WO2021031747A1 - 网络系统、小区的接入方法、终端及网络设备 - Google Patents

网络系统、小区的接入方法、终端及网络设备 Download PDF

Info

Publication number
WO2021031747A1
WO2021031747A1 PCT/CN2020/102101 CN2020102101W WO2021031747A1 WO 2021031747 A1 WO2021031747 A1 WO 2021031747A1 CN 2020102101 W CN2020102101 W CN 2020102101W WO 2021031747 A1 WO2021031747 A1 WO 2021031747A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal
information
network
spatial
Prior art date
Application number
PCT/CN2020/102101
Other languages
English (en)
French (fr)
Inventor
柴丽
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2021031747A1 publication Critical patent/WO2021031747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a network system, cell access method, terminal, and network equipment.
  • the reason why cellular networks are widely adopted is derived from a mathematical conclusion, that is to cover a plane with circles of the same radius, when the center of the circle is at the center of each regular hexagon of the regular hexagon grid, that is, when the center of the circle is at a regular triangle
  • the number of circles used in the grid points is the least.
  • the use of the least number of nodes can cover the largest area of the graph, even if the nodes are required to be on a grid with translational characteristics like a lattice, it is still an unknown problem to be solved, but in communication, the use of circles to express practical requirements is usually It is reasonable, so in consideration of saving equipment construction cost, regular triangular mesh or simple hexagonal mesh is the best choice.
  • the network formed in this way is covered together and shaped very much like a honeycomb, so it is called a cellular network.
  • a cell is defined as an area that provides users with wireless communication services, and is a basic unit of a wireless network.
  • the number of cells supported by the base station is determined by "number of sectors x number of carrier frequencies per sector". In the 3 ⁇ 2 configuration, the entire circular area is divided into 3 sectors for coverage, and each sector uses 2 carrier frequencies, so there are a total of 6 cells. (But the maximum number of cells corresponding to a base station is more than 6).
  • a cellular network cell corresponds to a physical cell ID and a global cell ID and a set of system messages.
  • the system information broadcast is operated by the network. It is sent periodically or on demand.
  • the terminal User Equipment, UE
  • the system message includes the information of the cell.
  • Physical Random Access Channel (PRACH) configuration index, logical root sequence initial value, cyclic shift index, uplink and downlink configuration index are equal to the parameters related to random access.
  • PRACH Physical Random Access Channel
  • the UE To access the gNB network, the UE must go through cell search, determine a serving cell, and then obtain the cell system information, initiate random access and other processes, so as to obtain frequency and symbol synchronization with a specific cell; 2) Obtain the system frame clock, That is, the starting position of the downlink frame; 3) Determine the physical-layer cell identity (PCI) of the cell.
  • PCI physical-layer cell identity
  • the UE not only needs to perform cell search when it is turned on, but to support mobility, the UE will constantly search for neighboring cells, obtain synchronization, and estimate the signal reception quality of the cell, so as to decide whether to perform handover (handover, when the UE is in RRC_CONNECTED State) cell selection and/or cell re-selection (cell re-selection, when the UE is in the RRC_IDLE state).
  • handover when the UE is in RRC_CONNECTED State
  • cell selection and/or cell re-selection cell re-selection, when the UE is in the RRC_IDLE state.
  • the order of searching is cells with the same frequency, cells with different frequencies, and then cells between different systems.
  • the terminal still needs to determine whether the signal quality of the cell meets certain requirements before it can further determine whether it can camp on the cell.
  • the UE is handing over, it also selects a certain target cell for handover.
  • Downlink interference The UAV receives a large number of neighboring cells in the air, and the number of neighboring cells is as many as a dozen, which causes the average downlink SINR to drop to about 0db.
  • ISD 500m urban areas will receive 2.5km cells, frequent handovers in the air, handover failures and dropped calls are 2-5 times higher than the ground
  • the path loss of the UAV up to multiple neighboring areas is close, which has a great impact on the interference of neighboring areas.
  • the UAV's uplink to multiple surrounding base stations are all LOS paths, and the UAV terminal uplink service will interfere with the uplink performance of ground users in the surrounding neighboring areas.
  • Traditional terrestrial UE power control only considers the path loss and SINR of the cell, and does not consider the interference to neighboring cells.
  • the widely used cellular network is a flat cell, which has good service performance for traditional ground UEs.
  • it is caused by its flight characteristics (flight speed and different flight altitude).
  • Flight characteristics and propagation characteristics are different.
  • the application of flat cells brings too much complexity to the service and handover of drones, and the management of access and neighboring cell relationships.
  • the present disclosure provides a network system, a cell access method, terminal and network equipment.
  • the planning of the community is realized, and the basic communication platform can be provided for the three-domain communication of water, land and air.
  • the embodiments of the present disclosure provide the following solutions:
  • a network system includes: at least one cell that provides wireless communication services and/or signaling control for users, and the coverage area of the cell includes at least one definable 3D stereoscopic area.
  • the spatial range of the 3D three-dimensional area includes: at least one spatial grid, and the spatial grid is recursively splitting a sphere in three dimensions of longitude, latitude, and height at preset intervals, and the entire The mesh of the earth's three-dimensional space is meshed and coded to form a mesh.
  • the cell corresponds to at least one of the following information:
  • At least one spatial grid array, sequence code group and/or sequence At least one spatial grid array, sequence code group and/or sequence
  • the index number of the sequence of the space grid group is the index number of the sequence of the space grid group.
  • one cell corresponds to one global cell label.
  • one cell corresponds to one same synchronization signal
  • a space grid and/or space grid group in a cell corresponds to a same synchronization signal
  • the synchronization signal includes at least one of a primary synchronization signal PSS, a secondary synchronization signal SSS, and a synchronization signal block SSB.
  • the size and shape of the cell are variable, or the size and shape of the spatial grid and/or spatial grid group in the cell are variable.
  • system message of the cell broadcasts at least one of the following information:
  • the three-dimensional shape or shape number of the cell is the three-dimensional shape or shape number of the cell
  • Location information or spatial grid information of at least one network device constituting the cell
  • a mask is used to represent the spatial grid group.
  • a cell network is formed according to at least one of the mobile path distribution of the terminal, the time distribution of the camping point, and the load distribution of the camping point, and the cell network includes multiple angles between cells Multi-level neighbor relationship and the shape and size of the cell.
  • the network of the cell changes according to the change of the mobile path distribution of the terminal, the distribution of the service, and/or the distribution of the camping point of the terminal.
  • system message of the cell after networking broadcasts at least one of the following information:
  • the neighboring cell information includes at least one of the following:
  • the three-dimensional shape or shape number of the neighboring area is the three-dimensional shape or shape number of the neighboring area
  • Adjacent network layers and angles of the adjacent cell and the cell Adjacent network layers and angles of the adjacent cell and the cell;
  • connection mode of the neighboring cell and the cell is the connection mode of the neighboring cell and the cell.
  • the target cell to be handed over is selected according to the spatial range, size and cell shape of the cell.
  • the network deployment of the cell after networking includes: cell planning and neighboring cell planning;
  • the planning of the cell is planned according to at least one of the shape and size of the cell, the selection of various indicators of the cell, the synchronization mode of the cell, the distance and/or the time delay between the transmitting points forming the cell;
  • the planning of the neighboring cell is performed according to at least one of the shape and size of the neighboring cell, the selection of each indicator of the neighboring cell, the synchronization mode of the neighboring cell, the distance and/or the time delay between the transmitting points forming the neighboring cell planning.
  • the synchronization signal includes: at least one of the primary synchronization signal PSS, the secondary synchronization signal SSS and the synchronization signal block SSB.
  • the embodiment of the present disclosure also provides a method for accessing a cell, which is applied to a terminal, the cell is a cell in the network system described above, and the method includes:
  • a cell matching the moving path of the terminal is selected to camp on.
  • the cell access method also includes:
  • the target cell is the network device according to the mobile path distribution of the terminal. After the distribution of services and/or the terminal's camping points are distributed and networked, the target cell is determined according to the spatial range, size, and shape of the cell.
  • the cell access method also includes:
  • the embodiment of the present disclosure also provides a method for accessing a cell, which is applied to a network device, the cell is a cell in the network system as described above, and the method includes:
  • the system message is used by the terminal to select a cell matching the moving path of the terminal to camp on.
  • the cell access method further includes:
  • the information of the target cell is sent to the terminal, and the target cell is the network equipment according to the mobile path distribution and service distribution of the terminal And/or after the terminal’s camping points are distributed and networked, the target cell is determined according to the spatial range, size and shape of the cell.
  • the embodiment of the present disclosure also provides a cell access device, which is applied to a terminal, and the cell is a cell in the network system described above, and includes:
  • the transceiver module is used to receive the system message sent by the network equipment in the cell; the processing module is used to select the cell matching the mobile path of the terminal to camp on according to the system message.
  • the embodiment of the present disclosure also provides a terminal, including:
  • the transceiver is configured to receive a system message sent by a network device in the cell; the processor is configured to select a cell matching the movement path of the terminal to camp on according to the system message.
  • the embodiment of the present disclosure also provides an access device for a cell, which is applied to a network device, and the cell is a cell in the network system described above, including:
  • the transceiver module is used for broadcasting system messages to the terminal; the system messages are used for the terminal to select a cell matching the moving path of the terminal to camp on.
  • the embodiment of the present disclosure also provides a network device, including:
  • the transceiver is used to broadcast system messages to the terminal; the system messages are used for the terminal to select a cell matching the moving path of the terminal to camp on.
  • An embodiment of the present disclosure also provides a communication device, including a processor and a memory storing a computer program, and when the computer program is run by the processor, the method described above is executed.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described above.
  • the network system described in the above solution of the present disclosure includes at least one cell through cell planning, the cell provides users with wireless communication services and/or signaling control, and the coverage area of the cell includes at least one definable 3D Three-dimensional area; so as to provide a basic communication platform for the three-dimensional communication of water, land, and air.
  • Figure 1 is a schematic diagram of a cell in the network system of the present disclosure
  • Figure 2 is a schematic diagram of a cell in the network system of the present disclosure
  • FIG. 3 is another schematic diagram of a cell in the network system of the present disclosure.
  • FIG. 4 is a schematic diagram of the change of the cell in the network system of the present disclosure as the moving path of the terminal changes;
  • FIG. 5 is another schematic diagram of a cell in the network system of the present disclosure.
  • FIG. 6 is a schematic flowchart of a method for accessing a cell on the terminal side according to an embodiment of the disclosure
  • FIG. 7 is a schematic flowchart of a cell access method on the network device side of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the architecture of the network device of the present disclosure.
  • an embodiment of the present disclosure provides a network system, including: at least one cell, and the coverage area of the cell for providing users with wireless communication services and/or signaling control is at least a definable three-dimensional area.
  • a defined cell is a three-dimensional area that provides users with wireless communication services, not a sector or a plane area in related technologies.
  • the cell is formed by at least one network device, and the network Equipment includes base station, transmitting point, receiving point, central unit (central RAN unit), distributed unit (distributed RAN unit), indoor baseband processing unit (BBU), remote radio unit (Radio Remote Unit, RRU), relay, communication At least one of balloons, flying aircraft base stations, antennas, and satellites.
  • the antenna here can be used with other devices, such as a base station, or as an independent device.
  • the spatial range of the three-dimensional area includes: at least one spatial grid, and the spatial grid is recursively splitting the sphere in three dimensions of longitude, latitude, and height at preset intervals, so as to divide the entire earth
  • the mesh is formed after the three-dimensional space is meshed and coded.
  • At least one of one or more base stations, transmitting points, receiving points, central units, distribution units, BBUs, RRUs, relays, communication balloons, flying aircraft base stations, antennas, and satellites will form the cell , Or called a three-dimensional cell, multiple three-dimensional cells can form a three-dimensional cell group.
  • a three-dimensional cell can be composed of one or more spatial grids, or spatial grid groups, and will be associated with one or more grid arrays or sequence code groups or sequences, and a three-dimensional cell can also be associated with one or more sequences The index number of the code group, the sequence of the spatial grid group and/or the index number of the sequence;
  • the cell corresponds to at least one of the following information:
  • At least one spatial grid array/sequence code group/sequence At least one spatial grid array/sequence code group/sequence
  • At least one index number of the spatial grid array/index number of the sequence code group/index number of the sequence At least one index number of the spatial grid array/index number of the sequence code group/index number of the sequence
  • the index number of the sequence of the space grid group is the index number of the sequence of the space grid group.
  • a cell corresponds to a global cell label, which is a cell label configured by a higher layer for the cell.
  • the spatial grid is: the spatial grid should perform grid division and coding on the entire three-dimensional space of the earth. Recursively divide the sphere in three dimensions of longitude, latitude, and height at a certain interval, which has the advantages of latitude and longitude consistency and orthogonality. Grid has the advantages of being identifiable, positionable, indexable, multi-scale and automatic spatial association, and can be used as a spatial reference frame for spatial control and big data management.
  • the voxels of the spatial grid are multi-scale, and the voxels of each scale are seamless and non-overlapping filling the entire three-dimensional space of the earth.
  • GeoSOT geospatial reference grid system a global coordinated global Subdivision grid called 2n one-dimensional integer array with One-dimension-integer on Two to n-th power , Referred to as GeoSOT).
  • GeoSOT geospatial reference grid coding usually uses 32-bit octal values, the record length is equivalent to 4 Chinese characters, up to 8 Chinese characters (64 bits), the 1st to 9th digits are degree-level grid codes, and the 10th to 15th digits are Hierarchical trellis coding, the 16th to 21st is the second-level trellis coding, the 22nd to the 32nd is the second-level trellis coding; the code length represents the grid level, the longer the code length, the finer the grid; when writing the code, the front Start with G, the degree, minute, and second code is separated by "-", and the code below the second is separated by ".”, the form is as follows: Gddddddddddd-mmmmmm-ssss.uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
  • GeoSOT geospatial reference grid completely covers the earth space from the center of the earth to an altitude of 50,000km, dividing the entire earth and adjacent space into about 10 30 voxels with a scale of 1 to 32, and each voxel has a unique integer code .
  • GeoSOT geospatial reference grid is the height of the earth (or the average radius of the earth)
  • the height dimension is degraded at this time, and the true three-dimensional geospatial reference grid frame becomes a reference grid frame on the two-dimensional earth sphere. Therefore, GeoSOT three-dimensional spatial reference grid and spherical spatial reference grid form a seamless connection, and the three-dimensional spatial reference grid can also seamlessly associate spherical data.
  • the GeoSOT grid has a good tolerance relationship with the longitude and latitude standard grids at home and abroad.
  • the GeoSOT grid contains the main domestic and foreign grids for surveying and mapping, meteorology, ocean, and national geographic.
  • the GeoSOT grid is expanded through the latitude and longitude space of the earth's surface for three times, and then strictly recursively quadrupled, thereby dividing the entire earth into whole degrees, whole minutes, and seconds ranging from the global to the centimeter level. And the hierarchical grid system below the second.
  • the first spatial expansion is to expand the entire earth's surface to 512° ⁇ 512°, the center of the patch coincides with the intersection of the equator and the prime meridian, and then recursively quadrisection until 1° grid unit;
  • Spatial expansion is to expand the 1° grid unit from 60' to 64', and then recursively quadruple it until the 1'grid unit;
  • the third spatial expansion is to expand the 1'grid unit from 60" to 64" , And then recursively quadruple divisions until 1" grid unit.
  • the division units below 1" directly adopt quadrilateral division, straight 32 levels to (1/2048)".
  • the longitude and latitude space of the entire earth surface is in the direction of longitude and latitude
  • the direction divides the entire earth surface into a multi-level grid system covering the world through a strict two-point method. Therefore, the voxels of the GeoSOT earth spatial reference grid are multi-scale, and the voxels of each scale are seamless, No overlap fills the entire three-dimensional space of the earth.
  • the spatial grid is a method of recursive quadtree division of equal longitude and latitude in the direction of longitude and latitude, and the spherical surface of the earth is divided into specifications, and then the divided surface units are ordered and regular
  • GeoSOT geospatial reference grid framework Including: traditional surveying, meteorology, ocean, remote sensing and other earth surface information, as well as ocean (Underwater) information, meteorological clouds, gravity fields, electromagnetic fields and other three-dimensional aerospace information.
  • GeoSOT geospatial reference grid framework it can be the air, sky, earth, and ground (underwater) moving targets.
  • Organization and management provide a new identification method. Since the GeoSOT space grid is filled with the entire earth space, any moving target only needs to be given a space grid code (plus time attribute) at a certain moment to achieve the scope of the earth space. Inside, the description, expression and display of the moving target.
  • C is a collection of several voxels (faces) (C0C1,..., Cn )
  • T records the time attribute
  • A is the set of basic attribute information of the object (A0A1,...,An).
  • Uniform association of space, space and ground data Based on the multi-scale characteristics of GeoSOT grid, it is possible to assign unique grid codes to spatial objects as large as the entire earth and as small as centimeter scale. By virtue of these codes, spatial information is automatically formed on the earth. The logical connection in space.
  • one cell corresponds to one same synchronization signal; or, one space grid and/or space grid group in one cell corresponds to one same synchronization signal;
  • the synchronization signal includes: master At least one of a synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and a synchronization signal block (Synchronization Signal Block, SSB).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • SSB Synchronization Signal Block
  • the size and shape of the cell are variable, or the size and shape of the spatial grid and/or spatial grid group in the cell are variable.
  • the size and shape of the cell can be changed. According to different requirements, adaptive changes can be made. During the change, a spatial grid and/or spatial grid group in a cell may also undergo corresponding changes.
  • the size and shape of the cell are variable.
  • the cell can be split into multiple cells and merged according to certain conditions, such as user distribution, user density, and/or changes in user service models.
  • the shape of the cell is a cell that tracks one or more users.
  • multiple transmission points transmit different synchronization signals at different time points and/or different frequency domain resources, and the multiple transmission points form different cells within time T;
  • the synchronization signal includes at least one of a primary synchronization signal PSS, a secondary synchronization signal SSS, and a synchronization signal block SSB.
  • a transmission point can send different synchronization signals; for example, at different time points and/or different frequency domain resources; therefore, this transmission point can form different cells at different time points, or form different frequency domain resources Different cells; optionally, this transmission point can form different cells with other transmission points at different time points, or form different cells on different frequency domain resources and other transmission points; for example, there are transmission points in one area A, B, C, D, E;
  • A, B, and C all send a synchronization signal with PCI of 101; D, E, and F all send a synchronization signal with PCI of 102; at t2, A, B, and D all send PCI is the synchronization signal of 103; C still sends the synchronization signal of PCI101; E, F still sends the synchronization signal of PCI102; or, at time t2, A, B, D all send the synchronization signal of PCI 103; C and E still send The synchronization signal of PCI104; F still sends the synchronization signal of PCI107; at t3, A, C, F send the synchronization signal of PCI105, B, C, E send the synchronization signal of PCI106; and then send it cyclically according to a specific cycle.
  • the synchronization signal sending behavior of the transmitting point is updated.
  • the terminal takes off in the cell 1 formed by the base station 1 and the base station 2. According to the flight path of the terminal, a cell as shown by the middle large ellipse can be formed, and the terminal can access the cell.
  • the system message of the cell broadcasts at least one of the following information:
  • Cell type for example, fixed shape and/or scale, variable shape and/or scale
  • the three-dimensional shape of the cell or the number of the shape for example, the three-dimensional shape is spherical, circular, or cone, etc.
  • Location information or spatial grid information of at least one network device that constitutes a cell for example, location information of one or more base stations or transmitting points or antennas or satellites that constitute a cell, or one or more grids that constitute a cell Information; configuration information for mobility management; configuration information for wireless link failure monitoring; configuration information for interference control; configuration information for power control.
  • a mask is used to represent the spatial grid group.
  • the broadcast message or dedicated message of the cell sends configuration information for mobility management for different heights and/or angles, including the parameters of the S criterion used for cell selection, and cell reconfiguration.
  • the specific values can be the same or different , Such as handover hysteresis, TTT length, minimum receiving level Qrxlevmin, receiving level value Srxlev, co-frequency reselection s_IntraSearch, offset q_OffsetCell between target candidate cell and current camping cell, cell reselection hysteresis value q-Hyst, Cell reselection timer duration Treselection, serving cell reselection priority CellReselectionPriority, current service frequency priority, cell reselection hysteresis q-Hys
  • the report of the measurement event of the UE carries location information and/or grid-related information.
  • the broadcast message or dedicated message of the cell sends configuration parameters for radio link failure monitoring for different heights and/or angles, such as N310.
  • This parameter represents the continuous "out-of-synchronization" of the reception.
  • Sync indicates the maximum number, and when the maximum number is reached, the start of the T310 timer is triggered; T310, when the RRC layer of the UE detects physical layer problems, the timer T310 is started. During the operation of this timer, if the radio link is restored, then Stop the timer, otherwise it keeps running. If the timing expires, it is considered that the wireless link has failed; the N311 parameter is used to set the maximum number of continuous "in-sync" indications that need to be received to stop the T310 timer.
  • the configuration information for interference control is sent for different heights and/or angles.
  • the specific values may be the same or different: for example, the uplink load information includes high anti-interference indicators Height and/or angle information are added to two parameters (High Interference Indicator, HII) and Overload Indicator (Overload Indicator, OI).
  • the downlink ICIC needs to transmit the height and/or angle information in the Relative Narrowband Tx Power (RNTP) parameter. This parameter is used to indicate the downlink transmit power level on the physical resource block (PRB) of the cell, to inform neighboring cells which PRBs are transmitted with high power, and the neighboring cells try to avoid these PRBs when scheduling edge UEs.
  • PRB physical resource block
  • the broadcast message or dedicated message of the cell sends configuration information for data scheduling for different heights and/or angles.
  • the specific values can be the same or different: for example, in the discontinuous reception (DRX) parameter DRX cycle, UE wakeup time OnDuration, DRX inactivity timer DRX-InactivityTimer, wakeup timer OnDurationTimer, DRX overstart offset drxStartOffset, hybrid automatic retransmission HARQ RTT Timer information; MAC scheduling parameters, such as logic information priority Level, etc., RLC configuration parameters, such as RLC reordering window length, RLC timers, etc., packet data convergence protocol PDCP configuration parameters, service data adaptation protocol SDAP configuration parameters.
  • DRX discontinuous reception
  • the broadcast message or dedicated message of the cell sends configuration information for power control for different heights and/or angles.
  • the specific values can be the same or different: for example, the PUSCH power control formula can be added Dimensions of height h and/or angle ag:
  • Ppusch (i, j, q d , l) f (time of resource, frequency domain of resource, height of resource);
  • Ppusch '(i, j, q d, l) f' ( frequency-domain angle, the height of resources, resource time resource, the resource);
  • the objects of power control include physical uplink control channel (PUCCH), physical uplink shared channel PUSCH, channel sounding reference signal SRS, random access preamble RA preamble, random access RA Msg3, etc.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS channel sounding reference signal
  • RA preamble random access preamble RA preamble
  • random access RA Msg3 random access RA Msg3, etc.
  • open-loop industrial control point nominal power P0+open-loop path loss compensation ⁇ (PL).
  • the nominal power P0 is divided into two parts: the nominal power of the cell and the nominal power specific to the UE.
  • the network semi-statically sets the nominal power P0_PUSCH and P0_PUCCH for different heights and/or angles for all UEs in the cell, and this value is broadcast through system messages;
  • each UE can also have a UE-specific nominal power offset.
  • This value is issued through dedicated RRC signaling (for example, p0-UE-PUSCH, p0-UE-PUCCH) for different
  • the height and/or angle value of is configured to the UE, and the value can be the same or different.
  • the unit of P0_UE_PUSCH and P0_UE_PUCCH is dB, which is an offset of different UEs to the system nominal power P0_PUSCH and P0_PUCCH.
  • the configuration of P0_PUSCH may be the same or different (for example, SPS-ConfigUL: p0-NominalPUSCH-Persistent).
  • the open-loop path loss compensation PL is based on the UE's downlink path loss estimation.
  • the UE measures the downlink reference signal RSRP and subtracts it from the known RS signal power corresponding to the AP to estimate the path loss.
  • the known original transmission power of the RS signal corresponding to the AP is broadcast in the system message.
  • the dynamic power offset consists of two parts, the power adjustment ⁇ TF based on the modulation and coding strategy MCS and the closed-loop power control.
  • the power adjustment ⁇ TF and the closed-loop power control configuration of the MCS sent to the UE for different heights and/or angles can be the same or different.
  • a cell network is formed according to at least one of the mobile path distribution of the terminal, the time distribution of the camping point, and the load distribution of the camping point.
  • the cell network includes The multi-angle and multi-level neighbor relationship between the cells and the shape and size of the cells.
  • the networking of the cell network changes according to changes in the mobile path distribution of the terminal, the distribution of the service, and/or the distribution of the terminal's residence point.
  • system message of the cell broadcasts at least one of the following information:
  • the neighboring cell information includes at least one of the following:
  • the three-dimensional shape or shape number of the neighboring area is the three-dimensional shape or shape number of the neighboring area
  • Adjacent network layers and angles of the adjacent cell and the cell Adjacent network layers and angles of the adjacent cell and the cell;
  • connection mode of the neighboring cell and the cell is the connection mode of the neighboring cell and the cell.
  • the target cell to be handed over is selected according to the spatial range, size and shape of the cell.
  • the UE when the UE accesses the network, it will report at least one of the following information: whether the terminal supports a cell; the size and accuracy of the cell supported by the terminal; and the array range of the cell supported by the terminal.
  • the UE will preferentially camp on the cell matching its own path according to its own path flight needs, that is, during cell selection, reselection, reconstruction, and handover, the spatial range, size and shape of the cell are used as a priority for cell selection Consider factors.
  • the network When the network is networked, it is necessary to form a reasonable cell distribution network based on historical information and planned information, the distribution of the UE’s moving path, the time distribution of the UE’s camping point, and the load distribution of the UE’s camping point.
  • the networking of the network can be changed correspondingly according to the UE's movement, service and residency distribution.
  • the system message of the cell needs to broadcast at least one of the following information:
  • Information about other neighboring cells includes at least one of the following information:
  • the type of neighborhood fixed shape and/or scale, variable shape and/or scale;
  • the three-dimensional shape or the number of the shape of the neighboring area spherical, circular and/or conical, etc.;
  • Position information such as longitude, latitude, and height corresponding to the array information of one or more spatial grids/spatial grid groups constituting the neighborhood;
  • the information of the physical signal corresponding to one or more spatial grids constituting the neighboring cell such as synchronization signal, channel state information reference signal (CSI-RS), tracking reference signal (T-RS), SRS signal and/or transmission configuration
  • the resource identified by the indicator (TCI); and other resource information, such as: the resource may include: frequency domain resources, antenna configuration, time division multiplexing TDD uplink and downlink ratio, TDD standard, subcarrier spacing, physical resource format, Preamble sequence code of physical random access channel (PRACH), time-frequency resources of PRACH, duration of physical uplink shared channel, partial bandwidth (BWP), cell group (CG), semi-persistent scheduling (SPS), scheduling request (SR) , Radio network identification (RNTI) type, RNTI range, power control formula, power control parameters, power headroom report (PHR) threshold, PHR report format, mobility management threshold, mobility management hysteresis, mobility At least one of the offset of sexual management, RLM timer, RLM counter, RLM timer timeout time, RLM counter
  • connection between the neighboring cell and the cell is: wired, microwave or wireless, etc.;
  • the synchronization method between the consular area and this cell is: synchronous or asynchronous; if it is synchronous, is it absolute or relatively synchronous.
  • the spatial range, size and shape of the cell are taken as a priority consideration for cell selection.
  • handover request message the mobility restriction information of the downlink non-access transmission (DOWNLINK NAS TRANSPORT), the base station and the base station interface (for example, Xn, X2, S1, Gn, F1) , E1 interface) messages carried in the serving cell information (Served Cell Information) and neighboring cell information (Neighbour Information) and paging message (paging), add the space range, size, shape information and/or transmission point of the cell Information; among them, the spatial range can be indicated by the information of the spatial grid, the spatial grid group and/or the location information such as longitude, latitude, and altitude, where the transmission point information includes the location information of the transmission point that forms the cell (such as , Longitude, latitude and/or altitude information), the identification information of the transmission point,
  • the network deployment of the cell after networking includes: cell planning and neighboring cell planning;
  • the planning of the cell is planned according to at least one of the shape and size of the cell, the selection of various indicators of the cell, the synchronization mode of the cell, the distance and/or the time delay between the transmitting points forming the cell;
  • the planning of the neighboring cell is performed according to at least one of the shape and size of the neighboring cell, the selection of each indicator of the neighboring cell, the synchronization mode of the neighboring cell, the distance and/or the time delay between the transmitting points forming the neighboring cell planning.
  • the network deployment of the cell is determined according to at least one combination of the following information:
  • Business model business service quality requirements, user experience performance and other indicator requirements, network construction strategies, candidate site information, cell size estimation, and other requirements.
  • the cell size estimation includes at least one of the following: including coverage estimation, capacity estimation, interference estimation, wireless parameter estimation, service demand analysis, user prediction, user density analysis, and rate demand analysis.
  • the coverage estimation includes at least one of the following: calculating the path loss through the link budget (eg, the maximum path loss MAPL), calculating the coverage radius of the transmission and reception of each transmission point at different angles according to the propagation model; and wireless environment analysis , Including propagation model testing;
  • the network deployment of the cell includes the planning of the cell and neighboring cells;
  • the planning of the cell includes: comprehensively considering the transmission and reception coverage radius of each transmission point at different angles, the distance between different transmission points, the direction angle, and the analysis or prediction of user density in the corresponding area, and the The analysis or prediction of wireless resource requirements such as service quality requirements of the business, the analysis or prediction of interference between different transmission points, determine the shape and size of the cell, as well as the site selection, frequency selection, and antenna configuration selection of the cell, The physical cell label PCI selection and PRACH selection of the cell, and determine whether the synchronization mode between the different transmission points of the cell is: synchronous or asynchronous; if it is synchronous, is it absolute or relatively synchronous; or is the level of synchronization;
  • the planning of the cell includes: determining the distance and/or time delay between the transmitting points forming the cell, and selecting the best transmission point arrangement, for example, the number of transmitting points forming the cell is the smallest, and the distance between the transmitting points The distance between the transmission points is the shortest, the sum of the distances between the transmission points is the shortest, the delay between the transmission points is the shortest, and/or the sum of the delays between the transmission points is the shortest.
  • the planning of the neighboring area includes: comprehensive consideration of the transmission and reception coverage radius of each transmission point adjacent to the transmission point of the cell at different angles, the distance between different transmission points, the direction angle, and the user density in the corresponding area Analysis or prediction, analysis or prediction of wireless resource requirements such as service quality requirements of users in the corresponding area, analysis or prediction of interference between different transmission points, site selection, frequency selection, and cell Physical cell label PCI selection and PRACH selection.
  • the above-mentioned embodiments of the present disclosure can provide a basic communication platform for the three-domain communication of water, land, and air through cell planning.
  • an embodiment of the present disclosure also provides a method for accessing a cell, which is applied to a terminal, where the cell is a cell in the network system described above, and the method includes:
  • Step 61 Receive a system message sent by a network device in the cell;
  • Step 62 Select a cell matching the moving path of the terminal to camp on according to the system message.
  • the system message of the cell includes at least one of the following information:
  • the three-dimensional shape or shape number of the cell is the three-dimensional shape or shape number of the cell
  • Location information or spatial grid information of at least one network device constituting the cell
  • the cell access method may further include: step 63, reporting capability information of the terminal to the network device in the cell, the capability information of the terminal including at least one of the following information Item: Whether the terminal supports the cell, the size and accuracy of the cell supported by the terminal, and the array range of the cell supported by the terminal.
  • the network device may perform mobility management configuration, wireless link failure monitoring configuration, interference control configuration, and/or power control configuration according to the terminal capability information.
  • the cell access method may further include: step 64, when performing public land mobile network PLMN selection, cell selection, cell reselection, reconstruction and/or handover, access to the The target cell determined by the network equipment, the target cell is the network equipment according to the mobile path distribution of the terminal, the distribution of services and/or the terminal’s camping point distribution after networking, according to the spatial range, size and shape of the cell , The determined target cell.
  • step 64 when performing public land mobile network PLMN selection, cell selection, cell reselection, reconstruction and/or handover, access to the The target cell determined by the network equipment, the target cell is the network equipment according to the mobile path distribution of the terminal, the distribution of services and/or the terminal’s camping point distribution after networking, according to the spatial range, size and shape of the cell , The determined target cell.
  • the cell access method may further include: step 65, determining one or more network devices in the cell that perform service or signaling interaction with the terminal, and among the following information related to the network device At least one item: uplink or downlink signal configuration, time synchronization information, and time advance.
  • the UE when the UE accesses a cell, it determines the AP (access point or network device) that performs signaling/service interaction with one or more of the cell; and the UL/DL signal configuration related to the AP ( For example, random access signal related to AP, CSI-RS signal related to AP, and/or TRS signal related to AP), time synchronization information, and/or timing advance (or timing advance group) information; This information can be selected by the UE's measurement results and/or the network can be notified by signaling (broadcast message and/or dedicated signaling).
  • the AP access point or network device
  • the UL/DL signal configuration related to the AP For example, random access signal related to AP, CSI-RS signal related to AP, and/or TRS signal related to AP), time synchronization information, and/or timing advance (or timing advance group) information;
  • This information can be selected by the UE's measurement results and/or the network can be notified by signaling (broadcast message and/
  • an embodiment of the present disclosure also provides a method for accessing a cell, which is applied to a network device, the cell is a cell in the network system as described above, and the method includes:
  • Step 71 Broadcast a system message to the terminal; the system message is used by the terminal to select a cell matching the moving path of the terminal to camp on.
  • system message may include at least one of the following information:
  • the three-dimensional shape or shape number of the cell is the three-dimensional shape or shape number of the cell
  • Location information or spatial grid information of at least one network device constituting the cell
  • the cell access method may further include: step 72, receiving capability information of the terminal sent by the terminal, where the capability information of the terminal includes at least one of the following information: whether the terminal supports the cell, and the information of the cell supported by the terminal Size and accuracy, the array range of the cell supported by the terminal.
  • the network device may perform mobility management configuration, wireless link failure monitoring configuration, interference control configuration, and/or power control configuration according to the terminal capability information.
  • the cell access method may further include: step 73, when performing public land mobile network PLMN selection, cell selection, cell reselection, reconstruction and/or handover, sending the target to the terminal Cell information, the target cell is determined by the network equipment according to the mobile path distribution of the terminal, the distribution of services, and/or the terminal’s residence point distribution after networking, according to the spatial range, size and shape of the cell Target cell.
  • the embodiment of the present disclosure also provides a cell access device, which is applied to a terminal, and the cell is a cell in the network system described above, and includes:
  • the transceiver module is used to receive the system message sent by the network equipment in the cell; the processing module is used to select the cell matching the mobile path of the terminal to camp on according to the system message.
  • system message may include at least one of the following information:
  • the three-dimensional shape or shape number of the cell is the three-dimensional shape or shape number of the cell
  • Location information or spatial grid information of at least one network device constituting the cell
  • the transceiver module may also be used to report the capability information of the terminal to the network equipment in the cell, and the capability information of the terminal includes at least one of the following information: whether the terminal supports the cell, and the cell supported by the terminal The size and accuracy of the cell array range supported by the terminal.
  • the network device may perform mobility management configuration, wireless link failure monitoring configuration, interference control configuration, and/or power control configuration according to the terminal capability information.
  • the transceiver module is further configured to send information of the target cell to the terminal in the process of public land mobile network PLMN selection, cell selection, cell reselection, reconstruction and/or handover, where the target cell is After the network equipment is networked according to the mobile path distribution of the terminal, the service distribution and/or the terminal's residence point distribution, the target cell is determined according to the spatial range, size, and shape of the cell.
  • PLMN selection public land mobile network PLMN selection, cell selection, cell reselection, reconstruction and/or handover
  • the target cell is After the network equipment is networked according to the mobile path distribution of the terminal, the service distribution and/or the terminal's residence point distribution, the target cell is determined according to the spatial range, size, and shape of the cell.
  • the processing module may also be used to determine one or more network devices that perform service or signaling interaction with the terminal in the cell, and at least one of the following information related to the network device: uplink Or downlink signal configuration, time synchronization information and time advance.
  • the device is a device corresponding to the method shown in FIG. 6 above, and all implementation manners in the above method embodiments are applicable to the embodiments of the device, and the same technical effects can be achieved.
  • an embodiment of the present disclosure further provides a terminal 80, including:
  • the transceiver 81 is configured to receive system messages sent by network devices in the cell;
  • the processor 82 is configured to select a cell matching the movement path of the terminal to camp on according to the system message.
  • system message may include at least one of the following information:
  • the three-dimensional shape or shape number of the cell is the three-dimensional shape or shape number of the cell
  • Location information or spatial grid information of at least one network device constituting the cell
  • the transceiver 81 may also be used to report capability information of the terminal to the network equipment in the cell.
  • the capability information of the terminal includes at least one of the following information: whether the terminal supports the cell, and the terminal supports The size and accuracy of the cell, and the array range of the cell supported by the terminal.
  • the network device may perform mobility management configuration, wireless link failure monitoring configuration, interference control configuration, and/or power control configuration according to the terminal capability information.
  • the transceiver 81 is further configured to send information of the target cell to the terminal in the process of public land mobile network PLMN selection, cell selection, cell reselection, reconstruction, and/or handover. It is the target cell determined by the network equipment according to the mobile path distribution of the terminal, the distribution of services and/or the terminal's residence point distribution after networking, according to the spatial range, size and shape of the cell.
  • the processor 82 may also be configured to determine one or more network devices that perform service or signaling interaction with the terminal in the cell, and at least one of the following information related to the network device: uplink Or downlink signal configuration, time synchronization information and time advance.
  • the device is a terminal corresponding to the method shown in FIG. 6, and all the implementation manners in the above method embodiment are applicable to the device embodiment, and the same technical effect can be achieved.
  • the terminal may further include: a memory 83; the transceiver 81 and the processor 82, as well as the transceiver 81 and the memory 83, can be connected through a bus interface.
  • the function of the transceiver 81 can be implemented by the processor 82.
  • the function of can also be realized by the transceiver 81.
  • the embodiment of the present disclosure also provides a cell access device, which is applied to a network device.
  • the cell is a cell in the network system as described above, and includes:
  • the transceiver module is used for broadcasting system messages to the terminal; the system messages are used for the terminal to select a cell matching the moving path of the terminal to camp on.
  • system message may include at least one of the following information:
  • the three-dimensional shape or shape number of the cell is the three-dimensional shape or shape number of the cell
  • Location information or spatial grid information of at least one network device constituting the cell
  • the transceiver module is further configured to receive terminal capability information sent by the terminal, and the terminal capability information includes at least one of the following information: whether the terminal is Support cell, the size and accuracy of the cell supported by the terminal, and the array range of the cell supported by the terminal.
  • the network device may perform mobility management configuration, wireless link failure monitoring configuration, interference control configuration, and/or power control configuration according to the terminal capability information.
  • the transceiver module is further configured to send to the terminal when performing public land mobile network PLMN selection, cell selection, cell reselection, reconstruction, and/or handover Information about the target cell, the target cell is determined by the network equipment according to the mobile path distribution of the terminal, the distribution of services and/or the terminal’s camping point distribution after networking, according to the spatial range, size and shape of the cell The target cell.
  • the device is a device corresponding to the method shown in FIG. 7 above, and all implementation manners in the foregoing method embodiments are applicable to the device embodiments, and the same technical effects can also be achieved.
  • an embodiment of the present disclosure further provides a network device 90, including:
  • the transceiver 91 is used for broadcasting a system message to the terminal; the system message is used for the terminal to select a cell matching the moving path of the terminal to camp on.
  • the system message may include at least one of the following information:
  • the three-dimensional shape or shape number of the cell is the three-dimensional shape or shape number of the cell
  • Location information or spatial grid information of at least one network device constituting the cell
  • the transceiver is further configured to receive capability information of the terminal sent by the terminal, and the capability information of the terminal includes at least one of the following information: whether the terminal supports a cell, and the cell supported by the terminal The size and accuracy of the cell array range supported by the terminal.
  • the network device may perform mobility management configuration, wireless link failure monitoring configuration, interference control configuration, and/or power control configuration according to the terminal capability information.
  • the transceiver is further configured to send information of the target cell to the terminal when performing public land mobile network PLMN selection, cell selection, cell reselection, reconstruction and/or handover.
  • the target cell is a target cell determined by the network equipment according to the mobile path distribution of the terminal, the distribution of services, and/or the distribution of the terminal's residence point after networking, according to the spatial range, size, and shape of the cell.
  • the device is a device corresponding to the method shown in FIG. 7, and all the implementation manners in the foregoing method embodiment are applicable to the device embodiment, and the same technical effect can also be achieved.
  • the network device may further include: a processor 92 and a memory 93; the transceiver 91 and the processor 92, and the transceiver 91 and the memory 93 can be connected through a bus interface, and the functions of the transceiver 91 can be controlled by the processor 92 Implementation, the function of the processor 92 can also be implemented by the transceiver 91.
  • An embodiment of the present disclosure further provides a communication device, including a processor and a memory storing a computer program, and when the computer program is executed by the processor, the method described in FIG. 6 or FIG. 7 is executed. All the implementation manners in the foregoing method embodiment are applicable to this embodiment, and the same technical effect can also be achieved.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in FIG. 6 or FIG. 7 above. All the implementation manners in the foregoing method embodiment are applicable to this embodiment, and the same technical effect can also be achieved.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above series of processing can naturally be performed in a time sequence in the order of description, but do not necessarily need to be performed in a time sequence, and some steps can be performed in parallel or independently of each other.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例提供一种网络系统、小区的接入方法、终端及网络设备。所述网络系统包括:至少一个小区,所述小区为用户提供无线通信业务和/或信令控制,所述小区的覆盖区域包括至少一块可定义的立体区域。本公开的方案实现了小区的规划,为水域、陆域、空域三域一体的通讯提供基础的通信平台。

Description

网络系统、小区的接入方法、终端及网络设备
相关申请的交叉引用
本申请主张在2019年8月22日在中国提交的中国专利申请号No.201910778514.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种网络系统、小区的接入方法、终端及网络设备。
背景技术
相关技术中,蜂窝网络被广泛采用的原因是源于一个数学结论,即以相同半径的圆形覆盖平面,当圆心处于正六边形网格的各正六边形中心,也就是当圆心处于正三角网格的格点时所用圆的数量最少。虽然使用最少结点可以覆盖最大面积的图形即使要求结点在一个如同晶格般有平移特性的网格上也仍是有待求解的未知问题,但在通讯中,使用圆形来表述实践要求通常是合理的,因此出于节约设备构建成本的考虑,正三角网格或者也称为简单六角网格是最好的选择。这样形成的网络覆盖在一起,形状非常像蜂窝,因此被称作蜂窝网络。
相关技术中,一个小区的定义是为用户提供无线通信业务的一片区域,是无线网络的基本组成单位。基站支持的小区数由“扇区数×每扇区载频数”确定。在3×2配置中,整个圆形区域分为3个扇区进行覆盖、每扇区使用2个载频,那么就一共有6个小区。(但一个基站对应的最大小区数不止6个)。
一个蜂窝网络小区对应一个物理小区标识和全局小区标识和一套系统消息。系统信息广播由网络实现操作,周期性发送或按需发送,终端(User Equipment,UE)开机后,会接收到由基站(gNB)发送的同步信号和系统消息,其中系统消息中包括本小区的物理随机接入信道(Physical Random Access Channel,PRACH)配置索引、逻辑根序列初始值、循环移位索引、上下行配置索引等于随机接入有关的参数。UE要接入gNB网络,必须经过小区搜索、 确定一个服务小区,然后获取该小区系统信息、发起随机接入等过程,从而与某一个特定小区取得频率和符号同步;2)获取系统帧时钟,即下行帧的起始位置;3)确定小区的物理层小区标识(Physical-layer Cell Identity,PCI)。
UE不仅需要在开机时进行小区搜索,为了支持移动性(mobility),UE会不停地搜索邻居小区、取得同步并估计该小区信号的接收质量,从而决定是否进行切换(handover,当UE处于RRC_CONNECTED态)小区选择和/或小区重选(cell re-selection,当UE处于RRC_IDLE态)。在小区搜索的时候,搜索的次序是同频小区、异频小区、然后找不同系统之间的小区。在经过前面的小区搜索过程后,终端仍需判定该小区的信号质量是否达到一定的要求,才能进一步确定是否可以驻留在该小区。UE在切换的时候,也是选择确定的目标小区进行切换。
对于特定的UE,如无人机,飞行器,机械臂等会存在以下问题:
1)下行干扰:无人机在空中收到大量邻区,邻区个数多达十几个,导致下行平均SINR下降至0db左右。
2)移动性问题,部分干扰邻区来自远距离基站:ISD=500m城区场景会收到2.5km外小区,空中频繁切换,切换失败和掉线次数比地面高出2-5倍
3)无人机上行到多个邻区的路损接近,对邻区干扰影响大。无人机上行到周围多个基站都是LOS径,无人机终端上行业务会干扰周边邻区的地面用户上行性能。传统地面UE功控,只考虑本小区路损及SINR,不考虑对邻区的干扰。
相关技术中,被广泛采用的蜂窝网络是一个平面小区,对传统的地面UE服务性能很好,但是对于无人机这类特殊UE,由于它的飞行特性(飞行速度,飞行高度不同)导致的信道模型,传播特性不同,平面小区的应用对无人机的服务和对无人机的切换,接入和邻区关系的管理都带来太多的复杂度。
发明内容
本公开提供了一种网络系统、小区的接入方法、终端及网络设备。实现了小区的规划,可以为水域、陆域、空域三域一体的通讯提供基础的通信平台。
为解决上述技术问题,本公开的实施例提供如下方案:
一种网络系统,包括:至少一个小区,所述小区为用户提供无线通信业务和/或信令控制,所述小区的覆盖区域包括至少一块可定义的3D立体区域。
可选的,所述3D立体区域的空间范围包括:至少一个空间网格,所述空间网格为在经度、纬度、高度三个维度上按照预设的间隔对球体进行递归剖分,对整个地球立体空间进行网格划分及编码后形成的剖分网。
可选的,所述小区对应以下信息中的至少一项:
至少一个空间网格数组、序列码组和/或序列;
至少一个空间网格数组的索引号、序列码组的索引号和/或序列的索引号;
空间网格群的序列;
空间网格群的序列的索引号。
可选的,一个小区对应一个全局小区标号。
可选的,一个小区对应一个相同的同步信号;或者,
一个小区内的一个空间网格和/或空间网格群对应一个相同的同步信号;
所述同步信号包括:主同步信号PSS、辅同步信号SSS和同步信号块SSB中的至少一项。
可选的,所述小区的大小和形状为可变的,或者,所述小区内的空间网格和/或空间网格群的大小和形状为可变的。
可选的,所述小区的系统消息广播以下至少一种信息:
小区的至少一个空间网格的数组信息;
小区的至少一个空间网格群的数组信息;
与组成小区的至少一个空间网格的数组信息关联的至少一个序列码组的索引号;
与组成小区的至少一个空间网格群的数组信息关联的至少一个序列码组的索引号;
小区类型;
小区的立体形状或者形状的编号;
小区的空间网格的大小和精度;
组成小区的至少一个空间网格或者空间网格群的数组信息对应的位置信 息;
组成小区的至少一个空间网格对应的物理信号的信息;
组成小区的至少一个网络设备的位置信息或者空间网格信息;
用于移动管理的配置信息;
用于无线链路失败监测的配置信息;
用于干扰控制的配置信息;
用于功率控制的配置信息。
可选的,空间网格群内的空间网格的数组连续的情况下,采用掩码来表示空间网格群。
可选的,在组网时,根据终端的移动路径分布、驻留点的时间分布和驻留点的负载分布中的至少一项,形成小区网络,所述小区网络包括小区之间的多角度多层面的邻区关系以及小区的形状和大小。
可选的,小区的组网根据终端的移动路径分布、业务的分布和/或终端的驻留点分布的变化而变化。
可选的,组网后的所述小区的系统消息广播以下至少一种信息:
所述小区和邻区的组网的关系定义;
所述小区在整个组网的空间中的相对位置指示;
邻区的信息。
可选的,所述邻区的信息包括以下至少一项:
组成所述小区的邻区的至少一个空间网格的数组信息;
组成所述小区的邻区的至少一个空间网格群的数组信息;
与组成所述小区的邻区的一个或多个空间网格的数组信息关联的至少一个序列码组的索引号;
与组成所述小区的邻区的一个或多个空间网格群的数组信息关联的至少一个序列码组的索引号;
邻区的类型;
邻区的立体形状或者形状的编号;
邻区的网格的大小和精度;
组成所述小区的邻区的至少一个空间网格或者空间网格群的数组信息对 应的位置信息;
组成所述小区的邻区的至少一个空间网格对应的物理信号的信息;
所述邻区和所述小区的相邻的网层以及角度;
所述邻区和所述小区的连接方式。
可选的,在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时,,根据小区的空间范围、大小以及小区的形状,选择要切换到的目标小区。
可选的,组网后所述小区的网络部署包括:小区的规划和邻区的规划;
所述小区的规划根据小区的形状和大小、小区的各指标的选择、小区的同步方式、形成该小区的发射点之间的距离和/或时延中的至少一项进行规划;
所述邻区的规划根据邻小区的形状和大小、邻小区的各指示的选择、邻小区的同步方式、形成该邻小区的发射点之间的距离和/或时延中的至少一项进行规划。
可选的,所述网络系统中,在一段时间T内,多个发射点在不同时间点和/或不同的频域资源发送不同的同步信号,多个发射点在时间T内形成不同的小区;所述同步信号包括:主同步信号PSS、辅同步信号SSS和同步信号块SSB中的至少一项。
本公开的实施例还提供一种小区的接入方法,应用于终端,所述小区为如上所述的网络系统中的小区,所述方法包括:
接收所述小区中的网络设备发送的系统消息;
根据所述系统消息,选择与终端的移动路径匹配的小区驻留。
可选的,小区的接入方法,还包括:
在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时,接入所述网络设备确定的目标小区,所述目标小区是所述网络设备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
可选的,小区的接入方法,还包括:
确定所述小区内和终端进行业务或者信令交互的一个或多个网络设备,以及和所述网络设备相关的以下信息中的至少一项:上行或者下行信号配置、 时间同步信息和时间提前量。
本公开的实施例还提供一种小区的接入方法,应用于网络设备,所述小区为如上所述的网络系统中的小区,所述方法包括:
向终端广播系统消息;所述系统消息用于终端选择与终端的移动路径匹配的小区驻留。
可选的,小区的接入方法还包括:
在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时,向终端发送目标小区的信息,所述目标小区是所述网络设备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
本公开的实施例还提供一种小区的接入装置,应用于终端,所述小区为如上所述的网络系统中的小区,包括:
收发模块,用于接收所述小区中的网络设备发送的系统消息;处理模块,用于根据所述系统消息,选择与终端的移动路径匹配的小区驻留。
本公开的实施例还提供一种终端,包括:
收发机,用于接收所述小区中的网络设备发送的系统消息;处理器,用于根据所述系统消息,选择与终端的移动路径匹配的小区驻留。
本公开的实施例还提供一种小区的接入装置,应用于网络设备,所述小区为如上所述的网络系统中的小区,包括:
收发模块,用于向终端广播系统消息;所述系统消息用于终端选择与终端的移动路径匹配的小区驻留。
本公开的实施例还提供一种网络设备,包括:
收发机,用于向终端广播系统消息;所述系统消息用于终端选择与终端的移动路径匹配的小区驻留。
本公开的实施例还提供一种通信设备,包括:处理器、存储有计算机程序的存储器,所述计算机程序被处理器运行时,执行如上所述的方法。
本公开的实施例还提供一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上所述的方法。
本公开的上述方案至少包括以下有益效果:
本公开的上述方案所述的网络系统,通过小区的规划,包括至少一个小区,所述小区为用户提供无线通信业务和/或信令控制,所述小区的覆盖区域包括至少一块可定义的3D立体区域;从而为水域、陆域、空域三域一体的通讯提供基础的通信平台。
附图说明
图1为本公开的网络系统中的小区的示意图;
图2为本公开的网络系统中的小区的一种示意图;
图3为本公开的网络系统中的小区的另一种示意图;
图4为本公开的网络系统中的小区随终端的移动路径变化而变化的示意图;
图5为本公开的网络系统中的小区的又一种示意图;
图6为本公开的实施例终端侧的小区的接入方法流程示意图;
图7为本公开的网络设备侧的小区的接入方法流程示意图;
图8为本公开的实施例终端的架构示意图;
图9为本公开的网络设备的架构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图1所示,本公开的实施例提供一种网络系统,包括:至少一个小区,所述小区为用户提供无线通信业务和/或信令控制的覆盖区域是至少一块可定义的立体区域。
该实施例所述的网络系统中,定义小区是为用户提供无线通信业务的一片立体区域,并不是相关技术中的一片扇区或者平面区域,所述小区由至少一个网络设备形成,所述网络设备包括基站、发射点、接收点、中央单元(central RAN unit)、分布单元(distributed RAN unit)、室内基带处理单元(BBU)、远 端射频单元(Radio Remote Unit,RRU)、中继、通信气球、飞行的飞行器基站、天线、卫星中的至少一种。这里的天线可以和其它设备一起使用,比如和基站一起使用,也可以作为独立设备使用。
可选的,所述立体区域的空间范围包括:至少一个空间网格,所述空间网格为在经度、纬度、高度三个维度上按照预设的间隔对球体进行递归剖分,对整个地球立体空间进行网格划分及编码后形成的剖分网。
也就是说,一个或多个基站、发射点、接收点、中央单元、分布单元、BBU、RRU、中继、通信气球、飞行的飞行器基站、天线、卫星中的至少一种会形成所述小区,或者叫立体小区,多个立体小区可以形成一个立体小区群。
一个立体小区可以由一个或多个空间网格,或者,空间网格群组成,并会关联一个或多个网格数组或者序列码组或者序列,一个立体小区也可以关联一个或者多个序列码组的索引号、空间网格群的序列和/或序列的索引号;
本公开的一可选实施例中,所述小区对应以下信息中的至少一项:
至少一个空间网格数组/序列码组/序列;
至少一个空间网格数组的索引号/序列码组的索引号/序列的索引号;
空间网格群的序列;
空间网格群的序列的索引号。
本公开的一可选实施例中,一个小区对应一个全局小区标号,这是一个高层为小区配置的小区标号。
可选的,所述空间网格为:空间网格应该对整个地球立体空间进行网格划分及编码。在经度、纬度、高度三个维度上按照一定的间隔对球体进行递归剖分,具有经纬一致性及正交性等优点。网格具有可标识、可定位、可索引、多尺度和自动空间关联等优点,可作为空间管控和大数据管理的空间参考框架。
空间网格的体元是多尺度的,并且每一尺度的体元均无缝、无叠充满着整个地球立体空间。
以GeoSOT为例,GeoSOT地球空间参考网格体系:被称为2n一维整型数组的全球等经纬度剖分网格系统(Geographical coordinate global Subdivision  grid with One-dimension-integer on Two to n-th power,简称GeoSOT)。
GeoSOT地球空间参考网格编码通常采用32位8进制数值,记录长度相当4个汉字,最多8个汉字(64位),第1~9位是度级网格编码,第10~15位是分级网格编码,第16~21是秒级网格编码,第22~32位是秒以下网格编码;编码长度表示网格层级,编码长度越长,网格越细;书写编码时,前面以G开头,度分秒级编码以“-”隔开,秒以下编码以“.”隔开,形式如下:Gddddddddd-mmmmmm-ssssss.uuuuuuuuuuu
并具备以下几个特点:
1)立体性。GeoSOT地球空间参考网格完整覆盖自地心至50 000km高空的地球空间,将整个地球及邻近空间分成约10 30个1~32级尺度的体元,每个体元都有一个唯一的整型编码。
2)立体网格与球面网格的一致性。当GeoSOT地球空间参考网格高度为大地高时(或地球平均半径),此时,高度维退化,真三维地球空间参考网格框架就变为二维地球球面上的参考网格框架。因此,GeoSOT立体空间参考网格与球面空间参考网格形成无缝连接,立体空间参考网格也能无缝关联球面数据。
3)包容性。GeoSOT的网格与国内外经纬度标准网格具有良好的包容关系,GeoSOT网格包容了国内外主要的测绘、气象、海洋、国家地理网格。
GeoSOT网格通过地球表面经纬度范围空间经过3次扩展后再对其进行严格的递归四叉剖分,由此将整个地球分割为大到全球、小到厘米级的整度、整分、整秒和秒以下的层次网格体系。其中,第1次空间扩展是将整个地球表面扩展为512°×512°,面片中心与赤道和本初子午线的交点重合,然后递归四叉剖分,直到1°网格单元;第2次空间扩展是将1°网格单元从60′扩展为64′,然后递归四叉剖分,直到1′网格单元;第3次空间扩展是将1′网格单元从60″扩展为64″,然后递归四叉剖分,直到1″网格单元。1″以下剖分单元直接采用四叉分割,直32级到(1/2048)″。这样,整个地球表面经纬度空间在经线方向和纬线方向通过严格的2分方法,将整个地球表面分割为覆盖全球的多级网格体系。所以,GeoSOT地球空间参考网格的体元是多尺度的,并且每一尺度的体元均无缝、无叠充满着整个地球立体空间。 空间网格是在经线方向和纬线方向上按等经纬度递归四叉树剖分的方法,对地球球面进行规格划分,然后对划分的面片单元进行有序规则的编码,构建一种适用于空间信息高效组织的剖分网,从而实现了整度、整分、整秒的四叉树剖分,形成一个大至地球、小至厘米级面元(32级)的多尺度四叉树网格;因此,理论上任何空天地对象都可以用相应的体元或面片聚合而成。包括:传统的测绘、气象、海洋、遥感等地球表面信息,以及海洋(水下)信息、气象云体、重力场、电磁场等各类立体空天信息。)另外,基于GeoSOT地球空间参考网格框架,可以为空、天、地、地(水)下动目标的组织与管理提供一种新的标识方法。由于GeoSOT空间网格充满着整个地球空间,任何一个动目标只要赋予其某一时刻处于的空间网格编码(加时间属性),就能实现地球空间范围内,动目标的描述、表达与展示。对每一个动目标,都采用(C,T,A)三元组进行描述,其中C为若干个体元(面片)的集合(C0C1,…,Cn),T记录时间属性,A为对象的基本属性信息的集合(A0A1,…,An)。
空天地数据的统一关联:基于GeoSOT网格的多尺度特性,既可以对大到整个地球,小到厘米级尺度的空间对象赋予唯一的网格编码,依靠这些编码,空间信息自动形成了在地球空间上的逻辑关联。
本公开的一可选实施例中,一个小区对应一个相同的同步信号;或者,一个小区内的一个空间网格和/或空间网格群对应一个相同的同步信号;所述同步信号包括:主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和同步信号块(Synchronization Signal Block,SSB)中的至少一项。
可选的,所述小区的大小和形状为可变的,或者,所述小区内的空间网格和/或空间网格群的大小和形状为可变的。该小区的大小和形状可以变化,根据需求的不同,进行适应的变化,变化过程中,一个小区内的一个空间网格和/或空间网格群也可能会发生对应的变化。
可选的,所述小区的大小和形状为可变的,该小区可以根据一定的条件,比如,用户的分布、用户的密度和/或用户的业务模型的改变,分裂成多个小区,合并成一个小区,和该小区的形状是追踪某个或多个用户的小区。
本公开的可选实施例中,在一段时间T内,多个发射点在不同时间点和/ 或不同的频域资源发送不同的同步信号,多个发射点在时间T内形成不同的小区;所述同步信号包括:主同步信号PSS、辅同步信号SSS和同步信号块SSB中的至少一项。一个发射点可以发送不同的同步信号;比如,不同的时间点和/或不同的频域资源上;于是,这个发射点可以在不同时间点形成不同的小区,或者在不同的频域资源上形成不同的小区;可选的,这个发射点可以在不同时间点和其他发射点形成不同的小区,或者在不同的频域资源和其他发射点上形成不同的小区;比如,一个区域内有发射点A,B,C,D,E;
在T的一段时间内,在t1时刻,A,B,C都发送PCI为101的同步信号;D,E,F都发送PCI为102的同步信号;在t2时刻,A,B,D都发送PCI为103的同步信号;C依然发送PCI101的同步信号;E,F依然发送PCI102的同步信号;或者,在t2时刻,A,B,D都发送PCI为103的同步信号;C和E依然发送PCI104的同步信号;F依然发送PCI107的同步信号;在t3时刻,A,C,F发送PCI105的同步信号,B,C,E发送PCI106的同步信号;然后按一个特定周期循环发送。当这个区域的用户分布,用户密度和/或业务模型发生改变时,再更新发射点的同步信号发送行为。
如图2至图5所示,比如,一个区域内有发射点1,2,3,4;在t1时刻,网络预测出上升飞行的飞行器较多,则发射点1,2都发送PCI为101的同步信号,形成小区1;同时,在坐标右侧,网络于此处上升飞行的,或者下降的飞行器较多,则发射点3,4都发送PCI为102的同步信号,形成小区2;在t2时刻,网络预测出在高度h1,高度h2水平飞行的飞行器较多,则发射点1,3都发送PCI为103的同步信号;发射点2,4发送PCI104的同步信号;分别形成小区2和小区4。
如图4和图5所示,终端在基站1和基站2形成的小区1中起飞,根据终端的飞行路径,可形成如中间大椭圆所示的小区,终端可以接入该小区中。
本公开的一可选实施例中,小区在进行系统消息广播时,所述小区的系统消息广播以下至少一种信息:
小区的至少一个空间网格的数组信息;
小区的至少一个空间网格群的数组信息;
与组成小区的至少一个空间网格的数组信息关联的至少一个序列码组的 索引号;
与组成小区的至少一个空间网格群的数组信息关联的至少一个序列码组的索引号;
小区类型,比如,固定形状和/或尺度,可变化的形状和/或尺度;
小区的立体形状或者形状的编号比如,立体形状为球形、环圈形或者锥形等;
小区的空间网格的大小和精度;
组成小区的至少一个空间网格/空间网格群的数组信息对应的位置信息,这里的位置信息可以包括:经度、纬度和/或高度等;
组成小区的至少一个空间网格对应的物理信号的信息;这里的物理信号的信息可以包括以下信息中的至少一项:同步信号,信道状态信息参考信号(CSI-RS,Channel State Information Reference Signal),跟踪参考信号(T-RS,Tracking Reference Signals),SRS信号,传输配置指示(TCI,Transmission Configuration Indicator)标识的资源,以及其他资源信息,所述资源可以包括以下信息中的至少一个:频域资源、天线配置、时分复用(Time-Division Multiplexing,TDD)的上下行配比、TDD的制式、子载波间隔、物理资源格式、PRACH的前导序列码、PRACH的时频资源、物理上行共享信道的时长、带宽部分(Band Width Part,BWP)、配置的调度(configured grant,CG)、半静态调度(Semi-Persistent Scheduling,SPS)、调度请求(Scheduling Request,SR)、无线网络临时标识(RNTI Radio Network Temporary Identity,RNTI类型、RNTI范围、功率控制的公式、功率控制的参数、功率余量报告(Power Headroom Report,PHR)的门限,PHR上报的格式、移动性管理的门限、移动性管理的迟滞、移动性管理的偏移量、无线链路检测(Radio Link Monitoring,RLM)的定时器、RLM的计数器、RLM的定时器的超时时间、RLM的计数器的值、调度优先级、无线链路失败(Radio Link Failure,RLF)的定时器、RLF的定时器的超时时间;
组成小区的至少一个网络设备的位置信息或者空间网格信息,例如,组成一个小区的一个或多个基站或者发射点或者天线或者卫星的位置信息,或者,组成一个小区的一个或多个网格信息;用于移动管理的配置信息;用于 无线链路失败监测的配置信息;用于干扰控制的配置信息;用于功率控制的配置信息。
本公开的一可选实施例中,空间网格群内的空间网格的数组连续的情况下,采用掩码来表示空间网格群。
本公开的一可选实施例中,该小区的广播消息或者专用消息中针对不同的高度和/或角度分别发送用于移动管理的配置信息,包括用于小区选择的S准则的参数、小区重选的频率选择的优先级参数、小区重选的R排序的参数,重建和/或用于切换的测量事件的迟滞,门限,触发时间(Timetotrigger)等参数时,具体值可以相同,也可以不同,如切换迟滞,TTT长度,最低接收电平Qrxlevmin,接收电平值Srxlev,同频重选s_IntraSearch,目标候选小区与当前驻留小区间的偏置量q_OffsetCell,小区重选迟滞值q-Hyst,小区重选定时器时长Treselection,服务小区重选优先级CellReselectionPriority,当前服务频率的优先级,小区重选迟滞q-Hyst等,小区最低接收电平qRxLevMin,异频/异系统测量启动门限s_NonIntraSearch,异频重选中邻区强度高于服务小区的偏置值Qoffsets等。
可选的,UE的测量事件的上报中携带上位置信息和/或网格相关的信息。
可选的,该小区的广播消息或者专用消息中针对不同的高度和/或角度分别发送用于无线链路失败监测的配置参数,如N310,该参数表示接收连续“失步(out-of-sync)”指示的最大数目,达到最大数目后触发T310定时器的启动;T310,UE的RRC层检测到physical layer problems时,启动定时器T310.该定时器运行期间,如果无线链路恢复,则停止该定时器,否则一直运行。该定时超时,认为无线链路失败;N311该参数用于设置停止T310定时器所需要收到的最大连续“in-sync”指示的个数。
可选的,该小区的广播消息或者专用消息中针对不同的高度和/或角度分别发送用于干扰控制的配置信息,具体值可以相同,也可以不同:比如,上行负载信息包括高抗干扰指标(High Interference Indicator,HII)和超负荷指示器(Overload Indicator,OI)两个参数中加入高度和/或角度的信息。下行ICIC中需要传输相对窄带发射功率指示(Relative Narrowband Tx Power,RNTP)参数中加入高度和/或角度的信息。该参数用来指示本小区物理资源块 (PRB)上的下行发送功率等级,通知邻小区哪些PRB以高功率发送,邻小区在调度边缘UE时尽量避开这些PRB。
可选的,该小区的广播消息或者专用消息中针对不同的高度和/或角度分别发送用于数据调度的配置信息,具体值可以相同,也可以不同:比如,非连续接收(DRX)参数中DRX周期,UE唤醒时间On Duration,DRX静止定时器DRX-InactivityTimer,唤醒定时器OnDurationTimer,DRX超始偏移drxStartOffset,混合自动重传HARQ RTT Timer的定时器信息;MAC调度参数,如逻辑信息的优先级等,RLC的配置参数,如RLC的重排序窗长,RLC的定时器等,分组数据汇聚协议PDCP的配置参数,业务数据适应协议SDAP的配置参数。
可选的,该小区的广播消息或者专用消息中针对不同的高度和/或角度分别发送用于功率控制的配置信息,具体值可以相同,也可以不同:比如,PUSCH的功率控制公式找那个加入高度h和/或角度ag的维度:
增强为:
Ppusch(i,j,q d,l)=f(资源的时间,资源的频域,资源的高度);
或者:
Ppusch’(i,j,q d,l)=f’(资源的时间,资源的频域,资源的高度,资源的角度);
功率控制的对象包括物理上行控制信道(PUCCH),物理上行共享信道PUSCH,信道探测参考信号SRS,随机接入前导码RA preamble,随机接入RA Msg3等。
UE发射的功率谱密度(即每RB上的功率)=开环工控点+动态的功率偏移。
其中开环工控点=标称功率P0+开环的路损补偿α×(PL)。
其中,标称功率P0又分为小区标称功率和UE特定的标称功率两部分。网络为小区内的所有UE半静态地设定针对不同的高度和/或角度的标称功率P0_PUSCH和P0_PUCCH,该值通过系统消息广播;
除此之外,每个UE还可以有终端专用(UE specific)的标称功率偏移,该值通过专用RRC信令(比如,p0-UE-PUSCH,p0-UE-PUCCH)下发针对 不同的高度和/或角度的值配置给UE,值可以相同,可以不同。P0_UE_PUSCH和P0_UE_PUCCH的单位是dB,是不同UE对于系统标称功率P0_PUSCH和P0_PUCCH的一个偏移量。
发送给UE针对不同的高度和/或角度的半静态调度的上行传输,P0_PUSCH的配置,值可以相同,可以不同(比如,SPS-ConfigUL:p0-NominalPUSCH-Persistent)。
开环的路损补偿PL基于UE对于下行的路损估计。UE通过测量下行参考信号RSRP,并与已知的AP对应的RS信号功率进行相减,从而进行路损估计。已知的AP对应的RS信号的原始发射功率在系统消息中广播。
对于PUCCH来说,由于不同的PUCCH用户是码分复用的,α取值为1,可以更好地控制不同PUCCH用户之间的干扰。
动态的功率偏移包含两个部分,基于调制与编码策略MCS的功率调整△TF和闭环的功率控制。发送给UE针对不同的高度和/或角度的MCS的功率调整△TF和闭环的功率控制配置,值可以相同,可以不同。
本公开的一可选实施例中,在组网时,根据终端的移动路径分布、驻留点的时间分布和驻留点的负载分布中的至少一项,形成小区网络,所述小区网络包括小区之间的多角度多层面的邻区关系以及小区的形状和大小。
本公开的一可选实施例中,所述小区网络的组网根据终端的移动路径分布、业务的分布和/或终端的驻留点分布的变化而变化。
可选的,所述小区的系统消息广播以下至少一种信息:
所述小区和邻区的组网的关系定义;
所述小区在整个组网的空间中的相对位置指示;
邻区的信息。
可选的,所述邻区的信息包括以下至少一项:
组成所述小区的邻区的至少一个空间网格的数组信息;
组成所述小区的邻区的至少一个空间网格群的数组信息;
与组成所述小区的邻区的一个或多个空间网格的数组信息关联的至少一个序列码组的索引号;
与组成所述小区的邻区的一个或多个空间网格群的数组信息关联的至少 一个序列码组的索引号;
邻区的类型;
邻区的立体形状或者形状的编号;
邻区的网格的大小和精度;
组成所述小区的邻区的至少一个空间网格/空间网格群的数组信息对应的位置信息;
组成所述小区的邻区的至少一个空间网格对应的物理信号的信息;
所述邻区和所述小区的相邻的网层以及角度;
所述邻区和所述小区的连接方式。
可选的,在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时,根据小区的空间范围、大小以及小区的形状,选择要切换到的目标小区。
一种具体的实现方式中,UE在接入网络时,会上报以下至少一项信息:终端是否支持小区;终端支持的小区的大小和精度;终端支持的小区的数组范围。
UE会根据自己的路径飞行需要,优先和自己路径匹配的小区驻留,即,在小区的选择、重选、重建以及切换过程中,小区的空间范围,尺寸和形状作为小区选择的一个优先级考虑因素。
网络在组网时,需要根据历史信息和以及规划的信息中的,UE的移动路径分布,UE驻留点的时间分布,UE驻留点的负载分布,形成合理的小区分布网络,包括小区之间的多角度多层面的邻区关系,小区的形状和尺度。进一步,网络的组网可以根据UE的移动,业务和驻留分布进行对应的变化。
小区的系统消息里需要广播至少以下一种信息:
该小区和其他邻区的组网的关系定义:如满足一定的算法排列规则,如蚁群,蜂群或蚂蚁巢算法;
该小区在整个组网的空间中的相对位置指示;
其他邻区的信息;
其他邻区的信息包括以下信息中的至少一种:
组成该小区的邻区的一个或多个空间网格的数组信息;
组成该小区的邻区的一个或多个空间网格群的数组信息;
与组成该小区的邻区的一个或多个空间网格的数组信息关联的一个或多个网格序列码组的索引号;
与组成该小区的邻区的一个或多个空间网格组的数组信息关联的一个或多个网格组序列码组的索引号;
邻区的类型:固定形状和/或尺度,可变化的形状和/或尺度;
邻区的立体形状或者形状的编号:球形,环圈形和/或锥形等;
邻区的网格的尺寸和精度;
组成该邻区的一个或多个空间网格/空间网格组的数组信息对应的经度,纬度,高度等位置信息;
组成该邻区的一个或多个空间网格对应的物理信号的信息,如同步信号,信道状态信息参考信号(CSI-RS),跟踪参考信号(T-RS),SRS信号和/或传输配置指示(TCI)标识的资源;以及其他资源信息,如:所述资源可以包括:频域资源、天线配置、时分复用TDD的上下行配比、TDD的制式、子载波间隔、物理资源格式、物理随机接入信道(PRACH)的前导序列码、PRACH的时频资源、物理上行共享信道的时长、部分带宽(BWP)、小区组(CG)、半持续调度(SPS)、调度请求(SR)、无线网络标识(RNTI)类型、RNTI范围、功率控制的公式、功率控制的参数、功率余量报告(PHR)的门限,PHR上报的格式、移动性管理的门限、移动性管理的迟滞、移动性管理的偏移量、RLM的定时器、RLM的计数器、RLM的定时器的超时时间、RLM的计数器的值、调度优先级、RLF的定时器、RLF的定时器的超时时间中的至少一个。
该邻区和本小区的哪一个网层的相邻,哪个角度相邻;
该邻区和本小区的连接方式是:有线、微波或无线等;
该领区和本小区的同步方式是:同步还是异步;如果是同步,是绝对同步还是相对同步。
基站在做目标小区的切换判决或多连接的主、辅基站的小区的选择时,小区的空间范围,尺寸和形状作为小区选择的一个优先级考虑因素。比如,在初始上下文建立请求,切换请求消息,下行非接入传输(DOWNLINK NAS  TRANSPORT)的移动受限信息(mobility restriction information),基站和基站的接口(如,Xn,X2,S1,Gn,F1,E1接口)的消息中携带的服务小区信息(Served Cell Information)和邻区信息(Neighbour Information)中以及寻呼消息(paging)里,加入小区的空间范围,尺寸,形状信息和/或发射点信息;其中,空间范围,可以通过空间网格,空间网格群的信息和/或经度,纬度,高度等位置信息来指示,其中,发射点信息包括形成该小区的发射点的位置信息(如,经度,纬度和/或高度信息),发射点的标识信息,发射点中的锚点发射点或主发射点信息,发射点的传输层信息(如,GTP的隧道信息,IP地址信息),发射点之间的时间同步信息。
本公开的一可选实施例中,组网后所述小区的网络部署包括:小区的规划和邻区的规划;
所述小区的规划根据小区的形状和大小、小区的各指标的选择、小区的同步方式、形成该小区的发射点之间的距离和/或时延中的至少一项进行规划;
所述邻区的规划根据邻小区的形状和大小、邻小区的各指示的选择、邻小区的同步方式、形成该邻小区的发射点之间的距离和/或时延中的至少一项进行规划。具体来说,在小区的网络规划时,根据至少以下信息的一种组合确定小区的网络部署:
业务模型,业务的服务质量要求,用户体验性能等指标要求,建网策略,备选站点信息,小区的规模估算以及其他的需求等信息。
其中小区的规模估算包括以下至少一种:包括覆盖估算,容量估算,干扰评估,无线参数估算,业务需求分析,用户预测,用户密度分析和速率的需求分析等。
其中,覆盖估算包括以下至少一种:通过链路预算计算出路损(如,最大路损MAPL),根据传播模型计算出每个发射点在不同角度的发射和接收的覆盖半径;以及无线环境分析,包括传播模型测试;
其中,小区的网络部署包括小区和邻区的规划;
其中,小区的规划包括:综合考虑每个发射点在不同角度的发射和接收的覆盖半径,不同发射点之间的距离,方向角,以及对应区域的用户密度分析或预测,对应区域的用户的业务的服务质量要求等指标的无线资源要求的 分析或预测,不同发射点之间的干扰分析或预测,进行确定该小区的形状和大小,以及该小区的站点选择,频率选择,天线配置选择,小区的物理小区标号PCI选择和PRACH选择,以及确定本小区的不同发射点之间的同步方式是:同步还是异步;如果是同步,是绝对同步还是相对同步;或者是同步的级别关系;
可选的,小区的规划包括:确定形成该小区的发射点之间的距离和/或时延,并选择最佳的发射点排列,比如,形成该小区的发射点数目最少,发射点之间的距离最短,发射点之间的距离的和最短,发射点之间的时延最短,和/或发射点之间的时延之和最短。
其中,邻区的规划包括:综合考虑和小区的发射点相邻的每个发射点在不同角度的发射和接收的覆盖半径,不同发射点之间的距离,方向角,以及对应区域的用户密度分析或预测,对应区域的用户的业务的服务质量要求等指标的无线资源要求的分析或预测,不同发射点之间的干扰分析或预测,进行小区的邻区的站点选择,频率选择,小区的物理小区标号PCI选择和PRACH选择。
本公开的上述实施例,通过小区的规划,可以为水域、陆域、空域三域一体的通讯提供基础的通信平台。
如图6所示,本公开的实施例还提供一种小区的接入方法,应用于终端,所述小区为如上所述的网络系统中的小区,所述方法包括:
步骤61,接收所述小区中的网络设备发送的系统消息;
步骤62,根据所述系统消息,选择与终端的移动路径匹配的小区驻留。
这里,小区的系统消息包括以下至少一种信息:
小区的至少一个空间网格的数组信息;
小区的至少一个空间网格群的数组信息;
与组成小区的至少一个空间网格的数组信息关联的至少一个序列码组的索引号;
与组成小区的至少一个空间网格群的数组信息关联的至少一个序列码组的索引号;
小区类型;
小区的立体形状或者形状的编号;
小区的空间网格的大小和精度;
组成小区的至少一个空间网格或者空间网格群的数组信息对应的位置信息;
组成小区的至少一个空间网格对应的物理信号的信息;
组成小区的至少一个网络设备的位置信息或者空间网格信息;
用于移动管理的配置信息;
用于无线链路失败监测的配置信息;
用于干扰控制的配置信息;
用于功率控制的配置信息。
本公开的一可选实施例中,小区的接入方法,还可以包括:步骤63,向所述小区中的网络设备上报终端的能力信息,所述终端的能力信息包括以下信息中的至少一项:终端是否支持小区,终端支持的小区的大小和精度,终端支持的小区的数组范围。这里,网络设备收到终端的能力信息后,可以根据终端的能力信息进行移动管理配置、无线链路失败监测配置、干扰控制配置和/或功率控制配置。
本公开的一可选实施例中,小区的接入方法,还可以包括:步骤64,在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时,接入所述网络设备确定的目标小区,所述目标小区是所述网络设备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
可选的,小区的接入方法,还可以包括:步骤65,确定所述小区内和终端进行业务或者信令交互的一个或多个网络设备,以及和所述网络设备相关的以下信息中的至少一项:上行或者下行信号配置、时间同步信息和时间提前量。
也就是说,UE在接入一个小区时,确定和该小区内的一个或多个进行信令/业务交互的AP(接入点或者网络设备);以及和AP相关的UL/DL信号配置(比如,和AP相关的随机接入信号,和AP相关的CSI-RS信号,和/或和AP相关的TRS信号),时间同步信息,和/或时间提前量(或时间提前 量组)信息;这些信息可以通过UE的测量结果选择和/或网络通过信令通知(广播消息和/或专用信令)。
需要说明的是,上述网络系统中的小区均适用于该方法的实施例中,也能达到相同的技术效果。
如图7所示,本公开的实施例还提供一种小区的接入方法,应用于网络设备,所述小区为如上所述的网络系统中的小区,所述方法包括:
步骤71,向终端广播系统消息;所述系统消息用于终端选择与终端的移动路径匹配的小区驻留。
这里,系统消息可以包括以下至少一种信息:
小区的至少一个空间网格的数组信息;
小区的至少一个空间网格群的数组信息;
与组成小区的至少一个空间网格的数组信息关联的至少一个序列码组的索引号;
与组成小区的至少一个空间网格群的数组信息关联的至少一个序列码组的索引号;
小区类型;
小区的立体形状或者形状的编号;
小区的空间网格的大小和精度;
组成小区的至少一个空间网格或者空间网格群的数组信息对应的位置信息;
组成小区的至少一个空间网格对应的物理信号的信息;
组成小区的至少一个网络设备的位置信息或者空间网格信息;
用于移动管理的配置信息;
用于无线链路失败监测的配置信息;
用于干扰控制的配置信息;
用于功率控制的配置信息。
可选的,小区的接入方法还可以包括:步骤72,接收终端发送的终端的能力信息,所述终端的能力信息包括以下信息中的至少一项:终端是否支持小区,终端支持的小区的大小和精度,终端支持的小区的数组范围。这里, 网络设备收到终端的能力信息后,可以根据终端的能力信息进行移动管理配置、无线链路失败监测配置、干扰控制配置和/或功率控制配置。
本公开的一可选实施例中,小区的接入方法,还可以包括:步骤73,在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时,向终端发送目标小区的信息,所述目标小区是所述网络设备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
需要说明的是,上述网络系统中的小区均适用于该方法的实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种小区的接入装置,应用于终端,所述小区为如上所述的网络系统中的小区,包括:
收发模块,用于接收所述小区中的网络设备发送的系统消息;处理模块,用于根据所述系统消息,选择与终端的移动路径匹配的小区驻留。
这里,系统消息可以包括以下至少一种信息:
小区的至少一个空间网格的数组信息;
小区的至少一个空间网格群的数组信息;
与组成小区的至少一个空间网格的数组信息关联的至少一个序列码组的索引号;
与组成小区的至少一个空间网格群的数组信息关联的至少一个序列码组的索引号;
小区类型;
小区的立体形状或者形状的编号;
小区的空间网格的大小和精度;
组成小区的至少一个空间网格或者空间网格群的数组信息对应的位置信息;
组成小区的至少一个空间网格对应的物理信号的信息;
组成小区的至少一个网络设备的位置信息或者空间网格信息;
用于移动管理的配置信息;
用于无线链路失败监测的配置信息;
用于干扰控制的配置信息;
用于功率控制的配置信息。
可选的,所述收发模块还可以用于向所述小区中的网络设备上报终端的能力信息,所述终端的能力信息包括以下信息中的至少一项:终端是否支持小区,终端支持的小区的大小和精度,终端支持的小区的数组范围。这里,网络设备收到终端的能力信息后,可以根据终端的能力信息进行移动管理配置、无线链路失败监测配置、干扰控制配置和/或功率控制配置。
可选的,所述收发模块还用于,在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换的过程中,向终端发送目标小区的信息,所述目标小区是所述网络设备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
可选的,处理模块,还可以用于:确定所述小区内和终端进行业务或者信令交互的一个或多个网络设备,以及和所述网络设备相关的以下信息中的至少一项:上行或者下行信号配置、时间同步信息和时间提前量。
需要说明的是,该装置是与上述图6所示方法对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
如图8所示,本公开的实施例还提供一种终端80,包括:
收发机81,用于接收所述小区中的网络设备发送的系统消息;
处理器82,用于根据所述系统消息,选择与终端的移动路径匹配的小区驻留。
这里,系统消息可以包括以下至少一种信息:
小区的至少一个空间网格的数组信息;
小区的至少一个空间网格群的数组信息;
与组成小区的至少一个空间网格的数组信息关联的至少一个序列码组的索引号;
与组成小区的至少一个空间网格群的数组信息关联的至少一个序列码组的索引号;
小区类型;
小区的立体形状或者形状的编号;
小区的空间网格的大小和精度;
组成小区的至少一个空间网格或者空间网格群的数组信息对应的位置信息;
组成小区的至少一个空间网格对应的物理信号的信息;
组成小区的至少一个网络设备的位置信息或者空间网格信息;
用于移动管理的配置信息;
用于无线链路失败监测的配置信息;
用于干扰控制的配置信息;
用于功率控制的配置信息。
可选的,所述收发机81还可以用于向所述小区中的网络设备上报终端的能力信息,所述终端的能力信息包括以下信息中的至少一项:终端是否支持小区,终端支持的小区的大小和精度,终端支持的小区的数组范围。这里,网络设备收到终端的能力信息后,可以根据终端的能力信息进行移动管理配置、无线链路失败监测配置、干扰控制配置和/或功率控制配置。
可选的,所述收发机81还用于,在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换的过程中,向终端发送目标小区的信息,所述目标小区是所述网络设备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
可选的,处理器82,还可以用于确定所述小区内和终端进行业务或者信令交互的一个或多个网络设备,以及和所述网络设备相关的以下信息中的至少一项:上行或者下行信号配置、时间同步信息和时间提前量。
需要说明的是,该装置是与上述图6所示方法对应的终端,上述方法实施例中所有实现方式均适用于该设备的实施例中,也能达到相同的技术效果。该终端进一步可以包括:存储器83;收发机81与处理器82,以及,收发机81与存储器83之间,均可以通过总线接口连接,收发机81的功能可以由处理器82实现,处理器82的功能也可以由收发机81实现。
本公开的实施例还提供一种小区的接入装置,应用于网络设备,所述小 区为如上所述的网络系统中的小区,包括:
收发模块,用于向终端广播系统消息;所述系统消息用于终端选择与终端的移动路径匹配的小区驻留。
这里,系统消息可以包括以下至少一种信息:
小区的至少一个空间网格的数组信息;
小区的至少一个空间网格群的数组信息;
与组成小区的至少一个空间网格的数组信息关联的至少一个序列码组的索引号;
与组成小区的至少一个空间网格群的数组信息关联的至少一个序列码组的索引号;
小区类型;
小区的立体形状或者形状的编号;
小区的空间网格的大小和精度;
组成小区的至少一个空间网格或者空间网格群的数组信息对应的位置信息;
组成小区的至少一个空间网格对应的物理信号的信息;
组成小区的至少一个网络设备的位置信息或者空间网格信息;
用于移动管理的配置信息;
用于无线链路失败监测的配置信息;
用于干扰控制的配置信息;
用于功率控制的配置信息。
本公开的一可选实施例中,小区的接入装置中,所述收发模块还用于接收终端发送的终端的能力信息,所述终端的能力信息包括以下信息中的至少一项:终端是否支持小区,终端支持的小区的大小和精度,终端支持的小区的数组范围。这里,网络设备收到终端的能力信息后,可以根据终端的能力信息进行移动管理配置、无线链路失败监测配置、干扰控制配置和/或功率控制配置。
本公开的一可选实施例中,小区的接入装置中,所述收发模块还用于在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时, 向终端发送目标小区的信息,所述目标小区是所述网络设备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
需要说明的是,该装置是与上述图7所示方法对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
如图9所示,本公开的实施例还提供一种网络设备90,包括:
收发机91,用于向终端广播系统消息;所述系统消息用于终端选择与终端的移动路径匹配的小区驻留。这里,系统消息可以包括以下至少一种信息:
小区的至少一个空间网格的数组信息;
小区的至少一个空间网格群的数组信息;
与组成小区的至少一个空间网格的数组信息关联的至少一个序列码组的索引号;
与组成小区的至少一个空间网格群的数组信息关联的至少一个序列码组的索引号;
小区类型;
小区的立体形状或者形状的编号;
小区的空间网格的大小和精度;
组成小区的至少一个空间网格或者空间网格群的数组信息对应的位置信息;
组成小区的至少一个空间网格对应的物理信号的信息;
组成小区的至少一个网络设备的位置信息或者空间网格信息;
用于移动管理的配置信息;
用于无线链路失败监测的配置信息;
用于干扰控制的配置信息;
用于功率控制的配置信息。
本公开的一可选实施例中,所述收发机还用于接收终端发送的终端的能力信息,所述终端的能力信息包括以下信息中的至少一项:终端是否支持小区,终端支持的小区的大小和精度,终端支持的小区的数组范围。这里,网络设备收到终端的能力信息后,可以根据终端的能力信息进行移动管理配置、 无线链路失败监测配置、干扰控制配置和/或功率控制配置。
本公开的一可选实施例中,所述收发机还用于在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时,向终端发送目标小区的信息,所述目标小区是所述网络设备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
需要说明的是,该装置是与上述图7所示方法对应的设备,上述方法实施例中所有实现方式均适用于该设备的实施例中,也能达到相同的技术效果。该网络设备进一步可以包括:处理器92以及存储器93;收发机91与处理器92,以及,收发机91与存储器93之间,均可以通过总线接口连接,收发机91的功能可以由处理器92实现,处理器92的功能也可以由收发机91实现。
本公开的实施例还提供一种通信设备,包括:处理器、存储有计算机程序的存储器,所述计算机程序被处理器运行时,执行如上图6或者图7所述的方法。上述方法实施例中所有实现方式均适用于该实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上图6或者图7所述的方法。上述方法实施例中所有实现方式均适用于该实施例中,也能达到相同的技术效果。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的 划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一 组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (28)

  1. 一种网络系统,包括:至少一个小区,所述小区为用户提供无线通信业务和/或信令控制,所述小区的覆盖区域包括至少一块可定义的立体区域。
  2. 根据权利要求1所述的网络系统,其中,所述立体区域的空间范围包括:至少一个空间网格,所述空间网格为在经度、纬度、高度三个维度上按照预设的间隔对球体进行递归剖分,对整个地球立体空间进行网格划分及编码后形成的剖分网。
  3. 根据权利要求1所述的网络系统,其中,所述小区对应以下信息中的至少一项:
    至少一个空间网格数组、序列码组和/或序列;
    至少一个空间网格数组的索引号、序列码组的索引号和/或序列的索引号;
    空间网格群的序列;
    空间网格群的序列的索引号。
  4. 根据权利要求1所述的网络系统,其中,一个小区对应一个全局小区标号。
  5. 根据权利要求1所述的网络系统,其中,
    一个小区对应一个相同的同步信号;或者,
    一个小区内的一个空间网格和/或空间网格群对应一个相同的同步信号;
    所述同步信号包括:主同步信号PSS、辅同步信号SSS和同步信号块SSB中的至少一项。
  6. 根据权利要求1所述的网络系统,其中,所述小区的大小和形状为可变的,或者,所述小区内的空间网格和/或空间网格群的大小和形状为可变的。
  7. 根据权利要求1所述的网络系统,其中,所述小区的系统消息广播以下至少一种信息:
    小区的至少一个空间网格的数组信息;
    小区的至少一个空间网格群的数组信息;
    与组成小区的至少一个空间网格的数组信息关联的至少一个序列码组的索引号;
    与组成小区的至少一个空间网格群的数组信息关联的至少一个序列码组的索引号;
    小区类型;
    小区的立体形状或者形状的编号;
    小区的空间网格的大小和精度;
    组成小区的至少一个空间网格或者空间网格群的数组信息对应的位置信息;
    组成小区的至少一个空间网格对应的物理信号的信息;
    组成小区的至少一个网络设备的位置信息或者空间网格信息;
    用于移动管理的配置信息;
    用于无线链路失败监测的配置信息;
    用于干扰控制的配置信息;
    用于功率控制的配置信息。
  8. 根据权利要求1所述的网络系统,其中,
    空间网格群内的空间网格的数组连续的情况下,采用掩码来表示空间网格群。
  9. 根据权利要求1所述的网络系统,其中,在组网时,根据终端的移动路径分布、驻留点的时间分布和驻留点的负载分布中的至少一项,形成小区网络,所述小区网络包括小区之间的多角度多层面的邻区关系以及小区的形状和大小。
  10. 根据权利要求9所述的网络系统,其中,小区的组网根据终端的移动路径分布、业务的分布和/或终端的驻留点分布的变化而变化。
  11. 根据权利要求10所述的网络系统,其中,组网后的所述小区的系统消息广播以下至少一种信息:
    所述小区和邻区的组网的关系定义;
    所述小区在整个组网的空间中的相对位置指示;
    邻区的信息。
  12. 根据权利要求11所述的网络系统,其中,所述邻区的信息包括以下至少一项:
    组成所述小区的邻区的至少一个空间网格的数组信息;
    组成所述小区的邻区的至少一个空间网格群的数组信息;
    与组成所述小区的邻区的一个或多个空间网格的数组信息关联的至少一个序列码组的索引号;
    与组成所述小区的邻区的一个或多个空间网格群的数组信息关联的至少一个序列码组的索引号;
    邻区的类型;
    邻区的立体形状或者形状的编号;
    邻区的网格的大小和精度;
    组成所述小区的邻区的至少一个空间网格或者空间网格群的数组信息对应的位置信息;
    组成所述小区的邻区的至少一个空间网格对应的物理信号的信息;
    所述邻区和所述小区的相邻的网层以及角度;
    所述邻区和所述小区的连接方式。
  13. 根据权利要求11所述的网络系统,其中,
    在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时,根据小区的空间范围、大小以及小区的形状,选择要切换到的目标小区。
  14. 根据权利要求11所述的网络系统,其中,组网后所述小区的网络部署包括:小区的规划和邻区的规划;
    所述小区的规划根据小区的形状和大小、小区的各指标的选择、小区的同步方式、形成该小区的发射点之间的距离和/或时延中的至少一项进行规划;
    所述邻区的规划根据邻小区的形状和大小、邻小区的各指示的选择、邻小区的同步方式、形成该邻小区的发射点之间的距离和/或时延中的至少一项进行规划。
  15. 根据权利要求1所述的网络系统,其中,
    在一段时间T内,多个发射点在不同时间点和/或不同的频域资源发送不同的同步信号,多个发射点在时间T内形成不同的小区;
    所述同步信号包括:主同步信号PSS、辅同步信号SSS和同步信号块SSB 中的至少一项。
  16. 一种小区的接入方法,应用于终端,所述小区为如权利要求1至15任一项所述的网络系统中的小区,所述方法包括:
    接收所述小区中的网络设备发送的系统消息;
    根据所述系统消息,选择与终端的移动路径匹配的小区驻留。
  17. 根据权利要求16所述的小区的接入方法,其中,还包括:
    向所述小区中的网络设备上报终端的能力信息,所述终端的能力信息包括以下信息中的至少一项:终端是否支持小区,终端支持的小区的大小和精度,终端支持的小区的数组范围。
  18. 根据权利要求16所述的小区的接入方法,其中,还包括:
    在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换时,接入所述网络设备确定的目标小区,所述目标小区是所述网络设备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
  19. 根据权利要求16所述的小区的接入方法,其中,还包括:
    确定所述小区内和终端进行业务或者信令交互的一个或多个网络设备,以及和所述网络设备相关的以下信息中的至少一项:上行或者下行信号配置、时间同步信息和时间提前量。
  20. 一种小区的接入方法,应用于网络设备,所述小区为如权利要求1至15任一项所述的网络系统中的小区,所述方法包括:
    向终端广播系统消息;所述系统消息用于终端选择与终端的移动路径匹配的小区驻留。
  21. 根据权利要求20所述的小区的接入方法,其中,还包括:
    接收终端发送的终端的能力信息,所述终端的能力信息包括以下信息中的至少一项:终端是否支持小区,终端支持的小区的大小和精度,终端支持的小区的数组范围。
  22. 根据权利要求20所述的小区的接入方法,其中,还包括:
    在进行公共陆地移动网络PLMN选择、小区选择、小区重选、重建和/或切换的过程中,向终端发送目标小区的信息,所述目标小区是所述网络设 备根据终端的移动路径分布、业务的分布和/或终端的驻留点分布组网后,根据小区的空间范围、大小以及小区的形状,确定的目标小区。
  23. 一种小区的接入装置,应用于终端,所述小区为如权利要求1至15任一项所述的网络系统中的小区,包括:
    收发模块,用于接收所述小区中的网络设备发送的系统消息;处理模块,用于根据所述系统消息,选择与终端的移动路径匹配的小区驻留。
  24. 一种终端,包括:
    收发机,用于接收所述小区中的网络设备发送的系统消息;
    处理器,用于根据所述系统消息,选择与终端的移动路径匹配的小区驻留。
  25. 一种小区的接入装置,应用于网络设备,所述小区为如权利要求1至15任一项所述的网络系统中的小区,包括:
    收发模块,用于向终端广播系统消息;所述系统消息用于终端选择与终端的移动路径匹配的小区驻留。
  26. 一种网络设备,包括:
    收发机,用于向终端广播系统消息;所述系统消息用于终端选择与终端的移动路径匹配的小区驻留。
  27. 一种通信设备,包括:处理器、存储有计算机程序的存储器,所述计算机程序被处理器运行时,执行如权利要求16至19任一项所述的方法,或者,权利要求20至22任一项所述的方法。
  28. 一种计算机可读存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如权利要求16至19任一项所述的方法,或者,权利要求20至22任一项所述的方法。
PCT/CN2020/102101 2019-08-22 2020-07-15 网络系统、小区的接入方法、终端及网络设备 WO2021031747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910778514.2A CN112423372B (zh) 2019-08-22 2019-08-22 网络系统、小区的接入方法、终端及网络设备
CN201910778514.2 2019-08-22

Publications (1)

Publication Number Publication Date
WO2021031747A1 true WO2021031747A1 (zh) 2021-02-25

Family

ID=74660475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102101 WO2021031747A1 (zh) 2019-08-22 2020-07-15 网络系统、小区的接入方法、终端及网络设备

Country Status (2)

Country Link
CN (1) CN112423372B (zh)
WO (1) WO2021031747A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113656399A (zh) * 2021-07-06 2021-11-16 中铁建港航局集团勘察设计院有限公司 用于航道空间信息数据的剖分和数据提取方法、系统及介质
CN113656398A (zh) * 2021-07-06 2021-11-16 中铁建港航局集团勘察设计院有限公司 面向航道信息数据内容的网格动态显示方法、系统及介质
CN113779353A (zh) * 2021-07-30 2021-12-10 中国铁道科学研究院集团有限公司电子计算技术研究所 高速铁路时空大数据分析服务引擎系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023001216A1 (zh) * 2021-07-22 2023-01-26 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN113645611B (zh) * 2021-10-18 2022-02-08 中通服建设有限公司 三元约束5g pci规划方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080270110A1 (en) * 2007-04-30 2008-10-30 Yurick Steven J Automatic speech recognition with textual content input
CN102740429A (zh) * 2012-07-05 2012-10-17 华为技术有限公司 一种非连续性接收周期设置方法及移动终端
CN103987077A (zh) * 2013-02-08 2014-08-13 中国移动通信集团广东有限公司 无线网络仿真方法及装置
CN107371176A (zh) * 2016-05-13 2017-11-21 电信科学技术研究院 一种小区操作方法及装置
CN108391292A (zh) * 2017-02-03 2018-08-10 电信科学技术研究院 一种小区选择的方法、基站和用户终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179609A (zh) * 2011-12-20 2013-06-26 中兴通讯股份有限公司 一种邻区选择的方法及系统
CN103841567B (zh) * 2012-11-26 2017-11-21 中国移动通信集团广东有限公司 一种获取基站的多边形区域的方法和基站
CN103874149B (zh) * 2012-12-10 2020-06-09 索尼公司 无线通信网络中的移动切换管理方法、设备及系统
CN104320788B (zh) * 2014-10-23 2017-11-24 浙江大学 一种蜂窝移动通信网络公共控制信号的立体覆盖控制方法
CN104735684B (zh) * 2015-03-24 2018-05-22 浙江大学 一种蜂窝移动通信网络公共控制信号立体覆盖的多扇区联合控制方法
CN106332097B (zh) * 2015-06-25 2019-09-17 电信科学技术研究院 一种邻区优先级的确定方法及装置
CN108124265B (zh) * 2016-11-28 2021-05-11 中国移动通信有限公司研究院 一种网络覆盖强度的调整方法及装置
US10692385B2 (en) * 2017-03-14 2020-06-23 Tata Consultancy Services Limited Distance and communication costs based aerial path planning
US10431103B2 (en) * 2017-04-11 2019-10-01 T-Mobile Usa, Inc. Three-dimensional network coverage modeling for UAVs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080270110A1 (en) * 2007-04-30 2008-10-30 Yurick Steven J Automatic speech recognition with textual content input
CN102740429A (zh) * 2012-07-05 2012-10-17 华为技术有限公司 一种非连续性接收周期设置方法及移动终端
CN103987077A (zh) * 2013-02-08 2014-08-13 中国移动通信集团广东有限公司 无线网络仿真方法及装置
CN107371176A (zh) * 2016-05-13 2017-11-21 电信科学技术研究院 一种小区操作方法及装置
CN108391292A (zh) * 2017-02-03 2018-08-10 电信科学技术研究院 一种小区选择的方法、基站和用户终端

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113656399A (zh) * 2021-07-06 2021-11-16 中铁建港航局集团勘察设计院有限公司 用于航道空间信息数据的剖分和数据提取方法、系统及介质
CN113656398A (zh) * 2021-07-06 2021-11-16 中铁建港航局集团勘察设计院有限公司 面向航道信息数据内容的网格动态显示方法、系统及介质
CN113779353A (zh) * 2021-07-30 2021-12-10 中国铁道科学研究院集团有限公司电子计算技术研究所 高速铁路时空大数据分析服务引擎系统及方法
CN113779353B (zh) * 2021-07-30 2023-11-17 中国铁道科学研究院集团有限公司电子计算技术研究所 高速铁路时空大数据分析服务引擎系统及方法

Also Published As

Publication number Publication date
CN112423372A (zh) 2021-02-26
CN112423372B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2021031747A1 (zh) 网络系统、小区的接入方法、终端及网络设备
Ishii et al. A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept
JP6662961B2 (ja) 非セルラーワイヤレスアクセスのためのシステムおよび方法
CN103298115B (zh) 一种基站及进行tdd基站上下行子帧配置的方法
US20190116530A1 (en) Active mode mobility measurement signal configuration
KR20160017640A (ko) 단말 간 통신 시스템에서 동기 신호의 송수신 방법
EP3661099A1 (en) Time allocation method, network device, and ue
CN108141749A (zh) 用于在无线通信系统中的初始接入的方法和装置
CN109565641B (zh) 一种用于信标间隔适配的系统和方法
CN107135533B (zh) 一种信号传输方法、终端和网络侧设备
JP2023540946A (ja) Ntnの衛星暦、時間、遅延及びta管理
US10790897B1 (en) Systems and methods for selecting radio beams
CN107980239B (zh) 资源配置方法和装置,网络设备和存储介质
EP2975898A1 (en) System and method for coordinating interference between communications nodes
Ternon et al. Energy savings in heterogeneous networks with clustered small cell deployments
WO2015100595A1 (zh) 通信方法、装置及系统
CN102170657A (zh) 一种确定子帧信息的方法和设备
US20240030994A1 (en) Beam switching method and apparatus
EP3745765A1 (en) Communication method and device
CN102149200A (zh) 一种配置prach信息的方法和基站
Vanteru et al. Modeling and Simulation of propagation models for selected LTE propagation scenarios
JPWO2015194276A1 (ja) 装置及び方法
Selim et al. Hybrid cell outage compensation in 5G networks: Sky-ground approach
Prasad et al. Enhanced small cell discovery in heterogeneous networks using optimized RF fingerprints
WO2023116335A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855344

Country of ref document: EP

Kind code of ref document: A1