included in the second indication message according to the configuration parameters of the reference signal included in the received first indication message and the channel occupation time COT of the reference signal included in the second indication message. Road monitoring.
  • the terminal device may receive the foregoing first indication message from the network device, and may receive the foregoing second indication message from the network device.
  • the first indication message may include the configuration parameters of the reference signal
  • the second indication message may include the COT of the reference signal and the channel identifier of the main channel of the successful LBT of the network device.
  • the terminal device can detect whether the network device has sent a reference signal in the COT based on the initial sending time and the sending period of the above configuration parameters. For example, the initial sending time is 2s, the sending period is 2s, and the COT starts from the 3s and lasts for 8s.
  • the terminal device can determine that the first time the network device sends the reference signal in the 2s, the second time the reference signal is sent in the 4s, and the third time the reference signal is sent in the 6s. , And so on. Since the COT lasts for 8 seconds from the 3rd s, the time when the network device sends the reference signal for the first time (the second s) is not within the COT, and the network device does not send the reference signal in the 2 s. However, the time when the network device sends the reference signal for the second time and the third time is within the COT, the terminal device can determine that the network device sends the reference signal in the COT.
  • the terminal device can monitor whether the LBT is successful based on the frame/subframe/symbol in which the reference signal is located in the configuration parameters of the reference signal.
  • the reference signal is received.
  • the terminal device may generate a reference signal sequence according to the initial sequence in the foregoing configuration parameters.
  • the terminal device can receive the signal on the main channel where the LBT is successful, and can obtain the sequence of the signal on the frame/subframe/symbol where the above-mentioned reference signal is located, and then correlate the obtained sequence with the generated reference signal sequence Detection.
  • the terminal device determines that the reference signal sent by the network device is received on the main channel where the LBT is successful.
  • the terminal device determines that the reference signal sent by the network device is not received on the main channel where the LBT is successful.
  • the aforementioned configuration parameters may also include a transmission time window (ie, a monitoring window duration parameter).
  • the sending time window can also be fixed by a standard (for example, 5ms or 10ms) without additional indication messages.
  • the duration of the transmission time window configured for the reference signal may be shorter than the transmission period configured for the reference signal.
  • the terminal device can monitor whether the reference signal is received on the main channel where the LBT is successful in the transmission time window based on the frame/subframe/symbol in which the reference signal is located in the configuration parameters of the reference signal.
  • the terminal device only monitors whether the reference signal is received on the main channel within the sending time window, which reduces the number of times of monitoring whether the reference signal is received on the main channel, thereby reducing the power consumption of the terminal device.
  • FIG. 4 is a schematic diagram of a terminal device provided in an embodiment of the present application receiving a reference signal.
  • the reference signal is CSI-RS
  • the transmission channel/transmission subband of the reference signal includes channels 0,1,2,3 (or subbands 0,1,2, 3).
  • the terminal device monitors whether the reference signal is received on the main channel where the LBT is successful within the sending time window.
  • channel 0 is the main channel, and the terminal equipment monitors the reference signal received on channel 0 in the sending time windows 0 and 1 respectively; in the last two sending time windows, the main channel The channel has changed, the main channel becomes channel 3, and the terminal equipment monitors that the reference signal is received on channel 3 within the sending time windows 2 and 3.
  • the terminal device can measure the channel quality on the LBT successful main channel based on the reference signal received from the network device.
  • the channel quality may be characterized by reference signal received power (RSRP) and/or reference signal received quality (RSRQ). Therefore, the terminal device can measure the RSRP and/or RSRQ of the reference signal received on the primary channel where the LBT succeeds.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the terminal device can perform update operation A on the first counter N310, for example, The value of a counter N310 is increased by a fixed value (such as 1).
  • a fixed value such as 1
  • the terminal device can perform update operation B on the first counter N310, For example, set the value of the first counter N310 to zero.
  • the first threshold value may be a preset value.
  • the terminal device may perform the above-mentioned update operation A on the above-mentioned first counter N310.
  • the terminal device may start a timer T310, and may indicate the wireless link between the terminal device and the network device after the timer T310 expires. If it fails, rebuild the wireless link.
  • the process of wireless link reconstruction can be a random access process.
  • the terminal device performs uplink synchronization by sending a preamble sequence that can identify its identity on a specific time-frequency resource; (2) The network device detects the preamble sequence on the corresponding time-frequency resource, After the sequence detection is completed, the random access response is sent; (3) After the terminal device sends the preamble sequence, it detects the random access response sent by the base station in a subsequent period of time; (4) The terminal device detects its own random access response. Incoming response, the random access response contains resource scheduling information for the terminal device to perform uplink transmission; (5) The network device sends a conflict resolution response, and the terminal device determines whether the competition is successful.
  • the network device configures the terminal device with a broadband reference signal (a reference signal with a transmission bandwidth greater than 20MHz is a broadband reference signal), and sends various indication messages (a first indication message and a second indication message) to the terminal equipment ), used to assist terminal equipment in wireless link monitoring.
  • the network device only sends the part of the signal corresponding to the main channel in the broadband reference signal to the terminal device on the main channel where the LBT succeeds.
  • the terminal device receives various indication messages sent by the network device, and performs wireless link monitoring on the main channel of LBT success based on various indication messages.
  • the wireless link monitoring method provided by the embodiments of this application can not only perform RLM on the main channel (one channel) of LBT success, but also provide RLM solutions for broadband reference signals of the NR-U system.
  • RLM is performed on the channels (multiple channels), thereby shortening the time for judging the quality of the wireless link under the unlicensed spectrum, and improving the monitoring efficiency of RLM.
  • FIG. 5 is another schematic flowchart of a wireless link monitoring method provided by an embodiment of the present application. As shown in FIG. 5, the wireless link monitoring method provided by the embodiment of the present application may include the following steps:
  • S501 The network device sends a first indication message to the terminal device.
  • the terminal device receives the first indication message.
  • step S501 in the embodiment of the present application can refer to the implementation manner of step S201 in FIG. 2, and details are not described herein again.
  • S502 The network device sends a second indication message to the terminal device.
  • the terminal device receives the second indication message.
  • the foregoing second indication message may include the successful channel identifier of the network device LBT and the COT of the foregoing reference signal.
  • the COT of the reference signal may be used to indicate the maximum occupation time for the network device to successfully occupy each channel of the LBT to send the reference signal.
  • the foregoing second indication message may be sent to the terminal device in the form of signaling.
  • the second indication message is sent to the terminal device in any of the following ways: (a) GC-PDCCH signaling or UE-specific PDCCH signaling; (b) or RRC signaling configured in CSI-RS (NZP-CSI -RS-Resource information element) adds the channel identification of each channel that LBT succeeds and the COT of the above reference signal; (c) or a new RRC signaling (specially used to indicate the channel identification of each channel of LBT success and the above reference RRC signaling of COT signal).
  • CSI-RS NZP-CSI -RS-Resource information element
  • the network device needs to perform LBT before sending data. Specifically, the network device may determine the COT of the reference signal according to the backoff priority of each channel. Network equipment can perform independent backoff listening on multiple channels. When backoff listening on a certain channel is completed, it will wait for other channels that are still backoff listening. After all the channels that perform LBT have completed backoff listening, the network equipment can simultaneously perform data transmission on each channel where LBT is successful. The network device may generate a second indication message based on each channel where the LBT is successful and the COT of the reference signal, and may send the second indication message to the terminal device. The second indication message may be used to indicate a successful LBT channel identifier and COT of the reference signal.
  • FIG. 6 is another schematic diagram of LBT provided by an embodiment of the present application.
  • Figure 6 shows 2 LBTs on the 4 channels of channels 0, 1, and 3.
  • the network equipment performs independent backoff listening on channels 0, 1, 2, and 3.
  • the backoff number on channel 0 is 3.
  • channel 0 When channel 0 continuously detects that 3 time slots are idle, it means that the LBT of channel 0 is successful, and wait for other channels that are still backoff listening; on channel 1 After hearing that 2 time slots are idle, they are occupied by other devices (Wi-Fi nodes in Figure 6), that is, the LBT of channel 1 fails; the backoff number on channel 2 is 4, when channel 2 is continuously listening Up to 4 time slots are idle, indicating that the LBT of channel 2 is successful, waiting for other channels that are still back-off listening; the back-off number on channel 3 is 7, when channel 3 continuously detects that 6 time slots are idle , And perform one-slot CCA review on channels 0, 2, and 3 at the same time.
  • the network device can perform data transmission on channels 0, 2, and 3 at the same time.
  • Channels where LBT succeeds include channels 0, 2, and 3.
  • the network device backtracks to detect that the channels 0, 1, 2, and 3 are not idle, indicating that there is no channel for LBT success, the network device can perform LBT again.
  • step S501 can be executed before step S502, step S501 can also be executed after step S502, step S501 can also be executed simultaneously with step S502, and so on.
  • the network device sends the reference signal on each channel where the LBT (listen before speaking) succeeds based on the configuration parameter of the reference signal.
  • the terminal device receives the reference signal.
  • the transmission bandwidth of the aforementioned reference signal is wideband (greater than 20MHz). If each channel of the aforementioned LBT success is a channel in the transmission channel of the aforementioned reference signal, the network device can report to the terminal on each channel of the aforementioned LBT success according to the configuration parameters (time domain and frequency domain parameters) of the aforementioned reference signal. The device sends a part of the reference signal corresponding to each channel. For example, suppose that the transmission channels of the reference signal include channels 0,1,2,3, and the channels where the LBT succeeds include channels 0,2,3, indicating that the channels (channels 0,2,3) that are successful in LBT belong to the transmission of the reference signal.
  • the channels in the channel (channels 0, 1, 2, 3), which means that the reference signal can be transmitted on each channel where the LBT is successful.
  • the reference signal is a sequence
  • channel 0 is configured with reference signal part 0 sequence
  • channel 1 is configured with reference signal part 1 sequence
  • channel 2 is configured with reference signal part 2 sequence
  • channel 3 is configured
  • the third partial sequence of the reference signal, the 0th, 1, 2, and 3 partial sequences together constitute this reference signal.
  • the network device sends the 0th part sequence of the reference signal to the terminal device on channel 0 according to the configuration parameters of the reference signal, sends the second part sequence of the reference signal to the terminal device on channel 2 and sends the reference signal to the terminal device on channel 3 Part 3 of the sequence.
  • the network device can determine the intersection of each channel of the LBT success and each channel of the transmission channel, and According to the configuration parameters (time domain and frequency domain parameters) of the aforementioned reference signal, a part of the signal corresponding to each channel in the reference signal may be sent to the terminal device on each channel of the intersection.
  • the channels of successful LBT are channels 0, 2, and 3, and the transmission channels include channel 0 and channel 3.
  • the intersection between the channels of successful LBT and the channels of the transmission channel is channel 0 and channel 3.
  • the network device then sends the partial signal corresponding to channel 0 in the reference signal to the terminal device on channel 0 according to the configuration parameters of the reference signal, and sends the partial signal corresponding to channel 3 in the reference signal to the terminal device on channel 3.
  • the network device may send a third indication message to the terminal device. Accordingly, the terminal device can receive the reference signal from the network device.
  • the third indication message is used for the terminal device to perform radio link reconstruction when it detects a radio link failure (radio link failure, RLF).
  • the third indication message may include the random access parameter corresponding to the reference signal. Wherein, the random access parameter may be the time-frequency resource in the random access process.
  • the reference signal configured on each channel in the transmission channel of the reference signal (may be a complete reference signal or part of the signal in the complete reference signal) can correspond to a random access (or wireless link reconstruction) Time-frequency resource; or the reference signal configured on all channels in the transmission channel of the reference signal (here is a complete reference signal) can correspond to a time-frequency resource used for random access (or radio link reconstruction), which is implemented in this application
  • the example does not limit this.
  • the terminal device performs radio link monitoring according to the configuration parameters of the reference signal included in the received first indication message, the channel occupancy time COT of the reference signal included in the second indication message, and the channel identifier of successful LBT.
  • each channel identified by the successful LBT channel identifier is a channel in the transmission channel of the reference signal.
  • the terminal device may receive the foregoing first indication message from the network device, and may receive the foregoing second indication message from the network device.
  • the first indication message may include the configuration parameters of the reference signal
  • the second indication message may include the COT of the reference signal and the successful channel identifier of the network device LBT.
  • the terminal device can detect whether the network device has sent the reference signal in the COT based on the initial sending time and the sending period of the configuration parameter. If the terminal device determines that the network device has sent the reference signal in the aforementioned COT, the terminal device can perform radio link monitoring on each channel identified by the successful LBT channel identifier.
  • the channels identified by the successful LBT channel identifiers have channels that are different from those of the transmission channels. If the terminal device determines that the network device has sent the reference signal in the COT based on the initial transmission time and the transmission period of the reference signal, the terminal device can compare each channel identified by the LBT successful channel identifier to the transmission channel Channels with the same channels are determined as the first channel, and the first channel may include at least one channel. The terminal device can perform wireless link monitoring on each channel of the first channel.
  • the wireless link monitoring on each channel identified by the LBT successful channel identifier may include: the terminal device may successfully perform the LBT based on the frame/subframe/symbol where the reference signal is located in the above configuration parameters. Monitor whether the reference signal is received on each channel identified by the channel identifier. When the channel quality measured on any channel identified by the LBT successful channel identifier based on the received reference signal is less than the first threshold value, the terminal device performs a first update operation on the first counter N310.
  • the first update operation may be: the terminal device determines that the channel quality measured on each channel identified by the LBT successful channel identifier is less than the number of channels with the first threshold value, and increases the value of the first counter N310 by the channel Quantity.
  • the terminal device increases the value of the first counter N310 by 3.
  • the terminal device performs a second update operation on the first counter N310.
  • the second update operation may be to set the value of the first counter N310 to 0.
  • the terminal device can start the timer T310, and after the timer T310 expires, it indicates that the wireless link between the terminal device and the network device fails, and the wireless link is rebuilt .
  • the terminal device can shorten the time for the counter N310 to reach the preset threshold (first threshold), thereby quickly discovering the wireless link failure and shortening the time for monitoring the quality (status) of the wireless link .
  • the terminal device may perform a third update operation on the first counter N310.
  • the third update operation may be: the terminal device determines the number of channels for which the reference signal is not received on each channel identified by the channel identifier of the successful LBT, and increases the value of the first counter N310 by the number of channels. For example, if the number of channels on which the reference signal is not received on each channel identified by the LBT successful channel identifier is 2, the terminal device increases the value of the first counter N310 by 2.
  • the terminal device may perform a fourth update operation on the first counter N310.
  • the fourth update operation may be: increasing the value of the first counter N310 by a fixed value (such as 1). If the terminal device receives the aforementioned reference signal on any channel identified by the LBT successful channel identifier, the terminal device may set the value of the first counter N310 to 0. When the value of the first counter N310 is greater than the above-mentioned first threshold, the terminal device can start the timer T310, and after the timer T310 expires, it indicates that the wireless link between the terminal device and the network device fails, and the wireless link is performed. reconstruction.
  • the aforementioned configuration parameters may also include a sending time window.
  • the terminal device monitors whether the reference signal is received on each channel identified by the LBT successful channel identifier, which may specifically include: the terminal device based on the frame/subframe/symbol in which the reference signal is located in the configuration parameter, within the transmission time window Monitor whether the reference signal is received on each channel identified by the successful channel identifier of the LBT.
  • FIG. 7 is another schematic diagram of the terminal device provided in an embodiment of the present application receiving a reference signal.
  • the reference signal is a CSI-RS
  • the transmission channel/transmission subband of the reference signal includes channels 0, 1, 2, 3 (or subbands 0, 1, 2, 3).
  • the LBT successful channel identifiers are 0, 1, and 3, and the terminal device monitors that the reference signal is received on channels 0, 1, and 3 in the first transmission time window.
  • the LBT successful channel identifier is 0, and the terminal device monitors that the reference signal is received on channel 0 in the second transmission time window.
  • the channel identifiers with successful LBT are 1,2, and the terminal device monitors that the reference signal is received on both channels 1 and 2 in the third transmission time window.
  • the LBT successful channel identifiers are 0, 2, and the terminal device monitors that the reference signal is received on both channels 0 and 2 in the fourth transmission time window.
  • the wireless link reestablishment process may be a random access process.
  • the wireless link reconstruction performed by the terminal device may include: when the terminal device starts the wireless link reconstruction, the terminal device may still receive the reference signal sent by the network device. Because the network device configures the reference signal with corresponding random access parameters, and sends it to the terminal device through the above-mentioned third instruction message. Therefore, the terminal device may receive the third indication message from the network device, and may send a preamble sequence to the network device for random access according to the random access parameters carried in the third indication message, so as to realize the wireless link reconstruction.
  • the terminal device directly receives the random access parameters (that is, the time-frequency resource for random access) for wireless link reconstruction from the network device, without the terminal device to obtain a specific time-frequency resource for random access, which can shorten the wireless link The time to rebuild the road, quickly restore the wireless link.
  • the random access parameters that is, the time-frequency resource for random access
  • the flow of the foregoing first update operation may also be as shown in FIG. 8, which is a schematic diagram of the flow of the first update operation provided in an embodiment of the present application.
  • the terminal device determines the weight of each channel in each channel identified by the successful channel identifier of the LBT.
  • the terminal device updates the value of the first counter according to the sum of the weights of the channels whose channel quality is less than the first threshold in each channel identified by the LBT successful channel identifier.
  • the terminal device can determine the channels whose channel quality measured on each channel identified by the LBT successful channel identifier is less than the above-mentioned first threshold value, and can calculate that these channel qualities are less than the above-mentioned first threshold value The sum of the weights of the channels.
  • the terminal device may increase the value of the aforementioned first counter N310 by the sum of the weights.
  • the second indication message sent by the network device is sent periodically.
  • the terminal device receives the above-mentioned first indication message from the network device. If the terminal device does not receive the above-mentioned second indication message within a transmission time window, it means that the terminal device cannot determine the successful channels of the network device LBT within this transmission time window, and the terminal device can buffer the reception in this transmission time window Reference signal. Since the second indication message includes the LBT successful channel identifier and the COT of the reference signal, and because the LBT successful channel does not change within a COT, the LBT successful channel identifier remains unchanged, that is, the network device periodically sends it in a COT The second indication message is the same.
  • the terminal device when the terminal device receives the second indication message sent by the network device next time, the terminal device can combine the reference signal buffered last time and use the received second indication message to include the LBT successful channel identifier for each channel identified Measure the channel quality on.
  • the terminal device may perform the foregoing first update operation on the foregoing first counter N310.
  • the terminal device can buffer the reference received in this sending time window
  • the channel quality can be measured on each channel of the transmission channel based on the reference signal received in this transmission time window.
  • the terminal device may perform a first update operation on the aforementioned first counter N310.
  • the terminal device can modify the value of the first counter N310 in combination with the reference signal buffered last time.
  • FIG. 10 is a schematic diagram of a terminal device RLM provided in an embodiment of the present application.
  • FIG. 10 shows the situation of the RLM channel performed by the terminal device in the four transmission time windows.
  • the reference signal is CSI-RS
  • the second indication message is GC-PDCCH.
  • the terminal device receives the successful channel identifiers of the LBT carried by the GC-PDCCH as 0, 1, and 3, and the terminal device measures the channel quality on channels 0, 1, and 3 respectively.
  • the terminal device In the second transmission time window, if the terminal device does not receive the GC-PDCCH, the terminal device cannot determine which channels are successfully LBT in the second transmission time window.
  • the terminal device receives the GC-PDCCH sent by the network device next time, the terminal device combines the reference signal buffered last time (that is, the CSI-RS actually transmitted by the network device in the second transmission time window in Figure 10) in the second The channel quality is measured on the channels where the LBT actually succeeds in the transmission time window (ie, channels 2 and 3 in Figure 10).
  • the terminal device receives the successful channel identifier of the LBT carried by the GC-PDCCH as 1, 2, and the terminal device measures the channel quality on channels 1 and 2 respectively.
  • the terminal device measures the channel quality on channels 1 and 3 respectively.
  • the network device configures the terminal device with a broadband reference signal (a reference signal with a transmission bandwidth greater than 20MHz is a broadband reference signal), and sends various indication messages (a first indication message and a second indication message) to the terminal equipment ), which is used to assist the terminal device in wireless link monitoring, and also sends a third indication message to the terminal device for wireless link reconstruction when the wireless link fails.
  • the network device sends the partial signals corresponding to each channel of the LBT success in the broadband reference signal to the terminal device on each channel of the LBT success.
  • the terminal device receives various indication messages sent by the network device, and performs wireless link monitoring on each channel of LBT success based on various indication messages, and performs based on the random access parameters in the third indication message when the wireless link fails Wireless link reconstruction. It not only provides an RLM solution for broadband reference signals of the NR-U system, but also shortens the time for judging the quality of the wireless link and the time (or process) for wireless link reconstruction under unlicensed spectrum, and improves the RLM performance. Monitoring efficiency.
  • the embodiment of the present application also provides corresponding equipment.
  • the terminal device 10 may include:
  • the above configuration parameters include an initial transmission time, a transmission period, and a transmission channel
  • each channel identified by the successful channel identifier of the LBT is a channel in the transmission channel.
  • the above processing module 102 is specifically configured to: when it is determined based on the initial transmission time and transmission period of the reference signal that the network device sends the reference signal within the COT of the reference signal, in each channel identified by the successful channel identifier of the LBT Perform wireless link monitoring on the Internet.
  • the above-mentioned updating unit 1021 is specifically configured to: determine the weight of each channel in each channel identified by the successful channel identifier of the LBT; the channel quality of each channel identified according to the successful channel identifier of the LBT is less than The sum of the channel weights of the first threshold value updates the value of the first counter N310.
  • the above-mentioned transceiver module 101 is further configured to receive a third indication message from the network device, and the third indication message includes the random access parameter corresponding to the reference signal.
  • the above-mentioned link reconstruction unit 1022 is specifically configured to send a preamble sequence to the network device according to the random access parameter to perform wireless link reconstruction when performing wireless link reconstruction.
  • the aforementioned configuration parameters include a transmission time window.
  • the above-mentioned processing module 102 is further specifically configured to, according to the COT of the reference signal and the successful channel identifier of the LBT in the second indication message received by the transceiver module, in the reference of the first indication message received by the transceiver module Perform wireless link monitoring within the signal transmission time window.
  • the configuration parameters include the initial transmission time, the transmission period, and the transmission channel.
  • the channels identified by the successful LBT channel identifier there are channels that are different from the transmission channels.
  • the above-mentioned processing module 102 is further specifically configured to: when it is determined that the network device sends the reference signal within the COT of the reference signal based on the initial transmission time and the transmission period of the reference signal, identify the channel identifier of the successful LBT Among the channels, the same channel as each of the transmission channel is determined as the first channel, and the first channel includes at least one channel; and wireless link monitoring is performed on each channel of the first channel.
  • the update unit 1021 and the link reconstruction unit 1022 may be one unit, such as a processing unit.
  • each module or unit can also refer to the corresponding description of the terminal device in the method embodiment shown in FIG. 2, FIG. 5, or FIG. 8 to execute the method and function performed by the terminal device in the foregoing embodiment.
  • the terminal device when the terminal device works in the NR-U system, the terminal device determines that only the wireless link monitoring is performed on the channel where the LBT succeeds by receiving various indication messages, and there is no need to monitor all the connections between the terminal device and the network device.
  • the channel performs wireless link monitoring, providing a wireless link monitoring solution suitable for NR-U scenarios.
  • the network device 20 may include:
  • the transceiver module 201 is configured to send the first indication message to the terminal device, send the second indication message to the terminal device, and send the reference signal on each channel where the LBT is successful based on the configuration parameters of the reference signal.
  • the first indication message includes the configuration parameters of the reference signal
  • the reference signal is used for radio link monitoring
  • the second indication message includes the successful channel identifier of the network device LBT and the channel occupation time COT of the reference signal.
  • the aforementioned configuration parameters include the initial transmission time, the transmission period, and the transmission channel.
  • the foregoing transceiver module 201 is specifically configured to send the reference signal on the same channel as each channel of the transmission channel based on the transmission start time, the transmission period and the COT of the reference signal.
  • the above configuration parameters include a sending time window, and the sending time window is used to perform wireless link monitoring in combination with the above reference signal.
  • the aforementioned network device 20 further includes a processing module 202.
  • the processing module 202 is configured to generate a third indication message.
  • the third indication message includes a random access parameter corresponding to the reference signal, and the random access parameter is used for radio link reconstruction.
  • the foregoing transceiver module 201 is further configured to send the third instruction message to the terminal device.
  • each unit can also refer to the corresponding description of the network device in the method embodiment shown in FIG. 2 or FIG. 5 to execute the method and function performed by the network device in the foregoing embodiment.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 provided by the embodiment of the present application includes a processor 1001, a memory 1002, a transceiver 1003, and a bus system 1004.
  • the communication device provided in the embodiment of the present application may be any one of terminal equipment and network equipment.
  • processor 1001, memory 1002, and transceiver 1003 are connected through a bus system 1004.
  • the aforementioned memory 1002 is used to store programs. Specifically, the program may include program code, and the program code includes computer operation instructions.
  • the memory 1002 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (erasable programmable read-only memory, EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM). Only one memory is shown in FIG. 10, of course, the memory can also be set to multiple as needed.
  • the memory 1002 may also be a memory in the processor 1001, which is not limited here.
  • the memory 1002 stores the following elements, executable units or data structures, or their subsets, or their extended sets:
  • Operating instructions including various operating instructions, used to implement various operations.
  • Operating system including various system programs, used to implement various basic services and process hardware-based tasks.
  • the aforementioned processor 1001 controls the operation of the communication device 1000.
  • the processor 1001 may be one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single-core CPU. It can also be a multi-core CPU.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 1004 in FIG. 13.
  • FIG. 13 is only schematically drawn.
  • FIG. 2, FIG. 5, or FIG. 8 provided by the foregoing embodiments of the present application, or the terminal device methods disclosed in the foregoing embodiments; or FIG. 2 or FIG. 5 provided by the foregoing embodiments of the present application, or the network devices of the foregoing embodiments
  • the method can be applied to the processor 1001 or implemented by the processor 1001.
  • the processor 1001 may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method can be completed by hardware integrated logic circuits in the processor 1001 or instructions in the form of software.
  • the aforementioned processor 1001 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (field-programmable gate array, FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002, and executes Figure 2, Figure 5 or Figure 8, or the method steps of the terminal device described in each of the above embodiments in combination with its hardware; or executes in combination with its hardware Figure 2 or Figure 5, or the method steps of the network device described in each of the above embodiments.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the terminal device described in FIG. 2, FIG. 5, or FIG. Method steps; or when the computer program code runs on a computer, the computer executes the method steps of the network device described in FIG. 2 or FIG. 5.
  • An embodiment of the present application also provides a chip including a processor.
  • the processor is used to read and execute a computer program stored in the memory to execute the wireless link monitoring method in any possible implementation manner of FIG. 2, FIG. 5, or FIG. 8.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • the process can be completed by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium. , May include the processes of the foregoing method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical discs and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线链路监测方法及相关装置,该方法包括:网络设备向终端设备发送第一指示消息,相应地,终端设备接收第一指示消息;网络设备向终端设备发送第二指示消息,相应地,终端设备接收第二指示消息;网络设备基于参考信号的配置参数在LBT成功的信道上向终端设备发送参考信号,相应地,终端设备接收参考信号;终端设备根据接收到的第一指示消息包括的参考信号的配置参数、第二指示消息包括的参考信号的COT以及LBT成功的信道标识进行无线链路监测。

Description

无线链路监测方法及相关装置
本申请要求于2019年8月16日提交中国专利局、申请号为201910760885.8、申请名称为“无线链路监测方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线链路监测方法及相关装置。
背景技术
长期演进(long term evolution,LTE)中,与无线资源控制层(radio resource control,RRC)连接的用户设备(user equipment,UE)会持续性监测LTE基站(eNodeB,eNB)给UE配置的下行参考信号(如信道状态信息-参考信号(channel state information-reference signal,CSI-RS))来评估UE自己与基站之间的无线链路质量(或状态)。LTE中无线链路(质量)监测(radio link monitoring,RLM)的基本工作流程为:当UE连续收到N个CSI-RS信号的参考信号接收功率(reference signal received power,RSRP)和/或参考信号接收质量(reference signal received quality,RSRQ)低于设置的门限值时,则启动定时器T310。如果在定时器T310超时前,UE连续收到M个CSI-RS信号的RSRP和/或RSRQ高于设置的门限值时,则认为UE与基站之间的无线链路已恢复,定时器T310停止,此时UE和基站之间正常通信;否则认为无线链路失效(失败),此时UE和基站之间需要重新建立连接。其中,N、M为正整数,N为计数器N310的阈值,M为计数器N311的阈值。
第五代移动通信(5th-generation,5G)新空口(new radio,NR)中RLM的基本工作流程与LTE中RLM的工作流程类似,在此不展开说明。但对于工作在非授权频谱的5G NR(NR in unlicensed spectrum,NR-U)来说,NR-U的基站(gNodeB,gNB)在发送数据之前,需要采用先听后说(listen-before-talk,LBT)的信道竞争接入机制侦听信道是否空闲,当信道空闲时,才能占用信道并传输数据。又因为NR-U进行LBT的带宽为20MHz,即当某1个或某多个20MHz带宽通过LBT时,gNB或UE可以在LBT成功的带宽上进行数据传输。所以当CSI-RS的传输带宽大于20MHz(如80MHz,160MHz)时,gNB可能因为只有传输带宽的一部分带宽通过LBT而只传输了部分CSI-RS,而LTE和NR的基站在发送数据之前,无需进行LBT,则基站可以传输完整的参考信号,所以现有LTE或NR的RLM并不能适用NR-U的场景。
发明内容
本申请实施例提供一种无线链路监测方法及相关装置,可以提供适用于NR-U场景下的无线链路监测方案。
第一方面,本申请实施例提供种无线链路监测方法,该方法适用于无线链路监测中的终端设备,该方法包括:终端设备从网络设备接收第一指示消息,并从网络设备接收第二指示消息,再根据参考信号的COT、LBT成功的信道标识以及参考信号的配置参数进行无 线链路监测。其中,第一指示消息用于指示参考信号的配置参数,第二指示消息用于指示参考信号的COT以及LBT成功的信道标识。当终端设备工作于NR-U系统中时,终端设备通过接收各种指示消息来确定仅在LBT成功的信道上进行无线链路监测,无需对终端设备与网络设备之间的所有信道进行无线链路监测,提供了一种适用于NR-U场景下的无线链路监测方案。
在一种可能的设计中,上述配置参数包括起始发送时间、发送周期以及传输信道,上述LBT成功的信道标识所标识的各个信道均为该传输信道中的信道。终端设备根据该参考信号的COT、该LBT成功的信道标识以及该参考信号的配置参数进行无线链路监测可以包括:当基于该参考信号的起始发送时间和发送周期确定出该网络设备在参考信号的COT内发出了参考信号时,终端设备可以在该LBT成功的信道标识所标识的各个信道上进行无线链路监测。当网络设备给参考信号配置的传输信道与网络设备LBT成功的信道完全相同时,终端设备只需在LBT成功的信道上进行无线链路监测,提供了某种特定情况下的无线链路监测方案。
在一种可能的设计中,终端设备在上述LBT成功的信道标识所标识的各个信道上进行无线链路监测的方式具体可以为:当基于该参考信号在该LBT成功的信道标识所标识的任一信道上测量得到的信道质量小于第一门限值时,终端设备可以对第一计数器N310执行第一更新操作;当基于该参考信号在该LBT成功的信道标识所标识的各个信道上测量得到的信道质量均大于或等于第一门限值时,终端设备可以将该第一计数器N310的值置0。当该第一计数器N310的值大于第一阈值时,终端设备可以启动定时器T310,并可以在该定时器T310超时(说明终端设备与网络设备之间的无线链路失败)后,进行无线链路重建。由于终端设备在LBT成功的任一信道上测量得到的信道质量小于门限值时,就更新第一计数器N310,可以缩短计数器N310达到预设阈值(第一阈值)的时间,从而可以快速发现无线链路失败,缩短监测无线链路质量的时间。
在一种可能的设计中,终端设备对第一计数器N310执行第一更新操作具体可包括:终端设备可以确定上述LBT成功的信道标识所标识的各个信道中每个信道的权重,并可以根据该LBT成功的信道标识所标识的各个信道中信道质量小于上述第一门限值的信道的权重之和,更新第一计数器N310的值。比如,将第一计数器N310的值增加该权重。终端设备根据信道的权重来更新计数器N310的值,使得计数器N310的更新更多样化。
在一种可能的设计中,终端设备在上述LBT成功的信道标识所标识的各个信道上进行无线链路监测的方式还可以为:若终端设备在上述LBT成功的信道标识所标识的各个信道上均未接收到参考信号,则终端设备可以将上述第一计数器N310的值增加固定值(如1)。若终端设备在上述LBT成功的信道标识所标识的任一信道上接收到参考信号,则终端设备可以将该第一计数器N310的值置0。当该第一计数器N310的值大于第一阈值时,终端设备可以启动定时器T310,并可以在该定时器T310超时(说明终端设备与网络设备之间的无线链路失败)后,进行无线链路重建。提供了一种可能触发计数器N310更新的条件,即提供了一种可能的在LBT成功的各个信道上进行无线链路监测的方案。
在一种可能的设计中,终端设备在进行无线链路重建时,可以从网络设备接收第三指示消息,该第三指示消息中可以包括上述参考信号对应的随机接入参数,并可以根据该随 机接入参数向网络设备发送前导preamble序列进行无线链路重建。终端设备直接从网络设备接收用于无线链路重建的随机接入参数(即随机接入的时频资源),无需终端设备再去获取特定的时频资源来进行随机接入,可以缩短无线链路重建的时间,快速恢复无线链路。
在一种可能的设计中,上述配置参数中还可以包括发送时间窗。终端设备可以根据上述参考信号的COT和上述LBT成功的信道标识,在上述参考信号的发送时间窗内进行无线链路监测。终端设备仅在发送时间窗内监测无线链路质量,无需在整个COT上持续不断的监测,减少了终端设备监测的次数,从而降低了终端设备的功耗。
在一种可能的设计中,上述配置参数包括起始发送时间、发送周期以及传输信道,上述LBT成功的信道标识所标识的各个信道中存在与该传输信道中的各个信道不相同的信道。终端设备根据该参考信号的COT、该LBT成功的信道标识以及该参考信号的配置参数进行无线链路监测可以包括:当基于该参考信号的起始发送时间和发送周期确定出该网络设备在参考信号的COT内发出了参考信号时,终端设备可以将该LBT成功的信道标识所标识的各个信道中与该传输信道的各个信道相同的信道确定为第一信道,该第一信道中可以包括至少一个信道;终端设备可以在该第一信道的各个信道上进行无线链路监测。当网络设备给参考信号配置的传输信道与网络设备LBT成功的信道不完全相同时,终端设备只能在LBT成功的信道与传输信道相同的信道上进行无线链路监测,提供了另一种特定情况下的无线链路监测方案。
第二方面,本申请实施例提供一种无线链路监测方法,该方法适用于无线链路监测中的网络设备,该方法包括:网络设备可以向终端设备发送第一指示消息,发送第二指示消息以及基于参考信号的配置参数在LBT成功的各个信道上发送参考信号。其中,该第一指示消息包括参考信号的配置参数,该参考信号用于无线链路监测,该第二指示消息中包括该网络设备LBT成功的信道标识和该参考信号的信道占用时间COT。当网络设备工作于NR-U系统中时,网络设备通过发送各种指示消息来辅助终端设备进行无线链路监测,提供了一种适用于NR-U场景下的无线链路监测方案。
在一种可能的设计中,上述配置参数包括起始发送时间、发送周期以及传输信道。网络设备基于参考信号的配置参数在LBT成功的各个信道上发送参考信号,具体为:网络设备可以基于该参考信号的发送起始时间、发送周期和该参考信号的COT,在LBT成功的各个信道与该传输信道的各个信道相同的信道上发送该参考信号。
在一种可能的设计中,上述配置参数包括发送时间窗,该发送时间窗用于结合上述参考信号进行无线链路监测。
在一种可能的设计中,该方法还包括:网络设备可以生成第三指示消息,并可以向终端设备发送该第三指示消息。其中,该第三指示消息中包括该参考信号对应的随机接入参数,该随机接入参数用于无线链路重建。
第三方面,本申请实施例提供一种终端设备,该终端设备包括用于执行上述第一方面和/或第一方面的任意一种可能的实现方式所提供的无线链路监测方法的单元和/或模块,因此也能实现第一方面提供的无线链路监测方法所具备的有益效果(或优点)。
第四方面,本申请实施例提供一种网络设备,该网络设备包括用于执行上述第二方面和/或第二方面的任意一种可能的实现方式所提供的无线链路监测方法的单元和/或模块, 因此也能实现第二方面提供的无线链路监测方法所具备的有益效果(或优点)。
第五方面,本申请实施例提供一种终端设备,包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该计算机程序包括程序指令,当该处理器运行该程序指令时,执行上述第一方面的无线链路监测方法。
第六方面,本申请实施例提供一种网络设备,包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该计算机程序包括程序指令,当该处理器运行该程序指令时,执行上述第二方面的无线链路监测方法。
第七方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储计算机程序指令,当该计算机程序指令在该计算机上运行时,使得该计算机执行上述第一方面中的无线链路监测方法。
第八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储计算机程序指令,当该计算机程序指令在该计算机上运行时,使得该计算机执行上述第二方面中的无线链路监测方法。
第九方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述第一方面的无线链路监测方法。
第十方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述第二方面的无线链路监测方法。
第十一方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面的任意可能的实现方式中终端设备的功能。这些功能可以通过硬件实现,或者,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与这些功能相对应的单元(或模块)。
第十二方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面的任意可能的实现方式中网络设备的功能。这些功能可以通过硬件实现,或者,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与这些功能相对应的单元(或模块)。
第十三方面,本申请实施例提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行上述第一方面或上述第二方面的任意可能的实现方式中的无线链路监测方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
实施本申请实施例,一方面可以提供适用于NR-U场景下的无线链路监测方案,另一方面可以缩短在非授权频谱下判断无线链路质量的时间,提高RLM的监测效率。
附图说明
图1是本申请实施例提供的NR-U系统的系统架构图;
图2是本申请实施例提供的无线链路监测方法的一示意流程图;
图3是本申请实施例提供的LBT的一示意图;
图4是本申请实施例提供的终端设备接收到参考信号的一示意图;
图5是本申请实施例提供的无线链路监测方法的另一示意流程图;
图6是本申请实施例提供的LBT的另一示意图;
图7是本申请实施例提供的终端设备接收到参考信号的另一示意图;
图8是本申请实施例提供的第一更新操作的流程示意图;
图9是本申请实施例提供的第一计数器N310更新的示意图;
图10是本申请实施例提供的终端设备RLM的示意图;
图11是本申请实施例提供的终端设备的结构示意图;
图12是本申请实施例提供的网络设备的结构示意图;
图13是本申请实施例提供的通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例提供的无线链路监测方法可应用于NR-U系统中,也可应用于其他工作在非授权频谱(unlicensed band)的通信系统中。为便于理解,本申请实施例以NR-U系统为例进行说明。如图1所示,图1是本申请实施例提供的NR-U系统的系统架构图。如图1所示,UE1~UE6以及基站(base station,BS)可以组成一个NR-U通信系统,在这个NR-U通信系统中,UE1~UE6与BS之间通信的频段为非授权频谱(如5.925GHz-6.425GHz和6.525GHz-6.875GHz)中的一个或多个频段。UE1~UE6可以发送上行数据给BS,BS可以接收UE1~UE6发送的上行数据,BS还可以发送下行信息给UE1~UE6。可选的,UE4~UE6可以组成一个小型通信系统,在UE4~UE6组成的通信系统中,UE4~UE6之间通信的频段也可以为非授权频谱中的频段。UE1、UE2、UE3以及UE5可以发送上行数据给BS,BS可以发送下行信息给UE1、UE2、UE3以及UE5;UE4和UE6可以发送上行数据给UE5,UE5也可以发送下行信息给UE4和UE6。其中,UE1、UE2、UE3以及UE5可以分别监测与BS之间的无线链路状态,则UE1、UE2、UE3、UE5均为终端设备,BS为网络设备;UE4和UE6也可以分别监测与UE5之间的无线链路状态,则UE4和UE6均为终端设备,UE5为网络设备。
在一些可行的实施方式中,为便于描述,本申请实施例以UE5和BS之间的无线链路为例进行说明,此时,UE5为终端设备,BS为网络设备。BS与UE5进行通信(UE5向BS发送上行数据,和/或BS向UE5发送下行信息)时所使用频段为非授权频谱(如5.925GHz-6.425GHz和6.525GHz-6.875GHz)中的一个或多个频段。BS可以为UE5配置用 于监测无线链路质量(或状态)的参考信号(该参考信号的传输带宽可以为宽带,即传输带宽大于20MHz),如CSI-RS或者同步信号块(synchronization signal/PBCH block,SS/PBCH block),并可以基于配置好的参考信号生成第一指示消息,该第一指示消息中可以包括该参考信号的配置参数(比如,时域参数和频域参数)。BS可以向UE5发送该第一指示消息。由于工作在非授权频谱的设备,需要在发送信号之前检测信道是否空闲并接入信道进行工作。所以为了保证工作在非授权频谱的各个设备之间共存,各个工作在非授权频谱的设备在发送数据之前,采用LBT的信道竞争接入机制(LBT也称载波监听多路访问(carrier sense multiple access,CSMA))来避免冲突。故BS在发送数据之前,需要进行LBT,并在LBT成功的信道上发送数据。BS可以在发送该参考信号之前进行LBT,并可以基于LBT成功的信道生成第二指示消息,该第二指示消息中可以包括LBT成功的信道标识和该参考信号的信道占用时间(channel occupancy time,COT)。在一个COT内,BS可以在LBT成功的信道上进行下行传输,也可以调度与BS关联的UE5在LBT成功的信道上进行上行传输。BS可以向UE5发送该第二指示消息。BS可以基于该参考信号的配置参数在LBT成功的各个信道上发送配置好的参考信息。UE5可以从BS接收该第一指示消息,并可以从BS接收该第二指示消息。UE5根据该第一指示消息中参考信号的配置参数、该第二指示消息中参考信号的COT以及LBT成功的信道标识,进行无线链路监测。其中,该第二指示消息可以通过下行控制信道(physical downlink control channel,PDCCH)信令或RRC信令的形式发送,比如,组公共下行控制信道(group-common PDCCH,GC-PDCCH)信令或UE特定下行控制信道(UE-specific PDCCH)信令。
本申请实施例在参考信号的传输带宽大于20MHz(即传输带宽为宽带,如80MHz或160NHz等)的情况下,通过BS发送多个不同的指示消息给UE,UE根据接收到的各种指示消息在UE侧监测UE与BS之间的无线链路质量(或状态),提供了一种适用于NR-U场景下的无线链路监测方案。
下面将结合附图2至附图10,对本申请实施例提供的无线链路监测方法进行详细说明。
在一些可行的实施方式中,本申请实施例中的终端设备可以指用户侧用于接收和/或发送信号的实体,如UE;本申请实施例中的网络设备可以指网络侧用于发射和/或接收信号的实体,如基站。本申请实施例提供的无线链路监测方法可以用于监测终端设备与网络设备之间的无线链路质量或状态。
在一些可行的实施方式中,本申请实施例中提及的信道,可以等价于子带或载波,每个信道/子带/子载波的带宽为20MHz。本申请实施例中传输信道包括的信道数量与传输带宽包括的子带数量相同,传输带宽还可以称为部分带宽(bandwidth part,BWP),即BWP中可以包括一个或多个子带。为便于描述,下面将以信道为例对本申请实施例提供的无线链路监测方法进行说明。
参见图2,图2是本申请实施例提供的无线链路监测方法的一示意流程图。如图2所示,本申请实施例提供的无线链路监测方法可包括步骤:
S201,网络设备向终端设备发送第一指示消息。相应地,终端设备接收第一指示消息。
在一些实施方式中,上述第一指示消息中可以包括参考信号的配置参数。参考信号可 以为CSI-RS或者同步信号块。配置参数可以包括起始发送时间、发送周期、发送端口、初始序列、传输带宽(和/或传输信道)、所在的帧/子帧/符号、起始资源块(resource block,RB)位置、持续RB数等时域和/或频域参数。上述第一指示消息可以以信令的形式发送给终端设备,例如,第一指示消息为CSI-RS配置的RRC信令:NZP-CSI-RS-Resource information element。
在一些实施方式中,网络设备可以给终端设备配置用于监测无线链路状态的参考信号,并可以基于该参考信号的配置参数生成第一指示消息。网络设备可以向终端设备发送该第一指示消息。该第一指示消息可以用于指示参考信号的配置参数(或者参考信号的资源信息)。其中,由于网络设备工作于非授权频谱的通信系统(如NR-U系统)中,故上述第一指示消息可以是网络设备在非授权频段上发送的。故网络设备在发送该第一指示消息之前,可以进行先听后说LBT,当某个信道的LBT成功之后,可以在这个LBT成功的信道上发送该第一指示消息。可选的,网络设备为终端设备配置的参考信号的传输带宽可以大于20MHz,即该参考信号为宽带参考信号,则参考信号的传输信道包括多个信道,每个信道的带宽为20MHz。例如,假设参考信号的传输带宽为80MHz,则参考信号的传输信道包括4个信道。其中,本申请实施例中的宽带参考信号可以指传输带宽大于20MHz的参考信号。
在另一些实施方式中,网络设备可以给终端设备配置一个用于监测无线链路状态的参考信号集合。该参考信号集合中每个参考信号的传输带宽可以为20MHz,即每个参考信号为窄带参考信号,每个参考信号的传输信道可以包括1个信道且每个参考信号的传输信道各不相同。网络设备可以基于该参考信号集合中每个参考信号的配置参数生成第一指示消息,并可以向终端设备发送该第一指示消息。该第一指示消息可以用于指示参考信号的配置参数(或者参考信号的资源信息)。其中,网络设备与终端设备通信的信道数量(或子带数量)可以由网络设备与终端设备通信所采用的频段确定。例如,网络设备与终端设备通信所采用的频段为6.1GHz-6.18GHz,共80MHz带宽,假设每个信道的信道带宽为20MHz,则网络设备与终端设备通信的信道数量(或子带数量)为4个(80/20=4),则参考信号集合中包括4个窄带参考信号。其中,本申请实施例中的窄带参考信号可以指传输带宽为20MHz的参考信号。
在一些实施方式中,宽带参考信号和窄带参考信号的区别在于传输带宽、传输信道、频域的起始RB位置以及持续RB数不相同。
S202,网络设备向终端设备发送第二指示消息。相应地,终端设备接收第二指示消息。
在一些实施方式中,上述第二指示消息中可以包括网络设备LBT成功的主信道(primary channel)的信道标识和上述参考信号的信道占用时间COT。主信道(primary channel)可以为从上述参考信号的传输信道中随机选取的一个信道。上述参考信号的COT可以用于表示网络设备占用主信道发送参考信号的最大占用时间。上述第二指示消息可以以信令的形式发送给终端设备。例如,第二指示消息以下面任意一种方式发送给终端设备:(a)下行控制信道PDCCH信令中的组公共下行控制信道GC-PDCCH信令或UE特定下行控制信道(UE-specific PDCCH)信令;(b)或者在CSI-RS配置的RRC信令(NZP-CSI-RS-Resource information element)中增加LBT成功的主信道的信道标识和上述参考信号的COT;(c)或者一条新的RRC信令(专门用于指示LBT成功的主信道的信道 标识和上述参考信号的COT的RRC信令)。
在一些实施方式中,由于网络设备与终端设备通信所采用的频段为非授权的频段,故网络设备在发送数据(或发送下行信息)之前,需要进行LBT,以避免数据碰撞。对于宽带参考信号(即传输带宽大于20MHz的参考信号),网络设备可以在上述参考信号的传输信道上随机选取一个信道,并可以将选取的这个信道作为主信道。网络设备可以根据该主信道上待发送参考信号的重要性和数据大小,确定退避优先级(即LBT优先级),再可以根据该退避优先级确定一个退避数。其中该退避数即为侦听空闲信道所需等待的时隙个数。网络设备还可以根据该退避优先级确定参考信号的COT。网络设备仅在选取的主信道上进行退避侦听。当在选取的主信道上连续侦听到退避数个时隙均为空闲时,说明此时主信道为空闲,也说明主信道LBT成功(或者主信道通过LBT),则网络设备可以基于LBT成功的主信道的信道标识和参考信号的COT生成第二指示消息,并可以向终端设备发送该第二指示消息。该第二指示消息可以用于指示LBT成功的信道标识和参考信号的COT。在选取的主信道上连续侦听到退避数个时隙均为空闲的同时,网络设备还可以在其他信道(除主信道外的其他信道)上进行一个时隙(one-slot)空闲信道评估(25us clear channel assessment,CCA)的回看(最后一个退避时隙结束时刻往回检测信道是否空闲)。如果回看到某个信道空闲,则这个信道上可以进行数据传输,如果回看到某个信道不空闲,则这个信道此时无法进行数据传输。
例如,如图3所示,图3是本申请实施例提供的LBT的一示意图。假设上述参考信号的传输信道包括4个信道,分别为信道0,1,2,3。假设网络设备从信道0,1,2,3中随机选取了信道0作为主信道,网络设备确定出信道0上的退避数为5,确定出的参考信号的COT为5ms。网络设备在信道0上侦听连续的5个时隙是否空闲。如果网络设备在信道0上侦听到连续5个时隙均为空闲,说明信道0的LBT成功,网络设备可以在5ms内占用信道0进行下行信息传输或调度终端设备进行上行数据传输。当网络设备在信道0上侦听到连续5个时隙均为空闲时,网络设备可以在信道1,2,3上分别进行one-slot CCA的回看,如图3所示,回看到信道1和信道2空闲,回看到信道3不空闲,则信道1和信道2上可以进行数据传输,说明信道1和信道2也为LBT成功的信道,信道3上此时无法进行数据传输,说明信道3为LBT失败的信道。网络设备可以基于LBT成功的主信道(信道0)的信道标识(channel 0)和参考信号的COT(5ms)生成GC-PDCCH信令,并可以向终端设备发送该GC-PDCCH信令。可选的,如果网络设备在信道0上侦听到连续5个时隙中的某个时隙不空闲,说明信道0的LBT失败,则网络设备可以重新选取主信道和退避数,重新进行LBT。
在一些实施方式中,当网络设备实际占用主信道的时间达到参考信号的COT时,网络设备需要重新进行LBT,重新确定主信道,即主信道可以随时间变化。主信道每发生一次变化,网络设备均可以通过第二指示消息通知终端设备。例如,主信道随时间变化的策略可以为:在一段时间内(比如10ms内)不能选取同一信道作为主信道。可选的,网络设备可以给与网络设备关联的每个终端设备配置主信道,每个终端设备配置的主信道可以相同,也可以不相同。
在另一些实施方式中,对于窄带参考信号(即传输带宽为20MHz的参考信号),由于主信道可以随时间变化,所以网络设备与终端设备通信的所有信道均可能成为主信道。故 网络设备给终端设备配置了一个用于监测无线链路状态的参考信号集合,该参考信号集合中包括多个窄带参考信号,该参考信号集合中每个窄带参考信号可以在一个信道上传输,且该参考信号集合中每个窄带参考信号的传输信道可以各不相同。网络设备可以从该参考信号集合中选取一个窄带参考信号用于RLM,并可以将选取出来的这个窄带参考信号的传输信道作为主信道。网络设备可以在主信道上进行LBT,并可以基于LBT成功的主信道的信道标识和LBT过程中确定出的这个窄带参考信号的COT生成第二指示消息,并可以向终端设备发送该第二指示消息。
S203,网络设备基于参考信号的配置参数在LBT(先听后说)成功的主信道上发送参考信号。相应地,终端设备接收参考信号。
在一些实施方式中,网络设备可以按照上述参考信号的配置参数(时域和频域参数)在上述LBT成功的主信道上,向终端设备发送该参考信号,在LBT成功的其他信道上则不发送参考信号。
如果网络设备给终端设备配置的用于RLM的参考信号的传输带宽为宽带(大于20MHz),则网络设备按照上述参考信号的配置参数在LBT成功的主信道上发送该参考信号中对应主信道的部分信号。例如,假设宽带参考信号为一个序列(sequence)s 0,s 1,s 2,...,s n-1,这个序列分布在信道0,1,2,3这4个信道上传输,每个信道上配置这个序列的部分序列(part sequence),信道0,1,2,3上配置的部分序列各不相同。假设信道0上配置宽带参考信号的第0部分序列(part0sequence)s 0,s 1,s 2,...,s i-1,i小于n-1;信道1上配置宽带参考信号的第1部分序列(part1sequence)s i,s i+1,s i+2,...,s j,j大于i且小于n-1;信道2上配置宽带参考信号的第2部分序列(part2sequence)s j+1,s j+2,s j+3,...,s k,k大于j且小于n-1;信道3上配置宽带参考信号的第3部分序列(part3sequence)s k+1,s k+2,s k+3,...,s n-1。其中宽带参考信号中各部分序列的长度可相同,也可不相同。假设信道0为主信道,则网络设备按照宽带参考信号的配置参数在LBT成功的信道0(主信道)上向终端设备发送宽带参考信号的第0部分序列,即s 0,s 1,s 2,...,s i-1,即当参考信号的传输带宽大于20MHz时,网络设备在LBT成功的主信道上发送的是完整参考信号(sequence)的部分信号(part sequence)。
如果网络设备给终端设备配置的用于RLM的参考信号的传输带宽为窄带(等于20MHz),则网络设备按照上述主信道对应的参考信号的配置参数在LBT成功的主信道上发送该主信道对应的参考信号。例如,主信道为信道0,配置在主信道上的窄带参考信号为S0(S0包括序列:s0 0,s0 1,s0 2,...,s0 n-1),网络设备根据窄带参考信号S0的配置参数在LBT成功的信道0(主信道)上向终端设备发送该窄带参考信号S0(即序列s0 0,s0 1,s0 2,...,s0 n-1)。
S204,终端设备根据接收到的第一指示消息包括的参考信号的配置参数和第二指示消息包括的参考信号的信道占用时间COT,在第二指示消息包括的LBT成功的主信道上进行无线链路监测。
在一些实施方式中,终端设备可以从网络设备接收上述第一指示消息,并可以从网络设备接收上述第二指示消息。该第一指示消息中可以包括上述参考信号的配置参数,该第二指示消息可以包括该参考信号的COT和网络设备LBT成功的主信道的信道标识。终端设备可以基于上述配置参数的起始发送时间和发送周期检测网络设备在上述COT内是否 发出了参考信号。例如,起始发送时间为第2s,发送周期为2s,COT是从第3s开始持续8s。由于网络设备发送参考信号是周期性发送的,所以终端设备可以确定网络设备第1次发送参考信号在第2s,第2次发送参考信号是在第4s,第3次发送参考信号是在第6s,以此类推。由于COT是从第3s开始持续8s,所以网络设备第1次发送参考信号的时间(第2s)不在COT内,则网络设备在第2s并未发出参考信号。但网络设备第2次、第3次发送参考信号的时间均在COT内,则终端设备可以确定网络设备在COT内发出了参考信号。
若终端设备确定出网络设备在上述COT内发出了上述参考信号,则终端设备可以基于该参考信号的配置参数中该参考信号所在的帧/子帧/符号,在LBT成功的主信道上监测是否接收到该参考信号。可选的,终端设备可以根据上述配置参数中的初始序列生成参考信号序列。终端设备可以在LBT成功的主信道上接收信号,并可以获取该信号在上述参考信号所在的帧/子帧/符号上的序列,再可以将获取到的序列与生成的参考信号序列进行相关性检测。当相关性检测的结果超过相关性阈值时,终端设备确定在LBT成功的主信道上接收到网络设备发送的参考信号。当相关性检测的结果未超过相关性阈值时,终端设备确定在LBT成功的主信道上未接收到网络设备发送的参考信号。
在另一些实施方式中,上述配置参数还可以包括发送时间窗(即monitoring window duration参数)。该发送时间窗也可以由标准固定(如5ms或10ms),无需额外的指示消息。可选的,给参考信号配置的发送时间窗的持续时间可以比给参考信号配置的发送周期短。终端设备可以基于该参考信号的配置参数中该参考信号所在的帧/子帧/符号,在发送时间窗内监测LBT成功的主信道上是否接收到该参考信号。终端设备仅在发送时间窗内监测主信道上是否接收到参考信号,减少了在主信道上监测是否接收到参考信号的次数,从而降低了终端设备的功耗。
例如,如图4所示,图4是本申请实施例提供的终端设备接收到参考信号的一示意图。如图4所示,参考信号为CSI-RS,参考信号的传输信道/传输子带(图4中UE下行部分带宽)包括信道0,1,2,3(或子带0,1,2,3)。终端设备在发送时间窗内监测LBT成功的主信道上是否接收到该参考信号。图4中,在前两个发送时间窗上,信道0为主信道,终端设备在发送时间窗0和1内分别监测到信道0上接收到参考信号;在后两个发送时间窗上,主信道发生了变化,主信道变为信道3,终端设备在发送时间窗2和3内分别监测到信道3上接收到参考信号。
在一些实施方式中,若终端设备在LBT成功的主信道上接收到上述参考信号,则终端设备可以基于从网络设备接收到的参考信号在LBT成功的主信道上测量信道质量。可选的,信道质量可以用参考信号的参考信号接收功率(RSRP)和/或参考信号接收质量(RSRQ)来表征。故终端设备可以测量在LBT成功的主信道上接收到的参考信号的RSRP和/或RSRQ。当测量得到的RSRP和/或RSRQ小于第一门限值时,说明测量得到的信道质量也低于该第一门限值,终端设备可以对第一计数器N310执行更新操作A,比如,将第一计数器N310的值增加一固定值(如1)。当测量得到的RSRP和/或RSRQ大于或等于该第一门限值时,说明测量得到的信道质量也高于该第一门限值,终端设备可以对该第一计数器N310执行更新操作B,比如,将第一计数器N310的值置0。其中,第一门限值可以为预设值。
在另一些实施方式中,若终端设备在LBT成功的主信道上没有接收到网络设备发送的参考信号,则终端设备可以对上述第一计数器N310执行上述更新操作A。
在一些实施方式中,当上述第一计数器N310的值大于第一阈值时,终端设备可以启动定时器T310,并可以在该定时器T310超时后,说明终端设备与网络设备之间的无线链路失败,进行无线链路重建。无线链路重建的过程可以为一个随机接入过程。具体地:(1)终端设备通过在特定的时频资源上,发送可以标识其身份的前导(preamble)序列,进行上行同步;(2)网络设备在对应的时频资源对preamble序列进行检测,完成序列检测后,发送随机接入响应;(3)终端设备在发送preamble序列后,在后续的一段时间内检测基站发送的随机接入响应;(4)终端设备在检测到属于自己的随机接入响应,该随机接入响应中包含终端设备进行上行传输的资源调度信息;(5)网络设备发送冲突解决响应,终端设备判断是否竞争成功。
在本申请实施例中,网络设备给终端设备配置宽带参考信号(传输带宽大于20MHz的参考信号即为宽带参考信号),并向终端设备发送各种指示消息(第一指示消息和第二指示消息),用于辅助终端设备进行无线链路监测。网络设备只在LBT成功的主信道上向终端设备发送宽带参考信号中主信道对应的部分信号。终端设备接收网络设备发送的各种指示消息,并基于各种指示消息在LBT成功的主信道上进行无线链路监测。提供了一种适用于NR-U系统的宽带参考信号的RLM解决方案。
本申请实施例提供的无线链路监测方法不仅可以在LBT成功的主信道(一个信道)上进行RLM,提供适用于NR-U系统的宽带参考信号的RLM解决方案,还可以在LBT成功的各个信道(多个信道)上均进行RLM,从而缩短在非授权频谱下判断无线链路质量的时间,提高RLM的监测效率。参见图5,图5是本申请实施例提供的无线链路监测方法的另一示意流程图。如图5所示,本申请实施例提供的无线链路监测方法可包括步骤:
S501,网络设备向终端设备发送第一指示消息。相应地,终端设备接收第一指示消息。
在一些实施方式中,本申请实施例中的步骤S501的实现方式可参考图2中步骤S201的实现方式,在此不再赘述。
S502,网络设备向终端设备发送第二指示消息。相应地,终端设备接收第二指示消息。
在一些实施方式中,上述第二指示消息中可以包括网络设备LBT成功的信道标识和上述参考信号的COT。该参考信号的COT可以用于表示网络设备占用LBT成功的各个信道发送参考信号的最大占用时间。上述第二指示消息可以以信令的形式发送给终端设备。例如,第二指示消息以下面任意一种方式发送给终端设备:(a)GC-PDCCH信令或UE-specific PDCCH信令;(b)或者在CSI-RS配置的RRC信令(NZP-CSI-RS-Resource information element)中增加LBT成功的各个信道的信道标识和上述参考信号的COT;(c)或者一条新的RRC信令(专门用于指示LBT成功的各个信道的信道标识和上述参考信号的COT的RRC信令)。
在一些实施方式中,网络设备在发送数据之前,需要进行LBT。具体地,网络设备可以根据各个信道的退避优先级确定上述参考信号的COT。网络设备可以在多个信道上进行独立的退避侦听。当在某个信道上的退避侦听完成后会等待其它仍在退避侦听的信道。当 所有进行LBT的信道均完成退避侦听后,网络设备可以在LBT成功的各个信道上同时进行数据传输。网络设备可以基于LBT成功的各个信道和该参考信号的COT生成第二指示消息,并可以向终端设备发送该第二指示消息。该第二指示消息可以用于指示LBT成功的信道标识和参考信号的COT。
例如,如图6所示,图6是本申请实施例提供的LBT的另一示意图。图6中示出了信道0,1,2,3这4个信道上的2次LBT。网络设备分别在信道0,1,2,3上进行独立的退避侦听。为便于描述,以信道0,1,2,3这4个信道上的第一次LBT为例进行说明。如图6所示,信道0上的退避数为3,当信道0连续侦听到3个时隙均为空闲,说明信道0的LBT成功,等待其它仍在退避侦听的信道;信道1上连续侦听到2个时隙为空闲后就被其他设备(图6中的Wi-Fi节点)占用了,即信道1的LBT失败;信道2上的退避数为4,当信道2连续侦听到4个时隙均为空闲,说明信道2的LBT成功,等待其它仍在退避侦听的信道;信道3上的退避数为7,当信道3连续侦听到6个时隙均为空闲后,同时在信道0,2,3上进行one-slot CCA回看,如果回看到信道0,2,3均为空闲,则网络设备可以同时在信道0,2,3上进行数据传输,此时LBT成功的信道包括信道0,2,3。可选的,如果网络设备退避侦听到信道0,1,2,3这4个信道上均不空闲,说明没有LBT成功的信道,则网络设备可以重新进行LBT。
在一些实施方式中,本申请实施例的步骤S501与步骤S502之间的执行顺序不做限定。例如,步骤S501可以在步骤S502之前执行,步骤S501也可以在步骤S502之后执行,步骤S501还可以与步骤S502同时执行,等等。
S503,网络设备基于参考信号的配置参数在LBT(先听后说)成功的各个信道上发送参考信号。相应地,终端设备接收参考信号。
在一些实施方式中,上述参考信号的传输带宽为宽带(大于20MHz)。如果上述LBT成功的各个信道均为上述参考信号的传输信道中的信道,则网络设备可以按照上述参考信号的配置参数(时域和频域参数)在上述LBT成功的每个信道上,向终端设备发送该参考信号中与该每个信道对应的部分信号。例如,假设参考信号的传输信道包括信道0,1,2,3,LBT成功的信道包括信道0,2,3,说明LBT成功的各个信道(信道0,2,3)均属于参考信号的传输信道中的信道(信道0,1,2,3),也就说明LBT成功的每个信道上均可传输参考信号。如果参考信号为一个序列,信道0上配置了参考信号的第0部分序列,信道1上配置了参考信号的第1部分序列,信道2上配置了参考信号的第2部分序列,信道3上配置了参考信号的第3部分序列,第0、1、2、3部分序列共同组成这个参考信号。网络设备按照参考信号的配置参数在信道0上向终端设备发送参考信号的第0部分序列,在信道2上向终端设备发送参考信号的第2部分序列,在信道3上向终端设备发送参考信号的第3部分序列。
在一些实施方式中,如果上述LBT成功的各个信道中存在与上述参考信号的传输信道不相同的信道,则网络设备可以确定LBT成功的各个信道与该传输信道的各个信道之间的交集,并可以按照上述参考信号的配置参数(时域和频域参数)在该交集的每个信道上,向终端设备发送该参考信号中与该每个信道对应的部分信号。例如,LBT成功的各个信道分别为信道0,2,3,传输信道包括信道0和信道3,则LBT成功的各个信道与传输信道的各个信道之间的交集为信道0和信道3。网络设备就按照参考信号的配置参数在信道0上向 终端设备发送参考信号中信道0对应的部分信号,在信道3上向终端设备发送参考信号中信道3对应的部分信号。
在一些实施方式中,网络设备可以向终端设备发送第三指示消息。相应地,终端设备可以从网络设备接收参考信号。该第三指示消息用于终端设备在监测到无线链路失败(radio link failure,RLF)时进行无线链路重建。该第三指示消息中可以包括上述参考信号对应的随机接入参数。其中,该随机接入参数可以为随机接入过程中的时频资源。参考信号的传输信道中每个信道上配置的参考信号(可能是完整的一个参考信号,也可能是完整参考信号中的部分信号)可以对应一个用于随机接入(或无线链路重建)的时频资源;或者参考信号的传输信道中所有信道上配置的参考信号(这里是完整的一个参考信号)可以对应一个用于随机接入(或无线链路重建)的时频资源,本申请实施例对此可不做限定。
S504,终端设备根据接收到的第一指示消息包括的参考信号的配置参数、第二指示消息包括的参考信号的信道占用时间COT以及LBT成功的信道标识进行无线链路监测。
在一些实施方式中,上述LBT成功的信道标识所标识的各个信道均为上述参考信号的传输信道中的信道。终端设备可以从网络设备接收上述第一指示消息,并可以从网络设备接收上述第二指示消息。该第一指示消息中可以包括上述参考信号的配置参数,该第二指示消息可以包括该参考信号的COT和网络设备LBT成功的信道标识。终端设备可以基于上述配置参数的起始发送时间和发送周期检测网络设备在上述COT内是否发出了该参考信号。如果终端设备确定出网络设备在上述COT内发出了该参考信号,则终端设备可以在LBT成功的信道标识所标识的各个信道上进行无线链路监测。
在另一些实施方式中,上述LBT成功的信道标识所标识的各个信道中存在与上述传输信道的各个信道不相同的信道。若终端设备基于上述参考信号的起始发送时间和发送周期确定出网络设备在上述COT内发出了该参考信号,则终端设备可以将LBT成功的信道标识所标识的各个信道中与该传输信道的各个信道相同的信道确定为第一信道,该第一信道中可以包括至少一个信道。终端设备可以在该第一信道的各个信道上进行无线链路监测。
在一些实施方式中,在LBT成功的信道标识所标识的各个信道上的无线链路监测可以包括:终端设备可以基于上述配置参数中上述参考信号所在的帧/子帧/符号,在LBT成功的信道标识所标识的各个信道上监测是否接收到该参考信号。当基于接收到的参考信号在LBT成功的信道标识所标识的任一信道上测量得到的信道质量小于第一门限值时,终端设备对该第一计数器N310执行第一更新操作。该第一更新操作可以为:终端设备确定在LBT成功的信道标识所标识的各个信道上测量得到的信道质量小于第一门限值的信道数量,并将该第一计数器N310的值增加该信道数量。例如,测量得到的信道质量小于第一门限值的信道数量为3,则终端设备将第一计数器N310的值增加3。当基于接收到的参考信号在LBT成功的信道标识所标识的各个信道上测量得到的信道质量均大于或等于该第一门限值时,终端设备对该第一计数器N310执行第二更新操作。该第二更新操作可以为将该第一计数器N310的值置0。当该第一计数器N310的值大于第一阈值时,终端设备可以启动定时器T310,并在该定时器T310超时后,说明终端设备与网络设备之间的无线链路失败,进行无线链路重建。终端设备通过在LBT成功的各个信道上分别进行RLM,可以缩短计数器N310达到预设阈值(第一阈值)的时间,从而可以快速发现无线链路失败,缩短监 测无线链路质量(状态)的时间。
可选的,若终端设备在LBT成功的信道标识所标识的任一信道上未接收到上述参考信号,则终端设备可以对第一计数器N310执行第三更新操作。该第三更新操作可以为:终端设备确定LBT成功的信道标识所标识的各个信道上未接收到该参考信号的信道数量,并将该第一计数器N310的值增加该信道数量。例如,LBT成功的信道标识所标识的各个信道上未接收到该参考信号的信道数量为2,则终端设备就将该第一计数器N310的值增加2。当该第一计数器N310的值大于上述第一阈值时,终端设备可以启动定时器T310,并在该定时器T310超时后,说明终端设备与网络设备之间的无线链路失败,进行无线链路重建。
进一步可选的,若终端设备在LBT成功的信道标识所标识的各个信道上均未接收到上述参考信号,则终端设备可以对第一计数器N310执行第四更新操作。该第四更新操作可以为:将第一计数器N310的值增加一固定值(如1)。若终端设备在LBT成功的信道标识所标识的任一信道上接收到上述参考信号,则终端设备可以将该第一计数器N310的值置0。当该第一计数器N310的值大于上述第一阈值时,终端设备可以启动定时器T310,并在该定时器T310超时后,说明终端设备与网络设备之间的无线链路失败,进行无线链路重建。
在一些实施方式中,上述配置参数还可以包括发送时间窗。终端设备在LBT成功的信道标识所标识的各个信道上监测是否接收到该参考信号,具体可以包括:终端设备基于该配置参数中该参考信号所在的帧/子帧/符号,在发送时间窗内监测LBT成功的信道标识所标识的各个信道上是否接收到该参考信号。
例如,如图7所示,图7是本申请实施例提供的终端设备接收到参考信号的另一示意图。如图7所示,参考信号为CSI-RS,参考信号的传输信道/传输子带包括信道0,1,2,3(或子带0,1,2,3)。在第1个发送时间窗内,LBT成功的信道标识为0,1,3,终端设备在第1个发送时间窗内监测到信道0,1,3上均接收到参考信号。在第2个发送时间窗内,LBT成功的信道标识为0,终端设备在第2个发送时间窗内监测到信道0上接收到参考信号。在第3个发送时间窗内,LBT成功的信道标识为1,2,终端设备在第3个发送时间窗内监测到信道1和2上均接收到参考信号。在第4个发送时间窗内,LBT成功的信道标识为0,2,终端设备在第4个发送时间窗内监测到信道0和2上均接收到参考信号。
在一些实施方式,无线链路重建的过程可以为一次随机接入过程。具体地,终端设备进行无线链路重建可以包括:在终端设备启动无线链路重建时,终端设备仍然可能接收到网络设备发送的参考信号。由于网络设备给参考信号配置了对应的随机接入参数,并通过上述第三指示消息发送给终端设备。故终端设备可以从网络设备接收第三指示消息,并可以根据该第三指示消息中携带的随机接入参数向网络设备发送preamble序列进行随机接入,以实现无线链路的重建。终端设备直接从网络设备接收用于无线链路重建的随机接入参数(即随机接入的时频资源),无需终端设备再去获取特定的时频资源来进行随机接入,可以缩短无线链路重建的时间,快速恢复无线链路。
作为一个可选实施方式,上述第一更新操作的流程还可以如图8所示,图8是本申请实施例提供的第一更新操作的流程示意图。
S801,终端设备确定LBT成功的信道标识所标识的各个信道中每个信道的权重。
在一些实施方式中,LBT成功的信道标识所标识的各个信道中每个信道的权重可以相同,也可以不相同。LBT成功的信道标识所标识的各个信道的权重之和为1。例如,LBT成功的信道标识所标识的信道为信道0,1,2,3这4个信道,则信道0,1,2,3的权重可以相同,即信道0,1,2,3的权重均为1/4;信道0,1,2,3的权重也可以不相同,如信道0,1,2,3的权重分别为1/2,1/4,1/8,1/8。可选的,LBT成功的信道标识所标识的各个信道中每个信道的权重还可以由网络设备配置,然后发送给终端设备。
S802,终端设备根据LBT成功的信道标识所标识的各个信道中信道质量小于第一门限值的信道的权重之和,更新第一计数器的值。
在一些实施方式中,终端设备可以确定在LBT成功的信道标识所标识的各个信道上测量得到的信道质量小于上述第一门限值的信道,并可以计算这些信道质量小于上述第一门限值的信道的权重之和。终端设备可以将上述第一计数器N310的值增加该权重之和。
如图9所示,图9是本申请实施例提供的第一计数器N310更新的示意图。图9示出了一个COT内计数器N310的值的变化情况。一个COT内,LBT成功的信道不发生变化。假设图9中LBT成功的信道标识为0,1,2,3。规则1(rule 1)表示信道0,1,2,3中每个信道的权重相同,即1/4;规则2(rule 2)表示信道0,1,2,3中每个信道的权重不相同,如信道0,1,2,3的权重分别为1/2,1/4,1/8,1/8。假设规则1下,计数器N310的值用N1表示;规则2下,计数器N310的值用N2表示。在第1个发送时间窗内,信道0,1,2,3上测量得到的信道质量均大于或等于第一门限值,则N1和N2均为0。在第2个发送时间窗内,只有信道2上测量得到的信道质量大于或等于第一门限值,则N1=(1/4)*3=3/4,N2=1/2+1/4+1/8=7/8。在第3个发送时间窗内,只有信道0和3上测量得到的信道质量均大于或等于第一门限值,则N1=3/4+(1/4)*2=5/4,N2=7/8+1/4+1/8=5/4。在第4个发送时间窗内,只有信道1,2,3上测量得到的信道质量均大于或等于第一门限值,则N1=5/4+1/4=3/2,N2=5/4+1/4+1/8+1/8=7/4。
作为另一个可选实施方式,网络设备发送第二指示消息是周期性发送的。终端设备从网络设备接收上述第一指示消息。若终端设备在一个发送时间窗内未接收到上述第二指示消息,说明终端设备在这个发送时间窗内无法确定网络设备LBT成功的信道有哪些,则终端设备可以缓存这个发送时间窗内接收到的参考信号。由于第二指示消息包括LBT成功的信道标识以及参考信号的COT,又因为一个COT内,LBT成功的信道不发生变化,则LBT成功的信道标识不变,即在一个COT内网络设备周期性发送的第二指示消息相同。所以,当终端设备接收到网络设备下一次发送的第二指示消息时,终端设备可以结合上一次缓存的参考信号,在接收到的第二指示消息包括的LBT成功的信道标识所标识的各个信道上测量信道质量。当测量得到的信道质量小于上述第一门限值时,终端设备可以对上述第一计数器N310执行上述第一更新操作。
可选的,若终端设备在一个发送时间窗内未接收到上述第二指示消息,说明终端设备无法确定网络设备LBT成功的信道有哪些,则终端设备可以缓存这个发送时间窗内接收到的参考信号,并可以基于这个发送时间窗内接收到的参考信号在上述传输信道的各个信道上测量信道质量。当测量得到的信道质量小于上述第一门限值时,终端设备可以对上述第 一计数器N310执行第一更新操作。当终端设备接收到网络设备下一次发送的第二指示消息时,终端设备可以结合上一次缓存的参考信号对该第一计数器N310的值进行修正。终端设备在某个发送时间窗内未接收到第二指示消息时,提供了两种不同的处理方式,丰富了NR-U场景下无线链路监测的解决方案。
例如,如图10所示,图10是本申请实施例提供的终端设备RLM的示意图。图10示出了4个发送时间窗内终端设备进行RLM的信道的情况。假设参考信号为CSI-RS,第二指示消息为GC-PDCCH。在第1个发送时间窗内,终端设备接收到GC-PDCCH携带的LBT成功的信道标识是0,1,3,则终端设备在信道0,1,3上分别测量信道质量。在第2个发送时间窗内,终端设备未接收到GC-PDCCH,则终端设备不能确定在第2个发送时间窗内LBT成功的信道有哪些,此时可以假设信道0,1,2,3都LBT成功,即假设网络设备在信道0,1,2,3上都传输了CSI-RS,故终端设备在信道0,1,2,3上分别测量信道质量。当终端设备接收到网络设备下一次发送的GC-PDCCH后,终端设备结合上一次缓存的参考信号(即图10的第2个发送时间窗内网络设备实际传输的CSI-RS)在第2个发送时间窗内LBT实际成功的信道(即图10的信道2和3)上测量信道质量。在第3个发送时间窗内,终端设备接收到GC-PDCCH携带的LBT成功的信道标识是1,2,则终端设备在信道1和2上分别测量信道质量。在第4个发送时间窗内,终端设备接收到GC-PDCCH携带的LBT成功的信道标识是1,3,则终端设备在信道1和3上分别测量信道质量。
在本申请实施例中,网络设备给终端设备配置宽带参考信号(传输带宽大于20MHz的参考信号即为宽带参考信号),并向终端设备发送各种指示消息(第一指示消息和第二指示消息),用于辅助终端设备进行无线链路监测,还向终端设备发送了第三指示消息,用于无线链路失败时进行无线链路重建。网络设备在LBT成功的各个信道上向终端设备发送宽带参考信号中与LBT成功的各个信道对应的部分信号。终端设备接收网络设备发送的各种指示消息,并基于各种指示消息在LBT成功的各个信道上进行无线链路监测,并在无线链路失败时基于第三指示消息中的随机接入参数进行无线链路重建。不仅提供了一种适用于NR-U系统的宽带参考信号的RLM解决方案,还缩短在非授权频谱下判断无线链路质量的时间以及无线链路重建的时间(或流程),提高了RLM的监测效率。
上述详细阐述了本申请实施例的无线链路监测方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的设备。
参见图11,图11是本申请实施例提供的终端设备的结构示意图。如图11所示,该终端设备10可包括:
收发模块101,用于从网络设备接收第一指示消息,并从该网络设备接收第二指示消息。其中,该第一指示消息中包括参考信号的配置参数,该第二指示消息中包括该网络设备先听后说LBT成功的信道标识和该参考信号的信道占用时间COT。处理模块102,用于根据该收发模块接收到的该第二指示消息中该参考信号的COT、该LBT成功的信道标识以及该第一指示消息中该参考信号的配置参数进行无线链路监测。
在一些实施方式中,上述配置参数包括起始发送时间、发送周期以及传输信道,上述LBT成功的信道标识所标识的各个信道均为该传输信道中的信道。上述处理模块102,具 体用于当基于该参考信号的起始发送时间和发送周期确定出该网络设备在参考信号的COT内发出该参考信号时,在该LBT成功的信道标识所标识的各个信道上进行无线链路监测。
在一些实施方式中,上述处理模块102包括更新单元1021和链路重建单元1022。该更新单元1021,用于当基于该参考信号在该LBT成功的信道标识所标识的任一信道上测量得到的信道质量小于第一门限值时,对第一计数器N310执行第一更新操作。该链路重建单元1022,用于当该第一计数器N310的值大于第一阈值时,启动定时器T310,并在该定时器T310超时后,进行无线链路重建。
在一些实施方式中,上述更新单元1021,具体用于:确定该LBT成功的信道标识所标识的各个信道中每个信道的权重;根据该LBT成功的信道标识所标识的各个信道中信道质量小于该第一门限值的信道的权重之和,更新第一计数器N310的值。
在一些实施方式中,上述收发模块101,还用于从该网络设备接收第三指示消息,该第三指示消息中包括该参考信号对应的随机接入参数。上述链路重建单元1022具体用于在进行无线链路重建时,根据该随机接入参数向该网络设备发送前导preamble序列进行无线链路重建。
在一些实施方式中,上述配置参数包括发送时间窗。上述处理模块102,还具体用于根据该收发模块接收到的该第二指示消息中该参考信号的COT和该LBT成功的信道标识,在该收发模块接收到的该第一指示消息的该参考信号的发送时间窗内进行无线链路监测。
在一些实施方式中,上述配置参数包括起始发送时间、发送周期以及传输信道,上述LBT成功的信道标识所标识的各个信道中存在与该传输信道的各个信道不相同的信道。上述处理模块102,还具体用于当基于该参考信号的起始发送时间和发送周期确定出该网络设备在该参考信号的COT内发出该参考信号时,将该LBT成功的信道标识所标识的各个信道中与该传输信道的各个信道相同的信道确定为第一信道,该第一信道中包括至少一个信道;在该第一信道的各个信道上进行无线链路监测。
其中,上述更新单元1021和上述链路重建单元1022可以为一个单元,如处理单元。
具体实现中,各个模块或单元的实现还可以对应参照图2、图5或图8所示的方法实施例中终端设备的相应描述,执行上述实施例中终端设备所执行的方法和功能。
本申请实施例当终端设备工作于NR-U系统中时,终端设备通过接收各种指示消息来确定仅在LBT成功的信道上进行无线链路监测,无需对终端设备与网络设备之间的所有信道进行无线链路监测,提供了一种适用于NR-U场景下的无线链路监测方案。
参见图12,图12是本申请实施例提供的网络设备的结构示意图。如图12所示,该网络设备20可包括:
收发模块201,用于向终端设备发送该第一指示消息,向该终端设备发送该第二指示消息,以及基于该参考信号的配置参数在LBT成功的各个信道上发送该参考信号。其中,该第一指示消息包括参考信号的配置参数,该参考信号用于无线链路监测,该第二指示消息中包括该网络设备LBT成功的信道标识和该参考信号的信道占用时间COT。
在一些实施方式中,上述配置参数包括起始发送时间、发送周期以及传输信道。上述收发模块201,具体用于基于该参考信号的发送起始时间、发送周期和该参考信号的COT, 在LBT成功的各个信道与该传输信道的各个信道相同的信道上发送该参考信号。
在一些实施方式中,上述配置参数包括发送时间窗,该发送时间窗用于结合上述参考信号进行无线链路监测。
在一些实施方式中,上述网络设备20还包括处理模块202。该处理模块202,用于生成第三指示消息,该第三指示消息中包括该参考信号对应的随机接入参数,该随机接入参数用于无线链路重建。上述收发模块201,还用于向该终端设备发送该第三指示消息。
具体实现中,各个单元的实现还可以对应参照图2或图5所示的方法实施例中网络设备的相应描述,执行上述实施例中网络设备所执行的方法和功能。
参见图13,图13是本申请实施例提供的通信装置的结构示意图。如图13所示,本申请实施例提供的通信装置1000包括处理器1001、存储器1002、收发器1003和总线系统1004。本申请实施例提供的通信装置可以为终端设备和网络设备中的任意一种。
其中,上述处理器1001、存储器1002和收发器1003通过总线系统1004连接。
上述存储器1002用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器1002包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图10中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器1002也可以是处理器1001中的存储器,在此不做限制。
存储器1002存储了如下的元素,可执行单元或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
上述处理器1001控制通信装置1000的操作,处理器1001可以是一个或多个中央处理器(central processing unit,CPU),在处理器1001是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,通信装置1000的各个组件通过总线系统1004耦合在一起,其中总线系统1004除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图13中将各种总线都标为总线系统1004。为便于表示,图13中仅是示意性画出。
上述本申请实施例提供的图2、图5或图8,或者上述各个实施例揭示的终端设备的方法;或者上述本申请实施例提供的图2或图5,或者上述各个实施例的网络设备的方法可以应用于处理器1001中,或者由处理器1001实现。处理器1001可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的 公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件执行图2、图5或图8,或者上述各个实施例所描述的终端设备的方法步骤;或者结合其硬件执行图2或图5,或者上述各个实施例所描述的网络设备的方法步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2、图5或图8所描述的终端设备的方法步骤;或者当该计算机程序代码在计算机上运行时,使得该计算机执行图2或图5所描述的网络设备的方法步骤。
本申请实施例还提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行图2、图5或图8的任意可能的实现方式中的无线链路监测方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (26)

  1. 一种无线链路监测方法,其特征在于,包括:
    终端设备从网络设备接收第一指示消息,所述第一指示消息中包括参考信号的配置参数;
    所述终端设备从所述网络设备接收第二指示消息,所述第二指示消息中包括所述网络设备先听后说LBT成功的信道标识和所述参考信号的信道占用时间COT;
    所述终端设备根据所述参考信号的COT、所述LBT成功的信道标识以及所述参考信号的配置参数进行无线链路监测。
  2. 根据权利要求1所述的方法,其特征在于,所述配置参数包括起始发送时间、发送周期以及传输信道,所述LBT成功的信道标识所标识的各个信道均为所述传输信道中的信道;
    所述终端设备根据所述参考信号的COT、所述LBT成功的信道标识以及所述参考信号的配置参数进行无线链路监测,包括:
    若基于所述参考信号的起始发送时间和发送周期确定出所述网络设备在参考信号的COT内发出所述参考信号,则所述终端设备在所述LBT成功的信道标识所标识的各个信道上进行无线链路监测。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备在所述LBT成功的信道标识所标识的各个信道上进行无线链路监测,包括:
    若基于所述参考信号在所述LBT成功的信道标识所标识的任一信道上测量得到的信道质量小于第一门限值,则所述终端设备对第一计数器N310执行第一更新操作;
    当所述第一计数器N310的值大于第一阈值时,所述终端设备启动定时器T310,并在所述定时器T310超时后,进行无线链路重建。
  4. 根据权利要求3所述的方法,其特征在于,所述对第一计数器执行第一更新操作,包括:
    确定所述LBT成功的信道标识所标识的各个信道中每个信道的权重;
    根据所述LBT成功的信道标识所标识的各个信道中信道质量小于所述第一门限值的信道的权重之和,更新第一计数器N310的值。
  5. 根据权利要求3或4所述的方法,其特征在于,所述进行无线链路重建,包括:
    所述终端设备从所述网络设备接收第三指示消息,所述第三指示消息中包括所述参考信号对应的随机接入参数;
    所述终端设备根据所述随机接入参数向所述网络设备发送前导preamble序列进行无线链路重建。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述配置参数包括发送时间窗;
    所述终端设备根据所述参考信号的COT、所述LBT成功的信道标识以及所述参考信号的配置参数进行无线链路监测,包括:
    所述终端设备根据所述参考信号的COT和所述LBT成功的信道标识,在所述参考信号的发送时间窗内进行无线链路监测。
  7. 根据权利要求1所述的方法,其特征在于,所述配置参数包括起始发送时间、发送周期以及传输信道,所述LBT成功的信道标识所标识的各个信道中存在与所述传输信道的各个信道不相同的信道;
    所述终端设备根据所述参考信号的COT、所述LBT成功的信道标识以及所述参考信号的配置参数进行无线链路监测,包括:
    若基于所述参考信号的起始发送时间和发送周期确定出所述网络设备在所述参考信号的COT内发出所述参考信号,则所述终端设备将所述LBT成功的信道标识所标识的各个信道中与所述传输信道的各个信道相同的信道确定为第一信道,所述第一信道中包括至少一个信道;
    所述终端设备在所述第一信道的各个信道上进行无线链路监测。
  8. 一种无线链路监测方法,其特征在于,包括:
    网络设备向终端设备发送所述第一指示消息,所述第一指示消息包括参考信号的配置参数,所述参考信号用于无线链路监测;
    所述网络设备向所述终端设备发送所述第二指示消息,所述第二指示消息中包括所述网络设备LBT成功的信道标识和所述参考信号的信道占用时间COT;
    所述网络设备基于所述参考信号的配置参数在LBT成功的各个信道上发送所述参考信号。
  9. 根据权利要求8所述的方法,其特征在于,所述配置参数包括起始发送时间、发送周期以及传输信道;
    所述网络设备基于所述参考信号的配置参数在LBT成功的各个信道上发送所述参考信号,包括:
    所述网络设备基于所述参考信号的发送起始时间、发送周期和所述参考信号的COT,在LBT成功的各个信道与所述传输信道的各个信道相同的信道上发送所述参考信号。
  10. 根据权利要求8或9所述的方法,其特征在于,所述配置参数包括发送时间窗,所述发送时间窗用于结合所述参考信号进行无线链路监测。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备生成第三指示消息,所述第三指示消息中包括所述参考信号对应的随机接入参数,所述随机接入参数用于无线链路重建;
    所述网络设备向所述终端设备发送所述第三指示消息。
  12. 一种终端设备,其特征在于,包括:
    收发模块,用于从网络设备接收第一指示消息,所述第一指示消息中包括参考信号的配置参数;
    所述收发模块,还用于从所述网络设备接收第二指示消息,所述第二指示消息中包括所述网络设备先听后说LBT成功的信道标识和所述参考信号的信道占用时间COT;
    处理模块,用于根据所述收发模块接收到的所述第二指示消息中所述参考信号的COT、所述LBT成功的信道标识以及所述第一指示消息中所述参考信号的配置参数进行无线链路监测。
  13. 根据权利要求12所述的终端设备,其特征在于,所述配置参数包括起始发送时间、发送周期以及传输信道,所述LBT成功的信道标识所标识的各个信道均为所述传输信道中的信道;
    所述处理模块,具体用于:
    当基于所述参考信号的起始发送时间和发送周期确定出所述网络设备在参考信号的COT内发出所述参考信号时,在所述LBT成功的信道标识所标识的各个信道上进行无线链路监测。
  14. 根据权利要求13所述的终端设备,其特征在于,所述处理模块包括:
    更新单元,用于当基于所述参考信号在所述LBT成功的信道标识所标识的任一信道上测量得到的信道质量小于第一门限值时,对第一计数器N310执行第一更新操作;
    链路重建单元,用于当所述第一计数器N310的值大于第一阈值时,启动定时器T310,并在所述定时器T310超时后,进行无线链路重建。
  15. 根据权利要求14所述的终端设备,其特征在于,所述更新单元具体用于:
    确定所述LBT成功的信道标识所标识的各个信道中每个信道的权重;
    根据所述LBT成功的信道标识所标识的各个信道中信道质量小于所述第一门限值的信道的权重之和,更新第一计数器N310的值。
  16. 根据权利要求14或15所述的终端设备,其特征在于,所述收发模块还用于从所述网络设备接收第三指示消息,所述第三指示消息中包括所述参考信号对应的随机接入参数;
    所述链路重建单元进行无线链路重建时,具体用于:
    根据所述随机接入参数向所述网络设备发送前导preamble序列进行无线链路重建。
  17. 根据权利要求12-16任一项所述的终端设备,其特征在于,所述配置参数包括发送时间窗;
    所述处理模块,还具体用于:
    根据所述收发模块接收到的所述第二指示消息中所述参考信号的COT和所述LBT成功的信道标识,在所述收发模块接收到的所述第一指示消息的所述参考信号的发送时间窗内进行无线链路监测。
  18. 根据权利要求12所述的终端设备,其特征在于,所述配置参数包括起始发送时间、发送周期以及传输信道,所述LBT成功的信道标识所标识的各个信道中存在与所述传输信道的各个信道不相同的信道;
    所述处理模块,还具体用于:
    当基于所述参考信号的起始发送时间和发送周期确定出所述网络设备在所述参考信号的COT内发出所述参考信号时,将所述LBT成功的信道标识所标识的各个信道中与所述传输信道的各个信道相同的信道确定为第一信道,所述第一信道中包括至少一个信道;
    在所述第一信道的各个信道上进行无线链路监测。
  19. 一种网络设备,其特征在于,包括:
    收发模块,用于向终端设备发送所述第一指示消息,所述第一指示消息包括参考信号的配置参数,所述参考信号用于无线链路监测;
    所述收发模块,还用于向所述终端设备发送所述第二指示消息,所述第二指示消息中包括所述网络设备LBT成功的信道标识和所述参考信号的信道占用时间COT;
    所述收发模块,还用于基于所述参考信号的配置参数在LBT成功的各个信道上发送所述参考信号。
  20. 根据权利要求19所述的网络设备,其特征在于,所述配置参数包括起始发送时间、发送周期以及传输信道;
    所述收发模块,具体用于:
    基于所述参考信号的发送起始时间、发送周期和所述参考信号的COT,在LBT成功的各个信道与所述传输信道的各个信道相同的信道上发送所述参考信号。
  21. 根据权利要求19或20所述的网络设备,其特征在于,所述配置参数包括发送时间窗,所述发送时间窗用于结合所述参考信号进行无线链路监测。
  22. 根据权利要求19-21任一项所述的网络设备,其特征在于,所述网络设备还包括:
    处理模块,用于生成第三指示消息,所述第三指示消息中包括所述参考信号对应的随机接入参数,所述随机接入参数用于无线链路重建;
    所述收发模块,还用于向所述终端设备发送所述第三指示消息。
  23. 一种终端设备,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时, 使所述反射设备执行如权利要求1-7任一项所述的方法。
  24. 一种网络设备,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述反射设备执行如权利要求8-11任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储计算机程序指令,当所述计算机程序指令在所述计算机上运行时,使得所述计算机执行如权利要求1-7任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储计算机程序指令,当所述计算机程序指令在所述计算机上运行时,使得所述计算机执行如权利要求8-11任一项所述的方法。
PCT/CN2020/108953 2019-08-16 2020-08-13 无线链路监测方法及相关装置 WO2021031980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760885.8 2019-08-16
CN201910760885.8A CN112399441B (zh) 2019-08-16 2019-08-16 无线链路监测方法及相关装置

Publications (1)

Publication Number Publication Date
WO2021031980A1 true WO2021031980A1 (zh) 2021-02-25

Family

ID=74603116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108953 WO2021031980A1 (zh) 2019-08-16 2020-08-13 无线链路监测方法及相关装置

Country Status (2)

Country Link
CN (1) CN112399441B (zh)
WO (1) WO2021031980A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213270A1 (en) * 2021-04-06 2022-10-13 Lenovo (Beijing) Limited Method and apparatus for uplink transmission on unlicensed spectrum
WO2024031290A1 (zh) * 2022-08-08 2024-02-15 富士通株式会社 信息收发方法与装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161639A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种信道状态信息的确定方法和设备
CN109863810A (zh) * 2019-01-23 2019-06-07 北京小米移动软件有限公司 参考信号传输方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10257848B2 (en) * 2016-10-04 2019-04-09 Qualcomm Incorporated Directional channel reservation for time-division multiplexing downlink and uplink data burst transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161639A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种信道状态信息的确定方法和设备
CN109863810A (zh) * 2019-01-23 2019-06-07 北京小米移动软件有限公司 参考信号传输方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC: "RLM/RLF for NR-U", 3GPP DRAFT; R2-1811454 (R15 NRU SI AI 11222 RLM_RLF_NRU), vol. RAN WG2, 9 August 2018 (2018-08-09), Gothenburg, Sweden, pages 1 - 3, XP051521109 *
LG ELECTRONICS: "Summary #2 on Wide-band Operation for NR-U", 3GPP DRAFT; R1-1903595, vol. RAN WG1, 1 March 2019 (2019-03-01), Athens Greece, pages 1 - 16, XP051690862 *
LG ELECTRONICS: "Summary on Wide-band Operation for NR-U", 3GPP DRAFT; R1-1907653, vol. RAN WG1, 16 May 2019 (2019-05-16), Reno, USA, pages 1 - 12, XP051739942 *

Also Published As

Publication number Publication date
CN112399441B (zh) 2022-10-28
CN112399441A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2019084816A1 (zh) 一种终端选择资源的方法及装置、计算机存储介质
TW202007196A (zh) 側行鏈路中資料傳輸的方法和終端設備
US10485007B2 (en) Method and device for performing carrier scheduling
WO2018058558A1 (zh) 选择资源的方法和终端设备
WO2021223240A1 (zh) 资源选择方法、装置、设备及存储介质
US10342031B2 (en) Data transmission method and device
CN110100400B (zh) 信道检测机制的确定方法、装置、设备及存储介质
WO2021031980A1 (zh) 无线链路监测方法及相关装置
EP4178143A1 (en) Method and apparatus for determining sidelink assistance information, and electronic device
US20220279487A1 (en) Resource exclusion method and apparatus, and storage medium
EP3247157A1 (en) Method for managing wireless resources, and access point using same
US11005740B2 (en) Data transmission method, device, and network system
CN113728718A (zh) 非授权带宽部分的随机接入过程
US20220240315A1 (en) Downlink transmission detection method and apparatus, device, and storage medium
WO2020227944A1 (zh) 侧行链路监测的方法和设备
US11212050B2 (en) Method and device for determining resource of logical channel, and computer storage medium
US20240015702A1 (en) Method for reselecting sidelink resource and apparatus for the same
WO2021258301A1 (zh) 资源排除方法、装置、终端设备及存储介质
WO2020143827A1 (zh) 一种控制信息的传输方法及装置
US20230074305A1 (en) Resource determining method, apparatus, and system
US20220053561A1 (en) Approaches for clear channel assessment
CN114765809A (zh) 一种通信方法及装置
WO2022077518A1 (zh) 一种资源选择方法及装置
WO2023178499A1 (zh) 资源重选方法、装置、设备、存储介质及程序产品
US20240015711A1 (en) Communication method, terminal apparatus, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855526

Country of ref document: EP

Kind code of ref document: A1