WO2021031031A1 - 确定信道的方法和装置 - Google Patents

确定信道的方法和装置 Download PDF

Info

Publication number
WO2021031031A1
WO2021031031A1 PCT/CN2019/101207 CN2019101207W WO2021031031A1 WO 2021031031 A1 WO2021031031 A1 WO 2021031031A1 CN 2019101207 W CN2019101207 W CN 2019101207W WO 2021031031 A1 WO2021031031 A1 WO 2021031031A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
channels
information
conflict
multiple channels
Prior art date
Application number
PCT/CN2019/101207
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/101207 priority Critical patent/WO2021031031A1/zh
Priority to EP19942351.8A priority patent/EP4013166A4/en
Priority to CN201980099001.7A priority patent/CN114175828B/zh
Publication of WO2021031031A1 publication Critical patent/WO2021031031A1/zh
Priority to US17/672,038 priority patent/US20220174669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for determining a channel.
  • the uplink and side link transmissions are limited by the capabilities of user equipment (UE), transmission power, and channel environment. They cannot be at the same time.
  • Send multiple channels or reference signals at the same time such as physical uplink control channel (PUCCH) and physical uplink share channel (PUSCH), physical sidelink control channel (PSCCH), The physical sidelink feedback channel (PSFCH) and the physical sidelink share channel (PSSCH), and no matter whether different channels are on the same carrier or different carriers, they may be restricted and cannot be simultaneously send.
  • the base station In order to avoid simultaneous transmission, on the one hand, the base station is required to avoid conflicts between different channels when scheduling, on the other hand, when conflicts cannot be avoided, corresponding rules are defined to determine which channel needs to be transmitted, so that the base station and the UE can reach an agreement. Consistent. However, when multiple channels collide with the same channel at the same time, the base station and the UE can be kept consistent in the process of determining resources to further meet the transmission needs of terminal equipment, thereby improving the reliability of uplink or sideline transmission. Current issues that need to be resolved.
  • This application provides a method and device for channel determination, which can determine a channel for transmission for base stations and terminal equipment, and improve the reliability of transmission.
  • a method for determining a channel which includes: when a first channel overlaps each of a plurality of channels in the time domain, and each channel of the plurality of channels is different from each other in the time domain.
  • the second channel is determined from the multiple channels according to the first parameter information; the channel to be sent is determined from the first channel and the second channel.
  • the first channel in this application may be a PUSCH, for example, a PUSCH that does not carry an uplink shared channel (UL-SCH), or a PUSCH that carries aperiodic channel state information A-CSI or semi-persistent channel state information SP-CSI.
  • Each of the multiple channels may be PUSCH and/or PUCCH, for example, PUSCH and/or PUCCH carrying SR, CSI or HARQ, which is not limited in this application.
  • the first channel in this application may be PSSCH, such as the PSSCH of A-CSI.
  • the multiple channels may be PSCCH and/or PSFCH, which is not limited in this application.
  • the multiple channels include at least two channels, and each channel of the multiple channels does not overlap in the time domain, that is, no conflict occurs, but the multiple channels Each channel and the first channel overlap in the time domain, that is, a conflict occurs.
  • PUCCH carrying SR and PUCCH carrying HARQ collide with PUSCH carrying A-CSI at the same time, but PUCCH carrying SR and PUCCH carrying HARQ do not conflict, then PUCCH carrying SR and PUCCH carrying HARQ are It can be understood that for two of the multiple channels in this application, the PUSCH carrying A-CSI can be understood as the first channel mentioned in this application, and this application does not limit the number of channels included in the multiple channels.
  • the terminal device and the base station can determine the second channel from the multiple channels according to the first parameter information. It can be understood that the terminal device and the base station select one channel from the multiple channels as the second channel, and first solve the second channel Conflict with the first channel. It should be understood that the second channel may be understood as a channel that is preferentially selected to resolve conflicts with the first channel.
  • the "channel to be sent” here corresponds to the base station side and may be referred to as the "channel to be received", and the “channel to be sent” here is not necessarily the channel that the terminal device sends to the base station.
  • the first channel after resolving the conflict between the second channel and the first channel, if the first channel is reserved as the channel to be transmitted, the first channel still conflicts with other channels in the plurality of channels, and this application will continue from Select other channels among multiple channels, continue to resolve the conflict with the first channel, until there is no conflict, and finally send the finally reserved channel.
  • the second channel is here
  • the channel to be sent is sent by the terminal equipment to the base station or other terminal equipment, which is not limited in this application.
  • the first parameter information can be understood as a parameter for selecting a channel from multiple channels.
  • the terminal device and the base station can formulate a channel conflict resolution order based on the first parameter information, and select one according to the first parameter. For the second channel, first resolve the conflict between the second channel and the first channel. If there are still similar conflicts afterwards, the method of this application will be repeated until the conflict is resolved.
  • the first parameter information includes information about the start time unit of each channel in the plurality of channels, and information about the time unit for sending the second channel.
  • the index is the smallest among the indexes of time units in the plurality of channels.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the time unit corresponding to the transmission time domain position of the conflicting channel. In other words, priority is given to processing conflicts of channels before the transmission start time.
  • the method of determining the channel can reserve and transmit as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal equipment and the terminal equipment.
  • the first parameter information includes the information of the start symbol of each channel in the plurality of channels, and the information of the start symbol of the second channel is The index is the smallest among the indexes of the start symbols in the plurality of channels.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the start symbols of the conflicting channels.
  • the conflict of the channel with the early start symbol is preferentially processed.
  • the method of determining the channel can reserve and send as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal equipment and the terminal equipment.
  • the method further includes: receiving multiple signalings, the multiple signalings are used to indicate time units for transmitting the multiple channels, and the first The parameter information includes the information of the start time unit for receiving the multiple signaling, and the index of the time unit used to indicate the signaling of the second channel is the smallest among the indexes of the time unit of the multiple signaling.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the receiving time of the scheduling signaling of the conflicting channels. In other words, prioritize the conflicts of the previously scheduled channels.
  • the method of determining the channel can reserve and send as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal equipment and the terminal equipment.
  • the first parameter information includes information of different service types carried by each of the multiple channels.
  • the first channel and the second channel carry the same service.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the types of services carried by the conflicting channels.
  • the conflicts of the high-priority channels of the carried services are processed preferentially, and the method of determining the channel can reserve and send as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal equipment and the terminal equipment.
  • the first parameter information includes priority information of information carried by each of the multiple channels.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the priority of the information carried by the conflicting channels.
  • the conflicts of the high priority channels of the carried information are processed preferentially.
  • the method of determining the channel can reserve and send as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal and the terminal.
  • the multiple channels are used to carry control information
  • the first parameter information includes the type of the control information carried by the multiple channels.
  • the method further includes: determining a channel that overlaps each of the multiple channels in the time domain as the first channel.
  • the base station and the terminal equipment may determine the order of processing conflicts between channels according to the type of information carried on the channel, such as the type of uplink control information UCI or side control information SCI; or, according to the transmission time sequence of the conflicting channels , Determine the conflict processing sequence between channels; or, determine the conflict processing sequence between channels according to the scheduling sequence of the conflicting channels; or, determine the conflict processing sequence between channels according to the different service types carried by the conflicting channels; and Or, according to the priority of the information carried by the conflicting channels, the conflict processing order between channels is determined.
  • the above method for determining the channel can reserve and send as much control information as possible, and improve the reliability of transmission between the base station and the terminal device or the terminal device and the terminal device.
  • a method for determining a channel which includes: when a first channel overlaps with each of a plurality of channels in the time domain, and each channel of the plurality of channels is different from each other in the time domain.
  • the second channel is determined from the multiple channels according to the first parameter information; the channel to be received is determined from the first channel and the second channel.
  • the first parameter information includes information about the start time unit for transmitting each of the multiple channels, and the index of the time unit for transmitting the second channel is in The index of the time unit in the multiple channels is the smallest.
  • the first parameter information includes the information of the start symbol of each of the multiple channels, and the information of the start symbol of the second channel
  • the index is the smallest among the indexes of the start symbols in the plurality of channels.
  • the method further includes: sending multiple signalings, the multiple signalings are used to indicate time units for transmitting the multiple channels, and the first
  • the parameter information includes the information of the start time unit for receiving the multiple signaling, and the index of the time unit used to indicate the signaling of the second channel is the smallest among the indexes of the time unit of the multiple signaling.
  • the first parameter information includes information of different service types carried by each of the multiple channels.
  • the first channel and the second channel carry the same type of service.
  • the first parameter information includes priority information of information carried by each of the multiple channels.
  • the multiple channels are used to carry control information
  • the first parameter information includes the type of the control information carried by the multiple channels.
  • the method further includes: determining a channel that overlaps each of the multiple channels in the time domain as the first channel.
  • an apparatus for determining a channel including: a first processing unit, configured to: when the first channel overlaps with each of the multiple channels in the time domain, and each of the multiple channels When the channels do not overlap each other in the time domain, the second channel is determined from the multiple channels according to the first parameter information; the second processing unit is used to determine the channel to be sent from the first channel and the second channel .
  • the first parameter information includes information about the start time unit of each channel in the plurality of channels, and the time unit for sending the second channel
  • the index is the smallest among the indexes of time units in the plurality of channels.
  • the first parameter information includes the information of the start symbol of each channel in the plurality of channels, and the information of the start symbol of the second channel is The index is the smallest among the indexes of the start symbols in the plurality of channels.
  • the device further includes: a communication unit, configured to receive multiple signalings, and the multiple signalings are used to indicate a time unit for transmitting the multiple channels ,
  • the first parameter information includes the information of the start time unit for receiving the multiple signaling, and the index of the time unit used to indicate the signaling of the second channel is in the index of the multiple signaling time unit Is the smallest.
  • the first parameter information includes information of different service types carried by each of the multiple channels.
  • the first channel and the second channel carry the same type of service.
  • the first parameter information includes priority information of information carried by each of the multiple channels.
  • the multiple channels are used to carry control information
  • the first parameter information includes the type of the control information carried by the multiple channels.
  • the first processing unit is further configured to determine a channel that overlaps each of the multiple channels in the time domain as the first channel.
  • an apparatus for determining a channel including: a first processing unit, configured to: when the first channel overlaps with each of the multiple channels in the time domain, and each of the multiple channels When the channels do not overlap each other in the time domain, the second channel is determined from the multiple channels according to the first parameter information; the second processing unit is used to determine the channel to be sent from the first channel and the second channel .
  • the first parameter information includes information about the start time unit for sending each of the multiple channels, and the index of the time unit for sending the second channel is The index of the time unit in the multiple channels is the smallest.
  • the first parameter information includes information about the start symbol of each channel in the plurality of channels, and the start symbol of the second channel The index is the smallest among the indexes of the start symbols in the plurality of channels.
  • the device further includes: a communication unit, configured to send multiple signalings, and the multiple signalings are used to indicate a time unit for transmitting the multiple channels ,
  • the first parameter information includes the information of the start time unit for receiving the multiple signaling, and the index of the time unit used to indicate the signaling of the second channel is in the index of the multiple signaling time unit Is the smallest.
  • the first parameter information includes information of different service types carried by each of the multiple channels.
  • the first channel and the second channel carry the same type of service.
  • the first parameter information includes priority information of information carried by each of the multiple channels.
  • the multiple channels are used to carry control information
  • the first parameter information includes the type of the control information carried by the multiple channels.
  • the first processing unit is further configured to determine a channel that overlaps each of the multiple channels in the time domain as the first channel.
  • a device which has the function of realizing the terminal device in the method design of the first aspect.
  • These functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a device in a sixth aspect, has the function of implementing the network equipment (such as a base station) in the method design of the second aspect.
  • These functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a terminal device including a transceiver and a processor.
  • the terminal device further includes a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the terminal device executes the first aspect or any one of the possibilities of the first aspect. The method in the implementation mode.
  • a network device including a transceiver and a processor.
  • the network device further includes a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the network device executes any one of the above-mentioned second aspect or the second aspect. The method in the implementation mode.
  • a communication system which includes the terminal device of the third aspect and the network device of the fourth aspect.
  • a communication device may be the terminal device in the above method design or a chip set in the terminal device.
  • the communication device includes a processor, which is coupled to a memory, and can be used to execute instructions in the memory to implement the method executed by the terminal device in the first aspect or any one of the possible implementation manners of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device may be a network device designed in the above method or a chip set in the network device.
  • the communication device includes a processor, coupled with a memory, and can be used to execute instructions in the memory to implement the method executed by the network device in the second aspect or any one of the possible implementation manners of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer program product comprising: computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
  • a computer-readable medium stores a program code, and when the computer program code runs on a computer, the computer executes the methods in the above aspects.
  • Fig. 1 is a schematic diagram of a wireless communication system suitable for an embodiment of the present application.
  • Figure 2 is a schematic diagram of an example of a resource selection process in a transmission process.
  • Fig. 3 is a schematic diagram of another example of the resource selection process in the transmission process.
  • FIG. 4 is a schematic diagram of another example of resource conflict during uplink transmission according to an embodiment of the present application.
  • FIG. 5 is a schematic interaction diagram of an example of a method for determining a channel provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another example of a resource selection process in a transmission process provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another example of a resource selection process in a transmission process provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of another example of a resource selection process in a transmission process provided by an embodiment of the present application.
  • FIG. 16 shows a schematic block diagram of an apparatus for channel determination in an embodiment of the present application.
  • FIG. 17 shows a schematic block diagram of an apparatus for channel determination in an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G 5th generation
  • NR new radio
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include one or more network devices, for example, the network device 101 shown in FIG. 1; the wireless communication system 100 may also include one or more terminal devices, for example, as shown in FIG. The terminal device 102, the terminal device 103, the terminal device 104, etc. are shown.
  • FIG. 1 is only a schematic diagram, and the communication system may also include other network equipment, such as core network equipment, wireless relay equipment, and wireless backhaul equipment, which are not shown in FIG. 1.
  • the embodiment of the present application does not limit the number of network devices and terminal devices included in the mobile communication system.
  • the terminal device 102, the terminal device 103, and the terminal device 104 in the embodiments of the present application may also be called terminals, user equipment (UE), mobile stations (mobile stations, MS), and mobile terminals. (mobile terminal, MT) etc.
  • the terminal equipment in the embodiments of this application can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, and can also be applied to virtual reality (VR) and augmented reality (AR). ), industrial control, self-driving, remote medical, smart grid, transportation safety, smart city, and smart home ) And other wireless terminals.
  • the aforementioned terminal devices and chips applicable to the aforementioned terminal devices are collectively referred to as terminal devices. It should be understood that the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the network device 101 in the embodiment of the present application may be a device used to communicate with terminal devices.
  • the network device may be a base station, an evolved node B (eNB), a femtocell base station, and wireless fidelity (WIFI).
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) in the system can also be an NR system
  • the gNB in the base station may also be a component or a part of equipment constituting a base station, such as a central unit (CU), a distributed unit (DU), or a baseband unit (BBU).
  • CU central unit
  • DU distributed unit
  • BBU baseband unit
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • the channel determination method provided in the embodiments of the present application can be applied to the communication process between the terminal device and the network device, for example, the uplink communication between the terminal device 102, the terminal device 103, the terminal device 104 and the base station 101.
  • Process can also be applied to the communication between the terminal device 102, the terminal device 103, the terminal device 104, such as the side link communication process, in the vehicle external information exchange (vehicle to everything, V2X) business, for the terminal device 102
  • V2X vehicle to everything
  • the communication process with the terminal device 103 is not limited in this application.
  • an uplink communication process between a terminal device and a base station will be used as an example to specifically introduce the channel determination method of the present application.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • first”, “second” and “third” in the embodiments of the present application are only for distinction and should not constitute any limitation on the present application.
  • first channel and “second channel” in the embodiment of the present application indicate the resources for transmitting information between the base station and the terminal device.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • pre-set can be pre-stored in the device (for example, including terminal devices and network devices), corresponding codes, tables, or other instructions that can be used to indicate
  • the related information is implemented in a manner, and this application does not limit the specific implementation manner thereof, such as preset rules and preset constants in the embodiments of this application.
  • the time slot can be understood as a part of serial self-multiplexing dedicated to the time slot information of a single channel.
  • the time slot can be understood as a channel.
  • the symbol is also referred to as a time-domain symbol, which can be an orthogonal frequency division multiplexing (OFDM) symbol, or a single carrier frequency division multiple access (single carrier frequency division multiple access) symbol.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • SC-FDMA orthogonal frequency division multiplexing with transform precoding
  • a time domain symbol can also be understood as a time unit.
  • a time unit can be one or more subframes; or, it can also be one or more time slots; or, it can also be one or more symbols.
  • one time unit is one symbol, in the description of the embodiment of the present application, the time domain symbol and the time unit may be equivalent.
  • the physical uplink channel may include the physical uplink control channel (PUCCH) defined in the LTE protocol or the NR protocol, the physical uplink share channel (PUSCH), and the physical uplink control channel defined as the network evolves.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink share channel
  • DCI format 0-0 0-1, 1-0, 1-1, 2-0, 2-1, 2-2, 2-3.
  • PUCCH resource indicator field or PUCCH resource indicator field PUCCH resource indicator field (PUCCH resource indicator field)
  • the information field of M bits in the DCI is used to indicate the available transmission resources of HARQ-ACK information.
  • the M is equal to 3.
  • uplink control information (UCI) of the transmission object in the embodiment of the present application will be described in detail.
  • the uplink control information UCI includes hybrid automatic repeat request acknowledgement (HARQ-ACK), scheduling request (SR), and CSI (CQI, PMI, RI). At least one of.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • SR scheduling request
  • CQI CQI, PMI, RI
  • PSCCH Physical sidelink control channel
  • the PSCCH can be used to carry side-line control information and/or side-line feedback control information.
  • Physical sidelink share channel (PSSCH) PSSCH
  • PSSCH can be used to send sideline data and so on.
  • the PSFCH can be used to carry side-line feedback control information, for example, HARQ information used to feed back side-line data.
  • the uplink control information in the embodiment of the present application may include but is not limited to one or more of the following information:
  • the uplink control information may include feedback information for downlink data.
  • a feedback technology may be used for the transmission of downlink data.
  • the feedback technology may include, for example, hybrid automatic repeat request (HARQ) technology.
  • HARQ hybrid automatic repeat request
  • HARQ technology is a technology formed by combining forward error correction (FEC) and automatic repeat request (ARQ).
  • FEC forward error correction
  • ARQ automatic repeat request
  • the receiving end after receiving data from the transmitting end, the receiving end can determine whether the data is correctly decoded. If the decoding cannot be performed accurately, the receiving end can feed back negative-acknowledge (NACK) information to the sending end, so that the sending end can determine that the receiving end has not accurately received the data based on the NACK information, so that it can perform retransmission processing; If the decoding can be performed accurately, the receiving end can feed back acknowledgement (ACK) information to the sending end, so that the sending end can determine that the receiving end has accurately received the data based on the ACK information, so that it can be determined that the data transmission is completed.
  • NACK negative-acknowledge
  • ACK acknowledgement
  • the receiving end can send ACK information to the sending end when the decoding is successful, and it can feed back NACK information to the sending end when the decoding fails.
  • the uplink control information may include ACK information or NACK information in the HARQ technology.
  • HARQ-ACK is used to feed back the reception of the downlink data channel PDSCH.
  • the UE receives the correct signal, it will send an ACK.
  • the UE receives an error, it will send a NACK.
  • the base station determines the next scheduling strategy, such as retransmission or new transmission, according to the feedback information of the UE on the PDSCH channel.
  • the side-line feedback control information may include ACK information or NACK information in the HARQ technology.
  • HARQ-ACK is used to feed back the reception of the side row data channel PSSCH.
  • the sending UE sends the PSSCH to the receiving UE, and the receiving UE receives the PSSCH correctly, it will send an ACK.
  • the receiving UE receives an error, it will send a NACK.
  • the base station or the sending UE or the third UE determines the next scheduling strategy, such as retransmission or new transmission, according to the feedback information of the receiving UE on the PSSCH.
  • HARQ-ACK is often used as the feedback information in the HARQ technology. It should be understood that HARQ-NACK information is also possible, and this application is applicable.
  • the feedback information may also include discontinuous transmission (DTX) information, and the DTX information may be used to indicate that the terminal device has not received downlink data.
  • DTX discontinuous transmission
  • CSI refers to the channel attributes of the communication link.
  • This information further includes information such as CQI/PMI/RI. It describes the attenuation of the signal on each transmission path, that is, the value of each element in the channel gain matrix H, such as signal scattering (scattering), environmental fading (multipath fading or shadowing fading), and distance attenuation (power decay of distance) ) And other information.
  • CSI can adapt the communication system to the current channel conditions and provides a guarantee for high-reliability and high-speed communication in a multi-antenna system.
  • the CQI can be used to reflect the channel quality of the physical downlink shared channel (PDSCH) and PSSCH.
  • CQI is channel quality indicator information, used to directly feed back channel quality.
  • the base station can further determine the modulation coding strategy (modulation coding strategy, MCS) used for sending data according to the CQI.
  • MCS modulation coding strategy
  • MCS modulation coding strategy
  • the value of the feedback CQI is high, a higher coding and modulation scheme and a higher code rate can be used to carry more information on limited resources, thereby increasing the data transmission rate.
  • MCS modulation coding strategy
  • the value of the feedback CQI is low, a lower coding modulation mode and a lower code rate can be used, and more time-frequency resources can be used to transmit data, thereby improving the reliability of data transmission.
  • the UE measures the CQI of different frequency domain resources so that the base station can schedule data on frequency domain resources with good channel quality, thereby obtaining frequency domain scheduling gain.
  • 0-15 can be used to represent the channel quality of the PDSCH. 0 means the worst channel quality, 15 means the best channel quality.
  • the terminal device may send CQI information to the network device on the PUCCH or the physical uplink shared channel (PUSCH).
  • the terminal device may send CQI information to another terminal device on the PSSCH or PSCCH.
  • the network device or another terminal device can determine the current wireless channel conditions of the PDSCH or PUSCH based on the CQI information, and then complete the PDSCH scheduling.
  • the network device can determine the adaptive coding and modulation based on the CQI information ( adaptive modulation and coding (AMC), modulation and coding strategy (modulation and coding scheme, MCS), code rate or data volume of uplink transmission or downlink transmission, etc.
  • AMC adaptive modulation and coding
  • MCS modulation and coding scheme
  • RI is rank indication information, which is used to feed back the number of layers that can be separated by the channel to the base station. The more layers, the larger the amount of data that can be simultaneously transmitted.
  • the RI information may be used to indicate the number of effective data layers of the PDSCH or PSSCH, or in other words, the RI information may be used to indicate the number of code words (CW) that the terminal device can currently support.
  • the PMI information may be used to indicate the index of the codebook set.
  • the PMI is the precoding matrix identifier of the transmission data that the UE feeds back to the base station or another UE according to the measured channel quality.
  • the base station or another UE may determine the corresponding precoding matrix according to the feedback PMI information. That is, in the use of multiple antenna technologies, for example, multiple-input multiple-output (MIMO) technology, in baseband processing, precoding processing (precoding) based on a precoding matrix is performed.
  • MIMO multiple-input multiple-output
  • precoding precoding processing
  • the terminal device can indicate the precoding matrix through the PMI information, so that the signal quality of the PDSCH can be improved.
  • CSI-RS resource indicator CSI-RS resource indicator, CRI
  • CRI CSI-RS resource indicator
  • the CSI sent by the receiving end device to the sending end device may include one or more of the above lists, or may also include other information used to characterize CSI besides the above lists, which is not limited in this application.
  • sending uplink control information may refer to sending data or information carried on the uplink control channel PUCCH or the uplink shared channel PUSCH, where the data or information may refer to data or information after channel coding. This application does not limit this.
  • sending downlink control information may refer to sending data or information carried on the downlink control channel PDCCH or downlink shared channel PDSCH, where the data or information may refer to channel-coded data or information. This application does not limit this.
  • the sending side control information may refer to the data or information carried on the sending side control channel PSCCH or the side shared channel PSSCH, where the data or information may refer to the channel coded Data or information. This application does not limit this.
  • the interaction process between a terminal device and a base station is taken as an example to describe in detail the embodiments of this application.
  • This application also includes the communication process of the side link between the terminal device and the terminal device, such as a side link.
  • the communication process of the road, the vehicle to everything (V2X) business, etc. is not limited in this application.
  • the terminal device may be any terminal device in a wireless communication system that has a wireless connection relationship with one or more network devices. It is understandable that any terminal device in the wireless communication system can implement wireless communication based on the same technical solution. This application does not limit this.
  • the base station in order to avoid conflicts caused by simultaneous transmission of channels, on the one hand, the base station is required to avoid conflicts between different channels when scheduling; on the other hand, when conflicts cannot be avoided, corresponding rules are defined to determine which channel needs to be transmitted. , So as to reach an agreement between the base station and the UE. How to ensure that the base station and the UE can maintain consistency in the process of determining resources to further meet the transmission needs of the terminal equipment, thereby improving the reliability of uplink transmission, is a problem that needs to be solved currently.
  • the conflict processing principles can be roughly divided into two categories: One processing method is to drop channels. Specifically, when different channels conflict, one or more channels are not transmitted, and only one of the conflicting channels is transmitted. Another processing method is to multiplex channels. Specifically, one of the channels is not sent by itself, but the information carried by the channel is sent on another channel that conflicts with it. Of course, there is another way to achieve multiplexing through channel selection, for example, one of the conflicting channels is selected for transmission according to the type and state of the information carried by one or more channels.
  • HARQ-ACK when the PUCCH for sending a scheduling request (SR) conflicts with the PUCCH for sending HARQ-ACK, if the SR status is positive, then HARQ-ACK information is sent on the PUCCH where the SR is located, and vice versa. If it is negative, then HARQ-ACK is sent on its own PUCCH.
  • SR scheduling request
  • Figure 2 is a schematic diagram of an example of a resource selection process in a transmission process.
  • the PUCCH carrying SR and the PUSCH carrying aperiodic channel state information (A-CSI) conflict in the time domain, the PUCCH carrying SR and the PUSCH carrying aperiodic channel state information (A-CSI) conflict.
  • A-CSI aperiodic channel state information
  • the PUSCH carrying A-CSI can be discarded, in other words, the channel shown in the shaded part in FIG. 2 is discarded.
  • Fig. 3 is a schematic diagram of another example of the resource selection process in the transmission process.
  • the PUCCH carrying HARQ-ACK and the PUSCH carrying A-CSI collide.
  • HARQ can be multiplexed onto the PUSCH carrying A-CSI.
  • FIG. 4 is a schematic diagram of another example of resource conflict during uplink transmission according to an embodiment of the present application. As shown in Figure 4, when PUCCH carrying SR and PUCCH carrying HARQ collide with PUSCH carrying A-CSI at the same time, but PUCCH carrying SR and PUCCH carrying HARQ do not conflict, how to deal with conflicts between resources, It is a problem that needs to be solved urgently.
  • This application will provide a method for determining a channel, which can determine resources used for transmission for base stations and terminal devices, and improve the reliability of transmission. It should be understood that this application will take the uplink transmission process of the terminal equipment to the base station as an example, taking the PUSCH carrying A-CSI and the PUCCH or PUSCH carrying SR or CSI or HARQ-ACK as an example to specifically introduce the method of channel determination in this application .
  • FIG. 5 is a schematic interaction diagram of an example of a method 500 for determining a channel provided by an embodiment of the present application.
  • the method 500 may be applied to the terminal device or base station of the above-mentioned wireless communication system 100. As shown in FIG. 5, the method 500 includes the following contents.
  • the first channel in this application may be the PUSCH, for example, it does not carry the uplink shared channel (UL-SCH), and it carries the PUSCH of A-CSI or SP-CSI.
  • Each of the multiple channels may be PUSCH and/or PUCCH, for example, PUSCH and/or PUCCH carrying SR, CSI or HARQ, which is not limited in this application.
  • the first channel in this application may be PSSCH, such as the PSSCH of A-CSI.
  • the multiple channels may be PSCCH and/or PSFCH, which is not limited in this application.
  • the multiple channels include at least two channels, and each channel of the multiple channels does not overlap in the time domain, that is, no conflict occurs, but the multiple channels Each channel and the first channel overlap in the time domain, that is, a conflict occurs.
  • the PUCCH carrying SR and the PUCCH carrying HARQ collide with the PUSCH carrying A-CSI at the same time, but the PUCCH carrying SR and the PUCCH carrying HARQ do not conflict, then the PUCCH carrying SR PUCCH and PUCCH carrying HARQ can understand two of the multiple channels in this application, and PUSCH carrying A-CSI can be understood as the first channel mentioned in this application.
  • the number of channels is not limited.
  • S520 Determine a channel to be sent from the first channel and the second channel.
  • the terminal device and the base station can determine the second channel from the multiple channels according to the first parameter information. It can be understood that the terminal device and the base station select one channel from the multiple channels as the second channel, and solve the second channel first. The conflict between the channel and the first channel. It should be understood that the second channel may be understood as a channel that is preferentially selected to resolve conflicts with the first channel.
  • the "channel to be sent” here corresponds to the base station side and may be referred to as the "channel to be received", and the “channel to be sent” here is not necessarily the channel that the terminal device sends to the base station.
  • the first channel after resolving the conflict between the second channel and the first channel, if the first channel is reserved as the channel to be transmitted, the first channel still conflicts with other channels in the plurality of channels, and this application will continue from Select other channels among multiple channels, continue to resolve the conflict with the first channel, until there is no conflict, and finally send the finally reserved channel.
  • the second channel is here
  • the channel to be sent is sent by the terminal device to the base station, which is not limited in this application.
  • the first parameter information can be understood as a parameter for selecting a channel from multiple channels.
  • the terminal device and the base station can formulate a channel conflict resolution order based on the first parameter information, and select one according to the first parameter. For the second channel, first resolve the conflict between the second channel and the first channel. If there are still similar conflicts afterwards, the method of this application will be repeated until the conflict is resolved.
  • the first parameter information includes information about the start time unit for sending each of the multiple channels, and the index of the time unit for sending the second channel is in the The index of the time unit in the multiple channels is the smallest.
  • the processing should be performed in a time sequence, specifically, the processing can be performed in sequence in accordance with the transmission sequence of the channel.
  • the 5G mobile communication system supports multiple sub-carrier intervals, where each sub-carrier interval is applicable to different service types or operating frequencies, and symbols of different sub-carrier intervals have different corresponding cyclic prefix (CP) lengths.
  • CP cyclic prefix
  • different subcarrier intervals in carrier resources are 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, and different serving cells have the same or different subcarrier intervals, so that transmission resources have the same or different time slot lengths.
  • FIG. 6 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • the subcarrier spacing of CC0 is 60KHz
  • the subcarrier spacing of CC1 is 15KHz.
  • CC0 and CC1 are used to indicate different The carriers of, respectively correspond to different time slots. For example, within a time length, CC 0 corresponds to time slot 4n, time slot 4n+1, time slot 4n+2, and time slot 4n+3, and CC0 corresponds to time slot n.
  • time slot 4n includes the PUSCH carrying SP-CSI, where the PUSCH carrying SP-CSI, the PUCCH carrying HARQ-ACK, and the PUCCH carrying SR (positive) collide.
  • the first parameter information includes the information of the start time unit corresponding to the transmission time of the PUCCH carrying HARQ-ACK and the PUCCH carrying SR (positive), and the time unit corresponding to the time when the PUCCH carrying HARQ-ACK is started to be transmitted
  • the index of is smaller than the index of the time unit corresponding to the time when PUCCH carrying SR (positive) starts to be sent.
  • the initial sending time of PUCCH carrying HARQ-ACK is earlier than the initial sending time of PUCCH carrying SR (positive), so
  • the terminal device and the base station can use the PUCCH carrying HARQ-ACK as the second channel, and prioritize the conflict between the PUCCH carrying HARQ-ACK and the PUSCH (first channel) carrying SP-CSI.
  • the conflict between the PUCCH carrying HARQ-ACK and the PUSCH (first channel) carrying SP-CSI can be resolved according to the process shown in Figure 3, that is, HARQ-ACK is multiplexed into The PUSCH that carries the SP-CSI is reserved, that is, the first channel as the determined channel to be sent.
  • the next step is to solve the problem of carrying HARQ-ACK and SP.
  • the process shown in Figure 2 can be followed, that is, the PUSCH carrying HARQ-ACK and SP-CSI is discarded, and the PUCCH carrying SR (positive) is reserved, that is, the PUCCH carrying SR (positive) is used as the determined channel to be sent.
  • the device sends to the base station.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the time unit corresponding to the transmission time domain position of the conflicting channel. In other words, priority is given to processing the conflicts of the channel before the transmission time.
  • the method of determining the channel can reserve and transmit as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal equipment and the terminal equipment.
  • the above method only uses PUSCH as the first channel as an example to introduce the method for determining the channel.
  • This method is also applicable between terminal equipment and terminal equipment, with PSSCH as the first channel and PSCCH or PSFCH as the sideline of multiple channels.
  • the link communication process will not be repeated here.
  • all the following methods are equally applicable between the terminal device and the terminal device, and will not be repeated here.
  • the first parameter information includes information about the start symbol of each channel in the plurality of channels, and the index of the start symbol of the second channel is in the plurality of channels.
  • the index of the start symbol in the channel is the smallest.
  • the conflict problem with the first channel is solved first, but it may be on multiple channels. If the transmission time of at least two channels corresponds to the same time unit or the index of the time unit is the same, the second channel can be determined according to the start symbol of the channel. For example, the channel with the start symbol in front is determined as the second channel, in other words, the channel with the smallest start symbol index is determined as the second channel, which is not limited in this application.
  • time to send a channel refers to the starting time of sending each channel
  • time to receiving a channel refers to the starting time of receiving each channel
  • the method of determining the second channel by the start symbol can also be used alone, that is, directly according to the start symbol of each channel to determine which channel and the first channel conflict with priority; or, according to method one
  • the starting symbol of the channel is further used to determine which channel and the first channel conflict problem is to be processed first, which is not limited in this application .
  • the channel that is the same as the start symbol of the first channel may be determined as the second channel, or the conflict problem of any two channels in the channel with the same start symbol may be prioritized, which is not limited in this application.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the start symbols of the conflicting channels. In other words, prioritize the conflict of the channel with the start symbol in front, and the method of determining the channel can reserve and send as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal equipment and the terminal equipment.
  • the first parameter information includes information about the start time unit for receiving the multiple signaling, and the index of the time unit used to indicate the signaling of the second channel is located at all.
  • the index of the multiple signaling time units is the smallest.
  • the terminal device may receive multiple signaling sent by the base station, and the multiple signaling is used to indicate the time unit for sending the multiple channels.
  • the signaling may be an instruction used for scheduling, such as DCI, high-level signaling, radio resource control (radio resource control, RRC) signaling, or PHCP layer signaling, which is not limited in this application.
  • the second channel that preferentially handles conflicts can be selected from the multiple channels according to the order in which the network device sends the scheduling signaling.
  • the first-scheduled channel prioritizes the conflict with the first channel.
  • if there are multiple semi-statically scheduled channels first handle the conflicts between the semi-static channels. If there are more than two semi-persistent channel conflicts, the methods in method one and method two can be combined for processing first.
  • FIG. 7 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • the base station instructs the terminal device to send the PUCCH carrying HARQ-ACK in the time slot 2n+1 by issuing DCI-1 in the time slot 2n, and the base station in the time slot 2n+1
  • the downlink data PDSCH is scheduled within, and DCI-2 is issued to instruct the terminal device to send the PUSCH carrying A-CSI Report in time slot 2n+3;
  • the PUSCH carrying SP-CSI is included in time slot n+1 Among them, the PUSCH carrying SP-CSI, PUCCH carrying HARQ-ACK, and PUSCH carrying A-CSI conflict.
  • A-CSI scheduling is earlier than HARQ-ACK, although A-CSI Report is sent later than HARQ-ACK.
  • priority should be given to the conflict between the first scheduled PUSCH carrying A-CSI and the PUSCH carrying SP-CSI.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the start time of receiving the scheduling signaling of the conflicting channels. In other words, prioritize the conflicts of the previously scheduled channels.
  • the method of determining the channel can reserve and send as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal equipment and the terminal equipment.
  • the first parameter information includes information of different service types carried by each of the multiple channels.
  • the 5G communication system it supports enhanced mobile broadband (eMBB) services, ultra-reliable and low-latency communications (URLLC) services, and massive machine type communications (mMTC) Business and vehicle external information exchange (vehicle to everything, V2X) business, etc.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • V2X vehicle to everything business
  • the processing may be performed in the following order: prioritize the conflicts between channels that carry information of the same service type, and then deal with conflicts between channels that carry information of different service types.
  • processing is performed according to the priority of a certain service type. For example, URLLC service and/or V2X service are processed first, eMBB service is processed, and mMTC service is processed last.
  • FIG. 8 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • the PUCCH carrying the HARQ-ACK of the URLLC service when the PUCCH carrying the HARQ-ACK of the URLLC service, the PUCCH carrying the HARQ-ACK of the eMBB service and the PUSCH of the SP-CSI carrying the eMBB service collide, the eMBB is processed first. Conflict between.
  • the PUCCH carrying the HARQ-ACK of the eMBB service and the PUSCH carrying the SP-CSI of the eMBB service conflict resolution process the HARQ-ACK and SP-CSI carrying the eMBB service are multiplexed in PUSCH, and then deal with the conflict between eMBB and URLLC. It is assumed that the conflict between URLLC and eMBB will discard the eMBB channel. Therefore, as shown in the third step in Figure 8, the HARQ-ACK and SP-CSI PUSCH carrying the eMBB service are discarded.
  • the URLLC service here may also be a V2X service, which is not limited in this application.
  • the conflict between the URLLC service and the eMBB service can be handled first, and then the conflict between the result in step 1 and the mMTC service can be handled.
  • FIG. 9 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • the URLLC will be processed first.
  • the PUSCH carrying the SP-CSI of the eMBB service is discarded.
  • the first channel and the second channel carry the same service.
  • the channel carrying the same service as the first channel is determined from the multiple channels as the second channel, and it is processed first.
  • the multiple channels respectively include the PUCCH carrying the URLLC service, the PUCCH carrying the mMTC service and the PUCCH carrying the eMBB service, and the PUSCH carrying the URLLC service and the URLLC carrying the URLLC are given priority.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the types of services carried by the conflicting channels.
  • the conflicts of the high-priority channels of the carried services are processed preferentially, and the method of determining the channel can reserve and send as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal equipment and the terminal equipment.
  • the PUSCH may be defaulted to be the first channel, for example, the PUSCH carrying A-CSI or SP-CSI is the first channel.
  • Each of the multiple channels may be PUSCH and/or PUCCH, for example, PUSCH and/or PUCCH carrying SR, CSI or HARQ.
  • the first channel may be a channel determined by the base station and the terminal device according to certain rules.
  • the base station and the terminal device may determine a channel that overlaps each of the multiple channels in the time domain as the first channel.
  • the channel is determined as the first channel, and then the second channel is determined from the multiple channels according to the method introduced in this application, so as to give priority to solving the first channel and the first channel. The conflict between the two channels.
  • FIG. 10 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • the PUCCH carrying the HARQ-ACK of the URLLC service when the PUCCH carrying the HARQ-ACK of the URLLC service, the PUCCH carrying the HARQ-ACK of the eMBB service, the PUSCH carrying the SP-CSI of the URLLC service, and the PUSCH carrying the SP-CSI of the eMBB service A conflict as shown in the figure occurs.
  • the PUSCH carrying the SP-CSI of the URLLC service and the PUCCH carrying the HARQ-ACK of the eMBB service in FIG. As the first channel.
  • the first channel may be determined according to the priorities of services carried by different channels. For example, for the PUSCH carrying the SP-CSI of the URLLC service and the PUCCH carrying the HARQ-ACK of the eMBB service in Figure 10, the priority of the URLLC service is higher than the priority of the eMBB service, so the SP-CSI of the URLLC service will be carried. PUSCH is determined as the first channel.
  • the first channel may be determined according to the initial transmission moments of different channels. For example, for the PUSCH carrying the SP-CSI of the URLLC service and the PUCCH carrying the HARQ-ACK of the eMBB service in FIG. 10, the initial transmission time of the PUSCH carrying the SP-CSI of the URLLC service is in the HARQ-ACK carrying the eMBB service. Before the PUCCH, therefore, the PUSCH carrying the SP-CSI of the URLLC service is determined as the first channel.
  • the PUSCH of the SP-CSI carrying the URLLC service is determined as the first channel, and the conflicts between the channels of the URLLC service are handled first, and the URLLC service will be carried.
  • the HARQ-ACK of the service and the SP-CSI carrying the URLLC service are multiplexed onto the PUSCH, and then according to the principle of handling the conflict between the URLLC service and the eMBB service, the PUCCH of the HARQ-ACK carrying the eMBB service is discarded.
  • the processing results shown in the three steps are not limited in this application.
  • the base station and the terminal equipment can also first resolve the conflicts between channels of the same service according to the service type of the channel, and then if there are conflicts between one channel and multiple channels, then follow this application Various solutions are introduced to solve the channel conflict problem.
  • FIG. 11 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • the PUCCH carrying the HARQ-ACK of the URLLC service when the PUCCH carrying the HARQ-ACK of the URLLC service, the PUCCH carrying the HARQ-ACK of the eMBB service, the PUSCH carrying the SP-CSI of the URLLC service, and the SP-CSI carrying the eMBB service occur As shown in the conflict.
  • the PUSCH of the SP-CSI carrying the URLLC service that meets the first channel determination condition as the first channel for processing, it can also be processed preferentially according to the types of services carried by different channels.
  • the conflicts between channels of URLLC services are handled separately, and the conflicts between channels of eMBB services are handled respectively.
  • the HARQ-ACK carrying the URLLC service and the SP-CSI carrying the URLLC service are multiplexed onto the PUSCH, and the HARQ-ACK carrying the eMBB service and the SP-CSI carrying the eMBB service are multiplexed.
  • the processing result shown in the third step in FIG. 10 is obtained. At this time, the conflict has been resolved, and this application does not limit this.
  • the first parameter information includes priority information of information carried by each of the multiple channels.
  • any one of the above methods 1 to 4 can be combined, for example, according to a time sequence, the channel with the earlier transmission time is processed first.
  • the highest priority among all the information is used for comparison.
  • the channel corresponding to the information with the highest priority is defaulted to the first channel, and then the conflicts between multiple channels of the first channel are resolved first.
  • the base station and the terminal equipment can agree that a certain channel is the first channel, then the base station and the terminal equipment only need to determine the second channel from the multiple channels that conflict with the first channel, and then process the first channel and the second channel.
  • Channel conflict For example, PUSCH carrying A-CSI or SP-CSI is used as the first channel.
  • Each of the multiple channels may be PUSCH and/or PUCCH, for example, PUSCH and/or PUCCH carrying SR, CSI or HARQ.
  • the first channel may be a channel determined by the base station and the terminal device according to a certain rule.
  • the method of determining the second channel from multiple channels was introduced.
  • each of the solutions for determining the second channel introduced in this application can be used to determine the second channel.
  • the terminal device and the base station first determine a channel from the conflicting channels as the first channel, then determine the second channel, and then resolve the conflicts between them, which is not limited in this application.
  • FIG. 12 is a schematic diagram of another example of a resource determination process provided by an embodiment of the present application.
  • Table 1 shows the priority information of channel 1 to channel 5. Combining Table 1 and Figure 12, Figure 12 shows that five different channels 1 to 5 overlap each other, and the priority levels are defined as follows: P1>P2>P3>P4>P5.
  • the priority of the information carried by channel 4 is the highest, then the conflicts related to channel 4 are processed first; the priority of channel 5 is higher than that of channel 3, then the conflict between channel 4 and channel 5 is processed first. Assuming that the information on channel 5 will be multiplexed to channel four at this time, the highest priority of channel four is still P1, because the information on channel 5 is multiplexed, channel 5 is not sent, and channels 1 to 4 remain.
  • channel 4 has the highest priority, so deal with channel conflicts related to channel 4. At this time, it is assumed that channel 3 is discarded, and channel 1, channel 2, and channel 4 remain. Channel 4 does not conflict with other channels, and only channel 1 and channel 2 remain in conflict.
  • Channel 6 carries information with priorities P2 and P4, and it is considered that the priority of channel 6 is P2.
  • Channel 6 and channel 4 have no conflict and no overlap, then the channel conflict processing process ends, and the result of the fourth step in FIG. 12 is obtained.
  • the priority can also be defined according to high-level instructions, and the priority can be determined according to different QoS, which is not limited in this application.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the priority of the information carried by the conflicting channels.
  • the conflicts of the high priority channels of the carried information are processed preferentially.
  • the method of determining the channel can reserve and send as much control information as possible to improve the reliability of transmission between the base station and the terminal equipment or between the terminal equipment and the terminal equipment.
  • the multiple channels are used to carry control information
  • the first parameter information includes a type of the control information carried by the multiple channels.
  • the terminal device and the base station can perform processing according to the type of information carried in the channel.
  • a PUSCH that does not carry UL-SCH such as a PUSCH that carries A-CSI or SP-CSI
  • a PUSCH that carries A-CSI or SP-CSI conflicts with multiple PUCCH/PUSCHs that carry different UCI types, and there is no conflict between PUCCH/PUSCH itself
  • Different UCI types include HARQ information, CSI information and SR information.
  • the processing sequence may be to prioritize the conflict with SR (positive or negative), then deal with the conflict with CSI, and finally deal with the conflict with HARQ.
  • the conflict between the SR and the PUSCH is prioritized; the conflict between the channel and the CSI obtained after reprocessing; the conflict between the channel and the HARQ obtained in the previous processing is continued to be processed.
  • FIG. 13 is a schematic diagram of another example of a resource selection process in a transmission process provided by an embodiment of the present application. As shown in Figure 13, it is assumed that different PUCCH and PUSCH are in the same time slot, and they have the same subcarrier (SCS) interval. The conflict between the channel carrying SR (positive) and the channel carrying A-CSI is prioritized, so that the channel carrying A-CSI is discarded, and the finally transmitted channels are HARQ and SR.
  • SCS subcarrier
  • FIG. 14 is a schematic diagram of another example of a resource selection process in a transmission process provided by an embodiment of the present application.
  • PUCCH and PUSCH may be located in different time slots, different carriers (CC) or serving cells, and their sub-carrier spacing may also be different.
  • CC carriers
  • the final channel sent is the PUSCH carrying A-CSI, the PUCCH carrying SR (positive) and the bearer PUCCH of HARQ-ACK.
  • FIG. 15 is a schematic diagram of another example of a resource selection process in a transmission process provided by an embodiment of the present application.
  • PUCCH and PUSCH may be located in different time slots, different carriers (CC) or serving cells.
  • CC carriers
  • the PUSCH carrying SP-CSI, and the final channel sent is the PUSCH carrying HARQ-ACK and A-CSI.
  • the base station determines the transmission channel according to a predefined processing sequence.
  • the base station and the terminal equipment can determine the conflict processing sequence between channels according to the type of information carried on the channel, such as the type of uplink control information UCI; or, according to the transmission time sequence of the conflicting channels, determine the conflict between channels Processing sequence; or, according to the scheduling sequence of the conflicting channels, determine the conflict processing sequence between channels; or, determine the conflict processing sequence between channels according to the different service types carried by the conflicting channels; or, according to the conflicting channels
  • the priority of the information carried determines the order of conflict processing between channels.
  • the above method for determining the channel can reserve and send as much control information as possible, and improve the reliability of transmission between the base station and the terminal device or the terminal device and the terminal device.
  • the channel determination method introduced above can be applied to the communication between the terminal equipment and the base station, such as the uplink communication process; it can also be applied to the communication between the terminal equipment and the terminal equipment, such as the side link. This application does not limit the communication process.
  • FIG. 16 shows a schematic block diagram of an apparatus 1600 for channel determination according to an embodiment of the present application.
  • the apparatus 1600 may correspond to the terminal device described in the above method 500 and method 700, or may be a chip or component applied to the terminal device, and Each module or unit in the apparatus 1600 is used to execute each action or processing procedure performed by the terminal device in the above method 500 and method 700.
  • the communication apparatus 1600 may include: a first processing unit 1610, The second processing unit 1620 and the communication unit 1630.
  • the first processing unit 1610 is configured to: when the first channel overlaps each of the multiple channels in the time domain, and each channel of the multiple channels does not overlap each other in the time domain, according to the first parameter Information, the second channel is determined from the plurality of channels.
  • the second processing unit 1620 is configured to determine the channel to be sent from the first channel and the second channel.
  • the first parameter information includes information about the start time unit for transmitting each of the multiple channels, and the index of the time unit for transmitting the second channel is in the multiple channels The index of the time unit is the smallest.
  • the first parameter information includes information about the start symbol of each channel in the plurality of channels, and the index of the start symbol of the second channel starts in the plurality of channels.
  • the index of the start symbol is the smallest.
  • the apparatus further includes: a communication unit 1630, configured to receive multiple signalings, the multiple signalings are used to indicate time units for transmitting the multiple channels, and the first parameter information includes The information of the start time unit of the multiple signaling is received, and the index of the time unit used to indicate the signaling of the second channel is the smallest among the indexes of the time unit of the multiple signaling.
  • the first parameter information includes information of different service types carried by each of the multiple channels.
  • the first channel and the second channel carry the same type of service.
  • the first parameter information includes priority information of information carried by each of the multiple channels.
  • the multiple channels are used to carry control information
  • the first parameter information includes a type of the control information carried by the multiple channels.
  • the first processing unit is further configured to determine a channel that overlaps with each of the multiple channels in the time domain as the first channel.
  • the first processing unit 1610 is used to perform S510 in the method 500
  • the second processing unit 1620 is used to perform S520 in the method 500.
  • the specific process of each unit performing the foregoing corresponding steps has been described in detail in the method 500. For the sake of brevity, I won't repeat it here.
  • FIG. 17 shows a schematic block diagram of an apparatus 1700 for channel determination in an embodiment of the present application.
  • the apparatus 1700 may correspond to the base station described in the above method 500, or may be a chip or component applied to the base station, and the apparatus 1700 Each module or unit is used to execute each action or processing procedure performed by the base station in the above method 500.
  • the communication device 1700 may include: a first processing unit 1710, a second processing unit 1720, and a communication unit 1730 .
  • the first processing unit 1710 is configured to: when the first channel overlaps each of the multiple channels in the time domain, and each channel of the multiple channels does not overlap each other in the time domain, according to the first parameter Information, the second channel is determined from the plurality of channels.
  • the second processing unit 1720 is configured to determine the channel to be sent from the first channel and the second channel.
  • the first parameter information includes information about the start time unit for transmitting each of the multiple channels, and the index of the time unit for transmitting the second channel is in the multiple channels The index of the time unit is the smallest.
  • the first parameter information includes information about the start symbol of each channel in the plurality of channels, and the index of the start symbol of the second channel starts in the plurality of channels.
  • the index of the start symbol is the smallest.
  • the apparatus further includes: a communication unit 1730, configured to send multiple signalings, the multiple signalings are used to indicate time units for transmitting the multiple channels, and the first parameter information includes The information of the start time unit of the multiple signaling is received, and the index of the time unit used to indicate the signaling of the second channel is the smallest among the indexes of the time unit of the multiple signaling.
  • the first parameter information includes information of different service types carried by each of the multiple channels.
  • the first channel and the second channel carry the same type of service.
  • the first parameter information includes priority information of information carried by each of the multiple channels.
  • the multiple channels are used to carry control information
  • the first parameter information includes a type of the control information carried by the multiple channels.
  • the first processing unit is further configured to determine a channel that overlaps with each of the multiple channels in the time domain as the first channel.
  • the first processing unit 1710 is used to perform S510 in the method 500
  • the second processing unit 1720 is used to perform S520 in the method 500.
  • the specific process of each unit performing the above-mentioned corresponding steps has been described in detail in the method 500. For the sake of brevity, I won't repeat it here.
  • FIG. 18 is a schematic structural diagram of a terminal device 1800 provided by an embodiment of the present application.
  • the terminal device 1800 includes a processor 1810 and a transceiver 1820.
  • the terminal device 1800 further includes a memory 1830.
  • the processor 1810, the transceiver 1820 and the memory 1830 communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 1830 is used to store computer programs, and the processor 1810 is used to call from the memory 1830. And run the computer program to control the transceiver 1820 to send and receive signals.
  • the foregoing processor 1810 and the memory 1830 may be combined into one processing device, and the processor 1810 is configured to execute the program code stored in the memory 1830 to implement the function of the terminal device in the foregoing method embodiment.
  • the memory 1830 may also be integrated in the processor 1810 or independent of the processor 1810.
  • the transceiver 1820 can be implemented by a transceiver circuit.
  • the above-mentioned terminal equipment may also include an antenna 1840 for sending uplink data or uplink control signaling output by the transceiver 1820 through a wireless signal, or receiving downlink data or downlink control signaling and sending it to the transceiver 1820 for further processing.
  • the apparatus 1800 may correspond to the terminal device in the method 500 according to the embodiment of the present application, and the apparatus 1800 may also be a chip or component applied to the terminal device.
  • each module in the device 1800 implements the corresponding process in the method 500 in FIG. 5.
  • the memory 1830 is used to store program code, so that when the processor 1810 executes the program code, the processor 1810 is used to execute S510 and S520 in the method 500.
  • the specific process for each unit to execute the above corresponding steps is in the method. It has been described in detail in 500, and for the sake of brevity, it is not repeated here.
  • FIG. 19 is a schematic structural diagram of a network device 1900 provided by an embodiment of the present application.
  • the network device 1900 (for example, a base station) includes a processor 1910 and a transceiver 1920.
  • the network device 1900 further includes a memory 1930.
  • the processor 1910, the transceiver 1920, and the memory 1930 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 1930 is used to store computer programs, and the processor 1910 is used to call from the memory 1930. And run the computer program to control the transceiver 1920 to send and receive signals.
  • the foregoing processor 1910 and the memory 1930 may be combined into one processing device, and the processor 1910 is configured to execute the program code stored in the memory 1930 to implement the function of the base station in the foregoing method embodiment.
  • the memory 1930 may also be integrated in the processor 1910 or independent of the processor 1910.
  • the transceiver 1920 can be implemented by a transceiver circuit.
  • the above-mentioned network equipment may also include an antenna 1940 for sending the downlink data or downlink control signaling output by the transceiver 1920 through a wireless signal, or receiving uplink data or uplink control signaling and sending it to the transceiver 820 for further processing.
  • the device 1900 may correspond to the base station in the method 500 according to the embodiment of the present application, and the device 1900 may also be a chip or component applied to a base station.
  • each module in the device 1900 implements the corresponding process in the method 500 in FIG. 5.
  • the memory 1930 is used to store program codes, so that the processor 1910 controls the processor 1910 to be used when the program code is executed S510 and S520 in the method 500 are executed, and the specific process of each unit executing the above-mentioned corresponding steps has been described in detail in the method 500, and is not repeated here for brevity.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道确定的方法和装置,在基站和终端设备的通信过程中,当一个信道与多个信道同时发生冲突,但是该多个信道之间的任意两个信道并没有发生冲突的情况下,可以通过相同的规则,使得基站和终端设备按照预定义的处理顺序,确定传输的信道。具体地,可以按照信道上所承载的信息类型,或者,根据冲突的信道的发送时间顺序,或者,根据冲突的信道的调度顺序,又或者,根据冲突的信道承载的不同的业务类型,又或者,根据冲突的信道所承载信息的优先级,确定信道之间冲突处理顺序。上述确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。

Description

确定信道的方法和装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种确定信道的方法和装置。
背景技术
在第五代(5th generation,5G)移动通信系统中,上行链路以及侧行链路的发送受用户设备(user equipment,UE)的能力,发送功率以及信道环境的限制,在同一时刻并不能同时发送多个信道或参考信号,比如物理上行控制信道(physical uplink control channel,PUCCH)与物理上行共享信道(physical uplink share channel,PUSCH),物理侧行控制信道(physical sidelink control channel,PSCCH),物理侧行反馈信道(physical sidelink feedback channel,PSFCH)和物理侧行数据信道(physical sidelink share channel,PSSCH),且无论不同的信道是在同一载波还是不同载波上都可能会受到限制,从而不能同时发送。
为了避免同时发送,一方面要求基站在调度时就尽量避免不同信道之间的冲突,另一方面在无法避免冲突时定义相应的规则,确定需要发送哪一个信道,从而使基站和UE之间达成一致。但是在多个信道同时与相同的一个信道冲突时保持基站和UE之间能够在确定资源的过程中保持一致,以进一步满足终端设备的发送需要,从而提高上行或者侧行传输的可靠性,是当前需要解决的问题。
发明内容
本申请提供一种信道确定的方法和装置,能够为基站和终端设备确定用于传输的信道,提高传输的可靠性。
第一方面,提供了一种确定信道的方法,包括:当第一信道与多个信道中的每个信道在时域上重叠,且该多个信道中的每个信道在时域上相互不重叠时,根据第一参数信息,从该多个信道中确定第二信道;从该第一信道和该第二信道中确定待发送的信道。
应理解,本申请中第一信道可以是PUSCH,例如不承载上行共享信道(UL-SCH)的PUSCH,既承载非周期信道状态信息A-CSI或者半持续信道状态信息SP-CSI的PUSCH。多个信道中的每个信道可以是PUSCH和/或PUCCH,例如承载SR、CSI或HARQ的PUSCH和/或PUCCH,本申请对此不做限定。
还应理解,本申请中的第一信道可以是PSSCH,例如A-CSI的PSSCH。多个信道可以是PSCCH和/或PSFCH,本申请对此不做限定。
还应理解,在本申请中,该多个信道包括至少两个信道,且该多个信道中的每个信道之间没有在时域上重叠,即没有发生任何冲突,但是该多个信道中的每个信道和第一信道在时域上重叠,即发生冲突。
示例性的,承载SR的PUCCH、和承载HARQ的PUCCH同时与承载A-CSI的PUSCH发生冲突,但是承载SR的PUCCH和HARQ的PUCCH并不冲突,则承载SR的PUCCH、 和承载HARQ的PUCCH就可以理解本申请的多个信道中的两个信道,承载A-CSI的PUSCH就可以理解为本申请所说的第一信道,本申请对多个信道中所包括的信道的数量不做限定。
终端设备和基站可以根据第一参数信息,从该多个信道中确定第二信道,可以理解为,终端设备和基站从多个信道中选择中一个信道作为第二信道,先解决该第二信道和第一信道的冲突。应理解,第二信道可以理解为优先被选择为解决和第一信道的冲突的信道。
还应理解,这里“待发送的信道”对应到基站侧可以称为“待接收的信道”,这里“待发送的信道”不一定是最终终端设备发送给基站的信道。可选地,解决完该第二信道和第一信道的冲突,如果保留了第一信道为待发送的信道,则第一信道仍然和该多个信道中的其他信道冲突,本申请将继续从多个信道中选择其他信道,继续解决和第一信道的冲突,直到没有冲突为止,最后发送最终保留的信道。或者,解决完该第二信道和第一信道的冲突,如果保留了第二信道为待发送的信道,则第二信道和该多个信道中的其他信道没有冲突,则第二信道就是这里的待发送信道,并由终端设备发送到基站或者其他终端设备,本申请对此不做限定。
还应理解,第一参数信息可以理解为用于从多个信道中选择信道的参数,换言之,终端设备和基站可以根据该第一参数信息制定一个解决信道冲突的顺序,根据第一参数选择一个第二信道,先解决第二信道和第一信道的冲突。之后如果还有类似的冲突,循环本申请的方法,直到冲突解决为止。
结合第一方面,在第一方面的某些实现方式中,该第一参数信息包括发送该多个信道中的每个信道的起始时间单元的信息,且发送该第二信道的时间单元的索引在该多个信道中的时间单元的索引中是最小的。
通过上述方案,基站和终端设备可以根据冲突的信道的发送时域位置对应的时间单元,确定信道之间冲突处理顺序。换言之,优先处理发送起始时刻在前的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道的起始符号的信息,且该第二信道的起始符号的索引在该多个信道中的起始符号的索引中是最小的。
通过上述方案,基站和终端设备可以根据冲突的信道的起始符号,确定信道之间冲突处理顺序。换言之,优先处理起始符号早的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
结合第一方面和上述实现方式,在某些可能的实现方式中,该方法还包括:接收多个信令,该多个信令用于指示发送该多个信道的时间单元,以及该第一参数信息包括接收该多个信令的起始时间单元的信息,且用于指示该第二信道的信令的时间单元的索引在该多个信令的时间单元的索引中是最小的。
通过上述方案,基站和终端设备可以根据冲突的信道的调度信令的接收时间,确定信道之间冲突处理顺序。换言之,优先处理调度在前的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道承载的不同业务类型的信息。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第一信道和该第二信道承载相同的业务。
通过上述方案,基站和终端设备可以根据冲突的信道的承载的业务的类型,确定信道之间冲突处理顺序。换言之,优先处理承载的业务的优先级高的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道所承载的信息的优先级信息。
通过上述方案,基站和终端设备可以根据冲突的信道的承载的信息的优先级,确定信道之间冲突处理顺序。换言之,优先处理承载的信息的优先级高的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端和终端之间传输的可靠性。
结合第一方面和上述实现方式,在某些可能的实现方式中,该多个信道用于承载控制信息,该第一参数信息包括该多个信道承载的该控制信息的类型。
结合第一方面和上述实现方式,在某些可能的实现方式中,该方法还包括:将与多个信道中的每个信道在时域上都重叠的信道,确定为该第一信道。
通过上述技术方案,在基站和终端设备的通信过程中,当一个信道与多个信道同时发生冲突,但是该多个信道之间的任意两个信道并没有发生冲突的情况下,可以通过相同的规则,使得基站和终端设备按照预定义的处理顺序,确定传输的信道。具体地,基站和终端设备可以按照信道上所承载的信息类型,如按照上行控制信息UCI或者侧行控制信息SCI的类型,确定信道之间冲突处理顺序;或者,根据冲突的信道的发送时间顺序,确定信道之间冲突处理顺序;或者,根据冲突的信道的调度顺序,确定信道之间冲突处理顺序;又或者,根据冲突的信道承载的不同的业务类型,确定信道之间冲突处理顺序;又或者,根据冲突的信道所承载信息的优先级,确定信道之间冲突处理顺序。上述确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备和终端设备之间传输的可靠性。
第二方面,提供了一种确定信道的方法,包括:当第一信道与多个信道中的每个信道在时域上重叠,且该多个信道中的每个信道在时域上相互不重叠时,根据第一参数信息,从该多个信道中确定第二信道;从该第一信道和该第二信道中确定待接收的信道。
结合第二方面,在某些可能的实现方式中,该第一参数信息包括发送该多个信道中的每个信道的起始时间单元的信息,且发送该第二信道的时间单元的索引在该多个信道中的时间单元的索引中是最小的。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道的起始符号的信息,且该第二信道的起始符号的索引在该多个信道中的起始符号的索引中是最小的。
结合第二方面和上述实现方式,在某些可能的实现方式中,该方法还包括:发送多个信令,该多个信令用于指示发送该多个信道的时间单元,以及该第一参数信息包括接收该 多个信令的起始时间单元的信息,且用于指示该第二信道的信令的时间单元的索引在该多个信令的时间单元的索引中是最小的。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道承载的不同业务类型的信息。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第一信道和该第二信道承载相同类型的业务。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道所承载的信息的优先级信息。
结合第二方面和上述实现方式,在某些可能的实现方式中,该多个信道用于承载控制信息,该第一参数信息包括该多个信道承载的该控制信息的类型。
结合第二方面和上述实现方式,在某些可能的实现方式中,该方法还包括:将与多个信道中的每个信道在时域上都重叠的信道,确定为该第一信道。
第三方面,提供了一种确定信道的装置,包括:第一处理单元,用于当第一信道与多个信道中的每个信道在时域上重叠,且该多个信道中的每个信道在时域上相互不重叠时,根据第一参数信息,从该多个信道中确定第二信道;第二处理单元,用于从该第一信道和该第二信道中确定待发送的信道。
结合第三方面,在第三方面的某些实现方式中,该第一参数信息包括发送该多个信道中的每个信道的起始时间单元的信息,且发送该第二信道的时间单元的索引在该多个信道中的时间单元的索引中是最小的。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道的起始符号的信息,且该第二信道的起始符号的索引在该多个信道中的起始符号的索引中是最小的。
结合第三方面和上述实现方式,在某些可能的实现方式中,该装置还包括:通信单元,用于接收多个信令,该多个信令用于指示发送该多个信道的时间单元,以及该第一参数信息包括接收该多个信令的起始时间单元的信息,且用于指示该第二信道的信令的时间单元的索引在该多个信令的时间单元的索引中是最小的。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道承载的不同业务类型的信息。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第一信道和该第二信道承载相同类型的业务。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道所承载的信息的优先级信息。
结合第三方面和上述实现方式,在某些可能的实现方式中,该多个信道用于承载控制信息,该第一参数信息包括该多个信道承载的该控制信息的类型。
结合第三方面和上述实现方式,在某些可能的实现方式中,该第一处理单元还用于将与多个信道中的每个信道在时域上都重叠的信道,确定为该第一信道。
第四方面,提供了一种确定信道的装置,包括:第一处理单元,用于当第一信道与多个信道中的每个信道在时域上重叠,且该多个信道中的每个信道在时域上相互不重叠时,根据第一参数信息,从该多个信道中确定第二信道;第二处理单元,用于从该第一信道和 该第二信道中确定待发送的信道。
结合第四方面,在某些可能的实现方式中,该第一参数信息包括发送该多个信道中的每个信道的起始时间单元的信息,且发送该第二信道的时间单元的索引在该多个信道中的时间单元的索引中是最小的。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道的起始符号的信息,且该第二信道的起始符号的索引在该多个信道中的起始符号的索引中是最小的。
结合第四方面和上述实现方式,在某些可能的实现方式中,该装置还包括:通信单元,用于发送多个信令,该多个信令用于指示发送该多个信道的时间单元,以及该第一参数信息包括接收该多个信令的起始时间单元的信息,且用于指示该第二信道的信令的时间单元的索引在该多个信令的时间单元的索引中是最小的。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道承载的不同业务类型的信息。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第一信道和该第二信道承载相同类型的业务。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第一参数信息包括该多个信道中的每个信道所承载的信息的优先级信息。
结合第四方面和上述实现方式,在某些可能的实现方式中,该多个信道用于承载控制信息,该第一参数信息包括该多个信道承载的该控制信息的类型。
结合第四方面和上述实现方式,在某些可能的实现方式中,该第一处理单元还用于将与多个信道中的每个信道在时域上都重叠的信道,确定为该第一信道。
第五方面,提供了一种装置,该装置具有实现上述第一方面的方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第六方面,提供了一种装置,该装置具有实现上述第二方面的方法设计中的网络设备(例如基站)的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第七方面,提供一种终端设备,包括收发器和处理器。可选地,该终端设备还包括存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第一方面或第一方面任意一种可能的实现方式中的方法。
第八方面,提供一种网络设备,包括收发器和处理器。可选地,该网络设备还包括存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行上述第二方面或第二方面任意一种可能的实现方式中的方法。
第九方面,提供了一种通信系统,该系统包括上述第三方面的终端设备以及第四方面的网络设备。
第十方面,提供一种通信装置,该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储 器中的指令,以实现上述第一方面或第一方面任意一种可能的实现方式中终端设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十一方面,提供了一种通信装置,该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面任意一种可能的实现方式中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十三方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是适用于本申请实施例的无线通信系统的示意图。
图2是一例传输过程中的资源选择过程的示意图。
图3是又一例传输过程中的资源选择过程的示意图。
图4是本申请实施例提供的又一例上行传输过程中的资源冲突示意图。
图5是本申请实施例提供的一例确定信道的方法的示意性交互图。
图6是本申请实施例提供的又一例资源确定过程示意图。
图7是本申请实施例提供的又一例资源确定过程示意图。
图8是是本申请实施例提供的又一例资源确定过程示意图。
图9是本申请实施例提供的又一例资源确定过程示意图。
图10是本申请实施例提供的又一例资源确定过程示意图。
图11是本申请实施例提供的又一例资源确定过程示意图。
图12是本申请实施例提供的又一例资源确定过程示意图。
图13是本申请实施例提供的又一例传输过程中的资源选择过程的示意图。
图14是本申请实施例提供的又一例传输过程中的资源选择过程的示意图。
图15是本申请实施例提供的又一例传输过程中的资源选择过程的示意图。
图16示出了本申请实施例的信道确定的装置的示意性框图。
图17示出了本申请实施例的信道确定的装置的示意性框图。
图18是本申请实施例提供的终端设备的结构示意图。
图19是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)通信系统以及未来的移动通信系统等。
图1是适用于本申请实施例的无线通信系统100的示意图。如图1所示,该无线通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备101;该无线通信系统100还可以包括一个或多个终端设备,例如,图1所示的终端设备102、终端设备103、终端设备104等。应理解,图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括核心网设备、无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
在移动通信系统100中,本申请实施例中的终端设备102、终端设备103、终端设备104也可以称为终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑,还可以是应用于虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)以及智慧家庭(smart home)等场景中的无线终端。本申请中将前述终端设备及可应用于前述终端设备的芯片统称为终端设备。应理解,本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中的网络设备101可以是用于与终端设备通信的设备,该网络设备可以是基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
应理解,在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申 请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
还应理解,本申请实施例提供的信道确定的方法可以应用于终端设备和网络设备之间的通信过程,例如终端设备102、终端设备103、终端设备104和基站101之间上行链路的通信过程;还可以应用于终端设备102、终端设备103、终端设备104之间的通信,例如侧行链路的通信过程,在车辆对外信息交换(vehicle to everything,V2X)业务中,对于终端设备102和终端设备103之间的通信过程等,本申请对此不做限定。在以下实施例中,将以终端设备和基站之间的上行链路的通信过程为例具体介绍本申请信道确定的方法。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,本申请实施例中的“第一”、“第二”以及“第三”仅为了区分,不应对本申请构成任何限定。例如,本申请实施例中的“第一信道”和“第二信道”,表示基站和终端设备之间传输信息的资源。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还需要说明的是,本申请实施例中,“预先设定”、“预先定义”等可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定,例如本申请实施例中预设的规则、预设的常数等。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。下面将结合附图详细说明本申请提供的技术方案。
为便于理解本申请实施例,下面先对本申请涉及到的几个概念进行简单介绍。
1、时隙(time slot)和时域符号
时隙可以理解为专用于某一个单个通道的时隙信息的串行自复用的一个部分。时隙可以理解为一个通道。
在本申请的实施例中,符号也称为时域符号,可以是正交频分复用(orthogonal  frequency division multiplexing,OFDM)符号,也可以是单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号,其中SC-FDMA又称为带有转换预编码的正交频分复用(orthogonal frequency division multiplexing with transform precoding,OFDM with TP)。
此外,时域符号也可以理解为时间单元,例如,1个时间单元可以是一个或多个子帧;或者,也可以是一个或多个时隙;或者,也可以是一个或多个符号。当1个时间单元就是一个符号的时候,本申请实施例的描述中,时域符号和时间单元可以是等效的。
2、物理上行信道
可用于承载上行控制信息和/或上行数据的信道。例如,该物理上行信道可以包括LTE协议或NR协议中定义的物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink share channel,PUSCH)以及随着网络演变而定义的具有上述功能的其他上行信道。
3、下行控制信息(download control information,DCI)
主要用于发送下行调度分配信息,有多种不同的格式,包括但不限于DCI format 0-0,0-1,1-0,1-1,2-0,2-1,2-2,2-3。
4、PUCCH资源指示字段或者PUCCH资源指示域(PUCCH resource indicator field)
DCI中的M比特(bit)的信息字段,用于指示HARQ-ACK信息可用的传输资源,可选的,所述M等于3。
下面,对本申请实施例的传输对象上行控制信息(uplink control information,UCI)进行详细说明。
在本申请实施例中,上行控制信息UCI包含有混合自动重传请求应答消息(hybrid automatic repeat request acknowledgement,HARQ-ACK),调度请求(scheduling request,SR),CSI(CQI,PMI,RI)中的至少一项。
4、物理侧行控制信道(physical sidelink control channel,PSCCH)
PSCCH可用于承载侧行控制信息和/或侧行反馈控制信息等。5、物理侧行数据共享信道(physical sidelink share channel,PSSCH)
PSSCH可以用于发送侧行数据等。
6、物理侧行反馈信道(physical sidelink feedback channel,PSFCH)
PSFCH可以用于承载侧行反馈控制信息,例如用于反馈侧行数据的HARQ信息。
作为示例而非限定,在本申请实施例中上行控制信息可以包括但不限于以下一种或多种信息:
1.反馈信息
在本申请实施例中,该上行控制信息可以包括针对下行数据的反馈信息。
具体的说,在本申请实施例中,下行数据的传输可以采用反馈技术,作为示例而非限定,该反馈技术可以包括例如,混合自动重传请求(hybrid automatic repeat request,HARQ)技术。
其中,HARQ技术是一种将前向纠错编码(forward error correction,FEC)和自动重传请求(automatic repeat request,ARQ)相结合而形成的技术。
例如,在HARQ技术中,接收端在从发送端接收到数据后,可以确定该数据是否准 确译码。如果不能准确译码,则接收端可以向发送端反馈非确认(negative-acknowledge,NACK)信息,从而,发送端可以基于NACK信息,确定接收端没有准确接收到数据,从而可以进行重传处理;如果能够准确译码,则接收端可以向发送端反馈确认(acknowledge,ACK)信息,从而,发送端可以基于ACK信息,确定接收端准确接收到数据,从而可以确定完成了数据传输。
即,在本申请实施例中,当接收端解码成功时可以向发送端ACK信息,在解码失败时可以向发送端反馈NACK信息
作为示例而非限定,在本申请实施例中,上行控制信息可以包括HARQ技术中的ACK信息或NACK信息。其中,HARQ-ACK用于反馈下行数据信道PDSCH的接收情况,当UE接收正确,会发送ACK。当UE接收错误,会发送NACK。基站根据UE对PDSCH信道的反馈信息,来确定接下来的调度策略,比如是重传还是新传。
作为示例而非限定,在本申请实施例中,侧行反馈控制信息可以包括HARQ技术中的ACK信息或NACK信息。其中,HARQ-ACK用于反馈侧行数据信道PSSCH的接收情况,当发送UE向接收UE发送PSSCH,接收UE正确接收PSSCH,会发送ACK。当接收UE接收错误,会发送NACK。基站或发送UE或第三UE根据接收UE对PSSCH的反馈信息,来确定接下来的调度策略,比如是重传还是新传。在本申请实施例的描述中,经常以HARQ-ACK作为HARQ技术中的反馈信息,应理解,还可以时HARQ-NACK信息,本申请都适用。
应理解,以上列举的反馈信息包括的内容仅为示例性说明,本申请并未限定于此,其他能够指示终端设备对下行数据的接收情况的信息,均落入本申请的保护范围内,例如,该反馈信息还可以包括非连续传输(discontinuous transmission,DTX)信息,该DTX信息可以用于指示终端设备未接收到下行数据。
2.信道状态信息CSI
在无线通信领域,所谓的CSI,就是通信链路的信道属性,CSI是UE对信道状态进行测量后向基站或其他UE反馈的信道状态信息,该信息进一步包括CQI/PMI/RI等信息。它描述了信号在每条传输路径上的衰弱情况,即信道增益矩阵H中每个元素的值,如信号散射(scattering),环境衰弱(multipath fading or shadowing fading),距离衰减(power decay of distance)等信息。CSI可以使通信系统适应当前的信道条件,在多天线系统中为高可靠性高速率的通信提供了保障。
3.信道质量指示(channel quality indicator,CQI)信息
在本申请实施例中,CQI可以用来反映物理下行共享信道(physical downlink shared channel,PDSCH)以及PSSCH的信道质量。CQI是信道质量指示信息,用于直接反馈信道质量。基站根据CQI可以进一步确定发送数据采用的调制编码策略(modulation coding strategy,MCS)。当反馈的CQI的值高的时候,可以采用较高的编码调制方式和较高的码率,在有限的资源上承载更多的信息,从而提升数据的传输速率。当反馈的CQI的值较低的时候,可以采用较低的编码调制方式和较低的码率,采用更多的时频资源来传输数据,从而提高数据传输的可靠性。同时,UE通过测量不同频域资源的CQI,使得基站能够将数据调度在信道质量好的频域资源上,从而获得频域调度增益。
作为示例而非限定,在本申请实施例中,可以用0~15来表示PDSCH的信道质量。0 表示信道质量最差,15表示信道质量最好。
在本申请实施例中,终端设备可以在PUCCH或物理上行共享信道(physical uplink shared channel,PUSCH)上向网络设备发送CQI信息。或者,终端设备可以在PSSCH或PSCCH上向另一终端设备发送CQI信息。网络设备或者另一终端设备可以CQI信息根据,确定当前PDSCH或PUSCH的无线信道条件,进而完成针对PDSCH的调度,例如,在本申请实施例中,网络设备可以基于CQI信息确定自适应编码调制(adaptive modulation and coding,AMC)、调制与编码策略(modulation and coding scheme,MCS)、上行传输或下行传输的码率或数据量等。
4.秩指示(rank indication,RI)信息
在本申请实施例中,RI是秩指示信息,用于向基站反馈该信道所能分离出来的层数,层数越多,能同时传输的数据量就越大。RI信息可以用于指示PDSCH或者PSSCH的有效的数据层数,或者说,RI信息可以用于指示终端设备当前可以支持的码字(code word,CW)数。
5.预编码矩阵指示(precoding matrix indicator,PMI)信息
在本申请实施例中,PMI信息可以用于指示码本集合的索引(index),PMI是UE根据测量的信道质量,向基站或另一UE反馈的发送数据的预编码矩阵标识。基站或另一UE可以根据反馈的PMI信息,来确定对应的预编码矩阵。即,在使用多天线技术,例如,多输入多输出(multiple-input multiple-output,MIMO)技术中,在基带处理中,会进行基于预编码矩阵的预编码处理(precoding)。终端设备可以通过PMI信息指示预编码矩阵,从而,能够提高PDSCH的信号质量。
除此之外,还有一些信息比如CSI-RS的资源指示信息(CSI-RS resource indicator,CRI),用于向基站反馈测量的多个测量资源中,哪个测量资源测量的信道质量最好。
应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请构成任何限定。接收端设备向发送端设备发送的CSI可以包括上述列举中的一项或多项,或者,还可以包括除上述列举之外的其他用于表征CSI的信息,本申请对此不做限定。
在本申请实施例中,发送上行控制信息可以是指发送上行控制信道PUCCH或上行共享信道PUSCH上承载的数据或信息,其中,该数据或信息可以是指经过信道编码后的数据或信息。本申请对此不做限定。
同样地,在本申请实施例中,发送下行控制信息可以是指发送下行控制信道PDCCH或下行共享信道PDSCH上承载的数据或信息,其中,该数据或信息可以是指经过信道编码后的数据或信息。本申请对此不做限定。
同样地,在本申请实施例中,发送侧行控制信息可以是指发送侧行控制信道PSCCH或侧行共享信道PSSCH上承载的数据或信息,其中,该数据或信息可以是指经过信道编码后的数据或信息。本申请对此不做限定。
以下,不失一般性,以一个终端设备与基站之间的交互过程为例详细说明本申请实施例,本申请还包括终端设备与终端设备之间侧行链路的通信过程,例如侧行链路的通信过程,在车辆对外信息交换(vehicle to everything,V2X)业务等,本申请对此不做限定。以一个终端设备与基站之间的交互过程为例,该终端设备可以为处于无线通信系统中与一个或多个网络设备具有无线连接关系的任意终端设备。可以理解的是,处于该无线通信系 统中的任意一个终端设备均可以基于相同的技术方案实现无线通信。本申请对此不做限定。
如背景技术所介绍,为了避免同时发送信道造成冲突,一方面要求基站在调度时就尽量避免不同信道之间的冲突,另一方面在无法避免冲突时定义相应的规则,确定需要发送哪一个信道,从而使基站和UE之间达成一致。如何保证基站和UE之间能够在确定资源的过程中保持一致,以进一步满足终端设备的发送需要,从而提高上行传输的可靠性,是当前需要解决的问题。
当在时域上,不同信道至少占用一个相同的时间单位(子帧,时隙,符号),就可以认为不同的信道在时域上重叠,我们就认为是有冲突。冲突的处理原则可以大概分为两类:一种处理方法是丢弃(drop)信道,具体地,在不同信道冲突时,其中一个或多个信道不发,只发送冲突信道中的一个。另外一种处理方法是复用信道,具体地,其中一个信道本身不发送,但是将该信道承载的信息放在与其冲突的另外一个信道上发送。当然,还有另外一种通过信道选择的方式实现复用,例如根据一个或多个信道信道承载的信息的种类和状态,选择发送冲突信道中的一个。示例性的,发送调度请求(scheduling request,SR)的PUCCH与发送HARQ-ACK的PUCCH冲突时,如果SR的状态为positive,那么就在SR所在的PUCCH上发送HARQ-ACK信息,反之SR的状态如果为negative,那么HARQ-ACK就在自己的PUCCH上发送。
图2是一例传输过程中的资源选择过程的示意图。如图2所示,在时域上,承载SR的PUCCH和承载非周期的信道状态信息(aperiodic channel state information,A-CSI)的PUSCH发生冲突,当SR的状态为positive,在解决冲突的方法中,可以丢弃承载A-CSI的PUSCH,换言之,丢弃图2中阴影部分示出的信道。
图3是又一例传输过程中的资源选择过程的示意图。如图3所示,在时域上,承载HARQ-ACK的PUCCH和承载A-CSI的PUSCH发生冲突,此时可以将HARQ复用至承载A-CSI的PUSCH上。
以上介绍了两个信道冲突时现有的处理原则,当两个信道之间发生冲突时,可以根据不同的规则进行处理。除了两个信道发生冲突的情况之外,在一种可能的情况中,多个信道也可能同时发生冲突,例如一个信道与至少两个其他信道同时发生冲突,但是该至少两个其他信道之间并没有发生冲突,现有的方案中并没有解决此种情况下的信道冲突问题。
图4是本申请实施例提供的又一例上行传输过程中的资源冲突示意图。如图4所示,当承载SR的PUCCH、和承载HARQ的PUCCH同时与承载A-CSI的PUSCH发生冲突,但是承载SR的PUCCH和HARQ的PUCCH并不冲突时,如何处理资源之间的冲突,是当前亟需解决的问题。
本申请将提供一种确定信道的方法,能够为基站和终端设备确定用于传输的资源,提高传输的可靠性。应理解,本申请将以终端设备向基站的上行传输过程为例,以承载A-CSI的PUSCH和承载SR或者CSI或者HARQ-ACK的PUCCH或PUSCH发生冲突为例具体介绍本申请信道确定的方法。
图5是本申请实施例提供的一例确定信道的方法500的示意性交互图。该方法500可以应用于上述无线通信系统100的终端设备或基站。如图5所示,该方法500包括以下内容。
S510,当第一信道与多个信道中的每个信道在时域上重叠,且所述多个信道中的每个信道在时域上相互不重叠时,根据第一参数信息,从所述多个信道中确定第二信道。
应理解,本申请中第一信道可以是PUSCH,例如不承载上行共享信道(uplink shared channel,UL-SCH),既承载A-CSI或者SP-CSI的PUSCH。多个信道中的每个信道可以是PUSCH和/或PUCCH,例如承载SR、CSI或HARQ的PUSCH和/或PUCCH,本申请对此不做限定。
还应理解,本申请中的第一信道可以是PSSCH,例如A-CSI的PSSCH。多个信道可以是PSCCH和/或PSFCH,本申请对此不做限定。
还应理解,在本申请中,该多个信道包括至少两个信道,且该多个信道中的每个信道之间没有在时域上重叠,即没有发生任何冲突,但是该多个信道中的每个信道和第一信道在时域上重叠,即发生冲突。
示例性的,如图4示出的示意图,承载SR的PUCCH、和承载HARQ的PUCCH同时与承载A-CSI的PUSCH发生冲突,但是承载SR的PUCCH和HARQ的PUCCH并不冲突,则承载SR的PUCCH、和承载HARQ的PUCCH就可以理解本申请的多个信道中的两个信道,承载A-CSI的PUSCH就可以理解为本申请所说的第一信道,本申请对多个信道中所包括的信道的数量不做限定。
S520,从所述第一信道和所述第二信道中确定待发送的信道。
终端设备和基站可以根据第一参数信息,从所述多个信道中确定第二信道,可以理解为,终端设备和基站从多个信道中选择中一个信道作为第二信道,先解决该第二信道和第一信道的冲突。应理解,第二信道可以理解为优先被选择为解决和第一信道的冲突的信道。
还应理解,这里“待发送的信道”对应到基站侧可以称为“待接收的信道”,这里“待发送的信道”不一定是最终终端设备发送给基站的信道。可选地,解决完该第二信道和第一信道的冲突,如果保留了第一信道为待发送的信道,则第一信道仍然和该多个信道中的其他信道冲突,本申请将继续从多个信道中选择其他信道,继续解决和第一信道的冲突,直到没有冲突为止,最后发送最终保留的信道。或者,解决完该第二信道和第一信道的冲突,如果保留了第二信道为待发送的信道,则第二信道和该多个信道中的其他信道没有冲突,则第二信道就是这里的待发送信道,并由终端设备发送到基站,本申请对此不做限定。
还应理解,第一参数信息可以理解为用于从多个信道中选择信道的参数,换言之,终端设备和基站可以根据该第一参数信息制定一个解决信道冲突的顺序,根据第一参数选择一个第二信道,先解决第二信道和第一信道的冲突。之后如果还有类似的冲突,循环本申请的方法,直到冲突解决为止。
下面将结合不同的第一参数信息的类型,介绍终端设备和基站从多个信道中确定优先解决冲突的第二信道的过程。包括如下不同的方法:
方法一
在一种可能的实现方式中,所述第一参数信息包括发送所述多个信道中的每个信道的起始时间单元的信息,且发送所述第二信道的时间单元的索引在所述多个信道中的时间单元的索引中是最小的。
为了便于终端设备的实现,可以规定按照时间的先后顺序进行处理,具体地,可以按照信道的发送的先后顺序依次进行处理。
应理解,5G移动通信系统支持多种子载波间隔,其中,每种子载波间隔适用不同业务类型或者工作频率,不同的子载波间隔的符号各自对应的循环前缀(cyclic prefix,CP)的长度不同。目前,在载波资源中不同的子载波间隔有15KHz、30KHz、60KHz、120KHz、240KHz,对于不同的服务小区,具有相同或者不同的子载波间隔,从而传输资源具有相同或者不同的时隙长度。
图6是本申请实施例提供的又一例资源确定过程示意图。图6中不同的分量载波(component carrier,CC),CC 0的子载波间隔是60KHz,CC 1的子载波间隔15KHz,在本申请后续附图和描述中,都以CC 0和CC 1表示不同的载波,分别对应不同的时隙,例如在一个时间长度内,CC 0对应包括时隙4n、时隙4n+1、时隙4n+2和时隙4n+3,CC0对应时隙n。
示例性的,如图6所示,对于CC 0,在时隙4n内包括承载HARQ-ACK的PUCCH,在时隙4n+3内包括承载SR(positive)的PUCCH;对于CC 1,在时隙n内包括承载SP-CSI的PUSCH,其中,承载SP-CSI的PUSCH和承载HARQ-ACK的PUCCH、承载SR(positive)的PUCCH都发生了冲突。
按照方法一,第一参数信息包括承载HARQ-ACK的PUCCH和承载SR(positive)的PUCCH的发送时刻对应的起始时间单元的信息,且开始发送承载HARQ-ACK的PUCCH的时刻对应的时间单元的索引小于开始发送承载SR(positive)的PUCCH的时刻对应的时间单元的索引,换言之,承载HARQ-ACK的PUCCH的起始发送时刻早于承载SR(positive)的PUCCH的起始发送时刻,因此,终端设备和基站可以将承载HARQ-ACK的PUCCH作为第二信道,优先处理承载HARQ-ACK的PUCCH和承载SP-CSI的PUSCH(第一信道)之间的冲突。
如图6的第二步所示,承载HARQ-ACK的PUCCH和承载SP-CSI的PUSCH(第一信道)之间的冲突的解决可以按照图3所示的过程,即将HARQ-ACK复用到承载SP-CSI的PUSCH,保留该PUSCH,即第一信道作为确定的待发送信道。
如图6中的第三步所示,承载HARQ-ACK和SP-CSI的PUSCH和时隙4n+3的承载SR(positive)的PUCCH依然为冲突状态,因此接下来解决承载HARQ-ACK和SP-CSI的PUSCH和时隙4n+3的承载SR(positive)的PUCCH之间的冲突。可以按照图2所示的过程,即丢弃承载HARQ-ACK和SP-CSI的PUSCH,保留该承载SR(positive)的PUCCH,即承载SR(positive)的PUCCH作为确定的待发送信道,可以由终端设备发送给基站。
通过上述方案,基站和终端设备可以根据冲突的信道的发送时域位置对应的时间单元,确定信道之间冲突处理顺序。换言之,优先处理发送时刻在前的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
应理解,以上仅以PUSCH作为第一信道为例介绍该确定信道的方法,该方法同样适用于终端设备和终端设备之间,以PSSCH作为第一信道、PSCCH或PSFCH作为多个信道的侧行链路通信过程,这里不再赘述。类似地,以下所有方法同样适用于终端设备和终端设备之间,也不再过多赘述。
方法二
在一种可能的实现方式中,所述第一参数信息包括所述多个信道中的每个信道的起始 符号的信息,且所述第二信道的起始符号的索引在所述多个信道中的起始符号的索引中是最小的。
应理解,除了根据方法一中介绍的在多个信道中先确定发送每个信道的起始时刻在前的信道为第二信道,优先解决和第一信道的冲突问题,但是可能在多个信道中,有至少两个信道的发送时间对应同一个时间单元或者时间单元的索引相同,那么可以根据信道的起始符号来确定第二信道。例如,将起始符号在前的信道确定为第二信道,换言之,将起始符号索引最小的确定为第二信道,本申请对此不做限定。
还应理解,在本申请中,所说的发送信道的时间就是指发送每个信道的起始时刻,同理,接收信道的时间就是指接收每个信道的起始时刻。
还应理解,通过起始符号确定第二信道的方法还可以单独使用,即直接根据每个信道的起始符号来确定优先处理哪个信道和第一信道的冲突问题;或者,在根据方法一中介绍的发送信道的时间单元无法确定优先处理哪个信道和第一信道的冲突问题时,再进一步根据信道的起始符号确定优先处理哪个信道和第一信道的冲突问题,本申请对此不做限定。
可选地,可以将和第一信道的起始符号相同的信道确定为第二信道,或者优先处理起始符号相同的信道中的任意两个信道的冲突问题,本申请对此不做限定。
通过上述方案,基站和终端设备可以根据冲突的信道的起始符号,确定信道之间冲突处理顺序。换言之,优先处理起始符号在前的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
方法三
在一种可能的实现方式中,所述第一参数信息包括接收所述多个信令的起始时间单元的信息,且用于指示所述第二信道的信令的时间单元的索引在所述多个信令的时间单元的索引中是最小的。
应理解,在解决信道冲突之前,对于上行传输,终端设备可以接收基站发送的多个信令,所述多个信令用于指示发送所述多个信道的时间单元。示例性的,信令可以是用于调度的指令,例如DCI、高层信令、无线资源控制(radio resource control,RRC)信令或PHCP层信令等,本申请对此不做限定。
具体地,可以按照网络设备发送调度信令的先后顺序,从多个信道中选择优先处理冲突的第二信道,换言之,先调度的信道优先处理和第一信道的冲突。
在一种可能的实现方式中,如果有多个半静态调度的信道,那么先处理半静态信道之间的冲突。如果存在多于两个半静态调度的信道冲突,则可以结合方法一和方法二中的方法优先进行处理。
图7是本申请实施例提供的又一例资源确定过程示意图。示例性的,如图7所示,对于CC 0,基站在时隙2n内通过下发DCI-1指示终端设备在时隙2n+1发送承载HARQ-ACK的PUCCH,基站在时隙2n+1内调度了下行数据PDSCH,通过下发DCI-2指示终端设备在时隙2n+3发送包括承载A-CSI Report的PUSCH;对于CC 1,在时隙n+1内包括承载SP-CSI的PUSCH,其中,承载SP-CSI的PUSCH和承载HARQ-ACK的PUCCH、承载A-CSI的PUSCH都发生了冲突。那么也就可以理解为,A-CSI的调度要早于HARQ-ACK,虽然A-CSI Report要晚于HARQ-ACK的发送。此时,应该优先处理先调度的用于承载 A-CSI的PUSCH与承载SP-CSI的PUSCH之间的冲突。
通过上述方案,基站和终端设备可以根据冲突的信道的调度信令的接收的起始时刻,确定信道之间冲突处理顺序。换言之,优先处理调度在前的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
方法四
在一种可能的实现方式中,所述第一参数信息包括所述多个信道中的每个信道承载的不同业务类型的信息。
在5G通信系统中,支持增强型移动宽带(enhanced mobile broadband,eMBB)业务、高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务以及海量机器类通信(massive machine type communications,mMTC)业务以及车辆对外信息交换(vehicle to everything,V2X)业务等。当终端设备上报不同业务类型的信息时,承载不同业务类型信息的信道也可能发生冲突,那么他们之间的冲突解决顺序就可以根据业务类型来确定。
具体地,可以按照如下顺序处理:优先处理承载相同业务类型信息的信道之间的冲突,再处理承载不同业务类型信息的信道之间的冲突。
在一种可能的实现方式中,处理不同业务类型的信道时,按照一定的业务类型的优先级进行处理。例如,优先处理URLLC业务和/或V2X业务,再处理eMBB业务,最后处理mMTC业务。
图8是本申请实施例提供的又一例资源确定过程示意图。示例性的,如图8所示,当承载URLLC业务的HARQ-ACK的PUCCH、承载eMBB业务的HARQ-ACK的PUCCH同时和承载eMBB业务的SP-CSI的PUSCH都发生冲突时,首先优先处理eMBB之间的冲突。如图8中第二步所示,承载eMBB业务的HARQ-ACK的PUCCH同时和承载eMBB业务的SP-CSI的PUSCH冲突解决过程中,将承载eMBB业务的HARQ-ACK和SP-CSI复用在PUSCH上,然后再处理eMBB与URLLC之间的冲突。假设URLLC与eMBB之间的冲突会将eMBB的信道丢弃,因此,如图8中第三步所示,丢弃承载eMBB业务的HARQ-ACK和SP-CSI的PUSCH。同样,此处的URLLC业务也可以是V2X业务,本申请对此不做限定。
在一种可能的实现方式中,可以优先处理URLLC业务与eMBB业务之间的冲突,再处理步骤一中结果与mMTC业务之间的冲突。
图9是本申请实施例提供的又一例资源确定过程示意图。示例性的,如图9所示,当承载URLLC业务的HARQ-ACK的PUCCH、承载mMTC业务的HARQ-ACK的PUCCH同时和承载eMBB业务的SP-CSI的PUSCH都发生冲突时,首先优先处理URLLC业务与eMBB业务之间的冲突。如图9中第二步所示,丢弃承载eMBB业务的SP-CSI的PUSCH。
在一种可能的实现方式中,所述第一信道和所述第二信道承载相同的业务。
换言之,当基站和终端设备确定第一信道之后,根据第一信道承载的业务类型,按照相同的业务类型,从多个信道中确定和第一信道承载相同业务的信道作为第二信道,优先处理该第二信道和第一信道之间的冲突。示例性的,当第一信道是承载URLLC业务的PUSCH,多个信道中分别包括承载URLLC业务的PUCCH、承载mMTC业务的PUCCH 同时和承载eMBB业务的PUCCH,优先处理承载URLLC业务的PUSCH和承载URLLC业务的PUCCH的冲突。
通过上述方案,基站和终端设备可以根据冲突的信道的承载的业务的类型,确定信道之间冲突处理顺序。换言之,优先处理承载的业务的优先级高的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
应理解,在前面实施例的介绍过程中,可以将PUSCH默认为是第一信道,例如承载A-CSI或者SP-CSI的PUSCH作为第一信道。多个信道中的每个信道可以是PUSCH和/或PUCCH,例如承载SR、CSI或HARQ的PUSCH和/或PUCCH。在实际的通信过程中,第一信道可以是由基站和终端设备根据一定的规则确定的信道。
在一种可能的实现方式中,基站和终端设备可以将与多个信道中的每个信道在时域上都重叠的信道,确定为所述第一信道。换言之,当某个信道同时和多个信道同时冲突时,将该信道确定为第一信道,再按照本申请介绍的方法从多个信道中确定出第二信道,从而优先解决第一信道和第二信道之间的冲突。
图10是本申请实施例提供的又一例资源确定过程示意图。示例性的,如图10所示,当承载URLLC业务的HARQ-ACK的PUCCH、承载eMBB业务的HARQ-ACK的PUCCH、承载URLLC业务的SP-CSI的PUSCH、承载eMBB业务的SP-CSI的PUSCH发生如图所示的冲突。在这种冲突场景中,如果以一个信道和多个信道同时发生冲突来确定第一信道,则图10中的承载URLLC业务的SP-CSI的PUSCH、承载eMBB业务的HARQ-ACK的PUCCH都可以作为第一信道。
可选地,可以根据不同的信道承载的业务的优先级确定第一信道。例如,对于图10中的承载URLLC业务的SP-CSI的PUSCH和承载eMBB业务的HARQ-ACK的PUCCH,URLLC业务的优先级高于eMBB业务的优先级,因此将承载URLLC业务的SP-CSI的PUSCH确定为第一信道。
或者,可以根据不同的信道的起始发送时刻确定第一信道。例如,对于图10中的承载URLLC业务的SP-CSI的PUSCH和承载eMBB业务的HARQ-ACK的PUCCH,承载URLLC业务的SP-CSI的PUSCH的起始发送时刻在承载eMBB业务的HARQ-ACK的PUCCH之前,因此将承载URLLC业务的SP-CSI的PUSCH确定为第一信道。
作为一种示例而非限定,如图10中的第二步所示,将承载URLLC业务的SP-CSI的PUSCH确定为第一信道,优先处理URLLC的业务的信道之间的冲突,将承载URLLC业务的HARQ-ACK和承载URLLC业务的SP-CSI复用到PUSCH上,再按照处理URLLC业务与eMBB业务之间的冲突的原则,丢弃承载eMBB业务的HARQ-ACK的PUCCH,得到图10中第三步所示的处理结果,本申请对此不做限定。
在一种可能的实现方式中,基站和终端设备也可以先各自按照信道的业务类型解决相同业务的信道之间的冲突,之后如果还存在一个信道和多个信道冲突的情况,再按照本申请介绍的多种方案解决信道冲突问题。
图11是本申请实施例提供的又一例资源确定过程示意图。示例性的,如图11所示,当承载URLLC业务的HARQ-ACK的PUCCH、承载eMBB业务的HARQ-ACK的PUCCH、承载URLLC业务的SP-CSI的PUSCH、承载eMBB业务的SP-CSI发生了如图所示的冲 突。此时,除了将满足第一信道确定条件的承载URLLC业务的SP-CSI的PUSCH作为第一信道进行处理之外,还可以优先的根据不同的信道承载的业务的类型进行处理。
具体地,分别处理URLLC的业务的信道之间的冲突,处理eMBB的业务的信道之间的冲突。如图11中的第二步所示,将承载URLLC业务的HARQ-ACK和承载URLLC业务的SP-CSI复用到PUSCH上,将承载eMBB业务的HARQ-ACK和承载eMBB业务的SP-CSI复用到PUSCH上,得到图10中第三步所示的处理结果,此时冲突已经解决,本申请对此不做限定。
方法五
在一种可能的实现方式中,所述第一参数信息包括所述多个信道中的每个信道所承载的信息的优先级信息。
具体地,在处理信道冲突过程中,优先处理承载更高优先级信息的信道间的冲突,处理完成后在仍有冲突的信道中选择次高优先级的信道,解决该信道与其他信道之间的冲突,以此类推,直到解决所有信道之间的冲突。
可选地,如果存在多个优先级相同的信道,那么可以结合以上方法一至方法四中的任意一种,例如按照时间顺序,优先先处理发送时间较早的信道。
可选地,如果一个信道上承载多种优先级的信息,那么取所有信息中的最高优先级进行比较。
应理解,在这种情况下,可以理解为将具有最高优先级的信息对应的信道默认为第一信道,然后优先解决第一信道个多个信道之间的冲突。换言之,当基站和终端设备可以约定认为某个信道为第一信道,之后基站和终端设备只需要从与第一信道都冲突的多个信道中确定第二信道,再处理第一信道和第二信道的冲突。例如承载A-CSI或者SP-CSI的PUSCH作为第一信道。多个信道中的每个信道可以是PUSCH和/或PUCCH,例如承载SR、CSI或HARQ的PUSCH和/或PUCCH。
或者,可选地,第一信道可以是由基站和终端设备根据一定的规则确定的信道。在前面实施例的介绍过程中,介绍了从多个信道中确定第二信道的方法,在实际情况允许的情况下,本申请中介绍的每一种确定第二信道的方案可以用来确定第一信道。换言之,终端设备和基站先从冲突的信道中确定一个信道作为第一信道之后,再确定第二信道,之后再解决相互之间的冲突,本申请对此不做限定。
图12是本申请实施例提供的又一例资源确定过程示意图。表1示出了信道1至信道5的优先级信息。结合表1和图12,图12示出了5个不同的信道1至信道5互相重叠,优先级等级定义如下:P1>P2>P3>P4>P5。
表1
信道编号 优先级
1 P4
2 P2
3 P5
4 P1
5 P3
其中,信道4承载的信息的优先级最高,那么先处理与信道4有关的冲突;信道5的优先级要高于信道3,那么先处理信道4与信道5之间的冲突。假设此时信道5上的信息会复用至信道四,此时信道四的最高优先级仍然是P1,因为信道5上的信息被复用,所以信道5不发送,剩余信道1至信道4。
如图12中的第二步至第三步,在剩余有重叠的信道中,信道4的优先级仍然最高,那么处理与信道4有关的信道冲突。此时假设信道3被丢弃,剩余信道1、信道2和信道4,信道4与其他信道无冲突,冲突的信道只剩信道1和信道2。
信道1上的信息与信道2上的信息会复用至一个信道6,原信道1和信道2都不发。信道6承载优先级为P2和P4的信息,认为信道6的优先级为P2。信道6与信道4无冲突,无重叠,那么信道冲突的处理过程结束,得到图12中第四步的结果。
应理解,在定义优先级的过程中,有多种可能的实现方式。
在一种可能的实现方式中,可以认为不同的控制信息类型之间的优先级是不同的。例如HARQ-ACK>SR>高优先级的CSI>低优先级CSI;URLLC业务>eMBB业务>mMTC业务;V2X业务>eMBB业务>mMTC业务。
可选地,定义优先级还可以根据高层指示,根据不同的QoS来确定优先级,本申请对此不做限定。
通过上述方案,基站和终端设备可以根据冲突的信道的承载的信息的优先级,确定信道之间冲突处理顺序。换言之,优先处理承载的信息的优先级高的信道的冲突,该确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
方法六
在一种可能的实现方式中,所述多个信道用于承载控制信息,所述第一参数信息包括所述多个信道承载的所述控制信息的类型。
可选地,终端设备和基站可以根据信道中承载的信息类型进行处理。
示例性的,当一个并不承载UL-SCH的PUSCH,例如承载A-CSI或者SP-CSI的PUSCH,与多个承载不同UCI类型的PUCCH/PUSCH冲突,而本身PUCCH/PUSCH之间并不冲突,不同的UCI类型包括HARQ信息,CSI信息和SR信息。
在一种可能的实现方式中,处理顺序可以是优先处理与SR(positive or negative)的冲突,然后处理与CSI的冲突,最后处理与HARQ之间的冲突。具体地,优先处理SR与PUSCH之间的冲突;再处理之后所得到信道与CSI之间的冲突;继续处理前次处理所得到信道与HARQ之间的冲突。
图13是本申请实施例提供的又一例传输过程中的资源选择过程的示意图。如图13所示,假设不同的PUCCH与PUSCH在同一时隙中,他们具有相同的子载波(SCS)间隔。优先处理承载SR(positive)的信道与承载A-CSI的信道之间的冲突,从而丢弃承载A-CSI的信道,最终发送的信道为HARQ和SR。
图14是本申请实施例提供的又一例传输过程中的资源选择过程的示意图。如图14所示,PUCCH与PUSCH可以位于不同的时隙、不同的载波(CC)或者服务小区,他们的子载波间隔也可以不尽相同。优先处理承载SP-CSI的PUSCH与承载A-CSI的PUSCH之间的冲突,从而丢弃承载SP-CSI的PUSCH,最终发送的信道为承载A-CSI的PUSCH、 承载SR(positive)的PUCCH和承载HARQ-ACK的PUCCH。
图15是本申请实施例提供的又一例传输过程中的资源选择过程的示意图。如图15所示,PUCCH与PUSCH可以位于不同的时隙、不同的载波(CC)或者服务小区。优先处理承载A-CSI的PUSCH与承载HARQ-ACK的PUCCH之间的冲突,从而将HARQ-ACK复用到承载A-CSI的PUSCH,再处理和承载SP-CSI的PUSCH之间的冲突,丢弃承载SP-CSI的PUSCH,最终发送的信道为承载HARQ-ACK和A-CSI的PUSCH。
通过上述技术方案,在基站和终端设备的通信过程中,当一个信道(PUSCH)与多个信道同时发生冲突,但是该多个信道之间的任意两个信道并没有发生冲突的情况下,可以通过相同的规则,使得基站和按照预定义的处理顺序,确定传输的信道。具体地,基站和终端设备可以按照信道上所承载的信息类型,如按照上行控制信息UCI的类型,确定信道之间冲突处理顺序;或者,根据冲突的信道的发送时间顺序,确定信道之间冲突处理顺序;或者,根据冲突的信道的调度顺序,确定信道之间冲突处理顺序;又或者,根据冲突的信道承载的不同的业务类型,确定信道之间冲突处理顺序;又或者,根据冲突的信道所承载信息的优先级,确定信道之间冲突处理顺序。上述确定信道的方法可以尽量多的保留和发送控制信息,提高基站和终端设备或者终端设备与终端设备之间传输的可靠性。
应理解,上述介绍的信道确定的方法,可以应用于终端设备和基站之间的通信,例如上行链路的通信过程;还可以应用于终端设备和终端设备之间的通信,例如侧行链路的通信过程,本申请对此不做限定。
以上结合图1至图15对本申请实施例的信道确定的方法做了详细说明。以下,结合图16至图19对本申请实施例的信道确定的传输装置进行详细说明。
图16示出了本申请实施例的信道确定的装置1600的示意性框图,该装置1600可以对应上述方法500和方法700中描述的终端设备,也可以是应用于终端设备的芯片或组件,并且,该装置1600中各模块或单元分别用于执行上述方法500和方法700中终端设备所执行的各动作或处理过程,如图16所示,该通信装置1600可以包括:第一处理单元1610、第二处理单元1620以及通信单元1630。
第一处理单元1610,用于当第一信道与多个信道中的每个信道在时域上重叠,且该多个信道中的每个信道在时域上相互不重叠时,根据第一参数信息,从该多个信道中确定第二信道。
第二处理单元1620,用于从该第一信道和该第二信道中确定待发送的信道。
在一种可能的实现方式中,该第一参数信息包括发送该多个信道中的每个信道的起始时间单元的信息,且发送该第二信道的时间单元的索引在该多个信道中的时间单元的索引中是最小的。
在一种可能的实现方式中,该第一参数信息包括该多个信道中的每个信道的起始符号的信息,且该第二信道的起始符号的索引在该多个信道中的起始符号的索引中是最小的。
在一种可能的实现方式中,该装置还包括:通信单元1630,用于接收多个信令,该多个信令用于指示发送该多个信道的时间单元,以及该第一参数信息包括接收该多个信令的起始时间单元的信息,且用于指示该第二信道的信令的时间单元的索引在该多个信令的时间单元的索引中是最小的。
在一种可能的实现方式中,该第一参数信息包括该多个信道中的每个信道承载的不同 业务类型的信息。
在一种可能的实现方式中,该第一信道和该第二信道承载相同类型的业务。
在一种可能的实现方式中,该第一参数信息包括该多个信道中的每个信道所承载的信息的优先级信息。
在一种可能的实现方式中,该多个信道用于承载控制信息,该第一参数信息包括该多个信道承载的该控制信息的类型。
在一种可能的实现方式中,该第一处理单元还用于将与多个信道中的每个信道在时域上都重叠的信道,确定为该第一信道。
具体地,该第一处理单元1610用于执行方法500中的S510,该第二处理单元1620用于执行方法500中的S520,各单元执行上述相应步骤的具体过程在方法500中已经详细说明,为了简洁,在此不加赘述。
图17示出了本申请实施例的信道确定的装置1700的示意性框图,该装置1700可以对应上述方法500中描述的基站,也可以是应用于基站的芯片或组件,并且,该装置1700中各模块或单元分别用于执行上述方法500中基站所执行的各动作或处理过程,如图17所示,该通信装置1700可以包括:第一处理单元1710、第二处理单元1720以及通信单元1730。
第一处理单元1710,用于当第一信道与多个信道中的每个信道在时域上重叠,且该多个信道中的每个信道在时域上相互不重叠时,根据第一参数信息,从该多个信道中确定第二信道。
第二处理单元1720,用于从该第一信道和该第二信道中确定待发送的信道。
在一种可能的实现方式中,该第一参数信息包括发送该多个信道中的每个信道的起始时间单元的信息,且发送该第二信道的时间单元的索引在该多个信道中的时间单元的索引中是最小的。
在一种可能的实现方式中,该第一参数信息包括该多个信道中的每个信道的起始符号的信息,且该第二信道的起始符号的索引在该多个信道中的起始符号的索引中是最小的。
在一种可能的实现方式中,该装置还包括:通信单元1730,用于发送多个信令,该多个信令用于指示发送该多个信道的时间单元,以及该第一参数信息包括接收该多个信令的起始时间单元的信息,且用于指示该第二信道的信令的时间单元的索引在该多个信令的时间单元的索引中是最小的。
在一种可能的实现方式中,该第一参数信息包括该多个信道中的每个信道承载的不同业务类型的信息。
在一种可能的实现方式中,该第一信道和该第二信道承载相同类型的业务。
在一种可能的实现方式中,该第一参数信息包括该多个信道中的每个信道所承载的信息的优先级信息。
在一种可能的实现方式中,该多个信道用于承载控制信息,该第一参数信息包括该多个信道承载的该控制信息的类型。
在一种可能的实现方式中,该第一处理单元还用于将与多个信道中的每个信道在时域上都重叠的信道,确定为该第一信道。
具体地,该第一处理单元1710用于执行方法500中的S510,该第二处理单元1720 用于执行方法500中的S520,各单元执行上述相应步骤的具体过程在方法500中已经详细说明,为了简洁,在此不加赘述。
图18是本申请实施例提供的终端设备1800的结构示意图。如图18所示,该终端设备1800包括处理器1810和收发器1820。可选地,该终端设备1800还包括存储器1830。其中,处理器1810、收发器1820和存储器1830之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1830用于存储计算机程序,该处理器1810用于从该存储器1830中调用并运行该计算机程序,以控制该收发器1820收发信号。
上述处理器1810和存储器1830可以合成一个处理装置,处理器1810用于执行存储器1830中存储的程序代码来实现上述方法实施例中终端设备的功能。具体实现时,该存储器1830也可以集成在处理器1810中,或者独立于处理器1810。收发器1820可以通过收发电路的方式来实现。
上述终端设备还可以包括天线1840,用于将收发器1820输出的上行数据或上行控制信令通过无线信号发送出去,或者将下行数据或下行控制信令接收后发送给收发器1820进一步处理。
应理解,该装置1800可对应于根据本申请实施例的方法500中的终端设备,该装置1800也可以是应用于终端设备的芯片或组件。并且,该装置1800中的各模块实现图5中方法500中的相应流程。具体地,该存储器1830用于存储程序代码,使得处理器1810在执行该程序代码时,控制该处理器1810用于执行方法500中的S510和S520,各单元执行上述相应步骤的具体过程在方法500中已经详细说明,为了简洁,在此不加赘述。
图19是本申请实施例提供的网络设备1900的结构示意图。如图19所示,该网络设备1900(例如基站)包括处理器1910和收发器1920。可选地,该网络设备1900还包括存储器1930。其中,处理器1910、收发器1920和存储器1930之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1930用于存储计算机程序,该处理器1910用于从该存储器1930中调用并运行该计算机程序,以控制该收发器1920收发信号。
上述处理器1910和存储器1930可以合成一个处理装置,处理器1910用于执行存储器1930中存储的程序代码来实现上述方法实施例中基站的功能。具体实现时,该存储器1930也可以集成在处理器1910中,或者独立于处理器1910。收发器1920可以通过收发电路的方式来实现。
上述网络设备还可以包括天线1940,用于将收发器1920输出的下行数据或下行控制信令通过无线信号发送出去,或者将上行数据或上行控制信令接收后发送给收发器820进一步处理。
应理解,该装置1900可对应于根据本申请实施例的方法500中的基站,该装置1900也可以是应用于基站的芯片或组件。并且,该装置1900中的各模块实现图5中方法500中的相应流程.具体地,该存储器1930用于存储程序代码,使得处理器1910在执行该程序代码时,控制该处理器1910用于执行方法500中的S510和S520,各单元执行上述相应步骤的具体过程在方法500中已经详细说明,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种确定信道的方法,其特征在于,包括:
    当第一信道与多个信道中的每个信道在时域上重叠,且所述多个信道中的每个信道在时域上相互不重叠时,根据第一参数信息,从所述多个信道中确定第二信道;
    从所述第一信道和所述第二信道中确定待发送的信道。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数信息包括发送所述多个信道中的每个信道的起始时间单元的信息,且发送所述第二信道的时间单元的索引在所述多个信道中的时间单元的索引中是最小的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一参数信息包括所述多个信道中的每个信道的起始符号的信息,且所述第二信道的起始符号的索引在所述多个信道中的起始符号的索引中是最小的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    接收多个信令,所述多个信令用于指示发送所述多个信道的时间单元,以及
    所述第一参数信息包括接收所述多个信令的起始时间单元的信息,且用于指示所述第二信道的信令的时间单元的索引在所述多个信令的时间单元的索引中是最小的。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一参数信息包括所述多个信道中的每个信道承载的不同业务类型的信息。
  6. 根据权利要求5所述的方法,其特征在于,所述第一信道和所述第二信道承载相同类型的业务。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一参数信息包括所述多个信道中的每个信道所承载的信息的优先级信息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述多个信道用于承载控制信息,所述第一参数信息包括所述多个信道承载的所述控制信息的类型。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    将与多个信道中的每个信道在时域上都重叠的信道,确定为所述第一信道。
  10. 一种确定信道的方法,其特征在于,包括:
    当第一信道与多个信道中的每个信道在时域上重叠,且所述多个信道中的每个信道在时域上相互不重叠时,根据第一参数信息,从所述多个信道中确定第二信道;
    从所述第一信道和所述第二信道中确定待接收的信道。
  11. 根据权利要求10所述的方法,其特征在于,所述第一参数信息包括发送所述多个信道中的每个信道的起始时间单元的信息,且发送所述第二信道的时间单元的索引在所述多个信道中的时间单元的索引中是最小的。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一参数信息包括所述多个信道中的每个信道的起始符号的信息,且所述第二信道的起始符号的索引在所述多个信道中的起始符号的索引中是最小的。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述方法还包括:
    发送多个信令,所述多个信令用于指示发送所述多个信道的时间单元,以及
    所述第一参数信息包括接收所述多个信令的起始时间单元的信息,且用于指示所述第二信道的信令的时间单元的索引在所述多个信令的时间单元的索引中是最小的。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一参数信息包括所述多个信道中的每个信道承载的不同业务类型的信息。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信道和所述第二信道承载相同类型的业务。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述第一参数信息包括所述多个信道中的每个信道所承载的信息的优先级信息。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述多个信道用于承载控制信息,所述第一参数信息包括所述多个信道承载的所述控制信息的类型。
  18. 根据权利要求10至17中任一项所述的方法,其特征在于,所述方法还包括:
    将与多个信道中的每个信道在时域上都重叠的信道,确定为所述第一信道。
  19. 一种资源确定装置,其特征在于,包括:
    存储器,用于存储程序指令和数据;
    处理器,用于与所述存储器耦合,执行所述存储器中的指令,以实现如权利要求1至12中任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上如权利要求1至18中任一项所述的方法。
  21. 一种计算机可读介质,其特征在于,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2019/101207 2019-08-16 2019-08-16 确定信道的方法和装置 WO2021031031A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/101207 WO2021031031A1 (zh) 2019-08-16 2019-08-16 确定信道的方法和装置
EP19942351.8A EP4013166A4 (en) 2019-08-16 2019-08-16 METHOD AND DEVICE FOR CHANNEL DETERMINATION
CN201980099001.7A CN114175828B (zh) 2019-08-16 2019-08-16 确定信道的方法和装置
US17/672,038 US20220174669A1 (en) 2019-08-16 2022-02-15 Channel determining method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101207 WO2021031031A1 (zh) 2019-08-16 2019-08-16 确定信道的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/672,038 Continuation US20220174669A1 (en) 2019-08-16 2022-02-15 Channel determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2021031031A1 true WO2021031031A1 (zh) 2021-02-25

Family

ID=74660437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101207 WO2021031031A1 (zh) 2019-08-16 2019-08-16 确定信道的方法和装置

Country Status (4)

Country Link
US (1) US20220174669A1 (zh)
EP (1) EP4013166A4 (zh)
CN (1) CN114175828B (zh)
WO (1) WO2021031031A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031128A1 (zh) * 2019-08-20 2021-02-25 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
US11849461B2 (en) * 2020-02-14 2023-12-19 Intel Corporation UL transmission multiplexing and prioritization
WO2023207747A1 (zh) * 2022-04-25 2023-11-02 大唐移动通信设备有限公司 物理上行控制信道重叠的处理方法、终端及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702776A (zh) * 2018-05-10 2018-10-23 北京小米移动软件有限公司 信息复用传输方法及装置、信息接收方法及装置
US20180352582A1 (en) * 2015-11-04 2018-12-06 Lg Electronics Inc. Method and apparatus for handling overlap of different channels in wireless communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035550B (zh) * 2018-01-12 2021-08-13 华为技术有限公司 上行控制信息传输方法和通信装置
CN110034905B (zh) * 2018-01-12 2022-08-09 华为技术有限公司 上行信息传输方法及装置
US11191092B2 (en) * 2019-04-05 2021-11-30 Qualcomm Incorporated Timeline considerations for intra-UE multiplexing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180352582A1 (en) * 2015-11-04 2018-12-06 Lg Electronics Inc. Method and apparatus for handling overlap of different channels in wireless communication system
CN108702776A (zh) * 2018-05-10 2018-10-23 北京小米移动软件有限公司 信息复用传输方法及装置、信息接收方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Remaining issues for overlapping UL transmissions", 3GPP DRAFT; R1-1807359, vol. RAN WG1, 15 May 2018 (2018-05-15), Busan Korea, pages 1 - 5, XP051463051 *
QUALCOMM INCORPORATED: "Summary of remaining issues for overlapping UL transmissions", 3GPP DRAFT; R1-1807773 SUMMARY OF REMAINING ISSUES FOR OVERLAPPING UL TRANSMISSIONS VERSION 4, vol. RAN WG1, 25 May 2018 (2018-05-25), Busan, Korea, pages 1 - 14, XP051463392 *
QUALCOMM INCORPORATED: "Summary of remaining issues for overlapping UL transmissions", 3GPP DRAFT; R1-1807820 SUMMARY OF REMAINING ISSUES FOR OVERLAPPING UL TRANSMISSIONS VERSION 7, vol. RAN WG1, 24 May 2018 (2018-05-24), Busan, Korea, pages 1 - 15, XP051463428 *
See also references of EP4013166A4 *

Also Published As

Publication number Publication date
CN114175828A (zh) 2022-03-11
EP4013166A1 (en) 2022-06-15
CN114175828B (zh) 2024-06-14
EP4013166A4 (en) 2022-08-03
US20220174669A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP7119100B2 (ja) 通信方法およびデバイス
CN105790898B (zh) 通讯系统的无线通讯处理方法
CN113890709B (zh) 用于调度具有减少的延迟的上行链路传输的方法和装置
US9295056B2 (en) Systems and methods for signaling and determining transmission time interval bundling parameters
CN110431777B (zh) 用于确定传输数据块大小的方法和节点
US11032807B2 (en) Uplink control information transmission in overlapping time domain resource
US11743868B2 (en) Short physical uplink shared channel arrangement
EP2745593B1 (en) Scheduling communications
US9749094B2 (en) Devices for sending and receiving feedback information
CN109891795B (zh) 用于频分双工传输时间间隔操作的系统和方法
WO2020030141A1 (zh) 上行控制信道资源确定方法和装置
EP3101982A1 (en) Base station, transmission method, mobile station, and retransmission control method
KR20170118169A (ko) 비허가 캐리어 상의 사용자 장비 업링크 송신들을 스케줄링하기 위한 방법 및 장치
KR20170118150A (ko) 비허가 캐리어 상의 사용자 장비 업링크 송신들을 스케줄링하기 위한 방법 및 장치
US20220174669A1 (en) Channel determining method and apparatus
CN114285539B (zh) 以减少的延迟调度上行链路传输的方法和设备
CN111836366B (zh) 上行传输方法和通信装置
WO2020024754A1 (zh) 一种发送上行控制信息的方法、设备及系统
EP2683104B1 (en) Data transmission method, evolved nodeb and user equipment
JP7182637B2 (ja) 通信方法及び装置
WO2019096058A1 (zh) 传输控制信息的方法、终端设备和网络设备
EP3050236A1 (en) Bundling harq feedback in a time division duplexing communication system
WO2022237611A1 (zh) 一种信息确认方法、装置及通信设备
WO2023134661A1 (zh) Uci传输方法、终端、网络设备、装置及存储介质
EP4319396A1 (en) Method transmitting uci on pusch, terminal, and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019942351

Country of ref document: EP

Effective date: 20220309