WO2020151091A1 - 一种模拟顶板岩梁破断的试验装置及试验方法 - Google Patents

一种模拟顶板岩梁破断的试验装置及试验方法 Download PDF

Info

Publication number
WO2020151091A1
WO2020151091A1 PCT/CN2019/082160 CN2019082160W WO2020151091A1 WO 2020151091 A1 WO2020151091 A1 WO 2020151091A1 CN 2019082160 W CN2019082160 W CN 2019082160W WO 2020151091 A1 WO2020151091 A1 WO 2020151091A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
pressure
coal seam
baffle
roof
Prior art date
Application number
PCT/CN2019/082160
Other languages
English (en)
French (fr)
Inventor
赵增辉
高晓杰
马庆
孙伟
张明忠
陈绍杰
王清标
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020151091A1 publication Critical patent/WO2020151091A1/zh
Priority to ZA2020/07024A priority Critical patent/ZA202007024B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing

Definitions

  • the present invention relates to the technical field of rock mechanics, in particular to a test device for simulating the fracture of a roof rock beam and a method for using the device to perform a simulation test of the roof rock beam fracture.
  • This stress and displacement monitoring method has low accuracy and is susceptible to human interference, resulting in test errors.
  • the impact of lateral pressure is ignored in the simulation test of roof rock beam fracture, and it is difficult to ensure that the loaded load is evenly distributed by using indenter to pressurize.
  • indenter to pressurize In order to study the deformation, stress and fracture characteristics of roof rock beams under different mining heights, different spans and different mining depths, and to provide a theoretical basis for mine mining and construction, it is necessary to further improve the existing rock mechanics test equipment and optimize the roof The method of rock beam breaking test.
  • the present invention provides a The test device and test method for simulating the fracture of roof rock beam are as follows.
  • a test device for simulating the breaking of a roof rock beam including a test box, a baffle, a pressure plate, a slide rail, a pressure head, a monitoring mechanism, and a hydraulic mechanism;
  • the baffle includes a left baffle, a right baffle, and a front baffle
  • the pressure head includes an upper pressure head, a left pressure head and a right pressure head
  • the pressure plate includes an upper pressure plate, a left pressure plate and a right pressure plate
  • the monitoring mechanism includes a pressure sensor, a displacement sensor and a three-dimensional digital speckle monitor
  • the upper and left and right sides of the test box are respectively provided with indenters, wherein the left indenter and the right indenter move up and down along the slide rail, and the left and right indenters pass through the baffle and are pressed on the pressure plate;
  • the bottom of the test box A test bench base is provided, the left baffle and the right baffle are respectively fixed on both sides of the test bench base, and the test body is placed on the
  • the test body includes a roof layer, a floor layer, a pressure equalizing water bladder, a coal seam, and a coal seam water bladder, and an upper pressure plate is arranged above the test body; a pressure equalizing water bladder is arranged below the upper pressure plate, and the pressure is equalized
  • a roof layer is arranged under the water bladder, a coal seam and a coal seam water bladder are arranged under the roof layer, and a floor layer is arranged under the coal seam; the coal seam and the coal seam water bladder are arranged side by side and spaced apart.
  • a front baffle is provided in front of the base of the test bench, and a rear baffle is provided behind the base of the test bench; a water guide hole is provided on the back baffle, and both the front baffle and the back baffle are provided There is a fixed channel steel.
  • the left pressure plate and the right pressure plate move left and right with the pressure head, and the upper pressure head moves along the slide rail provided on the upper part of the test box; the sides of the left baffle and the right baffle are provided with mounting holes, the front baffle and Mounting holes are provided on the left and right sides of the rear baffle.
  • the left baffle, the right baffle and the pressure plate are made of steel, the front baffle and the rear baffle are made of transparent acrylic plates, and the pressure equalizing water bag is provided with a pressure gauge.
  • a test method for simulating the fracture of a roof rock beam using the above-mentioned test device for simulating the fracture of a roof rock beam, the steps include:
  • E Set an upper pressure plate above the equalizing water bag, and spray digital speckle measuring points on the surface of the test body;
  • F Install the front baffle and the back baffle, pass the water pipes of the coal seam water bladder and the equalizing water bladder through the water guide holes on the back baffle, and then install the fixed channel steel to reinforce the front baffle and the back baffle;
  • G Determine the pressure to be applied by the upper, left and right indenters according to the buried depth and the pressure measurement coefficient, and pressurize through the hydraulic mechanism;
  • the pressure required to be applied by the upper pressure head, the left pressure head and the right pressure head in step G is calculated according to the actual geological conditions of the mine, and the calculation of the pressure provided by the upper pressure head includes: calculating the overburden strata strength
  • the test device for simulating the breakage of the roof rock beam provided by the present invention is guaranteed by setting baffles and pressure plates
  • the left and right indenters are used to provide lateral pressure to the test body to ensure the accuracy of the simulation.
  • the actual roof, floor and coal seam rock sampling specimens are used for the test without considering the similarity ratio.
  • the test is simple and the test cycle is shortened, which ensures that the test results are consistent with the actual situation.
  • the present invention uses coal seam water bladder to replace the excavated coal body.
  • the coal seam water bladder is excavated by draining water, which simplifies the coal seam excavation steps and avoids the impact of manual excavation of the coal seam on the roof, thereby reducing Test error, in addition, a pressure equalizing water bladder is used on the upper part of the top plate, so as to ensure a uniform load on the top plate.
  • a test method for simulating the failure of roof rock beams is provided.
  • Water bladders of different sizes can be used to simulate the breaking laws of roof rock beams under different mining heights and widths.
  • the test head can move along the track, Thereby, it is convenient to load test bodies of different sizes; pressure sensors, displacement sensors and three-dimensional digital speckle monitors are used to monitor the changes in the stress and displacement of the top plate, and the monitoring structure is more accurate.
  • the present invention also has the advantages of simple operation, wide simulation range, and flexible adjustment of test parameters.
  • FIG. 1 is a schematic structural diagram of a test device for simulating the fracture of a roof rock beam
  • FIG. 2 is a schematic diagram of the laying structure of the experimental body
  • FIG. 3 is a schematic diagram of the structure of the test chamber
  • FIG. 4 is a schematic diagram of the structure of the front baffle and the rear baffle
  • FIG. 5 is a schematic diagram of a fixed channel steel installation structure
  • FIG. 6 is a schematic diagram of the structure of the left baffle and the right baffle
  • the present invention provides a test device and test method for simulating the fracture of a roof rock beam
  • the specific implementation is as follows.
  • the present invention provides a test device and test method for simulating the fracture of the roof rock beam.
  • the specific technical scheme is as follows.
  • a test device for simulating the breaking of a roof rock beam comprising a test box 1, a baffle 2, a pressure plate 3, a slide rail 4, a pressure head 5, a monitoring mechanism 6 and a hydraulic mechanism 7, and the test box 1 is the exterior of the test device
  • the frame, the baffle 2 and the pressure plate 3 are respectively set on the surface of the test body 8.
  • the slide rail and the indenter cooperate with each other to drive the indenter to move, so as to adapt to the test body of different sizes.
  • the monitoring mechanism 6 is used to monitor the stress and strain of the top plate.
  • the hydraulic mechanism 7 is used to control the indenter to adjust the stress loading.
  • the baffle 2 includes a left baffle 21, a right baffle 22, a front baffle 23, and a rear baffle 24.
  • the baffle 2 is used to wrap the experimental body 8 to ensure the stability and firmness of the overall structure of the experimental body 8 and the device; It includes an upper indenter 51, a left indenter 52, and a right indenter 53, so that lateral pressure can be applied to make the test result closer to the actual engineering; the pressure plate 3 includes an upper pressure plate 31, a left pressure plate 32 and a right pressure plate 33, and the pressure head 5 passes through the pressure plate 3 Applying pressure to ensure uniform application of pressure; Monitoring mechanism 6 includes pressure sensors, displacement sensors and three-dimensional digital speckle monitors, using strain gauges and three-dimensional digital speckle monitors to improve the stress and strain monitoring accuracy, and in terms of time Ensure long-term automatic and effective monitoring.
  • the upper part and the left and right sides of the test box 1 are respectively provided with indenters 5, wherein the left indenter and the right indenter move up and down along the slide rail 4, and the left indenter 52 and the right indenter 53 pass through the baffle and are pressed on On the pressure plate 3, the pressure head 5 and the hydraulic mechanism 7 are connected.
  • the left pressure plate 32 and the right pressure plate 33 move left and right with the pressure head, and the upper pressure head 51 moves along the slide rail provided on the upper part of the test box 1.
  • the left baffle 21 and the right baffle 22 are provided with mounting holes 25, front baffle 23 and Mounting holes 25 are provided on the left and right sides of the rear baffle 24 to facilitate the installation of the front baffle and the rear baffle with the baffles on the left and right sides.
  • the bottom of the test box 1 is provided with a test bench base 11.
  • the left baffle 21 and the right baffle 22 are respectively fixed on both sides of the test bench base 11, and the test body 8 is placed on the test bench base 11.
  • a front baffle 23 is provided in front of the test bed base 11, a rear baffle 24 is provided behind the test bed base 11, a water guide hole 27 is provided on the back baffle 24, and both the front baffle 23 and the back baffle 24 are provided There are fixed channel steel 26.
  • the left baffle 21, the right baffle 22 and the pressure plate 3 are made of steel, and the front baffle 23 and the back baffle 24 are made of transparent acrylic sheets.
  • the test body 8 includes a roof layer 81, a floor layer 82, a pressure equalizing water bladder 83, a coal seam 84 and a coal seam water bladder 85, and an upper pressure plate 31 is provided above the test body 8.
  • Experiment 8 uses actual roof, floor and coal seam rock sampling test It is not necessary to consider the similarity ratio when testing parts, and the test is simple and the test cycle is shortened, which ensures that the test results are consistent with the actual situation.
  • a pressure equalizing water bladder 83 is arranged under the upper pressure plate 31, and the pressure equalizing water bladder 83 is used to ensure the uniform load of the roof rock formation.
  • a roof layer 81 is arranged under the pressure equalizing water bladder 83, and a coal seam 84 and a coal seam water bladder are arranged under the roof layer 81 85.
  • a floor layer 82 is arranged under the coal seam.
  • the coal seam 84 and the coal seam water bladder 85 are arranged side by side and spaced apart.
  • the water bladder simulates the area to be excavated, and the water bladder is provided with a water pipe, and the water bladder discharges water to simulate coal seam excavation.
  • the coal seam 84 is made by using coal specimens, the height of the coal seam water bladder 85 and the coal seam is determined according to the height of the actual coal seam, and the width of the coal seam water bladder 85 is determined according to the width of the coal seam working face.
  • G Determine the pressure required to be applied by the upper indenter 51, the left indenter 52 and the right indenter 53 according to the buried depth and the pressure measurement coefficient, and pressurized by the hydraulic mechanism 7.
  • the pressure to be applied by the upper pressure head, the left pressure head and the right pressure head is calculated according to the actual geological conditions of the mine.
  • the calculation of the pressure that the upper pressure head needs to provide includes, calculating the overburden strata strength
  • P Is the average density of the overburden, g is the acceleration due to gravity, / ⁇ is the depth of burial; the force provided by the upper indenter is F ⁇ PxS_, where * ⁇ is the surface area of the roof.
  • the left and right indenters need to provide pressure calculation including, calculating the pressure measurement coefficient
  • S fM is the side area of the left and right sides of the experimental body, and the side area includes the side area of the bottom plate, coal seam, roof and the entire pressure equalizing water bladder.
  • a test device for simulating the breakage of a roof rock beam includes a test box 1, a baffle 2, a pressure plate 3, a slide rail 4, a pressure head 5, a monitoring mechanism 6 and a hydraulic mechanism 7.
  • the test box 1 can be designed to be long The width and height are specifically 52 cm ⁇ l 2 cm ⁇ 40 cm, the hydraulic mechanism 7 is connected to the pressure head 5, and the pressure head 5 is arranged on the slide rail 4.
  • the baffle 2 includes a left baffle 21, a right baffle 22, a front baffle 23, and a rear baffle 24.
  • the pressure head 5 includes an upper pressure head 51, a left pressure head 52 and a right pressure head 53.
  • the pressure plate 3 includes an upper pressure plate. 31. Left pressure plate 32 and right pressure plate 33.
  • the thickness of the base 11 of the test bench may be 5 cm
  • the thickness of the pressing plate 3 may be set to 2 cm
  • the thickness of the baffles on the left and right sides may be set to 2 cm
  • the thickness of the baffles on the front and rear sides may be 1 cm.
  • the monitoring mechanism 6 includes a pressure sensor, a displacement sensor and a three-dimensional digital speckle monitor.
  • the upper part and the left and right sides of the test box 1 are respectively provided with indenters 5, wherein the left indenter and the right indenter move up and down along the slide rail 4, and the left The head and the right pressure head are pressed on the pressure plate 3 through the baffle.
  • the bottom of the test box 1 is provided with a test bench base 11, the left baffle 21 and the right baffle 22 are respectively fixed on both sides of the test bench base 11, and the test body 8 is placed on the test bench base 11.
  • the test body 8 includes a roof layer 81, a bottom layer 82, a pressure equalizing water bladder 83, a coal seam 84 and a coal seam water bladder 85 , and an upper pressure plate 31 is provided above the test body 8.
  • Experiment body 8 uses actual top and bottom plates The test is carried out with the coal seam rock sampling specimen without considering the similarity ratio, and the test is simple and the test cycle is shortened, which ensures that the test results are consistent with the actual situation.
  • a pressure equalizing water bladder 83 is arranged under the upper pressure plate 31, and the pressure equalizing water bladder 83 is used to ensure the uniform load of the roof rock layer.
  • a roof layer 81 is arranged under the pressure equalizing water bladder 83, and a coal seam 84 and a coal seam water bladder are arranged under the roof layer 81. 85.
  • a floor layer 82 is arranged under the coal seam, and the coal seam 84 and the coal seam water bladder 85 are arranged side by side and spaced apart.
  • the water bladder simulates the area to be excavated, and the water bladder is provided with a water pipe. The water bladder discharges water to simulate the excavation of the coal seam.
  • the elevation of the coal seam to be mined in the mine is -400m, and the thickness of the coal seam is 4m.
  • the floor is sandy mudstone with a thickness of 2m.
  • the roof is made of siltstone with a thickness of 1.5m.
  • Step A Assemble the fixed test box 1 and the test bench base 11, place the pressure plate 3 and adjust the position of the pressure head 5. Place the test bench base 11 in the test box 1 and fix it with nuts or welding, so as to prepare for the laying of each layer of the test body and the monitoring of data. All three indenters 5 can move with the slide rail 4 on the column or beam to adapt to different test conditions.
  • Step B Perform similar material simulation according to the actual mine engineering, and determine the specimen size of the roof layer 81, the floor layer 82 and the coal layer 84 in combination with the coal seam conditions of the mine and the size of the test box. Since strip mining is selected for the mine, the actual mining width of the coal seam is 5m, and the remaining coal pillar is 4m. Therefore, the coal seam with 10cm long coal seam water bladder and 8cm long coal block is alternately arranged in the experiment.
  • the design dimensions of the roof and floor rock layers are as follows: floor layer thickness 4cm, coal seam thickness 8cm; roof layer thickness 3cm, pressure equalizing water bladder thickness 10cm, and the design length and width of the roof layer and floor layer are 44cm and 10cm, respectively.
  • the coal block in the coal seam is 8 cm long and 10 cm wide, and the coal seam water bladder is 10 cm long and 10 cm wide.
  • Step C Prepare simulated test pieces for the roof layer 81, the bottom layer 82 and the coal seam 84, including measuring the simulated test pieces and surface smoothing.
  • test pieces of different sizes are prepared in proportion.
  • the surface of the prepared test piece is smoothed so that the surface of the test piece is in good contact, so that the influence of the contact surface of the test piece can be largely eliminated.
  • the common way to treat the contact surface of the rock specimen is to bond it with glue and concrete, but this method will eventually affect the results of the experiment, and the glue is an elastomer, which will cause greater compression of the specimen during the experiment. influences.
  • Step D First lay the floor layer 82 on the base 11 of the test bench, the floor layer 82 is made of sandstone; Laying the coal seam 84 and the coal seam water bladder 85, where the coal seam 84 is made of coal, and the coal seam water bladder 85 is filled with water to a height that is flush with the coal seam; a strain gauge is installed between the coal seam 84 and the roof layer 81, and then laid on the coal seam 84
  • the roof layer 81 is made of siltstone; finally, a pressure equalizing water bladder 83 is laid on the roof layer 81 and filled with water.
  • the coal seam is made of coal block specimens, the height of the coal seam water bladder 85 and the coal seam is determined according to the height of the actual coal seam, and the width of the coal seam water bladder 85 is determined according to the width of the coal seam face.
  • Step E Set an upper pressure plate above the pressure equalizing water bag 83, spray digital speckle measuring points on the surface of the test body 8, and then place the high-speed camera and data processing system of the three-dimensional digital speckle monitor at a suitable position.
  • the digital speckle system can collect the speckle images of the object in each deformation stage in real time, calculate the strain and deformation of the whole field, and use it to analyze, calculate and record the deformation data. Graphical display of measurement results is convenient for better geographic understanding and analysis of the experimental body, especially the stress and deformation of the roof rock layer, and to record the deformation and stress evolution of the roof rock beam.
  • Step F Install the front baffle 23 and the rear baffle 24, pass the water pipes of the coal seam water bladder 85 and the equalizing water bladder 83 through the water guide hole 27 on the back baffle 24, and then install the fixed channel steel 26 for reinforcement The front baffle 23 and the back baffle 24, pay attention to the fixed channel steel 26 not to block the monitoring surface of the 3D digital speckle monitor.
  • Step G Determine the pressure to be applied by the upper indenter 51, the left indenter 52, and the right indenter 53 according to the buried depth and the pressure measurement coefficient, and pressurize through the hydraulic mechanism.
  • the pressurization process first adjust the position of the test chamber 1 to make it in a suitable position for the loading test bench. Afterwards, adjust the positions of the three indenters through the indenter track so that the indenters and the pressure plate are in contact with each other, and then the pressure of the three indenters is adjusted to the required value through the pressure system.
  • the value of is obtained according to the actual project of the mine. Its value is 2000kg/m 3 , and the value of g in the formula is 9.8 and h is 400.
  • Side pressure coefficient The range of, where H is the measured stress depth, in m.
  • the pressure provided by the equalizing water bladder and the upper pressure plate is much smaller than the pressure provided by the overlying rock. In order to simplify the test, it may not be considered.
  • the pressure is controlled by the calculated hydraulic mechanism.
  • the upper pressure head is pressured by 345KN, the left and right pressure heads are pressured by 247KN.
  • a pressure gauge can also be set on the pressure equalizing water bladder 83, and the pressure equalization can be monitored by the pressure gauge. The actual pressure of the water bladder.
  • Step H Drain the coal seam water bladder 85 through the water pipe of the coal seam water bladder 85 to simulate coal seam mining, and record the stress and strain monitoring data of the roof during the process. With the end of the water release, the simulated mining process also ends accordingly. For a period of time after the end, the monitoring mechanism 6 and the hydraulic mechanism 7 are in working condition to monitor the deformation and stress evolution of the roof layer after the coal seam is mined. This process does not require human control and operation, and the system automatically records test data.

Abstract

一种模拟顶板岩梁破断的试验装置及试验方法,涉及岩石力学技术领域。该试验装置包括试验箱(1)、挡板(2)、压板(3)、滑轨(4)、压头(5)、监测机构(6)和液压机构(7);挡板(2)包括左挡板(21)和右挡板(22),压头(5)包括上压头(51)、左压头(52)和右压头(53),监测机构(6)包括压力传感器、位移传感器和三维数字散斑监测仪;试验箱(1)的上部和左右两侧分别设置有压头(5),其中左压头(52)和右压头(53)沿滑轨(4)上下移动,左压头(52)和右压头(53)分别穿过左挡板(21)和右挡板(22)压设在压板(3)上;试验箱(1)底部设置有试验台底座(11),左挡板(21)和右挡板(22)分别固定在试验台底座(11)的两侧,实验体(8)放置在试验台底座(11)上;利用该装置进行顶板岩梁破断模拟试验的方法,解决了顶板岩梁破断模拟试验与实际偏差较大的技术问题,还具有操作简便,模拟范围广等优点。

Description

一种模拟顶板岩梁破断的试验装置及试验方法 技术领域
[0001] 本发明涉及岩石力学技术领域, 尤其是一种用于模拟顶板岩梁破断的试验装置 以及利用该装置进行顶板岩梁破断模拟试验的方法。
背景技术
[0002] 在煤矿开采过程中, 随着开采深度和开采强度的不断增大, 尤其是在地质复杂 条件下的开采, 开采过程中遇到的问题不断增多, 其中顶板控制问题一直是煤 矿开采的重点问题, 为研究开采过程的顶板问题, 相似材料模拟试验是该领域 研究顶板问题的重要手段。
[0003] 目前, 顶板岩梁破断的研究多采用相似材料模拟试验, 但是相似材料模拟试验 相似比的确定难度较大, 并且模型的模拟结果和实际地质条件下的数据差异较 大, 另外相似材料在制作过程中需要堆积和风干, 试验周期较长。 还有运用真 实的顶板岩梁进行相似材料模拟, 而底板和煤层仍采用相似材料, 以此研究煤 层开采对顶板的影响, 这种实际顶板和相似材料结合的方法试验的准确性仍然 有待提高。 在相似材料模拟中大多采用应力采集探头进行应力分布的监测, 位 移采用全站仪监测, 这种应力和位移的监测方法精度不高, 并且容易受到人为 干扰, 从而造成试验误差。 此外顶板岩梁破断模拟试验中忽略了侧压的影响, 使用压头加压也难以保证加载的载荷是否均布。 为了研究不同采高、 不同跨度 和不同采深条件下顶板岩梁的变形、 应力及破断特征, 为矿井开采施工提供理 论依据, 需要对现有的岩石力学试验设备作进一步的改进, 并优化顶板岩梁破 断试验的方法。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 为解决顶板岩梁破断模拟试验与实际偏差较大的技术问题, 本发明提供了一种 模拟顶板岩梁破断的试验装置及试验方法, 具体技术方案如下。
[0005] 一种模拟顶板岩梁破断的试验装置, 包括试验箱、 挡板、 压板、 滑轨、 压头、 监测机构和液压机构; 所述挡板包括左挡板、 右挡板、 前挡板和后挡板, 压头 包括上压头、 左压头和右压头, 压板包括上压板、 左压板和右压板, 监测机构 包括压力传感器、 位移传感器和三维数字散斑监测仪; 所述试验箱的上部和左 右两侧分别设置有压头, 其中左压头和右压头沿滑轨上下移动, 左压头和右压 头穿过挡板压设在压板上; 所述试验箱底部设置有试验台底座, 左挡板和右挡 板分别固定在试验台底座的两侧, 实验体放置在试验台底座上。
[0006] 优选的是, 实验体包括顶板层、 底板层、 均压水囊、 煤层和煤层水囊, 实验体 的上方设置有上压板; 所述上压板下方布置有均压水囊, 均压水囊下方布置有 顶板层, 顶板层下方布置有煤层和煤层水囊, 煤层下方布置有底板层; 煤层和 煤层水囊并列间隔布置。
[0007] 还优选的是, 试验台底座的前方设置有前挡板, 试验台底座的后方设置有后挡 板; 后挡板上设置有导水孔, 前挡板和后挡板上均设置有固定槽钢。
[0008] 还优选的是, 左压板和右压板随压头左右移动, 上压头沿试验箱上部设置的滑 轨移动; 左挡板和右挡板的侧面设置有安装孔, 前挡板和后挡板的左右两边上 设置有安装孔。
[0009] 左挡板、 右挡板和压板使用钢材制作而成, 前挡板和后挡板使用透明亚克力板 制作而成, 均压水囊上设置有压力表。
[0010] 一种模拟顶板岩梁破断的试验方法, 利用上述模拟顶板岩梁破断的试验装置, 步骤包括:
[0011] A.组装固定试验箱和试验台底座, 放置压板并调节压头位置;
[0012] B.根据矿井煤层条件和试验箱尺寸确定顶板层、 底板层和煤层的试件尺寸;
[0013] C.制备顶板层、 底板层和煤层的模拟试件, 包括测量模拟试件和表面磨平;
[0014] D.在试验台底座上先铺设底板层; 再铺设煤层和煤层水囊, 煤层水囊注水至高 度和煤层齐平; 在煤层和顶板层之间设置应变片, 然后在煤层上方铺设顶板层 ; 最后在顶板层上方铺设均压水囊并充水;
[0015] E.在均压水囊上方设置上压板, 在实验体表面喷涂数字散斑测点; [0016] F.安装前挡板和后挡板, 将煤层水囊和均压水囊的导水管穿过后挡板上的导水 孔, 然后安装固定槽钢加固前挡板和后挡板;
[0017] G.根据埋深和测压系数计算确定上压头、 左压头和右压头需要施加的压力, 通 过液压机构加压;
[0018] H.通过煤层水囊的导水管给煤层水囊放水, 期间记录顶板的应力和应变监测数 据。
[0019] 优选的是, 步骤 G中上压头、 左压头和右压头需要施加的压力根据矿井实际地 质条件计算, 所述上压头需要提供压力的计算包括, 计算上覆岩层压强
Figure imgf000005_0001
, 其中
P
为上覆岩层的平均密度, g为重力加速度, /^为埋深; 上压头提供的力 F±=PxS 上, 其中 5±为顶板上表面的面积; 所述左压头和右压头需要提供压力的计算包括 , 计算测压系数
的取值范围
Figure imgf000005_0002
1
, 其中 SfM为实验体左右两侧的侧面积。
发明的有益效果
有益效果
[0020] 本发明的有益效果包括:
[0021] ( 1) 本发明提供的模拟顶板岩梁破断的试验装置, 通过设置挡板和压板保证 了结构整体的稳定和牢固, 利用左压头和右压头为实验体提供侧压从而保证模 拟的准确性, 利用实际的顶板、 底板和煤层岩石取样试件进行试验, 不需要考 虑相似比, 并且试验简便, 缩短的实验周期, 保证了试验结果和实际情况相吻 合。
[0022] (2) 本发明利用煤层水囊替代开挖的煤体, 煤层水囊通过放水完成开挖, 简 化了煤层开挖步骤, 避免了手动挖动煤层对顶板造成的影响, 从而减小试验误 差, 另外在顶板上部使用均压水囊, 从而能够保证对顶板施加均布载荷。
[0023] (3) 提供了一种模拟顶板岩梁破断的试验方法, 使用不同尺寸的水囊可以模 拟不同采高和采宽的情况下顶板岩梁破断规律, 试验压头可以沿轨道移动, 从 而方便对不同尺寸的实验体进行加载; 利用压力传感器、 位移传感器和三维数 字散斑监测仪监测顶板的应力和位移变化, 监测结构更加准确。
[0024] 另外, 本发明还具有操作简便, 模拟范围广, 试验参数调节灵活等优点。
对附图的简要说明
附图说明
[0025] 图 1是模拟顶板岩梁破断的试验装置结构示意图;
[0026] 图 2是实验体铺设结构示意图;
[0027] 图 3是试验箱结构示意图;
[0028] 图 4是前挡板和后挡板结构示意图;
[0029] 图 5是固定槽钢安装结构示意图;
[0030] 图 6是左挡板和右挡板结构示意图;
[0031] 图中: 14式验箱; 114式验台底座; 2 -挡板; 21 -左挡板; 22 -右挡板; 23 -前挡板 ; 24 -后挡板; 25 -安装孔; 26 -固定槽钢; 27 -导水孔; 3 -压板; 31 -上压板; 32 -左 压板; 33 -右压板; 4 -滑轨; 5 -压头; 51 -上压头; 52 -左压头; 53 -右压头; 6 -监测 机构; 7 -液压机构; 8 -实验体; 81 -顶板层; 82 -底板层; 83 -均压水囊; 84 -煤层 ; 85 -煤层水囊。
发明实施例
本发明的实施方式
[0032] 结合图 1至图 6所示, 本发明提供的一种模拟顶板岩梁破断的试验装置及试验方 法, 具体实施方式如下。
[0033] 实施例 1
[0034] 为解决顶板岩梁破断模拟试验与实际偏差较大的技术问题, 本发明提供了一种 模拟顶板岩梁破断的试验装置及试验方法, 具体技术方案如下。
[0035] 一种模拟顶板岩梁破断的试验装置, 包括试验箱 1、 挡板 2、 压板 3、 滑轨 4、 压 头 5、 监测机构 6和液压机构 7 , 试验箱 1是试验装置的外部框架, 挡板 2和压板 3 分别设置在实验体 8的表面, 滑轨和压头相互配合, 带动压头移动, 从而适应不 同尺寸的实验体, 监测机构 6用于监测顶板应力应变, 液压机构 7用于控制压头 调整应力加载。 挡板 2包括左挡板 21、 右挡板 22、 前挡板 23和后挡板 24, 利用挡 板 2包裹实验体 8 , 从而保证实验体 8和装置整体结构的稳定和牢固; 压头 5包括 上压头 51、 左压头 52和右压头 53 , 从而能够施加侧压, 使试验结果更接近工程 实际; 压板 3包括上压板 31、 左压板 32和右压板 33, 压头 5通过压板 3施加压力保 证了压力的均匀施加; 监测机构 6包括压力传感器、 位移传感器和三维数字散斑 监测仪, 利用应变片和三维数字散斑监测仪提高了应力和应变的监测精度, 并 且在时间上保证了长期自动有效监测。
[0036] 试验箱 1的上部和左右两侧分别设置有压头 5 , 其中左压头和右压头沿滑轨 4上 下移动, 左压头 52和右压头 53穿过挡板压设在压板 3上, 压头 5和液压机构 7相连 。 左压板 32和右压板 33随压头左右移动, 上压头 51沿试验箱 1上部设置的滑轨移 动, 左挡板 21和右挡板 22的侧面设置有安装孔 25 , 前挡板 23和后挡板 24的左右 两边上设置有安装孔 25 , 从而方便前挡板和后挡板与左右两侧的挡板配合安装
[0037] 试验箱 1底部设置有试验台底座 11, 左挡板 21和右挡板 22分别固定在试验台底 座 11的两侧, 实验体 8放置在试验台底座 11上。 试验台底座 11的前方设置有前挡 板 23 , 试验台底座 11的后方设置有后挡板 24, 后挡板 24上设置有导水孔 27 , 前 挡板 23和后挡板 24上均设置有固定槽钢 26。 左挡板 21、 右挡板 22和压板 3使用钢 材制作而成, 前挡板 23和后挡板 24使用透明亚克力板制作而成。
[0038] 实验体 8包括顶板层 81、 底板层 82、 均压水囊 83、 煤层 84和煤层水囊 85, 实验 体 8的上方设置有上压板 31。 实验体 8使用实际的顶板、 底板和煤层岩石取样试 件进行试验, 不需要考虑相似比, 并且试验简便, 缩短的实验周期, 保证了试 验结果和实际情况相吻合。 上压板 31下方布置有均压水囊 83 , 利用均压水囊 83 保证顶板岩层的均布载荷, 均压水囊 83下方布置有顶板层 81, 顶板层 81下方布 置有煤层 84和煤层水囊 85, 煤层下方布置有底板层 82, 煤层 84和煤层水囊 85并 列间隔布置, 水囊模拟待开挖的区域, 水囊上设置有导水管, 水囊放水模拟煤 层的开挖。
[0039] 一种模拟顶板岩梁破断的试验方法, 利用上述的模拟顶板岩梁破断的试验装置
, 其特征在于, 步骤包括:
[0040] A.组装固定试验箱 1和试验台底座 11, 放置压板 3并调节压头 5位置。
[0041] B.根据矿井煤层条件和试验箱 1尺寸确定顶板层 81、 底板层 82和煤层 84的试件 尺寸。
[0042] C.制备顶板层 81、 底板层 82和煤层 84的模拟试件, 包括测量模拟试件和表面磨 平。
[0043] D.在试验台底座 11上先铺设底板层 81 ; 再铺设煤层 84和煤层水囊 85 , 煤层水囊
85注水至高度和煤层齐平; 在煤层 84和顶板层 81之间设置应变片, 然后在煤层 8 4上方铺设顶板层 81 ; 最后在顶板层 81上方铺设均压水囊 83并充水。 其中煤层 84 利用煤块试件制作而成, 煤层水囊 85和煤层的高度根据实际煤层的高度确定, 煤层水囊 85的宽度根据煤层工作面的宽度确定。
[0044] E.在均压水囊 83上方设置上压板 31, 在实验体 8表面喷涂数字散斑测点。
[0045] F.安装前挡板 23和后挡板 24, 将煤层水囊 85和均压水囊 83的导水管穿过后挡板 上的导水孔 27 , 然后安装固定槽钢 26加固前挡板 23和后挡板 24。
[0046] G.根据埋深和测压系数计算确定上压头 51、 左压头 52和右压头 53需要施加的压 力, 通过液压机构 7加压。 其中上压头、 左压头和右压头需要施加的压力根据矿 井实际地质条件计算, 上压头需要提供压力的计算包括, 计算上覆岩层压强
P= pgh
, 其中
P 为上覆岩层的平均密度, g为重力加速度, /^为埋深; 上压头提供的力 F±=PxS_ , 其中* ^为顶板上表面的面积。 左压头和右压头需要提供压力的计算包括, 计 算测压系数
Figure imgf000009_0001
, 其中左压头压力 F左和右压头压力 F右, 其中 F^ F^ PX SMX
1
, 其中 SfM为实验体左右两侧的侧面积, 侧面积包括底板、 煤层、 顶板和均压水 囊整体的侧面面积。
[0047] H.通过煤层水囊 85的导水管给煤层水囊 85放水, 期间记录顶板的应力和应变监 测数据。
[0048] 实施例 2
[0049] 一种模拟顶板岩梁破断的试验装置其结构具体包括试验箱 1、 挡板 2、 压板 3、 滑轨 4、 压头 5、 监测机构 6和液压机构 7 , 试验箱 1可以设计长宽高具体为 52cmxl 2cmx40cm, 液压机构 7和压头 5相连, 压头 5设置在滑轨 4上。 挡板 2包括左挡板 2 1、 右挡板 22、 前挡板 23和后挡板 24, 压头 5包括上压头 51、 左压头 52和右压头 5 3, 压板 3包括上压板 31、 左压板 32和右压板 33。 试验台底座 11的厚度可以为 5cm , 压板 3的厚度可以设置为 2cm, 左右两侧挡板厚度设置为 2cm, 前后两侧挡板的 厚度可以为 lcm。 监测机构 6包括压力传感器、 位移传感器和三维数字散斑监测 仪, 试验箱 1的上部和左右两侧分别设置有压头 5 , 其中左压头和右压头沿滑轨 4 上下移动, 左压头和右压头穿过挡板压设在压板 3上。 试验箱 1底部设置有试验 台底座 11, 左挡板 21和右挡板 22分别固定在试验台底座 11的两侧, 实验体 8放置 在试验台底座 11上。 实验体 8包括顶板层 81、 底板层 82、 均压水囊 83、 煤层 84和 煤层水囊 85 , 实验体 8的上方设置有上压板 31。 实验体 8使用实际的顶板、 底板 和煤层岩石取样试件进行试验, 不需要考虑相似比, 并且试验简便, 缩短的实 验周期, 保证了试验结果和实际情况相吻合。 上压板 31下方布置有均压水囊 83 , 利用均压水囊 83保证顶板岩层的均布载荷, 均压水囊 83下方布置有顶板层 81 , 顶板层 81下方布置有煤层 84和煤层水囊 85 , 煤层下方布置有底板层 82, 煤层 8 4和煤层水囊 85并列间隔布置, 水囊模拟待开挖的区域, 水囊上设置有导水管, 水囊放水模拟煤层的开挖。
[0050] 结合某矿的工程实际, 矿井待开采煤层标高 -400m, 煤层厚度为 4m。 底板为砂 质泥岩, 厚度为 2m。 顶板为粉砂岩, 厚度为 1.5m。 一次采全高开采, 为模拟煤 层开采对顶板岩梁破断的影响, 利用模拟顶板岩梁破断的试验装置进行了模拟 试验研究。 利用该装置进行模拟顶板岩梁破断的试验, 具体步骤包括:
[0051] 步骤 A.组装固定试验箱 1和试验台底座 11, 放置压板 3并调节压头 5位置。 将试 验台底座 11放在试验箱 1内并通过螺母或焊接固定, 为实验体各层的铺设和数据 的监测做好准备工作。 三个压头 5都可以随立柱或横梁上的滑轨 4进行移动, 以 适应不同的试验情况。
[0052] 步骤 B.根据矿井工程实际进行相似材料模拟, 结合矿井煤层条件和试验箱尺寸 确定顶板层 81、 底板层 82和煤层 84的试件尺寸。 由于矿选用条带式开采, 煤层 的实际采宽为 5m, 留设条采煤柱为 4m, 故试验中选择采用 10cm长的煤层水囊与 8cm长的煤块交替布置煤层。 顶板和底板岩层的设计尺寸如下: 底板层厚 4cm, 煤层厚 8cm; 顶板层厚 3cm, 均压水囊厚 10cm, 并且顶板层和底板层设计的长度 、 宽度分别为 44cm和 10cm。 煤层中煤块长 8cm、 宽 10cm, 煤层水囊长 10cm、 宽 10cm。
[0053] 步骤 C.制备顶板层 81、 底板层 82和煤层 84的模拟试件, 包括测量模拟试件和表 面磨平。 根据实验箱体的尺寸和工程实例的具体条件, 按比例制备不同尺寸的 试件。 将制备完成的试件表面进行磨平, 使试件表面接触良好, 这样就可以大 致消除试件接触面对力传递的影响。 普通对岩石试件接触面的处理方式是用胶 水、 混凝土进行粘结, 但是这种方法终究会对实验结果造成影响, 并且胶水属 于弹性体, 会对实验过程中试件的压缩造成较大的影响。
[0054] 步骤 D.首先在试验台底座 11上先铺设底板层 82, 底板层 82由砂岩制作而成; 再 铺设煤层 84和煤层水囊 85 , 其中煤层 84由煤块制作而成, 煤层水囊 85注水至高 度和煤层齐平; 在煤层 84和顶板层 81之间设置应变片, 然后在煤层 84上方铺设 顶板层 81, 顶板层 81由粉砂岩制作而成; 最后在顶板层 81上方铺设均压水囊 83 并充水。 其中煤层利用煤块试件制作而成, 煤层水囊 85和煤层的高度根据实际 煤层的高度确定, 煤层水囊 85的宽度根据煤层工作面的宽度确定。
[0055] 步骤 E.在均压水囊 83上方设置上压板, 在实验体 8表面喷涂数字散斑测点, 然 后将三维数字散斑监测仪的高速摄像机和数据处理系统放置在合适的位置。 数 字散斑系统能实时采集物体各个变形阶段的散斑图像, 计算出全场应变和变形 , 用于分析、 计算、 记录变形数据。 采用图形化显示测量结果, 便于更好地理 解和分析实验体, 尤其是顶板岩层的受力变形情况, 记录顶板岩梁的变形和应 力演化。
[0056] 步骤 F.安装前挡板 23和后挡板 24, 将煤层水囊 85和均压水囊 83的导水管穿过后 挡板 24上的导水孔 27 , 然后安装固定槽钢 26加固前挡板 23和后挡板 24, 注意固 定槽钢 26不要挡住三维数字散斑监测仪的监测面。
[0057] 步骤 G.根据埋深和测压系数计算确定上压头 51、 左压头 52和右压头 53需要施加 的压力, 通过液压机构加压。 在加压过程中, 先调整试验箱 1的位置, 使其处在 加载试验台合适的位置。 之后将三个压头通过压头轨道进行位置上的调整, 使 压头与加压板相互接触, 然后再通过加压系统将三个压头压力调整到所需的数 值。
[0058] 根据矿井工程实际条件, 进行地应力的计算, 该煤层具有 400m的上覆岩层, 根据埋深规律上覆岩层提供的压力由公式
P = pgk 得出, 其中
的取值根据本矿工程实际得出, 其取值为 2000kg/m 3, 并且公式中的 g取值 9.8 , h取值 400 计算得到上覆岩层提供的压力 P=7.84MPa 对于不同的区域, 侧压 系数 的范围, 其中 H为实测应力深度, 以 m为单位。 根据该矿井的工程实际条件, 最 终确定试验模拟中所采用的侧压系数为 0.7 , 试验中左右两侧提供的侧压力为 P =P ^=Px0.7=7.84x0.7=5.488MPa, 上覆岩层压力与侧压力均由液压机构进行控制 。 均压水囊和上压板提供的压力远小于上覆岩层所提供的压力, 为了简化试验 , 可以不予考虑。 其中三个压头所提供的压力为 F, F=PxS。 上压头提供的力 F上 =PxS上 =7.84MPax(44cmxl0cm)=345kN。 左右两侧压头提供的力 F S=F右= 左 xS 左二 右 右 =5.488MPax(10cmx45cm)=247kN。 根据计算液压机构控制加压, 其中 上压头加压 345KN, 左压头和右压头加压为 247KN, 加压后也可以在均压水囊 83 上设置压力表, 通过压力表监测均压水囊的实际压力。
[0059] 步骤 H.通过煤层水囊 85的导水管给煤层水囊 85放水, 来模拟煤层开采, 期间记 录顶板的应力和应变监测数据。 随着放水结束, 模拟的开采过程也就相应的结 束, 在结束后的一段时间里, 监测机构 6和液压机构 7—直处于工作状态, 来监 测煤层开采后顶板层的变形和应力的演化, 此过程无需人为控制和操作, 系统 自动记录试验数据。
[0060] 将试验得到的数据进行分析, 得出煤层开采对顶板岩层的影响, 为煤矿实际工 程当中提供理论依据。 除了本工程实例之外, 还可以模拟不同的地质情况, 用 煤层水囊模拟不同采高和采宽的情况, 用压头提供不同的压力来模拟不同采深 的情况。 可用不同尺寸的水囊和煤块来模拟不同采高和跨度的情况。 可以通过 压头施加不同的压力来模拟不同采深条件下的地应力。 利用压力传感器、 位移 传感器和三维数字散斑监测仪监测顶板的应力和位移变化, 监测结构更加准确 。 另外, 本发明还具有操作简便, 模拟范围广, 试验参数调节灵活等优点。
[0061] 当然, 上述说明并非是对本发明的限制, 本发明也并不仅限于上述举例, 本技 术领域的技术人员在本发明的实质范围内所做出的变化、 改型、 添加或替换, 也应属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种模拟顶板岩梁破断的试验装置, 其特征在于, 包括试验箱、 挡板 、 压板、 滑轨、 压头、 监测机构和液压机构; 所述挡板包括左挡板、 右挡板、 前挡板和后挡板, 压头包括上压头、 左压头和右压头, 压板 包括上压板、 左压板和右压板, 监测机构包括压力传感器、 位移传感 器和三维数字散斑监测仪; 所述试验箱的上部和左右两侧分别设置有 压头, 其中左压头和右压头沿滑轨上下移动, 左压头和右压头穿过挡 板压设在压板上; 所述试验箱底部设置有试验台底座, 左挡板和右挡 板分别固定在试验台底座的两侧, 实验体放置在试验台底座上。
[权利要求 2] 根据权利要求 1所述的一种模拟顶板岩梁破断的试验装置, 其特征在 于, 所述实验体包括顶板层、 底板层、 均压水囊、 煤层和煤层水囊, 实验体的上方设置有上压板; 所述上压板下方布置有均压水囊, 均压 水囊下方布置有顶板层, 顶板层下方布置有煤层和煤层水囊, 煤层下 方布置有底板层; 所述煤层和煤层水囊并列间隔布置。
[权利要求 3] 根据权利要求 1所述的一种模拟顶板岩梁破断的试验装置, 其特征在 于, 所述试验台底座的前方设置有前挡板, 试验台底座的后方设置有 后挡板; 所述后挡板上设置有导水孔, 前挡板和后挡板上均设置有固 定槽钢。
[权利要求 4] 根据权利要求 1所述的一种模拟顶板岩梁破断的试验装置, 其特征在 于, 所述左压板和右压板随压头左右移动, 所述上压头沿试验箱上部 设置的滑轨移动; 所述左挡板和右挡板的侧面设置有安装孔, 所述前 挡板和后挡板的左右两边上设置有安装孔。
[权利要求 5] 根据权利要求 4所述的一种模拟顶板岩梁破断的试验装置, 其特征在 于, 所述左挡板、 右挡板和压板使用钢材制作而成, 所述前挡板和后 挡板使用透明亚克力板制作而成, 所述均压水囊上设置有压力表。
[权利要求 6] 一种模拟顶板岩梁破断的试验方法, 利用权利要求 1至 5任一项所述的 模拟顶板岩梁破断的试验装置, 其特征在于, 步骤包括:
A.组装固定试验箱和试验台底座, 放置压板并调节压头位置; B.根据矿井煤层条件和试验箱尺寸确定顶板层、 底板层和煤层的试件 尺寸;
C制备顶板层、 底板层和煤层的模拟试件, 包括测量模拟试件和表面 磨平;
D.在试验台底座上先铺设底板层; 再铺设煤层和煤层水囊, 煤层水囊 注水至高度和煤层齐平; 在煤层和顶板层之间设置应变片, 然后在煤 层上方铺设顶板层; 最后在顶板层上方铺设均压水囊并充水;
E.在均压水囊上方设置上压板, 在实验体表面喷涂数字散斑测点;
F.安装前挡板和后挡板, 将煤层水囊和均压水囊的导水管穿过后挡板 上的导水孔, 然后安装固定槽钢加固前挡板和后挡板;
G.根据埋深和侧压系数计算确定上压头、 左压头和右压头需要施加的 压力, 通过液压机构加压;
H.通过煤层水囊的导水管给煤层水囊放水, 期间记录顶板的应力和应 变监测数据。
[权利要求 7] 根据权利要求 6所述的一种模拟顶板岩梁破断的试验方法, 其特征在 于, 所述煤层利用煤块试件制作而成; 所述煤层水囊和煤层的高度根 据实际煤层的高度确定, 煤层水囊的宽度根据煤层工作面的宽度确定
[权利要求 8] 根据权利要求 6所述的一种模拟顶板岩梁破断的试验方法, 其特征在 于, 所述步骤 G中上压头、 左压头和右压头需要施加的压力根据矿井 实际地质条件计算, 所述上压头需要提供压力的计算包括, 计算上覆 岩层压强
P = pgh
, 其中
Figure imgf000015_0001
为上覆岩层的平均密度, g为重力加速度, /^为埋深; 上压头提供的 力 =P xS上, 其中* ^为顶板上表面的面积; 所述左压头和右压头需 要提供压力的计算包括, 计算测压系数
1
的取值范围
Figure imgf000016_0001
1:1
Figure imgf000016_0002
为实验体左右两侧的侧面积。
PCT/CN2019/082160 2019-01-25 2019-04-11 一种模拟顶板岩梁破断的试验装置及试验方法 WO2020151091A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/07024A ZA202007024B (en) 2019-01-25 2020-11-11 Test device and method for simulating breakage of roof rock beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910071131.1A CN109765110A (zh) 2019-01-25 2019-01-25 一种模拟顶板岩梁破断的试验装置及试验方法
CN201910071131.1 2019-01-25

Publications (1)

Publication Number Publication Date
WO2020151091A1 true WO2020151091A1 (zh) 2020-07-30

Family

ID=66455352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082160 WO2020151091A1 (zh) 2019-01-25 2019-04-11 一种模拟顶板岩梁破断的试验装置及试验方法

Country Status (3)

Country Link
CN (1) CN109765110A (zh)
WO (1) WO2020151091A1 (zh)
ZA (1) ZA202007024B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702062B (zh) * 2019-09-06 2020-11-17 山东科技大学 平面移动变形测量系统及其在二维相似模拟实验中的应用
CN111208010B (zh) * 2020-02-21 2022-03-01 煤炭科学技术研究院有限公司 模拟顶板岩层回转破断试验方法
CN112362481B (zh) * 2020-10-27 2022-06-14 哈尔滨工程大学 一种耐压壳体抗压测试装置
CN112903462A (zh) 2021-02-04 2021-06-04 太原理工大学 双轴加载下水平采空区单排群柱承载力的测试装置与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168282A1 (en) * 2012-03-31 2015-06-18 China University Of Mining & Technology (Beijing) Simulated impact-type rock burst experiment apparatus
CN105716950A (zh) * 2016-03-29 2016-06-29 山东科技大学 条带煤柱稳定性试验装置及试验方法
CN108007781A (zh) * 2017-11-17 2018-05-08 山东科技大学 动静组合载荷下巷道支护体力学模拟试验系统及其方法
CN207516361U (zh) * 2017-11-30 2018-06-19 中国矿业大学(北京) 一种基于煤岩破裂失稳的多参量前兆特征监测实验装置
CN108732024A (zh) * 2018-05-22 2018-11-02 山东科技大学 模拟不同地应力条件下底板突水的试验系统及试验方法
CN208140477U (zh) * 2018-03-02 2018-11-23 华北科技学院 一种用于煤岩巷道细观力学研究的试验装置
CN208383616U (zh) * 2018-01-29 2019-01-15 南昌大学 多维加载结构试验装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897425A (zh) * 2015-06-01 2015-09-09 辽宁工程技术大学 一种平面应变巷道围岩模型加载观测系统及其测量方法
CN105606456A (zh) * 2016-01-28 2016-05-25 中国矿业大学 用于模拟深部硐室顶板围岩受力特征的试验装置和试验方法
CN108827578A (zh) * 2018-04-23 2018-11-16 东北大学 一种双向静动加载的顶板关键块冒落试验装置及方法
CN108645714B (zh) * 2018-06-19 2024-01-26 山东科技大学 相似材料底臌模拟试验系统及试验方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168282A1 (en) * 2012-03-31 2015-06-18 China University Of Mining & Technology (Beijing) Simulated impact-type rock burst experiment apparatus
CN105716950A (zh) * 2016-03-29 2016-06-29 山东科技大学 条带煤柱稳定性试验装置及试验方法
CN108007781A (zh) * 2017-11-17 2018-05-08 山东科技大学 动静组合载荷下巷道支护体力学模拟试验系统及其方法
CN207516361U (zh) * 2017-11-30 2018-06-19 中国矿业大学(北京) 一种基于煤岩破裂失稳的多参量前兆特征监测实验装置
CN208383616U (zh) * 2018-01-29 2019-01-15 南昌大学 多维加载结构试验装置
CN208140477U (zh) * 2018-03-02 2018-11-23 华北科技学院 一种用于煤岩巷道细观力学研究的试验装置
CN108732024A (zh) * 2018-05-22 2018-11-02 山东科技大学 模拟不同地应力条件下底板突水的试验系统及试验方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, PENG; MIAO, SHENG-JUN: "Analysis of the characteristics of in-situ stress field and fault activity in the coal mining area of China", JOURNAL OF CHINA COAL SOCIETY, vol. 41, no. 2, 31 December 2016 (2016-12-31), pages 319 - 329, XP009522365, ISSN: 0253-9993, DOI: 10.13225/j.cnki.jccs.2016.0303 *

Also Published As

Publication number Publication date
CN109765110A (zh) 2019-05-17
ZA202007024B (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2020151091A1 (zh) 一种模拟顶板岩梁破断的试验装置及试验方法
CN108226447B (zh) 煤炭地下开采地表移动三维模拟试验装置及试验方法
CN108732024B (zh) 模拟不同地应力条件下底板突水的试验系统及试验方法
CN110346216B (zh) 一种模拟掘进扰动情况下煤岩体三轴加载试验装置及方法
CN109752259A (zh) 模拟深部高温高湿环境的巷道围岩稳定性试验装置及方法
Lam Ground movements due to excavation in clay: physical and analytical models
CN109855975A (zh) 基于相似模拟试验系统的覆岩关键层破断规律试验方法
CN104807706A (zh) 便携式软弱层带原位直剪试验仪及其测试方法
CN111081110A (zh) 不同埋深、不同构造应力下跨断层隧巷道的力学行为特征模拟测试装置及测试方法
CN107219128B (zh) 多期构造运动作用下煤系地层应力分布模拟装置及方法
CN107725006B (zh) 一种煤层钻孔瓦斯抽采模拟试验装置及方法
CN102360087A (zh) 一种用于模拟采动煤层底板突水的试验系统及其方法
CN108414347B (zh) 可模拟深部断层形成及裂隙发育的多功能试验系统
CN107727424B (zh) 一种顺层岩质边坡稳定性的地质力学模型实验装置及方法
CN112697596B (zh) 可移动的多功能煤岩层相似模拟实验台
CN110514806B (zh) 一种相似模拟试验装置及方法
CN110530732B (zh) 一种边坡失稳模型反演装置和反演方法
CN110967252A (zh) 模拟盾构隧道施工对既有隧道影响的装置及其使用方法
CN103760096B (zh) 一种侧向加压相似模拟实验装置及实验方法
CN105928791A (zh) 一种岩体层间软弱夹层现场测量上部岩体应力和现场直剪试验的方法
CN205662958U (zh) 一种混凝土扩展基础试验装置
Ochmański et al. 3D numerical simulation of consolidation induced in soft ground by EPB technology and lining defects
CN206920440U (zh) 一种可再现地质正断层形成过程的相似模拟装置
CN205404524U (zh) 模拟受采动影响煤层底板突水试验系统的模拟试验装置
CN114216786B (zh) 一种切顶卸压无煤柱自成巷三维物理模型试验系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911344

Country of ref document: EP

Kind code of ref document: A1