WO2021031571A1 - 一种应力梯度加载试验装置及精确确定加载能量的方法 - Google Patents

一种应力梯度加载试验装置及精确确定加载能量的方法 Download PDF

Info

Publication number
WO2021031571A1
WO2021031571A1 PCT/CN2020/082841 CN2020082841W WO2021031571A1 WO 2021031571 A1 WO2021031571 A1 WO 2021031571A1 CN 2020082841 W CN2020082841 W CN 2020082841W WO 2021031571 A1 WO2021031571 A1 WO 2021031571A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
plate
loading
energy
simulated
Prior art date
Application number
PCT/CN2020/082841
Other languages
English (en)
French (fr)
Inventor
郭伟耀
谷雪斌
赵同彬
谭云亮
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to RU2021107253A priority Critical patent/RU2769395C1/ru
Priority to US17/156,545 priority patent/US11041790B2/en
Publication of WO2021031571A1 publication Critical patent/WO2021031571A1/zh
Priority to ZA2021/01722A priority patent/ZA202101722B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/42Road-making materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils
    • G01N2203/0458Chucks, fixtures, jaws, holders or anvils characterised by their material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention relates to the technical field of rock mechanics testing, in particular to a stress gradient loading test device and a method for accurately determining loading energy.
  • Rock mechanics testing machines mainly include rock uniaxial testing machines and rock triaxial testing machines.
  • Rock mechanics testing is one of the important methods in this field.
  • the rock mechanics testing machine can simulate the mechanical properties of rock and soil in the original in-situ stress state. . Because the deep rock is in a complex stress state, the rock mass or ore body rock burst problem encountered in mining engineering needs to study the mechanical properties of the rock from the perspective of energy.
  • the existing rock mechanics testing machine can be applied to the triaxial shear test of rock under high confining pressure and the triaxial creep test of rock under constant confining pressure; the test parameters can be set according to the requirements, and the whole test process adopts microcomputer control and automatic Recording test data has a high degree of automation.
  • the present invention provides a stress gradient loading test device and a method for accurately determining the loading energy.
  • the specific technical solutions are as follows .
  • a stress gradient loading test device includes a rock mechanics testing machine, an upper bearing plate, a sample fixing device, a stress transfer device, and a simulation test piece.
  • the sample fixing device is set on the test bench of the rock mechanics testing machine; the simulation The test piece is placed between the side baffles of the sample fixing device, the stress transfer device is pressed on the upper surface of the simulated test piece, and the upper bearing plate is pressed on the stress transfer device;
  • the sample fixing device is U-shaped and includes The bottom baffle and two side baffles;
  • the stress transmission device includes a plurality of plate-shaped high-strength materials, the plate-shaped high-strength materials are arranged in combination according to the rigidity, and the plurality of plate-shaped high-strength materials jointly transmit the loading pressure of the upper bearing plate
  • the simulated test piece is provided with a simulated roadway, the roof and floor of the simulated roadway and the road side are equipped with multiple strain gauges, and the upper part of the simulated test piece is equipped with
  • the stress transfer device is installed in cooperation with the side baffle of the fixing device, the contact surface between the stress transfer device and the side baffle is smooth, and the pressure head of the rock mechanics testing machine is pressed on the upper bearing plate.
  • the upper bearing plate is a solid steel plate, and the thickness of the upper bearing plate is smaller than the thickness of the side baffle of the specimen fixing device.
  • a stress gradient loading test method for accurately determining loading energy, using the above-mentioned stress gradient loading test device, the steps include:
  • Step 1 Make a simulated test piece, which is equipped with a simulated roadway, strain gauges and stress sensors;
  • Step 2 The cured simulated test piece is placed between the side baffles of the sample fixing device;
  • Step 3 Place a stress transfer device composed of a plurality of plate-shaped high-strength materials on top of the simulated test piece, and a plurality of plate-shaped high-strength materials are uniformly pressed on the simulated test piece, and load is applied in strip-shaped areas;
  • a i is the stress of each plate-shaped high-strength material
  • E i is the elastic modulus of each plate-shaped high-strength material
  • g is the strain of the plate-shaped high-strength material
  • i is a positive integer for the number of the plate-shaped high-strength material;
  • Step 4 The upper bearing plate is placed on top of the stress transfer device and loaded by the rock mechanics testing machine; during the loading process:
  • Step 5 Calculate the energy applied to the simulated test piece by area, calculate and display the elastic strain energy of each plate-shaped high-strength material and the loading energy of the rock mechanics testing machine through the computer; the loading energy is converted into elastic strain energy and applied to the simulation test Piece of energy;
  • the elastic strain energy is based on the formula Calculate, P is the stress exerted by the stress transfer device according to the monitoring of stress sensor In order to simulate the deformation of the test piece, it is obtained by monitoring the strain gauge; the loading energy is based on the loading force F and displacement of the indenter Calculated
  • Step 6 Record the energy change during the loading of the rock mechanics testing machine until the failure of the simulated specimen.
  • a stress gradient loading test device which fixes the simulated test piece through the sample fixing device and combines it with the rock mechanics testing machine to directly modify the testing machine to save costs; the stress transfer device uses multiple plates with different stiffness
  • the high-strength material provides stress gradient loading according to the relationship between stress, elastic modulus and strain; a roadway is opened in the simulation test piece, so that the simulation of the roadway can be realized, and the relationship between energy, deformation and failure can be simulated by the setting of strain gauges.
  • the stress gradient loading test accurately determines the method of loading energy. By setting reasonable operation steps, the stress gradient loading is completed.
  • the stress transfer device applies the load to the simulated specimen, it is applied in strips. According to the law of conservation of energy, it is determined
  • the energy loaded by the testing machine and the elastic strain energy of the stress transfer device can then determine the energy applied to the simulated test piece by area, realize real-time monitoring of the energy applied to the simulated test piece, and finally obtain the energy when the test piece fails .
  • Figure 1 is a structural schematic diagram of the loading part of the stress gradient loading test device
  • Figure 2 is a schematic diagram of the structure of the sample fixing device
  • Figure 3 is a schematic diagram of the structure of a simulated test piece
  • Figure 4 is a schematic diagram of the cross-section of the simulated test piece and the stress distribution curve
  • Figure 5 is a schematic diagram of the structure of the stress transfer device
  • a specific structure of a stress gradient loading test device includes a rock mechanics testing machine, an upper bearing plate, a sample fixing device, a stress transfer device, and a simulation test piece.
  • the sample fixing device is set on the test bench of the rock mechanics testing machine.
  • the mechanical testing machine can be a conventional uniaxial compression testing machine, and the sample fixing device and the rock mechanics testing machine can be detachably installed together.
  • the stress gradient loading test device fixes the simulated test piece through the sample fixing device and combines it with the rock mechanics testing machine to directly transform the testing machine to save costs;
  • the stress transfer device uses multiple plate-shaped high-strength materials with different stiffnesses, according to the stress and elastic modulus
  • the relationship between strain and strain provides stress gradient loading; a simulated roadway is opened in the simulated test piece, so that the simulation of the roadway can be realized, and the relationship between energy and deformation and failure can be simulated in combination with the setting of strain gauges.
  • the simulated test piece is placed between the side baffles of the sample fixing device, and there is a slight matching gap between the two, which can be ignored.
  • Baffles are added at the front and rear ends of the side baffles.
  • the stress transfer device is pressed on the upper surface of the simulated test piece.
  • the contact surface is smooth and flat.
  • the upper bearing plate is pressed on the stress transfer device.
  • the upper bearing plate is a rigid plate.
  • the upper bearing plate and the side baffle of the sample fixing device are mutually connected. With cooperation, the width between the side baffles is slightly larger than the width of the upper bearing plate.
  • the sample fixing device is U-shaped, including a bottom baffle and 2 side baffles.
  • the stress transmission device includes a plurality of plate-shaped high-strength materials, which are arranged in combination according to the rigidity, and the plurality of plate-shaped high-strength materials jointly transmit the loading pressure of the upper bearing plate.
  • the stress transfer device is installed in conjunction with the side baffle of the fixing device, the contact surface between the stress transfer device and the side baffle is smooth, and the pressure head of the rock mechanics testing machine is pressed on the upper bearing plate.
  • the upper bearing plate is a solid steel plate, and the thickness of the upper bearing plate is smaller than the thickness of the side baffle of the specimen fixing device.
  • the simulated test piece can be equipped with a simulated roadway, and the size and shape of the roadway can be determined by feeling the test ratio.
  • the simulated test piece can be made of similar materials.
  • the roof and floor of the simulated roadway are equipped with multiple strain gauges and can be monitored. Simulate the deformation of the roof, floor, roadside and its accessories.
  • the upper part of the simulated test piece is equipped with a stress sensor, which can monitor the stress imposed on the simulated test piece, and can adapt the plate-shaped high-strength material to the number of stress sensors. Therefore, the force exerted on the simulated test piece of each plate-shaped high-strength material can be determined.
  • the loading system, strain gauge and stress sensor of the rock mechanics testing machine are respectively connected with the computer, and the computer receives the monitoring data and processes the monitoring data.
  • a stress gradient loading test method for accurately determining loading energy, using the above-mentioned stress gradient loading test device, the steps include:
  • Step 1 Make a simulated test piece.
  • a simulated tunnel is opened in the simulated test piece, and strain gauges and stress sensors are arranged.
  • the manufacturing process of the simulated test piece includes configuring similar materials and determining the size of the simulated test piece.
  • the simulated roadway can be directly poured according to the model, or a square test piece can be made, and the simulated roadway can be excavated in the middle; in the process of making the simulated test piece Fix the strain gauge and stress sensor in the simulated test piece reasonably.
  • Step 2 The cured simulated test piece is placed between the side baffles of the sample fixing device. Wait for the simulated specimen to solidify, and maintain the specimen.
  • the surface of the specimen is polished and smooth, especially the upper surface of the simulated specimen, which needs to be smooth and smooth.
  • Step 3 Place the stress transfer device composed of a plurality of plate-shaped high-strength materials on the simulated test piece, and the multiple plate-shaped high-strength materials are uniformly pressed on the simulated test piece, and the load is applied in strip-shaped areas.
  • a i is the stress of each plate-shaped high-strength material
  • E i is the elastic modulus of each plate-shaped high-strength material
  • g is the strain of the plate-shaped high-strength material
  • i is the number of the plate-shaped high-strength material taking a positive integer.
  • each plate-shaped high-strength material can be numbered according to its elastic modulus, or it can be numbered according to the order of arrangement.
  • Figure 5 is numbered according to the elastic modulus of the material.
  • the plate-shaped high-strength materials with the same elastic modulus have the same number, and the width of each plate-shaped high-strength material can be equal or unequal.
  • Step 4 The upper bearing plate is placed on top of the stress transfer device and loaded by the rock mechanics testing machine; during the loading process:
  • the strain of each combination of plate-like high-strength materials is equal, and the selection of the combination plate at each position of the pressure transmission device can be calculated according to the following formula:
  • i 1, 2, 3, 4, 5; corresponding to the numbers in Figure 5, representing plate-shaped high-strength materials with different stiffness; from the above formula, we can see that when the strain is the same, the stiffness of each plate-shaped high-strength material (elastic mode The greater the quantity E ), the greater the stress transferred, that is, the stress loading gradient is achieved by adjusting the stiffness of the composite board.
  • Step 5 Calculate the energy applied to the simulated test piece by area, calculate and display the elastic strain energy of each plate-shaped high-strength material and the loading energy of the rock mechanics testing machine through the computer; the loading energy is converted into elastic strain energy and applied to the simulation test Energy on pieces.
  • the elastic strain energy is based on the formula Calculate, P is the stress exerted by the stress transfer device according to the monitoring of the stress sensor, In order to simulate the deformation of the test piece, it is obtained by monitoring the strain gauge; the loading energy is based on the loading force F and displacement of the indenter Calculated.
  • the calculation principle of loading energy is that when the external force is slowly loaded on the object for a slow time, it will not cause acceleration of the object. It can be regarded as all the energy applied by the external force is converted into strain energy and stored inside the object, that is, the energy transmitted by the pressure transmission device is fully converted
  • the elastic strain energy of the sample is calculated using the elastic strain energy calculation formula to obtain the elastic strain energy of the corresponding part applied by the pressure transmission device. among them, Is the displacement, which can be measured in real time by the strain gauge; P is the force exerted by the stress transmission device.
  • the action of the force is mutual; it can be determined by the monitoring of the stress sensor or the elastic modulus of the stress transmission device Calculate P with the strain g recorded by the displacement of the loading device, and then use the elastic strain energy calculation formula to calculate the energy applied to the specimen by area.
  • the calculation principle of the failure energy of the sample is that the energy applied by the rock mechanics testing machine is converted into two parts. One part is loaded on the sample and finally causes the damage of the sample; the other part is stored in the pressure transmission device in the form of elastic strain energy exist.
  • the energy stored in the pressure transmission device can be calculated by the elastic strain energy calculation formula; the energy applied by the rock mechanics testing machine can be calculated by the loading force F and the loading displacement X. Using the data collected when the sample was just destroyed, the energy at the time of the sample's destruction was calculated.
  • the calculation principle of the above-mentioned energy calculation can realize real-time energy calculation and display during the loading process.
  • Step 6 Record the energy change during the loading of the rock mechanics testing machine until the failure of the simulated specimen.
  • high-strength materials can ensure that the stress gradient is loaded.
  • the installed strain gauges and stress transfer devices can accurately determine the loading energy.
  • the above-mentioned test method is simple and convenient to operate, and the measurement is accurate, which can meet the requirements of rock Sample loading experiment needs.

Abstract

本发明提供了一种应力梯度加载试验装置及精确确定加载能量的方法,涉及岩石力学试验技术领域,装置包括上承压板、试样固定装置、应力传递装置和模拟试件,模拟试件置于试样固定装置的侧挡板之间,应力传递装置压设在模拟试件上表面,上承压板压设在应力传递装置上方,计算机处理应力和应变监测数据,应力传递装置是多个板状高强材料组合而成,模拟试件内开设有模拟巷道,模拟试件设置有应变片和应力传感器;利用该装置进行试验,通过应力传递装置的不同刚度板状高强材料实现应力梯度加载,试验时计算其弹性应变能,结合试验机施加的能量计算出作用在模拟试件上的加载能量;实现了应力梯度加载,并可以实时确定加载能量。

Description

一种应力梯度加载试验装置及精确确定加载能量的方法 技术领域
本发明涉及岩石力学试验技术领域,尤其是一种应力梯度加载试验装置及精确确定加载能量的方法。
背景技术
岩石力学试验机主要包括岩石单轴试验机和岩石三轴试验机,岩石力学试验是本领域研究的重要手段之一,岩石力学试验机能比较完整地模拟岩土在原始地应力状态下的力学性能。由于深部岩石处于复杂的应力状态,采矿工程中所遇到的岩体或矿体冲击地压问题,需要从能量的角度来研究岩石的力学性质。现有的岩石力学试验机可以应用于高围压的岩石三轴剪切试验、围压恒定条件下的岩石三轴蠕变实验;可以根据要求设定试验参数,整个试验过程采用微机控制,自动记录试验数据,其自动化程度较高。但是现有的岩石力学试验机难以实现应力梯度的加载,在同一加载平面上施加非均匀的梯度应力加载。
在矿山施工过程中,由于地下工程围岩所受应力在各个面上非均匀分布,尤其是冲击地压危险区域,岩体内部应力容易产生集聚,因此岩石失稳及破坏更容易。围岩积聚的弹性能迅速释放导致冲击地压动力灾害,构造应力、采掘扰动影响,有学者认为能量积聚是冲击地压发生的根本原因;发生冲击地压的不同阶段,分别是冲击地压孕育前期弹性能量累积大于能量耗散,后期弹性能的累积小于能量耗散,孕育前期时间越长冲击地压释放的能量就越大。
技术问题
但是现有的岩石力学试验装置及试验方法难以实现对加载能量的监测,尤其是岩石试件的破坏与加载能量的关系难以确定,为了从能量的角度更好的研究试件的岩石力学性能,需要对现有的装置及试验方法做进一步的改进。
技术解决方案
为了实现应力梯度加载,并可以实时确定加载在模拟试件上的能量,得到试样破坏时的能量,本发明提供了一种应力梯度加载试验装置及精确确定加载能量的方法,具体技术方案如下。
一种应力梯度加载试验装置,包括岩石力学试验机、上承压板、试样固定装置、应力传递装置和模拟试件,试样固定装置设置在岩石力学试验机的试验台上;所述模拟试件置于试样固定装置的侧挡板之间,应力传递装置压设在模拟试件上表面,上承压板压设在应力传递装置上方;所述试样固定装置呈U形,包括底部挡板和2个侧挡板;所述应力传递装置包括多个板状高强材料,板状高强材料根据刚度大小组合排列,所述多个板状高强材料共同传递上承压板的加载压力;所述模拟试件内开设有模拟巷道,模拟巷道的顶底板和巷帮均设置有多个应变片,模拟试件上部设置有应力传感器;岩石力学试验机的加载系统、应变片和应力传感器分别与计算机相连。
优选的是,应力传递装置配合固定装置的侧挡板安装,应力传递装置和侧挡板之间接触面光滑,岩石力学试验机的压头压设在上承压板上。
优选的是,上承压板为实心钢板,上承压板的厚度小于试样固定装置侧挡板的厚度。
一种应力梯度加载试验精确确定加载能量的方法,利用上述的一种应力梯度加载试验装置,步骤包括:
步骤一.制作模拟试件,模拟试件内开设有模拟巷道,布设应变片和应力传感器;
步骤二.养护好的模拟试件置于试样固定装置的侧挡板之间;
步骤三.将排列好的多个板状高强材料组成的应力传递装置放置在模拟试件上方,多个板状高强材料均匀的压设在模拟试件上,分呈条形区域施加载荷;其中, a i 为各个板状高强材料的应力, E i 为各个板状高强材料的弹性模量, g为板状高强材料的应变, i为板状高强材料的编号取正整数;
步骤四.上承压板压放置在应力传递装置上方,通过岩石力学试验机加载;加载过程中:
满足 a i / E i = g,板状高强材料的弹性模量越大,传递的应力也越大;
步骤五.分区域计算施加在模拟试件上的能量,通过计算机计算并显示各个板状高强材料的弹性应变能,岩石力学试验机的加载能量;加载能量转化为弹性应变能和施加在模拟试件上的能量;
其中,弹性应变能根据公式
Figure 738598dest_path_image001
计算, P为应力传递装置施加的应力根据应力传感器监测得到,
Figure 407477dest_path_image002
为模拟试件的变形量根据应变片监测得到;加载能量根据压头的加载力 F和位移
Figure 869682dest_path_image003
计算得到;
步骤六.记录岩石力学试验机加载直至模拟试件破坏过程中的能量变化。
有益效果
(1)提供了一种应力梯度加载试验装置,该装置通过试样固定装置固定模拟试件,并与岩石力学试验机组合,直接改造试验机节省成本;应力传递装置采用多个刚度不同的板状高强材料,根据应力、弹性模量和应变之间的关系提供应力梯度加载;模拟试件中开设巷道,从而可以实现对巷道的模拟,结合应变片的设置模拟能量与变形、破坏的关系。
(2)应力梯度加载试验精确确定加载能量的方法,通过设置合理的操作步骤,完成了应力梯度加载,应力传递装置对模拟试件施加载荷时,分呈条形施加,根据能量守恒定律,确定试验机加载的能量以及应力传递装置的弹性应变能,进而可以分区域确定施加在模拟试件上的能量,实现对施加在模拟试件上的能量的实时监测,最终得到试件破坏时的能量。
附图说明
图1是应力梯度加载试验装置加载部分的结构示意图;
图2是试样固定装置结构示意图;
图3是模拟试件的结构示意图;
图4是模拟试件剖面及应力分布曲线示意图;
图5是应力传递装置的结构示意图;
图中:1-上承压板;2-试样固定装置;3-应力传递装置;4-模拟试件;5-计算机;201侧挡板;202-底部挡板;203-螺孔;401-模拟巷道;402-应变片;403-压力传感器;404-应力分布曲线。
本发明的实施方式
结合图1至图5所示,本发明提供的一种应力梯度加载试验装置及精确确定加载能量的方法具体实施方式如下。
一种应力梯度加载试验装置具体结构包括岩石力学试验机、上承压板、试样固定装置、应力传递装置和模拟试件,试样固定装置设置在岩石力学试验机的试验台上,其中岩石力学试验机可以为常规的单轴压缩试验机,试样固定装置和岩石力学试验机之间可拆卸的安装在一起。应力梯度加载试验装置通过试样固定装置固定模拟试件,并与岩石力学试验机组合,直接改造试验机节省成本;应力传递装置采用多个刚度不同的板状高强材料,根据应力、弹性模量和应变之间的关系提供应力梯度加载;模拟试件中开设模拟巷道,从而可以实现对巷道的模拟,结合应变片的设置模拟能量与变形、破坏的关系。
其中,模拟试件置于试样固定装置的侧挡板之间,两者之间留有微小的配合间隙,可以忽略不计,试样固定装置的侧面上设置有多个螺孔,根据需要可以在侧挡板的前后两端加设挡板。应力传递装置压设在模拟试件上表面,接触面光滑平整,上承压板压设在应力传递装置上方,上承压板为刚性板材,上承压板与试样固定装置侧挡板相互配合,侧挡板之间的宽度略大于上承压板的宽度。试样固定装置呈U形,包括底部挡板和2个侧挡板。应力传递装置包括多个板状高强材料,板状高强材料根据刚度大小组合排列,所述多个板状高强材料共同传递上承压板的加载压力。应力传递装置配合固定装置的侧挡板安装,应力传递装置和侧挡板之间接触面光滑,岩石力学试验机的压头压设在上承压板上。上承压板为实心钢板,上承压板的厚度小于试样固定装置侧挡板的厚度。
模拟试件内可以开设有模拟巷道,感觉试验比例进行确定巷道的尺寸及形状,模拟试件可以由相似材料制作而成,模拟巷道的顶底板和巷帮均设置有多个应变片,可以监测模拟的顶板、底板和巷帮及其附件的变形情况,模拟试件上部设置有应力传感器,可以监测施加在模拟试件上的应力,可以使板状高强材料与应力传感器的数量相适配,从而可以确定每个板状高强材料的施加在模拟试件上的力。岩石力学试验机的加载系统、应变片和应力传感器分别与计算机相连,计算机接收其监测数据,并对监测数据进行处理。
一种应力梯度加载试验精确确定加载能量的方法,利用上述的一种应力梯度加载试验装置,步骤包括:
步骤一.制作模拟试件,模拟试件内开设有模拟巷道,布设应变片和应力传感器。其中模拟试件的制作过程包括配置相似材料,确定模拟试件的尺寸,可以直接根据模型浇筑留出模拟巷道,也可以制作方形试件,在中部开挖模拟巷道;在制作模拟试件的过程中合理的将应变片和应力传感器固定在模拟试件中。
步骤二.养护好的模拟试件置于试样固定装置的侧挡板之间。等待模拟试件凝固,并养护好试件,试件表面打磨光滑,尤其是模拟试件的上表面,需要保证平整光滑。
步骤三.将排列好的多个板状高强材料组成的应力传递装置放置在模拟试件上方,多个板状高强材料均匀的压设在模拟试件上,分呈条形区域施加载荷。其中, a i 为各个板状高强材料的应力, E i 为各个板状高强材料的弹性模量, g为板状高强材料的应变, i为板状高强材料的编号取正整数。
如图4所示,通过改变不同弹性模量的板状高强材料的分布情况,可以设置不同的应力分布曲线,从而模拟巷道围岩的受力状态。如图5所示,各个板状高强材料的编号可以根据其弹性模量的大小进行编号,也可以按照排列顺序编号,图5中是根据材料的弹性模量进行编号。弹性模量大小相等的板状高强材料编号相同,并且各个板状高强材料的宽度可以相等也可以不等。根据实际的试验需要,在需要施加较大的应力的区域选用弹性模量较大的板状高强材料,需要施加较小的应力则选用弹性模量较小的板状高强材料,其中“较大”和“较小”具体是板状高强材料弹性模量的大小比较,应力高峰位置两侧相邻的板状高强材料依次顺序减小,从而使加载更加符合实际的地应力分布。
步骤四.上承压板压放置在应力传递装置上方,通过岩石力学试验机加载;加载过程中:
满足 a i / E i = g,板状高强材料的弹性模量越大,传递的应力也越大。
在加载过程中,各个板状高强材料组合的应变相等,则压力传递装置各个位置处,组合板的选择可根据以下公式进行计算:
a 1/ E 1= a 2/ E 2= a 3/ E 3= a 4/ E 5= g
其中 i =1、2、3、4、5;与图5中的编号相对应,代表不同刚度的板状高强材料;由上式可知,应变相同时,各个板状高强材料的刚度(弹性模量 E)越大,其传递的应力也就越大,即通过调节组合板的刚度来实现应力加载梯度。
步骤五.分区域计算施加在模拟试件上的能量,通过计算机计算并显示各个板状高强材料的弹性应变能,岩石力学试验机的加载能量;加载能量转化为弹性应变能和施加在模拟试件上的能量。
其中,弹性应变能根据公式
Figure 624012dest_path_image001
计算, P为应力传递装置施加的应力根据应力传感器监测得到,
Figure 829865dest_path_image004
为模拟试件的变形量根据应变片监测得到;加载能量根据压头的加载力 F和位移
Figure 353250dest_path_image003
计算得到。
加载能量的计算原理是,在外力缓慢加载缓慢时间到物体上,不会引起物体产生加速度,可视为外力施加的能量全部转化成应变能储存于物体内部,即压力传导装置传递的能量全部转化成试样的弹性应变能,利用弹性应变能计算公式得压力传递装置施加的对应部分的弹性应变能。其中,
Figure 501204dest_path_image004
为位移,可以由应变片实时测得; P为应力传导装置施加的力,根据牛顿第三定律,力的作用是相互的;可以根据应力传感器的监测确定,也可以由应力传导装置弹性模量和加载装置位移记录的应变 g计算出 P,然后利用弹性应变能计算公式可以分区域计算出施加在试样上的能量。
试样破坏能量计算原理是,岩石力学试验机施加的能量转化成两部分,一部分是加载在试样上,最后导致了试样破坏;另一部分储存在压力传导装置中,以弹性应变能的形式存在。储存在压力传导装置中的能量可以由弹性应变能计算公式计算得到;岩石力学试验机施加的能量可以由加载力F和加载位移X计算得出。利用试样刚刚破坏时收集的数据,计算出试样破坏时的能量。
上述能量计算的计算原理,具体通过计算机收集数据并计算处理,可以实现加载过程中实时能量计算和显示。
步骤六.记录岩石力学试验机加载直至模拟试件破坏过程中的能量变化。
通过岩石力学试验机的压头对上承压板进行加载,并开始记录加载过程中的试验数据,通过计算机导出;记录加载过程中的试验数据,通过计算机实时显示。
由于岩石的应力状态都有能量状态相对应,岩石的破坏过程,包括从弹性阶段、屈服及破坏阶段,始终存在着能量的交换,精确获取岩石试样在各阶段的能量,就可以建立接近真实的岩石破坏强度理论,获取更加确切的岩石破坏规律。
相对于其它应力加载装置,通过高强材料可以保证应力梯度进行加载,同时设置的应变片及应力传递装置等可以精确确定加载能量,上述试验方法操作简单、方便,且测量准确,能够较好满足岩石试样加载实验的需要。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (4)

  1. 一种应力梯度加载试验装置,包括岩石力学试验机、上承压板、试样固定装置、应力传递装置和模拟试件,试样固定装置设置在岩石力学试验机的试验台上;其特征在于,所述模拟试件置于试样固定装置的侧挡板之间,应力传递装置压设在模拟试件上表面,上承压板压设在应力传递装置上方;所述试样固定装置呈U形,包括底部挡板和2个侧挡板;所述应力传递装置包括多个板状高强材料,板状高强材料根据刚度大小组合排列,所述多个板状高强材料共同传递上承压板的加载压力;所述模拟试件内开设有模拟巷道,模拟巷道的顶底板和巷帮均设置有多个应变片,模拟试件上部设置有应力传感器;岩石力学试验机的加载系统、应变片和应力传感器分别与计算机相连。
  2. 根据权利要求1所述的一种应力梯度加载试验装置,其特征在于,所述应力传递装置配合固定装置的侧挡板安装,应力传递装置和侧挡板之间接触面光滑,岩石力学试验机的压头压设在上承压板上。
  3. 根据权利要求1所述的一种应力梯度加载试验装置,其特征在于,所述上承压板为实心钢板,上承压板的厚度小于试样固定装置侧挡板的厚度。
  4. 一种应力梯度加载试验精确确定加载能量的方法,利用权利要求1-3任一项所述的一种应力梯度加载试验装置,其特征在于,步骤包括:
    步骤一.制作模拟试件,模拟试件内开设有模拟巷道,布设应变片和应力传感器;
    步骤二.养护好的模拟试件置于试样固定装置的侧挡板之间;
    步骤三. 将排列好的多个板状高强材料组成的应力传递装置放置在模拟试件上方,多个板状高强材料均匀的压设在模拟试件上,分呈条形区域施加载荷;其中, a i 为各个板状高强材料的应力, E i 为各个板状高强材料的弹性模量, g为板状高强材料的应变, i为板状高强材料的编号取正整数;
    步骤四.上承压板压放置在应力传递装置上方,通过岩石力学试验机加载;加载过程中:
    满足 a i / E i = g,板状高强材料的弹性模量越大,传递的应力也越大;
    步骤五.分区域计算施加在模拟试件上的能量,通过计算机计算并显示各个板状高强材料的弹性应变能,岩石力学试验机的加载能量;加载能量转化为弹性应变能和施加在模拟试件上的能量;
    其中,弹性应变能根据公式
    Figure 765650dest_path_image001
    计算, P为应力传递装置施加的应力根据应力传感器监测得到,
    Figure 433392dest_path_image002
    为模拟试件的变形量根据应变片监测得到;加载能量根据压头的加载力 F和位移
    Figure 102271dest_path_image003
    计算得到;
    步骤六.记录岩石力学试验机加载直至模拟试件破坏过程中的能量变化。
PCT/CN2020/082841 2019-11-27 2020-04-01 一种应力梯度加载试验装置及精确确定加载能量的方法 WO2021031571A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2021107253A RU2769395C1 (ru) 2019-11-27 2020-04-01 Аппарат нагрузочного тестирования напряжений градиента и способ точного измерения мощности нагрузки
US17/156,545 US11041790B2 (en) 2019-11-27 2021-01-23 Stress gradient loading test apparatus and method of accurately determining loading energy
ZA2021/01722A ZA202101722B (en) 2019-11-27 2021-03-15 Stress gradient load testing apparatus and method for accurate determination of load energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911177665.9 2019-11-27
CN201911177665.9A CN110864968B (zh) 2019-11-27 2019-11-27 一种应力梯度加载试验装置及精确确定加载能量的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/156,545 Continuation US11041790B2 (en) 2019-11-27 2021-01-23 Stress gradient loading test apparatus and method of accurately determining loading energy

Publications (1)

Publication Number Publication Date
WO2021031571A1 true WO2021031571A1 (zh) 2021-02-25

Family

ID=69655408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082841 WO2021031571A1 (zh) 2019-11-27 2020-04-01 一种应力梯度加载试验装置及精确确定加载能量的方法

Country Status (5)

Country Link
US (1) US11041790B2 (zh)
CN (1) CN110864968B (zh)
RU (1) RU2769395C1 (zh)
WO (1) WO2021031571A1 (zh)
ZA (1) ZA202101722B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136773A (zh) * 2021-11-10 2022-03-04 苏州大学 一种平面应变土样变形的piv增强测量方法
CN114397187A (zh) * 2022-01-18 2022-04-26 中国石油大学(华东) 基于纳微尺度压痕实验的岩石蠕变特性多尺度分析方法
CN115824783A (zh) * 2022-12-13 2023-03-21 中国矿业大学 一种深部地下围岩动静耦合梯度荷载施加装置及方法
CN116863803B (zh) * 2023-06-07 2024-04-02 长安大学 用于岩土体钻孔内模型试验的模拟装置和方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490085B (zh) * 2018-12-24 2020-12-29 山东科技大学 一种岩石冲击加载-卸围压力学试验系统及其使用方法
CN110864968B (zh) * 2019-11-27 2020-11-20 山东科技大学 一种应力梯度加载试验装置及精确确定加载能量的方法
CN112525732B (zh) * 2020-11-11 2022-09-27 中国人民解放军军事科学院国防工程研究院 一种竖直均布爆炸荷载的机械施加方法及施加装置
CN113092247A (zh) * 2021-03-03 2021-07-09 南京理工大学 一种陶瓷预应力的加载装置及其安装方法
CN114088587A (zh) * 2021-11-19 2022-02-25 华东交通大学 无边界颗粒扭剪加载空心圆筒光弹实验装置及其使用方法
CN114414392B (zh) * 2022-01-27 2023-04-14 山东科技大学 恒定侧向刚度常规三轴试验装置及其试验方法
CN114486996B (zh) * 2022-01-27 2023-11-03 福建工程学院 智能控制岩石热膨胀测试仪及其应用方法
CN114486618B (zh) * 2022-01-27 2023-10-17 福建工程学院 考虑温度-应力耦合作用的瓦斯吸附-解吸-驱替试验装置及其试验方法
CN114112603B (zh) * 2022-01-28 2022-04-19 南京大学 一种模拟某一深度下夯土试样制备系统及方法
CN115792184A (zh) * 2022-12-01 2023-03-14 山东科技大学 用于相似材料模拟实验的无线应力和位移测量系统及方法
CN117074168A (zh) * 2023-07-05 2023-11-17 中国矿业大学(北京) 一种水平垂直联动力学模拟的围岩变形实验装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024103A (en) * 1990-05-31 1991-06-18 Regents Of The University Of Minnesota Surface instability detection apparatus
JP2002162326A (ja) * 2000-11-24 2002-06-07 Kyushu Electric Power Co Inc 岩石不連続面の試験装置
CN103969121A (zh) * 2014-05-27 2014-08-06 中铁二十四局集团福建铁路建设有限公司 一种弹性应变能指标检测系统及方法
CN106996903A (zh) * 2017-05-09 2017-08-01 洛阳理工学院 一种用于模拟深埋硐室岩爆的试验装置及方法
CN107991184A (zh) * 2017-11-27 2018-05-04 中南大学 一种基于剩余弹性应变能指标的岩爆倾向性等级判别方法
CN108007781A (zh) * 2017-11-17 2018-05-08 山东科技大学 动静组合载荷下巷道支护体力学模拟试验系统及其方法
CN108519282A (zh) * 2018-03-16 2018-09-11 武汉理工大学 一种模拟不同类型岩爆的试验方法
CN110044731A (zh) * 2019-04-29 2019-07-23 中南大学 非均布法向荷载结构面直剪试验方法及辅助加载装置
CN110864968A (zh) * 2019-11-27 2020-03-06 山东科技大学 一种应力梯度加载试验装置及精确确定加载能量的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2204128C2 (ru) * 2001-02-19 2003-05-10 Институт горного дела - научно-исследовательское учреждение СО РАН Способ и стенд для исследования электромагнитного излучения деформируемого до разрушения твердого тела в форме стержня
RU2468350C1 (ru) * 2011-04-07 2012-11-27 Учреждение Российской академии наук Институт горного дела Сибирского отделения РАН Стенд для исследования электромагнитного излучения твердого тела, например образца горной породы
FR2997422B1 (fr) * 2012-10-30 2015-03-27 Sncf Procede d'evaluation de la compacite d'une couche de ballast de voie ferree, dispositif de mise en oeuvre et methode de prediction du tassement de la dite couche de ballast
CN104849134B (zh) * 2015-05-26 2016-01-20 中国石油大学(华东) 多级应力分级加载蠕变力学试验确定岩石长期强度的方法
CN106483267B (zh) * 2016-10-17 2019-05-28 中国矿业大学 一种逼真型煤与瓦斯突出模拟试验装置及方法
AU2017329096B2 (en) * 2017-04-28 2019-01-31 Shandong University Intelligent numerically-controlled ultrahigh pressure true three-dimensional non-uniform loading/unloading and steady pressure model test system
CN107389449B (zh) * 2017-08-03 2019-09-24 中南大学 一种矿山充填材料压缩特性实验装置及其实验方法
CN108593430A (zh) * 2018-03-08 2018-09-28 中国矿业大学 空间梯度应力再造装置、方法及煤岩力学特性实验方法
CN109211668B (zh) * 2018-09-20 2021-07-16 中国矿业大学 一种煤岩组合体开采卸荷试验装置及方法
CN109632504B (zh) * 2018-12-21 2021-05-14 江苏师范大学 一种二向应力状态的隔水层的测试试验模型
CN109490086B (zh) * 2018-12-24 2021-03-02 山东科技大学 一种巷道围岩支护强度试验装置及强度确定方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024103A (en) * 1990-05-31 1991-06-18 Regents Of The University Of Minnesota Surface instability detection apparatus
JP2002162326A (ja) * 2000-11-24 2002-06-07 Kyushu Electric Power Co Inc 岩石不連続面の試験装置
CN103969121A (zh) * 2014-05-27 2014-08-06 中铁二十四局集团福建铁路建设有限公司 一种弹性应变能指标检测系统及方法
CN106996903A (zh) * 2017-05-09 2017-08-01 洛阳理工学院 一种用于模拟深埋硐室岩爆的试验装置及方法
CN108007781A (zh) * 2017-11-17 2018-05-08 山东科技大学 动静组合载荷下巷道支护体力学模拟试验系统及其方法
CN107991184A (zh) * 2017-11-27 2018-05-04 中南大学 一种基于剩余弹性应变能指标的岩爆倾向性等级判别方法
CN108519282A (zh) * 2018-03-16 2018-09-11 武汉理工大学 一种模拟不同类型岩爆的试验方法
CN110044731A (zh) * 2019-04-29 2019-07-23 中南大学 非均布法向荷载结构面直剪试验方法及辅助加载装置
CN110864968A (zh) * 2019-11-27 2020-03-06 山东科技大学 一种应力梯度加载试验装置及精确确定加载能量的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136773A (zh) * 2021-11-10 2022-03-04 苏州大学 一种平面应变土样变形的piv增强测量方法
CN114136773B (zh) * 2021-11-10 2023-01-17 苏州大学 一种平面应变土样变形的piv增强测量方法
CN114397187A (zh) * 2022-01-18 2022-04-26 中国石油大学(华东) 基于纳微尺度压痕实验的岩石蠕变特性多尺度分析方法
CN115824783A (zh) * 2022-12-13 2023-03-21 中国矿业大学 一种深部地下围岩动静耦合梯度荷载施加装置及方法
CN115824783B (zh) * 2022-12-13 2024-03-01 中国矿业大学 一种深部地下围岩动静耦合梯度荷载施加装置及方法
CN116863803B (zh) * 2023-06-07 2024-04-02 长安大学 用于岩土体钻孔内模型试验的模拟装置和方法

Also Published As

Publication number Publication date
RU2769395C1 (ru) 2022-03-31
US11041790B2 (en) 2021-06-22
US20210156775A1 (en) 2021-05-27
ZA202101722B (en) 2021-05-26
CN110864968A (zh) 2020-03-06
CN110864968B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2021031571A1 (zh) 一种应力梯度加载试验装置及精确确定加载能量的方法
Page Finite element model for masonry
CN108827578A (zh) 一种双向静动加载的顶板关键块冒落试验装置及方法
CN106442112A (zh) 一种岩板试样悬臂式弯曲试验装置
CN106989995A (zh) 一种侧限条件可调节式岩土体竖向压缩辅助试验装置
CN107782606A (zh) 一种双钢板混凝土组合剪力墙钢板局部屈曲行为的试验装置及其使用方法
CN109098161B (zh) 一种分层碾压路基各向剪切波速测试装置及方法
Li et al. Development of a novel triaxial rock testing method based on biaxial test apparatus and its application
CN106124313A (zh) 混凝土及类似材料受压下综合变形性能的测试装置及方法
CN105158070A (zh) 一种一次性测量岩石拉伸模量和压缩模量的试验方法
Abbas et al. Structural response of RC wide beams under low-rate and impact loading
CN103267672B (zh) 一种双轴板料拉压循环加载实验防弯系统和方法
CN110044683A (zh) 一种利用膨胀剂测试孔间岩桥抗拉抗压蠕变的装置及方法
WO2020151091A1 (zh) 一种模拟顶板岩梁破断的试验装置及试验方法
CN112036065A (zh) 带包材的电池包跌落仿真分析方法
CN207396181U (zh) 双钢板混凝土组合剪力墙钢板局部屈曲行为的试验装置
CN207215587U (zh) 一种侧限条件可调节式岩土体竖向压缩辅助试验装置
CN106596294B (zh) 一种模拟顺向边坡动力反应的试验方法
CN108535113A (zh) 一种水平成层岩体变形参数综合确定方法
CN207066755U (zh) 一种循环荷载下隧道底部结构累积损伤的试验装置
Kao et al. Inelastic strain and damage in surface instability tests
CN206540776U (zh) 一种刚柔复合试件沥青层回弹模量的测试装置
CN106124319A (zh) 弯矩主动控制试验系统及方法
CN207780015U (zh) 边坡支护模型试验系统
CN206710271U (zh) 动静荷载作用下岩石裂隙泥水流体渗流装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854218

Country of ref document: EP

Kind code of ref document: A1