WO2021031157A1 - 外参标定方法、装置、计算设备以及计算机存储介质 - Google Patents

外参标定方法、装置、计算设备以及计算机存储介质 Download PDF

Info

Publication number
WO2021031157A1
WO2021031157A1 PCT/CN2019/101813 CN2019101813W WO2021031157A1 WO 2021031157 A1 WO2021031157 A1 WO 2021031157A1 CN 2019101813 W CN2019101813 W CN 2019101813W WO 2021031157 A1 WO2021031157 A1 WO 2021031157A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
sequence
lidar
map
cloud sequence
Prior art date
Application number
PCT/CN2019/101813
Other languages
English (en)
French (fr)
Inventor
郭磊明
张莹莹
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN202310416245.1A priority Critical patent/CN116577760A/zh
Priority to PCT/CN2019/101813 priority patent/WO2021031157A1/zh
Priority to CN201980002761.1A priority patent/CN110741282B/zh
Publication of WO2021031157A1 publication Critical patent/WO2021031157A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to the technical field of laser radar, in particular to an external parameter calibration method, device, computing equipment and computer storage medium.
  • Lidar light detection and ranging, lidar
  • lidar is an optical remote sensing technology that measures parameters such as the distance of the target by irradiating a pulsed laser to the target.
  • the collection of three-dimensional measurement points obtained by lidar can be called a piont cloud because of the large amount of data and relatively dense data.
  • Point cloud registration is to give two three-dimensional data point sets from different coordinate systems, find the transformation relationship between the two point sets, so that the two point sets can be unified into the same coordinate system.
  • External parameter calibration is used to determine the rotation and translation relationship between multiple sensor coordinate systems, and the purpose is to represent multiple sensor data in a unified coordinate system.
  • the premise of the point cloud registration algorithm is that the two point clouds have overlapping parts, such as the part where an object is illuminated by two lidars.
  • overlapping parts such as the part where an object is illuminated by two lidars.
  • a lidar is installed in the front of the car and a radar is installed in the rear of the car. Due to the occlusion of the body, the two radars have no overlapping area at all. In this case, general registration cannot be used directly.
  • embodiments of the present invention provide an external parameter calibration method, device, computing device, and computer storage medium that overcome or at least partially solve the foregoing problems.
  • an external parameter calibration method including: collecting at least a first point cloud sequence of a moving or rotating first lidar and a second point cloud sequence of a second lidar, wherein the first A point cloud sequence is located in the body coordinate system of the first lidar, and the second point cloud sequence is located in the body coordinate system of the second lidar; according to the first point cloud sequence and the second point cloud The sequence obtains the first point cloud map of the first lidar and the second point cloud map of the second lidar at the preset time; the point cloud registration algorithm is applied to calculate the transformation of the second point cloud map to the Describe the transformation relationship of the first point cloud map to obtain the calibration result.
  • the moving or rotating first lidar and the second lidar are located in a field with structured features.
  • the new first point cloud sequence satisfies the following relationship:
  • P′ i is the coordinate of the i-th point cloud in the new first point cloud sequence
  • i is a positive integer
  • P i is the coordinate of the i-th point cloud in the first point cloud sequence
  • T i is the first point cloud point cloud sequence conversion relation P i-1 P i and the adjacent
  • T i F (P i -1, P i);
  • the new second point cloud sequence satisfies the following relationship:
  • P′ j is the coordinate of the j-th point cloud in the new second point cloud sequence
  • j is a positive integer
  • P j is the coordinate of the j-th point cloud in the second point cloud sequence
  • T j It is the transformation relationship between adjacent point clouds P j-1 and P j in the second point cloud sequence
  • T j F(P j-1 , P j ).
  • the application of the point cloud registration algorithm to calculate the transformation relationship from the second point cloud map to the first point cloud map, and before obtaining the calibration result includes: separately comparing the first point cloud map and The second point cloud map performs a filtering operation.
  • the point cloud registration algorithm includes an iterative closest point algorithm or a normal distribution transformation algorithm.
  • an external parameter calibration device includes: a data acquisition unit for acquiring at least a first point cloud sequence of a moving or rotating first lidar and a second The second point cloud sequence of the lidar, wherein the first point cloud sequence is located in the body coordinate system of the first lidar, and the second point cloud sequence is located in the body coordinate system of the second lidar;
  • the registration unit obtains a first point cloud map of the first laser radar and a second point cloud of the second laser radar at a preset time according to the first point cloud sequence and the second point cloud sequence, respectively Map; a calibration unit for applying a point cloud registration algorithm to calculate the transformation relationship from the second point cloud map to the first point cloud map to obtain a calibration result.
  • a computing device including: a processor, a memory, a communication interface, and a communication bus.
  • the processor, the memory, and the communication interface complete mutual communication through the communication bus.
  • Communication; the memory is used to store at least one executable instruction, the executable instruction causes the processor to execute the steps of the aforementioned external parameter calibration method.
  • a computer storage medium stores at least one executable instruction, and the executable instruction causes a processor to execute the steps of the aforementioned external parameter calibration method.
  • the external parameter calibration method includes: collecting at least a first point cloud sequence of a moving or rotating first lidar and a second point cloud sequence of a second lidar, wherein the first point cloud sequence Is located in the body coordinate system of the first lidar, and the second point cloud sequence is located in the body coordinate system of the second lidar; according to the first point cloud sequence and the second point cloud sequence, the predictions are obtained respectively Set the first point cloud map of the first lidar and the second point cloud map of the second lidar at time; apply a point cloud registration algorithm to calculate the transformation of the second point cloud map to the first point The transformation relationship of the cloud map to obtain the calibration result.
  • the field of view of a single lidar is expanded, and the point cloud of different coordinate systems at different times is transformed to the same coordinate system, and the time registration of multiple lidars is performed using the same
  • the point cloud map represented by the respective body coordinates at the time calculate the relative coordinate transformation relationship between the point cloud maps, realize the external parameter calibration of the lidar, so that the multi-lidar with insufficient overlap area can use the general point cloud registration algorithm for external parameter calibration .
  • Figure 1 shows a schematic flow chart of an external parameter calibration method according to an embodiment of the present invention
  • Figure 2 shows a schematic flowchart of another external parameter calibration method according to an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a point cloud before calibration of an external parameter calibration method according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of point clouds after calibration of two lidars according to an external parameter calibration method according to an embodiment of the present invention
  • FIG. 5 shows a schematic diagram of point clouds after calibration of three lidars in an external parameter calibration method according to an embodiment of the present invention
  • Figure 6 shows a schematic structural diagram of yet another external parameter calibration device according to an embodiment of the present invention.
  • Fig. 7 shows a schematic structural diagram of a computing device according to an embodiment of the present invention.
  • Fig. 1 shows a schematic flowchart of an external parameter calibration method according to an embodiment of the present invention.
  • the external parameter calibration method includes:
  • Step S11 Collect at least a first point cloud sequence of a moving or rotating first lidar and a second point cloud sequence of a second lidar, wherein the first point cloud sequence is located in the body coordinate system of the first lidar , The second point cloud sequence is located in the body coordinate system of the second lidar.
  • step S11 the moving or rotating first lidar and the second lidar are located in a field with structured features.
  • a site that includes a wealth of structured features is selected; the carrier carrying at least the first lidar and the second lidar is moved or rotated on the site; and the The first point cloud sequence of a first lidar and the second point cloud sequence of the second lidar.
  • the first point cloud sequence is located in the body coordinate system of the first lidar.
  • the second point cloud sequence is located in the body coordinate system of the second lidar.
  • a plurality of lidars may also be rigidly mounted on a carrier, the carrier runs at a low speed and uniform speed, and the movement track includes a straight line or a curve, and the point cloud sequence of each lidar is collected at the same time.
  • Step S12 Obtain a first point cloud map of the first lidar and a second point cloud map of the second lidar at a preset time according to the first point cloud sequence and the second point cloud sequence, respectively .
  • the preset time can be the initial time of the first point cloud sequence and the second point cloud sequence, or any other time during the selected first point cloud sequence and the second point cloud sequence acquisition process, and it will not be done here. limit.
  • step S12 includes:
  • Step S121 Apply a simultaneous positioning and mapping algorithm to calculate the transformation relationship between adjacent point clouds in the first point cloud sequence.
  • traverse the first point cloud sequence apply a point cloud registration algorithm to calculate the transformation relationship of any adjacent point cloud in the first point cloud sequence; use a general graph optimization algorithm to optimize the first point cloud sequence
  • the transformation relationship between adjacent point clouds may be a simple coordinate transformation relationship of adjacent point clouds, or other transformation relationships, such as scaling.
  • SLAM Simultaneous Localization and Mapping
  • Step S122 Transform the first point cloud sequence to the body coordinate system of the first lidar at the preset time according to the coordinate transformation relationship of the adjacent point clouds to form the new first point cloud sequence.
  • the new first point cloud sequence satisfies the following relationship:
  • P′ i is the coordinate of the i-th point cloud in the new first point cloud sequence
  • i is a positive integer
  • P i is the coordinate of the i-th point cloud in the first point cloud sequence
  • T i is the first point cloud point cloud sequence conversion relation P i-1 P i and the adjacent
  • T i F (P i -1, P i).
  • the starting time is selected, and the first point cloud sequence and the second point cloud sequence are transformed to the body coordinate system of the corresponding lidar at the starting time. That is, the first point cloud sequence is transformed to the body coordinate system of the first lidar at the starting time, and the second point cloud sequence is transformed to the body coordinate system of the second lidar at the starting time.
  • Step S123 Combine the new first point cloud sequences to obtain the first point cloud map based on the body coordinate system of the first lidar at the preset time.
  • a simultaneous positioning and mapping algorithm is applied to calculate the transformation relationship between adjacent point clouds in the second point cloud sequence. Specifically, traverse the second point cloud sequence, apply a point cloud registration algorithm to calculate the transformation relationship of any adjacent point cloud in the second point cloud sequence; use a general graph optimization algorithm to optimize the second point cloud sequence The transformation relationship of any adjacent point cloud in.
  • P j-1 is the coordinate of the j-1th point cloud in the first point cloud sequence
  • P j is the coordinate of the jth point cloud in the first point cloud sequence
  • T j is the adjacent point cloud in the first point cloud sequence
  • the second point cloud sequence is transformed to the body coordinate system of the second lidar at the preset time according to the transformation relationship between adjacent point clouds to form the new second point cloud sequence;
  • the second point cloud sequence is merged to obtain the second point cloud map based on the body coordinate system of the second lidar at the preset time, wherein the second point cloud map and the first The point cloud map partially overlaps.
  • the new second point cloud sequence satisfies the following relationship:
  • P′ j is the coordinate of the j-th point cloud in the new second point cloud sequence
  • j is a positive integer
  • P j is the coordinate of the j-th point cloud in the second point cloud sequence
  • T j Is the transformation relationship between adjacent point clouds P j-1 and P j in the second point cloud sequence
  • T j F(P j-1, P j ).
  • the single-frame point cloud in the new first point cloud sequence L′ 1 before calibration and the single-frame point cloud in the new second point cloud sequence L′ 2 before calibration are shown in FIG. 3.
  • the first point cloud map and the second point cloud map are respectively based on different body coordinate systems at the same preset time.
  • the point cloud map M 1 is equivalent to the superposition of n point clouds in the first point cloud sequence, and its shape is similar to L'1 in Fig. 3, but the points are denser.
  • the m point clouds in the new second point cloud sequence are combined to obtain the second point cloud map M 2 based on the body coordinate system of the second lidar at the preset time selected before calibration.
  • the second point cloud map M 2 is equivalent to the superposition of m point clouds in the second point cloud sequence, and its shape is similar to L'2 in FIG. 3, but the points are denser.
  • the first point cloud map M 1 and the second point cloud map M 2 partially overlap.
  • Step S13 Apply a point cloud registration algorithm to calculate a transformation relationship from the second point cloud map to the first point cloud map, and obtain a calibration result.
  • the point cloud registration algorithm includes an iterative closest point algorithm (ICP) or a normal distribution transformation algorithm (NDT). In other embodiments of the present invention, other point cloud registration algorithms may also be applied, which is not limited herein.
  • the transformation relationship from the first point cloud map M 1 to the second point cloud map M 2 can also be calculated. According to the calibration results, calibrate the second point cloud map M 2 and the first point cloud map M 1 to obtain the calibrated point cloud map.
  • the calibration process is equivalent to combining the first point cloud map M 1 and the second point cloud map M 2
  • the calibrated point cloud map obtained after calibrating the first point cloud map M 1 and the second point cloud map M 2 is equivalent to the first point cloud map M 1 or the second point cloud map
  • the map M 2 is offset by a certain distance and/or rotated by a certain angle relative to the other to make the two overlap as much as possible.
  • filtering operations are performed on the obtained first point cloud map and the second point cloud map respectively.
  • filtering operations such as thinning, denoising, and feature point extraction are performed on the first point cloud map and the second point cloud map, respectively, to reduce the amount of data, improve the data quality, and facilitate subsequent calibration.
  • the thinning algorithm includes a grid down-sampling algorithm, such as an octree grid thinning algorithm.
  • the calibration structure of the second point cloud map M 2 relative to the first point cloud map M 1 is obtained, that is, after the calibration matrix T is obtained, the calibration matrix T can be directly applied to the second point cloud of the second lidar
  • the sequence L 2 and the first point cloud sequence L 1 of the first lidar are calibrated.
  • Figure 4 shows the second point cloud sequence L 2 of the second lidar and the first point cloud sequence L 1 of the first lidar. Point cloud.
  • the calibration matrix of the point cloud sequence of each lidar relative to the point cloud sequence of one of the lidars can be obtained separately, and then each calibration matrix can be calibrated.
  • each calibration matrix can be calibrated for three laser radar point cloud sequences L 1 , L 2 , L 3 .
  • the point cloud sequence L 3 of the radar is relative to the calibration matrix of the point cloud sequence L 1 of the first lidar, and then the point cloud sequences of the three lidars are calibrated to obtain the calibrated point cloud.
  • the calibration matrices of any two Lidar point cloud sequences first, and then perform calibration for each calibration matrix.
  • the external parameter calibration method includes: collecting at least a first point cloud sequence of a moving or rotating first lidar and a second point cloud sequence of a second lidar, wherein the first point cloud sequence Is located in the body coordinate system of the first lidar, and the second point cloud sequence is located in the body coordinate system of the second lidar; according to the first point cloud sequence and the second point cloud sequence, the predictions are obtained respectively Set the first point cloud map of the first lidar and the second point cloud map of the second lidar at time; apply a point cloud registration algorithm to calculate the transformation of the second point cloud map to the first point The transformation relationship of the cloud map to obtain the calibration result.
  • the field of view of a single lidar is expanded, and the point cloud of different coordinate systems at different times is transformed to the same coordinate system, and the time registration of multiple lidars is performed using the same
  • the point cloud map represented under the respective body coordinates at the time calculate the relative coordinate transformation relationship between the point cloud maps, and realize the external parameter calibration of the lidar, so that the multi-lidar with insufficient overlap area can use the point cloud registration algorithm for external parameter calibration .
  • Fig. 6 shows a schematic structural diagram of an external parameter calibration device according to an embodiment of the present invention.
  • the external parameter calibration device includes: a data acquisition unit 601, a registration unit 602 and a calibration unit 603. among them:
  • the data collection unit 601 is used to collect at least a first point cloud sequence of a moving or rotating first lidar and a second point cloud sequence of a second lidar, where the first point cloud sequence is located in the first lidar
  • the body coordinate system, the second point cloud sequence is located in the body coordinate system of the second lidar
  • the registration unit 602 is configured to obtain preset moments respectively according to the first point cloud sequence and the second point cloud sequence
  • the calibration unit 603 is configured to apply a point cloud registration algorithm to calculate the transformation of the second point cloud map to the The first point is the transformation relationship of the cloud map to obtain the calibration result.
  • the moving or rotating first lidar and the second lidar are located in a field with structured features.
  • the registration unit 602 is configured to: apply simultaneous positioning and mapping algorithms to calculate the transformation relationship between adjacent point clouds in the first point cloud sequence; select a preset time according to adjacent points The coordinate transformation relationship of the clouds respectively transforms the first point cloud sequence to the body coordinate system of the first lidar at the preset time to form a new first point cloud sequence; change the new first point cloud sequence The point cloud sequence is merged to obtain the first point cloud map based on the body coordinate system of the first lidar at the preset time; the simultaneous positioning and mapping algorithm is applied to calculate the phase in the second point cloud sequence The transformation relationship of neighboring point clouds; according to the transformation relationship of neighboring point clouds, the second point cloud sequence is transformed to the body coordinate system of the second lidar at the preset time to form the new second point Cloud sequence; merge the new second point cloud sequence to obtain the second point cloud map based on the body coordinate system of the second lidar at the preset time, wherein the second point cloud map Partially overlaps the first point cloud map.
  • the registration unit 602 is further configured to: traverse the first point cloud sequence, and apply a point cloud registration algorithm to calculate the transformation relationship of any adjacent point cloud in the first point cloud sequence
  • a general graph optimization algorithm to optimize the transformation relationship of any adjacent point cloud in the first point cloud sequence
  • traverse the second point cloud sequence and apply a point cloud registration algorithm to calculate any of the second point cloud sequence
  • a transformation relationship of adjacent point clouds a general graph optimization algorithm is used to optimize the transformation relationship of any adjacent point cloud in the second point cloud sequence.
  • the new first point cloud sequence satisfies the following relational expression:
  • P′ i is the coordinate of the i-th point cloud in the new first point cloud sequence
  • i is a positive integer
  • P i is the coordinate of the i-th point cloud in the first point cloud sequence
  • T i is the first point cloud point cloud sequence conversion relation P i-1 P i and the adjacent
  • T i F (P i -1, P i);
  • the new second point cloud sequence satisfies the following relationship:
  • P′ j is the coordinate of the j-th point cloud in the new second point cloud sequence
  • j is a positive integer
  • P j is the coordinate of the j-th point cloud in the second point cloud sequence
  • T j It is the transformation relationship between adjacent point clouds P j-1 and P j in the second point cloud sequence
  • T j F(P j-1 , P j ).
  • the registration unit 602 is further configured to perform a filtering operation on the first point cloud map and the second point cloud map respectively.
  • the point cloud registration algorithm includes an iterative closest point algorithm or a normal distribution transformation algorithm.
  • the external parameter calibration method includes: collecting at least a first point cloud sequence of a moving or rotating first lidar and a second point cloud sequence of a second lidar, wherein the first point cloud sequence Is located in the body coordinate system of the first lidar, and the second point cloud sequence is located in the body coordinate system of the second lidar; according to the first point cloud sequence and the second point cloud sequence, the predictions are obtained respectively Set the first point cloud map of the first lidar and the second point cloud map of the second lidar at time; apply a point cloud registration algorithm to calculate the transformation of the second point cloud map to the first point The transformation relationship of the cloud map to obtain the calibration result.
  • the field of view of a single lidar is expanded, and the point cloud of different coordinate systems at different times is transformed to the same coordinate system, and the time registration of multiple lidars is performed using the same
  • the point cloud map represented by the respective body coordinates at the time calculate the relative coordinate transformation relationship between the point cloud maps, realize the external parameter calibration of the lidar, so that the multi-lidar with insufficient overlap area can use the general point cloud registration algorithm for external parameter calibration .
  • An embodiment of the present invention provides a non-volatile computer storage medium that stores at least one executable instruction, and the computer executable instruction can execute the external parameter calibration method in any of the foregoing method embodiments.
  • the executable instructions can be specifically used to cause the processor to perform the following operations:
  • a point cloud registration algorithm is applied to calculate a transformation relationship from the second point cloud map to the first point cloud map, and a calibration result is obtained.
  • the moving or rotating first lidar and the second lidar are located in a field with structured features.
  • executable instructions may be specifically used to cause the processor to perform the following operations:
  • executable instructions may be specifically used to cause the processor to perform the following operations:
  • a general graph optimization algorithm is used to optimize the transformation relationship of any adjacent point cloud in the second point cloud sequence.
  • the new first point cloud sequence satisfies the following relational expression:
  • P′ i is the coordinate of the i-th point cloud in the new first point cloud sequence
  • i is a positive integer
  • P i is the coordinate of the i-th point cloud in the first point cloud sequence
  • T i is the first point cloud point cloud sequence conversion relation P i-1 P i and the adjacent
  • T i F (P i -1, P i);
  • the new second point cloud sequence satisfies the following relationship:
  • P′ j is the coordinate of the j-th point cloud in the new second point cloud sequence
  • j is a positive integer
  • P j is the coordinate of the j-th point cloud in the second point cloud sequence
  • T j It is the transformation relationship between adjacent point clouds P j-1 and P j in the second point cloud sequence
  • T j F(P j-1 , P j ).
  • executable instructions may be specifically used to cause the processor to perform the following operations:
  • the point cloud registration algorithm includes an iterative closest point algorithm or a normal distribution transformation algorithm.
  • the external parameter calibration method includes: collecting at least a first point cloud sequence of a moving or rotating first lidar and a second point cloud sequence of a second lidar, wherein the first point cloud sequence Is located in the body coordinate system of the first lidar, and the second point cloud sequence is located in the body coordinate system of the second lidar; according to the first point cloud sequence and the second point cloud sequence, the predictions are obtained respectively Set the first point cloud map of the first lidar and the second point cloud map of the second lidar at time; apply a point cloud registration algorithm to calculate the transformation of the second point cloud map to the first point The transformation relationship of the cloud map to obtain the calibration result.
  • the field of view of a single lidar is expanded, and the point cloud of different coordinate systems at different times is transformed to the same coordinate system, and the time registration of multiple lidars is performed, using the same
  • the point cloud map represented by the respective body coordinates at the time calculate the relative coordinate transformation relationship between the point cloud maps, realize the external parameter calibration of the lidar, so that the multi-lidar with insufficient overlap area can use the general point cloud registration algorithm for external parameter calibration .
  • the embodiment of the present invention provides a computer program product, the computer program product includes a computer program stored on a computer storage medium, the computer program includes program instructions, when the program instructions are executed by a computer, the computer Perform the external parameter calibration method in any of the foregoing method embodiments.
  • the executable instructions can be specifically used to cause the processor to perform the following operations:
  • a point cloud registration algorithm is applied to calculate a transformation relationship from the second point cloud map to the first point cloud map, and a calibration result is obtained.
  • the moving or rotating first lidar and the second lidar are located in a field with structured features.
  • executable instructions may be specifically used to cause the processor to perform the following operations:
  • executable instructions may be specifically used to cause the processor to perform the following operations:
  • a general graph optimization algorithm is used to optimize the transformation relationship of any adjacent point cloud in the second point cloud sequence.
  • the new first point cloud sequence satisfies the following relational expression:
  • P′ i is the coordinate of the i-th point cloud in the new first point cloud sequence
  • i is a positive integer
  • P i is the coordinate of the i-th point cloud in the first point cloud sequence
  • T i is the first point cloud point cloud sequence conversion relation P i-1 P i and the adjacent
  • T i F (P i -1, P i);
  • the new second point cloud sequence satisfies the following relationship:
  • P′ j is the coordinate of the j-th point cloud in the new second point cloud sequence
  • j is a positive integer
  • P j is the coordinate of the j-th point cloud in the second point cloud sequence
  • T j It is the transformation relationship between adjacent point clouds P j-1 and P j in the second point cloud sequence
  • T j F(P j-1 , P j ).
  • executable instructions may be specifically used to cause the processor to perform the following operations:
  • the point cloud registration algorithm includes an iterative closest point algorithm or a normal distribution transformation algorithm.
  • the external parameter calibration method includes: collecting at least a first point cloud sequence of a moving or rotating first lidar and a second point cloud sequence of a second lidar, wherein the first point cloud sequence Is located in the body coordinate system of the first lidar, and the second point cloud sequence is located in the body coordinate system of the second lidar; according to the first point cloud sequence and the second point cloud sequence, the predictions are obtained respectively Set the first point cloud map of the first lidar and the second point cloud map of the second lidar at time; apply a point cloud registration algorithm to calculate the transformation of the second point cloud map to the first point The transformation relationship of the cloud map to obtain the calibration result.
  • the field of view of a single lidar is expanded, and the point cloud of different coordinate systems at different times is transformed to the same coordinate system, and the time registration of multiple lidars is performed, using the same
  • the point cloud map represented by the respective body coordinates at the time calculate the relative coordinate transformation relationship between the point cloud maps, realize the external parameter calibration of the lidar, so that the multi-lidar with insufficient overlap area can use the general point cloud registration algorithm for external parameter calibration .
  • FIG. 7 shows a schematic structural diagram of an embodiment of a device of the present invention, and the specific embodiment of the present invention does not limit the specific implementation of the device.
  • the device may include a processor (processor) 702, a communication interface (Communications Interface) 704, a memory (memory) 706, and a communication bus 708.
  • processor processor
  • Communication interface Communication Interface
  • memory memory
  • the processor 702, the communication interface 704, and the memory 706 communicate with each other through the communication bus 708.
  • the communication interface 704 is used to communicate with other devices such as network elements such as clients or other servers.
  • the processor 702 is configured to execute a program 710, and specifically can execute relevant steps in the embodiment of the external parameter calibration method described above.
  • the program 710 may include program code, and the program code includes computer operation instructions.
  • the processor 702 may be a central processing unit CPU, or an ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • the one or more processors included in the device may be the same type of processor, such as one or more CPUs, or different types of processors, such as one or more CPUs and one or more ASICs.
  • the memory 706 is used to store the program 710.
  • the memory 706 may include a high-speed RAM memory, or may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory.
  • the program 710 may be specifically used to cause the processor 702 to perform the following operations:
  • a point cloud registration algorithm is applied to calculate a transformation relationship from the second point cloud map to the first point cloud map, and a calibration result is obtained.
  • the moving or rotating first lidar and the second lidar are located in a field with structured features.
  • program 710 may be specifically used to cause the processor 702 to perform the following operations:
  • program 710 may be specifically used to cause the processor 702 to perform the following operations:
  • a general graph optimization algorithm is used to optimize the transformation relationship of any adjacent point cloud in the second point cloud sequence.
  • the new first point cloud sequence satisfies the following relational expression:
  • P′ i is the coordinate of the i-th point cloud in the new first point cloud sequence
  • i is a positive integer
  • P i is the coordinate of the i-th point cloud in the first point cloud sequence
  • T i is the first point cloud point cloud sequence conversion relation P i-1 P i and the adjacent
  • T i F (P i -1, P i);
  • the new second point cloud sequence satisfies the following relationship:
  • P′ j is the coordinate of the j-th point cloud in the new second point cloud sequence
  • j is a positive integer
  • P j is the coordinate of the j-th point cloud in the second point cloud sequence
  • T j It is the transformation relationship between adjacent point clouds P j-1 and P j in the second point cloud sequence
  • T j F(P j-1 , P j ).
  • program 710 may be specifically used to cause the processor 702 to perform the following operations:
  • the point cloud registration algorithm includes an iterative closest point algorithm or a normal distribution transformation algorithm.
  • the external parameter calibration method includes: collecting at least a first point cloud sequence of a moving or rotating first lidar and a second point cloud sequence of a second lidar, wherein the first point cloud sequence It is located in the body coordinate system of the first laser mine, and the second point cloud sequence is located in the body coordinate system of the second laser radar; the predictions are obtained respectively according to the first point cloud sequence and the second point cloud sequence Set the first point cloud map of the first lidar and the second point cloud map of the second lidar at time; apply a point cloud registration algorithm to calculate the transformation of the second point cloud map to the first point The transformation relationship of the cloud map to obtain the calibration result.
  • the field of view of a single lidar is expanded, and the point cloud of different coordinate systems at different times is transformed to the same coordinate system, and the time registration of multiple lidars is performed, using the same
  • the point cloud map represented by the respective body coordinates at the time calculate the relative coordinate transformation relationship between the point cloud maps, realize the external parameter calibration of the lidar, so that the multi-lidar with insufficient overlap area can use the general point cloud registration algorithm for external parameter calibration .
  • modules or units or components in the embodiments can be combined into one module or unit or component, and in addition, they can be divided into multiple sub-modules or sub-units or sub-components. Except that at least some of such features and/or processes or units are mutually exclusive, any combination can be used to compare all features disclosed in this specification (including the accompanying claims, abstract and drawings) and any method or methods disclosed in this manner or All the processes or units of the equipment are combined. Unless expressly stated otherwise, each feature disclosed in this specification (including the accompanying claims, abstract and drawings) may be replaced by an alternative feature providing the same, equivalent or similar purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种外参标定方法、装置、计算设备以及计算机存储介质,其中,外参标定方法包括:至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于第二激光雷达的机体坐标系(S11);根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图(S12);应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果(S13)。通过该方法,使重叠区域不足的多激光雷达能够使用通用点云配准算法进行外参标定。

Description

外参标定方法、装置、计算设备以及计算机存储介质 技术领域
本发明涉及激光雷达技术领域,具体涉及一种外参标定方法、装置、计算设备以及计算机存储介质。
背景技术
激光雷达(light detection and ranging,lidar)是一种光学遥感技术,它通过向目标照射一束脉冲激光来测量目标的距离等参数。激光雷达获得的三维测量点的集合因为数据量大并且比较密集,可以称作点云(piont cloud)。点云配准是给定两个来自不同坐标系的三维数据点集,找到两个点集空间的变换关系,使得两个点集能统一到同一坐标系统中。外参标定用于确定多个传感器坐标系间的旋转和平移关系,目的是把多个传感器数据在统一的坐标系下表示。
点云配准算法的前提是两个点云有重合部,如一个物体被两个激光雷达共同照射到的部分。在无人驾驶应用中,存在多个雷达间点云重合部分少或者完全没有重合部分的情况。例如一个激光雷达装在车头前方,一个雷达安装在车尾,由于车身的遮挡,两个雷达完全没有重合区域。这种情况下通用的配准无法直接使用。
发明内容
鉴于上述问题,本发明实施例提供一种克服上述问题或者至少部分地解决上述问题的一种外参标定方法、装置、计算设备以及计算机存储介质。
根据本发明的一个方面,提供了一种外参标定方法,包括:至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。
可选的,移动或旋转的所述第一激光雷达以及所述第二激光雷达位于具有结构化特征物的场地中。
可选的,所述根据所述第一点云序列获得预设时刻的所述第一激光雷达的第一点云地图,包括:应用同时定位与制图算法,计算所述第一点云序列中相邻点云的变换关系;根据相邻点云的变换关系将所述第一点云序列变换至所述预设时刻的所述第一激光雷达的机体坐标系,形成新的所述第一点云序列;将新的所述第一点云序列合并,得到基于所述预设时刻的所述第一激光雷达的机体坐标系的所述第一点云地图;所述根据所述第二点云序列获得预设时刻的所述第二激光雷达的第二点云地图,包括:应用同时定位与制图算法,计算所述第二点云序列中相邻点云的变换关系;根据相邻点云的变换关系将所述第二点云序列变换至所述预设时刻的所述第二激光雷达的机体坐标系,形成新的所述第二点云序列;将新的所述第二点云序列合并,得到基于所述预设时刻的所述第二激光雷达的机体坐标系的所述第二点云地图,其中所述第二点云地图与所述第一点云地图部分重叠。
可选的,所述应用同时定位与制图算法,计算所述第一点云序列中相邻点云的变换关系,包括:遍历所述第一点云序列,应用点云配准算法计算所述第一点云序列中任一相邻点云的变换关系;使用通用图优化算法优化所述第一点云序列中任一相邻点云的变换关系;所述应用同时定位与制图算法,计算所述第二点云序列中相邻点云的变换关系,包括:遍历所述第二点云序列,应用点云配准算法计算所述第二点云序列中任一相邻点云的变换关系;使用通用图优化算法优化所述第二点云序列中任一相邻点云的变换关系。
可选的,所述新的所述第一点云序列满足以下关系式:
P′ i=T 1T 2…T iP i
其中,P′ i为新的所述第一点云序列中第i个点云的坐标,i为正整数,P i为所述第一点云序列中第i个点云的坐标,T i为所述第一点云序列中相邻点云P i-1和P i的变换关系,T i=F(P i-1,P i);
所述新的所述第二点云序列满足以下关系式:
P′ j=T 1T 2…T jP j
其中,P′ j为新的所述第二点云序列中第j个点云的坐标,j为正整数,P j为所述第二点云序列中第j个点云的坐标,T j为所述第二点云序列中相邻点云P j-1和P j的变换关系,T j=F(P j-1,P j)。
可选的,所述应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果之前,包括:分别对所述第一点云地图和所述第二点云地图进行滤波操作。
可选的,所述点云配准算法包括迭代最近点算法或正态分布变换算法。
根据本发明的另一个方面,提供了一种外参标定装置,所述外参标定装置包括:数据采集单元,用于至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;第一配准单元,根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;标定单元,用于应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。
根据本发明的另一个方面,提供了一种计算设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行前述的外参标定方法的步骤。
根据本发明的另一个方面,提供了一种计算机存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行前述外参标定方法的步骤。
在本发明的实施例中,外参标定方法包括:至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。因此,通过装载激光雷达的载体的移动或旋转,扩大 单个激光雷达的视场,将不同时刻不同坐标系的点云变换到同一个坐标系下,进行多个激光雷达的时间配准,使用相同时刻的各自机体坐标下表示的点云地图,计算点云地图间的相对坐标变换关系,实现激光雷达外参标定,使重叠区域不足的多激光雷达能够使用通用点云配准算法进行外参标定。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1示出了根据本发明实施例一种外参标定方法的流程示意图;
图2示出了根据本发明实施例另一种外参标定方法的流程示意图;
图3示出了根据本发明实施例一种外参标定方法的标定前的点云示意图;
图4示出了根据本发明实施例一种外参标定方法的两个激光雷达标定后的点云示意图;
图5示出了根据本发明实施例一种外参标定方法的三个激光雷达标定后的点云示意图;
图6示出了根据本发明实施例又一种外参标定装置的结构示意图;
图7示出了根据本发明实施例一种计算设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
图1示出了根据本发明实施例一种外参标定方法的流程示意图。如图1所示,该外参标定方法包括:
步骤S11:至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系。
在步骤S11中,移动或旋转的所述第一激光雷达以及所述第二激光雷达位于具有结构化特征物的场地中。在本发明实施例中,选择包括丰富的结构化特征物的场地;使至少载有所述第一激光雷达和所述第二激光雷达的载体在所述场地上移动或旋转;同时采集所述第一激光雷达的所述第一点云序列和所述第二激光雷达的所述第二点云序列。以两个激光雷达为例,选择一个富含墙面、杆状物的场地,载有第一激光雷达和第二激光雷达的载体以5km/h的速度,匀速直线前进10米,然后按照“8”字行驶,同时采集两个激光雷达的点云序列。第一点云序列位于第一激光雷达的机体坐标系,优选地,第一激光雷达的机体坐标系可以是以第一激光雷达中心为原点的坐标系,第一点云序列表示为L 1={P 0,P 1,…P n},n为正整数。所述第二点云序列位于所述第二激光雷达的机体坐标系,优选地,第二激光雷达的机体坐标系可以是以第二激光雷达中心为原点的坐标系,第二点云序列表示为L 2={P 0,P 1,…P m},m为正整数。
选择包括丰富的结构化特征物,如墙面、杆状物,的场地后续容易实现制图。在本发明实施例中,也可以是多个激光雷达刚性安装在一载体上,该载体低速匀速行驶,运动轨迹包括直线、或曲线,同时采集各激光雷达的点云序列。
步骤S12:根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图。
其中,预设时刻可以是第一点云序列和第二点云序列的初始时刻,也可以是选定的第一点云序列和第二点云序列采集过程的其他任一时刻,在此不作限制。
以下将第一点云序列和第二点云序列分别进行说明,在本发明实施例中,对于第一点云序列,如图2所示,步骤S12包括:
步骤S121:应用同时定位与制图算法,计算所述第一点云序列中相邻点云的变换关系。
具体地,遍历所述第一点云序列,应用点云配准算法计算所述第一点云序列中任一相邻点云的变换关系;使用通用图优化算法优化所述第一点云序列中任一相邻点云的变换关系。相邻点云的变换关系可以是相邻点云的简单的坐标变换关系,也可以是其他变换关系,如还经过缩放等处理。对于第一点云序列L 1,从1到n,使用点云同时定位与制图(Simultaneous localization and mapping, SLAM)算法,例如先使用正态分布变换(Normal Distributions Transform,NDT)算法或迭代最近点(Iterative Closest Point,ICP)算法,再使用通用图优化算法(General Graph Optimization,G2O)做优化,计算得到第一点云序列L 1中相邻点云的坐标变换关系T i=F(P i-1,P i),其中,P i-1为第一点云序列中第i-1个点云的坐标,P i为第一点云序列中第i个点云的坐标,T i为第一点云序列中相邻点云P i-1和P i的变换关系。
步骤S122:根据相邻点云的坐标变换关系将所述第一点云序列变换至所述预设时刻的所述第一激光雷达的机体坐标系,形成新的所述第一点云序列。
在本发明实施例中,新的所述第一点云序列满足以下关系式:
P′ i=T 1T 2…T iP i
其中,P′ i为新的所述第一点云序列中第i个点云的坐标,i为正整数,P i为所述第一点云序列中第i个点云的坐标,T i为所述第一点云序列中相邻点云P i-1和P i的变换关系,T i=F(P i-1,P i)。
如图3所示,得到标定前的新的第一点云序列表示为L' 1={P' 0,P' 1,…P' n},新的第二点云序列表示为L' 2={P' 0,P' 1,…P' m}。
在本发明实施例中,优选地,选择起始时刻,将第一点云序列和第二点云序列变换至起始时刻的对应激光雷达的机体坐标系。即将第一点云序列变换至起始时刻的第一激光雷达的机体坐标系,将第二点云序列变换至起始时刻的第二激光雷达的机体坐标系。
步骤S123:将新的所述第一点云序列合并,得到基于所述预设时刻的所述第一激光雷达的机体坐标系的所述第一点云地图。
对于第二点云序列,应用同时定位与制图算法,计算所述第二点云序列中相邻点云的变换关系。具体地,遍历所述第二点云序列,应用点云配准算法计算所述第二点云序列中任一相邻点云的变换关系;使用通用图优化算法优化所述第二点云序列中任一相邻点云的变换关系。对于第二点云序列L 2,从1到m,使用SLAM算法计算得到第一点云序列L 2中相邻点云的坐标变换关系T j=F(P j-1,P j),其中,P j-1为第一点云序列中第j-1个点云的坐标,P j为第一点云序列中第j个点云的坐标,T j为第一点云序列中相邻点云P j-1和P j的变换关系。
然后根据相邻点云的变换关系将所述第二点云序列变换至所述预设时刻的所述第二激光雷达的机体坐标系,形成新的所述第二点云序列;进而将新的所述第二点云序列合并,得到基于所述预设时刻的所述第二激光雷达的机体坐标系的所述第二点云地图,其中所述第二点云地图与所述第一点云地图部分重叠。其中,新的所述第二点云序列满足以下关系式:
P′ j=T 1T 2…T jP j
其中,P′ j为新的所述第二点云序列中第j个点云的坐标,j为正整数,P j为所述第二点云序列中第j个点云的坐标,T j为所述第二点云序列中相邻点云P j-1和P j的变换关系,T j=F(P j-1,P j)。得到标定前的新的第二点云序列表示为L' 2={P' 0,P' 1,…P' m}。标定前的新的第一点云序列L' 1中的单帧点云以及标定前的新的第二点云序列L' 2中的单帧点云如图3所示。
在本发明实施例中,第一点云地图和第二点云地图分别基于相同预设时刻的不同机体坐标系。将标定前的新的所述第一点云序列中n个点云合并得到标定前的基于前面选择的预设时刻的第一激光雷达的机体坐标系的第一点云地图M 1,第一点云地图M 1相当于第一点云序列中n个点云的叠加,其形状与图3中的L' 1相似,但是点更加密集。对应地,将新的所述第二点云序列中m个点云合并得到标定前的基于前面选择的预设时刻的第二激光雷达的机体坐标系的第二点云地图M 2。第二点云地图M 2相当于第二点云序列中m个点云的叠加,其形状与图3中的L' 2相似,但是点更加密集。第一点云地图M 1和第二点云地图M 2部分重叠。
步骤S13:应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。
具体地,应用点云配准算法计算第二点云地图M 2变换至第一点云地图M 1的变换关系,亦即变换矩阵T=F(M 1,M 2),变换矩阵T即为最终的标定矩阵。其中,点云配准算法包括迭代最近点算法(ICP)或正态分布变换算法(NDT),在本发明其他实施例中,也可以应用其他的点云配准算法,在此不作限制。在本发明实施例中,也可以计算第一点云地图M 1变换至第二点云地图M 2的变换关系。根据标定结果对第二点云地图M 2和第一点云地图M 1进行标定得到标定后的点云地图,标定过程就相当于将第一点云地图M 1和第二点云地图M 2变换至同一 坐标系下,如此经过对第一点云地图M 1和第二点云地图M 2标定后得到的标定后的点云地图相当于将第一点云地图M 1或第二点云地图M 2相对于另一个偏移一定的距离和/或旋转一定的角度使两者尽量重叠。
为加速计算,在步骤S13之前,分别对得到的所述第一点云地图和所述第二点云地图进行滤波操作。具体地,分别对第一点云地图和第二点云地图进行抽稀、去噪、特征点提取等滤波操作,以减少数据量,并提高数据质量,方便后续进行标定。其中,抽稀算法包括网格下采样算法,如八叉树网格抽稀算法。
在本发明实施例中,得到第二点云地图M 2相对第一点云地图M 1的标定结构,即标定矩阵T后,可以直接应用该标定矩阵T对第二激光雷达的第二点云序列L 2和第一激光雷达的第一点云序列L 1进行标定,图4为对第二激光雷达的第二点云序列L 2和第一激光雷达的第一点云序列L 1标定后的点云。
需要说明的是,有多个激光雷达时,可以先分别获取各激光雷达的点云序列相对其中一个激光雷达的点云序列的标定矩阵,然后各标定矩阵进行标定。如对于三个激光雷达的点云序列L 1、L 2、L 3,先分别获取第二激光雷达的点云序列L 2相对第一激光雷达的点云序列L 1的标定矩阵以及第三激光雷达的点云序列L 3相对第一激光雷达的点云序列L 1的标定矩阵,后对该三个激光雷达的点云序列进行标定,获取标定后的点云。也可以先获取任两个激光雷达的点云序列的标定矩阵,然后各标定矩阵进行标定。如对于三个激光雷达的点云序列L 1、L 2、L 3,先分别获取第二激光雷达的点云序列L 2相对第一激光雷达的点云序列L 1的标定矩阵以及第三激光雷达的点云序列L 3相对第二激光雷达的点云序列L 2的标定矩阵,然后根据该两个标定矩阵对此三个激光雷达的点云序列进行标定,获取标定后的点云。此两种方法最终获取的标定后的点云相同。图5为对三个激光雷达的点云序列L 1、L 2、L 3标定后的点云。
在本发明的实施例中,外参标定方法包括:至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变 换关系,获得标定结果。因此,通过装载激光雷达的载体的移动或旋转,扩大单个激光雷达的视场,将不同时刻不同坐标系的点云变换到同一个坐标系下,进行多个激光雷达的时间配准,使用相同时刻的各自机体坐标下表示的点云地图,计算点云地图间的相对坐标变换关系,实现激光雷达外参标定,使重叠区域不足的多激光雷达能够使用通过点云配准算法进行外参标定。
图6示出了本发明实施例的外参标定装置的结构示意图。如图6所示,该外参标定装置包括:数据采集单元601、配准单元602以及标定单元603。其中:
数据采集单元601用于至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;配准单元602用于根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;标定单元603用于应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。
在一种可选的方式中,移动或旋转的所述第一激光雷达以及所述第二激光雷达位于具有结构化特征物的场地中。
在一种可选的方式中,配准单元602用于:应用同时定位与制图算法,分别计算所述第一点云序列中相邻点云的变换关系;选择预设时刻,根据相邻点云的坐标变换关系分别将所述第一点云序列变换至所述预设时刻的所述第一激光雷达的机体坐标系,形成新的所述第一点云序列;将新的所述第一点云序列合并,得到基于所述预设时刻的所述第一激光雷达的机体坐标系的所述第一点云地图;应用同时定位与制图算法,计算所述第二点云序列中相邻点云的变换关系;根据相邻点云的变换关系将所述第二点云序列变换至所述预设时刻的所述第二激光雷达的机体坐标系,形成新的所述第二点云序列;将新的所述第二点云序列合并,得到基于所述预设时刻的所述第二激光雷达的机体坐标系的所述第二点云地图,其中所述第二点云地图与所述第一点云地图部分重叠。
在一种可选的方式中,配准单元602还用于:遍历所述第一点云序列,应用点云配准算法计算所述第一点云序列中任一相邻点云的变换关系;使用通用图优化算法优化所述第一点云序列中任一相邻点云的变换关系;遍历所述第二 点云序列,应用点云配准算法计算所述第二点云序列中任一相邻点云的变换关系;使用通用图优化算法优化所述第二点云序列中任一相邻点云的变换关系。
在一种可选的方式中,所述新的所述第一点云序列满足以下关系式:
P′ i=T 1T 2…T iP i
其中,P′ i为新的所述第一点云序列中第i个点云的坐标,i为正整数,P i为所述第一点云序列中第i个点云的坐标,T i为所述第一点云序列中相邻点云P i-1和P i的变换关系,T i=F(P i-1,P i);
所述新的所述第二点云序列满足以下关系式:
P′ j=T 1T 2…T jP j
其中,P′ j为新的所述第二点云序列中第j个点云的坐标,j为正整数,P j为所述第二点云序列中第j个点云的坐标,T j为所述第二点云序列中相邻点云P j-1和P j的变换关系,T j=F(P j-1,P j)。
在一种可选的方式中,配准单元602还用于:分别对所述第一点云地图和所述第二点云地图进行滤波操作。
在一种可选的方式中,所述点云配准算法包括迭代最近点算法或正态分布变换算法。
在本发明的实施例中,外参标定方法包括:至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。因此,通过装载激光雷达的载体的移动或旋转,扩大单个激光雷达的视场,将不同时刻不同坐标系的点云变换到同一个坐标系下,进行多个激光雷达的时间配准,使用相同时刻的各自机体坐标下表示的点云地图,计算点云地图间的相对坐标变换关系,实现激光雷达外参标定,使重叠区域不足的多激光雷达能够使用通用点云配准算法进行外参标定。
本发明实施例提供了一种非易失性计算机存储介质,所述计算机存储介质 存储有至少一可执行指令,该计算机可执行指令可执行上述任意方法实施例中的外参标定方法。
可执行指令具体可以用于使得处理器执行以下操作:
至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;
根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;
应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。
在一种可选的方式中,移动或旋转的所述第一激光雷达以及所述第二激光雷达位于具有结构化特征物的场地中。
在一种可选的方式中,可执行指令具体可以用于使得处理器执行以下操作:
应用同时定位与制图算法,计算所述第一点云序列中相邻点云的变换关系;
根据相邻点云的坐标变换关系将所述第一点云序列变换至所述预设时刻的所述第一激光雷达的机体坐标系,形成新的所述第一点云序列;
将新的所述第一点云序列合并,得到基于所述预设时刻的所述第一激光雷达的机体坐标系的所述第一点云地图;
应用同时定位与制图算法,计算所述第二点云序列中相邻点云的变换关系;
根据相邻点云的变换关系将所述第二点云序列变换至所述预设时刻的所述第二激光雷达的机体坐标系,形成新的所述第二点云序列;
将新的所述第二点云序列合并,得到基于所述预设时刻的所述第二激光雷达的机体坐标系的所述第二点云地图,其中所述第二点云地图与所述第一点云地图部分重叠。
在一种可选的方式中,可执行指令具体可以用于使得处理器执行以下操作:
遍历所述第一点云序列,应用点云配准算法计算所述第一点云序列中任一相邻点云的变换关系;
使用通用图优化算法优化所述第一点云序列和所述第二点云序列中任一相邻点云的变换关系;
遍历所述第二点云序列,应用点云配准算法计算所述第二点云序列中任一相邻点云的变换关系;
使用通用图优化算法优化所述第二点云序列中任一相邻点云的变换关系。
在一种可选的方式中,所述新的所述第一点云序列满足以下关系式:
P′ i=T 1T 2…T iP i
其中,P′ i为新的所述第一点云序列中第i个点云的坐标,i为正整数,P i为所述第一点云序列中第i个点云的坐标,T i为所述第一点云序列中相邻点云P i-1和P i的变换关系,T i=F(P i-1,P i);
所述新的所述第二点云序列满足以下关系式:
P′ j=T 1T 2…T jP j
其中,P′ j为新的所述第二点云序列中第j个点云的坐标,j为正整数,P j为所述第二点云序列中第j个点云的坐标,T j为所述第二点云序列中相邻点云P j-1和P j的变换关系,T j=F(P j-1,P j)。
在一种可选的方式中,可执行指令具体可以用于使得处理器执行以下操作:
分别对所述第一点云地图和所述第二点云地图进行滤波操作。
在一种可选的方式中,所述点云配准算法包括迭代最近点算法或正态分布变换算法。
在本发明的实施例中,外参标定方法包括:至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。因此,通过装载激光雷达的载体的移动或旋转,扩大单个激光雷达的视场,将不同时刻不同坐标系的点云变换到同一个坐标系下, 进行多个激光雷达的时间配准,使用相同时刻的各自机体坐标下表示的点云地图,计算点云地图间的相对坐标变换关系,实现激光雷达外参标定,使重叠区域不足的多激光雷达能够使用通用点云配准算法进行外参标定。
本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意方法实施例中的外参标定方法。
可执行指令具体可以用于使得处理器执行以下操作:
至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;
根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;
应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。
在一种可选的方式中,移动或旋转的所述第一激光雷达以及所述第二激光雷达位于具有结构化特征物的场地中。
在一种可选的方式中,可执行指令具体可以用于使得处理器执行以下操作:
应用同时定位与制图算法,计算所述第一点云序列中相邻点云的变换关系;
根据相邻点云的坐标变换关系将所述第一点云序列变换至所述预设时刻的所述第一激光雷达的机体坐标系,形成新的所述第一点云序列;
将新的所述第一点云序列合并,得到基于所述预设时刻的所述第一激光雷达的机体坐标系的所述第一点云地图;
应用同时定位与制图算法,计算所述第二点云序列中相邻点云的变换关系;
根据相邻点云的变换关系将所述第二点云序列变换至所述预设时刻的所述第二激光雷达的机体坐标系,形成新的所述第二点云序列;
将新的所述第二点云序列合并,得到基于所述预设时刻的所述第二激光雷 达的机体坐标系的所述第二点云地图,其中所述第二点云地图与所述第一点云地图部分重叠。
在一种可选的方式中,可执行指令具体可以用于使得处理器执行以下操作:
遍历所述第一点云序列,应用点云配准算法计算所述第一点云序列中任一相邻点云的变换关系;
使用通用图优化算法优化所述第一点云序列中任一相邻点云的变换关系;
遍历所述第二点云序列,应用点云配准算法计算所述第二点云序列中任一相邻点云的变换关系;
使用通用图优化算法优化所述第二点云序列中任一相邻点云的变换关系。
在一种可选的方式中,所述新的所述第一点云序列满足以下关系式:
P′ i=T 1T 2…T iP i
其中,P′ i为新的所述第一点云序列中第i个点云的坐标,i为正整数,P i为所述第一点云序列中第i个点云的坐标,T i为所述第一点云序列中相邻点云P i-1和P i的变换关系,T i=F(P i-1,P i);
所述新的所述第二点云序列满足以下关系式:
P′ j=T 1T 2…T jP j
其中,P′ j为新的所述第二点云序列中第j个点云的坐标,j为正整数,P j为所述第二点云序列中第j个点云的坐标,T j为所述第二点云序列中相邻点云P j-1和P j的变换关系,T j=F(P j-1,P j)。
在一种可选的方式中,可执行指令具体可以用于使得处理器执行以下操作:
分别对所述第一点云地图和所述第二点云地图进行滤波操作。
在一种可选的方式中,所述点云配准算法包括迭代最近点算法或正态分布变换算法。
在本发明的实施例中,外参标定方法包括:至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;根据所述第一点云序列和所述第二点云序列分别获得预 设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。因此,通过装载激光雷达的载体的移动或旋转,扩大单个激光雷达的视场,将不同时刻不同坐标系的点云变换到同一个坐标系下,进行多个激光雷达的时间配准,使用相同时刻的各自机体坐标下表示的点云地图,计算点云地图间的相对坐标变换关系,实现激光雷达外参标定,使重叠区域不足的多激光雷达能够使用通用点云配准算法进行外参标定。
图7示出了本发明设备实施例的结构示意图,本发明具体实施例并不对设备的具体实现做限定。
如图7所示,该设备可以包括:处理器(processor)702、通信接口(Communications Interface)704、存储器(memory)706、以及通信总线708。
其中:处理器702、通信接口704、以及存储器706通过通信总线708完成相互间的通信。通信接口704,用于与其它设备比如客户端或其它服务器等的网元通信。处理器702,用于执行程序710,具体可以执行上述外参标定方法实施例中的相关步骤。
具体地,程序710可以包括程序代码,该程序代码包括计算机操作指令。
处理器702可能是中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。
存储器706,用于存放程序710。存储器706可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
程序710具体可以用于使得处理器702执行以下操作:
至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;
根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;
应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。
在一种可选的方式中,移动或旋转的所述第一激光雷达以及所述第二激光雷达位于具有结构化特征物的场地中。
在一种可选的方式中,程序710具体可以用于使得处理器702执行以下操作:
应用同时定位与制图算法,计算所述第一点云序列中相邻点云的变换关系;
根据相邻点云的坐标变换关系将所述第一点云序列变换至所述预设时刻的所述第一激光雷达的机体坐标系,形成新的所述第一点云序列;
将新的所述第一点云序列合并,得到基于所述预设时刻的所述第一激光雷达的机体坐标系的所述第一点云地图;
应用同时定位与制图算法,计算所述第二点云序列中相邻点云的变换关系;
根据相邻点云的变换关系将所述第二点云序列变换至所述预设时刻的所述第二激光雷达的机体坐标系,形成新的所述第二点云序列;
将新的所述第二点云序列合并,得到基于所述预设时刻的所述第二激光雷达的机体坐标系的所述第二点云地图,其中所述第二点云地图与所述第一点云地图部分重叠。
在一种可选的方式中,程序710具体可以用于使得处理器702执行以下操作:
遍历所述第一点云序列,应用点云配准算法计算所述第一点云序列中任一相邻点云的变换关系;
使用通用图优化算法优化所述第一点云序列中任一相邻点云的变换关系;
遍历所述第二点云序列,应用点云配准算法计算所述第二点云序列中任一相邻点云的变换关系;
使用通用图优化算法优化所述第二点云序列中任一相邻点云的变换关系。
在一种可选的方式中,所述新的所述第一点云序列满足以下关系式:
P′ i=T 1T 2…T iP i
其中,P′ i为新的所述第一点云序列中第i个点云的坐标,i为正整数,P i为所述第一点云序列中第i个点云的坐标,T i为所述第一点云序列中相邻点云P i-1和P i的变换关系,T i=F(P i-1,P i);
所述新的所述第二点云序列满足以下关系式:
P′ j=T 1T 2…T jP j
其中,P′ j为新的所述第二点云序列中第j个点云的坐标,j为正整数,P j为所述第二点云序列中第j个点云的坐标,T j为所述第二点云序列中相邻点云P j-1和P j的变换关系,T j=F(P j-1,P j)。
在一种可选的方式中,程序710具体可以用于使得处理器702执行以下操作:
分别对所述第一点云地图和所述第二点云地图进行滤波操作。
在一种可选的方式中,所述点云配准算法包括迭代最近点算法或正态分布变换算法。
在本发明的实施例中,外参标定方法包括:至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。因此,通过装载激光雷达的载体的移动或旋转,扩大单个激光雷达的视场,将不同时刻不同坐标系的点云变换到同一个坐标系下,进行多个激光雷达的时间配准,使用相同时刻的各自机体坐标下表示的点云地图,计算点云地图间的相对坐标变换关系,实现激光雷达外参标定,使重叠区域不足的多激光雷达能够使用通用点云配准算法进行外参标定。
在此提供的算法或显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构 造这类系统所要求的结构是显而易见的。此外,本发明实施例也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施 例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (10)

  1. 一种外参标定方法,其特征在于,所述方法包括:
    至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;
    根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;
    应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。
  2. 如权利要求1所述的外参标定方法,其特征在于,移动或旋转的所述第一激光雷达以及所述第二激光雷达位于具有结构化特征物的场地中。
  3. 如权利要求1所述的外参标定方法,其特征在于,所述根据所述第一点云序列获得预设时刻的所述第一激光雷达的第一点云地图,包括:
    应用同时定位与制图算法,计算所述第一点云序列中相邻点云的变换关系;
    根据相邻点云的变换关系将所述第一点云序列变换至所述预设时刻的所述第一激光雷达的机体坐标系,形成新的所述第一点云序列;
    将新的所述第一点云序列合并,得到基于所述预设时刻的所述第一激光雷达的机体坐标系的所述第一点云地图;
    所述根据所述第二点云序列获得预设时刻的所述第二激光雷达的第二点云地图,包括:
    应用同时定位与制图算法,计算所述第二点云序列中相邻点云的变换关系;
    根据相邻点云的变换关系将所述第二点云序列变换至所述预设时刻的所述第二激光雷达的机体坐标系,形成新的所述第二点云序列;
    将新的所述第二点云序列合并,得到基于所述预设时刻的所述第二激光雷达的机体坐标系的所述第二点云地图,其中所述第二点云地图与所述第一点云地图部分重叠。
  4. 如权利要求3所述的外参标定方法,其特征在于,所述应用同时定位与 制图算法,计算所述第一点云序列中相邻点云的变换关系,包括:
    遍历所述第一点云序列,应用点云配准算法计算所述第一点云序列中任一相邻点云的变换关系;
    使用通用图优化算法优化所述第一点云序列中任一相邻点云的变换关系;
    所述应用同时定位与制图算法,计算所述第二点云序列中相邻点云的变换关系,包括:
    遍历所述第二点云序列,应用点云配准算法计算所述第二点云序列中任一相邻点云的变换关系;
    使用通用图优化算法优化所述第二点云序列中任一相邻点云的变换关系。
  5. 如权利要求3所述的外参标定方法,其特征在于,所述新的所述第一点云序列满足以下关系式:
    P′ i=T 1T 2…T iP i
    其中,P′ i为新的所述第一点云序列中第i个点云的坐标,i为正整数,P i为所述第一点云序列中第i个点云的坐标,T i为所述第一点云序列相邻点云P i-1和P i的变换关系,T i=F(P i-1,P i);
    所述新的所述第二点云序列满足以下关系式:
    P′ j=T 1T 2…T jP j
    其中,P′ j为新的所述第二点云序列中第j个点云的坐标,j为正整数,P j为所述第二点云序列中第j个点云的坐标,T j为所述第二点云序列中相邻点云P j-1和P j的变换关系,T j=F(P j-1,P j)。
  6. 如权利要求1所述的外参标定方法,其特征在于,所述应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果之前,包括:
    分别对所述第一点云地图和所述第二点云地图进行滤波操作。
  7. 根据权利要求1-6中任一项所述的外参标定方法,其特征在于,所述点云配准算法包括迭代最近点算法或正态分布变换算法。
  8. 一种外参标定装置,其特征在于,所述外参标定装置包括:
    数据采集单元,用于至少采集移动或旋转的第一激光雷达的第一点云序列以及第二激光雷达的第二点云序列,其中所述第一点云序列位于所述第一激光雷达的机体坐标系,所述第二点云序列位于所述第二激光雷达的机体坐标系;
    配准单元,用于应用同时定位与制图算法,根据所述第一点云序列和所述第二点云序列分别获得预设时刻的所述第一激光雷达的第一点云地图以及所述第二激光雷达的第二点云地图;
    标定单元,用于应用点云配准算法计算所述第二点云地图变换至所述第一点云地图的变换关系,获得标定结果。
  9. 一种计算设备,其特征在于,所述计算设备包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;
    所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行根据权利要求1-7任一项所述外参标定方法的步骤。
  10. 一种计算机存储介质,其特征在于,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行根据权利要求1-7任一项所述外参标定方法的步骤。
PCT/CN2019/101813 2019-08-21 2019-08-21 外参标定方法、装置、计算设备以及计算机存储介质 WO2021031157A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202310416245.1A CN116577760A (zh) 2019-08-21 2019-08-21 一种外参标定装置
PCT/CN2019/101813 WO2021031157A1 (zh) 2019-08-21 2019-08-21 外参标定方法、装置、计算设备以及计算机存储介质
CN201980002761.1A CN110741282B (zh) 2019-08-21 2019-08-21 外参标定方法、装置、计算设备以及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101813 WO2021031157A1 (zh) 2019-08-21 2019-08-21 外参标定方法、装置、计算设备以及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2021031157A1 true WO2021031157A1 (zh) 2021-02-25

Family

ID=69274602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101813 WO2021031157A1 (zh) 2019-08-21 2019-08-21 外参标定方法、装置、计算设备以及计算机存储介质

Country Status (2)

Country Link
CN (2) CN116577760A (zh)
WO (1) WO2021031157A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640756A (zh) * 2021-08-11 2021-11-12 北京航迹科技有限公司 一种数据标定方法、系统、装置、计算机程序以及存储介质
CN113640778A (zh) * 2021-08-12 2021-11-12 东风悦享科技有限公司 一种基于无重叠视场的多激光雷达的联合标定方法
CN113702931A (zh) * 2021-08-19 2021-11-26 中汽创智科技有限公司 一种车载雷达的外参标定方法、装置及存储介质
CN114236515A (zh) * 2021-12-30 2022-03-25 清华大学苏州汽车研究院(吴江) 多激光雷达标定系统、无人驾驶矿用车辆及其标定方法
CN115100287A (zh) * 2022-04-14 2022-09-23 美的集团(上海)有限公司 外参标定方法及机器人
CN115236644A (zh) * 2022-07-26 2022-10-25 广州文远知行科技有限公司 一种激光雷达外参标定方法、装置、设备和存储介质
CN117689536A (zh) * 2024-02-01 2024-03-12 浙江华是科技股份有限公司 激光雷达拼接配准方法、系统、装置及计算机存储介质
CN117761663A (zh) * 2023-10-31 2024-03-26 新石器慧通(北京)科技有限公司 外参标定方法、装置及自动驾驶车辆
CN117994549A (zh) * 2024-01-09 2024-05-07 国网湖北省电力有限公司超高压公司 超高压检修安全管控方法、装置、设备及存储介质
CN118154676A (zh) * 2024-05-09 2024-06-07 北京理工大学前沿技术研究院 一种基于激光雷达的场景定位方法和系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021253193A1 (zh) * 2020-06-15 2021-12-23 深圳市大疆创新科技有限公司 多组激光雷达外参的标定方法、标定装置和计算机存储介质
CN114440922A (zh) * 2020-10-30 2022-05-06 阿里巴巴集团控股有限公司 一种评测激光标定的方法、装置、相关设备及存储介质
CN112462350B (zh) * 2020-12-10 2023-04-04 苏州一径科技有限公司 雷达标定方法及装置、电子设备及存储介质
WO2022246826A1 (zh) * 2021-05-28 2022-12-01 深圳市大疆创新科技有限公司 外参标定方法、装置、可移动平台和存储介质
CN113281770A (zh) * 2021-05-28 2021-08-20 东软睿驰汽车技术(沈阳)有限公司 坐标系关系获取方法及装置
CN113484843B (zh) * 2021-06-02 2024-09-06 福瑞泰克智能系统有限公司 一种激光雷达与组合导航间外参数的确定方法及装置
CN113465608B (zh) * 2021-07-22 2024-05-03 清华大学苏州汽车研究院(吴江) 一种路侧传感器标定方法及系统
CN114152935B (zh) * 2021-11-19 2023-02-03 苏州一径科技有限公司 一种雷达外参标定精度的评估方法、装置及设备
CN115235525B (zh) * 2021-12-07 2023-05-23 上海仙途智能科技有限公司 传感器检测方法、装置、电子设备及可读储存介质
CN114646932B (zh) * 2022-05-23 2022-10-21 深圳元戎启行科技有限公司 基于外置雷达的雷达外参标定方法、装置和计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764457A (zh) * 2015-04-21 2015-07-08 北京理工大学 一种用于无人车的城市环境构图方法
CN104793619A (zh) * 2015-04-17 2015-07-22 上海交通大学 基于摆动单线激光雷达的仓库巷道自动引导车导航装置
CN106872963A (zh) * 2017-03-31 2017-06-20 厦门大学 一种多组多线激光雷达的自动标定算法
US20190174076A1 (en) * 2009-05-20 2019-06-06 Continental Advanced Lidar Solutions Us, Llc 3-dimensional hybrid camera and production system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732584B (zh) * 2017-04-17 2020-06-30 百度在线网络技术(北京)有限公司 用于更新地图的方法和装置
CN109839624A (zh) * 2017-11-27 2019-06-04 北京万集科技股份有限公司 一种多激光雷达位置标定方法及装置
CN108648240B (zh) * 2018-05-11 2022-09-23 东南大学 基于点云特征地图配准的无重叠视场相机姿态标定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174076A1 (en) * 2009-05-20 2019-06-06 Continental Advanced Lidar Solutions Us, Llc 3-dimensional hybrid camera and production system
CN104793619A (zh) * 2015-04-17 2015-07-22 上海交通大学 基于摆动单线激光雷达的仓库巷道自动引导车导航装置
CN104764457A (zh) * 2015-04-21 2015-07-08 北京理工大学 一种用于无人车的城市环境构图方法
CN106872963A (zh) * 2017-03-31 2017-06-20 厦门大学 一种多组多线激光雷达的自动标定算法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640756B (zh) * 2021-08-11 2024-05-17 北京航迹科技有限公司 一种数据标定方法、系统、装置、计算机程序以及存储介质
CN113640756A (zh) * 2021-08-11 2021-11-12 北京航迹科技有限公司 一种数据标定方法、系统、装置、计算机程序以及存储介质
CN113640778A (zh) * 2021-08-12 2021-11-12 东风悦享科技有限公司 一种基于无重叠视场的多激光雷达的联合标定方法
CN113702931A (zh) * 2021-08-19 2021-11-26 中汽创智科技有限公司 一种车载雷达的外参标定方法、装置及存储介质
CN113702931B (zh) * 2021-08-19 2024-05-24 中汽创智科技有限公司 一种车载雷达的外参标定方法、装置及存储介质
CN114236515A (zh) * 2021-12-30 2022-03-25 清华大学苏州汽车研究院(吴江) 多激光雷达标定系统、无人驾驶矿用车辆及其标定方法
CN115100287A (zh) * 2022-04-14 2022-09-23 美的集团(上海)有限公司 外参标定方法及机器人
CN115236644A (zh) * 2022-07-26 2022-10-25 广州文远知行科技有限公司 一种激光雷达外参标定方法、装置、设备和存储介质
CN117761663A (zh) * 2023-10-31 2024-03-26 新石器慧通(北京)科技有限公司 外参标定方法、装置及自动驾驶车辆
CN117994549A (zh) * 2024-01-09 2024-05-07 国网湖北省电力有限公司超高压公司 超高压检修安全管控方法、装置、设备及存储介质
CN117689536A (zh) * 2024-02-01 2024-03-12 浙江华是科技股份有限公司 激光雷达拼接配准方法、系统、装置及计算机存储介质
CN117689536B (zh) * 2024-02-01 2024-05-10 浙江华是科技股份有限公司 激光雷达拼接配准方法、系统、装置及计算机存储介质
CN118154676A (zh) * 2024-05-09 2024-06-07 北京理工大学前沿技术研究院 一种基于激光雷达的场景定位方法和系统

Also Published As

Publication number Publication date
CN110741282A (zh) 2020-01-31
CN116577760A (zh) 2023-08-11
CN110741282B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2021031157A1 (zh) 外参标定方法、装置、计算设备以及计算机存储介质
WO2022022694A1 (zh) 自动驾驶环境感知方法及系统
US10878243B2 (en) Method, device and apparatus for generating electronic map, storage medium, and acquisition entity
CN109285220B (zh) 一种三维场景地图的生成方法、装置、设备及存储介质
CN110531376B (zh) 用于港口无人驾驶车辆的障碍物检测和跟踪方法
CN110609290B (zh) 激光雷达匹配定位方法及装置
WO2022000857A1 (zh) 数据集的建立方法、车辆和存储介质
CN110873883B (zh) 融合激光雷达和imu的定位方法、介质、终端和装置
CN111417871A (zh) 基于激光雷达利用高清晰度地图的集成运动估计的迭代最近点处理
CN110386142A (zh) 用于自动驾驶车辆的俯仰角校准方法
CN108765487A (zh) 重建三维场景的方法、装置、设备和计算机可读存储介质
CN109186608B (zh) 一种面向重定位的稀疏化三维点云地图生成方法
CN110503713B (zh) 一种基于轨迹平面法向量和圆心结合的旋转轴估计方法
CN108326845B (zh) 基于双目相机和激光雷达的机器人定位方法、装置及系统
CN110673107B (zh) 基于多线激光雷达的路沿检测方法及装置
CN110009718A (zh) 一种三维高精度地图生成方法及装置
RU2767949C2 (ru) Способ (варианты) и система для калибровки нескольких лидарных датчиков
US11860315B2 (en) Methods and systems for processing LIDAR sensor data
CN108279670A (zh) 用于调整点云数据采集轨迹的方法、设备以及计算机可读介质
RU2764708C1 (ru) Способы и системы для обработки данных лидарных датчиков
CN114485698B (zh) 一种交叉路口引导线生成方法及系统
CN104615880B (zh) 一种三维激光雷达点云匹配的快速icp方法
WO2022179094A1 (zh) 车载激光雷达外参数联合标定方法、系统、介质及设备
WO2021195262A1 (en) Ground map generation
CN114137562B (zh) 一种基于改进全局最邻近的多目标跟踪方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942461

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19942461

Country of ref document: EP

Kind code of ref document: A1