WO2021031603A1 - Led支架缺陷的检测方法、取像装置及检测设备 - Google Patents

Led支架缺陷的检测方法、取像装置及检测设备 Download PDF

Info

Publication number
WO2021031603A1
WO2021031603A1 PCT/CN2020/086822 CN2020086822W WO2021031603A1 WO 2021031603 A1 WO2021031603 A1 WO 2021031603A1 CN 2020086822 W CN2020086822 W CN 2020086822W WO 2021031603 A1 WO2021031603 A1 WO 2021031603A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
led bracket
light source
bracket
bar
Prior art date
Application number
PCT/CN2020/086822
Other languages
English (en)
French (fr)
Inventor
薛春花
陈润康
张春平
林淼
陈志列
Original Assignee
研祥智能科技股份有限公司
研祥智慧物联科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 研祥智能科技股份有限公司, 研祥智慧物联科技有限公司 filed Critical 研祥智能科技股份有限公司
Publication of WO2021031603A1 publication Critical patent/WO2021031603A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Definitions

  • the invention relates to the technical field of LED bracket defect detection, in particular to a detection method, image capturing device and detection equipment for LED bracket defects.
  • the LED bracket is the bottom base of the LED lamp beads before packaging.
  • the chip is fixed in, the positive and negative electrodes are welded, and then the packaging glue is used to encapsulate it once.
  • the production methods of LED stents mainly include the following: stamping, electroplating, injection molding, cutting, and packaging.
  • stamping electroplating
  • injection molding cutting
  • packaging packaging.
  • the defects of the injection mold are not found in time, the use of defective injection molds to continue injection production will inevitably lead to a large number of product scraps. Therefore, after the injection molding is completed, the detection of the LED bracket becomes particularly important.
  • the LED bracket defect detection method, image capturing device and detection equipment provided by the present invention can detect injection molding results in time and avoid losses caused by injection molding defects.
  • the present invention provides a method for detecting defects of an LED bracket, including:
  • the angle between the optical axis of the lens of the camera and the upper surface of the LED bracket is adjusted to be 30°-50°.
  • providing the light source includes providing two bar-shaped light sources;
  • Adjust the two bar light sources in the same plane adjust the plane where the two bar light sources are located parallel to the upper surface of the LED bracket, and adjust the plane where the two bar light sources are located 30mm-50mm above the upper surface of the LED bracket .
  • the projection of the optical axis of the lens of the camera on the plane of the two bar-shaped light sources is the first axis, and the two bar-shaped light sources are adjusted to be symmetrical about the first axis and the bar-shaped light source and the The included angle of the first axis is 20°-40°.
  • the distance between the camera lens and the upper surface of the LED bracket is adjusted to be 460mm-480mm.
  • the reflection of light on the non-injected part of the LED bracket is specular reflection; and the reflection of light on the injection molded part, that is, the white plastic body whose detection target is white, is diffuse reflection.
  • the light source is used to supplement the light of the LED bracket, and the camera takes the image outside the scope of the specular reflection of the LED bracket, so that the uninjected part will not reflect light into the camera, so the part is black in the captured image;
  • the injection molding part will reflect part of the light into the camera due to diffuse reflection, which will be displayed in the captured image. In this way, the injection molded part can be more prominent in the image, and it is easier to identify whether there is a defect.
  • the present invention provides a defect imaging device of an LED bracket, including:
  • Cross beam fixedly connected to the upper part of the main support column
  • the light source bracket is cross-slidably connected with the lower part of the main support column;
  • the light source connector is horizontally slidingly connected with the light source bracket;
  • a light source which is rotatably connected with the light source connector, and is used to fill the LED bracket with light;
  • the camera bracket is cross-slidably connected with the beam
  • the camera is rotatably connected with the camera support, and is used for taking images of the area of the LED support on the preset supporting plane except for the specular reflection light.
  • the light source includes two bar-shaped light sources, the two bar-shaped light sources are in the same plane, and the plane where the two bar-shaped light sources are located is arranged in parallel at a position 30mm-50mm above the plane where the upper surface of the LED bracket is located.
  • the projection of the optical axis of the lens of the camera in the plane where the two strip light sources are located is the first axis
  • the two bar-shaped light sources are symmetrically arranged about the first axis, and the included angle between the bar-shaped light source and the first axis is 20°-40°.
  • the included angle between the optical axis of the camera and the upper surface of the LED bracket is 30°-50°; the distance between the camera lens and the upper surface of the LED bracket is 460mm-480mm.
  • the LED bracket defect imaging device of the present invention uses the light source and the sliding and rotation of the camera to enable the camera to capture images outside the scope of the specular reflection light of the LED bracket.
  • the light reflected from the uninjected part of the LED bracket cannot enter the camera, and this part of the display shows It is black, and due to diffuse reflection of the injection part, some light can enter the camera, so that the injection part can be highlighted in the image, which is convenient for identifying defects in the injection part.
  • the present invention provides an LED bracket defect detection equipment, including:
  • a computer communicatively connected with the camera in the LED bracket defect imaging device; the computer is used to receive the image collected by the camera, identify the defect through a predetermined algorithm, and issue an alarm command;
  • an alarm device that is in communication with the computer; the alarm device receives an alarm command and sends an alarm action according to the alarm command.
  • the LED bracket defect detection equipment of the present invention uses the above-mentioned LED bracket defect imaging device to capture images, and the image captured by the imaging device can more conveniently identify injection molding defects on the LED bracket.
  • the computer uses the existing defect recognition algorithm to identify the defects in the image. After recognition, the computer sends a command to the alarm device, and the alarm device responds to the alarm command to issue an alarm action.
  • the whole set of equipment can identify LED bracket defects and issue alarm commands, which can reduce the labor intensity of LED bracket defect detection and improve efficiency.
  • FIG. 1 is a schematic diagram of the positions of the camera, the light source and the LED bracket after the adjustment of the method for detecting defects of the LED bracket according to an embodiment of the present invention
  • Figure 2 is a top view of Figure 1;
  • FIG. 3 is a schematic diagram of the structure of a defect imaging device of an LED bracket according to an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of an LED bracket defect detection device according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for detecting LED bracket defects, including:
  • the positions and angles of the light source 16 and the camera 14 are adjusted so that the camera 14 takes an image of the area of the LED bracket 6 on the preset supporting plane that has the specular reflection light removed.
  • the preset supporting surface refers to the surface of the device or component supporting the LED bracket 6 during the inspection process.
  • the adjusted camera 14 is diagonally above the LED bracket 6, and the angle between the optical axis of the lens 141 of the camera 14 and the LED bracket 6 is an acute angle. Since the camera 14 and the LED bracket 6 have a certain included angle, the three-dimensional information of the white colloid in the injection molded part can be highlighted, which is more conducive to subsequent defect identification.
  • the light source 16 in this embodiment includes two bar-shaped light sources 161 and 162. After the adjustment is completed, the axes of the two bar-shaped light sources 161 and 162 are in a symmetrical position in the same plane, and the plane of the two bar-shaped light sources 161 and 162 is aligned with The LED supports 6 are parallel, which can improve the uniformity of light on the upper surface of the LED supports 6. To ensure that the LED bracket 6 can have enough light.
  • the projection of the optical axis of the lens 141 of the camera 14 on the plane of the two strip light sources 161 and 162 is taken as the first axis, and the two strip light sources 161 and 162 are adjusted to be symmetrical about the first axis.
  • the angle between the two bar-shaped light sources 161 and 162 and the first axis is an acute angle.
  • the camera 14 starts to capture images.
  • the captured images can be sent to the computer.
  • the computer captures the images captured by the camera 14 and uses a predetermined algorithm to recognize the images; when the LED bracket 6 is found to have When there is a defect, the computer controls the alarm device 3 to give an alarm.
  • the light reflection of the uninjected part of the LED bracket 6 is specular reflection; while the injection molded part, that is, the white plastic body whose detection target is white, reflects light as diffuse reflection.
  • the light source 16 is used to supplement the light of the LED bracket 6, and the camera 14 takes the image outside the scope of the specular reflection light of the LED bracket 6, so that the uninjected part will not reflect light into the camera 14, so that the captured image Part of it is black; while the injection part will reflect part of the light into the camera 14 due to diffuse reflection, which will be displayed in the captured image. In this way, the injection molded part can be more prominent in the image, and it is easier to identify whether there are defects.
  • the optical axis of the lens 141 of the camera 14 may be adjusted to an angle of 30°-50° with the upper surface of the LED bracket 6.
  • the angle between the optical axis and the upper surface of the LED bracket 6 can be 30°, 40° or 50°.
  • the distance between the two bar-shaped light sources 161 and 162 above the upper surface of the LED bracket 6 can be 30 mm, 40 mm or 50 mm.
  • the angle between the two bar-shaped light sources 161 and 162 and the first axis is adjusted to 20°-40°.
  • the angle between the two bar-shaped light sources 161 and 162 and the first axis can be selected from 20°, 30°, or 40°.
  • the distance between the camera lens 141 and the upper surface of the LED bracket 6 is adjusted to be 460 mm to 480 mm.
  • the distance between the camera lens 141 and the upper surface of the LED bracket 6 can be 460 mm, 470 mm or 480 mm.
  • This embodiment provides a method for producing an LED bracket, including injection molding a metal bracket through an injection molding device;
  • the defect detection method of the LED bracket in this embodiment is performed before cutting, the defects generated during the injection molding process can be found in time, and the defective LED bracket can be prevented from entering the cutting process and causing damage to the cutting mold. At the same time, the defects of the injection mold can be found in time through the injection defects, and the defects of the injection mold can be corrected in time to avoid a large amount of waste products.
  • This embodiment provides an LED bracket defect imaging device 1, as shown in FIG. 3, including:
  • the beam 12 is fixedly connected to the upper part of the main support column 11;
  • the light source bracket 15 is cross-slidably connected to the lower part of the main support column 11; the light source bracket 15 is rotatably connected with a light source 16;
  • the main support column 11 and the light source bracket 15 are connected in a cross sliding manner as follows: the main support column 11 has an elongated hole, and the light source installation slider 154 is connected to the main support column 11 by bolts; when the upper and lower positions of the light source 16 need to be adjusted, loosen Open the bolts that fix the light source mounting slider 154 and the main support column 11, and slide the light source mounting slider 154 along the long circular hole of the main support column 11 to adjust the up and down positions of the light source 16;
  • the light source support 15 includes a longitudinal rod 153 and a transverse rod 152.
  • the longitudinal rod 153 and the transverse rod 152 are connected to form a "T" shape.
  • the longitudinal rod 153 of the light source support 15 also has an oblong hole.
  • the bolt passes through the oblong hole on the longitudinal rod 153.
  • the light source bracket 15 is connected to the main support column 11; when the horizontal position of the light source 16 needs to be adjusted, the bolts that fix the light source bracket 15 and the light source mounting slider 154 are loosened, and the light source bracket 15 is slid to adjust the horizontal position.
  • Two light source connectors 151 are respectively connected to the two ends of the transverse rod 152 of the light source bracket 15 by bolts.
  • the holes for piercing bolts on the transverse rod 152 of the light source bracket 15 are oblong holes; one of the light source connectors 151 is connected by rotation There is a bar-shaped light source 161, and a bar-shaped light source 162 is rotatably connected to the other light source connecting member 151;
  • the light source connector 151 can also be slid along the lateral rod 152 of the light source bracket 15.
  • the two bar-shaped light sources 161 and 162 can be rotated.
  • the camera bracket 132 is cross-slidably connected with the beam 12; the camera bracket 132 is rotatably connected with a camera 14; the camera 14 is used to capture images of the LED bracket 6 on the preset supporting plane except for the area with specular reflection light.
  • the cross sliding connection between the camera bracket 132 and the beam 12 adopts the following method: the beam 12 is provided with an elongated circular hole, and bolts pass through the elongated circular hole to connect the camera bracket 132 and the beam 12, and when the bolts are loosened, the camera mounting slider 131 can follow the beam 12 Sliding; the camera bracket 132 is also provided with an oblong hole. After the bolt passes through the oblong hole, the camera bracket 132 is connected with the camera mounting slider 131. After the bolt is loosened, the camera bracket 132 can slide.
  • a camera connector 133 is connected to the camera bracket 132, and the camera 14 is rotatably connected to the camera connector 133.
  • the camera bracket 132 and the light source bracket 15 are slid, and the camera 14 and the light source 16 are rotated, so that the camera 14 takes images outside the scope of the specular reflection light of the LED bracket 6 .
  • the LED bracket defect imaging device 1 of the present invention uses the light source 16 and the camera 14 to slide and rotate, so that the camera 14 takes images outside the scope of the specular reflection light of the LED bracket 6, and the reflected light of the uninjected part of the LED bracket 6 cannot enter In the camera 14, this part is displayed in black, and due to diffuse reflection, some light can enter the camera 14 in the injection molding part, so that the injection molding part can be highlighted in the image, and the defects of the injection molding part can be easily identified.
  • the cross-sliding connection can also be connected by using a cross fixing member and a linear sliding bearing.
  • a cross fixing member Taking the connection mode of the camera bracket 132 and the beam 12 as an example, in the two openings of the cross fixing member Install linear sliding bearings separately, connect the beam 12 and the camera bracket 132 to the two linear sliding bearings respectively, so that the beam 12 and the camera can achieve cross sliding, and then through positioning pins or bolts and other positioning parts, the beam 12 and the camera bracket 132 can be realized Positioning.
  • the cross sliding manner of the light source bracket 15 and the main support column can also be connected in this manner.
  • the cross sliding connection can also be connected by a slider.
  • the camera bracket 132 and the beam 12 have sliding grooves, There are sliding connecting parts on the opposite sides respectively, and the two sliding connecting parts are arranged vertically.
  • the sliding groove of the camera bracket 132 and the sliding groove of the beam 12 are connected to the two sliding connecting parts respectively, so that the camera bracket 132 and the beam 12 realize cross sliding , And then locate by key, pin or bolt and other positioning parts.
  • the light source 16 includes two bar-shaped light sources 161 and 162, and the two bar-shaped light sources 161 and 162 are in the same plane.
  • the projection of the optical axis of the lens 141 of the camera 14 on the plane where the two bar-shaped light sources 161 and 162 are located is the first axis, and the two bar-shaped light sources 161 and 162 are symmetrical about the first axis.
  • the angle between the strip light sources 161 and 162 and the first axis is 20°-40°. In this embodiment, the angle between the strip light sources 161 and 162 and the first axis can be selected from 20°, 30° or 40°.
  • the number of bar-shaped light sources in this embodiment can also be other numbers, such as 1, 3 or more.
  • the light source 16 in this embodiment can also be a point light source or a surface light source, and the number can also be adjusted according to requirements, for example, 1 surface light source or 2 surface light sources, or more The area light source is used to fill light. Alternatively, one point light source, two point light sources, or more point light sources can also be used to supplement light.
  • the included angle between the optical axis of the lens 141 of the camera 14 and the upper surface of the LED bracket 6 is 30°-50°.
  • the angle between the optical axis and the upper surface of the LED bracket 6 can be 30°, 40° or 50°.
  • the distance between the camera lens 141 and the upper surface of the LED bracket 6 is 460 mm to 480 mm.
  • the distance between the camera lens 141 and the upper surface of the LED bracket 6 can be 460 mm, 470 mm or 480 mm.
  • the plane where the two bar-shaped light sources 161 and 162 are located is arranged in parallel at a position 30 mm-50 mm above the plane where the upper surface of the LED bracket 6 is located.
  • the distance between the plane where the two bar-shaped light sources 161 and 162 are located and the upper surface of the LED bracket 6 can be selected as 30 mm, 40 mm or 50 mm.
  • An LED bracket defect detection device provided by an embodiment of the present invention, as shown in FIG. 4, is set before the entrance of the cutting device 5, and includes:
  • a computer 2 that is communicatively connected with the camera 14 in the LED bracket defect imaging device 1; the computer 2 is used to receive the image collected by the camera 14, identify the defect through a predetermined algorithm and issue an alarm command;
  • an alarm device 3 that is in communication with the computer 2; the alarm device 3 receives an alarm command and sends an alarm action according to the alarm command.
  • the LED bracket defect detection equipment of the present invention uses the aforementioned LED bracket defect imaging device 1 to capture images, and the image captured by the imaging device 1 can more conveniently identify injection defects on the LED bracket 6.
  • the computer 2 uses the existing defect recognition algorithm to identify the defects in the image. After recognition, the computer 2 sends a command to the alarm device 3, and the alarm device 3 responds to the alarm command Alarm action is issued.
  • the whole set of equipment can identify LED bracket defects and issue alarm commands, which can reduce the labor intensity of LED bracket defect detection and improve efficiency.
  • the alarm device 3 includes one or more alarm modules of sound, light, vibration, or screen.
  • this embodiment further includes a human-computer interaction module 4 communicatively connected with the computer 2, and the human-computer interaction module 4 is used to display detection results and input control commands.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种LED支架缺陷检测方法,包括:提供相机(14)和光源(16);调整光源(16)和相机(14)的位置和角度,使相机对预设承托平面上的LED支架(6)的具有除镜面反射光的区域进行取像。通过使相机(14)在LED支架(6)镜面反射光范围之外进行取像,突出了注塑部分的图像,更有利于对注塑部分的缺陷检测。

Description

LED支架缺陷的检测方法、取像装置及检测设备 技术领域
本发明涉及LED支架缺陷检测技术领域,尤其涉及一种LED支架缺陷的检测方法、取像装置及检测设备。
背景技术
LED支架是LED灯珠在封装之前的底基座,在LED支架的基础上,将芯片固定进去,焊上正负电极,再用封装胶一次封装成型。LED支架的生产方法主要包括以下:冲压,电镀,注塑,裁切,包装。在注塑工序中,如果产生了一些较大缺陷:如缺颗,胶体填充不足,胶体压伤等,将会有很大概率引起后续裁切模具的损坏。同时,如果未能及时发现注塑模具的缺陷,采用有缺陷的注塑模具继续进行注塑生产,必然会造成大量的产品报废。因此,在注塑完成后,对LED支架的检测就显得尤为重要。
发明内容
本发明提供的LED支架缺陷的检测方法、取像装置及检测设备,能够及时对注塑结果进行检测,避免因注塑缺陷引起的损失。
第一方面,本发明提供一种LED支架缺陷检测方法,包括:
提供相机和光源;
调整光源和相机的位置和角度,使相机对预设承托平面上的LED支架的具有除镜面反射光的区域进行取像。
可选地,调整所述相机的镜头的光轴与LED支架上表面的夹角为30°~50°。
可选地,提供光源包括提供两个条形光源;
调整两所述条形光源在同一平面内,调整两所述条形光源所在平面与所述 LED支架上表面平行,且两所述条形光源所在平面在所述LED支架上表面上方30mm~50mm。
可选地,所述相机的镜头的光轴在两所述条形光源的平面内的投影为第一轴线,调整两所述条形光源关于第一轴线对称且所述条形光源与所述第一轴线的夹角为20°~40°。
可选地,调整所述相机镜头与LED支架上表面的距离为460mm~480mm。
在本发明的LED支架缺陷的检测方法中,LED支架上未注塑部分对光的反射为镜面反射;而注塑部分,即检测目标为白色的塑胶体对光的反射为漫反射。为检测注塑部分是否有缺颗,填充不足或者胶体压伤等缺陷。采用光源对LED支架进行补光,而相机在LED支架镜面反射光的范围之外进行取像,这样,未注塑部分不会将光反射进相机,从而在拍摄的图像中该部分为黑色;而注塑部分则会由于漫反射的方式将部分光反射如相机内,从而在拍设的图像中显示出来。这样,能够使注塑部分在图像中更加突出,更加容易识别处是否存在缺陷。
第二方面,本发明提供一种LED支架缺陷取像装置,包括:
主支撑柱;
横梁,与主支撑柱上部固定连接;
光源支架,与所述主支撑柱下部交叉滑动连接;
光源连接件,与所述光源支架水平滑动连接;
光源,与所述光源连接件旋转连接,用于为LED支架补光;
相机支架,与所述横梁交叉滑动连接;
相机,与所述相机支架旋转连接,用于对预设承托平面上的LED支架的除具有镜面反射光的区域进行取像。
可选地,所述光源包括两个条形光源,两所述条形光源在同一平面内,且两所述条形光源所在平面在LED支架上表面所在平面上方30mm~50mm处平行设置。
可选地,所述相机的镜头的光轴在两所述条形光源所在平面内的投影为第一轴线;
两所述条形光源关于所述第一轴线对称设置且所述条形光源与所述第一轴线之间的夹角为20°~40°。
可选地,所述相机的光轴与LED支架上表面之间的夹角为30°~50°;所述相机镜头与LED支架上表面的距离为460mm~480mm。
本发明LED支架缺陷取像装置通过光源、相机的滑动与转动,使相机在LED支架的镜面反射光范围之外进行取像,LED支架未注塑部分的反射的光不能进入相机内,该部分显示为黑色,而注塑部分由于漫反射的原因,能够有部分光进入相机内,从而能够在图像内突出注塑部分,便于识别注塑部分的缺陷。
第三方面,本发明提供一种LED支架缺陷检测设备,包括:
如上述任意一项所述LED支架缺陷取像装置;
与所述LED支架缺陷取像装置中的相机通讯连接的计算机;所述计算机用于接收相机采集的图像,通过预定算法识别缺陷并发出报警命令;
以及与所述计算机通讯连接的报警装置;所述报警装置接收报警命令并依据报警命令发出报警动作。
本发明的LED支架缺陷检测设备采用上述的LED支架缺陷取像装置取像,该取像装置获取的图像能够更加便捷的识别LED支架上的注塑缺陷。当取像装置所获取的图像传输至计算机后,计算机通过现有的缺陷识别算法对图 像中的缺陷进行识别,识别后由计算机向报警装置发出命令,报警装置响应报警命令发出报警动作。整套设备能够自行识别LED支架缺陷并发出报警命令,能够降低LED支架缺陷检测工作的劳动强度,提高效率。
附图说明
图1为本发明一实施例LED支架缺陷的检测方法调整完成的相机、光源和LED支架的位置示意图;
图2为图1的俯视图;
图3为本发明一实施例LED支架缺陷取像装置的结构示意图;
图4为本发明一实施例LED支架缺陷检测设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本发明实施例提供一种LED支架缺陷的检测方法,包括:
提供相机14和光源16;
调整光源16和相机14的位置和角度,使相机14对预设承托平面上的LED支架6的具有除镜面反射光的区域进行取像。
预设的承托表面是指代在检测过程中承托LED支架6的装置或组件的表面。
如图1~2所示,调整完毕的相机14在LED支架6的斜上方,并且相机 14的镜头141的光轴与LED支架6之间的夹角为锐角。由于相机14与LED支架6之间具有一定的夹角,从而能够突出注塑部分的白色胶体的立体信息,更有利于后续对缺陷的识别。
本实施例中的光源16包括两个条形光源161和162,调整完毕后,两个条形光源161和162轴线在同一平面内的对称位置,并且两个条形光源161和162所在平面与LED支架6平行,能够提高LED支架6上表面光照的均匀程度。为了确保LED支架6能够有足够的光照。将所述相机14的镜头141的光轴在两所述条形光源161和162的平面内的投影作为为第一轴线,调整两所述条形光源161和162关于第一轴线对称。调整光源角度时将两个条形光源161和162与第一轴线的夹角为锐角的状态。
在上述调整完成后,相机14开始取像,为了快速识别缺陷,可以将取得的图像发送至计算机,计算机获取相机14拍摄的图像,并利用预定的算法对图像进行识别;当发现LED支架6有缺陷时,计算机控制报警装置3报警。
在本实施例的LED支架缺陷的检测方法中,LED支架6上未注塑部分对光的反射为镜面反射;而注塑部分,即检测目标为白色的塑胶体对光的反射为漫反射。为检测注塑部分是否有缺颗,填充不足或者胶体压伤等缺陷。采用光源16对LED支架6进行补光,而相机14在LED支架6镜面反射光的范围之外进行取像,这样,未注塑部分不会将光反射进相机14,从而在拍摄的图像中该部分为黑色;而注塑部分则会由于漫反射的方式将部分光反射入相机14内,从而在拍设的图像中显示出来。这样,能够使注塑部分在图像中更加突出,更加容易识别是否存在缺陷。
作为本实施例的可选实施方式,可以选择将相机14的镜头141的光轴调整至与LED支架6上表面的夹角为30°~50°。在本实施方式中,光轴与LED 支架6上表面的夹角可以选用30°,40°或者50°。
作为本实施例的可选实施方式,调整两个条形光源161和162所在平面在LED支架6上方30mm~50mm。在本实施方式中,两个条形光源161和162在LED支架6上表面上方的距离可以选取30mm,40mm或者50mm。
作为本实施例的可选实施方式,调整两个条形光源161和162与第一轴线的夹角为20°~40°。在本实施方式中,两个条形光源161和162与第一轴线的夹角可以选取20°,30°,或者40°。
作为本实施例的可选实施方式,调整相机镜头141与LED支架6上表面的距离为460mm~480mm。在本实施方式中,相机镜头141与LED支架6上表面的距离可以选用460mm,470mm或者480mm。
实施例2
本实施例提供一种LED支架的生产方法,包括,将金属支架通过注塑设备进行注塑;
采用如实施例1中任意一种实施方式的LED支架缺陷的检测方法对完成注塑的所述LED支架进行检测;
将无缺陷的LED支架通过裁切设备进行裁切。
由于本实施例LED支架缺陷的检测方法是在裁切前进行的,因此,能够及时的发现注塑过程中产生的缺陷,避免有缺陷的LED支架进入裁切工序而引起裁切模具的损坏。同时,还能够通过注塑缺陷及时的发现注塑模具的缺陷,及时对注塑模具的缺陷进行改正,避免产生大量废品的情况。
实施例3
本实施例提供一种LED支架缺陷取像装置1,如图3所示包括:
主支撑柱11;
横梁12,与主支撑柱11上部固定连接;
光源支架15,与主支撑柱11下部交叉滑动连接;光源支架15上旋转连接有光源16;
主支撑柱11与光源支架15通过如下方式进行交叉滑动连接:主支撑柱11上有长圆孔,光源安装滑块154通过螺栓与主支撑柱11连接;当需要调整光源16的上下位置时,松开固定光源安装滑块154与主支撑柱11的螺栓,将光源安装滑块154沿主支撑柱11的长圆孔进行滑动,调整光源16的上下位置;
光源支架15包括一纵向杆153和一横向杆152,纵向杆153和横向杆152连接形成“T”形,光源支架15的纵向杆153上也有长圆孔,螺栓通过纵向杆153上的长圆孔将光源支架15与主支撑柱11连接;当需要调节光源16的水平位置时,将固定光源支架15与光源安装滑块154的螺栓松开,滑动光源支架15,调整水平位置。
两个光源连接件151分别通过螺栓连接在光源支架15的横向杆152的两端,光源支架15的横向杆152上用于穿设螺栓的孔为长圆孔;其中一个光源连接件151上旋转连接有一条形光源161,另一个光源连接件151上旋转连接有一条形光源162;两个条形光源161和162的旋转平面与光源支架15所在平面平行。
因此,当需要调整光源16位置时,还可以将光源连接件151沿光源支架15的横向杆152滑动,当需要调节光源16角度时,可以将两个条形光源161和162进行旋转。
相机支架132,与横梁12交叉滑动连接;相机支架132上旋转连接有相机14;相机14用于对预设承托平面上的LED支架6除具有镜面反射光的区域进行取像。
相机支架132与横梁12的交叉滑动连接采用如下方式:横梁12上开设有长圆孔,螺栓穿过长圆孔将相机支架132与横梁12连接,当松动螺栓后,相机安装滑块131能沿横梁12滑动;在相机支架132上也开设有长圆孔,螺栓穿过长圆孔后将相机支架132与相机安装滑块131连接,松动螺栓后,相机支架132能进行滑动。
相机支架132上连接有相机连接件133,相机14旋转连接在相机连接件133上。
对于以上的结构,当对LED支架6进行检测时,将相机支架132和光源支架15进行滑动,将相机14和光源16进行转动,以使相机14在LED支架6镜面反射光的范围外取像。
本发明LED支架缺陷取像装置1通过光源16、相机14的滑动与转动,使相机14在LED支架6的镜面反射光范围之外进行取像,LED支架6未注塑部分的反射的光不能进入相机14内,该部分显示为黑色,而注塑部分由于漫反射的原因,能够有部分光进入相机14内,从而能够在图像内突出注塑部分,便于识别注塑部分的缺陷。
作为本实施例的可选实施方式,交叉滑动的连接方式还可以选用十字固定件配合直线滑动轴承进行连接,以相机支架132和横梁12的连接方式为例,在十字固定件的两个开口内分别安装直线滑动轴承,将横梁12和相机支架132分别与两个直线滑动轴承连接,这样横梁12和相机能够实现交叉滑动,再通过定位销或者螺栓等定位件,能够实现横梁12和相机支架132的定位。同理,光源支架15和主支撑柱的交叉滑动方式也可以采用这种方式进行连接。
作为本实施例的可选实施方式,交叉滑动连接的方式还可以采用滑块进行连接,以相机支架132和横梁12的连接为例,相机支架132和横梁12上都有 滑槽,滑块的相对两侧分别有滑动连接部,两个滑动连接部垂直设置,相机支架132的滑槽和横梁12的滑槽分别与两个滑动连接部连接,这样,相机支架132和横梁12实现了交叉滑动,再通过键,销或者螺栓等定位件进行定位。
作为本实施例的可选实施方式,光源16包括两个条形光源161和162,两个条形光源161和162在同一平面内。
作为本实施例的可选实施方式,相机14的镜头141的光轴在两个条形光源161和162所在平面内的投影为第一轴线,两个条形光源161和162关于第一轴线对称设置。
作为本实施例的可选实施方式,条形光源161和162与第一轴线之间的夹角为20°~40°。在本实施方式中,条形光源161和162与第一轴线之间的夹角可以选取20°,30°或者40°。
当然,本实施例中的条形光源数量还可以采用其他数量,例如1个、3个或者更多。
作为本实施例的可选实施方式,本实施例中的光源16还可以选用点光源或面光源,数量也可以依需求进行调整,例如采用1个面光源或者2个面光源,或者更多的面光源进行补光。或者,也可以采用1个点光源或者2个点光源,或者更多的点光源进行补光。
作为本实施例的可选实施方式,相机14的镜头141的光轴与LED支架6上表面之间的夹角为30°~50°。在本实施方式中,光轴与LED支架6上表面的夹角可以选用30°,40°或者50°。
作为本实施例的可选实施方式,相机镜头141与LED支架6上表面间的距离为460mm~480mm。在本实施方式中,相机镜头141与LED支架6上表面间的距离可以选用460mm,470mm或者480mm。
作为本实施例的可选实施方式,两个条形光源161和162所在平面在LED支架6上表面所在平面上方30mm~50mm处平行设置。在本实施方式中,两个条形光源161和162所在平面与LED支架6上表面的距离可以选取30mm,40mm或者50mm。
实施例4
本发明实施例提供的一种LED支架缺陷检测设备,如图4所示,设置在裁切设备5入口之前,包括:
上述实施例3中各实施方式中的LED支架缺陷取像装置1的任意一种;
与LED支架缺陷取像装置1中的相机14通讯连接的计算机2;计算机2用于接收相机14采集的图像,通过预定算法识别缺陷并发出报警命令;
以及与计算机2通讯连接的报警装置3;报警装置3接收报警命令并依据报警命令发出报警动作。
本发明的LED支架缺陷检测设备采用上述的LED支架缺陷取像装置1取像,该取像装置1获取的图像能够更加便捷的识别LED支架6上的注塑缺陷。当取像装置1所获取的图像传输至计算机2后,计算机2通过现有的缺陷识别算法对图像中的缺陷进行识别,识别后由计算机2向报警装置3发出命令,报警装置3响应报警命令发出报警动作。整套设备能够自行识别LED支架缺陷并发出报警命令,能够降低LED支架缺陷检测工作的劳动强度,提高效率。
作为本实施例的可选实施方式,报警装置3包括声、光、震动或者画面中的一种或几种报警模块。
作为本实施例的可选实施方式,还包括与计算机2通讯连接的人机交互模块4,人机交互模块4用于展示检测结果和输入控制命令。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种LED支架缺陷检测方法,其特征在于:包括:
    提供相机和光源;
    调整光源和相机的位置和角度,使相机对预设承托平面上的LED支架的具有除镜面反射光的区域进行取像。
  2. 如权利要求1所述LED支架缺陷的检测方法,其特征在于:调整所述相机的镜头的光轴与LED支架上表面的夹角为30°~50°。
  3. 如权利要求1所述LED支架缺陷的检测方法,其特征在于:提供光源包括提供两个条形光源;
    调整两所述条形光源在同一平面内,调整两所述条形光源所在平面与所述LED支架上表面平行,且两所述条形光源所在平面在所述LED支架上表面上方30mm~50mm。
  4. 如权利要求3所述LED支架缺陷的检测方法,其特征在于:所述相机的镜头的光轴在两所述条形光源的平面内的投影为第一轴线,调整两所述条形光源关于第一轴线对称且所述条形光源与所述第一轴线的夹角为20°~40°。
  5. 如权利要求1所述LED支架缺陷的检测方法,其特征在于:调整所述相机镜头与LED支架上表面的距离为460mm~480mm。
  6. 一种LED支架缺陷取像装置,其特征在于:包括:
    主支撑柱;
    横梁,与主支撑柱上部固定连接;
    光源支架,与所述主支撑柱下部交叉滑动连接;
    光源连接件,与所述光源支架水平滑动连接;
    光源,与所述光源连接件旋转连接,用于为LED支架补光;
    相机支架,与所述横梁交叉滑动连接;
    相机,与所述相机支架旋转连接,用于对预设承托平面上的LED支架的除具有镜面反射光的区域进行取像。
  7. 如权利要求6所述LED支架缺陷取像装置,其特征在于:所述光源包括两个条形光源,两所述条形光源在同一平面内,且两所述条形光源所在平面在LED支架上表面所在平面上方30mm~50mm处平行设置。
  8. 如权利要求7所述LED支架缺陷取像装置,其特征在于:所述相机的镜头的光轴在两所述条形光源所在平面内的投影为第一轴线;
    两所述条形光源关于所述第一轴线对称设置且所述条形光源与所述第一轴线之间的夹角为20°~40°。
  9. 如权利要求7所述LED支架缺陷取像装置,其特征在于:所述相机的光轴与LED支架上表面之间的夹角为30°~50°;所述相机镜头与LED支架上表面的距离为460mm~480mm。
  10. 一种LED支架缺陷检测设备,其特征在于:包括:
    如权利要求6-9任意一项所述LED支架缺陷取像装置;
    与所述LED支架缺陷取像装置中的相机通讯连接的计算机;所述计算机用于接收相机采集的图像,通过预定算法识别缺陷并发出报警命令;
    以及与所述计算机通讯连接的报警装置;所述报警装置接收报警命令并依据报警命令发出报警动作。
PCT/CN2020/086822 2019-08-16 2020-04-24 Led支架缺陷的检测方法、取像装置及检测设备 WO2021031603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910757177.9 2019-08-16
CN201910757177.9A CN112394063A (zh) 2019-08-16 2019-08-16 Led支架缺陷的检测方法、取像装置及检测设备

Publications (1)

Publication Number Publication Date
WO2021031603A1 true WO2021031603A1 (zh) 2021-02-25

Family

ID=74602819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086822 WO2021031603A1 (zh) 2019-08-16 2020-04-24 Led支架缺陷的检测方法、取像装置及检测设备

Country Status (2)

Country Link
CN (1) CN112394063A (zh)
WO (1) WO2021031603A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682376A (ja) * 1992-09-03 1994-03-22 Toshiba Corp 表面検査装置
JPH10221270A (ja) * 1997-02-06 1998-08-21 Nikon Corp 異物検査装置
CN103226108A (zh) * 2012-01-27 2013-07-31 昭和电工株式会社 表面检查方法和表面检查装置
CN106645181A (zh) * 2017-02-24 2017-05-10 清华大学 基于显微视觉的轧辊磨削表面缺陷检测系统
CN206177558U (zh) * 2016-09-26 2017-05-17 王作儒 转动式通用型自动光学检测设备
CN107533013A (zh) * 2016-03-30 2018-01-02 日新制钢株式会社 钢板的表面缺陷检查装置及表面缺陷检查方法
CN208334829U (zh) * 2018-07-24 2019-01-04 北京兆维智能装备有限公司 一种新型液晶显示屏外观检查的光学调整机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682376A (ja) * 1992-09-03 1994-03-22 Toshiba Corp 表面検査装置
JPH10221270A (ja) * 1997-02-06 1998-08-21 Nikon Corp 異物検査装置
CN103226108A (zh) * 2012-01-27 2013-07-31 昭和电工株式会社 表面检查方法和表面检查装置
CN107533013A (zh) * 2016-03-30 2018-01-02 日新制钢株式会社 钢板的表面缺陷检查装置及表面缺陷检查方法
CN206177558U (zh) * 2016-09-26 2017-05-17 王作儒 转动式通用型自动光学检测设备
CN106645181A (zh) * 2017-02-24 2017-05-10 清华大学 基于显微视觉的轧辊磨削表面缺陷检测系统
CN208334829U (zh) * 2018-07-24 2019-01-04 北京兆维智能装备有限公司 一种新型液晶显示屏外观检查的光学调整机构

Also Published As

Publication number Publication date
CN112394063A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN204556517U (zh) 热轧钢板表面质量在线检测装置
CN103163150A (zh) 一种线缆表面缺陷在线检测装置及方法
CN103743761A (zh) 一种镜片水印疵病图像检测装置
CN210572007U (zh) Led支架缺陷取像装置及检测设备
CN103901040A (zh) 一种基于机器视觉的三维网状物缺陷在线检测系统
CN211905129U (zh) 点胶检测装置
CN100516846C (zh) 玻璃基板的切断面检查装置
CN110987970A (zh) 物体表面缺陷检测系统及检测方法
WO2015014067A1 (zh) 液晶屏的质量检测方法、装置及设备
CN103076345A (zh) 一种ito导电玻璃的检测方法及其全自动光学检测系统
CN102384908A (zh) 基板内部缺陷检查装置及方法
CN106226270B (zh) 检测图像传感器表面脏污缺陷的方法
CN102679236B (zh) 照明系统、包含该照明系统的自动光学检测装置及其方法
KR20150034419A (ko) 비전검사장치
CN105057229A (zh) 一种喷涂表面缺陷检测机
CN209858411U (zh) 一种插针网格阵列芯片外观检测系统
WO2021031603A1 (zh) Led支架缺陷的检测方法、取像装置及检测设备
US9652842B2 (en) Method, apparatus and equipment of inspecting quality of LCD
US8610889B2 (en) Automated optical inspection device and calibration method thereof
KR20130008187A (ko) 솔더링을 위한 플럭스 검사 장치 및 그 검사 방법
CN204346939U (zh) 平面玻璃表面缺陷自动检测系统
CN208121443U (zh) 一种验布机
CN205157919U (zh) 自动光学检测装置
CN106370660B (zh) 一种应变计aoi缺陷识别检测装置
TWM514002U (zh) 光學檢測設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854899

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20854899

Country of ref document: EP

Kind code of ref document: A1