WO2021031744A1 - 链路路径计算方法、装置、终端及计算机可读存储介质 - Google Patents

链路路径计算方法、装置、终端及计算机可读存储介质 Download PDF

Info

Publication number
WO2021031744A1
WO2021031744A1 PCT/CN2020/101952 CN2020101952W WO2021031744A1 WO 2021031744 A1 WO2021031744 A1 WO 2021031744A1 CN 2020101952 W CN2020101952 W CN 2020101952W WO 2021031744 A1 WO2021031744 A1 WO 2021031744A1
Authority
WO
WIPO (PCT)
Prior art keywords
tmax
tsn
link
delay
bridge
Prior art date
Application number
PCT/CN2020/101952
Other languages
English (en)
French (fr)
Inventor
高陈强
喻敬海
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/635,912 priority Critical patent/US20220286380A1/en
Priority to EP20854158.1A priority patent/EP4007223A4/en
Publication of WO2021031744A1 publication Critical patent/WO2021031744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/121Shortest path evaluation by minimising delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic

Definitions

  • the embodiments of the present disclosure relate to but not limited to the field of network communication, and specifically relate to but not limited to link path calculation methods, devices, terminals, and computer-readable storage media.
  • 5G System Architecture 5G System Architecture
  • 5GS When 5GS needs to support TSN (Timesensitive Network) requirements, 5GS plans to adopt a way to simulate TSN bridges to reduce the impact on other TSN entities (such as CNC, CUC, End-Station, etc.).
  • the outside is a black box, and 5GS will not be changed significantly.
  • the function of 5GS acts as the bridge of the TSN network, which consists of the ports on the UPF (User Plane Function) side, the user plane tunnel between the UE (User Equipment) and the UPF, the ports on the UE/TT side, and the virtual bridge.
  • the interface composition The interface composition.
  • the ports on the UPF/TT and UE/TT side support the connection with the TSN network, and the UPF/TT and UE/TT are related by the PDU session within the 5GS.
  • the connection diagram is shown in Figure 1, where TT is TSN Translator (TSN converter), and PDU is Protocol Data Unit (protocol data unit).
  • the 5GS system may adopt a variety of segmentation methods: one is that the entire system is not segmented, and the whole system is treated as a TSN virtual bridge, as shown in Figure 1.
  • the other is segmentation based on each UPF, as shown in Figure 2.
  • Another is segmentation based on UE, as shown in Figure 3.
  • the ports on the UE side and the UPF side are integrated by the 5GS bridge as a part of the bridge, and notified to TSN TT, and then provided to the CNC for registration or modification of the TSN bridge.
  • 5GS divides bridges
  • a complete 5GS system may be divided into multiple TSN virtual bridges, and there is no interconnection port between multiple virtual TSN bridges, resulting in the system that can communicate between 5GSs is divided After being a virtual TSN bridge, from the point of view of CNC, it cannot be connected.
  • the paths in 5GS can be used to calculate paths and forward messages, but CNC cannot know these paths and cannot calculate paths, which will greatly reduce the path calculation success rate.
  • the transmission delay of the 5GS system is not fixed.
  • the delay is related to the resources allocated by the system, and the span is relatively large.
  • the CNC when the CNC is performing path calculations, it cannot be the same as before.
  • the delay is directly added as a judgment basis. Therefore, the existing link delay calculation method does not provide an effective solution for the path calculation of the 5GS-TSN-VB link.
  • the method, device, terminal, and computer-readable storage medium for link path calculation provided by the embodiments of the present disclosure mainly solve the technical problem that the current related technology does not provide effective path calculation for 5GS-TSN-VB links.
  • the solution leads to low path calculation success rate and poor user experience.
  • embodiments of the present disclosure provide a link path calculation method, which is applied to a 5GS-TSN-VB link, and the link path calculation method includes:
  • TSN bridges Acquire the topology including TSN bridges, the TSN bridges including 5GS TSN virtual bridges and ordinary TSN bridges; Acquire the delay parameters of the links of the TSN bridges; Acquire the 5GS where the UE connected to the listener is located -TSN-VB as the minimum delay Tmin that 5GS can achieve and the maximum delay MaxLatency in business requirements; calculate the optimal path, determine the sum of all link delays Tc on the optimal path; according to the Tc, Tmin, MaxLatency determines the maximum time delay Tmax tolerated by the 5GS-TSN-VB; determines the preferred value Tmax-O of Tmax according to the Tmax, the Tmax-O is less than or equal to the Tmax, and the Tmax-O is greater than zero;
  • the service flow information and the Tmax-O are sent to the 5GS system corresponding to the 5GS-TSN-VB as a delay requirement, and if the path is calculated successfully, the service flow information is sent to the corresponding TSN bridge.
  • the embodiment of the present disclosure also provides a link path calculation device, the link path calculation device includes: a first obtaining module configured to obtain a topology including a TSN bridge, the TSN bridge including a 5GS TSN virtual bridge And ordinary TSN bridge; the second acquisition module is set to acquire the delay parameters of the link of the TSN bridge; the third acquisition module is set to acquire the 5GS-TSN-VB where the UE connected to the listener is located as The minimum delay Tmin that 5GS can achieve and the maximum delay MaxLatency in business requirements; the first calculation module is set to calculate the optimal path and determine the sum of all link delays Tc on the optimal path; the second calculation module, It is set to determine the maximum time delay Tmax tolerated by the 5GS-TSN-VB according to the Tc, Tmin, and MaxLatency; the third calculation module is set to determine the preferred value Tmax-O of Tmax according to the Tmax, and the Tmax- O is less than or equal to the Tmax, and the Tmax-O is greater than zero; the issuing module
  • the embodiment of the present disclosure also provides a link path calculation terminal, which is applied to a 5GS-TSN-VB link, and the link path calculation terminal includes a processor, a memory, and a communication bus;
  • the communication bus is configured to realize connection and communication between the processor and the memory
  • the processor is configured to execute one or more computer programs stored in the memory to implement the steps of the link path calculation method described in any one of the above.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores one or more computer programs, and the one or more computer programs can be executed by one or more processors to realize The steps of the link path calculation method described in any one of the above.
  • the present disclosure provides a link path calculation method, device, terminal, and computer-readable storage medium.
  • the link path calculation method obtains TSN bridges including 5GS TSN virtual bridges and ordinary TSN bridges.
  • TSN bridges including 5GS TSN virtual bridges and ordinary TSN bridges.
  • the minimum delay Tmin that the 5GS-TSN-VB where the UE connected to the listener is located as 5GS and the maximum delay MaxLatency in the business requirements
  • For the optimal path determine the sum of the delays Tc of all links on the optimal path; determine the maximum delay Tmax tolerated by the 5GS-TSN-VB according to the Tc, Tmin, and MaxLatency; determine the maximum delay Tmax according to the Tmax
  • the preferred value Tmax-O, the Tmax-O is less than or equal to the Tmax, and the Tmax-O is greater than zero; the service flow information and the Tmax-O are sent to the 5GS-TSN-VB as the delay requirements
  • the corresponding 5GS system if the calculation path is successful
  • FIG. 1 is a schematic diagram of a 5GS virtual bridge provided by the background technology of the present disclosure
  • FIG. 2 is a schematic diagram of segmentation based on UPF of a 5GS virtual bridge provided by the background technology of the present disclosure
  • FIG. 3 is a schematic diagram of UE segmentation based on a 5GS virtual bridge provided by the background technology of the present disclosure
  • FIG. 5 is a schematic flowchart of a specific embodiment of a link path calculation method provided in Embodiment 1 of the present disclosure
  • FIG. 6 is a schematic diagram of a specific embodiment of another link path calculation method provided by Embodiment 1 of the present disclosure.
  • FIG. 7 is a schematic diagram of a specific embodiment of another link path calculation method provided in Embodiment 1 of the present disclosure.
  • FIG. 8 is a schematic diagram of a specific embodiment of another link path calculation method provided in Embodiment 1 of the present disclosure.
  • FIG. 9 is a structural diagram of a link path calculation device provided by Embodiment 2 of the disclosure.
  • FIG. 10 is a schematic structural diagram of a link path calculation terminal provided in Embodiment 3 of the disclosure.
  • a link path calculation method provided in this embodiment includes:
  • S401 Acquire the topology including the TSN bridge
  • S405 Determine the maximum delay Tmax tolerated by 5GS-TSN-VB according to Tc, Tmin and MaxLatency;
  • S406 Determine the preferred value Tmax-O of Tmax according to Tmax, Tmax-O is less than or equal to Tmax, and Tmax-O is greater than zero;
  • S407 Send the service flow information and Tmax-O as the delay requirements to the 5GS system corresponding to 5GS-TSN-VB, and if the path is calculated successfully, the service flow information is sent to the corresponding TSN bridge.
  • the event processing method is applied to a 5GS-TSN-VB link, where the TSN bridge includes a 5GS TSN virtual bridge and a normal TSN bridge.
  • TSN entities such as CNC, CUC, and End-Station may obtain the topology including the TSN bridge, and the method for obtaining the topology may be an existing achievable method, which is not limited in the embodiments of the present disclosure.
  • the above-mentioned method of obtaining the minimum delay Tmin that the 5GS-TSN-VB where the UE connected to the receiver listener is located as the 5GS and the maximum delay MaxLatency in the service requirements can be related to existing technologies in this field. Obtained, not limited here.
  • the method of calculating the optimal path can be calculated by using relevant existing technologies in the field, which is not limited here.
  • the method of determining the sum of the delays of all links on the optimal path Tc can be understood as adding up the delays of all the links on the optimal path, and the sum obtained is Tc.
  • the minimum delay Tmin that the 5GS-TSN-VB where the UE connected to the listener is located as a 5GS can be configured by the user or the system, and the minimum value can be 0.
  • the link path calculation method when the 5GS system has segmentation, before obtaining the delay parameters of the link of the TSN bridge, the link path calculation method further includes: configuring a virtual full connection between each virtual TSN bridge after segmentation 5GS-VL; Get the topology of 5GS-VL; TSN bridge also includes 5GS-VL.
  • the TSN bridge includes 5GS TSN virtual bridge, 5GS-VL and ordinary TSN bridge.
  • ordinary TSN bridges include those other than 5GS TSN virtual bridge and 5GS-VL among TSN bridges.
  • 5GS-VL can be a fully connected virtual connection 5GS-VL added between each TSN virtual bridge after the 5GS system is split.
  • Each virtual connection has a certain delay, and the delay can be passed through the real The internal paths are calculated and read.
  • These virtual connections can be used by TSN entities such as CNC and used for path calculations.
  • the segmentation method includes but is not limited to the following two methods: segmentation based on UPF and segmentation based on UE.
  • determining the preferred value Tmax-O of Tmax according to Tmax includes:
  • Tmax-O f(x,y)*Tmax.
  • the above-mentioned strategy function f(x, y) determined based on the delay (x), tariff and/or resource (y) can be a strategy formulated by the user based on the delay, tariff and/or resource related conditions function.
  • Tmax-O is equal to Tmax multiplied by a preset coefficient
  • the preset coefficient is a value greater than 0 and less than or equal to 1.
  • the preset coefficient may be obtained by the user through trial calculations based on the tariff, resource occupation, and delay that the user can bear, or may be determined by the user by establishing a calculation model between tariff, resource occupation, and delay.
  • determining the preferred value Tmax-O of Tmax according to Tmax includes:
  • Tmax-O is equal to the smaller delay among the delays of each 5GS system.
  • the method includes:
  • CNC obtains the topology including 5GS TSN virtual bridge, ordinary TSN bridge and virtual fully connected 5GS-VL;
  • S507 Select the preferred value Tmax-O of Tmax according to the 5GS system and strategy;
  • S508 Through the configuration protocol, such as NETCONF, etc., the service flow information and Tmax-O are sent to the 5GS system corresponding to 5GS-TSN-VB as the delay requirements, and the CNC calculates the path successfully and sends the corresponding data to the corresponding Bridges and virtual bridges.
  • the configuration protocol such as NETCONF, etc.
  • f(x,y) is the strategy function of delay (x) and tariff/resource (y), f(x,y) ⁇ 1.
  • time delay of the wireless system is a discrete point T[t 0 ,t 1 ,t 2 ,...t n ], where t 0 ⁇ t 1 ⁇ t 2 ... ⁇ t n , then it is Tmax-O selects a discrete time delay value, when t m ⁇ Tmax-O ⁇ t m+1 ,
  • Tmin can be configured, and the minimum value can be configured as 0.
  • MaxLatency is the largest delay in business requirements
  • the 5GS system is not segmented, but is only a whole. At this time, in the selection and calculation process of its delay, there is no need to consider adding a virtual fully connected 5GS-VL, only the 5GS TSN virtual bridge, ordinary TSN bridge is enough.
  • Fig. 6 is an embodiment of a link path calculation method when the 5GS system as a whole is not split.
  • the 5GS system is taken as the overall TSN virtual bridge, and the dashed arrow in it is the calculation path of CNC.
  • the right side T2 6ms
  • MaxLatency 26ms for business requirements
  • Tmin 4ms
  • FIG. 7 is a specific embodiment of a method for calculating the path of a 5GS system based on UPF splitting links, as shown in FIG. 7.
  • the virtual connection 5GS-VL 1 is configured between bridge A and bridge B. This link delay can be obtained by CNC, and packets can be forwarded between UPF-A and UPF-B.
  • the path 701 calculated by CNC includes the virtual link within the 5GS system, from Bridge A to Bridge B.
  • FIG. 8 is a specific embodiment of a link path calculation method for 5GS system based on UPF segmentation, as shown in FIG. 8.
  • the virtual connection 5GS-VL2 is configured between bridge A and bridge B. This link delay can be obtained by CNC, and packets can be forwarded between UPF-A and UPF-B.
  • the path 80 calculated by CNC includes the virtual link within the 5GS system, from Bridge A to Bridge B.
  • the CNC calculates the path successfully and sends the corresponding data to the corresponding ordinary bridge and virtual bridge.
  • the link path calculation method proposed in the embodiment of the present disclosure obtains the topology of the TSN bridge including the 5GS TSN virtual bridge and the ordinary TSN bridge, and obtains the delay parameters of the link of the TSN bridge and the UE connected to the listener
  • the 5GS-TSN-VB where the 5GS-TSN-VB is located is the minimum delay Tmin that can be achieved by the 5GS and the maximum delay MaxLatency in the business requirements; calculate the optimal path, and determine the sum of all link delays Tc on the optimal path;
  • the Tc, Tmin, MaxLatency determine the maximum time delay Tmax tolerated by the 5GS-TSN-VB; determine the preferred value Tmax-O of Tmax according to the Tmax, and the Tmax-O is less than or equal to the Tmax, and the Tmax -O is greater than zero;
  • the service flow information and the Tmax-O are sent to the 5GS system corresponding to the 5GS-TSN-VB as the delay requirements, and if the path is calculated successfully, the service flow information
  • a fully connected virtual connection 5GS-VL is added between the segmented TSN virtual bridges.
  • 5GS-VL the segmented virtual TSN bridges can be made There are virtual link connections between them, and at the same time, a backward path calculation method is proposed based on the virtual connection, which can configure the optimal time requirements and resource occupation for the virtual links inside the 5GS TSN virtual bridge.
  • the link path calculation device 900 includes:
  • the first obtaining module 901 is configured to obtain a topology including TSN bridges, and the TSN bridges include 5GS TSN virtual bridges and ordinary TSN bridges;
  • the second obtaining module 902 is configured to obtain the delay parameter of the link of the TSN bridge
  • the third acquisition module 903 is configured to acquire the minimum delay Tmin that can be achieved by the 5GS as the 5GS and the maximum delay MaxLatency in the service requirement of the 5GS-TSN-VB where the UE connected to the listener is located;
  • the first calculation module 904 is configured to calculate the optimal path and determine the sum Tc of all link delays on the optimal path;
  • the second calculation module 905 is set to determine the maximum delay Tmax tolerated by the 5GS-TSN-VB according to Tc, Tmin, and MaxLatency;
  • the third calculation module 906 is configured to determine a preferred value Tmax-O of Tmax according to Tmax, Tmax-O is less than or equal to Tmax, and Tmax-O is greater than zero;
  • the issuing module 907 is configured to issue the service flow information and Tmax-O as the delay requirements to the 5GS system corresponding to the 5GS-TSN-VB, and if the path is calculated successfully, the service flow information is sent to the corresponding TSN bridge.
  • the event processing method is applied to the 5GS-TSN-VB link, where the TSN network
  • Bridges include 5GS TSN virtual bridges and ordinary TSN bridges.
  • TSN entities such as CNC, CUC, and End-Station may obtain the topology including the TSN bridge, and the method for obtaining the topology may be an existing achievable method, which is not limited in the embodiments of the present disclosure.
  • the minimum delay Tmin that can be achieved by 5GS and the maximum delay MaxLatency in service requirements can be obtained by using relevant existing technologies in the field, and are not limited here.
  • the method of calculating the optimal path can be calculated by using relevant existing technologies in the field, which is not limited here.
  • the method of determining the sum of the delays of all links on the optimal path Tc can be understood as adding up the delays of all the links on the optimal path, and the sum obtained is Tc.
  • the 5GS-TSN-VB where the UE connected to the listener is located as a 5GS can reach
  • the minimum delay Tmin can be configured by the user or the system, and its minimum value can be 0.
  • the link path calculation device when there is segmentation in the 5GS system, before obtaining the delay parameter of the link of the TSN bridge, the link path calculation device further includes:
  • the configuration module is set to configure a virtual full connection 5GS-VL between each virtual TSN bridge after segmentation before the second acquisition module acquires the delay parameter of the link of the TSN bridge;
  • the fourth acquisition module is set to acquire the topology of 5GS-VL;
  • the TSN bridge further includes 5GS-VL.
  • the TSN bridge After the virtual fully connected 5GS-VL is configured between the bridges, the topology of the TSN bridge including the virtual fully connected 5GS-VL, the TSN bridge includes 5GS TSN virtual bridge, 5GS-VL and ordinary TSN bridge . It should be noted that ordinary TSN bridges include those other than 5GS TSN virtual bridge and 5GS-VL among TSN bridges.
  • 5GS-VL can be a fully connected virtual connection 5GS-VL added between each TSN virtual bridge after the 5GS system is split.
  • Each virtual connection has a certain delay, and the delay can be passed through the real The internal paths are calculated and read.
  • These virtual connections can be used by CNC and used for path calculations.
  • the segmentation method includes but is not limited to the following two methods: segmentation based on UPF and segmentation based on UE.
  • determining the preferred value Tmax-O of Tmax by the third calculation module according to Tmax includes:
  • Tmax-O f(x,y)*Tmax.
  • the above-mentioned strategy function f(x, y) determined based on the delay (x), tariff and/or resource (y) can be a strategy formulated by the user based on the delay, tariff and/or resource related conditions function.
  • Tmax-O is equal to Tmax multiplied by a preset coefficient
  • the preset coefficient is a value greater than 0 and less than or equal to 1.
  • the preset coefficient may be obtained by the user through trial calculations based on the tariff, resource occupation, and delay that the user can bear, or may be determined by the user by establishing a calculation model between tariff, resource occupation, and delay.
  • determining the preferred value Tmax-O of Tmax by the third calculation module according to Tmax includes:
  • Tmax-O is equal to the smaller delay among the delays of each 5GS system.
  • the link path calculation device proposed in the embodiment of the present disclosure obtains the topology of the TSN bridge including the 5GS TSN virtual bridge and the ordinary TSN bridge through the first obtaining module, and the second obtaining module obtains the time of the link of the TSN bridge
  • the third acquisition module acquires the minimum delay Tmin that the 5GS-TSN-VB where the UE connected to the listener is located as a 5GS and the maximum delay MaxLatency in the service requirements;
  • the first calculation module calculates the optimal path, Determine the sum of the delays Tc of all links on the optimal path;
  • the second calculation module determines the maximum delay Tmax tolerated by the 5GS-TSN-VB according to the Tc, Tmin, and MaxLatency;
  • the third calculation module according to the Tmax determines the preferred value Tmax-O of Tmax, the Tmax-O is less than or equal to the Tmax, and the Tmax-O is greater than zero;
  • the issuing module sends the service flow information and the Tmax-O as the delay requirements to For
  • a fully connected virtual connection 5GS-VL is added between the segmented TSN virtual bridges.
  • 5GS-VL the segmented virtual TSN bridges can be made There are virtual link connections between them, and at the same time, a backward path calculation method is proposed based on the virtual connection, which can configure the optimal time requirements and resource occupation for the virtual links inside the 5GS TSN virtual bridge.
  • This embodiment also provides a link path calculation terminal. As shown in FIG. 10, it includes a processor 1001, a memory 1003, and a communication bus 1002, where:
  • the communication bus 1002 is configured to implement connection and communication between the processor 1001 and the memory 1003;
  • the processor 1001 is configured to execute one or more computer programs stored in the memory 1003 to implement at least one step in the link path calculation method in the foregoing embodiments.
  • This embodiment also provides a computer-readable storage medium, which is included in any method or technology for storing information (such as computer-readable instructions, data structures, computer program modules, or other data). Volatile or non-volatile, removable or non-removable media.
  • Computer readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other storage technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and can be accessed by a computer.
  • the computer-readable storage medium in this embodiment can be used to store one or more computer programs, and the stored one or more computer programs can be executed by a processor to implement at least the link path calculation method in the above embodiments One step.
  • This embodiment also provides a computer program (or computer software).
  • the computer program can be distributed on a computer-readable medium and executed by a computable device to implement at least one of the event processing methods in the foregoing embodiments. Steps; and in some cases, at least one step shown or described can be performed in a different order than described in the foregoing embodiment.
  • This embodiment also provides a computer program product, including a computer-readable device, and the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include the computer-readable storage medium as shown above.
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, the present disclosure is not limited to any specific hardware and software combination.
  • the delay parameters of the link of the TSN bridge are obtained and connected to the listener
  • the 5GS-TSN-VB where the UE is located is the minimum delay Tmin that can be achieved by the 5GS and the maximum delay MaxLatency in the service requirements; calculate the optimal path, and determine the sum of all link delays Tc on the optimal path; Determine the maximum time delay Tmax tolerated by the 5GS-TSN-VB according to the Tc, Tmin, and MaxLatency; determine the preferred value Tmax-O of Tmax according to the Tmax, and the Tmax-O is less than or equal to the Tmax, so The Tmax-O is greater than zero; the service flow information and the Tmax-O are sent to the 5GS system corresponding to the 5GS-TSN-VB as a delay requirement, and if the path is calculated successfully, the service flow information is sent to The corresponding TSN

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供一种链路路径计算方法,该方法通过获取包括5GS TSN虚拟网桥和普通TSN网桥的TSN网桥的拓扑,获取其中各链路的时延参数、与接收者相连的UE所在的5GS-TSN-VB作为5GS能达到的Tmin和MaxLatency;计算并确定最优路径上所有链路时延之和Tc;根据Tc、Tmin、MaxLatency确定Tmax;根据Tmax确定其优选值;将业务流信息和优选值作为时延要求下发给5GS-TSN-VB对应的5GS系统,若计算路径成功,则将业务流信息发给对应的TSN网桥。本公开还提供了一种装置、终端及计算机可读存储介质,通过本公开的实施,为5GS-TSN-VB的链路的路径计算提供了一种有效的解决方案,提升了路径计算成功率,提高了用户体验度。

Description

链路路径计算方法、装置、终端及计算机可读存储介质 技术领域
本公开实施例涉及但不限于网络通信领域,具体而言,涉及但不限于链路路径计算方法、装置、终端及计算机可读存储介质。
背景技术
3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)确定以SBA架构(Service-based architecture,基于服务的网络架构)作为5G统一基础架构。5G系统架构标准项目的正式名称为:5G System Architecture(5G系统架构),简称5GS。
当5GS要支持TSN(Timesensitive Network,时间敏感网络)需求时,5GS计划采用模拟TSN网桥的方式,以降低对其他TSN实体(如CNC,CUC,End-Station等)的影响,同时5GS内部对于外部是个黑盒,也不会大幅改动5GS。5GS的功能充当TSN网络的网桥,由UPF(用户平面功能)侧的端口、UE(User Equipment,用户终端)和UPF之间的用户平面隧道、UE/TT侧的端口、虚拟网桥之间的接口组成。对于5GS的TSN虚拟网桥,UPF/TT、UE/TT侧的端口支持和TSN网络的连接,UPF/TT和UE/TT之间由5GS内部的PDU会话相关联。其连接图如图1所示,其中TT是TSN Translator(TSN转换器),PDU是Protocol Data Unit(协议数据单元)。
为了管理方便,5GS系统可能采用多种切分方式:其中一种是整个系统不进行切分,整体作为一个TSN虚拟网桥,如图1所示。另外一种是基于每个UPF进行切分,如图2所示。还有一种是基于UE进行切分,如图3所示。
切分后,UE侧和UPF侧的端口被5GS网桥集成为网桥的一部分,并通知给TSN TT,然后提供给CNC用于TSN网桥的注册或修改。
但是,当5GS划分网桥时,一个完整的5GS系统可能被切分为多个TSN虚拟网桥,而多个虚拟TSN网桥间没有互联端口,导致本来5GS间能够通信的系统,被切分为虚拟TSN网桥后,在CNC看来,反而不能联通了。5GS内的通路本来可以用来算路并转发报文,然而CNC无法知道这些通路,不能进行路径的计算,会导致路径计算成功率大为降低。
同时,5GS系统的传输时延,是不固定的,时延是和系统分配的资源相关的,跨度比较大,这时,CNC在进行路径计算时,就不能同以前一样,把链路上获取的时延直接相加作为判断依据,因此,现有的链路时延计算方法对5GS-TSN-VB的链路的路径计算并不是提供有效的解决方案。
发明内容
本公开实施例提供的一种链路路径计算方法、装置、终端及计算机可读存储介质,主要解决的技术问题是当前相关技术中对于5GS-TSN-VB的链路的路径计算没有提供有效的解决方案,导致路径计算成功率较低,用户体验差。
为解决上述技术问题,本公开实施例提供一种链路路径计算方法,应用于5GS-TSN-VB的链路,所述链路路径计算方法包括:
获取包含TSN网桥的拓扑,所述TSN网桥包括5GS TSN虚拟网桥和普通TSN网桥;获取所述TSN网桥的链路的时延参数;获取和listener相连的UE所在的所述5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency;计算最优路径,确定最优路径上的所有链路时延之和Tc;根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax;根据所述Tmax确定Tmax的优选值Tmax-O,所述Tmax-O小于或者等于所述Tmax,所述Tmax-O大于零;将业务流信息和所述Tmax-O作为时延要求下发给所述5GS-TSN-VB对应的5GS系统,若计算路径成功,则将所述业务流信息发给对应的TSN网桥。
本公开实施例还提供了一种链路路径计算装置,所述链路路径计算装置包括:第一获取模块,设置为获取包含TSN网桥的拓扑,所述TSN网桥包括5GS TSN虚拟网桥和普通TSN网桥;第二获取模块,设置为获取所述TSN网桥的链路的时延参数;第三获取模块,设置为获取和listener相连的UE所在的所述5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency;第一计算模块,设置为计算最优路径,确定最优路径上的所有链路时延之和Tc;第二计算模块,设置为根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax;第三计算模块,设置为根据所述Tmax确定Tmax的优选值Tmax-O,所述Tmax-O小于或者等于所述Tmax,所述Tmax-O大于零;下发模块,设置为将业务流信息和所述Tmax-O作为时延要求下发给所述5GS-TSN-VB对应的5GS系统,若计算路径成功,则将所述业务流信息发给对应的TSN网桥。
本公开实施例还提供了一种链路路径计算终端,应用于5GS-TSN-VB的链路,所述链路路径计算终端包括:处理器、存储器及通信总线;
所述通信总线设置为实现处理器和存储器之间的连接通信;
所述处理器设置为执行存储器中存储的一个或者多个计算机程序,以实现如上述任一项所述的链路路径计算方法的步骤。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个计算机程序,所述一个或者多个计算机程序可被一个或者多个处理器执行,以实现如上述任一项所述的链路路径计算方法的步骤。
本公开的有益效果:本公开提供一种链路路径计算方法、装置、终端及计算机可读存储介质,该链路路径计算方法通过获取包括5GS TSN虚拟网桥和普通TSN网桥的TSN网桥的拓扑,获取该TSN网桥的链路的时延参数、与listener相连的UE所在的所述5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency;计算最优路径, 确定最优路径上的所有链路时延之和Tc;根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax;根据所述Tmax确定Tmax的优选值Tmax-O,所述Tmax-O小于或者等于所述Tmax,所述Tmax-O大于零;将业务流信息和所述Tmax-O作为时延要求下发给所述5GS-TSN-VB对应的5GS系统,若计算路径成功,则将所述业务流信息发给对应的TSN网桥。提供了一种对于5GS-TSN-VB的链路的路径计算提供了一种有效的解决方案,提升了路径计算成功率,提高了用户体验度。
本公开其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本公开说明书中的记载变的显而易见。
附图说明
图1为本公开背景技术提供的一种5GS虚拟网桥示意图;
图2为本公开背景技术提供的一种5GS虚拟网桥基于UPF切分示意图;
图3为本公开背景技术提供的一种5GS虚拟网桥基于UE切分示意图;
图4为本公开实施例一提供的一种链路路径计算方法的流程示意图;
图5为本公开实施例一提供的一种链路路径计算方法具体的实施例的流程示意图;
图6为本公开实施例一提供的另一种链路路径计算方法具体的实施例的示意图;
图7为本公开实施例一提供的另一种链路路径计算方法具体的实施例的示意图;
图8为本公开实施例一提供的另一种链路路径计算方法具体的实施例的示意图;
图9为本公开实施例二提供的链路路径计算装置的结构图;
图10为本公开实施例三提供的链路路径计算终端的结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本公开实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一:
请参见图4,本实施例提供的一种链路路径计算方法包括:
S401:获取包含TSN网桥的拓扑;
S402:获取TSN网桥的链路的时延参数;
S403:获取与listener相连的UE所在的5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency;
S404:计算最优路径,确定最优路径上的所有链路时延之和Tc;
S405:根据Tc、Tmin、MaxLatency确定5GS-TSN-VB容忍的最大的时延Tmax;
S406:根据Tmax确定Tmax的优选值Tmax-O,Tmax-O小于或者等于Tmax,Tmax-O大于零;
S407:将业务流信息和Tmax-O作为时延要求下发给5GS-TSN-VB对应的5GS系统,若计算路径成功,则将业务流信息发给对应的TSN网桥。
在一些实施例中,事件处理方法应用于5GS-TSN-VB的链路,其中TSN网桥包括5GS TSN虚拟网桥和普通TSN网桥。
在一些实施例中,可以由CNC,CUC,End-Station等TSN实体获取包含TSN网桥的拓扑,拓扑的获取方式可以采用现有的可实现的方式,在本公开实施例中不做限定。
需要说明的是,上述获取与接收者listener相连的UE所在的 5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency的方式可以采用本领域的相关现有技术得到,在此不做限定。
需要说明的是,计算最优路径的方式可以采用本领域的相关现有技术来计算,在此不做限定。
确定最优路径上的所有链路时延之和Tc的方式可以理解为将最优路径上的所有链路时延相加,得到的总和即为Tc。
需要说明的是,与listener相连的UE所在的5GS-TSN-VB作为5GS能达到的最小时延Tmin是可以通过用户或者系统进行配置的,其最小值可以为0。
在一些实施例中,当5GS系统存在切分时,获取TSN网桥的链路的时延参数之前,链路路径计算方法还包括:切分后的各虚拟TSN网桥间配置虚拟的全连接5GS-VL;获取5GS-VL的拓扑;TSN网桥还包括5GS-VL。
需要说明的是,当5GS系统存在切分时,可以先在切分后的各虚拟TSN网桥间配置虚拟的全连接5GS-VL后,在对包括虚拟的全连接5GS-VL在内的TSN网桥的拓扑,该TSN网桥包括5GS TSN虚拟网桥、5GS-VL和普通TSN网桥。需要说明的是普通TSN网桥包括TSN网桥中除5GS TSN虚拟网桥和5GS-VL外的网桥。
在一些实施例中,5GS-VL可以为在5GS系统切分后的各TSN虚拟网桥间增加全连接的虚拟连接5GS-VL,每个虚拟连接有确定的延时,时延可以通过真实的内部通路计算得出并被读取,这些虚拟连接可以被CNC等TSN实体所利用,并用于路径的计算。
在一些实施例中,切分方式包括但不限于以下两种方式:基于UPF进行切分、基于UE进行切分。
需要说明的是,本领域技术人员也可以采用其他的现有的方式实现对5GS系统的切分,在其切分后的各TSN虚拟网桥间增加全连接的虚拟连接5GS-VL后,也可以通过本发明实施例所提供的方式来进行链路管理及 路径计算。
在一些实施例中,根据Tc、Tmin、MaxLatency确定5GS-TSN-VB容忍的最大的时延Tmax包括:Tmax=MaxLatency-Tc+Tmin。
在一些实施例中,根据Tmax确定Tmax的优选值Tmax-O包括:
根据时延(x)、资费和/或资源(y)确定策略函数f(x,y),f(x,y)小于或者等于1;
Tmax-O=f(x,y)*Tmax。
需要说明的是,上述根据时延(x)、资费和/或资源(y)确定策略函数f(x,y),可以是用户根据时延、资费和/或资源的相关条件,制定的策略函数。
在一些实施例中,Tmax-O等于Tmax乘以预设系数,该预设系数为大于0小于或者等于1的值。该预设系数可以是用户根据其能够承受的资费、资源占用和时延来进行尝试计算获得的,也可以是用户通过建立资费、资源占用与时延之间的计算模型来确定的。
在一些实施例中,根据Tmax确定Tmax的优选值Tmax-O包括:
当5GS系统的时延是至少两个离散的点时,Tmax-O等于各5GS系统的时延中较小的时延。
为了便于理解,下面通过一个具体的实施例对上述方法进行进一步说明。如图5所示,该方法包括:
S501:若5GS系统存在切分,则在切分后的各虚拟TSN网桥间配置虚拟的全连接5GS-VL;
S502:CNC获取包含5GS TSN虚拟网桥、普通TSN网桥及虚拟的全连接5GS-VL的拓扑;
S503:CNC读取各链路的时延参数;
S504:读取和listener相连的UE端所在的5GS-TSN-VB作为5GS能达到的最小时延Tmin;
S505:CNC计算最优路径,并将路径上的所有链接时延相加为Tc;
S506:根据公式(1)计算得出5GS-TSN-VB容忍的最大的延时Tmax;
S507:根据5GS系统和策略选择Tmax的优选值Tmax-O;
S508:通过配置协议,如:NETCONF等,将业务流信息和Tmax-O作为时延要求下发给5GS-TSN-VB对应的5GS系统,同时CNC计算路径成功并将相应的数据下发给对应的网桥和虚拟网桥。
需要说明的是,其中S506的公式如下所示:
Tmax=MaxLatency-Tc+Tmin       公式(1)
S507中的优选值选取可以有如下两种方式:
(1)根据一定的策略(时延、资费/资源综合考虑),选定一个比Tmax小的优选值:
Tmax-O=f(x,y)*Tmax              公式(2)
其中f(x,y)是时延(x)、资费/资源(y)的策略函数,f(x,y) 1。
(2)如果无线系统的时延是离散的点T[t 0,t 1,t 2,...t n],其中t 0<t 1<t 2...<t n,那么就为Tmax-O选取一个离散的时延值,当满足t m≤Tmax-O<t m+1时,
Tmax-O=t m                     公式(3)
需要说明的是,Tmin的值可以配置,最小值可以配置为0。MaxLatency是业务需求中的最大时延
在一些实施例中,5GS系统没有进行切分,仅为一个整体,此时其时延的选取计算过程中,则不必考虑增加虚拟的全连接5GS-VL,仅计算5GS TSN虚拟网桥、普通TSN网桥即可。
图6为5GS系统作为整体,不进行切分时的链路路径计算方法的一种实施例。如图6所示,5GS系统作为整体TSN虚拟网桥,其中的虚线箭头是CNC的计算路径,假设图中计算出的最优路径的5GS左侧的链路延时为T1=5ms,右侧的为T2=6ms,业务需求的MaxLatency=26ms,Tmin=4ms,则根据公式(1)计算Tmax=MaxLatency-(T1+T2)+Tmin=19ms, 然后根据公式(2)计算最优值Tmax-O,假设策略函数f(x,y)=0.8,计算Tmax-O=15.2ms,并通过NETCONF下发给5GS-TSN-VB对应的5GS系统,同时CNC计算路径成功并将相应的数据下发给对应的普通网桥和虚拟网桥。
图7为5GS系统基于UPF切分链路路径计算方法的一种具体的实施例,如图7所示。网桥A和网桥B之间配置虚拟连接5GS-VL 1,此链路时延可以被CNC获取,UPF-A和UPF-B之间可以转发报文。CNC计算出的路径701,包含了5GS系统内部的虚拟链路,从Bridge A到Bridge B,假设图中计算出的最优路径的5GS左侧的链路延时为T1=5ms,右侧的为T2=6ms,业务需求的MaxLatency=26ms,Tmin=4ms,5GS-VL 1时延Tv1=5ms,则根据公式(1)计算Tmax=MaxLatency-(T1+T2+Tv1)+Tmin=14ms,然后根据公式(2)计算最优值Tmax-O,假设策略函数f(x,y)=0.8,计算Tmax-O=11.2ms。此时将Tmax-O=11.2ms作为时延要求通过NETCONF下发给5GS-TSN-VB对应的5GS系统,同时CNC计算路径成功并将相应的数据下发给对应的普通网桥和虚拟网桥。
图8为5GS系统基于UPF切分时链路路径计算方法的一种具体的实施例,如图8所示。网桥A和网桥B之间配置虚拟连接5GS-VL2,此链路时延可以被CNC获取,UPF-A和UPF-B之间可以转发报文。CNC计算出的路径80,包含了5GS系统内部的虚拟链路,从Bridge A到Bridge B,假设图中计算出的最优路径的5GS左侧的链路延时为T1=5ms,右侧的为T2=6ms,业务需求的MaxLatency=26ms,Tmin=4ms,5GS-VL 2延时Tv2=5ms,则根据公式(1)计算Tmax=MaxLatency-(T1+T2+Tv2)+Tmin=14ms,然后根据公式(3)计算最优值Tmax-O,假设时延是离散的点T[10ms,12ms,14ms,16ms,...40ms],由于14ms≤14ms<16ms,则Tmax-O=14ms。此时将Tmax-O=14ms作为时延要求通过NETCONF下发给5GS-TSN-VB对应的5GS系统,同时CNC计算路径成功并将相应的数据下发给对应的普通网桥和虚拟网桥。
需要说明的是,基于UE切分的计算方式与上述案例相类似,在此不 赘述。
本公开实施例提出的链路路径计算方法,通过获取包括5GS TSN虚拟网桥和普通TSN网桥的TSN网桥的拓扑,获取该TSN网桥的链路的时延参数、与listener相连的UE所在的所述5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency;计算最优路径,确定最优路径上的所有链路时延之和Tc;根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax;根据所述Tmax确定Tmax的优选值Tmax-O,所述Tmax-O小于或者等于所述Tmax,所述Tmax-O大于零;将业务流信息和所述Tmax-O作为时延要求下发给所述5GS-TSN-VB对应的5GS系统,若计算路径成功,则将所述业务流信息发给对应的TSN网桥,有效利用了5GS系统的内部路径,大大增加了路径计算的成功率,并有效平衡了资费/资源、时延之间的矛盾,提高了用户体验度。
进一步地,当5GS系统存在切分时,对切分后的各TSN虚拟网桥间增加全连接的虚拟连接5GS-VL,通过5GS-VL的引进,可以使得切分后的各虚拟TSN网桥间都有虚拟链路连接,同时在虚拟连接的基础上提出了倒推式路径的计算方法,可以为5GS TSN虚拟网桥内部虚拟链路配置最优的时间要求及资源占用。
实施例二:
本实施例还提供了一种链路路径计算装置,如图9所示,链路路径计算装置900其包括:
第一获取模块901,设置为获取包含TSN网桥的拓扑,TSN网桥包括5GS TSN虚拟网桥和普通TSN网桥;
第二获取模块902,设置为获取TSN网桥的链路的时延参数;
第三获取模块903,设置为获取与listener相连的UE所在的5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延 MaxLatency;
第一计算模块904,设置为计算最优路径,确定最优路径上的所有链路时延之和Tc;
第二计算模块905,设置为根据Tc、Tmin、MaxLatency确定5GS-TSN-VB容忍的最大的时延Tmax;
第三计算模块906,设置为根据Tmax确定Tmax的优选值Tmax-O,Tmax-O小于或者等于Tmax,Tmax-O大于零;
下发模块907,设置为将业务流信息和Tmax-O作为时延要求下发给5GS-TSN-VB对应的5GS系统,若计算路径成功,则将业务流信息发给对应的TSN网桥。
在一些实施例中,事件处理方法应用于5GS-TSN-VB的链路,其中TSN网
桥包括5GS TSN虚拟网桥和普通TSN网桥。
在一些实施例中,可以由CNC,CUC,End-Station等TSN实体获取包含TSN网桥的拓扑,拓扑的获取方式可以采用现有的可实现的方式,在本公开实施例中不做限定。
需要说明的是,上述获取与接收者listener相连的UE所在的5GS-TSN-VB
作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency的方式可以采用本领域的相关现有技术得到,在此不做限定。
需要说明的是,计算最优路径的方式可以采用本领域的相关现有技术来计算,在此不做限定。
确定最优路径上的所有链路时延之和Tc的方式可以理解为将最优路径上的所有链路时延相加,得到的总和即为Tc。
需要说明的是,与listener相连的UE所在的5GS-TSN-VB作为5GS能达到
的最小时延Tmin是可以通过用户或者系统进行配置的,其最小值可以为0。
在一些实施例中,当5GS系统存在切分时,获取TSN网桥的链路的时延参数之前,链路路径计算装置还包括:
配置模块,设置为在第二获取模块获取TSN网桥的链路的时延参数之前,切分后的各虚拟TSN网桥间配置虚拟的全连接5GS-VL;
第四获取模块,设置为获取5GS-VL的拓扑;
第二获取模块获取TSN网桥的链路的时延参数中,TSN网桥还包括5GS-VL。
需要说明的是,当5GS系统存在切分时,可以先在切分后的各虚拟TSN网
桥间配置虚拟的全连接5GS-VL后,在对包括虚拟的全连接5GS-VL在内的TSN网桥的拓扑,该TSN网桥包括5GS TSN虚拟网桥、5GS-VL和普通TSN网桥。需要说明的是普通TSN网桥包括TSN网桥中除5GS TSN虚拟网桥和5GS-VL外的网桥。
在一些实施例中,5GS-VL可以为在5GS系统切分后的各TSN虚拟网桥间增加全连接的虚拟连接5GS-VL,每个虚拟连接有确定的延时,时延可以通过真实的内部通路计算得出并被读取,这些虚拟连接可以被CNC利用,并用于路径的计算。
在一些实施例中,切分方式包括但不限于以下两种方式:基于UPF进行切分、基于UE进行切分。
需要说明的是,本领域技术人员也可以采用其他的现有的方式实现对5GS系统的切分,在其切分后的各TSN虚拟网桥间增加全连接的虚拟连接5GS-VL后,也可以通过本公开实施例所提供的方式来进行链路管理及路径计算。
在一些实施例中,第二计算模块根据Tc、Tmin、MaxLatency确定 5GS-TSN-VB容忍的最大的时延Tmax包括:Tmax=MaxLatency-Tc+Tmin。
在一些实施例中,第三计算模块根据Tmax确定Tmax的优选值Tmax-O包括:
根据时延(x)、资费和/或资源(y)确定策略函数f(x,y),f(x,y)小于或者等于1;
Tmax-O=f(x,y)*Tmax。
需要说明的是,上述根据时延(x)、资费和/或资源(y)确定策略函数f(x,y),可以是用户根据时延、资费和/或资源的相关条件,制定的策略函数。
在一些实施例中,Tmax-O等于Tmax乘以预设系数,该预设系数为大于0小于或者等于1的值。该预设系数可以是用户根据其能够承受的资费、资源占用和时延来进行尝试计算获得的,也可以是用户通过建立资费、资源占用与时延之间的计算模型来确定的。
在一些实施例中,第三计算模块根据Tmax确定Tmax的优选值Tmax-O包括:
当5GS系统的时延是至少两个离散的点时,Tmax-O等于各5GS系统的时延中较小的时延。
本公开实施例提出的链路路径计算装置,通过第一获取模块获取包括5GS TSN虚拟网桥和普通TSN网桥的TSN网桥的拓扑,第二获取模块获取该TSN网桥的链路的时延参数、第三获取模块获取与listener相连的UE所在的所述5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency;第一计算模块计算最优路径,确定最优路径上的所有链路时延之和Tc;第二计算模块根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax;第三计算模块根据所述Tmax确定Tmax的优选值Tmax-O,所述Tmax-O小于或者等于所述Tmax,所述Tmax-O大于零;下发模块将业务流信息和所述Tmax- O作为时延要求下发给所述5GS-TSN-VB对应的5GS系统,若计算路径成功,则将所述业务流信息发给对应的TSN网桥,有效利用了5GS系统的内部路径,大大增加了路径计算的成功率,并有效平衡了资费/资源、时延之间的矛盾,提高了用户体验度。
进一步地,当5GS系统存在切分时,对切分后的各TSN虚拟网桥间增加全连接的虚拟连接5GS-VL,通过5GS-VL的引进,可以使得切分后的各虚拟TSN网桥间都有虚拟链路连接,同时在虚拟连接的基础上提出了倒推式路径的计算方法,可以为5GS TSN虚拟网桥内部虚拟链路配置最优的时间要求及资源占用。
实施例三:
本实施例还提供了一种链路路径计算终端,参见图10所示,其包括处理器1001、存储器1003及通信总线1002,其中:
通信总线1002设置为实现处理器1001和存储器1003之间的连接通信;
处理器1001设置为执行存储器1003中存储的一个或者多个计算机程序,以实现上述各实施例中的链路路径计算方法中的至少一个步骤。
实施例四:
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘 存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现上述各实施例中的链路路径计算方法的至少一个步骤。
本实施例还提供了一种计算机程序(或称计算机软件),该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述各实施例中的事件处理方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
应当理解的是,在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本公开的保护范围。
工业实用性
基于本发明实施例上述提供的链路路径计算方法,通过获取包括5GS TSN虚拟网桥和普通TSN网桥的TSN网桥的拓扑,获取该TSN网桥的链路的时延参数、与listener相连的UE所在的所述5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency;计算最优路径,确定最优路径上的所有链路时延之和Tc;根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax;根据所述Tmax确定Tmax的优选值Tmax-O,所述Tmax-O小于或者等于所述Tmax,所述Tmax-O大于零;将业务流信息和所述Tmax-O作为时延要求下发给所述5GS-TSN-VB对应的5GS系统,若计算路径成功,则将所述业务流信息发给对应的TSN网桥。提供了一种对于5GS-TSN-VB的链路的路径计算提供了一种有效的解决方案,提升了路径计算成功率。

Claims (14)

  1. 一种链路路径计算方法,应用于5GS-TSN-VB的链路,所述链路路径计算方法包括:
    获取包含TSN网桥的拓扑,所述TSN网桥包括5GS TSN虚拟网桥和普通TSN网桥;
    获取所述TSN网桥的链路的时延参数;
    获取与listener相连的UE所在的所述5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency;
    计算最优路径,确定最优路径上的所有链路时延之和Tc;
    根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax;
    根据所述Tmax确定Tmax的优选值Tmax-O,所述Tmax-O小于或者等于所述Tmax,所述Tmax-O大于零;
    将业务流信息和所述Tmax-O作为时延要求下发给所述5GS-TSN-VB对应的5GS系统,若计算路径成功,则将所述业务流信息发给对应的TSN网桥。
  2. 如权利要求1所述的链路路径计算方法,其中,当所述5GS系统存在切分时,所述获取所述TSN网桥的链路的时延参数之前,所述链路路径计算方法还包括:
    切分后的各虚拟TSN网桥间配置虚拟的全连接5GS-VL;
    获取所述5GS-VL的拓扑;
    所述TSN网桥还包括所述5GS-VL。
  3. 如权利要求2所述的链路路径计算方法,其中,所述切分方式包括以下两种方式至少之一:基于UPF进行切分、基于UE进行切分。
  4. 如权利要求1至3任一项所述的链路路径计算方法,其中,所述 根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax包括:
    Tmax=MaxLatency-Tc+Tmin。
  5. 如权利要求4所述的链路路径计算方法,其中,所述根据所述Tmax确定Tmax的优选值Tmax-O包括:
    根据时延(x)、资费和/或资源(y)确定策略函数f(x,y),所述f(x,y)小于或者等于1;
    Tmax-O=f(x,y)*Tmax。
  6. 如权利要求4所述的链路路径计算方法,其中,所述根据所述Tmax确定Tmax的优选值Tmax-O包括:
    当所述5GS系统的时延是至少两个离散的点时,所述Tmax-O等于各所述5GS系统的时延中较小的时延。
  7. 一种链路路径计算装置,所述链路路径计算装置包括:
    第一获取模块,设置为获取包含TSN网桥的拓扑,所述TSN网桥包括5GS TSN虚拟网桥和普通TSN网桥;
    第二获取模块,设置为获取所述TSN网桥的链路的时延参数;
    第三获取模块,设置为获取与listener相连的UE所在的所述5GS-TSN-VB作为5GS能达到的最小时延Tmin和业务需求中的最大时延MaxLatency;
    第一计算模块,设置为计算最优路径,确定最优路径上的所有链路时延之和Tc;
    第二计算模块,设置为根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax;
    第三计算模块,设置为根据所述Tmax确定Tmax的优选值Tmax-O, 所述Tmax-O小于或者等于所述Tmax,所述Tmax-O大于零;
    下发模块,设置为将业务流信息和所述Tmax-O作为时延要求下发给所述5GS-TSN-VB对应的5GS系统,若计算路径成功,则将所述业务流信息发给对应的TSN网桥。
  8. [根据细则91更正 29.09.2020]
    如权利要求7所述的链路路径计算装置,其中,当所述5GS系统存在切分时,所述链路路径计算装置还包括:
    配置模块,设置为在所述第二获取模块获取所述TSN网桥的链路的时延参数之前,切分后的各虚拟TSN网桥间配置虚拟的全连接5GS-VL;
    第四获取模块,设置为获取所述5GS-VL的拓扑;
    所述第二获取模块获取所述TSN网桥的链路的时延参数中,所述TSN网桥还包括所述5GS-VL。
  9. [根据细则91更正 29.09.2020] 
    如权利要求8所述的链路路径计算装置,其中,所述切分方式包括以下两种方式至少之一:基于UPF进行切分、基于UE进行切分。
  10. [根据细则91更正 29.09.2020]
    如权利要求7至19任一项所述的链路路径计算装置,其中,所述第二计算模块根据所述Tc、Tmin、MaxLatency确定所述5GS-TSN-VB容忍的最大的时延Tmax包括:
    Tmax=MaxLatency-Tc+Tmin。
  11. [根据细则91更正 29.09.2020]
    如权利要求10所述的链路路径计算方法,其中,所述第三计算模块根据所述Tmax确定Tmax的优选值Tmax-O包括:
    根据时延(x)、资费/资源(y)确定策略函数f(x,y),所述f(x,y)小于或者等于1;
    此时,Tmax-O=f(x,y)*Tmax。
  12. [根据细则91更正 29.09.2020]
    如权利要求10所述的链路路径计算方法,其中,所述第三计算模块根据所述Tmax确定Tmax的优选值Tmax-O包括:
    当所述5GS系统的时延是至少两个离散的点时,所述Tmax-O等于各所述5GS系统的时延中较小的时延。
  13. 一种链路路径计算终端,应用于5GS-TSN-VB的链路,所述链路路径计算终端包括:处理器、存储器及通信总线;
    所述通信总线设置为实现处理器和存储器之间的连接通信;
    所述处理器设置为执行存储器中存储的一个或者多个计算机程序,以实现如权利要求1至6中任一项所述的链路路径计算方法的步骤。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个计算机程序,所述一个或者多个计算机程序可被一个或者多个处理器执行,以实现如权利要求1至6中任一项所述的链路路径计算方法的步骤。
PCT/CN2020/101952 2019-08-20 2020-07-14 链路路径计算方法、装置、终端及计算机可读存储介质 WO2021031744A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/635,912 US20220286380A1 (en) 2019-08-20 2020-07-14 Link path calculation method, apparatus, terminal and computer-readable storage medium
EP20854158.1A EP4007223A4 (en) 2019-08-20 2020-07-14 METHOD, DEVICE, TERMINAL AND COMPUTER READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910770799.5A CN112422432B (zh) 2019-08-20 2019-08-20 链路路径计算方法、装置、终端及计算机可读存储介质
CN201910770799.5 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021031744A1 true WO2021031744A1 (zh) 2021-02-25

Family

ID=74660472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101952 WO2021031744A1 (zh) 2019-08-20 2020-07-14 链路路径计算方法、装置、终端及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20220286380A1 (zh)
EP (1) EP4007223A4 (zh)
CN (1) CN112422432B (zh)
WO (1) WO2021031744A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747564B (zh) * 2021-09-07 2023-03-24 中国电信股份有限公司 时延控制方法、系统、装置、存储介质及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190173779A1 (en) * 2016-08-08 2019-06-06 Siemens Aktiengesellschaft Method, software agent, networked device and sdn controller for software defined networking a cyber physical network of different technical domains, in particular an industry automation network

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017300019B2 (en) * 2016-07-19 2022-04-14 Schneider Electric Industries Sas Time-sensitive software defined networking
US20180184438A1 (en) * 2016-12-28 2018-06-28 Intel Corporation Persistent scheduling and forwarding while receiving in wireless time sensitive networks
CN107172710B (zh) * 2017-04-23 2019-12-06 西安电子科技大学 一种基于虚拟子网的资源分配和业务接入控制方法
EP3448000A1 (de) * 2017-08-23 2019-02-27 Siemens Aktiengesellschaft Verfahren zum generieren eines eindeutigen adressierungskenners für einen datenstrom von einer applikation, in einem tsn konformen netzwerk und vorrichtung hierzu
CN110120878B (zh) * 2018-02-05 2020-10-23 华为技术有限公司 获取链路质量的方法和装置
CN112740624B (zh) * 2018-08-13 2024-04-23 诺基亚技术有限公司 支持TSN-3GPP网络集成中的E2E QoS要求的实现
EP3837815A1 (en) * 2018-08-14 2021-06-23 Nokia Technologies Oy Signalling of deterministic system capabilities depending on absolute transmission time (tsn, detnet, etc.)
WO2020035133A1 (en) * 2018-08-14 2020-02-20 Nokia Solutions And Networks Oy Mutual 3gpp-tsn qos adaption and shaping
US11489769B2 (en) * 2019-03-20 2022-11-01 Cisco Technology, Inc. Virtualized radio access network architecture for applications requiring a time sensitive network
US20220263743A1 (en) * 2019-07-03 2022-08-18 Nokia Technologies Oy Selective packet duplication or alternative packet transmission based on survival time

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190173779A1 (en) * 2016-08-08 2019-06-06 Siemens Aktiengesellschaft Method, software agent, networked device and sdn controller for software defined networking a cyber physical network of different technical domains, in particular an industry automation network

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON, CHINA MOBILE: "5G bridge granularity", 3GPP DRAFT; S2-1903364_5G BRIDGE GRANULARITY AND CONFIGURATION-R7, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Xi’an - China; 20190408 - 20190412, 2 April 2019 (2019-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051719527 *
ERICSSON: "TSN QoS and traffic scheduling in 5GS", 3GPP DRAFT; S2-1901150_WAS609_SOLN#XX_FRAMWORK OF TSN QOS AND TRAFFIC PATTERN MAPPING_PA2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Kochi, India; 20190121 - 20190125, 23 January 2019 (2019-01-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051595713 *
ERICSSON: "TSN-5GS QoS mapping", 3GPP DRAFT; S2-1903376_TSN QOS MAPPING_PAPER_DP, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Xi’an - China; 20190408 - 20190412, 2 April 2019 (2019-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051719538 *
HUAWEI, HISILICON: "QoS Negotiation between 3GPP and TSN networks KI#3.1", 3GPP DRAFT; S2-1811435 WAS S2-1811211 WAS S2-1810475_TR23.734_SOLUTION FOR KI 3_QOS NEGOTIATION BETWEEN 3GPP AND TSN NETWORKS V3, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS, vol. SA WG2, no. Dongguan, China; 20181015 - 20181019, 18 October 2018 (2018-10-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051503383 *
See also references of EP4007223A4 *

Also Published As

Publication number Publication date
US20220286380A1 (en) 2022-09-08
EP4007223A4 (en) 2022-09-28
CN112422432A (zh) 2021-02-26
CN112422432B (zh) 2023-06-20
EP4007223A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US10003540B2 (en) Flow forwarding method, device, and system
US20190394068A1 (en) Flow entry generating method and apparatus
US20180331955A1 (en) Service Traffic Allocation Method and Apparatus
KR102424658B1 (ko) 디폴트 서비스 품질(QoS) 제어 방법 및 장치
US20210006421A1 (en) Method and device for controlling qos, smf, upf, ue, pcf and an
US20200205213A1 (en) Methods and devices associated with improvements in or relating to an uplink split bearer in new radio
EP2858313B1 (en) Method, device, and system for routing function activation and data transmission
EP4024778A1 (en) Method for determining required bandwidth for data stream transmission, and devices and system
JP6617838B2 (ja) 伝送損失率を低減するための方法および装置
WO2021139696A1 (zh) 一种报告信息的发送方法、装置及系统
JP2022538111A (ja) ユーザプレーンのリルーティング方法および装置
WO2021031744A1 (zh) 链路路径计算方法、装置、终端及计算机可读存储介质
CN112087382B (zh) 一种服务路由方法及装置
CN107113186A (zh) 统一机器到机器系统中数据传输的方法和公共服务实体
CN109995606B (zh) 虚拟化深度包检测vDPI流量控制方法及网元设备
CN109818772A (zh) 一种网络性能保障方法及装置
CN109661796A (zh) 一种网络互通方法、网元及系统
WO2019223006A1 (zh) 一种基于电力线信道的数据帧传输方法及装置
US20240114323A1 (en) Apparatus and method for providing service function chaining service exposure in wireless communication system
CN115086230B (zh) 算网路由的确定方法、装置、设备及存储介质
WO2024074095A1 (zh) 一种通信方法及装置
CN111641698B (zh) 一种数据统计方法、系统、设备及存储介质
US11627603B2 (en) Techniques to reduce transmission failures in time-slotted channel hopping networks
CN111385839B (zh) QoS配置方法、装置和通信系统以及存储介质
CN114598636A (zh) 流量调度方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020854158

Country of ref document: EP

Effective date: 20220225