WO2021031567A1 - 射频装置及射频装置的组装方法 - Google Patents

射频装置及射频装置的组装方法 Download PDF

Info

Publication number
WO2021031567A1
WO2021031567A1 PCT/CN2020/082373 CN2020082373W WO2021031567A1 WO 2021031567 A1 WO2021031567 A1 WO 2021031567A1 CN 2020082373 W CN2020082373 W CN 2020082373W WO 2021031567 A1 WO2021031567 A1 WO 2021031567A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
absorber
circuit board
frequency circuit
top surface
Prior art date
Application number
PCT/CN2020/082373
Other languages
English (en)
French (fr)
Inventor
程喆
彭大庆
张志伟
彭杰
胡彬
贠伦刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2022001925A priority Critical patent/MX2022001925A/es
Priority to EP20855296.8A priority patent/EP4016854A4/en
Publication of WO2021031567A1 publication Critical patent/WO2021031567A1/zh
Priority to US17/672,557 priority patent/US20220171018A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/038Feedthrough nulling circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/004Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3822Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving specially adapted for use in vehicles

Definitions

  • the present invention relates to radio frequency communication technology, in particular to a radio frequency device capable of absorbing high frequency interference signals from a radio frequency chip and an antenna feeder and an assembly method of the radio frequency device.
  • vehicle-mounted radar can provide timely prediction of dangers, thereby improving road traffic safety.
  • the vehicle-mounted radar system can calculate the speed, angle, distance and other information of the target relative to the car by receiving the echo of the transmitted signal, and it is not interfered by rain, fog, dust, night and other factors, and has the characteristics of all-weather work.
  • the radiation of the antenna feeder in the millimeter wave band will negatively affect the antenna pattern, which in turn affects the measurement quality of the radar system.
  • the chip will produce high-frequency interference signals when it is working, and it will also receive interference signals from the outside world, which may interfere with the antenna transmission or reception signal.
  • Fig. 1 is a schematic diagram of a radio frequency interference signal shielding structure in a radio frequency device in the prior art.
  • the radome 101 has good electromagnetic wave penetration characteristics, and the radio frequency circuit board 102 is housed inside to protect the radio frequency system including the antenna from the external harsh environment; the radome 101 and the radio frequency circuit
  • the boards 102 are fixed on the base 103; the absorber 104 is installed on the top of the inner side of the radome 101 by gluing or screwing.
  • the absorber 104 can absorb the electromagnetic waves from the radio frequency chip 105 and the antenna feeder. Shielding of high-frequency interference signals.
  • the way the absorber 104 is integrated with the radome 101 in FIG. 1 has some shortcomings.
  • the absorber is coupled with the radome, which will have a negative impact on the antenna performance to a certain extent; the open absorber has a negative effect on the microstrip line.
  • the radiation shielding effect is poor, and at the same time, the improvement effect on the isolation between each port is not great; when subjected to vibration, impact, etc., the absorber may fall off, causing the radar system to fail to work normally.
  • Fig. 2 is a schematic diagram of another radio frequency interference signal shielding structure in a radio frequency device in the prior art.
  • the radome 201 has good electromagnetic wave penetration characteristics, and the radio frequency circuit board 202 is housed inside it to protect the radio frequency system including the antenna from the external harsh environment; the radome 201 and the radio frequency circuit
  • the board 202 is fixed on the base 203; the metal shielding cover 204 is integrated on the radio frequency circuit board 202 by welding and other methods to shield the radio frequency chip 205; because the metal shielding cover 204 cannot completely shield the radiation of the microstrip transmission line, the solution
  • the method of converting the microstrip feeder to the SIW (Substrate Integrated Waveguide) feeder is used.
  • the method of isolation using the metal shielding cover 204 in Figure 2 also has some shortcomings, for example: material and assembly costs are relatively high; there is a risk of cavity resonance inside the metal shielding cover; this solution uses SIW feeders instead of traditional micro With a transmission line, the design difficulty increases and the cost increases.
  • an embodiment of the present invention provides a radio frequency device and an assembly method of the radio frequency device.
  • a radio frequency device including a radome, an absorber, and a radio frequency circuit board; the radome is used to accommodate the radio frequency circuit board; the absorber includes a top surface, one or more supports, and one Or more fixing parts; the radio frequency circuit board includes at least one radio frequency chip, at least one antenna feeder and at least one radio frequency antenna; the top surface covers the at least one radio frequency chip and the at least one antenna feeder but does not cover the At least one radio frequency antenna; the one or more fixing members are used to fix the absorber on the radio frequency circuit board; the one or more support members are used to support the top surface on the radome and Between the radio frequency circuit boards.
  • the absorber can absorb the high frequency interference signal of the radio frequency chip when the radio frequency device is working, and at the same time prevent external interference signals from entering the radio frequency (RF) chip; at the same time, because the absorber also covers the antenna feeder part, the antenna feeder radiates high
  • the frequency interference signal is also absorbed by the absorber, which not only prevents the antenna feeder radiation from affecting the antenna array, but also improves the isolation between the ports of the radio frequency chip. Compared with the prior art shown in Figure 1, the absorber and radio frequency circuit are used.
  • the plate integration method replaces the absorber and radome integration method, which can eliminate the influence of the coupling of the absorber and the radome on the antenna radiation pattern; compared with the prior art shown in Figure 2, the antenna feeder and the radio frequency chip can be shielded at the same time without additional
  • the SIW transmission line reduces the process complexity and processing cost, and also avoids the risk of resonance.
  • the thickness of the top surface is 0.2-0.75 wavelengths of air, and the wavelength of the air is a wavelength of the center frequency of the absorption frequency band of the absorber.
  • the wavelength of radio frequency electromagnetic waves when transmitted in the air medium is 0.2-0.75 wavelengths of air, and the wavelength of the air is a wavelength of the center frequency of the absorption frequency band of the absorber.
  • the distance between the top surface and the radome is less than 0.5 air wavelengths, so
  • the air wavelength is the wavelength of the radio frequency electromagnetic wave having the center frequency of the absorption frequency band of the absorber when transmitted in the air medium.
  • the distance between the top surface and the radio frequency circuit board is less than 0.5 air wavelengths
  • the air wavelength is the wavelength of the radio frequency electromagnetic wave having the center frequency of the absorption frequency band of the absorber when transmitted in the air medium.
  • the thickness of the top surface of the absorber, the distance between the top surface and the radome, and the distance between the top surface and the radio frequency circuit board are optimized to achieve a better shielding effect.
  • the absorber is integrally formed and formed of a wave absorbing material.
  • the integrated processing technology can reduce the processing cost while simplifying the subsequent installation operations, and the installation and disassembly can be completed quickly.
  • the absorbing material is a high-frequency absorber, a coupling agent, and a thermoplastic resin base. Mixed materials.
  • the top surface includes at least one radio frequency chip cavity, and the at least one radio frequency chip The cavity is used for accommodating the protrusion formed by the at least one radio frequency chip on the radio frequency circuit board. Since a general radio frequency chip has a certain protrusion height on the radio frequency circuit board, a radio frequency chip cavity for accommodating the protrusion is adaptively provided on the top surface, so that the top surface and the radio frequency circuit board The distance between them is easier to set, and the absorber has a better absorption effect on high-frequency interference radiation.
  • the fixing member is a mushroom buckle
  • the mushroom buckle includes an elastic component
  • the elastic member is used to pass through the through hole corresponding to the mushroom buckle on the radio frequency circuit board.
  • the absorber can be easily and conveniently installed on the radio frequency circuit board through the mushroom buckle, and the installation effect is relatively firm.
  • the fixing member is a fixing pin
  • the fixing pin is used to insert the radio frequency A through hole corresponding to the fixing pin on the circuit board, and the one or more fixing members or the one or more supporting members are glued together with the radio frequency circuit board.
  • the fixing pin is also a simple and convenient structure to install.
  • the radio frequency device further includes a base, and the base is used to install a fixed station.
  • the radio frequency circuit board and the radome According to different application scenarios of the radio frequency device, the base adaptably has a different existence form, and the base may not be needed in some application scenarios.
  • the radio frequency device is used for millimeter wave radar.
  • the radio frequency device can also be used for communication equipment, sensing equipment or navigation equipment including radio frequency chips and antennas. Its application scenarios include but are not limited to vehicle collision avoidance radar systems, adaptive cruise control systems, blind spot monitoring, and intelligent driving assistance. And driverless.
  • a method for assembling a radio frequency device including: fixing the absorber on a radio frequency circuit board by one or more fixing members of the absorber, so that the top surface of the absorber covers the radio frequency circuit At least one radio frequency chip and at least one antenna feeder on the board, but does not cover at least one radio frequency antenna on the radio frequency circuit board; wherein, the absorber includes the top surface, one or more supports, and the one Or more fixing parts; placing the radome on the radio frequency circuit board on which the absorber is fixed to accommodate the radio frequency circuit board; wherein the one or more supporting parts are used to support the top surface Located between the radome and the radio frequency circuit board.
  • the absorber can absorb the high-frequency interference signal of the radio frequency chip when the radio frequency device is working, while preventing external interference signals from entering the RF chip; at the same time, because the absorber also covers the antenna feeder part, the high frequency interference signal radiated by the antenna feeder It is also absorbed by the absorber, which not only prevents the antenna feeder radiation from affecting the antenna array, but also improves the isolation between the various ports of the radio frequency chip. Compared with the prior art shown in Figure 1, the absorber and the radio frequency circuit board are integrated.
  • the antenna feeder and the radio frequency chip can be shielded at the same time, without the need for additional SIW transmission lines , which reduces the process complexity and processing cost, and also avoids the risk of resonance.
  • the distance between the top surface and the radome is less than 0.5 wavelengths of air, and the wavelength of the air has the absorber The wavelength of radio frequency electromagnetic waves at the center frequency of the absorption frequency band when transmitted in the air medium.
  • the distance between the top surface and the radio frequency circuit board is less than 0.5
  • the air wavelength, the air wavelength is the wavelength of the radio frequency electromagnetic wave having the center frequency of the absorption frequency band of the absorber when transmitted in the air medium.
  • the distance between the top surface of the absorber and the radome and the distance between the top surface and the radio frequency circuit board are optimized to achieve a better shielding effect.
  • the absorber is made to cover at least one of the radio frequency circuit boards
  • the radio frequency chip includes: at least one radio frequency chip cavity located on the top surface accommodates a protrusion formed by the at least one radio frequency chip on the radio frequency circuit board. Since a general radio frequency chip has a certain protrusion height on the radio frequency circuit board, a radio frequency chip cavity for accommodating the protrusion is adaptively provided on the top surface, so that the top surface and the radio frequency circuit board The distance between them is easier to set, and the absorber has a better absorption effect on high-frequency interference radiation.
  • the absorber can be easily and conveniently installed on the radio frequency circuit board through the mushroom buckle, and the installation effect is relatively firm.
  • the fixing pin is also a simple and convenient structure to install.
  • the method further includes combining the radio frequency circuit board and the antenna
  • the cover is installed and fixed on the base.
  • the base adaptably has a different existence form, and the base may not be needed in some application scenarios.
  • a radar system which includes the radio frequency device mentioned in the first aspect or any one of the foregoing first aspects.
  • a vehicle including the radar system mentioned in the third aspect.
  • Figure 1 is a schematic side sectional view of a radio frequency interference signal shielding structure in a radio frequency device in the prior art
  • FIG. 2 is a schematic side sectional view of another radio frequency interference signal shielding structure in a radio frequency device in the prior art
  • Fig. 3 is an exploded view of the radio frequency device provided by the first embodiment of the present invention.
  • FIG. 4 is a schematic side sectional view of a radio frequency device provided by Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of an absorber in a radio frequency device provided by Embodiment 1 of the present invention.
  • Fig. 6 is a schematic side sectional view of a radio frequency device provided in the second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the structure of the absorber in the radio frequency device provided by the second embodiment of the present invention.
  • FIG. 8 is a schematic side sectional view of a radio frequency device provided by Embodiment 3 of the present invention.
  • FIG. 9 is a schematic side sectional view of the absorber in the radio frequency device provided by the third embodiment of the present invention.
  • FIG. 10 is a schematic side sectional view of a radio frequency device provided by Embodiment 4 of the present invention.
  • FIG. 11 is a schematic side sectional view of the absorber in the radio frequency device provided by the fourth embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for assembling a radio frequency device according to Embodiment 5 of the present invention.
  • the first embodiment is a case where the radio frequency device is applied to a vehicle-mounted millimeter wave radar.
  • the radio frequency chip, the transmitting antenna and the receiving antenna will radiate high-frequency electromagnetic signals.
  • the coupling of various signals will cause high-frequency signal interference. If the high-frequency interference signal is not shielded, it will seriously affect the radar.
  • the measurement accuracy of the system the absorber installed on the radio frequency circuit board can absorb such high-frequency interference signals, and attenuate most of the high-frequency interference signals by more than 10dB, ensuring the normal operation of the radar system.
  • the radio frequency device sequentially includes a radome 301, an absorber 302, a radio frequency circuit board 303, and a base 304; the radome 301 has good electromagnetic wave penetration characteristics and contains The radio frequency circuit board 303 protects the radio frequency system including the antenna from the external harsh environment.
  • the radome 301 includes a protruding structure 301a for accommodating various lines connected to the radio frequency device; the radome 301 and The radio frequency circuit board 303 is fixed on the base 304; the absorber includes a top surface 302a, one or more supporting members 302b, and one or more fixing members 302c; the absorber 302 passes through the one or more A fixing member 302c is fixed on the radio frequency circuit board 303, and is placed between the radome 301 and the radio frequency circuit board 303 through the one or more supports 302b; the absorber 302 is opposite to the The radome 301 and the radio frequency circuit board 303 are kept at a proper distance.
  • the radio frequency circuit 303 board has a first side and a second side.
  • the radio frequency chip 305 and the antenna array 306 are located on the first side, the digital part is located on the second side, and the top surface 302a of the absorber is located on the first side of the radio frequency circuit board 303.
  • the top surface 302a of the absorber is located directly above the radio frequency chip 305 and the antenna feeder 307 on the radio frequency circuit board 303, and can cover the radio frequency chip 305 and the antenna feeder 307, but cannot cover the radio frequency antenna 306, that is, the radio frequency antenna 306
  • "covering" includes two possible situations of contact and non-contact.
  • the top surface of the absorber may have many kinds according to the specific layout of the radio frequency circuit board. Existence form adapted to the layout.
  • the base 304 is used to install and fix the radio frequency circuit board 303 and the radome 301. According to different application scenarios of the radio frequency device, the base 304 adaptively has different existing forms, and may also be used in some application scenarios.
  • the radio frequency device does not include the base.
  • the radio frequency device can be installed on the head, tail or side body of the car according to the detection object and detection range of the millimeter wave radar, and the size and shape of the base and the radome are also It can be adjusted adaptively to achieve a stable and beautiful effect.
  • FIG. 4 is a schematic side sectional view of the radio frequency device of Embodiment 1.
  • the radio frequency device in the figure includes a radome 401, an absorber 402, a radio frequency circuit board 403, and a base 404.
  • the radome 401 includes a radome connected to the radio frequency device.
  • the protruding structure 401a of various circuits, the absorber 402 includes a top surface 402a, one or more supporting members 402b and one or more fixing members 402c, and the radio frequency circuit board 403 includes a radio frequency chip 405.
  • FIG. 5 is a schematic diagram of the structure of the absorber in the radio frequency device of the first embodiment.
  • the absorbent body 5 includes a top surface 51, one or more supporting members 52 and one or more fixing members 53.
  • the absorbent body in the first embodiment includes a top surface, two supporting members and four fixing members.
  • the whole absorber is integrally formed by injection molding of a wave-absorbing material, that is, a thermoplastic resin is used as a base material, and a high-frequency (20 GHz or higher frequency) absorber and coupling agent are mixed uniformly with the thermoplastic resin base material to form Absorbing particles, and then using a mold to inject the absorbing particles into one piece, which can be used to absorb high-frequency (20GHz or higher) electromagnetic waves of a specific frequency.
  • the thickness h of the top surface of the absorber is 0.2-0.75 wavelengths of air
  • the distance d 1 from the top surface to the radome is less than 0.5 wavelengths of air
  • the distance from the top surface to the radio frequency circuit board d 2 is less than 0.5 air wavelength
  • the air wavelength is the wavelength of the radio frequency electromagnetic wave with the center frequency of the absorption frequency band of the absorber when it is transmitted in the air medium.
  • the supporting member in the first embodiment is two rectangular parallelepiped structures, which are respectively integrally formed on two opposite sides of the top surface, and two integrally formed mushroom buckles are respectively provided under each rectangular parallelepiped.
  • the buckle serves as a fixing part of the absorber to fix the absorber on the radio frequency circuit board.
  • Each mushroom buckle includes an elastic component. By pressing four mushroom buckles, the elastic component passes through the through hole corresponding to the mushroom buckle on the radio frequency circuit board, and the absorber It is fixed on the radio frequency circuit board, and the installation operation is very simple and convenient.
  • Those skilled in the art can easily design other specific forms of the supporting member and the fixing member that are different from the first embodiment, which all fall within the protection scope of the present invention.
  • the absorber can absorb the high-frequency interference signal of the radio frequency chip when the millimeter wave radar is working, while preventing external interference signals from entering the radio frequency chip; at the same time, because the absorber also covers the antenna feeder part, the antenna feeder radiates
  • the high-frequency interference signal of the radio frequency is also absorbed by the absorber, which not only prevents the antenna feeder radiation from causing negative effects on the antenna array, but also improves the isolation between the various ports of the radio frequency chip.
  • the absorber can be simply and conveniently installed on the radio frequency circuit board with corresponding through holes through the mushroom buckle.
  • the wave absorbing ability of the absorbing structure can attenuate most high-frequency interference signals by more than 10dB, so as to achieve the shielding effect.
  • the first embodiment uses the method of integrating the absorber and the radio frequency circuit board instead of the method of integrating the absorber and the radome, which can eliminate the influence of the coupling between the absorber and the radome on the antenna radiation pattern;
  • the prior art shown in FIG. 2 the first embodiment uses an absorber to replace the metal shielding cover shielding method, which can shield the antenna feeder and the radio frequency chip at the same time, without the need for additional SIW transmission lines, reducing the processing complexity and avoiding the metal shielding cover The risk of resonance.
  • the present invention can also be applied to other equipment including radio frequency chips and antennas, such as communication equipment, sensing equipment, or navigation equipment.
  • the application scenarios include, but are not limited to, vehicle-mounted defense Collision radar system, adaptive cruise control system, blind spot monitoring, intelligent assisted driving and unmanned driving.
  • the second embodiment of the present invention also provides a radio frequency device.
  • 6 is a schematic side sectional view of the radio frequency device of the second embodiment.
  • the radio frequency device includes a radome 601, an absorber 602, a radio frequency circuit board 603, and a base 604.
  • the radome 601 includes a radome connected to the radio frequency device.
  • the protruding structure 601a of various circuits, the absorber 602 includes a top surface 602a, one or more supporting members 602b and one or more fixing members 602c, and the radio frequency circuit board 603 includes a radio frequency chip 605.
  • Fig. 7 is a schematic side sectional view of the absorber in the radio frequency device of the second embodiment.
  • the absorbent body 7 includes a top surface 71, one or more supporting members 72 and one or more fixing members 73.
  • the difference between the second embodiment and the first embodiment is that in the second embodiment, the mushroom buckle as the fixing member is replaced with a fixing pin.
  • the fixing pin is also integrally formed with other parts of the absorber, and the fixing pin is inserted into the through hole of the radio frequency circuit board corresponding to the fixing pin, and is fixed with adhesive.
  • the gluing can be to adhere the fixing member and the radio frequency circuit board (for example, glue on the fixing pin), or to adhere the support member and the radio frequency circuit board (for example, when the rectangular parallelepiped support member is in contact with the radio frequency circuit board) Glue on the bottom surface).
  • the second embodiment can also achieve the technical effect of reducing the high-frequency radiation interference from the radio frequency chip and the antenna feeder, and can also overcome many deficiencies in the prior art.
  • the third embodiment of the present invention also provides a radio frequency device.
  • 8 is a schematic side sectional view of the radio frequency device of the third embodiment.
  • the radio frequency device in the figure includes a radome 801, an absorber 802, a radio frequency circuit board 803, and a base 804.
  • the radome 801 includes a radome connected to the radio frequency device
  • the protruding structure 801a of various circuits, the absorber 802 includes a top surface 802a, one or more supporting members 802b and one or more fixing members 802c, and the radio frequency circuit board 803 includes a radio frequency chip 805.
  • Fig. 9 is a schematic side sectional view of the absorber in the radio frequency device of the third embodiment.
  • the absorbent body 9 includes a top surface 91, one or more supporting members 92 and one or more fixing members 93.
  • the third embodiment is different from the first embodiment in that the top surface 802a in FIG. 8 of the third embodiment further includes at least one radio frequency chip cavity 802d, and the top surface 91 in FIG. 9 further includes at least one radio frequency chip cavity 94.
  • the at least one radio frequency chip cavity is used for accommodating the protrusion formed by the at least one radio frequency chip on the radio frequency circuit board.
  • a radio frequency chip cavity for accommodating the protrusion is adaptively provided on the top surface, so that the top surface and the radio frequency circuit board The distance between them is easier to set, and the absorber has a better absorption effect on high-frequency interference radiation.
  • the fourth embodiment of the present invention also provides a radio frequency device.
  • 10 is a schematic side sectional view of the radio frequency device of the fourth embodiment.
  • the radio frequency device in the figure includes a radome 1001, an absorber 1002, a radio frequency circuit board 1003, and a base 1004.
  • the radome 1001 includes a radome for receiving and connecting to the radio frequency device.
  • the protruding structure 1001a of various circuits, the absorber 1002 includes a top surface 1002a, one or more supporting members 1002b and one or more fixing members 1002c, and the radio frequency circuit board 1003 includes a radio frequency chip 1005.
  • Fig. 11 is a schematic side sectional view of the absorber in the radio frequency device of the fourth embodiment.
  • the absorbent body 11 includes a top surface 111, one or more supporting members 112 and one or more fixing members 113.
  • the fourth embodiment is different from the second embodiment in that the top surface 1002a in FIG. 10 of the fourth embodiment further includes at least one radio frequency chip cavity 1002d, and the top surface 111 in FIG. 11 further includes at least one radio frequency chip cavity 114.
  • the at least one radio frequency chip cavity is used for accommodating the protrusion formed by the at least one radio frequency chip on the radio frequency circuit board.
  • a radio frequency chip cavity for accommodating the protrusion is adaptively provided on the top surface, so that the top surface and the radio frequency circuit board The distance between them is easier to set, and the absorber has a better absorption effect on high-frequency interference radiation.
  • the fifth embodiment of the present invention provides an assembling method of a radio frequency device, as shown in FIG. 12, including:
  • Step 1201 using one or more fixing members of the absorber to fix the absorber on the radio frequency circuit board, so that the top surface of the absorber covers at least one radio frequency chip and at least one antenna feeder on the radio frequency circuit board , But does not cover at least one radio frequency antenna on the radio frequency circuit board.
  • the absorbent body includes the top surface, one or more supporting members, and the one or more fixing members.
  • Step 1202 placing a radome on the radio frequency circuit board on which the absorber is fixed to accommodate the radio frequency circuit board; wherein, the one or more support members are used to support the top surface at the Between the radome and the radio frequency circuit board.
  • “covering” includes two possible situations of contact and non-contact.
  • the absorber can absorb the high frequency interference signal of the radio frequency chip when the radio frequency device is working, and at the same time prevent external interference signals from entering the radio frequency chip; at the same time, because the absorber also covers the antenna feeder part, the high frequency interference signal radiated by the antenna feeder It is also absorbed by the absorber, which not only prevents the antenna feeder radiation from affecting the antenna array, but also improves the isolation between the various ports of the radio frequency chip.
  • the absorber and the radio frequency circuit board are integrated.
  • the antenna feeder and the radio frequency chip can be shielded at the same time, without the need for additional SIW transmission lines , which reduces the process complexity and processing cost, and also avoids the risk of resonance.
  • the distance between the top surface of the absorber and the radome and the distance between the top surface and the radio frequency circuit board are optimized to achieve a better shielding effect.
  • the distance between the top surface and the radome is less than 0.5 wavelengths of air
  • the distance between the top surface and the radio frequency circuit board is less than 0.5 wavelengths of air
  • the wavelength of the air is that with the absorber The wavelength of radio frequency electromagnetic waves that absorb the center frequency of the frequency band when transmitted in the air medium.
  • making the absorber cover the at least one radio frequency chip on the radio frequency circuit board includes: enabling at least one radio frequency chip cavity on the top surface to accommodate the at least one radio frequency chip.
  • the use of one or more fixing members of the absorber to fix the absorber on the radio frequency circuit board includes: passing the elastic member on the mushroom buckle on the absorber through the A through hole corresponding to the mushroom buckle on the radio frequency circuit board.
  • the absorber can be easily and conveniently installed on the radio frequency circuit board through the mushroom buckle, and the installation effect is relatively firm.
  • the fixing pin on the absorber can be inserted into the through hole corresponding to the fixing pin on the radio frequency circuit board, and the one or more fixing parts or the one or more The supporting member and the radio frequency circuit board are glued together to fix the absorber on the radio frequency circuit board.
  • the fixing pin is also a relatively simple and convenient structure to install, but it is more difficult to disassemble than a mushroom buckle.
  • the fifth embodiment further includes installing and fixing the radio frequency circuit board and the antenna cover on the base.
  • the base adaptably has a different existence form, and the base may not be needed in some application scenarios.
  • the radar system includes the radio frequency mentioned in any one of the implementations of the first to fourth embodiments. Device.
  • radio frequency device shown in the foregoing embodiment 1 to embodiment 4 it is further proposed to provide an embodiment 6 of a radar system, and the vehicle includes the radio frequency device mentioned in any one of the foregoing embodiment 1 to embodiment 4 .
  • inventions of the present invention can be used in both vehicles and communication equipment, sensing equipment, navigation equipment or other equipment including radio frequency chips and antennas.
  • Application scenarios include but are not limited to vehicle collision avoidance radar systems, adaptive cruise control System, blind spot monitoring, intelligent assisted driving and unmanned driving.
  • the described devices and methods and schematic diagrams of different embodiments may be combined or integrated with other systems, modules, technologies or methods without departing from the scope of the present application.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electronic, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Support Of Aerials (AREA)

Abstract

本发明实施例提供了一种包括天线罩、吸收体和射频电路板的射频装置,可用于智能汽车的毫米波雷达,降低来自射频芯片和天线馈线的高频辐射干扰。所述天线罩用于容纳所述射频电路板,所述吸收体包括顶面、一个或多个支撑件和一个或多个固定件,所述射频电路板包括至少一个射频芯片、至少一个天线馈线和至少一个射频天线,所述顶面遮盖所述至少一个射频芯片和所述至少一个天线馈线但遮盖所述至少一个射频天线,所述一个或多个固定件用于将所述吸收体固定在所述射频电路板上,所述一个或多个支撑件用于支撑所述顶面位于所述天线罩与所述射频电路板之间。

Description

射频装置及射频装置的组装方法
相关申请的交叉引用
本申请要求在2019年08月16日提交中国专利局、申请号为201910759450.1、申请名称为“射频装置及射频装置的组装方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及射频通信技术,尤其涉及一种能够吸收来自射频芯片及天线馈线的高频干扰信号的射频装置及射频装置的组装方法。
背景技术
汽车作为各国主要的交通工具,越来越普及,与此同时,频繁发生的交通事故也受到了人们的重视。车载雷达作为汽车主动安全技术的重要组成部分,能对危险进行及时的预报,进而提高道路交通安全性。车载雷达系统可通过接收发射信号的回波来计算目标相对于汽车的速度、角度、距离等信息,并且其不受雨、雾、尘、夜等因素干扰,具有全天候工作特性。
目前车载雷达系统中,天线和芯片大多集成在PCB(Printed Circuit Board,印刷电路板)的顶层,发射天线和接收天线均通过馈线接入芯片,由此带来以下几个问题:
1、在毫米波段天线馈线的辐射会对天线方向图产生负面影响,进而影响雷达系统测量质量。
2、芯片在工作时会产生高频干扰信号,同时也会接收到来自外界的干扰信号,可能对天线发射或者接收信号产生干扰。
3、天线与芯片的各个收发通道之间在高频信号干扰下隔离度变差。
可见,需要对天线馈线及芯片产生或接收的干扰信号进行屏蔽,以避免干扰信号对于整个雷达系统的影响。另外,除了车载雷达以外,在拥有射频芯片和天线的通信设备、感测设备和导航设备中,也存在降低来自射频芯片及天线馈线的高频辐射的需求。
图1是现有技术中一种射频装置内射频干扰信号屏蔽结构的示意图。如图1所示,天线罩101具有良好的电磁波穿透特性,其内部容纳射频电路板102以保护包括天线在内的射频系统免受外部恶劣环境影响;所述天线罩101和所述射频电路板102均固定在基座103上;吸收体104通过胶粘或者锁螺钉的方式安装于天线罩101内侧顶部,吸收体104以吸收泄露出来的电磁波的方式实现对来自射频芯片105及天线馈线的高频干扰信号的屏蔽。但是,图1中吸收体104与天线罩101集成的方式存在一些不足之处,例如:吸收体与天线罩耦合,一定程度上会对天线性能产生负面影响;开放式的吸收体对微带线辐射的屏蔽效果较差,同时对各个端口之间的隔离改善效果不大;在受到震动、撞击等时,吸收体有可能会脱落,导致雷达系统不能正常工作。
图2是现有技术中另一种射频装置内射频干扰信号屏蔽结构的示意图。如图2所示,天线罩201具有良好的电磁波穿透特性,其内部容纳射频电路板202以保护包括天线在内的射频系统免受外部恶劣环境影响;所述天线罩201和所述射频电路板202均固定在基座203上;金属屏蔽盖204通过焊接等方式集成在射频电路板202上并将射频芯片205屏蔽起来;由于金属屏蔽盖204无法完全屏蔽微带传输线的辐射,该方案还使用了微带馈线转SIW(Substrate integrated waveguide,基片集成波导)馈线的方式。但是,图2中采用金属屏蔽盖204隔离的方式也存在一些不足之处,例如:物料及组装成本相对较高;金属屏蔽盖内部有腔体谐振的风险;该方案使用SIW馈线代替传统的微带传输线,造成设计难度增加和成本上升。
发明内容
为了降低射频芯片及天线馈线的高频辐射干扰,同时克服现有技术中存在的上述问题,本发明实施例提出一种射频装置及射频装置的组装方法。
第一方面,提供一种射频装置,包括天线罩、吸收体和射频电路板;所述天线罩用于容纳所述射频电路板;所述吸收体包括顶面、一个或多个支撑件和一个或多个固定件;所述射频电路板包括至少一个射频芯片、至少一个天线馈线和至少一个射频天线;所述顶面遮盖所述至少一个射频芯片和所述至少一个天线馈线但不遮盖所述至少一个射频天线;所述一个或多个固定件用于将所述吸收体固定在所述射频电路板上;所述一个或多个支撑件用于支撑所述顶面位于所述天线罩与所述射频电路板之间。吸收体可在射频装置工作时吸收射频芯片的高频干扰信号,同时防止外界的干扰信号进入射频(RF)芯片之中;同时由于吸收体也覆盖了天线馈线部分,则天线馈线辐射出的高频干扰信号同样被吸收体吸收,不但可以防止天线馈线辐射对天线阵列造成影响,还可以提高射频芯片各个端口之间的隔离度;相对图1所示的现有技术,使用吸收体与射频电路板集成方式取代吸收体与天线罩集成方式,可消除吸收体与天线罩耦合对天线辐射方向图的影响;相对图2所示的现有技术,可同时屏蔽天线馈线和射频芯片,不需要额外的SIW传输线,降低了工艺复杂度和加工成本,另外还可避免谐振风险。
根据第一方面,在所述射频装置的第一种可能的实现方式中,所述顶面厚度为0.2-0.75个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长。
根据第一方面或第一方面的第一种可能的实现方式,在所述射频装置的第二种可能的实现方式中,所述顶面距离所述天线罩的距离小于0.5个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长。
根据第一方面,或以上第一方面的任意一种实现方式,在所述射频装置的第三种可能的实现方式中,所述顶面距离所述射频电路板的距离小于0.5个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长。对吸收体的顶面厚度、所述顶面距离所述天线罩的距离以及述顶面距离所述射频电路板的距离进行优化设置,可以达到更好的屏蔽效果。
根据第一方面,或以上第一方面的任意一种实现方式,在所述射频装置的第四种可能的实现方式中,所述吸收体是一体成型的,并由吸波材料形成。一体成型的加工工艺,在 降低加工成本同时可以简化后续的安装操作,安装和拆卸可迅速完成。
根据第一方面,或以上第一方面的任意一种实现方式,在所述射频装置的第五种可能的实现方式中,所述吸波材料是高频吸收剂、偶联剂与热塑性树脂基材混合而成的。
根据第一方面,或以上第一方面的任意一种实现方式,在所述射频装置的第六种可能的实现方式中,所述顶面包括至少一个射频芯片腔体,所述至少一个射频芯片腔体用于容纳所述至少一个射频芯片在所述射频电路板上形成的凸起。由于一般射频芯片在射频电路板上具有一定的凸起高度,在所述顶面适应性地设置用于容纳所述凸起的射频芯片腔体,可以使所述顶面与所述射频电路板之间的距离更容易设置,所述吸收体对于高频干扰辐射的吸收效果也更好。
根据第一方面,或以上第一方面的任意一种实现方式,在所述射频装置的第七种可能的实现方式中,所述固定件为蘑菇卡扣,所述蘑菇卡扣包括弹性部件,所述弹性部件用于穿过所述射频电路板上与所述蘑菇卡扣对应的通孔。吸收体通过蘑菇卡扣可简单便捷的安装在射频电路板上,并且安装效果较牢固。
根据第一方面,或以上第一方面的任意一种实现方式,在所述射频装置的第八种可能的实现方式中,所述固定件为固定销钉,所述固定销钉用于插入所述射频电路板上与所述固定销钉对应的通孔,并且所述一个或多个固定件或者所述一个或多个支撑件与所述射频电路板胶粘在一起。固定销钉也是一种安装较为简单便捷的结构。
根据第一方面,或以上第一方面的任意一种实现方式,在所述射频装置的第九种可能的实现方式中,所述射频装置还包括基座,所述基座用于安装固定所述射频电路板和所述天线罩。根据所述射频装置的不同应用场景,所述基座适应性的具有不同的存在形态,也可能在某些应用场景下不需要所述基座。
根据第一方面,或以上第一方面的任意一种实现方式,在所述射频装置的第十种可能的实现方式中,所述射频装置用于毫米波雷达。另外,所述射频装置还可用于包括射频芯片和天线的通信设备、感测设备或导航设备,其应用场景包括但不限于车载防撞雷达系统、自适应巡航控制系统、盲点监测、智能辅助驾驶和无人驾驶。
第二方面,提供一种射频装置的组装方法,包括:利用吸收体的一个或多个固定件将所述吸收体固定于射频电路板上,使得所述吸收体的顶面遮盖所述射频电路板上的至少一个射频芯片和至少一个天线馈线,但不遮盖所述射频电路板上的至少一个射频天线;其中,所述吸收体包括所述顶面、一个或多个支撑件和所述一个或多个固定件;将天线罩置于固定有所述吸收体的所述射频电路板之上以容纳所述射频电路板;其中,所述一个或多个支撑件用于支撑所述顶面位于所述天线罩与所述射频电路板之间。吸收体可在射频装置工作时吸收射频芯片的高频干扰信号,同时防止外界的干扰信号进入RF芯片之中;同时由于吸收体也覆盖了天线馈线部分,则天线馈线辐射出的高频干扰信号同样被吸收体吸收,不但可以防止天线馈线辐射对天线阵列造成影响,还可以提高射频芯片各个端口之间的隔离度;相对图1所示的现有技术,使用吸收体与射频电路板集成方式取代吸收体与天线罩集成方式,可消除吸收体与天线罩耦合对天线辐射方向图的影响;相对图2所示的现有技术,可同时屏蔽天线馈线和射频芯片,不需要额外的SIW传输线,降低了工艺复杂度和加工成本,另外还可避免谐振风险。
根据第二方面,在所述射频装置的组装方法的第一种可能的实现方式中,所述顶面距 离所述天线罩的距离小于0.5个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长。
根据第二方面或第二方面的第一种可能的实现方式,在所述射频装置的组装方法的第二种可能的实现方式中,所述顶面距离所述射频电路板的距离小于0.5个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长。对吸收体的顶面距离所述天线罩的距离以及述顶面距离所述射频电路板的距离进行优化设置,可以达到更好的屏蔽效果。
根据第二方面,或以上第二方面的任意一种实现方式,在所述射频装置的组装方法的第三种可能的实现方式中,使得所述吸收体遮盖所述射频电路板上的至少一个射频芯片包括:使位于所述顶面上的至少一个射频芯片腔体容纳所述至少一个射频芯片在所述射频电路板上形成的凸起。由于一般射频芯片在射频电路板上具有一定的凸起高度,在所述顶面适应性地设置用于容纳所述凸起的射频芯片腔体,可以使所述顶面与所述射频电路板之间的距离更容易设置,所述吸收体对于高频干扰辐射的吸收效果也更好。
根据第二方面,或以上第二方面的任意一种实现方式,在所述射频装置的组装方法的第四种可能的实现方式中,所述利用吸收体的一个或多个固定件将所述吸收体固定于射频电路板上包括:将吸收体上的蘑菇卡扣上的弹性部件穿过所述射频电路板上与所述蘑菇卡扣对应的通孔。吸收体通过蘑菇卡扣可简单便捷的安装在射频电路板上,并且安装效果较牢固。
根据第二方面,或以上第二方面的任意一种实现方式,在所述射频装置的组装方法的第五种可能的实现方式中,所述利用吸收体的一个或多个固定件将所述吸收体固定于射频电路板上包括:将吸收体上的固定销钉插入所述射频电路板上与所述固定销钉对应的通孔;以及,将所述一个或多个固定件或者所述一个或多个支撑件与所述射频电路板胶粘在一起。固定销钉也是一种安装较为简单便捷的结构。
根据第二方面,或以上第二方面的任意一种实现方式,在所述射频装置的组装方法的第六种可能的实现方式中,所述方法还包括将所述射频电路板和所述天线罩安装固定在基座上。根据所述射频装置的不同应用场景,所述基座适应性的具有不同的存在形态,也可能在某些应用场景下不需要所述基座。
第三方面,提供一种雷达系统,包括第一方面或以上第一方面的任意一种实现方式所提到的射频装置。
第四方面,提供一种车辆,包括第三方面提到的雷达系统。
附图说明
图1是现有技术中一种射频装置内射频干扰信号屏蔽结构的侧剖示意图;
图2是现有技术中另一种射频装置内射频干扰信号屏蔽结构的侧剖示意图;
图3是本发明实施例一所提供的射频装置的爆炸图;
图4是本发明实施例一所提供的射频装置的侧剖示意图;
图5是本发明实施例一所提供的射频装置中的吸收体的结构示意图;
图6是本发明实施例二所提供的射频装置的侧剖示意图;
图7是本发明实施例二所提供的射频装置中的吸收体的结构示意图;
图8是本发明实施例三所提供的射频装置的侧剖示意图;
图9是本发明实施例三所提供的射频装置中的吸收体的侧剖示意图;
图10是本发明实施例四所提供的射频装置的侧剖示意图;
图11是本发明实施例四所提供的射频装置中的吸收体的侧剖示意图;
图12是本发明实施例五所提供的射频装置的组装方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一是射频装置应用于车载毫米波雷达的情形。车载毫米波雷达工作时,射频芯片、发射天线和接收天线均会向外辐射高频电磁信号,各种信号耦合后会造成高频信号干扰,如果不对高频干扰信号进行屏蔽则会严重影响雷达系统的测量精度。实施例一通过安装在射频电路板上的的吸收体,可吸收这种高频干扰信号,使绝大部分高频干扰信号衰减10dB以上,保障雷达系统正常工作。
如图3中的射频装置的爆炸图所示,所述射频装置依次包括天线罩301、吸收体302、射频电路板303和基座304;天线罩301具有良好的电磁波穿透特性,其内部容纳射频电路板303以保护包括天线在内的射频系统免受外部恶劣环境影响,天线罩301包括一个凸出结构301a,用于容纳连接至所述射频装置的各种线路;所述天线罩301和所述射频电路板303均固定在基座304上;所述吸收体包括顶面302a、一个或多个支撑件302b和一个或多个固定件302c;所述吸收体302通过所述一个或多个固定件302c固定在所述射频电路板303上,并且通过所述一个或多个支撑件302b被置于所述天线罩301和所述射频电路板303之间;所述吸收体302相对所述天线罩301和所述射频电路板303均保持适当的距离。射频电路303板有第一侧和第二侧,射频芯片305、天线阵列306位于第一侧,数字部分位于第二侧,吸收体的顶面302a位于射频电路板303的所述第一侧的上方。具体来说,所述吸收体的顶面302a位于射频电路板303上射频芯片305及天线馈线307的正上方,能够遮盖射频芯片305及天线馈线307,但是不能遮盖射频天线306,即射频天线306的正上方没有吸收体302,否则射频装置将不能正常发射或接收射频信号。在本发明实施例中,“遮盖”包括接触和非接触两种可能的情况。在一块射频电路板上,射频芯片、天线馈线和射频天线均可能不止一个,并且三者的布局方式也是多种多样,因此吸收体的顶面根据射频电路板具体的布局情形而可能有多种与所述布局相适应的存在形态。基座304用于安装固定所述射频电路板303和所述天线罩301,根据所述射频装置的不同应用场景,基座304适应性的具有不同的存在形态,也可能在某些应用场景下所述射频装置不包括所述基座。具体应用时,可以根据毫米波雷达的探测对象和探测范围的不同,将所述射频装置安装于汽车的头部、尾部或侧面车身,并且所述基座和所述天线罩的大小和形状也可以适应性地调整,以达到既稳固又美观的效果。
图4是实施例一的射频装置的侧剖示意图,图中射频装置包括天线罩401、吸收体402、射频电路板403和基座404,天线罩401包括用于容纳连接至所述射频装置的各种线路的 凸出结构401a,吸收体402包括顶面402a、一个或多个支撑件402b和一个或多个固定件402c,射频电路板403包括射频芯片405。图5是实施例一的射频装置中的吸收体的结构示意图。图中吸收体5包括顶面51、一个或多个支撑件52和一个或多个固定件53。可以看到,实施例一中的吸收体包括顶面、两个支撑件和四个固定件。吸收体整体都是由吸波材料注塑一体成型的,即以热塑性树脂为基材,将高频(20GHz或更高的频率)吸收剂、偶联剂与所述热塑性树脂基材混合均匀,形成吸波颗粒,再用模具将吸波颗粒注塑一体成型,可用来吸收特定频率的高频(20GHz或更高的频率)电磁波。
实施例一中,吸收体顶面厚度h为0.2-0.75个空气波长,所述顶面距离所述天线罩的距离d 1小于0.5个空气波长,所述顶面距离所述射频电路板的距离d 2小于0.5个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长,这种厚度和距离的设置是为了保证所述吸收体能够高效地吸收来自射频芯片和天线馈线的高频干扰信号。
实施例一中的支撑件为两个长方体结构,分别一体成型到所述顶面的两个对边上,在每个长方体的下面又分别有两个一体成型的蘑菇卡扣,所述蘑菇卡扣作为吸收体的固定件将所述吸收体固定在所述射频电路板上。每个蘑菇卡扣都包括一个弹性部件,通过按压四个蘑菇卡扣,使所述弹性部件穿过所述射频电路板上与所述蘑菇卡扣对应的通孔,即可将所述吸收体固定于所述射频电路板上,安装操作非常简单便捷。本领域技术人员可以较容易地设计出所述支撑件与所述固定件的其它不同于实施例一的具体形式,均属于本发明保护的范围。
在实施例一中,吸收体可在毫米波雷达工作时吸收射频芯片的高频干扰信号,同时防止外界的干扰信号进入射频芯片内;同时由于吸收体也覆盖了天线馈线部分,天线馈线辐射出的高频干扰信号同样被吸收体吸收,不但可以防止天线馈线辐射对天线阵列造成负面影响,还可以提高射频芯片各个端口之间的隔离度。吸收体通过蘑菇卡扣可简单便捷的安装在有对应通孔的射频电路板上,通过吸收结构的吸波能力可使大部分高频干扰信号衰减10dB以上,从而达到屏蔽效果。相对于图1的现有技术,实施例一使用吸收体与射频电路板集成的方式取代吸收体与天线罩集成的方式,可消除吸收体与天线罩耦合对天线辐射方向图的影响;相对于图2的现有技术,实施例一使用吸收体取代金属屏蔽盖的屏蔽方法,可使天线馈线和射频芯片同时屏蔽,而不需要额外的SIW传输线,降低了加工复杂度,避免了金属屏蔽盖的谐振风险。
虽然实施例一是本发明应用于车载毫米波雷达的情形,但本发明还可用于例如通信设备、感测设备或导航设备等其他包括射频芯片和天线的设备,应用场景包括但不限于车载防撞雷达系统、自适应巡航控制系统、盲点监测、智能辅助驾驶和无人驾驶。
本发明实施例二也提供了一种射频装置。图6是实施例二的射频装置的侧剖示意图,图中射频装置包括天线罩601、吸收体602、射频电路板603和基座604,天线罩601包括用于容纳连接至所述射频装置的各种线路的凸出结构601a,吸收体602包括顶面602a、一个或多个支撑件602b和一个或多个固定件602c,射频电路板603包括射频芯片605。图7是实施例二的射频装置中的吸收体的侧剖示意图。图中吸收体7包括顶面71、一个或多个支撑件72和一个或多个固定件73。实施例二与实施例一不同之处在于实施例二中将作为固定件的蘑菇卡扣替换成了固定销钉。所述固定销钉同样是与吸收体的其他部分一 体成型,通过将所述固定销钉插入所述射频电路板上与所述固定销钉对应的通孔,并辅以胶粘进行固定。所述胶粘可以是将固定件与射频电路板粘连(例如在固定销钉上涂胶),也可以是将支撑件与所述射频电路板粘连(例如在长方体形状的支撑件与射频电路板接触的底面上涂胶)。与实施例一样,实施例二也可以达到降低来自射频芯片和天线馈线的高频辐射干扰的技术效果,并且也可以克服现有技术中的诸多不足。
本发明实施例三也提供了一种射频装置。图8是实施例三的射频装置的侧剖示意图,图中射频装置包括天线罩801、吸收体802、射频电路板803和基座804,天线罩801包括用于容纳连接至所述射频装置的各种线路的凸出结构801a,吸收体802包括顶面802a、一个或多个支撑件802b和一个或多个固定件802c,射频电路板803包括射频芯片805。图9是实施例三的射频装置中的吸收体的侧剖示意图。图中吸收体9包括顶面91、一个或多个支撑件92和一个或多个固定件93。实施例三与实施例一不同之处在于,实施例三的图8中顶面802a还包括至少一个射频芯片腔体802d,图9中顶面91还包括至少一个射频芯片腔体94,所述至少一个射频芯片腔体用于容纳至少一个射频芯片在射频电路板上形成的凸起。由于一般射频芯片在射频电路板上具有一定的凸起高度,在所述顶面适应性地设置用于容纳所述凸起的射频芯片腔体,可以使所述顶面与所述射频电路板之间的距离更容易设置,所述吸收体对于高频干扰辐射的吸收效果也更好。
本发明实施例四也提供了一种射频装置。图10是实施例四的射频装置的侧剖示意图,图中射频装置包括天线罩1001、吸收体1002、射频电路板1003和基座1004,天线罩1001包括用于容纳连接至所述射频装置的各种线路的凸出结构1001a,吸收体1002包括顶面1002a、一个或多个支撑件1002b和一个或多个固定件1002c,射频电路板1003包括射频芯片1005。图11是实施例四的射频装置中的吸收体的侧剖示意图。图中吸收体11包括顶面111、一个或多个支撑件112和一个或多个固定件113。实施例四与实施例二不同之处在于,实施例四的图10中顶面1002a还包括至少一个射频芯片腔体1002d,图11中顶面111还包括至少一个射频芯片腔体114,所述至少一个射频芯片腔体用于容纳至少一个射频芯片在射频电路板上形成的凸起。由于一般射频芯片在射频电路板上具有一定的凸起高度,在所述顶面适应性地设置用于容纳所述凸起的射频芯片腔体,可以使所述顶面与所述射频电路板之间的距离更容易设置,所述吸收体对于高频干扰辐射的吸收效果也更好。
本发明实施例五提供一种射频装置的组装方法,如图12所示,包括:
步骤1201,利用吸收体的一个或多个固定件将所述吸收体固定于射频电路板上,使得所述吸收体的顶面遮盖所述射频电路板上的至少一个射频芯片和至少一个天线馈线,但不遮盖所述射频电路板上的至少一个射频天线。所述吸收体包括所述顶面、一个或多个支撑件和所述一个或多个固定件。
步骤1202,将天线罩置于固定有所述吸收体的所述射频电路板之上以容纳所述射频电路板;其中,所述一个或多个支撑件用于支撑所述顶面位于所述天线罩与所述射频电路板之间。
在本发明实施例中,“遮盖”包括接触和非接触两种可能的情况。吸收体可在射频装置工作时吸收射频芯片的高频干扰信号,同时防止外界的干扰信号进入射频芯片之中;同时由于吸收体也覆盖了天线馈线部分,则天线馈线辐射出的高频干扰信号同样被吸收体吸收,不但可以防止天线馈线辐射对天线阵列造成影响,还可以提高射频芯片各个端口之间 的隔离度;相对图1所示的现有技术,使用吸收体与射频电路板集成方式取代吸收体与天线罩集成方式,可消除吸收体与天线罩耦合对天线辐射方向图的影响;相对图2所示的现有技术,可同时屏蔽天线馈线和射频芯片,不需要额外的SIW传输线,降低了工艺复杂度和加工成本,另外还可避免谐振风险。
进一步地,对吸收体的顶面距离所述天线罩的距离以及述顶面距离所述射频电路板的距离进行优化设置,以达到更好的屏蔽效果。实施例五设置所述顶面距离所述天线罩的距离小于0.5个空气波长,所述顶面距离所述射频电路板的距离小于0.5个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长。
进一步地,在实施例五中,使得所述吸收体遮盖所述射频电路板上的至少一个射频芯片包括:使位于所述顶面上的至少一个射频芯片腔体容纳所述至少一个射频芯片在所述射频电路板上形成的凸起。由于一般射频芯片在射频电路板上具有一定的凸起高度,在所述顶面适应性地设置用于容纳所述凸起的射频芯片腔体,可以使所述顶面与所述射频电路板之间的距离更容易设置,所述吸收体对于高频干扰辐射的吸收效果也更好。
进一步地,在实施例五中,所述利用吸收体的一个或多个固定件将所述吸收体固定于射频电路板上包括:将吸收体上的蘑菇卡扣上的弹性部件穿过所述射频电路板上与所述蘑菇卡扣对应的通孔。吸收体通过蘑菇卡扣可简单便捷的安装在射频电路板上,并且安装效果较牢固。
作为蘑菇卡扣的替换形式,可以将吸收体上的固定销钉插入所述射频电路板上与所述固定销钉对应的通孔,以及将所述一个或多个固定件或者所述一个或多个支撑件与所述射频电路板胶粘在一起,从而将所述吸收体固定在所述射频电路板上。固定销钉也是一种安装较为简单便捷的结构,但是拆卸相对蘑菇卡扣困难一些。
进一步地,在实施例五中,还包括将所述射频电路板和所述天线罩安装固定在基座上。根据所述射频装置的不同应用场景,所述基座适应性的具有不同的存在形态,也可能在某些应用场景下不需要所述基座。
在上述实施例一至实施例四所示射频装置的基础上,进一步提出提供一种雷达系统的实施例五,所述雷达系统包括上述实施例一至实施例四任意一种实现方式所提到的射频装置。
在上述实施例一至实施例四所示射频装置的基础上,进一步提出提供一种雷达系统的实施例六,所述车辆包括上述实施例一至实施例四任意一种实现方式所提到的射频装置。
本发明的上述实施例均既可用于车辆,又可用于通信设备、感测设备、导航设备或其他包括射频芯片和天线的设备,应用场景包括但不限于车载防撞雷达系统、自适应巡航控制系统、盲点监测、智能辅助驾驶和无人驾驶。
本领域的技术人员可以清楚地了解到,本申请提供的各实施例的描述可以相互参照,为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参照。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的, 例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行
另外,所描述装置和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (14)

  1. 一种射频装置,其特征在于:所述射频装置包括天线罩、吸收体和射频电路板;所述天线罩用于容纳所述射频电路板;所述吸收体包括顶面、一个或多个支撑件和一个或多个固定件;所述射频电路板包括至少一个射频芯片、至少一个天线馈线和至少一个射频天线;所述顶面遮盖所述至少一个射频芯片和所述至少一个天线馈线但不遮盖所述至少一个射频天线;所述一个或多个固定件用于将所述吸收体固定在所述射频电路板上;所述一个或多个支撑件用于支撑所述顶面位于所述天线罩与所述射频电路板之间。
  2. 根据权利要求1所述的射频装置,其特征在于,所述顶面厚度为0.2-0.75个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长。
  3. 根据权利要求1或2所述的射频装置,其特征在于,所述顶面距离所述天线罩的距离小于0.5个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长。
  4. 根据权利要求1至3中任一项所述的射频装置,其特征在于,所述顶面距离所述射频电路板的距离小于0.5个空气波长,所述空气波长为具有所述吸收体的吸收频段的中心频率的射频电磁波在空气介质中传输时的波长。
  5. 根据权利要求1至4中任一项所述的射频装置,其特征在于,所述吸收体是一体成型的,并由吸波材料形成。
  6. 根据权利要求5所述的射频装置,其特征在于,所述吸波材料是高频吸收剂、偶联剂与热塑性树脂基材混合而成的。
  7. 根据权利要求1至6中任一项所述的射频装置,其特征在于,所述顶面包括至少一个射频芯片腔体,所述至少一个射频芯片腔体用于容纳所述至少一个射频芯片在所述射频电路板上形成的凸起。
  8. 根据权利要求1至7中任一项所述的射频装置,其特征在于,所述固定件为蘑菇卡扣,所述蘑菇卡扣包括弹性部件,所述弹性部件用于穿过所述射频电路板上与所述蘑菇卡扣对应的通孔。
  9. 根据权利要求1至8中任一项所述的射频装置,其特征在于,所述固定件为固定销钉,所述固定销钉用于插入所述射频电路板上与所述固定销钉对应的通孔,并且所述一个或多个固定件或者所述一个或多个支撑件与所述射频电路板胶粘在一起。
  10. 根据权利要求1至9中任一项所述的射频装置,其特征在于,所述射频装置还包括基座,所述基座用于安装固定所述射频电路板和所述天线罩。
  11. 根据权利要求1至10中任一项所述的射频装置,其特征在于,所述射频装置用于毫米波雷达。
  12. 一种射频装置的组装方法,其特征在于,包括:
    利用吸收体的一个或多个固定件将所述吸收体固定于射频电路板上,使得所述吸收体的顶面遮盖所述射频电路板上的至少一个射频芯片和至少一个天线馈线,但不遮盖所述射频电路板上的至少一个射频天线;其中,所述吸收体包括所述顶面、一个或多个支撑件和所述一个或多个固定件;
    将天线罩置于固定有所述吸收体的所述射频电路板之上以容纳所述射频电路板;其中,所述一个或多个支撑件用于支撑所述顶面位于所述天线罩与所述射频电路板之间。
  13. 一种雷达系统,其特征在于,包括权利要求1-11任一项所述的射频装置。
  14. 一种车辆,包括权利要求13所述的雷达系统。
PCT/CN2020/082373 2019-08-16 2020-03-31 射频装置及射频装置的组装方法 WO2021031567A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2022001925A MX2022001925A (es) 2019-08-16 2020-03-31 Aparato de radiofrecuencia y metodo para ensamblar el aparato de radiofrecuencia.
EP20855296.8A EP4016854A4 (en) 2019-08-16 2020-03-31 RADIO FREQUENCY DEVICE AND METHOD OF ASSEMBLY THEREOF
US17/672,557 US20220171018A1 (en) 2019-08-16 2022-02-15 Radio frequency apparatus and method for assembling radio frequency apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910759450.1 2019-08-16
CN201910759450.1A CN112398497A (zh) 2019-08-16 2019-08-16 射频装置及射频装置的组装方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/672,557 Continuation US20220171018A1 (en) 2019-08-16 2022-02-15 Radio frequency apparatus and method for assembling radio frequency apparatus

Publications (1)

Publication Number Publication Date
WO2021031567A1 true WO2021031567A1 (zh) 2021-02-25

Family

ID=74602922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082373 WO2021031567A1 (zh) 2019-08-16 2020-03-31 射频装置及射频装置的组装方法

Country Status (5)

Country Link
US (1) US20220171018A1 (zh)
EP (1) EP4016854A4 (zh)
CN (1) CN112398497A (zh)
MX (1) MX2022001925A (zh)
WO (1) WO2021031567A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224485A (zh) * 2021-04-15 2022-10-21 华为技术有限公司 探测装置、天线罩、毫米波雷达及终端设备
CN113965906B (zh) * 2021-11-12 2024-05-17 北京万集科技股份有限公司 车载装置及车用无线通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060238404A1 (en) * 2004-12-27 2006-10-26 Tdk Corporation Radar device
CN102395226A (zh) * 2011-11-02 2012-03-28 华为技术有限公司 一种有源天线系统、基站和通信系统
US20120119969A1 (en) * 2010-11-12 2012-05-17 Freescale Semiconductor, Inc. Integrated antenna package
CN105143911A (zh) * 2013-04-24 2015-12-09 黑拉许克联合股份有限公司 雷达装置、特别是用于机动车的雷达装置
CN109804264A (zh) * 2016-10-13 2019-05-24 黑拉有限责任两合公司 具有屏蔽器件的雷达装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693557B2 (en) * 2001-09-27 2004-02-17 Wavetronix Llc Vehicular traffic sensor
JP2003287568A (ja) * 2002-03-28 2003-10-10 Denso Corp レーダ装置、レドーム
CN101005754A (zh) * 2006-01-17 2007-07-25 华为技术有限公司 一种屏蔽电磁波干扰的装置
JP5566933B2 (ja) * 2011-03-23 2014-08-06 古河電気工業株式会社 高周波通信装置
CN104201468B (zh) * 2014-09-19 2017-02-01 中国人民解放军国防科学技术大学 X/k波段复合超材料及天线罩和天线阵一体化结构
US10074907B2 (en) * 2015-03-12 2018-09-11 Veoneer Us, Inc. Apparatus and method for mitigating multipath effects and improving absorption of an automotive radar module
JP6440123B2 (ja) * 2015-05-19 2018-12-19 パナソニックIpマネジメント株式会社 アンテナ装置、無線通信装置、及びレーダ装置
CN207456563U (zh) * 2017-11-08 2018-06-05 北京古大仪表有限公司 用于物位测量的高频模块及应用该高频模块的雷达物位计
JP2019097118A (ja) * 2017-11-27 2019-06-20 パナソニックIpマネジメント株式会社 アンテナ装置
CN208091534U (zh) * 2018-01-10 2018-11-13 北京古大仪表有限公司 用于物位测量的高频模块及应用该高频模块的雷达物位计
CN207967308U (zh) * 2018-01-17 2018-10-12 华域汽车系统股份有限公司 一种适用于车载毫米波雷达的宽角度天线罩及天线装置
CN109228000A (zh) * 2018-09-07 2019-01-18 南京波平电子科技有限公司 车载雷达天线专用吸波材料及其制备方法
DE102019200912A1 (de) * 2019-01-24 2020-07-30 Robert Bosch Gmbh Radombaugruppe für einen Radarsensor für Kraftfahrzeuge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060238404A1 (en) * 2004-12-27 2006-10-26 Tdk Corporation Radar device
US20120119969A1 (en) * 2010-11-12 2012-05-17 Freescale Semiconductor, Inc. Integrated antenna package
CN102395226A (zh) * 2011-11-02 2012-03-28 华为技术有限公司 一种有源天线系统、基站和通信系统
CN105143911A (zh) * 2013-04-24 2015-12-09 黑拉许克联合股份有限公司 雷达装置、特别是用于机动车的雷达装置
CN109804264A (zh) * 2016-10-13 2019-05-24 黑拉有限责任两合公司 具有屏蔽器件的雷达装置

Also Published As

Publication number Publication date
EP4016854A4 (en) 2022-10-19
EP4016854A1 (en) 2022-06-22
US20220171018A1 (en) 2022-06-02
MX2022001925A (es) 2022-03-11
CN112398497A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
JP7303815B2 (ja) 合成樹脂製アンテナを備えた車両の周辺把握のためのレーダーシステム
US11509042B2 (en) Radome for automotive radar patch antenna
US20220171018A1 (en) Radio frequency apparatus and method for assembling radio frequency apparatus
US6933881B2 (en) Automotive radar
US8305259B2 (en) Dual-band antenna array and RF front-end for mm-wave imager and radar
US7671806B2 (en) Antenna system for a radar transceiver
JP2007116217A (ja) ミリ波レーダ装置およびそれを用いたミリ波レーダシステム
WO2005055366A1 (ja) 車載用レーダ
JP5566933B2 (ja) 高周波通信装置
JP2012105261A (ja) 集積アンテナパッケージ
KR20210091176A (ko) 차량에 탑재되는 안테나 시스템
US9445535B2 (en) High-frequency module
US20220349988A1 (en) Radar apparatus and mobile platform
CN112542676A (zh) 一种天线盒
JPH11330847A (ja) アンテナ装置
US11735823B2 (en) Coplanar antenna structure having a wide slot
EP4040595A1 (en) Formed waveguide antennas of a radar assembly
CN112909497A (zh) 天线组件及车辆
CN214505758U (zh) 一种天线盒
CN220455515U (zh) 一种共用多层金属天线的多毫米波雷达系统
US20230184884A1 (en) Detection apparatus and method for manufacturing detection apparatus
US20230305142A1 (en) Vehicular radar sensing system with transmitting and receiving antennas on same platform with isolated waveguide ports
CN218334344U (zh) 阵列天线、无线电器件和电子设备
CN218525727U (zh) 一种导航天线盒
US20230238706A1 (en) On-board antenna, radio device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020855296

Country of ref document: EP

Effective date: 20220314