WO2021031464A1 - 一种石墨烯远红外添加剂的制备方法以及远红外浆料 - Google Patents

一种石墨烯远红外添加剂的制备方法以及远红外浆料 Download PDF

Info

Publication number
WO2021031464A1
WO2021031464A1 PCT/CN2019/124017 CN2019124017W WO2021031464A1 WO 2021031464 A1 WO2021031464 A1 WO 2021031464A1 CN 2019124017 W CN2019124017 W CN 2019124017W WO 2021031464 A1 WO2021031464 A1 WO 2021031464A1
Authority
WO
WIPO (PCT)
Prior art keywords
far
infrared
graphene
additive
parts
Prior art date
Application number
PCT/CN2019/124017
Other languages
English (en)
French (fr)
Other versions
WO2021031464A8 (zh
Inventor
郑南峰
曹昉
吴炳辉
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2021031464A1 publication Critical patent/WO2021031464A1/zh
Publication of WO2021031464A8 publication Critical patent/WO2021031464A8/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds

Definitions

  • the invention relates to a preparation method of a graphene far-infrared additive, in particular to a preparation method of a graphene far-infrared additive with good dispersion and stable far-infrared performance.
  • Far-infrared coatings can emit far-infrared rays with a wavelength in the range of 4 ⁇ m to 16 ⁇ m.
  • the materials and products often used to generate far-infrared rays can be divided into added carbon materials, tourmaline, far-infrared ceramics, jade, metal oxides and carbonization Several types of silicon.
  • ceramic materials are usually white, easy to color, and are the most widely used far-infrared coatings at this stage, but natural ceramic materials usually contain radioactive substances, which may cause harm to the human body. Therefore, patent CN 102010185 A discloses a high-temperature resistant white nano far-infrared ceramic powder and a preparation method thereof.
  • the main far-infrared ceramic powder is selected from nano alumina, nano magnesium oxide, nano zirconia, nano zinc oxide, and nano oxide It is composed of titanium, nano rare earth oxide and nano precious metal oxide.
  • the raw material is the corresponding non-metallic nitrate or halogen salt. After emulsification and dispersion, it is dehydrated and dried. Finally, it is calcined at high temperature to obtain the required far-infrared ceramic powder. Although it can effectively avoid the radioactive substances that may usually be contained in natural ceramic materials, its preparation The process is complicated, the energy consumption is high, and the cost is high.
  • the graphene prepared by exfoliating from ordinary graphite materials is a two-dimensional crystal composed of carbon atoms with a thickness of only one layer. It not only has the intrinsic characteristics of carbon materials (such as emitting far-infrared light waves, acid and alkali resistance), but also has the characteristics of toughness, flexibility, excellent thermal conductivity and extremely high physical strength. When applied to far-infrared slurries, the amount of graphene materials is less than that of ceramic powder materials (additional amount is more than 25%), and the temperature rises faster. In addition, the graphene material has a single composition and does not contain other radioactive substances.
  • graphene material is directly mixed into the traditional coating or printing paste, it will reduce its own energy through spontaneous agglomeration, resulting in poor coating or printing uniformity.
  • graphene powder is mixed with a binder to prepare a graphene coated fabric, but its far-infrared emissivity is only 0.91, and the far-infrared radiation temperature rises at 1.6°C. This is because the graphene material has a very high specific surface area. Under the condition of no diluent and dispersant, it is dispersed with the binder in the ratio of 1:4 to 1:6.
  • the product has poor dispersibility and does not form a complete This continuous network leads to poor far-infrared performance, and it is easy to form massive accumulations, resulting in a sharp drop in the physical strength of the material, which leads to a decline in far-infrared performance after washing.
  • the graphene powder and graphene nanosheets are directly physically dispersed, and then dispersed with the resin mixture, which still faces the problem of dispersion and stability of the graphene powder in the finished ink.
  • Patent CN108530996A is to disperse expanded graphite and other powders, resins, solvents, and additives together, and then perform high-pressure homogenization or ball milling or sand milling.
  • the expanded graphite is homogenized at high pressure or ball milling or sand milling.
  • the medium will exfoliate into graphene and graphite micro-nano flakes, while expanded graphite itself cannot be dispersed and existed in systems such as inks, pastes or coatings, and the influence of raw material size factors on the formation of continuous dense bridge networks is not considered.
  • One aspect of the present invention provides a method for preparing a graphene far-infrared additive, which includes the following steps: crushing expanded graphite to obtain crushed expanded graphite; premixing carbon materials, resins and additives to obtain a premix, wherein The carbon material includes the pulverized expanded graphite and carbon black powder; adding a solvent to the premix and stirring to obtain a uniform and non-foaming ink precursor dispersion; and combining the ink precursor dispersion After the peeling process, the graphene far-infrared additive is obtained.
  • the D50 of the crushed expanded graphite is 5 to 600 ⁇ m.
  • the components of the pulverized expanded graphite, carbon black powder, resin and auxiliary agent are 2-25 parts, 0.1-4 parts, 8-40 parts and 0.1-2 parts, respectively.
  • the carbon material further includes graphite powder.
  • the composition of the graphite powder is 0 to 3 parts.
  • the resin is at least one of oil-based polyurethane, polyacrylate, oil-based silicone, water-based polyacrylic emulsion, water-based polyurethane, polymethyl methacrylate, and water-based silicone.
  • the solvent is deionized water, ethanol, isopropanol, terpineol, n-butanol, DBE, N,N-dimethylformamide, N-methylpyrrolidone, ethyl acetate , At least one of isophorone, xylene, and butanone.
  • the premix further includes fumed silica powder.
  • the composition of the fumed silica powder is 0 to 3 parts.
  • the auxiliary agent is at least one of isocyanate, coupling agent, diazonium salt or organic amine.
  • the isocyanate is at least one of toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI), and dicyclohexylmethane diisocyanate (HMDI) One, wherein the mass ratio of the isocyanate to the carbon material is 0.01 to 0.3.
  • TDI toluene diisocyanate
  • IPDI isophorone diisocyanate
  • MDI diphenylmethane diisocyanate
  • HMDI dicyclohexylmethane diisocyanate
  • the coupling agent is at least one of KH-550, KH-560, KH-570, and titanate coupling agent, wherein the quality of the coupling agent and the carbon material The ratio is 0.001 to 0.1.
  • the diazonium salt is at least one of aryl diazonium tetrafluoroborate and diazonium p-nitrobenzene tetrafluoroborate, wherein the diazonium salt is combined with the carbon material
  • the mass ratio is 0.01 to 0.5.
  • the organic amine is at least one of triethanolamine, triethylenediamine, ethylenediamine, propylenediamine, and butanediamine, wherein the mass ratio of the organic amine to the carbon material is It is 0.01 to 0.5.
  • the peeling process is at least one of three-roll milling, sand milling, high-pressure homogenization, and ball milling.
  • the fineness of the graphene far-infrared additive is less than 20 microns.
  • One aspect of the present invention provides a graphene far-infrared additive, which is prepared by the method of the present invention.
  • Another aspect of the present invention provides a far-infrared slurry, the far-infrared slurry comprising the graphene far-infrared additive and far-infrared ceramic powder prepared by the method of the present invention; wherein the addition amount of the far-infrared ceramic powder It is 0-30%.
  • the addition amount of the graphene far-infrared additive is 5% to 30%.
  • Another aspect of the present invention provides a fabric including a fabric body and a far-infrared slurry prepared by the method of the present invention, and the far-infrared slurry is coated on the fabric body through a printing finishing process.
  • the present invention provides a method for grafting and modifying graphene with functional groups using surface functionalized additives in the process of exfoliated graphite to prepare graphene far-infrared with good dispersibility
  • Additives can be directly added to traditional coatings or printing pastes, and can be mixed evenly with high-speed stirring.
  • the far-infrared fabric coatings or printings produced have good far-infrared and washing resistance.
  • Figure 1 is a far-infrared test chart of graphene printed fabric with graphene far-infrared additive of Example 1 of the present invention, in which (A) is a sample of the printed fabric when not irradiated with infrared light; (B) is under infrared light irradiation A graphene printed fabric sample with the graphene far-infrared additive of Example 1 of the present invention.
  • Figure 2 is a scanning electron micrograph of the dark area of the far-infrared calico with the graphene far-infrared additive of Example 1 of the present invention.
  • Fig. 3 is a Raman spectrum of a far-infrared printed fabric added with the graphene far-infrared additive of Example 1 of the present invention.
  • One aspect of the present invention provides a method for preparing a graphene far-infrared additive, which includes the following steps: crushing expanded graphite to obtain crushed expanded graphite; premixing carbon materials, resins and additives to obtain a premix, wherein The carbon material includes the pulverized expanded graphite and carbon black powder; adding a solvent to the premix and stirring with a high-speed mixer for more than 15 minutes to obtain a uniform and non-foaming ink precursor dispersion; and The ink precursor dispersion liquid undergoes a stripping process to obtain a graphene far-infrared additive.
  • the expanded graphite (expanded graphite, EG) is a loose and porous vermicular substance obtained from natural graphite flakes through intercalation, washing with water, drying, and high temperature expansion.
  • the expandable graphite When the expandable graphite is heated to a certain temperature, due to the decomposition of the compound occluded in the interlayer lattice, the expandable graphite begins to expand. This temperature is called the initial expansion temperature. It expands completely at 1000°C and reaches the maximum volume. The expansion volume of expandable graphite can reach more than 200 times the initial volume.
  • the expanded graphite is called expanded graphite or graphite worm, which changes from the original scale shape to a very low density worm shape, forming a very good thermal insulation layer.
  • expanded graphite In addition to the excellent properties of natural graphite such as heat resistance, corrosion resistance, and self-lubrication, expanded graphite also has softness, compression resilience, adsorption, ecological environment coordination, biocompatibility, and radiation resistance that natural graphite does not have. And other characteristics. Expanded graphite can be used as a raw material for graphene production.
  • Graphene nanosheets also known as carbon nanosheets (CNFs) or carbon nanowalls (CNWs)
  • CNFs carbon nanosheets
  • CNFs carbon nanowalls
  • Graphene nanosheets also known as carbon nanosheets (CNFs) or carbon nanowalls (CNWs)
  • CNFs carbon nanosheets
  • CNFs carbon nanowalls
  • CNFs carbon nanosheets
  • CNFs carbon nanowalls
  • the D50 of the crushed expanded graphite may be 5 to 600 ⁇ m.
  • the components of the pulverized expanded graphite, carbon black powder, resin and auxiliary agent may be 2-25 parts, 0.1-4 parts, 8-40 parts and 0.1-2 parts, respectively.
  • the carbon material may also include graphite powder for premixing.
  • the composition of the graphite powder may be 0 to 3 parts.
  • the resin can be selected according to the nature of the ink, for example, it can be at least one of oil-based polyurethane, polyacrylate, oil-based silicone, water-based polyacrylic emulsion, water-based polyurethane, polymethyl methacrylate, and water-based silicone.
  • oil-based polyurethane polyacrylate
  • oil-based silicone oil-based silicone
  • water-based polyacrylic emulsion water-based polyurethane
  • polymethyl methacrylate polymethyl methacrylate
  • the solvent may be deionized water, ethanol, isopropanol, terpineol, n-butanol, DBE, N,N-dimethylformamide, N-methylpyrrolidone ethyl acetate , At least one of isophorone, xylene, and butanone.
  • the premix may also include fumed silica powder and added after the premix.
  • the composition of the fumed silica powder may be 0 to 3 parts.
  • the auxiliary agent may be at least one of isocyanate, coupling agent, diazonium salt and organic amine.
  • the isocyanate may be toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI), dicyclohexylmethane diisocyanate (HMDI) At least one, wherein the mass ratio of the isocyanate to the carbon material may be 0.01 to 0.3.
  • TDI toluene diisocyanate
  • IPDI isophorone diisocyanate
  • MDI diphenylmethane diisocyanate
  • HMDI dicyclohexylmethane diisocyanate
  • the coupling agent may be at least one of KH-550, KH-560, KH-570, and titanate coupling agent, wherein the coupling agent is combined with the carbon material
  • the mass ratio can be 0.001 to 0.1.
  • the diazonium salt may be at least one of aryldiazonium tetrafluoroborate and diazonium p-nitrobenzene tetrafluoroborate, wherein the diazonium salt and the carbon material
  • the mass ratio of can be 0.01 to 0.5.
  • the organic amine may be at least one of triethanolamine, triethylenediamine, ethylenediamine, propylenediamine, and butanediamine, wherein the quality of the organic amine and the carbon material
  • the ratio can be 0.01 to 0.5.
  • the peeling process may be at least one of three-roll milling, sand milling, high-pressure homogenization, and ball milling, but is not limited thereto.
  • the fineness of the graphene far-infrared additive should preferably be less than 20 microns.
  • One aspect of the present invention provides a graphene far-infrared additive, which is prepared by the method of the present invention.
  • Another aspect of the present invention provides a far-infrared slurry, the far-infrared slurry comprising the graphene far-infrared additive and far-infrared ceramic powder prepared by the method of the present invention; wherein the addition amount of the far-infrared ceramic powder It is 0-30%.
  • the addition amount of the graphene far-infrared additive is 5% to 30%.
  • Another aspect of the present invention provides a fabric including a fabric body and a far-infrared slurry prepared by the method of the present invention, and the far-infrared slurry is coated on the fabric body through a printing finishing process.
  • the expanded graphite is mechanically pulverized to a D50 of 600 ⁇ m; 2 parts of the pulverized expanded graphite, 0.1 part of carbon black powder, 1.5 parts of graphite powder, 1 part of fumed silica powder, 20 parts of water-based silica gel Parts, KH-5500.3 parts and 0.5 parts of diphenylmethane diisocyanate are mixed to obtain a premix; deionized water, ethanol and isopropanol are formed into a mixed solvent at a mass ratio of 8:1:1; the mixed solvent Add the premix and stir with a high-speed mixer for more than 15 minutes to obtain a uniform and non-foaming precursor dispersion; sand the precursor dispersion to a fineness of less than 20 ⁇ m to obtain a uniformly dispersed graphene Infrared additives.
  • the obtained graphene far-infrared additive is added to a coating or printing paste at an addition amount of 30% for knife coating or printing.
  • the expanded graphite is mechanically pulverized to a D50 of 15 ⁇ m; 10 parts of the pulverized expanded graphite, 2 parts of carbon black powder, 1 part of graphite powder, 2 parts of fumed silica powder, polyacrylate 20 parts, 1 part of triethanolamine and 0.01 part of p-nitrobenzene tetrafluoroborate diazonium salt are mixed to obtain a premix; the methyl ethyl ketone and DBE are formed into a mixed solvent at a mass ratio of 1:1; the mixed solvent is added to the The premix is stirred with a high-speed mixer for more than 15 minutes to obtain a uniform and non-foaming precursor dispersion; the precursor dispersion is ground with three rolls to a fineness of less than 20 ⁇ m to obtain a uniformly dispersed graphene far infrared additive.
  • the obtained graphene far-infrared additive is added to a coating or printing paste at an addition amount of 10% for knife coating or printing.
  • the expanded graphite is mechanically pulverized to a D50 of 100 ⁇ m; 25 parts of the pulverized expanded graphite, 0.5 part of carbon black powder, 0.5 part of fumed silica powder, 15 parts of oily polyurethane, and butyl titanate Mix 0.5 parts of coupling agent with 1.5 parts of diphenylmethane diisocyanate to obtain a premix; mix N,N-dimethylformamide, N-methylpyrrolidone ethyl acetate and isophorone according to 1:2:
  • the mixed solvent is composed of a mass ratio of 1; the mixed solvent is added to the premix, and stirred with a high-speed mixer for more than 15 minutes to obtain a uniform and non-foaming precursor dispersion; the precursor dispersion is subjected to high pressure homogenization To the fineness of less than 20 ⁇ m, a uniformly dispersed graphene far-infrared additive can be obtained.
  • the obtained graphene far-infrared additive is added to a coating or printing paste at an addition amount of 5% for knife coating or printing.
  • the expanded graphite is mechanically pulverized to a D50 of 350 ⁇ m; 15 parts of the pulverized expanded graphite, 1.5 parts of carbon black powder, 3 parts of graphite powder, 40 parts of water-based alkyd resin and 0.5 parts of ethylenediamine Mix to obtain a premix; combine deionized water and isopropanol to form a mixed solvent at a mass ratio of 4:1; add the mixed solvent to the premix and stir for more than 15 minutes with a high-speed mixer to obtain a uniform The precursor dispersion of the foam; ball milling the precursor dispersion to a fineness of less than 20 ⁇ m to obtain a uniformly dispersed graphene far-infrared additive.
  • the obtained graphene far-infrared additive is added to a coating or printing paste at an addition amount of 20% for knife coating or printing.
  • the expanded graphite is mechanically pulverized to a D50 of 5 ⁇ m; 6 parts of the pulverized expanded graphite, 4 parts of carbon black powder, 0.1 part of fumed silica powder, 19 parts of oily polyurethane, and polymethacrylic acid 16 parts of methyl ester and 0.06 parts of diphenylmethane diisocyanate are mixed to obtain a premix; xylene, methyl ethyl ketone and isophorone are formed into a mixed solvent at a mass ratio of 6:1:1; the mixed solvent is added
  • the premix is stirred with a high-speed mixer for more than 15 minutes to obtain a uniform and non-foaming precursor dispersion; the precursor dispersion is subjected to sand milling and high pressure homogenization to a fineness of less than 20 ⁇ m to obtain a uniform dispersion Graphene far infrared additive.
  • the obtained graphene far-infrared additive is added to the coating or printing paste at an added amount of 16% for knife coating or printing.
  • the expanded graphite is mechanically pulverized to a D50 of 40 ⁇ m; 22 parts of the pulverized expanded graphite, 0.3 part of carbon black powder, 2 parts of graphite powder, 0.1 part of fumed silica powder, 15 parts of oily polyurethane Parts, 16 parts of polymethyl methacrylate and 1.2 parts of diphenylmethane diisocyanate are mixed to obtain a premix; DBE, isophorone and methyl ethyl ketone are formed into a mixed solvent at a mass ratio of 1:6:1; The mixed solvent is added to the premix and stirred with a high-speed mixer for more than 15 minutes to obtain a uniform and non-foaming precursor dispersion; the precursor dispersion is subjected to three-roll milling combined with ball milling to a fineness of less than 20 ⁇ m, A uniformly dispersed graphene far-infrared additive is obtained.
  • the obtained graphene far-infrared additive is added to the coating or printing paste at an addition amount of 9% for knife coating or printing.
  • the expanded graphite is mechanically pulverized to a D50 of 300 ⁇ m; 10 parts of the pulverized expanded graphite, 1 part of carbon black powder, 1 part of graphite powder, 0.5 part of fumed silica powder, 10 parts of water-based polyurethane 1 part, KH-5500.1 part and 0.3 part diphenylmethane diisocyanate are mixed to obtain a premix; deionized water, ethanol and isopropanol are formed into a mixed solvent at a mass ratio of 10:2:1; the mixed solvent Add the premix and stir with a high-speed mixer for more than 15 minutes to obtain a uniform and non-foaming precursor dispersion; sand the precursor dispersion to a fineness of less than 20 ⁇ m to obtain a uniformly dispersed graphene Infrared additives.
  • the obtained graphene far-infrared additive is added at 10%, and the far-infrared ceramic powder is added at 30% to the coating or printing paste for knife coating or printing.
  • the expanded graphite is mechanically pulverized to a D50 of 450 ⁇ m; 8 parts of the pulverized expanded graphite, 1.5 parts of carbon black powder, 0.5 parts of fumed silica powder, 18 parts of polyacrylate, 0.5 parts of triethanolamine Parts and 0.03 parts of p-nitrobenzene tetrafluoroborate diazonium salt to obtain a premix; mix methyl ethyl ketone and DBE at a mass ratio of 1:2 to form a mixed solvent; add the mixed solvent to the premix to Stir at a high-speed mixer for more than 15 minutes to obtain a uniform and non-foaming precursor dispersion; grind the precursor dispersion with three rolls to a fineness of less than 20 ⁇ m to obtain a uniformly dispersed graphene far-infrared additive.
  • the obtained graphene far-infrared additive is added at 10%, and the far-infrared ceramic powder is added at 10% to the coating or printing paste for scraping or printing.
  • Figure 1 is a far-infrared test chart of graphene printed fabric with graphene far-infrared additive of Example 1 of the present invention, in which (A) is a sample of the printed fabric when not irradiated with infrared light; (B) is under infrared light irradiation A graphene printed fabric sample with the graphene far-infrared additive of Example 1 of the present invention. Under infrared light irradiation, it can be clearly observed that the temperature of the printed area is higher than that of the non-printed area.
  • Fig. 2 The scanning electron microscope observes the microscopic morphology of the dark area of the far-infrared printed fabric added with the graphene far-infrared additive of Example 1 of the present invention, and a two-dimensional sheet structure is found.
  • the obtained graphene far-infrared additive is added to the coating or printing paste at a 14% addition amount for knife coating or printing.
  • the uncomminuted expanded graphite in this example has poor uniformity in the ink precursor dispersion, and it takes a long time to perform the next three-roll grinding.
  • the resulting graphene far-infrared additive product has a rough texture and can be used for printing and sizing. Scratchability is not good.
  • Far-infrared nano ceramic powder is dispersed in polyurethane resin at high speed.
  • the far-infrared nano-ceramic powder is added into the coating or printing paste at 30%.
  • the far-infrared performance of the coated fabric containing the graphene far-infrared additive provided by the present invention and the commercially available ceramic powder coated fabric is tested.
  • the far-infrared performance test of the far-infrared coated fabric is divided into far-infrared emissivity and In far-infrared radiation heating test, at least 3 samples of emissivity and temperature rise are cut from each sample, and the size of the sample is not less than 60mm in diameter. The sample is flat and representative when sampling.
  • I 0 Far-infrared radiation intensity of the standard blackbody panel, in watts per square meter (W/m 2 );
  • I The far-infrared radiation intensity of the test, the unit is watts per square meter (W/m 2 ).
  • ⁇ T The temperature rise of the sample within 30 seconds of radiation, in °C;
  • T The initial surface temperature of the sample, in °C;
  • T 0 The surface temperature of the test at 30 seconds of radiation, in °C.
  • Table 1 lists the test results of the graphene/ceramic powder far-infrared printing obtained in 11 examples, in which the far-infrared emissivity and far-infrared radiation temperature rise test methods are as described above (GB/T 30127-2013). Comparing the results of Examples 1 to 8 and 10 to 11, it can be seen that the far-infrared printing with the graphene far-infrared additive of the present invention has far-infrared emissivity, far-infrared radiation temperature rise and heating rate far higher than those on the market. Infrared ceramic coating.
  • Table 2 lists the graphene/ceramic powder far-infrared printed fabrics obtained in 11 examples after washing treatment (GB/T30127-2013), 4G program washing 5 times (GB/T 8629-2017), hanging to dry, multiple times
  • the test results of adding detergent each time during washing, the far-infrared emissivity and far-infrared radiation temperature rise test methods refer to GB/T 30127-2013.
  • the graphene far-infrared printed fabric that has not been pre-pulverized has poor water washing resistance, and the performance difference before and after washing is greater.
  • the far-infrared printed cloth using the graphene far-infrared additive of the present invention has stable far-infrared performance before and after washing, while the far-infrared performance of the printed cloth using ceramic powder has a certain degree of attenuation before and after water-based, mainly Because the solid content of the ceramic powder in the ceramic powder coating is too high, the physical properties of the polymer material are reduced, and the washing resistance is reduced.
  • the particle size of expanded graphite is too large.
  • expanded graphite has ultra-fast and ultra-high adsorption capacity for solvents, and has poor peelability after adsorbing solvents.
  • the yield of graphene is low, and it is easy to stack and lose
  • the advantages of the two-dimensional material; the second is that after the large particle size expanded graphite adsorbs the solvent, it is difficult to enter the next step of the peeling equipment.
  • the graphene far-infrared additive of the present invention has the following advantages:
  • the present invention uses graphene surface functionalization aids such as isocyanates, silane coupling agents, organic amines, diazonium salts, etc., and the graphene can be grafted with functional groups during the process of peeling off expanded graphite , Greatly reduce the van der Waals force between molecules, and improve the compatibility between carbon materials and polymers, so the graphene far-infrared additive produced has good dispersion and stable uniformity;
  • the method of the present invention pre-pulverizes expanded graphite to control its particle size, and the graphene obtained by stripping can form a continuous bridge network, which is also the reason for its excellent far-infrared radiation temperature rise and far-infrared emissivity;
  • the far-infrared slurry added with the graphene far-infrared additive of the present invention has excellent far-infrared emissivity, far-infrared radiation temperature rise and heating rate;
  • the graphene far-infrared additive of the present invention requires lower solid content in the printing paste, lower overall cost, good washing resistance, and its far-infrared The performance is better than ceramic powder materials, and the heating rate is even higher than that of ceramic powder materials.
  • the composite material has good far-infrared performance: Compared with a single infrared emitting source material, the graphene far-infrared additive of the present invention adopts composite components, because the number of components increases, the interaction between atoms of different components affects the degree of symmetry of the structure. Defects in the structure increase, and the vibration and rotation of atoms or molecules are more complex and diverse, which stimulates stronger infrared radiation, and the radiation ability is much higher than that of a single substance.

Abstract

本发明提供一种制备石墨烯远红外添加剂的方法,包括将膨胀石墨粉碎,得到粉碎的膨胀石墨;将所述粉碎的膨胀石墨和炭黑粉体、树脂和助剂进行预混,得到预混物;加入溶剂于所述预混物中,并搅拌,得到均匀无起泡的油墨前驱体分散液;以及将所述油墨前驱体分散液经过剥离工艺,得到石墨烯远红外添加剂。所制得的石墨烯远红外添加剂分散性良好,可直接添加在涂层或印花浆料,且其远红外性能佳。

Description

一种石墨烯远红外添加剂的制备方法以及远红外浆料 技术领域
本发明涉及一种石墨烯远红外添加剂的制备方法,尤其关于一种分散良好、远红外性能稳定的石墨烯远红外添加剂的制备方法。
背景技术
近几十年随着现代纺织技术的发展,服装原料也开始向差别化、功能化和高性能发展,具有高性能的新材料将不断出现。而在保暖领域,具有远红外涂层或印花的纺织面料都已开始逐渐推向市场。
远红外涂料可以发射出波长在4μm到16μm范围内的远红外线,目前,经常用于产生远红外线的材料和产品可分为添加碳材料、电气石、远红外陶瓷、玉石、金属氧化物及碳化硅几类。其中,陶瓷材料通常为白色,易于调色,是现阶段应用最广泛的远红外涂料,但天然陶瓷材料中通常含有放射性物质,可能对人体造成伤害。因此,专利CN 102010185 A中公开了一种耐高温白色纳米远红外陶瓷粉及其制备方法,其主要远红外陶瓷粉选自由纳米氧化铝、纳米氧化镁、纳米氧化锆、纳米氧化锌、纳米氧化钛、纳米稀土氧化物和纳米贵金属氧化物组成。原料为相应的非金属硝酸盐或者卤盐,乳化分散后进行脱水干燥,最后高温煅烧制得所需的远红外陶瓷粉体,虽然有效避免天然陶瓷材料中通常可能含有的放射性物质,但其制备工艺复杂,能耗高,成本高。
而自普通石墨材料中剥离制备的石墨烯,是由碳原子组成的只有一层原子厚度的二维晶体。其不仅具有碳材料本征特性(如发射远红外光波、耐酸碱性),又兼备韧性、可弯曲的特点,以及优异的导热性和极高的物理强度。应用于远红外浆料时,石墨烯材料的用量少于陶瓷粉材料(添加量25%以上)相比,且升温较快。此外,石墨烯材料的成分单一,不含其他放射性物质。
如果将石墨烯材料直接混合加入传统涂层或印花浆料中,会通过自发的团聚来降低自身的能量,导致涂层或印花均匀性不佳。例如,专利CN109457499A中将石墨烯粉体与粘结剂混合制备一种石墨烯涂层面料,但其远红外发射率仅为0.91,远红外辐照温升在1.6℃。这是由于石墨烯材料具有极高的比表面积,在无稀释剂与分散剂条件下与粘结剂在1:4至1:6的比例分散,其产物的分散性较差,并没有形成完整的连续网络,因而导致其远红外性能较差, 且容易形成块状堆积,导致材料物理强度急剧下降,从而导致在水洗后远红外性能的下降。
专利CN108250844A中直接将石墨烯粉体和石墨烯纳米片物理分散,再和树脂混合液分散,仍然会面临石墨烯粉体在油墨成品中的分散和稳定的问题。
专利CN108530996A则是将膨胀石墨和其他粉体、树脂、溶剂、助剂,分散在一起,然后进行高压均质或球磨或砂磨的步骤,其中膨胀石墨在高压均质或球磨或砂磨的过程中会剥离成石墨烯和石墨微纳米片,而膨胀石墨本身是不能分散和存在于油墨或者浆料或涂料这样的体系的,且没有考虑原料尺寸因素对形成连续致密的桥联网络的影响。
由上述可知,国内石墨烯粉体的合成技术都已趋于成熟,但目前石墨烯的分散问题是制约其下游应用的关键。业界仍需一种分散性佳、远红外发射率高、升温快速的石墨烯远红外添加剂,可直接在传统涂层或印花浆料添加,只需要高速搅拌便可混合均匀,且生产的远红外织物涂层或印花性能好,均匀性高。其耐水洗(GB/T 30127-2013),远红外辐照温升和远红外发射率(GB/T 30127-2013)均能满足国标要求。
发明内容
本发明一方面提供一种制备石墨烯远红外添加剂的方法,包括以下步骤:将膨胀石墨粉碎,得到粉碎的膨胀石墨;将碳材料、树脂和助剂进行预混,得到预混物,其中所述碳材料包括所述粉碎的膨胀石墨和炭黑粉体;加入溶剂于所述预混物中,并搅拌,得到均匀无起泡的油墨前驱体分散液;以及将所述油墨前驱体分散液经过剥离工艺,得到石墨烯远红外添加剂。
根据本发明的实施例,所述粉碎的膨胀石墨的D50为5至600μm。
根据本发明的实施例,所述粉碎的膨胀石墨、炭黑粉体、树脂和助剂的组分分别为2至25份、0.1至4份、8至40份和0.1至2份。
根据本发明的实施例,所述碳材料中还包括石墨粉体。
根据本发明的实施例,所述石墨粉体的组分为0至3份。
根据本发明的实施例,所述树脂为油性聚氨酯、聚丙烯酸酯、油性硅胶、水性聚丙烯酸乳液、水性聚氨酯、聚甲基丙烯酸甲酯、水性硅胶中的至少一种。
根据本发明的实施例,所述溶剂为去离子水、乙醇、异丙醇、松油醇、正丁醇、DBE、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、乙酸乙酯、异氟尔酮、二甲苯、丁酮中的至少一种。
根据本发明的实施例,所述预混物中还包括气相二氧化硅粉体。
根据本发明的实施例,所述气相二氧化硅粉体的组分为0至3份。
根据本发明的实施例,所述助剂为异氰酸酯、偶联剂、重氮盐或有机胺中的至少一种。
根据本发明的实施例,所述异氰酸酯为甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、二苯基甲烷二异氰酸酯(MDI)、二环己基甲烷二异氰酸酯(HMDI)中的至少一种,其中所述异氰酸酯与所述碳材料的质量比为0.01至0.3。
根据本发明的实施例,所述偶联剂为KH-550、KH-560、KH-570、钛酸酯偶联剂中的至少一种,其中所述偶联剂与所述碳材料的质量比为0.001至0.1。
根据本发明的实施例,所述重氮盐为四氟硼酸芳基重氮盐和对硝基苯四氟硼酸重氮盐中的至少一种,其中所述重氮盐与所述碳材料的质量比为0.01至0.5。
根据本发明的实施例,所述有机胺为三乙醇胺、三乙烯二胺、乙二胺、丙二胺和丁二胺中的至少一种,其中所述有机胺与所述碳材料的质量比为0.01至0.5。
根据本发明的实施例,所述剥离工艺为三辊研磨、砂磨、高压均质、球磨中的至少一种。
根据本发明的实施例,所述石墨烯远红外添加剂的细度低于20微米。
本发明一方面提供一种石墨烯远红外添加剂,所述石墨烯远红外添加剂是利用本发明所述的方法所制备。
本发明另一方面提供一种远红外浆料,所述远红外浆料包括以本发明所述的方法所制备的石墨烯远红外添加剂以及远红外陶瓷粉;其中,远红外陶瓷粉的添加量为0~30%。
根据本发明的实施例,所述石墨烯远红外添加剂的添加量为5%至30%。
本发明另一方面提供一种面料,包括面料本体和以本发明所述的方法所制备的远红外浆料,所述远红外浆料通过印花整理工艺涂覆在所述面料本体上。
相较于先前技术,本发明提供一种利用表面功能化的助剂在膨胀石墨被剥离的过程中对石墨烯进行功能团接枝改性的方法,制备出具有良好分散性的石墨烯远红外添加剂,可直接在传统涂层或印花浆料添加,只需要高速搅拌便可混合均匀,且生产的远红外织物涂层或印花的远红外和耐水洗性能好。
附图说明
图1为添加本发明实施例1的石墨烯远红外添加剂的石墨烯印花布的远红外测试图,其中(A)为未照射红外灯时的印花布样品;(B)为红外灯照射下的添加本发明实施例1的石墨烯远红外添加剂的石墨烯印花布样品。
图2为添加本发明实施例1的石墨烯远红外添加剂的远红外印花布深色区域的扫描式电 子显微图。
图3为添加本发明实施例1的石墨烯远红外添加剂的远红外印花布的拉曼光谱谱图。
具体实施方式
以下藉由特定的具体实施例说明本发明的实施方式,熟悉此技艺的人士可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技艺的人士的了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如「上」、「内」、「外」、「底」、「一」、「中」等用语,也仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当也视为本发明可实施的范畴,合先叙明。
本发明一方面提供一种制备石墨烯远红外添加剂的方法,包括以下步骤:将膨胀石墨粉碎,得到粉碎的膨胀石墨;将碳材料、树脂和助剂进行预混,得到预混物,其中所述碳材料包括所述粉碎的膨胀石墨和炭黑粉体;加入溶剂于所述预混物中,用高速搅拌机搅拌15分钟以上,得到均匀无起泡的油墨前驱体分散液;以及将所述油墨前驱体分散液经过剥离工艺,得到石墨烯远红外添加剂。
根据本发明,所述的膨胀石墨(expanded graphite,EG)是由天然石墨鳞片经插层、水洗、干燥、经高温膨化得到的一种疏松多孔的蠕虫状物质。
当可膨胀石墨受热到一定温度时,由于吸留在层间点阵中化合物分解,可膨胀石墨便开始膨胀,该温度称为起始膨胀温度,在1000℃时膨胀完全,达到最大体积。可膨胀石墨的膨胀体积可以达到初始时的200倍以上。膨胀后的石墨即称为膨胀石墨或石墨蠕虫,由原鳞片状变成密度很低的蠕虫状,形成了一个非常好的绝热层。膨胀石墨除了具备天然石墨本身的耐冷热、耐腐蚀、自润滑等优良性能以外,还具有天然石墨所没有的柔软、压缩回弹性、吸附性、生态环境协调性、生物兼容性、耐辐射性等特性。膨胀石墨可以作为石墨烯的生产原料。
而石墨烯纳米片(Graphene nanosheets,GNSs或Graphene Nano Flakes,GNFs),也称为碳纳米片(Carbon nanoflakes,CNFs)或碳纳米壁(Carbon nanowalls,CNWs),厚度为纳米尺度的 二维石墨纳米材料,其极端情况是单层石墨烯。通常说的是10至20层称之为石墨烯微纳米片。
根据本发明的实施例,所述粉碎的膨胀石墨的D50可为5至600μm。
根据本发明的实施例,所述粉碎的膨胀石墨、炭黑粉体、树脂和助剂的组分分别可为2至25份、0.1至4份、8至40份和0.1至2份。
根据本发明的实施例,所述碳材料中还可包括石墨粉体一起进行预混。
根据本发明的实施例,所述石墨粉体的组分可为0至3份。
根据本发明的实施例,所述树脂可依油墨性质挑选,例如可为油性聚氨酯、聚丙烯酸酯、油性硅胶、水性聚丙烯酸乳液、水性聚氨酯、聚甲基丙烯酸甲酯、水性硅胶中的至少一种。
根据本发明的实施例,所述溶剂可为去离子水,乙醇、异丙醇、松油醇、正丁醇、DBE、N,N-二甲基甲酰胺、N-甲基吡咯烷酮乙酸乙酯、异氟尔酮、二甲苯、丁酮中的至少一种。
根据本发明的实施例,所述预混物中还可包括气相二氧化硅粉体在预混后加入。
根据本发明的实施例,所述气相二氧化硅粉体的组分可为0至3份。
根据本发明的实施例,所述助剂可为异氰酸酯、偶联剂、重氮盐和有机胺中的至少一种。
根据本发明的实施例,所述异氰酸酯可为甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、二苯基甲烷二异氰酸酯(MDI)、二环己基甲烷二异氰酸酯(HMDI)中的至少一种,其中所述异氰酸酯与所述碳材料的质量比可为0.01至0.3。
根据本发明的实施例,所述偶联剂可为KH-550、KH-560、KH-570、钛酸酯偶联剂中的至少一种,其中所述偶联剂与所述碳材料的质量比可为0.001至0.1。
根据本发明的实施例,所述重氮盐可为四氟硼酸芳基重氮盐和对硝基苯四氟硼酸重氮盐中的至少一种,其中所述重氮盐与所述碳材料的质量比可为0.01至0.5。
根据本发明的实施例,所述有机胺可为三乙醇胺、三乙烯二胺、乙二胺、丙二胺、丁二胺中的至少一种,其中所述有机胺与所述碳材料的质量比可为0.01至0.5。
根据本发明的实施例,所述剥离工艺可为三辊研磨、砂磨、高压均质、球磨中的至少一种,但不限于此。
根据本发明的实施例,所述石墨烯远红外添加剂的细度较佳应低于20微米。
本发明一方面提供一种石墨烯远红外添加剂,所述石墨烯远红外添加剂是利用本发明所述的方法所制备。
本发明另一方面提供一种远红外浆料,所述远红外浆料包括以本发明所述的方法所制备的石墨烯远红外添加剂以及远红外陶瓷粉;其中,远红外陶瓷粉的添加量为0~30%。
根据本发明的实施例,所述石墨烯远红外添加剂的添加量为5%至30%。
本发明另一方面提供一种面料,包括面料本体和以本发明所述的方法所制备的远红外浆料,所述远红外浆料通过印花整理工艺涂覆在所述面料本体上。
实施例1
根据本发明,将膨胀石墨通过机械粉碎至D50为600μm;将所述粉碎的膨胀石墨2份、炭黑粉体0.1份、石墨粉体1.5份、气相二氧化硅粉体1份、水性硅胶20份、KH-5500.3份和二苯基甲烷二异氰酸酯0.5份混合,得预混物;将去离子水、乙醇和异丙醇按8:1:1的质量比组成混合溶剂;将所述混合溶剂加入所述预混物,以高速搅拌机搅拌15分钟以上,得到均匀无起泡的前驱体分散液;将所述前驱体分散液以砂磨至细度低于20μm,得到均匀分散的石墨烯远红外添加剂。
将得到的石墨烯远红外添加剂以30%添加量,加入涂层或印花浆料,用于刮涂或印刷。
实施例2
根据本发明,将膨胀石墨通过机械粉碎至D50为15μm;将所述粉碎的膨胀石墨10份、炭黑粉体2份、石墨粉体1份、气相二氧化硅粉体2份、聚丙烯酸脂20份、三乙醇胺1份和对硝基苯四氟硼酸重氮盐0.01份混合,得预混物;将丁酮和DBE按1:1的质量比组成混合溶剂;将所述混合溶剂加入所述预混物,以高速搅拌机搅拌15分钟以上,得到均匀无起泡的前驱体分散液;将所述前驱体分散液以三辊研磨至细度低于20μm,得到均匀分散的石墨烯远红外添加剂。
将得到的石墨烯远红外添加剂以10%添加量,加入涂层或印花浆料,用于刮涂或印刷。
实施例3
根据本发明,将膨胀石墨通过机械粉碎至D50为100μm;将所述粉碎的膨胀石墨25份、炭黑粉体0.5份、气相二氧化硅粉体0.5份、油性聚氨酯15份、钛酸丁酯偶联剂0.5份与二苯基甲烷二异氰酸酯1.5份混合,得预混物;将N,N-二甲基甲酰胺、N-甲基吡咯烷酮乙酸乙酯和异氟尔酮按1:2:1的质量比组成混合溶剂;将所述混合溶剂加入所述预混物,以高速搅拌机搅拌15分钟以上,得到均匀无起泡的前驱体分散液;将所述前驱体分散液经过高压均质至细度低于20μm,得到均匀分散的石墨烯远红外添加剂。
将得到的石墨烯远红外添加剂以5%添加量,加入涂层或印花浆料,用于刮涂或印刷。
实施例4
根据本发明,将膨胀石墨通过机械粉碎至D50为350μm;将所述粉碎的膨胀石墨15份、炭黑粉体1.5份、石墨粉体3份、水性醇酸树脂40份与乙二胺0.5份混合,得预混物;将去离子水和异丙醇按4:1的质量比组成混合溶剂;将所述混合溶剂加入所述预混物,以高速搅拌机搅拌15分钟以上,得到均匀无起泡的前驱体分散液;将所述前驱体分散液经过球磨至细度低于20μm,得到均匀分散的石墨烯远红外添加剂。
将得到的石墨烯远红外添加剂以20%添加量,加入涂层或印花浆料,用于刮涂或印刷。
实施例5
根据本发明,将膨胀石墨通过机械粉碎至D50为5μm;将所述粉碎的膨胀石墨6份、炭黑粉体4份、气相二氧化硅粉体0.1份、油性聚氨酯19份、聚甲基丙烯酸甲酯16份与二苯基甲烷二异氰酸酯0.06份混合,得预混物;将二甲苯、丁酮和异氟尔酮按6:1:1的质量比组成混合溶剂;将所述混合溶剂加入所述预混物,以高速搅拌机搅拌15分钟以上,得到均匀无起泡的前驱体分散液;将所述前驱体分散液经过砂磨结合高压均质至细度低于20μm,得到均匀分散的石墨烯远红外添加剂。
将得到的石墨烯远红外添加剂以16%添加量,加入涂层或印花浆料,用于刮涂或印刷。
实施例6
根据本发明,将膨胀石墨通过机械粉碎至D50为40μm;将所述粉碎的膨胀石墨22份,炭黑粉体0.3份,石墨粉体2份,气相二氧化硅粉体0.1份、油性聚氨酯15份,聚甲基丙烯酸甲酯16份与二苯基甲烷二异氰酸酯1.2份混合,得预混物;将DBE、异氟尔酮和丁酮按1:6:1的质量比组成混合溶剂;将所述混合溶剂加入所述预混物,以高速搅拌机搅拌15分钟以上,得到均匀无起泡的前驱体分散液;将所述前驱体分散液经过三辊研磨结合球磨至细度低于20μm,得到均匀分散的石墨烯远红外添加剂。
将得到的石墨烯远红外添加剂以9%添加量,加入涂层或印花浆料,用于刮涂或印刷。
实施例7
根据本发明,将膨胀石墨通过机械粉碎至D50为300μm;将所述粉碎的膨胀石墨10份、炭黑粉体1份、石墨粉体1份、气相二氧化硅粉体0.5份、水性聚氨酯10份、KH-5500.1份和二苯基甲烷二异氰酸酯0.3份混合,得预混物;将去离子水、乙醇和异丙醇按10:2:1的质 量比组成混合溶剂;将所述混合溶剂加入所述预混物,以高速搅拌机搅拌15分钟以上,得到均匀无起泡的前驱体分散液;将所述前驱体分散液以砂磨至细度低于20μm,得到均匀分散的石墨烯远红外添加剂。
将得到的石墨烯远红外添加剂以10%添加量,远红外陶瓷粉以30%的添加量加入涂层或印花浆料,用于刮涂或印刷。
实施例8
根据本发明,将膨胀石墨通过机械粉碎至D50为450μm;将所述粉碎的膨胀石墨8份、炭黑粉体1.5份、气相二氧化硅粉体0.5份、聚丙烯酸脂18份、三乙醇胺0.5份和对硝基苯四氟硼酸重氮盐0.03份混合,得预混物;将丁酮和DBE按1:2的质量比组成混合溶剂;将所述混合溶剂加入所述预混物,以高速搅拌机搅拌15分钟以上,得到均匀无起泡的前驱体分散液;将所述前驱体分散液以三辊研磨至细度低于20μm,得到均匀分散的石墨烯远红外添加剂。
将得到的石墨烯远红外添加剂以10%添加量,远红外陶瓷粉以10%的添加量加入涂层或印花浆料,用于刮涂或印刷。
图1为添加本发明实施例1的石墨烯远红外添加剂的石墨烯印花布的远红外测试图,其中(A)为未照射红外灯时的印花布样品;(B)为红外灯照射下的添加本发明实施例1的石墨烯远红外添加剂的石墨烯印花布样品。在红外灯照射下,可明显观察到印花区域温度高于无印花区域。
图2扫描式电子显微镜对添加本发明实施例1的石墨烯远红外添加剂的远红外印花布深色区域进行微观形貌观察,发现二维片状结构。
图3添加本发明实施例1的石墨烯远红外添加剂的远红外印花布的拉曼光谱谱图,可看出1607cm -1处的峰为G带,是由碳环或者长链中所有sp 2原子对的拉伸运动产生,证明添加本发明实施例的石墨烯远红外添加剂的远红外印花布中包括含有共轭C=C键的碳材料,可推测其中含有未堆积的石墨烯。
实施例9(对比例1)
将未粉碎的膨胀石墨12份,炭黑粉体0.5份,气相二氧化硅粉体0.1份、油性硅胶12份,聚甲基丙烯酸甲酯11份与二苯基甲烷二异氰酸酯0.18份混合,得预混物;将DBE和异氟尔 酮按1:1的质量比组成混合溶剂;将所述混合溶剂加入所述预混物,以高速搅拌机搅拌15分钟以上,得到均匀无起泡的前驱体分散液;将所述前驱体分散液经过三辊研磨结合球磨至细度低于20μm,得到均匀的石墨烯远红外添加剂。
将得到的石墨烯远红外添加剂以14%添加量,加入涂层或印花浆料,用于刮涂或印刷。
本实施例中未粉碎的膨胀石墨,得到的油墨前驱体分散液均一性差,且进行下一步的三辊研磨时,需要时间久,得到的石墨烯远红外添加剂产品质感粗糙,在印花上浆时可刮涂性不好。
实施例10(对比例2)
远红外纳米陶瓷粉通过高速分散在聚氨酯树脂中。远红外纳米陶瓷粉以30%添加量,加入涂层或印花浆料。
实施例11(对比例3)
市售远红外陶瓷内衬布。
远红外性能进行测试(GB/T 30127-2013)
对包含本发明所提供的石墨烯远红外添加剂的涂层面料及市售现有陶瓷粉涂层面料进行远红外性能进行测试,远红外涂层面料的远红外性能测试分为远红外发射率和远红外辐照升温测试,每个样品上剪取发射率和温升试样各至少3个,试样尺寸不小于直径60mm。取样时试样平整并具有代表性。
(1)远红外发射率的测定方法为:
1.将试验热板温升至34℃;
2.将标准黑体板放置在试验热板上,待测试稳定后记录标准黑体远红外辐射强度I0;
3.将调湿后的试验放置在试验热板上,待测定值稳定后测试试验远红外强度I;
4.根据测得标准黑体板和试样的远红外辐射强度,按照下式(1)计算试样的的远红外发射率,并计算所有试样温升的平均值作为实验结果,修约至0.01。
η=I/I 0----------------------------------------------式(1)
η:试验远红外发射率,无量纲;
I 0:标准黑体板的远红外辐射强度,单位为瓦每平方米(W/m 2);
I:试验的远红外辐射强度,单位为瓦每平方米(W/m 2)。
(2)远红外辐照温升的测定方法为:
1.调节测样架与辐射源的距离,使试样表面至辐射源距离为500mm;
2.将调湿后的试样待测面朝向红外辐射源夹在试样架中,将测温仪传感器触点固定在试验受辐射区域中心位置;
3.记录试样表面初始中心温度T 0
4.开启远红外辐射源,记录试样辐照30秒时的表面温度T;
5.根据测试结果,按照下式(2)计算计算样品表面的温升,并计算所有试样温升的平均值作为实验结果,修约至0.1℃。
ΔT=T-T 0----------------------------------------------式(2)
ΔT:试样在辐射30秒内的温升,单位为℃;
T:试样初始表面温度,单位为℃;
T 0:试验在辐射30秒时的表面温度,单位为℃。
表1列出了11个实施例所得石墨烯/陶瓷粉远红外印花的测试结果,其中远红外发射率和远红外辐照温升测试方法如上述(GB/T 30127-2013)。实施例1至8与10至11结果对比,可看出添加本发明石墨烯远红外添加剂的远红外印花在远红外发射率、远红外辐照温升和升温速率都远高于市售的远红外陶瓷涂层。实施例1至8与实施例9对比,可看出添加本发明石墨烯远红外添加剂的远红外印花在远红外发射率、远红外辐照温升和升温速率都高于实施例9中的石墨烯远红外印花涂层。对比实施例1至6与实施例7和8,可看出添加远红外陶瓷粉对远红外发射率、远红外辐照温升和升温速率没有显著变化,但赋予了印花新的表观效果。
表1 实施例1至11所得石墨烯/陶瓷粉远红外印花布在洗涤处理前的测试结果
Figure PCTCN2019124017-appb-000001
表2列出了11个实施例所得石墨烯/陶瓷粉远红外印花布经过洗涤处理(GB/T30127-2013),4G程序洗涤5次(GB/T 8629-2017),悬挂晾干,多次洗涤时每次均加洗涤剂的测试结果,其中远红外发射率和远红外辐照温升测试方法参考GB/T 30127-2013。实施例9和实施例1至8相比,未经过预粉碎的石墨烯远红外印花布耐水洗性较差,水洗前后性能差别较大。
表2 实施例1至11所得石墨烯/陶瓷粉远红外印花布经过洗涤处理后的测试结果
Figure PCTCN2019124017-appb-000002
比较表1和表2发现使用本发明石墨烯远红外添加剂的远红外印花布在水洗前后远红外性能稳定,而使用陶瓷粉的印花布在水性前后远红外性能都有一定程度的衰减,主要是因为陶瓷粉涂层中陶瓷粉的固含量过高导致高分子材料物理性能降低,耐水洗性能下降。
由以上实施例可以理解,膨胀石墨的粒径太大,一则是膨胀石墨对溶剂有超快、超高的吸附力,吸附溶剂后可剥离性差,得到石墨烯的产量少,易堆叠而丧失了二维材料的优势;二则大粒径的膨胀石墨吸附溶剂后,进入下一步的剥离设备较困难。
然而当膨胀石墨粉碎至低于5μm时,其远红外性能反倒变差。这是由于膨胀石墨粉碎尺 寸过小会导致材料与剥离介质接触可能性下降,影响剥离效果,膨胀石墨剥离转化率降低。此外,膨胀石墨的粒径太小时,石墨层的片状截面变小,剥离之后,片与片之间接触面积小,无法形成连续致密的桥联网络,进而导致其远红外性能变差。
因此,本发明的石墨烯远红外添加剂的优点在于:
1.分散性好:本发明采用诸如异氰酸酯、硅烷偶联剂、有机胺、重氮盐等石墨烯表面功能化的助剂,在剥离膨胀石墨的过程可对石墨烯进行功能团接枝改性,大幅度降低分子间的范德华力,提高碳材料与聚合物之间的兼容性,因而制成的石墨烯远红外添加剂分散性良好,均一性稳定;
2.本发明方法对膨胀石墨进行预粉碎,控制其粒径,剥离得到的石墨烯可以形成连续的桥联网络,也是其具有优异的远红外辐照温升和远红外发射率的原因;
3.添加本发明的石墨烯远红外添加剂的远红外浆料其远红外发射率、远红外辐照温升和升温速率结果表现优异;
4.经济价值高:与市售陶瓷粉材料相比,本发明的石墨烯远红外添加剂在印花浆料中的所需固含量更低,综合成本更低,耐水洗性能好,且其远红外性能胜于陶瓷粉材料,升温速率更是高于陶瓷粉材料。
5.复合材料远红外性能好:与单一红外发射源物质相比,本发明的石墨烯远红外添加剂采用复合组份,因为组分增多,不同成分的原子间相互作用,影响结构的对称程度,结构中缺陷增多,原子或分子的振动和转动更复杂多样性增加,激发出更强的红外辐射,且辐射能力较单一物质高得多。
上述实施例仅用以例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟习此项技艺的人士均可在不违背本发明的精神和范畴下,对上述实施例进行修改。因此本发明的权利保护范围,应如权利要求书所列。

Claims (16)

  1. 一种制备石墨烯远红外添加剂的方法,其特征在于,所述方法包括以下步骤:
    将膨胀石墨粉碎,得到粉碎的膨胀石墨;
    将碳材料、树脂和助剂进行预混,得到预混物,其中所述碳材料包括所述粉碎的膨胀石墨和炭黑粉体;
    加入溶剂于所述预混物中,并搅拌,得到均匀无起泡的油墨前驱体分散液;以及
    将所述油墨前驱体分散液经过剥离工艺,得到石墨烯远红外添加剂。
  2. 如权利要求1所述的方法,其特征在于,所述粉碎的膨胀石墨的D50为5至600μm。
  3. 如权利要求1所述的方法,其特征在于,所述粉碎的膨胀石墨、炭黑粉体、树脂和助剂的组分分别为2至25份、0.1至4份、8至40份和0.1至2份。
  4. 如权利要求3所述的方法,其特征在于,所述碳材料中还包括石墨粉体。
  5. 如权利要求4所述的方法,其特征在于,所述石墨粉体的组分为0至3份。
  6. 如权利要求1所述的方法,其特征在于,所述树脂为油性聚氨酯、聚丙烯酸酯、油性硅胶、水性聚丙烯酸乳液、水性聚氨酯、聚甲基丙烯酸甲酯、水性硅胶中的至少一种。
  7. 如权利要求1所述的方法,其特征在于,所述溶剂为去离子水、乙醇、异丙醇、松油醇、正丁醇、DBE、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、乙酸乙酯、异氟尔酮、二甲苯、丁酮中的至少一种。
  8. 如权利要求1所述的方法,其特征在于,所述预混物中还包括气相二氧化硅粉体在预混后加入。
  9. 如权利要求8所述的方法,其特征在于,所述气相二氧化硅粉体的组分为0至3份。
  10. 如权利要求1所述的方法,其特征在于,所述助剂为异氰酸酯、偶联剂、重氮盐或有机胺中的至少一种。
  11. 如权利要求1所述的方法,其特征在于,所述剥离工艺为三辊研磨、砂磨、高压均质、球磨中的至少一种。
  12. 如权利要求1所述的方法,其特征在于,所述石墨烯远红外添加剂的细度低于20微米。
  13. 一种石墨烯远红外添加剂,其特征在于,所述石墨烯远红外添加剂是利用如权利要求1至12任一项所述的方法所制备。
  14. 一种远红外浆料,其特征在于,所述远红外浆料包括:
    如权利要求1至12任一项所述的方法所制备的石墨烯远红外添加剂;
    远红外陶瓷粉;
    其中,远红外陶瓷粉的添加量为0~30%。
  15. 如权利要求14所述的远红外浆料,其特征在于,所述石墨烯远红外添加剂的添加量为5%至30%。
  16. 一种面料,其特征在于,包括面料本体和如权利要求14所述的远红外浆料,所述远红外浆料通过印花整理工艺涂覆在所述面料本体上。
PCT/CN2019/124017 2019-08-21 2019-12-09 一种石墨烯远红外添加剂的制备方法以及远红外浆料 WO2021031464A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910773007.4 2019-08-21
CN201910773007 2019-08-21

Publications (2)

Publication Number Publication Date
WO2021031464A1 true WO2021031464A1 (zh) 2021-02-25
WO2021031464A8 WO2021031464A8 (zh) 2021-04-15

Family

ID=74660362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124017 WO2021031464A1 (zh) 2019-08-21 2019-12-09 一种石墨烯远红外添加剂的制备方法以及远红外浆料

Country Status (1)

Country Link
WO (1) WO2021031464A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107298901A (zh) * 2017-08-28 2017-10-27 厦门大学 一种碳系导电油墨
CN108165078A (zh) * 2018-01-26 2018-06-15 北京欧美中科学技术研究院 一种导电涂料用石墨烯添加剂的制备方法
CN108530996A (zh) * 2018-05-25 2018-09-14 北京航科航天科技有限公司 一种一步法制备石墨烯基水性导电油墨及其制备方法
CN110467847A (zh) * 2019-08-21 2019-11-19 厦门大学 一种水性碳系导电油墨的制备方法及水性碳系导电油墨
CN110467846A (zh) * 2019-08-21 2019-11-19 厦门大学 一种油性电热转化油墨的制备方法及所制备的油墨

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107298901A (zh) * 2017-08-28 2017-10-27 厦门大学 一种碳系导电油墨
CN108165078A (zh) * 2018-01-26 2018-06-15 北京欧美中科学技术研究院 一种导电涂料用石墨烯添加剂的制备方法
CN108530996A (zh) * 2018-05-25 2018-09-14 北京航科航天科技有限公司 一种一步法制备石墨烯基水性导电油墨及其制备方法
CN110467847A (zh) * 2019-08-21 2019-11-19 厦门大学 一种水性碳系导电油墨的制备方法及水性碳系导电油墨
CN110467846A (zh) * 2019-08-21 2019-11-19 厦门大学 一种油性电热转化油墨的制备方法及所制备的油墨

Also Published As

Publication number Publication date
WO2021031464A8 (zh) 2021-04-15

Similar Documents

Publication Publication Date Title
CN110628264B (zh) 一种石墨烯远红外添加剂的制备方法以及远红外浆料
Yang et al. Rational design of hierarchical structure of carbon@ polyaniline composite with enhanced microwave absorption properties
Yin et al. Apium-derived biochar loaded with MnFe2O4@ C for excellent low frequency electromagnetic wave absorption
CN108495385A (zh) 一种含石墨烯的柔性膜及其制备方法
Li et al. Surface modification of nano-SiO2 particles using polyaniline
Yuan et al. Electrical conductive and graphitizable polymer nanofibers grafted on graphene nanosheets: Improving electrical conductivity and flame retardancy of polypropylene
CN104973591B (zh) 一种高质量石墨烯及其制备方法
Obradović et al. Effects of mechanical activation and two-step sintering on the structure and electrical properties of cordierite-based ceramics
KR100911433B1 (ko) 판상형이며 나노크기의 두께를 갖는 초미립 인상 흑연 제조방법
WO2007049588A1 (ja) 導電性コーティング材料
WO2016021672A1 (ja) 導電性高分子材料およびそれを用いた成形品
Li et al. Preparation of polymer-derived graphene-like carbon-silicon carbide nanocomposites as electromagnetic interference shielding material for high temperature applications
CN110467846A (zh) 一种油性电热转化油墨的制备方法及所制备的油墨
CN109790033A (zh) 高度传导的石墨膜及生产方法
WO2014117434A1 (zh) 一种空气气氛中快速热处理制备石墨烯的方法
Mohammed et al. Biodegradable polymer modified rGO/PANI/CCTO nanocomposites: structural and dielectric properties
WO2021031464A1 (zh) 一种石墨烯远红外添加剂的制备方法以及远红外浆料
Xu et al. Large-scale preparation of graphene oxide film and its application for electromagnetic interference shielding
Ren et al. Electromagnetic wave absorbing ceramics composites made of polymer-derived SiC with BN@ CNTs pyrolyzed higher than 1200° C
CN111849275B (zh) 一种水性双组份电热涂料的制备方法及其应用
JPS6081023A (ja) チタン酸バリウム粉末
Zhang et al. Electrostatic self-assembly design of core@ shell structured Al2O3@ C nanospheres towards high-efficiency and damage-free polishing sapphire wafer
KR101381710B1 (ko) 코크스를 이용한 전극용 활성탄의 제조방법 및 전극용 활성탄 조성물의 제조방법
CN108285618A (zh) 一种改性石墨烯复合材料的制备方法
Wang et al. Digital light processing and electromagnetic wave absorption performance tuning of SiOC/SiO2 ceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942178

Country of ref document: EP

Kind code of ref document: A1