WO2021031955A1 - 数据传输方法、装置和系统 - Google Patents

数据传输方法、装置和系统 Download PDF

Info

Publication number
WO2021031955A1
WO2021031955A1 PCT/CN2020/108682 CN2020108682W WO2021031955A1 WO 2021031955 A1 WO2021031955 A1 WO 2021031955A1 CN 2020108682 W CN2020108682 W CN 2020108682W WO 2021031955 A1 WO2021031955 A1 WO 2021031955A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
guard interval
data transmission
downlink
uplink
Prior art date
Application number
PCT/CN2020/108682
Other languages
English (en)
French (fr)
Inventor
苗婷
毕峰
刘文豪
卢有雄
邢卫民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021031955A1 publication Critical patent/WO2021031955A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • This application relates to a wireless communication network, for example, to a data transmission method, device, and system.
  • a new type of node that integrates the backhaul link and the normal access link namely the Integrated Access and Backhaul Node (IAB Node)
  • IAB Node Integrated Access and Backhaul Node
  • the IAB node includes two functions, namely the Distributed Unit (DU) function and the Mobile Terminal (MT) function.
  • the DU function enables the IAB node to be a child node or User Equipment (UE) like a base station.
  • UE User Equipment
  • MT function enables IAB node to be controlled and scheduled by parent node like UE.
  • the IAB node has the dual identities of the terminal and the base station, and different identities have their own transceiver timings. This makes the MT and DU of the IAB node use different symbols in the time domain, but there may also be overlap in the time domain, for example, In the case of half-duplex restriction, the MT and DU of the IAB node may need to send and receive conversion time or the transmission and reception conversion time, and these problems may cause conflicts between the resources used by the MT and DU of the IAB node.
  • This application provides a data transmission method, device and system, which improve resource utilization and data transmission performance.
  • An embodiment of the application provides a data transmission method, including:
  • the first node receives timing related information
  • the first node schedules data transmission according to timing related information, and the data transmission includes uplink data transmission or downlink data transmission.
  • An embodiment of the application provides a data transmission method, including:
  • the second node determines timing related information
  • the second node reports timing related information to the first node.
  • the timing related information is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • An embodiment of the application provides a data transmission method, including:
  • the first node receives the guard interval
  • the first node schedules data transmission according to the guard interval, and the data transmission includes uplink data transmission or downlink data transmission.
  • An embodiment of the application provides a data transmission method, including:
  • the second node determines the guard interval
  • the second node reports a guard interval to the first node.
  • the guard interval is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • An embodiment of the present application provides a data transmission device, which is set at a first node, and includes:
  • the receiving module is set to receive timing related information
  • the scheduling module is configured to schedule data transmission according to timing related information, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • An embodiment of the present application provides a data transmission device, which is set at a second node, and includes:
  • Determine module set to determine timing related information
  • the sending module is configured to report timing related information to the first node.
  • the timing related information is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • An embodiment of the present application provides a data transmission device, which is set at a first node, and includes:
  • Receive module set to receive protection interval
  • the scheduling module is configured to schedule data transmission according to the guard interval, and the data transmission includes uplink data transmission or downlink data transmission.
  • An embodiment of the present application provides a data transmission device, which is set at a second node, and includes:
  • the sending module is configured to report a guard interval to the first node.
  • the guard interval is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • An embodiment of the present application provides a data transmission system, including a first node and a second node;
  • the first node includes a data transmission device described in an embodiment of the present application
  • the second node includes another data transmission device described in the embodiment of the present application.
  • An embodiment of the present application provides a data transmission system, including a first node and a second node;
  • the first node includes another data transmission device described in the embodiment of the present application.
  • the second node includes another data transmission device described in the embodiment of the present application.
  • Figure 1 is a schematic diagram of the connection relationship of IAB nodes
  • Fig. 2 is a schematic diagram of another connection relationship of IAB nodes
  • FIG. 3 is a schematic diagram of the timing relationship between IAB nodes
  • FIG. 4 is a flowchart of a data transmission method provided by an embodiment
  • FIG. 5 is a flowchart of another data transmission method provided by an embodiment
  • FIG. 6 is a flowchart of another data transmission method provided by an embodiment
  • FIG. 7 is a flowchart of another data transmission method provided by an embodiment
  • FIGS. 9a to 9l are timing diagrams of another data transmission method provided in Embodiment 3 of this application.
  • FIG. 10 is a schematic structural diagram of a data transmission device provided by an embodiment
  • FIG. 11 is a schematic structural diagram of another data transmission device provided by an embodiment
  • FIG. 12 is a schematic structural diagram of another data transmission device provided by an embodiment
  • FIG. 13 is a schematic structural diagram of another data transmission device provided by an embodiment
  • FIG. 14 is a schematic structural diagram of a communication node provided by an embodiment
  • FIG. 15 is a schematic structural diagram of another communication node provided by an embodiment.
  • FIG. 1 is a schematic diagram of the connection relationship of the IAB node.
  • the IAB node has two functions, namely DU and MT.
  • the IAB node can connect with parent nodes, child nodes, and UEs.
  • the link between the MT function of the IAB node and the parent node is called the parent backhaul link (Parent Backhaul Link), and is divided into the downlink parent backhaul link (Parent Backhaul Link DL) and the uplink parent backhaul link (Parent Backhaul Link UL) ).
  • Parent Backhaul Link The link between the MT function of the IAB node and the parent node is called the parent backhaul link (Parent Backhaul Link), and is divided into the downlink parent backhaul link (Parent Backhaul Link DL) and the uplink parent backhaul link (Parent Backhaul Link UL) ).
  • the link between the DU function of the IAB node and the child nodes of the next level is called the child backhaul link (Child Backhaul Link), and is divided into the downlink child backhaul link (Child Backhaul Link DL) and the uplink child backhaul link (Child Backhaul Link UL).
  • the link between the DU function of the IAB node and the UE is called the child access link (Child Access Link), and is divided into the downlink child access link (Child Access Link DL) and the uplink child access link ( Child Access Link UL).
  • Whether a backhaul link is a parent backhaul link or a child backhaul link depends on the selected reference node. For example, in Figure 1, if the child node is used as the reference node, then for the child node, the link connected to it (that is, the child backhaul link of the IAB node) is the parent backhaul link.
  • MT is a unit that functions as a UE in an IAB node.
  • time resources There are three types of time resources, namely Downlink (DL), Flexible (F) and Uplink (Uplink, UL). In addition, it may also include unavailable time resources. (Not Available, NA).
  • DU is a unit that functions as a base station in the IAB node.
  • the time resources of DU also have the following types: DL, F, UL, and NA, and the time resource types of DU are DL, F and UL are divided into hard (Hard) and soft (Soft). ), Hard resources are always available to the sub-links of IAB nodes, and the availability of soft resources needs further instructions.
  • DU includes 7 types of time resources, namely: Hard DL resources, Soft DL resources, Hard F resources, Soft F resources, Hard UL resources, Soft UL resources, and NA resources.
  • NA resources refer to resources that cannot be used by DUs, unless cell-specific signal transmission is configured on NA resources, such as synchronization signal block transmission.
  • whether the Soft resource is available requires an explicit indication from the parent node, or the DU implicitly obtains the availability of the Soft resource according to the parent node's scheduling of the MT.
  • Soft IA Soft Indicated Available
  • Soft NIA Soft not Indicated Available
  • the above MT and DU all refer to the MT and DU of the same IAB node.
  • the symbols in the present disclosure may be orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols.
  • Fig. 2 is a schematic diagram of another connection relationship of IAB nodes.
  • the first node, the second node, and the third node are respectively network nodes in the network.
  • the first node may be a base station, a donor IAB node or an IAB node
  • the second node may be a relay station or an IAB node
  • the third node may be a terminal device or an IAB node.
  • a node is responsible for scheduling the transmission between the node and the next-level node or terminal.
  • the first node, the second node, and the third node may also be other network devices or terminal devices in the wireless communication system.
  • the first link is the link from the first node to the second node for data transmission
  • the second link is the link from the second node to the third node for data transmission
  • the third link is the link from the second node to the first node.
  • the fourth link is a link for data transmission from the third node to the second node.
  • FIG. 3 is a schematic diagram of the timing relationship between IAB nodes, where DL represents downlink, UL represents uplink, Tx represents transmission, and Rx represents reception (Reception).
  • the IAB node contains two functional units, MT and DU.
  • the DL Rx timing and UL Tx timing of the second node respectively represent the DL Rx timing of the MT of the second node
  • the UL Tx timing of the MT the DL Tx timing and the UL Rx timing of the second node respectively represent the DL Tx timing of the DU of the second node and the UL Rx timing of the DU.
  • the timing relationship here is merely illustrative, and the actual timing relationship is not limited to this.
  • St represents the transmission and reception conversion time or the transmission and reception time conversion time of the network device or terminal.
  • the value of St depends on the actual sending and receiving conversion time or the sending and receiving conversion time of the second node, or is a predefined value. For a specific frequency range, the transmission and reception conversion time and the transmission and reception conversion time of the same type of equipment are equal, so there is no distinction when calculating using St.
  • Te is the timing error limit of the network equipment or terminal.
  • the timing error limit is the upper limit of the error between the actual transmission timing of the device and the reference timing, that is, the error cannot exceed [-Te,Te].
  • the value of Te depends on the data transmission parameters of the corresponding link (such as subcarrier spacing, frequency range, etc.), or measurement error, or a predefined value.
  • the reference timing can be understood as the theoretical transmission timing. For example, for the uplink transmission timing of the terminal, its reference timing is ahead of the downlink reception timing (N TA +N TAoffset ) ⁇ T c .
  • N TA is the time advance of the uplink transmission of the network equipment or the terminal relative to the downlink reception.
  • the value of the N TAoffset depends on the duplex mode and frequency range of the cell where the uplink transmission occurs, and can be predefined or determined by the first node.
  • T c is the smallest time unit in the NR system.
  • T margin is the unusable symbol margin.
  • the value of T margin is predefined, or depends on the timing relationship of the node, or on the data transmission parameters of the link corresponding to the unavailable symbol, or on the maximum deviation of the timing of the radio frame between cells, which can be based on the symbol or NR
  • the quantization is performed by integer multiples of the smallest time unit in the system (for example, 16T c ).
  • N symbol is the number of symbols contained in a slot.
  • T symbol_k represents the symbol duration corresponding to the subcarrier interval of data transmission of the kth link.
  • FIG. 4 is a flowchart of a data transmission method provided by an embodiment. As shown in FIG. 4, the method provided in this embodiment includes the following steps.
  • Step S4010 the first node receives timing related information.
  • the data transmission method provided in this embodiment is applied to the first node in a mobile communication system, that is, the first node in the connection relationship shown in FIG. 2.
  • the first node needs to avoid conflicts with the transmission resources used by the second node to schedule the third node.
  • the first node will receive the timing related information reported by the second node.
  • the timing related information reported by the second node is one or more types of information related to the second node and related to timing.
  • the timing-related information includes at least one of the following: the time offset of the downlink reception timing of the second node relative to the downlink transmission timing of the first node; the uplink transmission timing of the second node relative to the second node The time offset of the downlink receiving timing; the time offset of the second node's downlink sending timing relative to the second node's downlink receiving timing; the time offset of the second node's uplink receiving timing relative to the second node's downlink sending timing Shift; the time offset of the uplink reception timing of the second node with respect to the downlink reception timing of the second node; the time offset of the uplink transmission timing of the second node with respect to the downlink transmission timing of the second node; the second node The time offset of the uplink sending timing relative to the uplink receiving timing of the second node; the transceiver conversion time of the second node; the transceiver conversion time of the second node.
  • the timing related information is timing related information quantized in a specific time unit.
  • the result of quantization is the result of quantizing the time offset and/or conversion time in a specific time unit; quantizing the time offset and/or conversion time in a specific time unit refers to dividing the time offset and/or conversion time Round up or down after a specific time unit; the specific time unit is the symbol duration corresponding to the reference subcarrier interval, or the symbol duration corresponding to the subcarrier interval of the current bandwidth part (Bandwidth part, BWP), or NR system
  • BWP bandwidth part
  • the smallest time unit in the NR system or an integer multiple of the smallest time unit in the NR system.
  • Step S4020 The first node schedules data transmission according to timing related information, and the data transmission includes uplink data transmission or downlink data transmission.
  • the first node can schedule the data transmission of the second node according to the timing related information.
  • the data transmission of the second node scheduled by the first node includes uplink data transmission or downlink data transmission.
  • the first node can determine the transmission resources that the DU of the second node may use according to the timing-related information reported by the second node and the time resource type of the second node, and leave a guard interval to avoid data from the first node to the second node
  • the transmission affects the use of the resources of the DU of the second node, for example, avoiding the use of Hard resources that affect the DU of the second node or Soft resources indicated as available.
  • the first node schedules data transmission of the second node according to timing-related information, including: the first node determines the unavailable symbols for data transmission between the second node and the first node according to the timing-related information; The data transmission of the second node is not scheduled on the unavailable symbol, or when the unavailable symbol overlaps with the data transmission resource of the second node, the first node deletes the symbol that overlaps the unavailable symbol.
  • the unavailable symbols for data transmission between the second node and the first node refer to symbols that cannot be used by the MT of the second node.
  • the second node schedules the third node to perform uplink transmission on a certain symbol, that is, the second node performs uplink reception, then due to the transmission/reception conversion time or the transmission/reception conversion time, and the timing relationship of each link of the second node, etc. Impact, in a certain time interval before or after this symbol, the first node cannot schedule the second node to perform uplink transmission, so the symbols in a certain time interval before or after this symbol are unusable symbols. The first node does not schedule the data transmission of the second node on unavailable symbols.
  • the first node when the first node overlaps the unavailable symbol with the data transmission resource of the second node, in order to ensure the data transmission of the DU of the second node, the first node will delete the symbol that overlaps the unavailable symbol, then the first node It is also not possible to schedule the broken symbols for data transmission.
  • the first node determines the unavailable symbols for data transmission between the second node and the first node according to at least one of the following information: timing related information; timing error limit; unavailable symbol margin; The direction of data transmission between the second node; the sub-carrier spacing of data transmission between the first node and the second node; the symbol duration of data transmission between the first node and the second node; the time resource type of the second node.
  • the first node scheduling the data transmission of the second node does not expect to make the first type resources of the second node unusable, that is, when the first node schedules the data transmission of the second node, the second node must first be considered Time resource type, because the second node assumes that its first-type resources are always available. If the guard interval between the resources to be scheduled by the first node and the first-type resources of the second node meets specific requirements, the first The node can then schedule the second node on the resource. If the guard interval between the resource to be scheduled by the first node and the first type resource of the second node does not meet specific requirements, the second node cannot be scheduled on the resource.
  • the specific requirements include at least one of the following: when the second node needs to do the receiving and sending conversion or the sending and receiving conversion, the guard interval is required to be greater than or equal to the receiving and sending conversion time/the sending and receiving conversion time; When receiving and switching, the resources used for data transmission between the first node and the second node cannot overlap with the resources of the first type of the second node, that is, the guard interval is required to be greater than or equal to 0; the guard interval is required to be greater than or equal to the transceiver conversion time /Sending and receiving conversion time.
  • the first type of resources includes at least one of the following: Hard DL resources, Hard F resources, Hard UL resources, indicating available Soft DL resources, indicating available Soft F resources, indicating available Soft UL resources.
  • the first node schedules the data transmission of the second node to make the first type of resources of the second node unusable, the first node will not schedule the data transmission of the second node. If the first node schedules the data transmission of the second node, If the first type resource of the second node cannot be used, the first node then schedules the data transmission of the second node.
  • the data transmission method provided in this embodiment is applied to the first node. After the first node receives the timing-related information reported by the second node, it schedules the second node's uplink or downlink data according to the timing-related information and the time resource type of the second node Therefore, the transmission resource used by the first node to schedule the data transmission of the second node to conflict with the transmission resource used by the DU of the second node is avoided, thereby improving resource utilization and data transmission performance.
  • the first node may also schedule the data transmission of the second node according to at least one of the following information: timing information of the first node; timing error limit; unavailable symbol margin; the first node and the second node The direction of data transmission between the first node and the second node; the subcarrier interval of data transmission between the first node and the second node; the symbol duration of data transmission between the first node and the second node; the time resource type of the second node.
  • FIG. 5 is a flowchart of another data transmission method provided by an embodiment. As shown in FIG. 5, the method provided by this embodiment includes the following steps.
  • Step S5010 The second node determines timing related information.
  • the data transmission method provided in this embodiment is applied to the second node in the mobile communication system, that is, the second node in the connection relationship shown in FIG. 2, that is, the IAB node.
  • the second node in the connection relationship shown in Figure 2 since the second node needs to schedule the transmission resources of the third node, when the first node needs to schedule the second node for data transmission, the transmission resources scheduled by the first node need to be avoided Affect the resource usage of the DU of the second node, such as avoiding the usage of affecting Hard resources or Soft resources indicated as available. Then the second node first needs to determine timing-related information, and the timing-related information determined by the second node is one or more types of information related to the second node and related to timing.
  • the timing-related information includes at least one of the following: the time offset of the downlink reception timing of the second node with respect to the downlink transmission timing of the first node; the time offset of the uplink transmission timing of the second node with respect to the downlink reception timing of the second node Shift; the time offset of the downlink sending timing of the second node with respect to the downlink receiving timing of the second node; the time offset of the uplink receiving timing of the second node with respect to the downlink sending timing of the second node; the second node The time offset of the uplink reception timing of the second node relative to the downlink reception timing of the second node; the time offset of the uplink transmission timing of the second node relative to the downlink transmission timing of the second node; the uplink transmission timing of the second node relative to The time offset of the uplink receiving timing of the second node; the receiving and sending conversion time of the second node; the sending and receiving conversion time of the second node.
  • the timing related information is timing related information quantized in a specific time unit.
  • Step S5020 The second node reports timing related information to the first node.
  • the timing related information is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • the second node does not expect the data transmission from the first node to the second node to make the first type resources of the second node unusable
  • the first type resources include at least one of the following: Hard DL, Hard F, Hard UL indicates available Soft DL resources, indicates available Soft F resources, and indicates available Soft UL resources.
  • the second node After the second node determines the timing-related information, it will report the timing-related information to the first node.
  • the timing-related information is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission. Then, after the first node receives the timing related information reported by the second node, the first node can schedule the data transmission of the second node according to the timing related information.
  • the second node may also schedule the data transmission of the third node according to the scheduling situation of the first node to the second node, and the data transmission of the third node includes uplink data transmission or downlink data transmission. That is, after the first node schedules the second node, the second node obtains the transmission resources that the MT of the second node may use. Therefore, the second node can schedule the third node according to the resource usage of the MT of the second node. In this way, the scheduling of the data transmission of the second node to the third node may conflict with the transmission resources of the MT of the second node that the first node has determined.
  • the second node scheduling data transmission of the third node according to the scheduling situation of the first node to the second node includes: the second node determines the third node according to the scheduling situation of the first node to the second node The unavailable symbol for data transmission with the second node; the second node does not schedule the data transmission of the third node on the unavailable symbol, or the second node overlaps the data transmission resources of the third node when the unavailable symbol Delete symbols that overlap with unavailable symbols.
  • the unusable symbols for data transmission between the third node and the second node are symbols that cannot be used by the DU of the second node.
  • the first node schedules the second node to perform uplink transmission on a certain symbol, that is, the second node performs uplink transmission, then due to the influence of the transmission and reception conversion time or the transmission and reception conversion time and the timing relationship of each link of the second node
  • the second node cannot schedule the third node to perform uplink transmission, that is, the second node cannot perform uplink reception.
  • the symbols in a certain time interval before or after this symbol are unusable symbols.
  • the second node does not schedule data transmission of the third symbol on the unavailable symbol.
  • the second node overlaps the unavailable symbol with the data transmission resources of the third node, in order to ensure that the first node has determined the scheduled data transmission, the second node will delete the symbol that overlaps the unavailable symbol, then the second node The node cannot schedule the broken symbols for data transmission.
  • the second node determines the unavailable symbols for data transmission between the third node and the second node according to at least one of the following information: the scheduling situation of the first node to the second node; timing related information; timing error limit ; Unavailable symbol margin; the data transmission direction between the second node and the third node; the time resource type of the second node.
  • the data transmission method provided in this embodiment is applied to a second node. After the second node determines timing-related information, it reports timing-related information to the first node.
  • the timing-related information is used by the first node to schedule uplink data transmission or For downlink data transmission, the first node also needs to consider the time resource type of the second node when scheduling the second node, so as to avoid the transmission resources used by the first node for scheduling the data transmission of the second node and the transmission resources used by the DU of the second node Conflicts are generated, which improves resource utilization and data transmission performance.
  • the second node may also schedule the data transmission of the third node according to at least one of the following information: the scheduling situation of the first node to the second node; timing related information; timing error limit; unavailable symbol margin ; The data transmission direction between the second node and the third node; the time resource type of the second node.
  • FIG. 6 is a flowchart of another data transmission method provided by an embodiment. As shown in FIG. 6, the method provided by this embodiment includes the following steps.
  • Step S6010 the first node receives the guard interval.
  • the data transmission method provided in this embodiment is applied to the first node in a mobile communication system, that is, the first node in the connection relationship shown in FIG. 2.
  • the first node receives timing-related information reported by the second node, and schedules the data transmission of the second node according to the timing-related information.
  • the first node receives the guard interval reported by the second node.
  • the guard interval reported by the second node refers to the time domain resources that the second node does not expect to use for data transmission between the first node and the second node.
  • after the first node receives the timing-related information reported by the second node it can also determine the guard interval according to the timing-related information.
  • the first node needs to avoid conflicts with the transmission resources used by the second node to schedule the third node. Then for the first node, the first node will receive the guard interval reported by the second node.
  • the guard interval reported by the second node is one or more types of information related to the second node and related to the guard interval.
  • the guard interval includes at least one of the following: downlink guard interval; uplink guard interval; unified guard interval; reference subcarrier interval.
  • the downlink guard interval refers to the downlink guard interval between the first node and the second node, and includes at least one of the following: the guard interval at the start of each time slot of the downlink, and the downlink guard interval The guard interval at the end position of each time slot of the road, the guard interval at the start position of one or more consecutive time slots in the downlink, and the guard interval at the end position of one or more consecutive time slots in the downlink.
  • the uplink guard interval refers to the uplink guard interval between the first node and the second node, including at least one of the following: the guard interval at the start of each time slot of the uplink, and the uplink The guard interval at the end position of each time slot of the road, the guard interval at the start position of one or more consecutive time slots in the uplink, and the guard interval at the end position of one or more consecutive time slots in the uplink, in The Hard resource of the second node or the uplink guard interval after the soft resource indicated as available, the uplink guard interval before the Hard resource of the second node or the soft resource indicated as available, and the Hard resource of the second node downlink The resource or the uplink guard interval after the soft downlink resource indicated as available, the uplink guard interval before the Hard downlink resource of the second node or the soft downlink resource indicated as available, the Hard uplink resource of the second node or The uplink guard interval after the soft uplink resource indicated as available, the uplink guard interval before the Hard downlink resource of the second node or the soft downlink resource indicated
  • the unified guard interval refers to the guard interval of the link between the first node and the second node, and includes at least one of the following: the guard interval at the start position of each time slot, and the end position of each time slot
  • the link includes uplink and downlink.
  • the guard interval has a granularity of a specific time unit.
  • the specific time unit is the symbol duration corresponding to the reference subcarrier interval, or the symbol duration corresponding to the subcarrier interval of the current BWP, or the smallest time unit in the NR system, or an integer multiple of the smallest time unit in the NR system.
  • the guard interval is obtained based on at least one of the following information: timing information of each link of the second node; downlink reception timing of the second node; downlink transmission timing of the second node; uplink transmission timing of the second node ; The uplink reception timing of the second node; the time advance of the uplink transmission timing of the second node relative to the downlink reception timing of the second node; the timing advance compensation; the index value indicated by the timing advance command; the uplink reception timing of the first node relative to The time offset of the downlink sending timing of the first node; half of the time offset of the uplink receiving timing of the first node with respect to the downlink sending timing of the first node; timing error limit; sending and receiving conversion time; sending and receiving conversion time; Unavailable symbol margin; reference subcarrier spacing.
  • Step S6020 The first node schedules data transmission according to the guard interval, and the data transmission includes uplink data transmission or downlink data transmission.
  • the first node can schedule the data transmission of the second node according to the guard interval.
  • the data transmission of the second node scheduled by the first node includes uplink data transmission or downlink data transmission. Since the guard interval reported by the second node has considered the timing information, timing error limits, etc. of each link of the second node, and the first node can know the time resource type of the second node, the first node is scheduling the second node During data transmission, the received guard interval can be used to prevent data transmission from the first node to the second node from affecting the use of the DU resource of the second node, for example, to avoid affecting the Hard resource of the second node DU or indicating that it is available Use of Soft resources.
  • the first node schedules the data transmission of the second node according to the guard interval, including: the first node does not schedule the data transmission of the second node during the guard interval; or the first node and the second node When the resources of data transmission overlap, the symbols that overlap with the guard interval are deleted.
  • the data transmission method provided in this embodiment is applied to the first node. After the first node receives the guard interval reported by the second node, it schedules the uplink or downlink data transmission of the second node according to the guard interval, thereby preventing the first node from scheduling the second node.
  • the transmission resource used by the node for data transmission conflicts with the transmission resource used by the DU of the second node, which improves resource utilization and data transmission performance.
  • FIG. 7 is a flowchart of another data transmission method provided in an embodiment. As shown in FIG. 7, the method provided in this embodiment includes the following steps.
  • Step S7010 the second node determines the guard interval.
  • the data transmission method provided in this embodiment is applied to the second node in the mobile communication system, that is, the second node in the connection relationship shown in FIG. 2, that is, the IAB node.
  • the second node determines timing related information and reports the timing related information to the first node.
  • the second determination is the guard interval.
  • the guard interval determined by the second node refers to time domain resources that the second node does not expect to use for data transmission between the first node and the second node.
  • the second node may also determine the guard interval according to the timing related information.
  • the transmission resources scheduled by the first node need to be avoided Affect the resource usage of the DU of the second node, for example, influence the usage of Hard resources or Soft resources indicated as available. Then the second node first needs to determine the guard interval, and the guard interval determined by the second node is one or more types of information related to the second node and related to the guard interval.
  • the guard interval includes at least one of the following: downlink guard interval; uplink guard interval; unified guard interval; reference subcarrier interval.
  • the downlink guard interval refers to the downlink guard interval between the first node and the second node, and includes at least one of the following: the guard interval at the start of each time slot of the downlink, and the downlink guard interval The guard interval at the end position of each time slot of the road, the guard interval at the start position of one or more consecutive time slots in the downlink, and the guard interval at the end position of one or more consecutive time slots in the downlink.
  • the uplink guard interval refers to the uplink guard interval between the first node and the second node, including at least one of the following: the guard interval at the start of each time slot of the uplink, and the uplink The guard interval at the end position of each time slot of the road, the guard interval at the start position of one or more consecutive time slots in the uplink, and the guard interval at the end position of one or more consecutive time slots in the uplink, in The Hard resource of the second node or the uplink guard interval after the soft resource indicated as available, the uplink guard interval before the Hard resource of the second node or the soft resource indicated as available, and the Hard resource of the second node downlink The resource or the uplink guard interval after the soft downlink resource indicated as available, the uplink guard interval before the Hard downlink resource of the second node or the soft downlink resource indicated as available, the Hard uplink resource of the second node or The uplink guard interval after the soft uplink resource indicated as available, the uplink guard interval before the Hard downlink resource of the second node or the soft downlink resource indicated
  • the unified guard interval refers to the guard interval of the link between the first node and the second node, and includes at least one of the following: the guard interval at the start position of each time slot, and the end position of each time slot
  • the link includes uplink and downlink.
  • the guard interval has a granularity of a specific time unit.
  • the specific time unit is the symbol duration corresponding to the reference subcarrier interval, or the symbol duration corresponding to the subcarrier interval of the current BWP, or the smallest time unit in the NR system, or an integer multiple of the smallest time unit in the NR system.
  • the guard interval is obtained based on at least one of the following information: timing information of each link of the second node; downlink reception timing of the second node; downlink transmission timing of the second node; uplink transmission timing of the second node ; The uplink reception timing of the second node; the time advance of the uplink transmission timing of the second node relative to the downlink reception timing of the second node; the timing advance compensation; the index value indicated by the timing advance command; the uplink reception timing of the first node relative to The time offset of the downlink sending timing of the first node; half of the time offset of the uplink receiving timing of the first node with respect to the downlink sending timing of the first node; timing error limit; sending and receiving conversion time; sending and receiving conversion time; Unavailable symbol margin; reference subcarrier spacing.
  • Step S7020 The second node reports a guard interval to the first node.
  • the guard interval is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • the second node After the second node determines the guard interval, it will report the guard interval to the first node.
  • the guard interval is used by the first node to schedule the data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission. Then, after the first node receives the guard interval reported by the second node, the first node can schedule the data transmission of the second node according to the guard interval. Since the guard interval reported by the second node has considered the timing information, timing error limits, etc.
  • the received guard interval can be used to prevent data transmission from the first node to the second node from affecting the use of the DU resource of the second node, for example, to avoid affecting the Hard resource of the second node DU or indicating that it is available Use of Soft resources.
  • the second node may also schedule the data transmission of the third node according to the scheduling situation of the first node to the second node, and the data transmission of the third node includes uplink data transmission or downlink data transmission.
  • the second node scheduling data transmission of the third node according to the scheduling situation of the first node to the second node includes: the second node determines the third node according to the scheduling situation of the first node to the second node The unavailable symbol for data transmission with the second node; the second node does not schedule the data transmission of the third node on the unavailable symbol, or the second node overlaps the data transmission resources of the third node when the unavailable symbol Delete symbols that overlap with unavailable symbols.
  • the second node determines the unavailable symbols for data transmission between the third node and the second node according to at least one of the following information: the scheduling situation of the first node to the second node, timing related information; timing error limit ; Unavailable symbol margin; the data transmission direction between the second node and the third node; the time resource type of the second node.
  • the data transmission method provided in this embodiment is applied to the second node. After the second node determines the guard interval, it reports the guard interval to the first node.
  • the guard interval is used by the first node to schedule uplink data transmission or downlink data transmission of the second node Therefore, it is avoided that the transmission resource used by the first node for scheduling the data transmission of the second node conflicts with the transmission resource used by the DU of the second node, thereby improving resource utilization and data transmission performance.
  • it also includes at least one of the following situations: the second node does not expect to receive data sent by the first node during the guard interval; the second node does not expect to send data to the first node during the guard interval; the second node It is not expected to be scheduled by the first node on the guard interval.
  • FIG. 4 to FIG. 7 show the implementation process of the data transmission method provided by the embodiment of the present application.
  • the following describes the data transmission method provided by the embodiment of the present application with several embodiments.
  • the first node schedules the data transmission of the second node according to the timing related information reported by the second node.
  • the first node determines the unavailable symbol of the first link or the third link according to the timing related information reported by the second node, that is, determines the unavailable symbol of the second node MT.
  • the Hard resource or Soft IA resource of the second node DU is always available to its child links (ie the second link, the fourth link), so the parent backhaul link of the second node (ie the first link, the third link) Link) data transmission should try to avoid affecting the use of DU Hard resources or Soft IA resources.
  • the first node receives the timing related information reported by the second node.
  • the timing-related information includes at least one of the following: the time offset T offset1 of the downlink reception timing of the second node relative to the downlink transmission timing of the first node; the uplink transmission timing of the second node relative to the downlink reception timing of the second node time offset T offset2; downstream node with respect to downlink transmission timing of the second reception timing point of time offset T offset3; uplink receiving node with respect to the timing of the downlink transmission timing of the time point of the second partial Shift T offset4 ; time offset of the second node's uplink receiving timing with respect to the second node's downlink receiving timing T offset5 ; time offset of the second node's uplink sending timing with respect to the second node's downlink sending timing T offset6 ; Transmitting time of the second node; Transmitting time of the second node.
  • the timing related information may be the result of quantization, and the result of quantization is the result of quantizing the time offset and or the conversion time in a specific time unit.
  • quantifying the time offset and or the conversion time in a specific time unit refers to dividing the time offset and or the conversion time by the specific time unit and then rounding up or down.
  • the specific time unit is the symbol duration corresponding to the reference subcarrier interval, or the symbol duration corresponding to the subcarrier interval of the current BWP, or the smallest time unit in the NR system, or an integer multiple of the smallest time unit, such as 16T c .
  • the first node schedules the uplink or downlink transmission of the second node according to at least one of the following parameters: timing of the first node, timing related information, timing error limit, unavailable symbol margin, the first node and the second node The direction of data transmission between nodes, and the time resource type of the second node.
  • the second node does not expect the data transmission between the first node and the second node to affect the use of type 1 resources of the second node DU.
  • the first node obtains at least one of the following parameters: the DL Tx timing of the first node or the time difference ⁇ T1 between the DL Tx timing of the second node and the DL Rx timing of the second node, the UL Tx of the second node The time difference ⁇ T2 between the timing and the UL Rx timing of the second node, the time difference between the DL Tx timing of the second node and the DL Tx timing of the first node, the timing error limit, and the unavailable symbol margin.
  • the first link or the third link is determined according to at least one parameter The unavailable symbol.
  • the first node avoids these unavailable symbols when scheduling the uplink or downlink transmission of the second node, or eliminates the overlapping symbols when the scheduled symbols overlap with the unavailable symbols.
  • the type 1 resource includes at least one of the following: Hard DL, Hard F, Hard UL, which indicates an available Soft resource.
  • the Soft resource includes at least one of the following: Soft DL, Soft F, and Soft UL.
  • the first node uses any of the following methods to obtain the time difference ⁇ T1:
  • Manner 1 Obtain according to timing related information reported by the second node.
  • T offset1 For example, directly report the time offset of the downlink reception timing of the second node relative to the downlink transmission timing of the first node (that is, the delay between the downlink reception of the second node and the downlink transmission of the first node) T offset1 , namely ⁇ T1; or , Report the time offset T offset3 of the second node's downlink transmission timing relative to the second node's downlink reception timing, that is ⁇ T1; or, report the time of the second node's uplink transmission timing relative to the second node's downlink reception timing
  • the offset (that is, the time advance) T offset2 , and ⁇ T1 is calculated according to T offset2.
  • T offset2 may comprise N TAoffset, or may not contain N TAoffset, contains N TAoffset may be predefined.
  • the value of N TAoffset depends on the duplex mode and frequency range of the cell where the uplink transmission occurs, and can be predefined or determined by the first node.
  • the first node saves the initial time advance N TA (that is, the absolute time advance) sent by the first node to the second node when the second node initially accesses, and the relative current time advance subsequently sent to the second node
  • N TA_old N TA_old + (T A -31) ⁇ 16 ⁇ 64/2 ⁇
  • is the subcarrier spacing configuration
  • N TA_new ⁇ T c is the absolute time advance.
  • T c is the smallest time unit in the NR system.
  • the first node uses any of the following methods to obtain the time difference ⁇ T2:
  • Manner 1 Obtain according to timing related information reported by the second node.
  • the second node to report the transmission timing of the uplink reception timing of the second node for downlink time offset T offset2 uplink reception timing of the second node and the downstream node with respect to the reception timing time offset T offset5 , Obtain the time difference ⁇ T2 between the uplink transmission timing and the uplink reception timing of the second node; or report the time offset T offset4 of the uplink reception timing of the second node relative to the downlink transmission timing of the second node and the time offset of the second node.
  • the time offset T offset6 of the uplink transmission timing with respect to the downlink transmission timing of the second node obtains the time difference ⁇ T2 between the uplink transmission timing and the uplink reception timing of the second node.
  • Method 2 The second node directly reports ⁇ T2.
  • the method for the first node to obtain the transmission and reception conversion time is predefined or reported by the second node.
  • the following example takes the type 1 resource as the Hard resource as an example, and shows that when the first node schedules the uplink or downlink transmission of the second node on the resource time adjacent to the Hard resource of the second node DU, it determines whether the first link or The method of unavailable symbols for the third link.
  • the first node schedules the downlink transmission of the second node after the Hard resource of the DU of the second node.
  • Fig. 8a is a timing diagram of a data transmission method provided by Embodiment 1 of the application.
  • ⁇ T1 is greater than or equal to the threshold T th1
  • the DL available symbols of the second node MT that is, the first link
  • the available symbols of DU start from the first symbol after the Hard resource of the second node DU. That is, the number of unavailable symbols in the first link after the Hard resource is 0, that is, only ⁇ T1 is used as the guard interval.
  • the first symbol after the Hard resource of the second node DU in FIG. 8a is the symbol 0 of the next slot.
  • Fig. 8b is a timing diagram of another data transmission method according to the first embodiment of the application.
  • ⁇ T1 is less than the threshold T th1
  • the DL available symbols of the second node MT are from the second node DU.
  • T symbol_1 is the symbol duration
  • the corresponding sub-carrier interval is the sub-carrier interval of the first link data transmission.
  • the second symbol after the Hard resource of the second node DU in FIG. 8b (the initial available symbol of the MT after Hard) is the symbol 1 of the next time slot.
  • the threshold T th1 is equal to the transmission/reception conversion time St, or the sum of the transmission/reception conversion time St and the timing error limit Te, or the sum of the transmission/reception conversion time St, the timing error limit Te, and the first unusable symbol margin T margin1 .
  • the first node obtains the downlink transmission timing of the second node according to the time offset T offset3 of the downlink transmission timing of the second node relative to the downlink reception timing of the second node, and the value of T margin1 depends on the first node.
  • the downlink transmission timing of a node and the second node is, for example, the time difference between the two, or is predefined, or the upper limit of the difference in the downlink transmission timing between nodes.
  • the DL available symbol of the second node MT (that is, the available symbol of the first link) Start from the first symbol after the non-Hard resource of the second node DU.
  • the first node schedules the downlink transmission of the second node before the Hard resource of the second node DU.
  • Fig. 8c is a timing diagram of another data transmission method according to the first embodiment of the application.
  • T symbol_1- ⁇ T1 is greater than or equal to the threshold T th2
  • the DL available symbol of the second node MT ie The available symbol of the first link
  • the second symbol before the Hard resource of the second node DU in FIG. 8c is the symbol N symbol -2 of the previous time slot.
  • Fig. 8d is a timing diagram of another data transmission method provided in the first embodiment of the application.
  • T symbol_1- ⁇ T1 is less than the threshold T th2
  • the DL available symbol of the second node MT that is, the first Available symbol of a link
  • the Hard resource of the second node DU End of symbols That is, the number of unavailable symbols in the first link before the Hard resource.
  • the third symbol before the Hard resource of the second node DU in FIG. 8d is the symbol N symbol -3 of the previous time slot.
  • T symbol_1 is the symbol duration
  • the corresponding sub-carrier interval is the sub-carrier interval of the first link data transmission.
  • the threshold T th2 is equal to the transceiver conversion time St, or the sum of the transceiver conversion time St and the timing error limit Te, or the sum of the transceiver conversion time St, the timing error limit Te, and the second unusable symbol margin T margin2 .
  • the first node obtains the downlink transmission timing of the second node according to the time offset T offset3 of the downlink transmission timing of the second node with respect to the downlink reception timing of the second node.
  • T margin2 depends on the downlink transmission timing of the first node and the second node, for example, the time difference between the two, or it is predefined, or the upper limit of the difference between the downlink transmission timing between nodes, or depends on the second node.
  • Data transmission parameters of the node's link is possible to the downlink transmission timing of the first node and the second node, for example, the time difference between the two, or it is predefined, or the upper limit of the difference between the downlink transmission timing between nodes, or depends on the second node.
  • the thresholds T th2 and T th1 are equal.
  • the DL available symbol of the second node MT (that is, the available symbol of the first link)
  • the first symbol or the second symbol before the non-Hard resource of the second node DU ends.
  • the first node schedules the uplink transmission of the second node after the Hard resource of the second node DU.
  • FIG. 8e is a timing diagram of another data transmission method provided by Embodiment 1 of the application.
  • T symbol_3- ⁇ T2 is greater than or equal to the threshold T th3
  • the UL available symbol of the second node MT (ie The available symbols of the third link) start from the second symbol after the Hard resource of the second node DU. That is, the number of unusable symbols in the third link after the Hard resource is 1.
  • the second symbol after the Hard resource of the second node DU in FIG. 8e is symbol 1 of the next slot.
  • Fig. 8f is a timing diagram of another data transmission method according to the first embodiment of the application.
  • T symbol_3 - ⁇ T2 is less than the threshold T th3
  • the UL available symbol of the second node MT starts from the second After the Hard resource of the node DU Symbols start. That is, the number of unavailable symbols in the third link after the Hard resource is among them, Indicates rounding up.
  • the third symbol after the Hard resource of the second node DU in FIG. 8f is symbol 2 of the next slot.
  • T symbol_3 is the symbol duration
  • the corresponding sub-carrier interval is the sub-carrier interval of the third link data transmission.
  • the threshold T th3 is equal to the transceiver conversion time St, or the sum of the transceiver conversion time St and the timing error limit Te, or the sum of the transceiver conversion time St, the timing error limit Te and the third unusable symbol margin T margin3
  • the value of T margin3 depends on the data transmission parameter of the link of the second node, or is predefined.
  • the UL available symbol of the second node MT (that is, the available symbol of the third link) Start from the first symbol or the second symbol after the non-Hard resource of the second node DU.
  • the first node schedules the uplink transmission of the second node before the Hard resource of the second node DU.
  • Fig. 8g is a timing diagram of another data transmission method provided in the first embodiment of the application.
  • the UL available symbols of the second node MT that is, the third link The available symbol of the road
  • the first symbol before the Hard resource of the second node DU in FIG. 8g is the symbol N symbol -1 of the previous time slot.
  • Fig. 8h is a timing diagram of another data transmission method according to the first embodiment of the application.
  • ⁇ T2 is less than the threshold T th4
  • the UL available symbols of the second node MT are in the second node DU.
  • the second symbol before the Hard resource of the second node DU in FIG. 8h is the symbol N symbol -2 of the next time slot.
  • T symbol_3 is the symbol duration
  • the corresponding sub-carrier interval is the sub-carrier interval of the third link data transmission.
  • the threshold T th4 is equal to the transmission/ reception conversion time St, or the sum of the transmission/reception conversion time St and the timing error limit Te, or the sum of the transmission/reception conversion time St, the timing error limit Te, and the fourth unusable symbol margin T margin4 .
  • the value of T margin4 depends on the data transmission parameter of the link of the second node, or is predefined.
  • the thresholds T th4 and T th3 are equal.
  • the UL available symbol of the second node MT (that is, the available symbol of the third link) The first symbol ends before the non-Hard resource of the second node DU.
  • the first node schedules the second node according to the guard interval reported by the second node.
  • the first node receives the guard interval reported by the second node, and schedules the uplink or downlink transmission of the second node according to the guard interval.
  • the guard interval includes at least one of the following: downlink guard interval, uplink guard interval, flexible resource guard interval, uniform guard interval, and reference subcarrier interval ⁇ ref .
  • the downlink guard interval refers to the guard interval of the first link, including at least one of the following: the guard interval N start1 at the start position of each time slot, the guard interval N end1 at the end position of each time slot, The guard interval N after1 of the first link after the Hard resource or Soft IA resource of the second node, and the guard interval N before1 of the first link before the Hard resource or Soft IA resource of the second node.
  • the uplink guard interval refers to the guard interval of the third link, including at least one of the following: the guard interval N start2 at the start position of each time slot, the guard interval N end2 at the end position of each time slot, The guard interval N after2 of the third link after the Hard resource or Soft IA resource of the second node, and the guard interval N before2 of the third link before the Hard resource or Soft IA resource of the second node.
  • the time slot is the time slot corresponding to the third link.
  • the unified guard interval refers to the guard interval of the link between the first node and the second node, including at least one of the following: the guard interval at the beginning of each time slot, and the guard interval at the end of each time slot Guard interval, the guard interval of the link between the first node and the second node after the Hard resource or Soft IA resource of the second node, and the first node and the second node before the Hard resource or Soft IA resource of the second node The guard interval between the links.
  • the guard interval of the flexible resource refers to at least one of the following: the guard interval N after3 of the first link after the Hard flexible resource or Soft IA flexible resource of the second node, and the Hard flexible resource or Soft IA of the second node after the first guard interval prior to the first N before3 link, flexible resource Hard or Soft IA second node a third link flexible resource protection interval before the N after4 flexible resource, the second node Hard or Soft IA flexible resource resources flexibly Three-link guard interval N before4 .
  • the Hard resource includes at least one of the following: Hard DL, Hard UL, and Hard F.
  • the Soft resource includes at least one of the following: Soft DL, Soft UL, Soft F.
  • scheduling the uplink or downlink transmission of the second node according to the guard interval refers to not scheduling the uplink or downlink transmission of the second node during the guard interval, or the guard interval overlaps with the resources of the second node's uplink or downlink transmission At the time, delete the symbols that overlap with the guard interval.
  • the guard interval is a value in a specific time unit.
  • the specific time unit is the symbol duration corresponding to the reference subcarrier interval, or the symbol duration corresponding to the subcarrier interval of the current bandwidth part (BWP, Bandwith Part), or the smallest time unit in the NR system, or the smallest time unit in the NR system Integer multiples, such as 1024T c .
  • the guard interval is a quantized value of the symbol duration corresponding to the subcarrier interval of the current BWP.
  • the guard interval is obtained by at least one of the following: the downlink reception timing of the second node, the downlink transmission timing of the second node, the uplink transmission timing of the second node, the uplink reception timing of the second node, and the second node
  • the node's uplink transmission timing is relative to the second node's downlink reception timing by the time advance N TA , the timing advance compensation N TAoffset , the index value T A indicated by the timing advance command
  • the first node's uplink reception timing is relative to the first node's downlink
  • T unit refers to the symbol duration corresponding to the reference subcarrier interval or the subcarrier interval of the current BWP, or an integer multiple of the minimum time unit of the NR system;
  • T symbol refers to the symbol duration corresponding to the reference subcarrier interval or the subcarrier interval of the current BWP.
  • the first node determines the actual transmission of the first link or the third link according to the guard interval, the subcarrier interval ⁇ and the reference subcarrier interval ⁇ ref used for actual transmission of the first link or the third link The protection interval.
  • guard interval at the beginning of each time slot Guard interval at the end of each time slot Guard interval after the Hard resource or Soft IA resource of the second node Guard interval before Hard resource or Soft IA resource of the second node
  • the guard interval of the actual transmission is determined in a manner similar to that of determining the guard interval type of the actual downlink transmission, that is, the guard interval of the actual transmission is the uplink protection. Interval or guard interval of flexible resource multiplied by Then round up, so I won’t repeat it here.
  • the second node schedules the third node according to the scheduling of the first node to the second node.
  • the second node for the Soft resource of the second node or the Soft resource that is not indicated as available, the second node according to the scheduling situation of the first node to the second node, that is, the link between the first node and the second node To determine the unavailable symbol of the second node's sub-link (ie, the second link or the fourth link). For the Hard resource of the second node or the Soft resource indicated as available, the second node does not need to consider the scheduling situation of the first node to the second node when the second node schedules the third node.
  • the second node schedules uplink or downlink transmission of the third node based on at least one piece of information.
  • the at least one piece of information includes at least one of the following: timing related information, timing error limit, unusable symbol margin, resource scheduling of the first node to the second node, and time resource type of the second node.
  • the timing-related information includes at least one of the following: the time offset T offset1 of the downlink reception timing of the second node relative to the downlink transmission timing of the first node; the uplink transmission timing of the second node relative to the downlink reception timing of the second node time offset T offset2; downstream node with respect to downlink transmission timing of the second reception timing point of time offset T offset3; uplink receiving node with respect to the timing of the downlink transmission timing of the time point of the second partial Shift T offset4 ; time offset of the second node's uplink receiving timing with respect to the second node's downlink receiving timing T offset5 ; time offset of the second node's uplink sending timing with respect to the second node's downlink sending timing T offset6 ; Transmitting time of the second node; Transmitting time of the second node.
  • the second node determines unavailable symbols based on at least one of the following: timing-related information, timing error limit, unavailable symbol margin, data transmission direction between the second node and the third node, and the second node The type of time resource.
  • the second node cannot schedule the uplink or downlink transmission of the third node on the unavailable symbol, or when the resources of the third node's uplink or downlink transmission overlap with the unavailable symbol, the overlap with the unavailable symbol is eliminated. Stacked symbols.
  • the following example provides a method for the second node to determine the unavailable symbol of the second link or the fourth link according to the scheduling of the first node to the second node.
  • ⁇ T3 is the time difference between the second node's downlink sending timing and the second node's downlink receiving timing
  • ⁇ T4 is the time difference between the second node's uplink receiving timing and the second node's uplink sending timing
  • ⁇ T5 Is the time difference between the uplink reception timing of the second node and the downlink reception timing of the second node
  • ⁇ T6 is the time difference between the downlink transmission timing of the second node and the uplink transmission timing of the second node.
  • the second node can calculate or derive the values of ⁇ T3, ⁇ T4, ⁇ T5 and ⁇ T6 according to the timing related information.
  • the DL resource of the second node DU is Soft DL resource, or F resource for scheduling DL transmission; the UL resource of the second node DU is Soft UL resource, or F resource for scheduling UL transmission.
  • Example 1 MT Downlink was DU Downlink before
  • FIG. 9a is a timing diagram of a data transmission method provided in Embodiment 3 of this application.
  • ⁇ T3 ⁇ T th5 there is no DL unavailable symbol of the second node DU before the symbol occupied by the first link, that is, the number of DL unavailable symbols of the second node DU before the symbol occupied by the first link is 0.
  • FIG. 9b is a timing diagram of another data transmission method provided in the third embodiment of the application.
  • ⁇ T3 ⁇ T th5
  • the symbol before the symbol occupied by the first link The symbols are DL unavailable symbols of the second node DU.
  • one symbol before the symbol occupied by the first link is the DL unusable symbol of the second node DU.
  • ⁇ T3 is the time difference between the downlink transmission timing (ie DU DL Tx timing) of the second node and the downlink reception timing of the second node (ie DL Rx timing of the MT).
  • the threshold T th5 is equal to the transmission/ reception conversion time St, or the sum of the transmission/reception conversion time St and the timing error limit Te, or the sum of the transmission/reception conversion time St, the timing error limit Te, and the fifth unusable symbol margin T margin5 .
  • T margin5 depends on the data transmission parameter of the second link, or is a predefined value.
  • the DL resource of the second node DU follows the time domain resource occupied by the first link (ie, the DL of the MT of the second node).
  • FIG. 9c is a timing diagram of another data transmission method provided in the third embodiment of the application.
  • T symbol_1 - ⁇ T3 ⁇ T th6 the symbol after the symbol occupied by the first link is the DL unavailable symbol of the second node DU, that is, the DL of the second node is unavailable after the symbol occupied by the first link.
  • the number of symbols used is 1.
  • FIG. 9d is a timing diagram of another data transmission method provided in Embodiment 3 of this application.
  • T symbol_1- ⁇ T3 ⁇ T th6 the symbol after the symbol occupied by the first link The symbols are DL unavailable symbols of the second node DU.
  • two symbols after the symbols occupied by the first link are DL unavailable symbols of the second node DU, that is, symbols 2 and 3 are DL unavailable symbols of the second node DU.
  • ⁇ T3 is the time difference between the downlink transmission timing (ie DU DL Tx timing) of the second node and the downlink reception timing of the second node (ie DL Rx timing of the MT).
  • the threshold T th6 is equal to the transceiver conversion time St, or the sum of the transceiver conversion time St and the timing error limit Te, or the sum of the transceiver conversion time St, the timing error limit Te, and the sixth unusable symbol margin T margin6 .
  • T margin6 depends on the data transmission parameter of the second link, or is a predefined value.
  • the thresholds T th6 and T th5 are equal.
  • FIG. 9e is a timing diagram of another data transmission method provided in Embodiment 3 of this application.
  • T symbol_3- ⁇ T4 ⁇ T th7 one symbol before the symbol occupied by the third link is the UL unusable symbol of the second node DU. That is, the symbol 0 in FIG. 9e is the UL unavailable symbol of the second node DU.
  • FIG. 9f is a timing diagram of another data transmission method provided in the third embodiment of the application.
  • T symbol_3- ⁇ T4 ⁇ T th7 the symbol before the symbol occupied by the third link
  • the symbols are DL unavailable symbols of the second node DU.
  • the 2 symbols before the symbols occupied by the third link in FIG. 9f are DL unusable symbols of the second node DU.
  • ⁇ T4 is the time difference between the uplink reception timing (ie DU UL Rx timing) of the second node and the uplink transmission timing (ie MT UL Tx timing) of the second node.
  • the threshold T th7 is equal to the transceiver conversion time St, or the sum of the transceiver conversion time St and the timing error limit Te, or the sum of the transceiver conversion time St, the timing error limit Te, and the sixth unusable symbol margin T margin7 .
  • T margin7 depends on the data transmission parameter of the fourth link, or is a predefined value.
  • the time domain resources occupied by the third link (ie, the UL of the MT of the second node) are followed by the UL resources of the second node DU.
  • the first node allocates symbols 1 and 2 to the MT of the second node, that is, the symbols occupied by the third link are symbols 1 and 2.
  • FIG. 9g is a timing diagram of another data transmission method provided in Embodiment 3 of this application. When ⁇ T4 ⁇ T th8 , there is no UL unusable symbol of the second node DU after the symbol occupied by the third link.
  • FIG. 9h is a timing diagram of another data transmission method provided in Embodiment 3 of the application.
  • the symbol after the symbol occupied by the third link The symbols are DL unavailable symbols of the second node DU.
  • one symbol before the symbol occupied by the third link is the DL unavailable symbol of the second node DU, that is, the symbol 3 is the DL unavailable symbol of the second node DU.
  • ⁇ T4 is the time difference between the uplink reception timing (ie DU UL Rx timing) of the second node and the uplink transmission timing (ie MT UL Tx timing) of the second node.
  • the threshold T th8 is equal to the transmission/ reception conversion time St, or the sum of the transmission/reception conversion time St and the timing error limit Te, or the sum of the transmission/reception conversion time St, the timing error limit Te, and the sixth unusable symbol margin T margin8 .
  • T margin8 depends on the data transmission parameter of the fourth link, or is a predefined value.
  • the thresholds T th8 and T th7 are equal.
  • Example 5 Before and after MT Downlink is a method of DU Uplink
  • the time domain resources occupied by the first link are the UL resources of the second node DU.
  • the MT of the second node receives on the first link, and the DU of the second node is also received on the UL resources of the second node. Therefore, the second node does not need to receive and transmit conversion or transmit and receive conversion.
  • Example 6 Before and after MT Downlink is another method for DU Uplink
  • the time domain resources occupied by the first link are the UL resources of the second node DU.
  • the resources occupied by the first link and the UL resources of the DU overlap in the time domain and the two links receive at the same time, there may be mutual interference.
  • the following scheme can be considered: When the resources occupied by the first link and the DU When the UL resources of the first link do not overlap in the time domain, the number of UL unavailable symbols of the second node before and after the symbols occupied by the first link is 0; when the resources occupied by the first link and the UL resources of the DU are in the time domain When the upper overlap, the overlapping symbols in the UL resources of the second node DU are the UL unusable symbols of the second node DU.
  • ⁇ T5 is the time difference between the uplink reception timing of the second node (i.e. DU UL Rx) and the downlink reception timing of the second node (i.e. MT DL Rx), and the uplink reception timing of the second node is longer than the downlink reception timing of the second node. If the reception timing is advanced, then: the UL resource of the second node DU before the time domain resource occupied by the first link does not overlap with the symbol occupied by the first link, then there is no second node DU before the symbol occupied by the first link The number of UL unavailable symbols for the second node before the symbols occupied by the first link is 0, as shown in FIG.
  • FIG. 9i which is another data transmission method provided in the third embodiment of this application
  • FIG. 9j is a timing diagram of another data transmission method provided in the third embodiment of the application, and symbol 2 is an unusable symbol.
  • Example 7 Before and after MT Uplink is a method when DU Downlink
  • the time domain resources occupied by the third link are the DL resources of the second node DU.
  • the MT of the second node is sent on the third link, and the DU of the second node is also sent on the DL resource of the second node. Therefore, the second node does not need to send and receive conversion or send and receive conversion.
  • Example 8 Before and after MT Uplink is another method when DU Downlink
  • the time domain resources occupied by the third link are the DL resources of the second node DU.
  • the resources occupied by the third link and the DL resources of the DU overlap in the time domain, and the two links receive at the same time, there may be mutual interference.
  • the following scheme can be considered: When the resources occupied by the third link and the DU When the DL resources of the third link do not overlap in the time domain, the number of DL unavailable symbols of the second node before and after the symbols occupied by the third link is 0; when the resources occupied by the third link and the DL resources of the DU are in the time domain When the upper overlap, the overlapping symbol in the DL resource of the second node DU is the DL unavailable symbol of the second node DU.
  • ⁇ T6 is the time difference between the downlink transmission timing of the second node (i.e. DUDL Tx) and the uplink transmission timing of the second node (i.e. MT UL Tx), and the downlink transmission timing of the second node is longer than the uplink transmission timing of the second node. If the transmission timing is delayed, the DL resource of the second node DU before the time domain resource occupied by the third link overlaps with the symbol occupied by the third link, and the overlapped symbol means that the DL of the second node DU is unavailable Symbol, as shown in Fig. 9k, Fig.
  • 9k is a timing diagram of another data transmission method provided in the third embodiment of the application, symbol 0 is an unavailable symbol; the second node DU after the time domain resource occupied by the third link There is no overlap between the DL resources and the symbols occupied by the third link, there is no DL unavailable symbol of the second node DU after the symbol occupied by the third link, that is, the DL of the second node after the symbol occupied by the third link
  • the number of unavailable symbols is 0, as shown in FIG. 91, which is a timing diagram of another data transmission method provided in Embodiment 3 of this application.
  • Embodiment 4 Solution when unavailable symbols conflict with cell-specific signals or channels
  • cell-specific signals or channels are sent periodically, so unavailable symbols on a link may conflict with the transmitted cell-specific signals or channel resources.
  • conflicts may be as follows:
  • Collision avoidance methods include at least one of the following: cell-specific signals or channels cannot be transmitted on unavailable symbols; cell-specific signals or channels can be transmitted on unavailable symbols; cell-specific signals or some of the signals or channels in the channel can be transmitted on unavailable symbols The other part cannot be transmitted on unavailable symbols; the node determines whether to transmit cell-specific signals or channels on unavailable symbols.
  • the cell-specific signal or channel includes at least one of the following: synchronization signal and physical broadcast channel block, random access channel, channel state information reference signal, scheduling request, remaining minimum system information.
  • the determined sub-carrier interval corresponding to the unavailable symbol of the second node's child link is the parent backhaul link of the second node (i.e. the first link or the third Link)
  • the subcarrier spacing of data transmission is the determined sub-carrier interval corresponding to the unavailable symbol of the second node's child link (i.e. the second link or the fourth link) is the parent backhaul link of the second node (i.e. the first link or the third Link)
  • the unusable symbol is replaced with a guard interval to obtain a solution when the guard interval conflicts with a cell-specific signal or channel.
  • Embodiment 5 Solution to resource conflict between MT and DU of the second node
  • the scheduling resources of the second node MT may conflict with the scheduling resources of the DU.
  • the scheduling resource of the MT of the second node conflicts with the scheduling resource of the DU
  • at least one of the following processing methods can be adopted: if the Hard resource of the MT conflicts with the DU, the second node decides MT priority or DU priority by itself; if the DU is destroyed The DU can reschedule the data transmitted on the resources that have been destroyed; if the MT conflicts with the DU’s Soft resources, the MT takes precedence; if the MT conflicts with the DU resources, the DU takes precedence, and the second node reports which to the parent node The symbol was not received correctly.
  • FIG. 10 is a schematic structural diagram of a data transmission device provided by an embodiment.
  • the data transmission device provided in this embodiment is set at the first node.
  • the data transmission device provided in this embodiment includes: a receiving module 101 , Is configured to receive timing-related information reported by the second node; the scheduling module 102 is configured to schedule data transmission of the second node according to the timing-related information, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • the data transmission device provided in this embodiment is used to implement the data transmission method of the embodiment shown in FIG. 4, and the implementation principles and technical effects of the data transmission device provided in this embodiment are similar and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of another data transmission device provided by an embodiment.
  • the data transmission device provided in this embodiment is set at a second node.
  • the data transmission device provided in this embodiment includes: a determination module 111, set to determine timing related information; sending module 112, set to report timing related information to the first node, the timing related information is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission Or downlink data transmission.
  • the data transmission device provided in this embodiment is used to implement the data transmission method of the embodiment shown in FIG. 5, and the implementation principles and technical effects of the data transmission device provided in this embodiment are similar, and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of another data transmission device provided by an embodiment.
  • the data transmission device provided in this embodiment is set at the first node.
  • the data transmission device provided in this embodiment includes: a receiving module 121, set to receive the guard interval reported by the second node; the scheduling module 122, set to schedule data transmission of the second node according to the guard interval, and the data transmission includes uplink data transmission or downlink data transmission.
  • the data transmission device provided in this embodiment is used to implement the data transmission method of the embodiment shown in FIG. 6.
  • the implementation principles and technical effects of the data transmission device provided in this embodiment are similar, and will not be repeated here.
  • FIG. 13 is a schematic structural diagram of another data transmission device provided by an embodiment.
  • the data transmission device provided in this embodiment is set at a second node.
  • the data transmission device provided in this embodiment includes: a determination module 131, set to determine the guard interval; the sending module 132, set to report the guard interval to the first node, the guard interval is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • the data transmission device provided in this embodiment is used to implement the data transmission method of the embodiment shown in FIG. 7.
  • the implementation principle and technical effect of the data transmission device provided in this embodiment are similar, and will not be repeated here.
  • An embodiment of the present application also provides a data transmission system, which includes a first node and a second node, and may also include a third node.
  • the connection relationship between the first node, the second node and the third node is shown in Figure 2.
  • the first node includes the data transmission device as shown in the embodiment of FIG. 10.
  • the second node includes the data transmission device shown in the embodiment of FIG. 11.
  • An embodiment of the present application also provides a data transmission system, which includes a first node and a second node, and may also include a third node.
  • the connection relationship between the first node, the second node and the third node is shown in Figure 2.
  • the first node includes the data transmission device as shown in the embodiment of FIG. 12.
  • the second node includes the data transmission device as shown in the embodiment of FIG. 13.
  • FIG. 14 is a schematic structural diagram of a communication node provided by an embodiment.
  • the communication node includes a processor 141, a memory 142, a transmitter 143, and a receiver 144; the number of processors 141 in the communication node can be It is one or more.
  • One processor 141 is taken as an example in FIG. 14; the processor 141 and memory 142, the transmitter 143 and the receiver 144 in the communication node can be connected by bus or other methods. In FIG. Connect as an example.
  • the memory 142 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the data transmission method in the embodiments of FIGS. 1-4 and 6 of this application (for example, , The receiving module 101 and the scheduling module 102 in the data transmission device or the receiving module 121 and the scheduling module 122 in the data transmission device).
  • the processor 141 runs the software programs, instructions, and modules stored in the memory 142 to thereby implement at least one functional application and data processing of the communication node, that is, to implement the data transmission method of FIG. 4 or FIG. 6.
  • the memory 142 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the communication node, and the like.
  • the memory 142 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the transmitter 143 is a module or a combination of devices capable of transmitting radio frequency signals into space, for example, a combination of radio frequency transmitters, antennas, and other devices.
  • the receiver 144 is a module or a combination of devices capable of receiving radio frequency signals from space, for example, a combination of radio frequency receivers, antennas, and other devices.
  • FIG. 15 is a schematic structural diagram of another communication node provided by an embodiment.
  • the communication node includes a processor 151, a memory 152, a transmitter 153, and a receiver 154; the number of processors 151 in the communication node There can be one or more.
  • One processor 151 is taken as an example in FIG. 15; the processor 151 and the memory 152, the transmitter 153 and the receiver 154 in the communication node can be connected through a bus or other methods. In FIG. Take bus connection as an example.
  • the memory 152 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions corresponding to the data transmission method in the embodiments of Figures 1-3, Figure 5, and Figure 7 of this application.
  • Modules for example, the determining module 111 and the sending module 112 in the data transmission device or the determining module 131 and the sending module 132 in the data transmission device).
  • the processor 151 runs the software programs, instructions, and modules stored in the memory 152 to thereby implement at least one functional application and data processing of the communication node, that is, to implement the data transmission method of FIG. 5 or FIG. 7.
  • the memory 152 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the communication node, and the like.
  • the memory 152 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the transmitter 153 is a module or a combination of devices capable of transmitting radio frequency signals into space, for example, a combination of radio frequency transmitters, antennas, and other devices.
  • the receiver 154 is a module or a combination of devices capable of receiving radio frequency signals from space, for example, a combination of radio frequency receivers, antennas, and other devices.
  • An embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • a method for data transmission is performed. The method includes: a first node receives a report from a second node Timing related information; the first node schedules the data transmission of the second node according to the timing related information, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute a data transmission method when executed by a computer processor.
  • the method includes: the second node determines timing-related information; The two nodes report timing related information to the first node.
  • the timing related information is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • An embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • a method for data transmission is performed.
  • the method includes: a first node receives a report from a second node Guard interval: The first node schedules the data transmission of the second node according to the guard interval, and the data transmission includes uplink data transmission or downlink data transmission.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute a data transmission method when executed by a computer processor.
  • the method includes: a second node determines a guard interval; second The node reports a guard interval to the first node.
  • the guard interval is used by the first node to schedule data transmission of the second node, and the data transmission of the second node includes uplink data transmission or downlink data transmission.
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented by any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disc (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), Field-Programmable Gate Array (FPGA) and processors based on multi-core processor architecture.
  • general-purpose computers special-purpose computers
  • microprocessors digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), Field-Programmable Gate Array (FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种数据传输方法、装置和系统,一种数据传输方法包括:第一节点接收定时相关信息;第一节点根据定时相关信息调度数据传输,数据传输包括上行数据传输或下行数据传输。

Description

数据传输方法、装置和系统
本申请要求在2019年08月16日提交中国专利局、申请号为201910759549.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种数据传输方法、装置和系统。
背景技术
在第五代移动通信(5th Generation,5G)新空口(New Radio,NR)中,允许更灵活的组网方式以及新类型网络节点的存在。整合了回程链路(backhaul link)和正常的接入链路(access link)的新类型节点,即接入回传一体化节点(Integrated Access and Backhaul Node,IAB Node),可以提供比单一的蜂窝节点覆盖更为灵活的覆盖和组网方式,将是未来移动通信网络中的重要组成部分。
IAB节点包括两个功能,分别为分布式单元(Distributed Unit,DU)功能和移动终端(Mobile Termination,MT)功能,DU功能使得IAB节点能够像基站一样为子节点或用户设备(User Equipment,UE)提供无线接入功能,MT功能使得IAB节点能够像UE一样被父节点控制和调度。
IAB节点具有终端和基站双重身份,且不同身份有各自的收发定时,这使得IAB节点的MT与DU虽然在时域上使用不同的符号,但在时域上也可能存在交叠,例如在受半双工限制的情况下,IAB节点的MT和DU之间可能需要收发转换时间或发收转换时间,这些问题都可能导致IAB节点的MT和DU所使用的资源产生冲突。
发明内容
本申请提供一种数据传输方法、装置和系统,提高了资源利用率和数据传输性能。
本申请实施例提供一种数据传输方法,包括:
第一节点接收定时相关信息;
第一节点根据定时相关信息调度数据传输,数据传输包括上行数据传输或下行数据传输。
本申请实施例提供一种数据传输方法,包括:
第二节点确定定时相关信息;
第二节点向第一节点上报定时相关信息,定时相关信息用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本申请实施例提供一种数据传输方法,包括:
第一节点接收保护间隔;
第一节点根据保护间隔调度数据传输,数据传输包括上行数据传输或下行数据传输。
本申请实施例提供一种数据传输方法,包括:
第二节点确定保护间隔;
第二节点向第一节点上报保护间隔,保护间隔用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本申请实施例提供一种数据传输装置,设置于第一节点,包括:
接收模块,设置为接收定时相关信息;
调度模块,设置为根据定时相关信息调度数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本申请实施例提供一种数据传输装置,设置于第二节点,包括:
确定模块,设置为确定定时相关信息;
发送模块,设置为向第一节点上报定时相关信息,定时相关信息用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本申请实施例提供一种数据传输装置,设置于第一节点,包括:
接收模块,设置为接收保护间隔;
调度模块,设置为根据保护间隔调度数据传输,数据传输包括上行数据传输或下行数据传输。
本申请实施例提供一种数据传输装置,设置于第二节点,包括:
确定模块,设置为确定保护间隔;
发送模块,设置为向第一节点上报保护间隔,保护间隔用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本申请实施例提供一种数据传输系统,包括第一节点和第二节点;
第一节点包括本申请实施例所述的一种数据传输装置;
第二节点包括本申请实施例所述的另一种数据传输装置。
本申请实施例提供一种数据传输系统,包括第一节点和第二节点;
第一节点包括本申请实施例所述的另一种数据传输装置;
第二节点包括本申请实施例所述的另一种数据传输装置。
附图说明
图1为IAB节点的连接关系示意图;
图2为IAB节点的另一连接关系示意图;
图3为IAB节点定时关系示意图;
图4为一实施例提供的一种数据传输方法的流程图;
图5为一实施例提供的另一种数据传输方法的流程图;
图6为一实施例提供的另一种数据传输方法的流程图;
图7为一实施例提供的另一种数据传输方法的流程图;
图8a-图8h为本申请实施例一提供的一种数据传输方法的定时示意图;
图9a-图9l为本申请实施例三提供的另一种数据传输方法的定时示意图;
图10为一实施例提供的一种数据传输装置的结构示意图;
图11为一实施例提供的另一种数据传输装置的结构示意图;
图12为一实施例提供的另一种数据传输装置的结构示意图;
图13为一实施例提供的另一种数据传输装置的结构示意图;
图14为一实施例提供的一种通信节点的结构示意图;
图15为一实施例提供的另一种通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
图1为IAB节点的连接关系示意图,如图1所示,IAB节点具有两个功能,分别为DU和MT。IAB节点能够与父节点、子节点、UE进行连接。IAB节点的MT功能与父节点进行连接的链路称为父回程链路(Parent Backhaul Link),并分为下行父回程链路(Parent Backhaul Link DL)和上行父回程链路(Parent Backhaul Link UL)。IAB节点DU功能与下一级的子节点之间进行连接的链路称为子回程链路(Child Backhaul Link),并分为下行子回程链路(Child Backhaul  Link DL)和上行子回程链路(Child Backhaul Link UL)。IAB节点的DU功能与UE之间进行连接的链路称为子接入链路(Child Access Link),并分为下行子接入链路(Child Access Link DL)和上行子接入链路(Child Access Link UL)。一个回程链路是父回程链路还是子回程链路取决于选取的参考节点。例如图1中,如果以子节点为参考节点,那么对子节点而言,与其连接的链路(即IAB节点的子回程链路)为父回程链路。
MT是IAB节点中充当UE功能的单元,其时间资源类型有三种,分别为下行(Downlink,DL)、灵活(Flexible,F)和上行(Uplink,UL),另外,还可能包括不可用时间资源(Not Available,NA)。DU是IAB节点中充当基站功能的单元,DU的时间资源同样有如下类型:DL、F、UL和NA,并且DU的时间资源类型DL,F和UL又区分为硬(Hard)和软(Soft),Hard资源对IAB节点的子链路总是可用,soft资源的可用性需要进一步指示。那么DU共包括7种时间资源类型,分别为:Hard DL资源、Soft DL资源、Hard F资源、Soft F资源、Hard UL资源、Soft UL资源、NA资源。NA资源指DU不能使用的资源,除非在NA资源上配置了小区特定的信号传输,例如同步信号块的传输等。对于DU来说Soft资源是否可用需要父节点显式指示,或者DU根据父节点对MT的调度情况隐式获取Soft资源的可用性。为简化描述,我们用Soft IA(Soft Indicated Available,)表示指示为可用的Soft资源,用Soft NIA(Soft not Indicated Available)表示没有指示为可用的Soft资源。上述MT和DU均指同一个IAB节点的MT和DU。另外本公开中符号可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
图2为IAB节点的另一连接关系示意图,如图2所示,第一节点、第二节点和第三节点分别为网络中的网络节点。第一节点可以为基站、施主IAB节点或IAB节点,第二节点可以为中继站或者IAB节点,第三节点可以为终端设备或IAB节点。一个节点负责调度该节点与下一级节点或终端之间的传输。第一节点、第二节点和第三节点还可以是无线通信系统中的其他网络设备或终端设备。第一链路为第一节点向第二节点进行数据传输的链路,第二链路为第二节点向第三节点进行数据传输的链路,第三链路为第二节点向第一节点进行数据传输的链路,第四链路为第三节点向第二节点进行数据传输的链路。
由于数据从发送到接收会存在一定的传输时延,因此第一节点、第二节点和第三节点之间的各链路之间会有一定的定时关系。图3为IAB节点定时关系示意图,其中DL表示下行,UL表示上行,Tx表示发送/发射(Transmission),Rx表示接收(Reception)。在IAB网络中,IAB节点包含MT和DU两个功能单元,因此以第二节点是IAB节点为例,则第二节点的DL Rx定时和UL Tx定时分别表示第二节点的MT的DL Rx定时和MT的UL Tx定时,第二节点的DL  Tx定时和UL Rx定时分别表示第二节点的DU的DL Tx定时和DU的UL Rx定时。这里的定时关系仅仅是示意,实际的定时关系不限于此。
在本申请实施例中,St表示网络设备或终端的收发转换时间或发收时间转换时间。St的取值取决于第二节点实际的收发转换时间或者发收转换时间,或者是预定义的值。对于特定频率范围,同类型设备的收发转换时间和发收转换时间相等,因此使用St计算时可以不区分。
Te是网络设备或终端的定时误差限制。定时误差限制是设备的实际传输定时与参考定时之间的误差的上限,即误差不能超出[-Te,Te]。Te的取值取决于对应链路的数据传输参数(如子载波间隔,频率范围等),或者测量误差,或者是预定义的值。参考定时可以理解为理论上的传输定时。例如对于终端的上行发送定时,其参考定时比下行接收定时提前(N TA+N TAoffset)·T c。N TA为网络设备或终端的上行发送相对下行接收的时间提前量,N TAoffset的取值取决于发生上行传输的小区的双工模式和频率范围,可以预先定义,或者由第一节点确定。T c为NR系统中的最小时间单位。
T margin是不可用符号余量。T margin的取值是预先定义的,或者取决于节点的定时关系,或者取决于不可用符号对应链路的数据传输参数,或者取决于小区间无线帧的定时的最大偏差,可以根据符号或者NR系统中的最小时间单位的整数倍(例如16T c)进行量化。
N symbol是一个时隙包含的符号数。对于正常循环前缀,N symbol=14;对于扩展循环前缀,N symbol=12。
T symbol_k表示第k链路的数据传输的子载波间隔对应的符号时长。
Figure PCTCN2020108682-appb-000001
表示向上取整。
图4为一实施例提供的一种数据传输方法的流程图,如图4所示,本实施例提供的方法包括如下步骤。
步骤S4010,第一节点接收定时相关信息。
本实施例提供的数据传输方法应用于移动通信系统中的第一节点,也即图2所示连接关系中的第一节点。对于图2所示连接关系中的第二节点,由于第二节点需要调度第三节点的传输资源,因此第一节点需要避免与第二节点调度第三节点所使用的传输资源产生冲突。那么对于第一节点而言,第一节点将接收到第二节点上报的定时相关信息。第二节点上报的定时相关信息是与第二节点相关且与定时相关的一种或多种信息。
在一实施例中,定时相关信息包括以下至少一项:第二节点的下行接收定时相对于第一节点的下行发送定时的时间偏移量;第二节点的上行发送定时相对于第二节点的下行接收定时的时间偏移量;第二节点的下行发送定时相对于第二节点的下行接收定时的时间偏移量;第二节点的上行接收定时相对于第二节点的下行发送定时的时间偏移量;第二节点的上行接收定时相对于第二节点的下行接收定时的时间偏移量;第二节点的上行发送定时相对于第二节点的下行发送定时的时间偏移量;第二节点的上行发送定时相对于第二节点的上行接收定时的时间偏移量;第二节点的收发转换时间;第二节点的发收转换时间。
在一实施例中,定时相关信息是以特定时间单位量化后的定时相关信息。量化的结果是对时间偏移量和/或转换时间以特定时间单位进行量化后的结果;对时间偏移量和/或转换时间以特定时间单位量化指时间偏移量和/或转换时间除以特定时间单位之后再向上取整或者向下取整;特定时间单位为参考子载波间隔对应的符号时长,或者当前带宽部分(Bandwidth part,BWP)的子载波间隔对应的符号时长,或者NR系统中的最小时间单位,或者NR系统中的最小时间单位的整数倍。
步骤S4020,第一节点根据定时相关信息调度数据传输,数据传输包括上行数据传输或下行数据传输。
第一节点接收到第二节点上报的定时相关信息后,第一节点即可根据定时相关信息调度第二节点的数据传输。第一节点调度的第二节点的数据传输包括上行数据传输或下行数据传输。第一节点根据第二节点上报的定时相关信息以及第二节点的时间资源类型可以确定第二节点的DU可能使用的传输资源,并留出保护间隔,从而避免第一节点对第二节点的数据传输影响第二节点的DU的资源的使用,例如避免影响第二节点DU的Hard资源或者指示为可用的Soft资源的使用。
在一实施例中,第一节点根据定时相关信息调度第二节点的数据传输,包括:第一节点根据定时相关信息确定第二节点与第一节点进行数据传输的不可用符号;第一节点在不可用符号上不调度第二节点的数据传输,或者第一节点在不可用符号与第二节点的数据传输的资源交叠时,打掉与不可用符号交叠的符号。第二节点与第一节点进行数据传输的不可用符号,是指第二节点的MT不能使用的符号。例如第二节点调度第三节点在某一符号上进行上行传输,也即第二节点进行上行接收,那么由于发收转换时间或收发转换时间,以及第二节点的各链路的定时关系等的影响,在这一符号之前或之后的一定时间间隔内,第一节点不能调度第二节点进行上行发送,那么这一符号之前或之后一定时间间隔内的符号均为不可用符号。第一节点在不可用符号上不调度第二节点的数 据传输。或者第一节点在不可用符号与第二节点的数据传输资源交叠时,为了保证第二节点的DU的数据传输,第一节点将打掉与不可用符号交叠的符号,那么第一节点也不能调度被打掉的符号进行数据传输。
在一实施例中,第一节点根据如下信息的至少一种确定第二节点与第一节点进行数据传输的不可用符号:定时相关信息;定时误差限制;不可用符号余量;第一节点与第二节点之间的数据传输的方向;第一节点与第二节点之间数据传输的子载波间隔;第一节点与第二节点之间数据传输的符号时长;第二节点的时间资源类型。
在一实施例中,第一节点调度第二节点的数据传输不期望使第二节点的第一类型资源无法使用,也就是第一节点调度第二节点的数据传输时,首先要考虑第二节点的时间资源类型,因为第二节点假定它的第一类型资源总是可用的,若第一节点即将调度的资源与第二节点的第一类型资源之间的保护间隔满足特定要求,则第一节点就可以在该资源上调度第二节点,若第一节点即将调度的资源与第二节点的第一类型资源之间的保护间隔不满足特定要求,则不能在该资源上调度第二节点,例如,特定要求包括如下至少之一:当第二节点需要做收发转换或者发收转换时,要求保护间隔大于或等于收发转换时间/发收转换时间;当第二节点不需要做收发转换或者发收转换时,第一节点与第二节点之间的数据传输使用的资源与第二节点的第一类型资源不能交叠,即要求保护间隔大于或等于0;要求保护间隔大于或等于收发转换时间/发收转换时间。第一类型资源包括以下至少之一:Hard DL资源,Hard F资源,Hard UL资源,指示为可用的Soft DL资源,指示为可用的Soft F资源,指示为可用的Soft UL资源。若第一节点调度第二节点的数据传输会使第二节点的第一类型资源无法使用,则第一节点将不调度第二节点的数据传输,若第一节点调度第二节点的数据传输不会使第二节点的第一类型资源无法使用,则第一节点再调度第二节点的数据传输。
本实施例提供的数据传输方法,应用于第一节点,第一节点接收第二节点上报的定时相关信息后,根据定时相关信息以及第二节点的时间资源类型调度第二节点的上行或下行数据传输,从而避免第一节点调度第二节点的数据传输所使用的传输资源与第二节点的DU使用的传输资源产生冲突,提高了资源利用率和数据传输性能。
在一实施例中,第一节点还可以根据如下信息的至少一种调度第二节点的数据传输:第一节点的定时信息;定时误差限制;不可用符号余量;第一节点与第二节点之间的数据传输的方向;第一节点与第二节点之间数据传输的子载波间隔;第一节点与第二节点之间数据传输的符号时长;第二节点的时间资源 类型。
图5为一实施例提供的另一种数据传输方法的流程图,如图5所示,本实施例提供的方法包括如下步骤。
步骤S5010,第二节点确定定时相关信息。
本实施例提供的数据传输方法应用于移动通信系统中的第二节点,也即图2所示连接关系中的第二节点,也即IAB节点。对于图2所示连接关系中的第二节点,由于第二节点需要调度第三节点的传输资源,因此当第一节点需要调度第二节点进行数据传输时,需要避免第一节点调度的传输资源影响第二节点的DU的资源使用,例如避免影响Hard资源或者指示为可用的Soft资源的使用。那么第二节点首先需要确定定时相关信息,第二节点确定的定时相关信息是与第二节点相关且与定时相关的一种或多种信息。
定时相关信息包括以下至少一项:第二节点的下行接收定时相对于第一节点的下行发送定时的时间偏移量;第二节点的上行发送定时相对于第二节点的下行接收定时的时间偏移量;第二节点的下行发送定时相对于第二节点的下行接收定时的时间偏移量;第二节点的上行接收定时相对于第二节点的下行发送定时的时间偏移量;第二节点的上行接收定时相对于第二节点的下行接收定时的时间偏移量;第二节点的上行发送定时相对于第二节点的下行发送定时的时间偏移量;第二节点的上行发送定时相对于第二节点的上行接收定时的时间偏移量;第二节点的收发转换时间;第二节点的发收转换时间。
在一实施例中,定时相关信息是以特定时间单位量化后的定时相关信息。
步骤S5020,第二节点向第一节点上报定时相关信息,定时相关信息用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
在一实施例中,第二节点不期望第一节点对第二节点的数据传输使第二节点的第一类型资源无法使用,第一类型资源包括以下至少之一:Hard DL,Hard F,Hard UL,指示为可用的Soft DL资源,指示为可用的Soft F资源,指示为可用的Soft UL资源。
第二节点确定定时相关信息后,将向第一节点上报定时相关信息。定时相关信息用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。那么当第一节点接收到第二节点上报的定时相关信息后,第一节点即可根据定时相关信息调度第二节点的数据传输。
在一实施例中,第二节点还可以根据第一节点对第二节点的调度情况,调度第三节点的数据传输,第三节点的数据传输包括上行数据传输或下行数据传 输。也就是当第一节点对第二节点的调度后,第二节点获取了第二节点的MT可能使用的传输资源,因此第二节点可以根据第二节点的MT的资源使用情况,调度第三节点的上行数据传输或下行数据传输,从而避免第二节点对第三节点的数据传输的调度对第一节点已经确定的第二节点的MT的传输资源产生冲突。
在一实施例中,第二节点根据第一节点对第二节点的调度情况,调度第三节点的数据传输,包括:第二节点根据第一节点对第二节点的调度情况,确定第三节点与第二节点进行数据传输的不可用符号;第二节点在不可用符号上不调度第三节点的数据传输,或者第二节点在不可用符号与第三节点的数据传输的资源交叠时,打掉与不可用符号交叠的符号。第三节点与第二节点进行数据传输的不可用符号,是第二节点的DU不能使用的符号。例如第一节点调度第二节点在某一符号上进行上行传输,也即第二节点进行上行发送,那么由于收发转换时间或者发收转换时间以及第二节点的各链路的定时关系等的影响,在这一符号之前或之后的一定时间间隔内,第二节点不能调度第三节点进行上行传输,也即第二节点不能进行上行接收。那么这一符号之前或之后一定时间间隔内的符号均为不可用符号。第二节点在不可用符号上不调度第三符号的数据传输。或者第二节点在不可用符号与第三节点的数据传输资源交叠时,为了保证第一节点已确定调度的数据传输,第二节点将打掉与不可用符号交叠的符号,那么第二节点也不能调度被打掉的符号进行数据传输。
在一实施例中,第二节点根据如下信息的至少一种确定第三节点与第二节点进行数据传输的不可用符号:第一节点对第二节点的调度情况;定时相关信息;定时误差限制;不可用符号余量;第二节点与第三节点之间的数据传输方向;第二节点的时间资源类型。
本实施例提供的数据传输方法,应用于第二节点,第二节点确定定时相关信息后,向第一节点上报定时相关信息,定时相关信息用于第一节点调度第二节点的上行数据传输或下行数据传输,第一节点调度第二节点时还需考虑第二节点的时间资源类型,从而避免第一节点调度第二节点的数据传输所使用的传输资源与第二节点的DU使用的传输资源产生冲突,提高了资源利用率和数据传输性能。
在一实施例中,第二节点还可以根据如下信息的至少一种调度第三节点的数据传输:第一节点对第二节点的调度情况;定时相关信息;定时误差限制;不可用符号余量;第二节点与第三节点之间的数据传输方向;第二节点的时间资源类型。
图6为一实施例提供的另一种数据传输方法的流程图,如图6所示,本实施例提供的方法包括如下步骤。
步骤S6010,第一节点接收保护间隔。
本实施例提供的数据传输方法应用于移动通信系统中的第一节点,也即图2所示连接关系中的第一节点。在图4所示实施例中,第一节点接收第二节点上报的定时相关信息,并根据定时相关信息调度第二节点的数据传输。而在本实施例中,第一节点接收的是第二节点上报的保护间隔。第二节点上报的保护间隔是指第二节点不期望第一节点与第二节点之间的数据传输使用的时域资源。图4所示实施例中第一节点接收第二节点上报的定时相关信息后,同样可以根据定时相关信息确定保护间隔。对于图2所示连接关系中的第二节点,由于第二节点需要调度第三节点的传输资源,因此第一节点需要避免与第二节点调度第三节点所使用的传输资源产生冲突。那么对于第一节点而言,第一节点将接收到第二节点上报的保护间隔。第二节点上报的保护间隔是与第二节点相关且与保护间隔相关的一种或多种信息。
在一实施例中,保护间隔包括以下至少一项:下行的保护间隔;上行的保护间隔;统一的保护间隔;参考子载波间隔。
在一实施例中,下行的保护间隔指第一节点和第二节点之间下行链路的保护间隔,包括以下至少之一:下行链路的每个时隙的开始位置的保护间隔,下行链路的每个时隙的结束位置的保护间隔,下行链路的一个或多个连续时隙的开始位置的保护间隔,下行链路的一个或多个连续时隙的结束位置的保护间隔,在第二节点的硬Hard资源或者指示为可用的软Soft资源之后下行链路的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之前下行链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之后下行链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之前下行链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之后下行链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之前下行链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后下行链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前下行链路的保护间隔。
在一实施例中,上行的保护间隔指第一节点和第二节点之间上行链路的保护间隔,包括以下至少之一:上行链路的每个时隙的开始位置的保护间隔,上行链路的每个时隙的结束位置的保护间隔,上行链路的一个或多个连续时隙的开始位置的保护间隔,上行链路的一个或多个连续时隙的结束位置的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之后上行链路的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之前上行链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之后上行链路的保 护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之前上行链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之后上行链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之前上行链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后上行链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前上行链路的保护间隔。
在一实施例中,统一的保护间隔指第一节点和第二节点之间链路的保护间隔,包括以下至少之一:每个时隙的开始位置的保护间隔,每个时隙的结束位置的保护间隔,一个或多个传输方向相同的连续时隙的开始位置的保护间隔,一个或多个传输方向相同的连续时隙的结束位置的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之后链路的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之前链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之后链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之前链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之后链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之前链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前链路的保护间隔。
链路包括上行链路和下行链路。
在一实施例中,保护间隔以特定时间单位为粒度。特定时间单位为参考子载波间隔对应的符号时长,或者当前BWP的子载波间隔对应的符号时长,或者NR系统中的最小时间单位,或者NR系统中的最小时间单位的整数倍。
在一实施例中,保护间隔根据以下至少一种信息获得:第二节点的各链路的定时信息;第二节点的下行接收定时;第二节点的下行发送定时;第二节点的上行发送定时;第二节点的上行接收定时;第二节点的上行发送定时相对第二节点的下行接收定时的时间提前量;定时提前补偿;定时提前命令指示的索引值;第一节点的上行接收定时相对于第一节点的下行发送定时的时间偏移量;第一节点的上行接收定时相对于第一节点的下行发送定时的时间偏移量的一半;定时误差限制;收发转换时间;发收转换时间;不可用符号余量;参考子载波间隔。
步骤S6020,第一节点根据保护间隔调度数据传输,数据传输包括上行数据传输或下行数据传输。
第一节点接收到第二节点上报的保护间隔后,第一节点即可根据保护间隔 调度第二节点的数据传输。第一节点调度的第二节点的数据传输包括上行数据传输或下行数据传输。由于第二节点上报的保护间隔已经考虑了第二节点各链路的定时信息、定时误差限制等等,且第一节点可以知道第二节点的时间资源类型,因此第一节点在调度第二节点的数据传输时,就可以根据接收到的保护间隔避免第一节点对第二节点的数据传输影响第二节点的DU的资源的使用,例如避免影响第二节点DU的Hard资源或者指示为可用的Soft资源的使用。
在一实施例中,第一节点根据保护间隔调度第二节点的数据传输,包括:第一节点在保护间隔上不调度第二节点的数据传输;或者第一节点在保护间隔与第二节点的数据传输的资源交叠时,打掉与保护间隔交叠的符号。
本实施例提供的数据传输方法,应用于第一节点,第一节点接收第二节点上报的保护间隔后,根据保护间隔调度第二节点的上行或下行数据传输,从而避免第一节点调度第二节点的数据传输所使用的传输资源与第二节点的DU使用的传输资源产生冲突,提高了资源利用率和数据传输性能。
图7为一实施例提供的另一种数据传输方法的流程图,如图7所示,本实施例提供的方法包括如下步骤。
步骤S7010,第二节点确定保护间隔。
本实施例提供的数据传输方法应用于移动通信系统中的第二节点,也即图2所示连接关系中的第二节点,也即IAB节点。在图5所示实施例中,第二节点确定定时相关信息,并向第一节点上报定时相关信息。而在本实施例中,第二确定的是保护间隔。第二节点确定的保护间隔是指第二节点不期望第一节点与第二节点之间的数据传输使用的时域资源。图5所示实施例中第二节点确定定时相关信息后,同样可以根据定时相关信息确定保护间隔。对于图2所示连接关系中的第二节点,由于第二节点需要调度第三节点的传输资源,因此当第一节点需要调度第二节点进行数据传输时,需要避免第一节点调度的传输资源影响第二节点的DU的资源使用,例如影响Hard资源或者指示为可用的Soft资源的使用。那么第二节点首先需要确定保护间隔,第二节点确定的保护间隔是与第二节点相关且与保护间隔相关的一种或多种信息。
在一实施例中,保护间隔包括以下至少一项:下行的保护间隔;上行的保护间隔;统一的保护间隔;参考子载波间隔。
在一实施例中,下行的保护间隔指第一节点和第二节点之间下行链路的保护间隔,包括以下至少之一:下行链路的每个时隙的开始位置的保护间隔,下行链路的每个时隙的结束位置的保护间隔,下行链路的一个或多个连续时隙的开始位置的保护间隔,下行链路的一个或多个连续时隙的结束位置的保护间隔, 在第二节点的硬Hard资源或者指示为可用的软Soft资源之后下行链路的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之前下行链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之后下行链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之前下行链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之后下行链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之前下行链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后下行链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前下行链路的保护间隔。
在一实施例中,上行的保护间隔指第一节点和第二节点之间上行链路的保护间隔,包括以下至少之一:上行链路的每个时隙的开始位置的保护间隔,上行链路的每个时隙的结束位置的保护间隔,上行链路的一个或多个连续时隙的开始位置的保护间隔,上行链路的一个或多个连续时隙的结束位置的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之后上行链路的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之前上行链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之后上行链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之前上行链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之后上行链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之前上行链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后上行链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前上行链路的保护间隔。
在一实施例中,统一的保护间隔指第一节点和第二节点之间链路的保护间隔,包括以下至少之一:每个时隙的开始位置的保护间隔,每个时隙的结束位置的保护间隔,一个或多个传输方向相同的连续时隙的开始位置的保护间隔,一个或多个传输方向相同的连续时隙的结束位置的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之后链路的保护间隔,在第二节点的Hard资源或者指示为可用的Soft资源之前链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之后链路的保护间隔,在第二节点的Hard下行资源或者指示为可用的Soft下行资源之前链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之后链路的保护间隔,在第二节点的Hard上行资源或者指示为可用的Soft上行资源之前链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后链路的保护间隔,在第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前链路的保护间隔。
链路包括上行链路和下行链路。
在一实施例中,保护间隔以特定时间单位为粒度。特定时间单位为参考子载波间隔对应的符号时长,或者当前BWP的子载波间隔对应的符号时长,或者NR系统中的最小时间单位,或者NR系统中的最小时间单位的整数倍。
在一实施例中,保护间隔根据以下至少一种信息获得:第二节点的各链路的定时信息;第二节点的下行接收定时;第二节点的下行发送定时;第二节点的上行发送定时;第二节点的上行接收定时;第二节点的上行发送定时相对第二节点的下行接收定时的时间提前量;定时提前补偿;定时提前命令指示的索引值;第一节点的上行接收定时相对于第一节点的下行发送定时的时间偏移量;第一节点的上行接收定时相对于第一节点的下行发送定时的时间偏移量的一半;定时误差限制;收发转换时间;发收转换时间;不可用符号余量;参考子载波间隔。
步骤S7020,第二节点向第一节点上报保护间隔,保护间隔用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
第二节点确定保护间隔后,将向第一节点上报保护间隔。保护间隔用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。那么当第一节点接收到第二节点上报的保护间隔后,第一节点即可根据保护间隔调度第二节点的数据传输。由于第二节点上报的保护间隔已经考虑了第二节点各链路的定时信息、定时误差限制等等,且第一节点可以知道第二节点的时间资源类型,因此第一节点在调度第二节点的数据传输时,就可以根据接收到的保护间隔避免第一节点对第二节点的数据传输影响第二节点的DU的资源的使用,例如避免影响第二节点DU的Hard资源或者指示为可用的Soft资源的使用。
在一实施例中,第二节点还可以根据第一节点对第二节点的调度情况,调度第三节点的数据传输,第三节点的数据传输包括上行数据传输或下行数据传输。
在一实施例中,第二节点根据第一节点对第二节点的调度情况,调度第三节点的数据传输,包括:第二节点根据第一节点对第二节点的调度情况,确定第三节点与第二节点进行数据传输的不可用符号;第二节点在不可用符号上不调度第三节点的数据传输,或者第二节点在不可用符号与第三节点的数据传输的资源交叠时,打掉与不可用符号交叠的符号。
在一实施例中,第二节点根据如下信息的至少一种确定第三节点与第二节 点进行数据传输的不可用符号:第一节点对第二节点的调度情况,定时相关信息;定时误差限制;不可用符号余量;第二节点与第三节点之间的数据传输方向;第二节点的时间资源类型。
本实施例提供的数据传输方法,应用于第二节点,第二节点确定保护间隔后,向第一节点上报保护间隔,保护间隔用于第一节点调度第二节点的上行数据传输或下行数据传输,从而避免第一节点调度第二节点的数据传输所使用的传输资源与第二节点的DU使用的传输资源产生冲突,提高了资源利用率和数据传输性能。
在一实施例中,还包括以下至少一种情况:第二节点不期望在保护间隔上接收第一节点发送的数据;第二节点不期望在保护间隔上向第一节点发送数据;第二节点不期望在保护间隔上被第一节点调度。
图4至图7示出本申请实施例提供的数据传输方法的实施流程,下面以几个实施例对本申请实施例提供的数据传输方法进行说明。
实施例一:
第一节点根据第二节点上报的定时相关信息调度第二节点的数据传输。
在本实施例中,第一节点根据第二节点上报的定时相关信息,确定第一链路或者第三链路的不可用符号,即确定第二节点MT的不可用符号。
第二节点DU的Hard资源或者Soft IA资源对其子链路(即第二链路,第四链路)总是可用,因此第二节点的父回程链路(即第一链路,第三链路)的数据传输应尽量避免影响DU的Hard资源或者Soft IA资源的使用。
第一节点接收第二节点上报的定时相关信息。定时相关信息包括如下至少一项:第二节点的下行接收定时相对于第一节点的下行发送定时的时间偏移量T offset1;第二节点的上行发送定时相对于第二节点的下行接收定时的时间偏移量T offset2;第二节点的下行发送定时相对于第二节点的下行接收定时的时间偏移量T offset3;第二节点的上行接收定时相对于第二节点的下行发送定时的时间偏移量T offset4;第二节点的上行接收定时相对于第二节点的下行接收定时的时间偏移量T offset5;第二节点的上行发送定时相对于第二节点的下行发送定时的时间偏移量T offset6;第二节点的收发转换时间;第二节点的发收转换时间。
在一实施例中,定时相关信息可以为其量化的结果,量化的结果是对时间偏移量和或转换时间以特定时间单位进行量化后的结果。
在一实施例中,对时间偏移量和或转换时间以特定时间单位量化指时间偏移量和或转换时间除以特定时间单位之后再向上取整或者向下取整。
在一实施例中,特定时间单位为参考子载波间隔对应的符号时长,或者当前BWP的子载波间隔对应的符号时长,或者NR系统中的最小时间单位,或者最小时间单位的整数倍,例如16T c
在一实施例中,第一节点根据如下至少一个参数调度第二节点的上行或者下行传输:第一节点的定时,定时相关信息,定时误差限制,不可用符号余量,第一节点与第二节点之间的数据传输的方向,第二节点的时间资源类型。
在一实施例中,第二节点不期望第一节点与第二节点之间的数据传输影响第二节点DU的类型1资源的使用。
在一实施例中,第一节点获取如下至少一个参数:第一节点的DL Tx定时或第二节点的DL Tx定时与第二节点的DL Rx定时之间的时间差ΔT1,第二节点的UL Tx定时与第二节点的UL Rx定时之间的时间差ΔT2,第二节点的DL Tx定时和第一节点的DL Tx定时之间的时间差,定时误差限制,不可用符号余量。
在一实施例中,第一节点在与第二节点DU的类型1资源时间相邻的资源上调度第二节点的上行或下行传输时,根据至少一个参数确定第一链路或第三链路的不可用符号。第一节点调度第二节点的上行或下行传输时避开这些不可用符号,或者当调度的符号与不可用符号交叠时打掉交叠的符号。
在一实施例中,类型1资源包括如下至少之一:Hard DL,Hard F,Hard UL,指示为可用的Soft资源。
在一实施例中,Soft资源,包括如下至少之一:Soft DL,Soft F,Soft UL。
第一节点采用如下任意一种方式获取时间差ΔT1:
方式1:根据第二节点上报的定时相关信息获取。
例如,直接上报第二节点的下行接收定时相对于第一节点的下行发送定时的时间偏移量(即第二节点的下行接收相对第一节点的下行发送的延迟)T offset1,即ΔT1;或者,上报第二节点的下行发送定时相对于第二节点的下行接收定时的时间偏移量T offset3,即ΔT1;或者,上报第二节点的上行发送定时相对于第二节点的下行接收定时的时间偏移量(即时间提前量)T offset2,根据T offset2计算ΔT1。T offset2可以包含N TAoffset,也可以不包含N TAoffset,是否包含N TAoffset可以预先定义。N TAoffset的取值取决于发生上行传输的小区的双工模式和频率范围,可以预先定义,或者由第一节点确定。根据T offset2计算ΔT1的方式为,ΔT1=0.5·T offset2+T delta,如果T offset2包含N TAoffset
Figure PCTCN2020108682-appb-000002
如果T offset2不包含N TAoffset,则
Figure PCTCN2020108682-appb-000003
T g为第一节点的UL Rx定时和第一节点的DL Tx定时之间的时间偏移(由UL Rx到DL Tx,即UL Rx比DL Tx提前时, T g大于或等于0;UL Rx不比DL Tx提前时,T g小于0)。
根据第二节点上报的定时相关信息获取ΔT1的方法较多,这里不再一一列举。
方式2:第一节点保存第二节点初始接入时第一节点发送给第二节点的初始时间提前量N TA(即绝对时间提前量),以及后续发送给第二节点的相对当前时间提前量N TA_old的调整量T A,并根据这两个参数计算第二节点最新的时间提前量N TA_new=N TA_old+(T A-31)·16·64/2 μ,μ为子载波间隔配置,对应第二节点的上行传输使用的子载波间隔。N TA_new·T c即绝对的时间提前量,根据N TA_new·T c计算ΔT1的方式与根据T offset2计算ΔT1的方式类似,用N TA_new·T c替换T offset2即可,这里不再赘述。T c为NR系统中的最小时间单位。
第一节点采用如下任意一种方式获取时间差ΔT2:
方式1:根据第二节点上报的定时相关信息获取。
例如,上报第二节点的上行发送定时相对于第二节点的下行接收定时的时间偏移量T offset2和第二节点的上行接收定时相对于第二节点的下行接收定时的时间偏移量T offset5,得到第二节点的上行发送定时和上行接收定时之间的时间差ΔT2;或者,上报第二节点的上行接收定时相对于第二节点的下行发送定时的时间偏移量T offset4和第二节点的上行发送定时相对于第二节点的下行发送定时的时间偏移量T offset6,得到第二节点的上行发送定时和上行接收定时之间的时间差ΔT2。
根据第二节点上报的定时相关信息获取ΔT2的方法较多,这里不再一一列举。
方式2:第二节点直接上报ΔT2。
第一节点获取收发转换时间(或者发收转换时间)的方式为预先定义或者第二节点上报。
下述示例以类型1资源为Hard资源为例,给出了第一节点在与第二节点DU的Hard资源时间相邻的资源上调度第二节点的上行或下行传输时确定第一链路或第三链路的不可用符号的方法。
类型1资源为其它资源的情况与此类似,直接替换示例中的Hard资源即可。
示例1:DU Hard之后是MT Downlink
在本示例中,第一节点在第二节点的DU的Hard资源之后调度第二节点的下行传输。如图8a所示,图8a为本申请实施例一提供的一种数据传输方法的定时示意图,当ΔT1大于或等于门限T th1时,则第二节点MT的DL可用符号(即 第一链路的可用符号)从第二节点DU的Hard资源之后第一个符号开始。即Hard资源之后第一链路的不可用符号数为0,即仅仅用ΔT1作为保护间隔就可以了。图8a中第二节点DU的Hard资源之后的第一个符号是下一个时隙的符号0。
再如图8b所示,图8b为本申请实施例一提供的另一种数据传输方法的定时示意图,当ΔT1小于门限T th1时,则第二节点MT的DL可用符号从第二节点DU的Hard资源之后第
Figure PCTCN2020108682-appb-000004
个符号开始。即Hard资源之后第一链路的不可用符号数为
Figure PCTCN2020108682-appb-000005
Figure PCTCN2020108682-appb-000006
表示向上取整,T symbol_1为符号时长,对应的子载波间隔为第一链路数据传输的子载波间隔。图8b中第二节点DU的Hard资源之后的第2个符号(Hard后MT的起始可用符号)是下一个时隙的符号1。
门限T th1等于发收转换时间St,或者等于发收转换时间St与定时误差限制Te之和,或者等于发收转换时间St与定时误差限制Te以及第一不可用符号余量T margin1之和。
在一实施例中,第一节点根据第二节点的下行发送定时相对于第二节点的下行接收定时的时间偏移量T offset3得到第二节点的下行发送定时,T margin1的取值取决于第一节点和第二节点的下行发送定时,例如为两者之间的时间差,或者是预先定义的,或者是节点之间下行发送定时之差的上限。
在一实施例中,如果第一节点调度第二节点的下行传输之前不是Hard资源,或者不是指示为可用的Soft资源,则第二节点MT的DL可用符号(即第一链路的可用符号)从第二节点DU的非Hard资源之后第一个符号开始。
示例二:DU Hard之前是MT Downlink
在本示例中,第一节点在第二节点DU的Hard资源之前调度第二节点的下行传输。如图8c所示,图8c为本申请实施例一提供的另一种数据传输方法的定时示意图,当T symbol_1-ΔT1大于或等于门限T th2时,则第二节点MT的DL可用符号(即第一链路的可用符号)在第二节点DU的Hard资源之前第二个符号结束。即Hard资源之前第一链路的不可用符号数为1。图8c中第二节点DU的Hard 资源之前第二个符号是上一个时隙的符号N symbol-2。
再如图8d所示,图8d为本申请实施例一提供的另一种数据传输方法的定时示意图,当T symbol_1-ΔT1小于门限T th2时,则第二节点MT的DL可用符号(即第一链路的可用符号)在第二节点DU的Hard资源之前第
Figure PCTCN2020108682-appb-000007
Figure PCTCN2020108682-appb-000008
个符号结束。即Hard资源之前第一链路的不可用符号数为
Figure PCTCN2020108682-appb-000009
图8d中第二节点DU的Hard资源之前第三个符号是上一个时隙的符号N symbol-3。T symbol_1为符号时长,对应的子载波间隔为第一链路数据传输的子载波间隔。
门限T th2等于收发转换时间St,或者等于收发转换时间St与定时误差限制Te之和,或者等于收发转换时间St与定时误差限制Te以及第二不可用符号余量T margin2之和。
在一实施例中,第一节点根据第二节点的下行发送定时相对于第二节点的下行接收定时的时间偏移量T offset3得到第二节点的下行发送定时。T margin2的取值取决于第一节点和第二节点的下行发送定时,例如为两者的时间差,或者是预先定义的,或者是节点之间下行发送定时之差的上限,或者取决于第二节点的链路的数据传输参数。
在一实施例中,门限T th2和T th1相等。
在一实施例中,如果第一节点调度第二节点的下行传输之后不是Hard资源,或者不是指示为可用的Soft资源,则第二节点MT的DL可用符号(即第一链路的可用符号)在第二节点DU的非Hard资源之前第一个符号或者第二个符号结束。
示例3:DU Hard之后是MT Uplink
在本示例中,第一节点在第二节点DU的Hard资源之后调度第二节点的上行传输。如图8e所示,图8e为本申请实施例一提供的另一种数据传输方法的定时示意图,当T symbol_3-ΔT2大于或等于门限T th3时,则第二节点MT的UL可用符号(即第三链路的可用符号)从第二节点DU的Hard资源之后第二个符号开始。即Hard资源之后第三链路的不可用符号数为1。图8e中第二节点DU的Hard资源之后的第二个符号是下一个时隙的符号1。
再如图8f所示,图8f为本申请实施例一提供的另一种数据传输方法的定时示意图,当T symbol_3-ΔT2小于门限T th3时,则第二节点MT的UL可用符号从第二节点DU的Hard资源之后第
Figure PCTCN2020108682-appb-000010
个符号开始。即Hard资源之后第三链路的不可用符号数为
Figure PCTCN2020108682-appb-000011
Figure PCTCN2020108682-appb-000012
其中,
Figure PCTCN2020108682-appb-000013
表示向上取整。图8f中第二节点DU的Hard资源之后的第3个符号是下一个时隙的符号2。T symbol_3为符号时长,对应的子载波间隔为第三链路数据传输的子载波间隔。
门限T th3等于收发转换时间St,或者等于收发转换时间St与定时误差限制Te之和,或者等于收发转换时间St与定时误差限制Te以及第三不可用符号余量T margin3之和
在一实施例中,T margin3的取值取决于第二节点的链路的数据传输参数,或者是预先定义的。
在一实施例中,如果第一节点调度第二节点的上行传输之前不是Hard资源,或者不是指示为可用的Soft资源,则第二节点MT的UL可用符号(即第三链路的可用符号)从第二节点DU的非Hard资源之后第一个符号或者第二个符号开始。
示例4:DU Hard之前是MT Uplink
在本示例中,第一节点在第二节点DU的Hard资源之前调度第二节点的上行传输。如图8g所示,图8g为本申请实施例一提供的另一种数据传输方法的定时示意图,当ΔT2大于或等于门限T th4时,则第二节点MT的UL可用符号(即第三链路的可用符号)在第二节点DU的Hard资源之前第一个符号结束。即Hard资源之前第三链路的不可用符号数为0。图8g中第二节点DU的Hard资源之前的第一个符号是上一个时隙的符号N symbol-1。
再如图8h所示,图8h为本申请实施例一提供的另一种数据传输方法的定时示意图,当ΔT2小于门限T th4时,则第二节点MT的UL可用符号在第二节点DU的Hard资源之前第
Figure PCTCN2020108682-appb-000014
个符号结束。即Hard资源之前第三链路的不可用符号数为
Figure PCTCN2020108682-appb-000015
Figure PCTCN2020108682-appb-000016
表示向上取整。图8h中第二节点DU的Hard资源之前的第2个符号是下一个时隙的符号N symbol-2。T symbol_3为符号时长,对应的子载波间隔为第三链路数据传输的子 载波间隔。
门限T th4等于发收转换时间St,或者等于发收转换时间St与定时误差限制Te之和,或者等于发收转换时间St与定时误差限制Te以及第四不可用符号余量T margin4之和。
在一实施例中,T margin4的取值取决于第二节点的链路的数据传输参数,或者是预先定义的。
在一实施例中,门限T th4和T th3相等。
在一实施例中,如果第一节点调度第二节点的上行传输之后不是Hard资源,或者不是指示为可用的Soft资源,则第二节点MT的UL可用符号(即第三链路的可用符号)在第二节点DU的非Hard资源之前第一个符号结束。
实施例二:
第一节点根据第二节点上报的保护间隔,调度第二节点。
第一节点接收第二节点上报的保护间隔,根据保护间隔调度第二节点的上行或下行传输。
保护间隔,包括如下至少之一:下行的保护间隔,上行的保护间隔,灵活资源的保护间隔,统一的保护间隔,参考子载波间隔μ ref
在一实施例中,下行的保护间隔指第一链路的保护间隔,包括以下至少之一:每个时隙开始位置的保护间隔N start1,每个时隙结束位置的保护间隔N end1,在第二节点的Hard资源或者Soft IA资源之后第一链路的保护间隔N after1,在第二节点的Hard资源或者Soft IA资源之前第一链路的保护间隔N before1
在一实施例中,上行的保护间隔指第三链路的保护间隔,包括以下至少之一:每个时隙开始位置的保护间隔N start2,每个时隙结束位置的保护间隔N end2,在第二节点的Hard资源或者Soft IA资源之后第三链路的保护间隔N after2,在第二节点的Hard资源或者Soft IA资源之前第三链路的保护间隔N before2。时隙为第三链路对应的时隙。
在一实施例中,统一的保护间隔指第一节点和第二节点之间的链路的保护间隔,包括以下至少之一:每个时隙开始位置的保护间隔,每个时隙结束位置的保护间隔,在第二节点的Hard资源或者Soft IA资源之后第一节点和第二节点之间的链路的保护间隔,在第二节点的Hard资源或者Soft IA资源之前第一节点和第二节点之间的链路的保护间隔。
在一实施例中,灵活资源的保护间隔指以下至少之一:第二节点的Hard灵 活资源或者Soft IA灵活资源之后第一链路的保护间隔N after3,第二节点的Hard灵活资源或者Soft IA灵活资源之前第一链路的保护间隔N before3,第二节点的Hard灵活资源或者Soft IA灵活资源之后第三链路的保护间隔N after4,第二节点的Hard灵活资源或者Soft IA灵活资源之前第三链路的保护间隔N before4
在一实施例中,Hard资源包括如下至少之一:Hard DL,Hard UL,Hard F。
在一实施例中,Soft资源包括如下至少之一:Soft DL,Soft UL,Soft F。
在一实施例中,根据保护间隔调度第二节点的上行或下行传输指在保护间隔上不调度第二节点的上行或者下行传输,或者保护间隔与第二节点的上行或者下行传输的资源交叠时打掉与保护间隔交叠的符号。
在一实施例中,保护间隔是以特定时间单位为单位的数值。特定时间单位为参考子载波间隔对应的符号时长,或者当前带宽部分(BWP,Bandwith Part)的子载波间隔对应的符号时长,或者NR系统中的最小时间单位,或者NR系统中的最小时间单位的整数倍,例如1024T c
在一实施例中,保护间隔是以当前BWP的子载波间隔对应的符号时长量化后的值。
在一实施例中,保护间隔,至少由以下之一得到:第二节点的下行接收定时,第二节点的下行发送定时,第二节点的上行发送定时,第二节点的上行接收定时,第二节点的上行发送定时相对第二节点的下行接收定时的时间提前量N TA,定时提前补偿N TAoffset,定时提前命令指示的索引值T A,第一节点的上行接收定时相对于第一节点的下行发送定时的时间偏移量T offset,第一节点的上行接收定时相对于第一节点的下行发送定时的时间偏移量的一半T delta=-0.5·T offset,定时误差限制,收发转换时间,发收转换时间,不可用符号余量,参考子载波间隔。
在一实施例中,下行的保护间隔获取方式,包括如下至少之一:N 11=T th1-ΔT1,如果N 11≤0,则每个时隙开始位置的保护间隔N start1=0或者在第二节点的Hard资源或者Soft IA资源之后的保护间隔N after1=0;如果N 11>0,则每个时隙开始位置的保护间隔N start1为N 11或者
Figure PCTCN2020108682-appb-000017
或者在第二节点的Hard资源或者Soft IA资源之后的保护间隔N after1为N 11或者
Figure PCTCN2020108682-appb-000018
N 12=T th2-T symbol+ΔT1,如果N 12≤0,则每个时隙结束位置的保护间隔
Figure PCTCN2020108682-appb-000019
或者在第二节点的Hard资源或者Soft IA资源之前的保护间隔
Figure PCTCN2020108682-appb-000020
如果N 12>0,则每个时隙结束位置的保护间隔N end1为N 12+T symbol或者
Figure PCTCN2020108682-appb-000021
或者在第二节点 的Hard资源或者Soft IA资源之前的保护间隔N before1为N 12+T symbol或者
Figure PCTCN2020108682-appb-000022
在一实施例中,上行的保护间隔获取方式,包括如下至少之一:N 21=T th3-T symbol+ΔT2,如果N 21≤0,则每个时隙开始位置的保护间隔
Figure PCTCN2020108682-appb-000023
或者在第二节点的Hard资源或者Soft IA资源之后的保护间隔
Figure PCTCN2020108682-appb-000024
如果N 21>0,则每个时隙开始位置的保护间隔N start2为N 21+T symbol或者
Figure PCTCN2020108682-appb-000025
或者在第二节点的Hard资源或者Soft IA资源之后的保护间隔N after2为N 21+T symbol或者
Figure PCTCN2020108682-appb-000026
Figure PCTCN2020108682-appb-000027
N 22=T th4-ΔT2,如果N 22≤0,则每个时隙结束位置的保护间隔N end2=0,或者在第二节点的Hard资源或者Soft IA资源之前的保护间隔N before2=0;如果N 22>0,则每个时隙结束位置的保护间隔N end2为N 22或者
Figure PCTCN2020108682-appb-000028
或者在第二节点的Hard资源或者Soft IA资源之前的保护间隔N before2为N 22或者
Figure PCTCN2020108682-appb-000029
在一实施例中,灵活资源的保护间隔获取方式,包括如下至少之一:N 11=T th1-ΔT1,如果N 11≤0,则第二节点的Hard灵活资源或者Soft IA灵活资源之后第一链路的保护间隔N after3=0;如果N 11>0,则第二节点的Hard灵活资源或者Soft IA灵活资源之后第一链路的保护间隔N after3为N 11或者
Figure PCTCN2020108682-appb-000030
N 12=T th2-T symbol+ΔT1,如果N 12≤0,则第二节点的Hard灵活资源或者Soft IA灵活资源之前第一链路的保护间隔
Figure PCTCN2020108682-appb-000031
Figure PCTCN2020108682-appb-000032
如果N 12>0,则第二节点的Hard灵活资源或者Soft IA灵活资源之前第一链路的保护间隔N before3为N 12+T symbol或者
Figure PCTCN2020108682-appb-000033
N 21=T th3-T symbol+ΔT2,如果N 21≤0,则第二节点的Hard灵活资源或者Soft IA灵活资源之后第三链路的保护间隔
Figure PCTCN2020108682-appb-000034
如果N 21>0,则第二节点的Hard灵活资源或者Soft IA灵活资源之后第三链路的保护间隔N after4为N 21+T symbol或者
Figure PCTCN2020108682-appb-000035
N 22=T th4-ΔT2,如果N 22≤0,则第二节点的Hard灵活资源或者Soft IA灵活资源之前第三链路的保护间隔N before4=0;如果N 22>0,则第二节点的Hard灵活资源或者Soft IA灵活资源之前第三链路的保护间隔N before4为N 22或者
Figure PCTCN2020108682-appb-000036
T unit为指参考子载波间隔或者当前BWP的子载波间隔对应的符号时长,或者NR系统最小时间单位的整数倍;T symbol为指参考子载波间隔或者当前BWP的子载波间隔对应的符号时长。
在一实施例中,第一节点根据保护间隔以及第一链路或者第三链路实际传 输使用的子载波间隔μ和参考子载波间隔μ ref确定第一链路或者第三链路的实际传输的保护间隔。
以下行的保护间隔为例,采用如下方式确定下行的实际传输的保护间隔:每个时隙开始位置的保护间隔
Figure PCTCN2020108682-appb-000037
每个时隙结束位置的保护间隔
Figure PCTCN2020108682-appb-000038
在第二节点的Hard资源或者Soft IA资源之后的保护间隔
Figure PCTCN2020108682-appb-000039
在第二节点的Hard资源或者Soft IA资源之前的保护间隔
Figure PCTCN2020108682-appb-000040
在一实施例中,对于上行的保护间隔或者灵活资源的保护间隔,采用与确定下行的实际传输的保护间隔类型的类似的方式确定实际传输的保护间隔,即实际传输的保护间隔为上行的保护间隔或者灵活资源的保护间隔乘以
Figure PCTCN2020108682-appb-000041
后再向上取整,这里不再赘述。
实施例三:
第二节点根据第一节点对第二节点的调度,调度第三节点。
在本实施例中,针对第二节点的Soft资源或者没有指示为可用的Soft资源,第二节点根据第一节点对第二节点的调度情况,即第一节点和第二节点之间的链路的时域资源使用情况,确定第二节点的子链路(即第二链路或第四链路)的不可用符号。对于第二节点的Hard资源或者指示为可用的Soft资源,第二节点调度第三节点时不需要考虑第一节点对第二节点的调度情况。
第二节点基于至少一个信息调度第三节点的上行或下行传输。至少一个信息,包括如下至少之一:定时相关信息,定时误差限制,不可用符号余量,第一节点对第二节点的资源调度,第二节点的时间资源类型。
定时相关信息包括如下至少一项:第二节点的下行接收定时相对于第一节点的下行发送定时的时间偏移量T offset1;第二节点的上行发送定时相对于第二节点的下行接收定时的时间偏移量T offset2;第二节点的下行发送定时相对于第二节点的下行接收定时的时间偏移量T offset3;第二节点的上行接收定时相对于第二节点的下行发送定时的时间偏移量T offset4;第二节点的上行接收定时相对于第二节点的下行接收定时的时间偏移量T offset5;第二节点的上行发送定时相对于第二节点的下行发送定时的时间偏移量T offset6;第二节点的收发转换时间;第二节点的发收转换时间。
在一实施例中,第二节点基于如下至少一项确定不可用符号:定时相关信息,定时误差限制,不可用符号余量,第二节点与第三节点之间的数据传输方向,第二节点的时间资源类型。
在一实施例中,第二节点在不可用符号上不能调度第三节点的上行或者下行传输,或者第三节点的上行或者下行传输的资源与不可用符号交叠时打掉与不可用符号交叠的符号。
以下示例给出了第二节点根据第一节点对第二节点的调度,确定第二链路或第四链路的不可用符号的方法。
参数的含义说明:ΔT3为第二节点的下行发送定时和第二节点的下行接收定时之间的时间差;ΔT4为第二节点的上行接收定时和第二节点的上行发送定时之间的时间差;ΔT5为第二节点的上行接收定时和第二节点的下行接收定时之间的时间差;ΔT6为第二节点的下行发送定时和第二节点的上行发送定时之间的时间差。
第二节点可以根据定时相关信息计算或推导出ΔT3,ΔT4,ΔT5和ΔT6的取值。
在一实施例中,在下述示例中第二节点DU的DL资源为Soft DL资源,或者调度DL传输的F资源;第二节点DU的UL资源为Soft UL资源,或者调度UL传输的F资源。
示例1:MT Downlink之前是DU Downlink
在本示例中,在第一链路(即第二节点的MT的DL)占用的时域资源之前是第二节点DU的DL资源。第一节点将符号0和1分配给第二节点的MT,即第一链路占用的符号为符号0和1。如图9a所示,图9a为本申请实施例三提供的一种数据传输方法的定时示意图。当ΔT3≥T th5时,则第一链路占用的符号之前没有第二节点DU的DL不可用符号,即在第一链路占用的符号之前第二节点DU的DL不可用符号数为0。
再如图9b所示,图9b为本申请实施例三提供的另一种数据传输方法的定时示意图。当ΔT3<T th5时,则在第一链路占用的符号之前的
Figure PCTCN2020108682-appb-000042
Figure PCTCN2020108682-appb-000043
个符号为第二节点DU的DL不可用符号。图9b中在第一链路占用的符号之前1个符号为第二节点DU的DL不可用符号。
ΔT3为第二节点的下行发送定时(即DU DL Tx定时)和第二节点的下行接收定时(即MT的DL Rx定时)之间的时间差。
门限T th5等于发收转换时间St,或者等于发收转换时间St与定时误差限制Te之和,或者等于发收转换时间St与定时误差限制Te以及第五不可用符号余量T margin5之和。
T margin5的值取决于第二链路的数据传输参数,或者是预定义的值。
示例2:MT Downlink之后是DU Downlink
在本示例中,在第一链路(即第二节点的MT的DL)占用的时域资源之后是第二节点DU的DL资源。如图9c所示,图9c为本申请实施例三提供的另一种数据传输方法的定时示意图。当T symbol_1-ΔT3≥T th6时,则第一链路占用的符号之后的1个符号为第二节点DU的DL不可用符号,即在第一链路占用的符号之后第二节点的DL不可用符号数为1。
再如图9d所示,图9d为本申请实施例三提供的另一种数据传输方法的定时示意图。当T symbol_1-ΔT3<T th6时,则在第一链路占用的符号之后的
Figure PCTCN2020108682-appb-000044
个符号为第二节点DU的DL不可用符号。图9d中在第一链路占用的符号之后2个符号为第二节点DU的DL不可用符号,即符号2和3是第二节点DU的DL不可用符号。
ΔT3为第二节点的下行发送定时(即DU DL Tx定时)和第二节点的下行接收定时(即MT的DL Rx定时)之间的时间差。
门限T th6等于收发转换时间St,或者等于收发转换时间St与定时误差限制Te之和,或者等于收发转换时间St与定时误差限制Te以及第六不可用符号余量T margin6之和。
T margin6的值取决于第二链路的数据传输参数,或者是预定义的值。
在一实施例中,门限T th6和T th5相等。
示例3:MT Uplink之前是DU Uplink
在本示例中,在第三链路(即第二节点的MT的UL)占用的时域资源之前是第二节点DU的UL资源。第一节点将符号1和2分配给第二节点的MT,即 第三链路占用的符号为符号1和2。如图9e所示,图9e为本申请实施例三提供的另一种数据传输方法的定时示意图。当T symbol_3-ΔT4≥T th7时,则在第三链路占用的符号之前1个符号为第二节点DU的UL不可用符号。即图9e中符号0为第二节点DU的UL不可用符号。
再如图9f所示,图9f为本申请实施例三提供的另一种数据传输方法的定时示意图。当T symbol_3-ΔT4<T th7时,则在第三链路占用的符号之前的
Figure PCTCN2020108682-appb-000045
个符号为第二节点DU的DL不可用符号。图9f中在第三链路占用的符号之前2个符号为第二节点DU的DL不可用符号。
ΔT4为第二节点的上行接收定时(即DU UL Rx定时)和第二节点的上行发送定时(即MT UL Tx定时)之间的时间差。
门限T th7等于收发转换时间St,或者等于收发转换时间St与定时误差限制Te之和,或者等于收发转换时间St与定时误差限制Te以及第六不可用符号余量T margin7之和。
T margin7的值取决于第四链路的数据传输参数,或者是预定义的值。
示例4:MT Uplink之后是DU Uplink
在本示例中,在第三链路(即第二节点的MT的UL)占用的时域资源之后是第二节点DU的UL资源。第一节点将符号1和2分配给第二节点的MT,即第三链路占用的符号为符号1和2。如图9g所示,图9g为本申请实施例三提供的另一种数据传输方法的定时示意图。当ΔT4≥T th8时,则在第三链路占用的符号之后没有第二节点DU的UL不可用符号。
如图9h所示,图9h为本申请实施例三提供的另一种数据传输方法的定时示意图。当ΔT4<T th8时,则在第三链路占用的符号之后的
Figure PCTCN2020108682-appb-000046
Figure PCTCN2020108682-appb-000047
个符号为第二节点DU的DL不可用符号。图9h中在第三链路占用的符号之前1个符号为第二节点DU的DL不可用符号,即符号3为第二节点DU 的DL不可用符号。
ΔT4为第二节点的上行接收定时(即DU UL Rx定时)和第二节点的上行发送定时(即MT UL Tx定时)之间的时间差。
门限T th8等于发收转换时间St,或者等于发收转换时间St与定时误差限制Te之和,或者等于发收转换时间St与定时误差限制Te以及第六不可用符号余量T margin8之和。
T margin8的值取决于第四链路的数据传输参数,或者是预定义的值。
在一实施例中,门限T th8和T th7相等。
示例5:MT Downlink前后是DU Uplink时的一种方法
在本示例中,在第一链路占用的时域资源前后是第二节点DU的UL资源。
在这种情况下,第二节点的MT在第一链路上接收,第二节点的DU在第二节点的UL资源上也是接收,因此第二节点不需要收发转换或者发收转换。
在第一链路占用的时域资源前后不需要预留保护符号,即在第一链路占用的时域资源前后没有第二节点DU的UL不可用符号。
示例6:MT Downlink前后是DU Uplink时的另一种方法
在本示例中,在第一链路占用的时域资源前后是第二节点DU的UL资源。
考虑到如果第一链路占用的资源和DU的UL资源在时域上交叠,两个链路同时接收,则可能存在相互干扰,可以考虑如下方案:当第一链路占用的资源和DU的UL资源在时域上不交叠时,则在第一链路占用的符号前后第二节点的UL不可用符号数为0;当第一链路占用的资源和DU的UL资源在时域上交叠时,则第二节点DU的UL资源中交叠的符号为第二节点DU的UL不可用符号。
例如,ΔT5为第二节点的上行接收定时(即DU UL Rx)和第二节点的下行接收定时(即MT DL Rx)之间的时间差,且第二节点的上行接收定时比第二节点的下行接收定时提前,则:第一链路占用的时域资源之前的第二节点DU的UL资源与第一链路占用的符号没有交叠,则第一链路占用的符号之前没有第二节点DU的UL不可用符号,即在第一链路占用的符号之前第二节点的UL不可用符号数为0,如图9i所示,图9i为本申请实施例三提供的另一种数据传输方法的定时示意图;第一链路占用的时域资源之后的第二节点DU的UL资源与第一链路占用的符号有交叠,则交叠的符号为第二节点DU的UL不可用符号,如图9j所示,图9j为本申请实施例三提供的另一种数据传输方法的定时示意图,符号2为不可用符号。
示例7:MT Uplink前后是DU Downlink时的一种方法
在本示例中,在第三链路占用的时域资源前后是第二节点DU的DL资源。
在这种情况下,第二节点的MT在第三链路上发送,第二节点的DU在第二节点的DL资源上也是发送,因此第二节点不需要收发转换或者发收转换。
在第三链路占用的时域资源前后不需要预留保护符号,即在第三链路占用的时域资源前后没有第二节点DU的DL不可用符号。
示例8:MT Uplink前后是DU Downlink时的另一种方法
在本示例中,在第三链路占用的时域资源前后是第二节点DU的DL资源。
考虑到如果第三链路占用的资源和DU的DL资源在时域上交叠,两个链路同时接收,则可能存在相互干扰,可以考虑如下方案:当第三链路占用的资源和DU的DL资源在时域上不交叠时,则在第三链路占用的符号前后第二节点的DL不可用符号数为0;当第三链路占用的资源和DU的DL资源在时域上交叠时,则第二节点DU的DL资源中交叠的符号为第二节点DU的DL不可用符号。
例如,ΔT6为第二节点的下行发送定时(即DU DL Tx)和第二节点的上行发送定时(即MT UL Tx)之间的时间差,且第二节点的下行发送定时比第二节点的上行发送定时延迟,则,第三链路占用的时域资源之前的第二节点DU的DL资源与第三链路占用的符号有交叠,则交叠的符号为第二节点DU的DL不可用符号,如图9k所示,图9k为本申请实施例三提供的另一种数据传输方法的定时示意图,符号0为不可用符号;第三链路占用的时域资源之后的第二节点DU的DL资源与第三链路占用的符号没有交叠,则第三链路占用的符号之后没有第二节点DU的DL不可用符号,即在第三链路占用的符号之后第二节点的DL不可用符号数为0,如图9l所示,图9l为本申请实施例三提供的另一种数据传输方法的定时示意图。
实施例四:不可用符号与小区特定信号或信道冲突时的解决方案
通常,小区特定信号或者信道是周期发送的,所以一个链路上的不可用符号与传输的小区特定信号或者信道的资源可能冲突。
对于一个节点,冲突可能有如下几种:
1)节点的父回程链路上的不可用符号与父回程链路上传输的小区特定信号或者信道的资源在时域上交叠;且与子链路上传输的小区特定信号或者信道的资源不交叠。
2)节点的子链路上的不可用符号与子链路上传输的小区特定信号或者信道的资源在时域上交叠;且与父回程链路上传输的小区特定信号或者信道的资 源不交叠。
3)节点父回程链路或者子链路上的不可用符号与父回程链路和子链路上传输的小区特定信号或者信道的资源在时域上都交叠。
冲突避免方式包括如下至少之一:小区特定信号或者信道不能在不可用符号上传输;小区特定信号或者信道可以在不可用符号上传输;小区特定信号或者信道中一部分信号或者信道可以在不可用符号上传输,另一部分不能在不可用符号上传输;由节点确定是否在不可用符号上传输小区特定信号或信道。
可选地,小区特定信号或者信道包括如下至少之一:同步信号和物理广播信道块,随机接入信道,信道状态信息参考信号,调度请求,剩余最小系统信息。
在上述所有实施例中:
1)确定的第二节点的子链路(即第二链路或第四链路)的不可用符号对应的子载波间隔为第二节点的父回程链路(即第一链路或第三链路)数据传输的子载波间隔。
2)当第二节点的子链路的符号与按照第二节点的父回程链路的数据传输的子载波间确定的不可用符号交叠时,则第二节点的子链路的符号是不可用符号。
3)在上述实施例附图仅仅是示意,不应该构成对本公开的保护范围的限制,尽管附图中第二节点的Hard资源(或Soft IA资源)与第一节点调度的第一链路的上行或下行传输位于不同的时隙,但本公开的保护范围仍然包括第二节点的Hard资源(或Soft IA资源)与第一节点调度的第一链路的上行或下行传输位于同一个时隙内的情况。
4)所有示例中的不可用符号余量可以是相同的。
在本实施中将不可用符号替换为保护间隔,即可得到保护间隔与小区特定信号或信道冲突时的解决方案。
实施例五:第二节点的MT与DU的资源冲突的解决方案
由于定时误差、测量误差、量化误差等可能导致确定的不可用符号或者保护间隔不太准确。因此第二节点MT的调度资源与DU的调度资源可能存在冲突的情况。
第二节点MT的调度资源与DU的调度资源冲突时,可以采用如下至少一种处理方式:如果MT与DU的Hard资源冲突,则第二节点自己决定MT优先或DU优先;如果打掉了DU的调度资源,DU可以重调度被打掉的资源上传输的数据;如果MT与DU的Soft资源冲突,则MT优先;如果MT与DU资源 冲突,则DU优先,第二节点向父节点上报哪些符号没有正确接收。
图10为一实施例提供的一种数据传输装置的结构示意图,本实施例提供的数据传输装置设置于第一节点,如图10所示,本实施例提供的数据传输装置包括:接收模块101,设置为接收第二节点上报的定时相关信息;调度模块102,设置为根据定时相关信息调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本实施例提供的数据传输装置用于实现图4所示实施例的数据传输方法,本实施例提供的数据传输装置实现原理和技术效果类似,此处不再赘述。
图11为一实施例提供的另一种数据传输装置的结构示意图,本实施例提供的数据传输装置设置于第二节点,如图11所示,本实施例提供的数据传输装置包括:确定模块111,设置为确定定时相关信息;发送模块112,设置为向第一节点上报定时相关信息,定时相关信息用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本实施例提供的数据传输装置用于实现图5所示实施例的数据传输方法,本实施例提供的数据传输装置实现原理和技术效果类似,此处不再赘述。
图12为一实施例提供的另一种数据传输装置的结构示意图,本实施例提供的数据传输装置设置于第一节点,如图12所示,本实施例提供的数据传输装置包括:接收模块121,设置为接收第二节点上报的保护间隔;调度模块122,设置为根据保护间隔调度第二节点的数据传输,数据传输包括上行数据传输或下行数据传输。
本实施例提供的数据传输装置用于实现图6所示实施例的数据传输方法,本实施例提供的数据传输装置实现原理和技术效果类似,此处不再赘述。
图13为一实施例提供的另一种数据传输装置的结构示意图,本实施例提供的数据传输装置设置于第二节点,如图13所示,本实施例提供的数据传输装置包括:确定模块131,设置为确定保护间隔;发送模块132,设置为向第一节点上报保护间隔,保护间隔用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本实施例提供的数据传输装置用于实现图7所示实施例的数据传输方法,本实施例提供的数据传输装置实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种数据传输系统,包括第一节点和第二节点,另外还可能包括第三节点。第一节点、第二节点和第三节点的连接关系如图2所示。第一节点包括如图10实施例所示的数据传输装置。第二节点包括如图11实施例所示的数据传输装置。
本申请实施例还提供一种数据传输系统,包括第一节点和第二节点,另外还可能包括第三节点。第一节点、第二节点和第三节点的连接关系如图2所示。第一节点包括如图12实施例所示的数据传输装置。第二节点包括如图13实施例所示的数据传输装置。
图14为一实施例提供的一种通信节点的结构示意图,如图14所示,该通信节点包括处理器141、存储器142、发送器143和接收器144;通信节点中处理器141的数量可以是一个或多个,图14中以一个处理器141为例;通信节点中的处理器141和存储器142、发送器143和接收器144;可以通过总线或其他方式连接,图14中以通过总线连接为例。
存储器142作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图1-4和图6实施例中的数据传输方法对应的程序指令/模块(例如,数据传输装置中的接收模块101和调度模块102或者数据传输装置中的接收模块121和调度模块122)。处理器141通过运行存储在存储器142中的软件程序、指令以及模块,从而通信节点至少一种功能应用以及数据处理,即实现图4或图6数据传输方法。
存储器142可主要包括存储程序区和存储数据区,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。存储器142可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
发送器143为能够将射频信号发射至空间中的模块或器件组合,例如包括射频发射机、天线以及其他器件的组合。接收器144为能够从空间中接收将射频信号的模块或器件组合,例如包括射频接收机、天线以及其他器件的组合。
图15为一实施例提供的另一种通信节点的结构示意图,如图15所示,该通信节点包括处理器151、存储器152、发送器153和接收器154;通信节点中处理器151的数量可以是一个或多个,图15中以一个处理器151为例;通信节点中的处理器151和存储器152、发送器153和接收器154;可以通过总线或其他方式连接,图15中以通过总线连接为例。
存储器152作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图1-3、图5和图7实施例中的数据传输方法对应的程序指令/模块(例如,数据传输装置中的确定模块111和发送模块112或者数据传输装置中的确定模块131和发送模块132)。处理器151通过运行存储在存储器152中的软件程序、指令以及模块,从而通信节点至少一种功能应用以及数据处理,即实现图5或图7的数据传输方法。
存储器152可主要包括存储程序区和存储数据区,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。存储器152可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
发送器153为能够将射频信号发射至空间中的模块或器件组合,例如包括射频发射机、天线以及其他器件的组合。接收器154为能够从空间中接收将射频信号的模块或器件组合,例如包括射频接收机、天线以及其他器件的组合。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种数据传输方法,该方法包括:第一节点接收第二节点上报的定时相关信息;第一节点根据定时相关信息调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种数据传输方法,该方法包括:第二节点确定定时相关信息;第二节点向第一节点上报定时相关信息,定时相关信息用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种数据传输方法,该方法包括:第一节点接收第二节点上报的保护间隔;第一节点根据保护间隔调度第二节点的数据传输,数据传输包括上行数据传输或下行数据传输。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种数据传输方法,该方法包括:第二节点确定保护间隔;第二节点向第一节点上报保护间隔,保护间隔用于第一节点调度第二节点的数据传输,第二节点的数据传输包括上行数据传输或下行数据传输。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算 机程序指令可以是汇编指令、指令集架构(InstructionSet Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (38)

  1. 一种数据传输方法,包括:
    第一节点接收定时相关信息;
    所述第一节点根据所述定时相关信息调度数据传输,所述数据传输包括上行数据传输或下行数据传输。
  2. 根据权利要求1所述的方法,其中,所述第一节点根据所述定时相关信息调度数据传输,包括:
    所述第一节点根据所述定时相关信息确定进行数据传输的不可用符号;
    所述第一节点在所述不可用符号上不调度所述数据传输,或者所述第一节点在所述不可用符号与所述数据传输的资源交叠的情况下,打掉与所述不可用符号交叠的符号。
  3. 根据权利要求2所述的方法,还包括:
    所述第一节点根据如下信息的至少一种确定进行所述数据传输的不可用符号:
    所述定时相关信息;
    定时误差限制;
    不可用符号余量;
    所述数据传输的方向;
    所述数据传输的子载波间隔;
    所述数据传输的符号时长;
    第二节点的时间资源类型。
  4. 根据权利要求1~3任一项所述的方法,其中,所述定时相关信息包括以下至少一项:
    第二节点的下行接收定时相对于所述第一节点的下行发送定时的时间偏移量;
    第二节点的上行发送定时相对于所述第二节点的下行接收定时的时间偏移量;
    第二节点的下行发送定时相对于所述第二节点的下行接收定时的时间偏移量;
    第二节点的上行接收定时相对于所述第二节点的下行发送定时的时间偏移量;
    第二节点的上行接收定时相对于所述第二节点的下行接收定时的时间偏移量;
    第二节点的上行发送定时相对于所述第二节点的下行发送定时的时间偏移量;
    第二节点的上行发送定时相对于所述第二节点的上行接收定时的时间偏移量;
    第二节点的收发转换时间;
    第二节点的发收转换时间。
  5. 根据权利要求1~3任一项所述的方法,其中:
    所述定时相关信息是以特定时间单位量化后的定时相关信息。
  6. 根据权利要求1~3任一项所述的方法,还包括:
    所述第一节点根据如下信息的至少一种调度所述数据传输:
    所述第一节点的定时信息;
    定时误差限制;
    不可用符号余量;
    所述数据传输的方向;
    所述数据传输的子载波间隔;
    所述数据传输的符号时长;
    第二节点的时间资源类型。
  7. 一种数据传输方法,包括:
    第二节点确定定时相关信息;
    所述第二节点向第一节点上报所述定时相关信息,所述定时相关信息用于所述第一节点调度所述第二节点的数据传输,所述第二节点的数据传输包括上行数据传输或下行数据传输。
  8. 根据权利要求7所述的方法,还包括:
    所述第二节点根据所述第一节点对所述第二节点的调度情况,调度第三节点的数据传输,所述第三节点的数据传输包括上行数据传输或下行数据传输。
  9. 根据权利要求8所述的方法,其中,所述第二节点根据所述第一节点对所述第二节点的调度情况,调度第三节点的数据传输,包括:
    所述第二节点根据所述第一节点对所述第二节点的调度情况,确定所述第三节点与所述第二节点进行数据传输的不可用符号;
    所述第二节点在所述不可用符号上不调度所述第三节点的数据传输,或者所述第二节点在所述不可用符号与所述第三节点的数据传输的资源交叠的情况下,打掉与所述不可用符号交叠的符号。
  10. 根据权利要求9所述的方法,其中,所述第二节点根据如下信息的至少一种确定所述第三节点与所述第二节点进行数据传输的不可用符号:
    所述第一节点对所述第二节点的调度情况;
    所述定时相关信息;
    定时误差限制;
    不可用符号余量;
    所述第二节点与所述第三节点之间的数据传输方向;
    所述第二节点的时间资源类型。
  11. 根据权利要求7~10任一项所述的方法,其中,所述定时相关信息包括以下至少一项:
    所述第二节点的下行接收定时相对于所述第一节点的下行发送定时的时间偏移量;
    所述第二节点的上行发送定时相对于所述第二节点的下行接收定时的时间偏移量;
    所述第二节点的下行发送定时相对于所述第二节点的下行接收定时的时间偏移量;
    所述第二节点的上行接收定时相对于所述第二节点的下行发送定时的时间偏移量;
    所述第二节点的上行接收定时相对于所述第二节点的下行接收定时的时间偏移量;
    所述第二节点的上行发送定时相对于所述第二节点的下行发送定时的时间偏移量;
    所述第二节点的上行发送定时相对于所述第二节点的上行接收定时的时间偏移量;
    所述第二节点的收发转换时间;
    所述第二节点的发收转换时间。
  12. 根据权利要求7~10任一项所述的方法,其中,所述定时相关信息是以特定时间单位量化后的定时相关信息。
  13. 根据权利要求8~10任一项所述的方法,还包括:
    所述第二节点根据如下信息的至少一种调度所述第三节点的数据传输:
    所述第一节点对所述第二节点的调度情况;
    所述定时相关信息;
    定时误差限制;
    不可用符号余量;
    所述第二节点与所述第三节点之间的数据传输方向;
    所述第二节点的时间资源类型。
  14. 一种数据传输方法,包括:
    第一节点接收保护间隔;
    所述第一节点根据所述保护间隔调度数据传输,所述数据传输包括上行数据传输或下行数据传输。
  15. 根据权利要求14所述的方法,其中,所述第一节点根据所述保护间隔调度数据传输,包括:
    所述第一节点在所述保护间隔上不调度所述数据传输;
    或者所述第一节点在所述保护间隔与所述数据传输的资源交叠时,打掉与所述保护间隔交叠的符号。
  16. 根据权利要求14或15所述的方法,其中,所述保护间隔包括以下至少一项:
    下行的保护间隔;
    上行的保护间隔;
    统一的保护间隔;
    参考子载波间隔。
  17. 根据权利要求14或15所述的方法,其中,所述保护间隔以特定时间单位为粒度。
  18. 根据权利要求14或15所述的方法,其中,所述保护间隔根据以下至 少一种信息获得:
    第二节点的下行接收定时;
    第二节点的下行发送定时;
    第二节点的上行发送定时;
    第二节点的上行接收定时;
    第二节点的上行发送定时相对所述第二节点的下行接收定时的时间提前量;
    定时提前补偿;
    定时提前命令指示的索引值;
    所述第一节点的上行接收定时相对于所述第一节点的下行发送定时的时间偏移量;
    所述第一节点的上行接收定时相对于所述第一节点的下行发送定时的时间偏移量的一半;
    定时误差限制;
    收发转换时间;
    发收转换时间;
    不可用符号余量;
    参考子载波间隔。
  19. 根据权利要求16所述的方法,其中,所述下行的保护间隔指所述第一节点和第二节点之间下行链路的保护间隔,包括以下至少之一:所述下行链路的每个时隙的开始位置的保护间隔,所述下行链路的每个时隙的结束位置的保护间隔,所述下行链路的至少一个连续时隙的开始位置的保护间隔,所述下行链路的至少一个连续时隙的结束位置的保护间隔,在所述第二节点的硬Hard资源或者指示为可用的软Soft资源之后所述下行链路的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之前所述下行链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之后所述下行链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之前所述下行链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之后所述下行链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之前所述下行链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后所述下行链路的保 护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前所述下行链路的保护间隔。
  20. 根据权利要求16所述的方法,其中,所述上行的保护间隔指所述第一节点和第二节点之间上行链路的保护间隔,包括以下至少之一:所述上行链路的每个时隙的开始位置的保护间隔,所述上行链路的每个时隙的结束位置的保护间隔,所述上行链路的至少一个连续时隙的开始位置的保护间隔,所述上行链路的至少一个连续时隙的结束位置的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之后所述上行链路的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之前所述上行链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之后所述上行链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之前所述上行链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之后所述上行链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之前所述上行链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后所述上行链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前所述上行链路的保护间隔。
  21. 根据权利要求16所述的方法,其中,所述统一的保护间隔指所述第一节点和第二节点之间链路的保护间隔,包括以下至少之一:每个时隙的开始位置的保护间隔,每个时隙的结束位置的保护间隔,至少一个传输方向相同的连续时隙的开始位置的保护间隔,至少一个传输方向相同的连续时隙的结束位置的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之后所述链路的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之前所述链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之后所述链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之前所述链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之后所述链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之前所述链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后所述链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前所述链路的保护间隔;
    其中,所述链路包括上行链路和下行链路。
  22. 一种数据传输方法,包括:
    第二节点确定保护间隔;
    所述第二节点向第一节点上报所述保护间隔,所述保护间隔用于所述第一节点调度所述第二节点的数据传输,所述第二节点的数据传输包括上行数据传输或下行数据传输。
  23. 根据权利要求22所述的方法,还包括:
    所述第二节点根据所述第一节点对所述第二节点的调度情况,调度第三节点的数据传输,所述第三节点的数据传输包括上行数据传输或下行数据传输。
  24. 根据权利要求23所述的方法,其中,所述第二节点根据所述第一节点对所述第二节点的调度情况,调度第三节点的数据传输,包括:
    所述第二节点根据所述第一节点对所述第二节点的调度情况,确定所述第三节点与所述第二节点进行数据传输的不可用符号;
    所述第二节点在所述不可用符号上不调度所述第三节点的数据传输,或者所述第二节点在所述不可用符号与所述第三节点的数据传输的资源交叠时,打掉与所述不可用符号交叠的符号。
  25. 根据权利要求24所述的方法,其中,所述第二节点根据如下信息的至少一种确定所述第三节点与所述第二节点进行数据传输的不可用符号:
    所述第一节点对所述第二节点的调度情况;
    所述定时相关信息;
    定时误差限制;
    不可用符号余量;
    所述第二节点与所述第三节点之间的数据传输方向;
    所述第二节点的时间资源类型。
  26. 根据权利要求22~25任一项所述的方法,其中,所述保护间隔包括以下至少一项:
    下行的保护间隔;
    上行的保护间隔;
    统一的保护间隔;
    参考子载波间隔。
  27. 根据权利要求22~25任一项所述的方法,其中,所述保护间隔以特定时间单位为粒度。
  28. 根据权利要求22~25任一项所述的方法,其中,所述保护间隔根据以 下至少一种信息获得:
    所述第二节点的下行接收定时;
    所述第二节点的下行发送定时;
    所述第二节点的上行发送定时;
    所述第二节点的上行接收定时;
    所述第二节点的上行发送定时相对所述第二节点的下行接收定时的时间提前量;
    定时提前补偿;
    定时提前命令指示的索引值;
    所述第一节点的上行接收定时相对于所述第一节点的下行发送定时的时间偏移量;
    所述第一节点的上行接收定时相对于所述第一节点的下行发送定时的时间偏移量的一半;
    定时误差限制;
    收发转换时间;
    发收转换时间;
    不可用符号余量;
    参考子载波间隔。
  29. 根据权利要求26所述的方法,其中,所述下行的保护间隔指所述第一节点和所述第二节点之间下行链路的保护间隔,包括以下至少之一:所述下行链路的每个时隙的开始位置的保护间隔,所述下行链路的每个时隙的结束位置的保护间隔,所述下行链路的至少一个连续时隙的开始位置的保护间隔,所述下行链路的至少一个连续时隙的结束位置的保护间隔,在所述第二节点的硬Hard资源或者指示为可用的软Soft资源之后所述下行链路的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之前所述下行链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之后所述下行链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之前所述下行链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之后所述下行链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之前所述下行链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后所述下行 链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前所述下行链路的保护间隔。
  30. 根据权利要求26所述的方法,其中,所述上行的保护间隔指所述第一节点和所述第二节点之间上行链路的保护间隔,包括以下至少之一:所述上行链路的每个时隙的开始位置的保护间隔,所述上行链路的每个时隙的结束位置的保护间隔,所述上行链路的至少一个连续时隙的开始位置的保护间隔,所述上行链路的至少一个连续时隙的结束位置的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之后所述上行链路的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之前所述上行链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之后所述上行链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之前所述上行链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之后所述上行链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之前所述上行链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后所述上行链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前所述上行链路的保护间隔。
  31. 根据权利要求26所述的方法,其中,所述统一的保护间隔指所述第一节点和所述第二节点之间链路的保护间隔,包括以下至少之一:每个时隙的开始位置的保护间隔,每个时隙的结束位置的保护间隔,至少一个传输方向相同的连续时隙的开始位置的保护间隔,至少一个传输方向相同的连续时隙的结束位置的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之后所述链路的保护间隔,在所述第二节点的Hard资源或者指示为可用的Soft资源之前所述链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之后所述链路的保护间隔,在所述第二节点的Hard下行资源或者指示为可用的Soft下行资源之前所述链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之后所述链路的保护间隔,在所述第二节点的Hard上行资源或者指示为可用的Soft上行资源之前所述链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之后所述链路的保护间隔,在所述第二节点的Hard灵活资源或者指示为可用的Soft灵活资源之前所述链路的保护间隔;
    其中,所述链路包括上行链路和下行链路。
  32. 根据权利要求22~25任一项所述的方法,还包括以下至少之一:
    所述第二节点不期望在所述保护间隔上接收所述第一节点发送的数据;
    所述第二节点不期望在所述保护间隔上向所述第一节点发送数据;
    所述第二节点不期望在所述保护间隔上被所述第一节点调度。
  33. 一种数据传输装置,设置于第一节点,包括:
    接收模块,设置为接收定时相关信息;
    调度模块,设置为根据所述定时相关信息调度数据传输,所述数据传输包括上行数据传输或下行数据传输。
  34. 一种数据传输装置,设置于第二节点,包括:
    确定模块,设置为确定定时相关信息;
    发送模块,设置为向第一节点上报所述定时相关信息,所述定时相关信息用于所述第一节点调度所述第二节点的数据传输,所述第二节点的数据传输包括上行数据传输或下行数据传输。
  35. 一种数据传输装置,设置于第一节点,包括:
    接收模块,设置为接收保护间隔;
    调度模块,设置为根据所述保护间隔调度数据传输,所述数据传输包括上行数据传输或下行数据传输。
  36. 一种数据传输装置,设置于第二节点,包括:
    确定模块,设置为确定保护间隔;
    发送模块,设置为向第一节点上报所述保护间隔,所述保护间隔用于所述第一节点调度所述第二节点的数据传输,所述第二节点的数据传输包括上行数据传输或下行数据传输。
  37. 一种数据传输系统,包括第一节点和第二节点;
    所述第一节点包括如权利要求33所述的数据传输装置;
    所述第二节点包括如权利要求34所述的数据传输装置。
  38. 一种数据传输系统,包括第一节点和第二节点;
    所述第一节点包括如权利要求35所述的数据传输装置;
    所述第二节点包括如权利要求36所述的数据传输装置。
PCT/CN2020/108682 2019-08-16 2020-08-12 数据传输方法、装置和系统 WO2021031955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910759549.1A CN110536466A (zh) 2019-08-16 2019-08-16 数据传输方法、装置和系统
CN201910759549.1 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031955A1 true WO2021031955A1 (zh) 2021-02-25

Family

ID=68663551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108682 WO2021031955A1 (zh) 2019-08-16 2020-08-12 数据传输方法、装置和系统

Country Status (2)

Country Link
CN (1) CN110536466A (zh)
WO (1) WO2021031955A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536466A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置和系统
US20240031961A1 (en) * 2019-12-10 2024-01-25 Lg Electronics Inc. Method for configuring timing alignment for iab node, and node using same method
CN113099542B (zh) * 2020-01-09 2023-04-07 维沃移动通信有限公司 参数上报方法及上行调度方法、设备及介质
CN113163489B (zh) * 2020-01-23 2023-04-07 维沃移动通信有限公司 资源配置方法、装置和设备
CN113163491B (zh) * 2020-01-23 2023-03-24 维沃移动通信有限公司 频域资源处理方法、频域资源配置方法及相关设备
US11432213B2 (en) * 2020-01-27 2022-08-30 Qualcomm Incorporated Gap switch for wireless systems with multiple parents
WO2021093208A1 (en) * 2020-02-14 2021-05-20 Zte Corporation A method for transmitting information for determining time difference information among nodes of a network
CN113596982B (zh) * 2020-04-30 2022-10-18 维沃移动通信有限公司 定时调整方法及相关设备
CN113709866A (zh) * 2020-05-21 2021-11-26 华为技术有限公司 一种资源配置方法以及网络节点
CN113993208A (zh) * 2020-07-27 2022-01-28 维沃移动通信有限公司 确定目标资源类型的方法、装置和通信设备
CN111918341A (zh) * 2020-08-03 2020-11-10 中兴通讯股份有限公司 符号预留、询问、通知方法、第一节点、第二节点及介质
CN114006687A (zh) * 2021-01-05 2022-02-01 中国移动通信有限公司研究院 一种发送方法、上行控制方法、终端及网络侧设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232285A1 (en) * 2009-03-11 2010-09-16 Samsung Electronics Co., Ltd. Method and apparatus for allocating backhaul transmission resource in wireless communication system based on relay
CN101925118A (zh) * 2009-06-15 2010-12-22 大唐移动通信设备有限公司 一种避免接口传输冲突的方法、装置和系统
CN102045773A (zh) * 2009-10-23 2011-05-04 中兴通讯股份有限公司 中继节点的数据传输冲突的处理方法和装置
US20190021084A1 (en) * 2017-07-12 2019-01-17 Futurewei Technologies, Inc. System And Method For Backhaul and Access In Beamformed Communications Systems
CN110121191A (zh) * 2018-02-05 2019-08-13 成都华为技术有限公司 一种中继系统中资源配置的方法及装置
CN110536466A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232285A1 (en) * 2009-03-11 2010-09-16 Samsung Electronics Co., Ltd. Method and apparatus for allocating backhaul transmission resource in wireless communication system based on relay
CN101925118A (zh) * 2009-06-15 2010-12-22 大唐移动通信设备有限公司 一种避免接口传输冲突的方法、装置和系统
CN102045773A (zh) * 2009-10-23 2011-05-04 中兴通讯股份有限公司 中继节点的数据传输冲突的处理方法和装置
US20190021084A1 (en) * 2017-07-12 2019-01-17 Futurewei Technologies, Inc. System And Method For Backhaul and Access In Beamformed Communications Systems
CN110121191A (zh) * 2018-02-05 2019-08-13 成都华为技术有限公司 一种中继系统中资源配置的方法及装置
CN110536466A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置和系统

Also Published As

Publication number Publication date
CN110536466A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021031955A1 (zh) 数据传输方法、装置和系统
CA3114130C (en) Reporting beam failure
CN110545580B (zh) 一种资源配置的方法、装置及系统
US11889296B2 (en) Method and apparatus for transmitting uplink information
CN111200873B (zh) 一种上行链路切换的方法、通信装置和通信系统
JP7262619B2 (ja) セカンダリ・セルのためのビーム障害回復の装置および方法
CN111699721B (zh) 用于非许可无线电频带场景的临时浮动下行链路定时方法
US9807742B2 (en) Method and device for transmitting uplink control information
US8693431B2 (en) Methods and apparatus for interference based joint scheduling of peer to peer links with WWAN
US11729823B2 (en) Method and apparatus for determining channel sensing threshold in uplink channel access
KR20210128477A (ko) 취소를 표시하는 정보를 결정하기 위한 시스템 및 방법
US11412538B2 (en) User device, network node and methods thereof
JP2015533035A (ja) マシンツーマシン(m2m)ワイヤレスワイドエリアネットワーク(wan)におけるフレームのアイドルページングスロットの再利用
CN105103479A (zh) 用于小区发现另一个小区的方法和设备
CN114175803A (zh) 侧行链路反馈资源分配
CN110603886B (zh) Bfd/ibfd中对载波频率的接收方使用指示
CN113490276B (zh) 发送和接收信息的方法及装置
CN111989884B (zh) 用于ue内打孔的上行链路传输的信令指示的传输
CN112888066A (zh) Pdcch的发送方法、接收方法、装置及节点设备
EP3568940B1 (en) Common pdcch configuration
CN103532658A (zh) SR的处理方法、eNB及UE
US11424872B2 (en) HARQ PID signaling for SPS UL
AU2021223146A1 (en) Transmission method and device
CN111726208B (zh) 链路失败恢复的方法和装置
CN114641073B (zh) 信息发送方法、接收方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854065

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20854065

Country of ref document: EP

Kind code of ref document: A1