WO2021029357A1 - Pre-doping agent for power storage device and method for manufacturing pre-doping agent - Google Patents

Pre-doping agent for power storage device and method for manufacturing pre-doping agent Download PDF

Info

Publication number
WO2021029357A1
WO2021029357A1 PCT/JP2020/030364 JP2020030364W WO2021029357A1 WO 2021029357 A1 WO2021029357 A1 WO 2021029357A1 JP 2020030364 W JP2020030364 W JP 2020030364W WO 2021029357 A1 WO2021029357 A1 WO 2021029357A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
agent
storage device
power storage
positive electrode
Prior art date
Application number
PCT/JP2020/030364
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 柿本
慎 青山
Original Assignee
テイカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テイカ株式会社 filed Critical テイカ株式会社
Priority to JP2021539270A priority Critical patent/JP7340024B2/en
Publication of WO2021029357A1 publication Critical patent/WO2021029357A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a predoping agent used in a power storage device such as a lithium ion battery, a lithium ion capacitor, and an electric double layer capacitor.
  • an electrode having an electrode current collector having a plurality of through holes and an electrode mixture layer provided in the electrode current collector is connected to the electrode current collector and is connected to the electrode mixture.
  • the electrode current collector has a first region having an ion supply source for supplying ions to the layer and having a predetermined through-hole opening ratio, and a second region having a through-hole opening ratio larger than that of the first region.
  • the storage device is described, wherein the first region is an edge portion of the electrode current collector, and the second region is a central portion of the electrode current collector.
  • a lithium electrode is incorporated in the power storage device, and the lithium electrode has a lithium electrode current collector to which a metallic lithium foil as an ion supply source is crimped, and lithium is injected by injecting an electrolytic solution. It is described that lithium ions are pre-doped from the electrode to the negative electrode. According to this, it is said that the permeation state of the electrolytic solution can be adjusted, and the electrodes can be uniformly doped with ions.
  • Patent Document 1 since a metal foil having a plurality of through holes and a metallic lithium foil are used in the current collector, the manufacturing cost is high and the volumetric energy density of the power storage device is lowered. There was a problem that it would end up.
  • Patent Document 2 describes the formula: Li a Me b O c (4.5 ⁇ a ⁇ 6.5, 0.5 ⁇ b ⁇ 1.5, 3.5 ⁇ c ⁇ 4.5, Me: Co, Mn. ,
  • a predoping agent used for a lithium ion capacitor characterized by having a lithium metal composite oxide represented by (one or more selected from the group of Fe, Al), and a positive electrode for a lithium ion capacitor using the same.
  • the lithium metal composite oxide decomposes under high voltage to release lithium, but since it has a large irreversible capacity, it releases a large amount of lithium during charging and absorbs most of the lithium during discharging.
  • Patent Document 2 also describes a pre-doping agent having a carbon material in addition to the lithium metal composite oxide.
  • the positive electrode potential at the time of initial charging is 4.3 V (based on Li reference electrode) or higher, and further preferably 4.5 V (based on Li reference electrode) or higher, which is general. Since the electrolytic solution is oxidatively decomposed, there is a problem that the performance of the power storage device such as a lithium ion capacitor deteriorates quickly, and improvement has been desired.
  • Patent Document 3 describes a battery having a positive electrode, a negative electrode, and an electrolyte having a predoping agent obtained by combining a lithium manganese oxide having Li 6 MnO 4 as a basic composition and a carbon material, and a positive electrode active material.
  • the lithium ion secondary is characterized in that, by performing the initial charging, the positive electrode active material and the lithium ions released from the predoping agent are stored in the negative electrode active material and manganese oxide is generated from the pre-doping agent in the previous period.
  • a method for manufacturing a lithium ion secondary battery in which the positive electrode potential at the time of initial charging is 4.5 V (Li counter electrode standard) or more is described.
  • the present invention has been made to solve the above problems, and it is possible to suppress a decrease in the volumetric energy density of a power storage device, reduce a manufacturing cost, and predope lithium ions with a lower charging voltage. Therefore, it is an object of the present invention to provide a pre-doping agent for a power storage device having a large irreversible capacity, which can suppress decomposition of an electrolytic solution, has a high charging depth, and can be suitably used as a power storage device having a high discharge capacity. is there.
  • the above problem is composed of a lithium iron oxide represented by the following formula (1), and in the X-ray diffraction measurement, the half width of the diffraction peak having a diffraction angle (2 ⁇ ) of 23.6 ⁇ 0.5 ° is 0.
  • a pre-doping agent for a power storage device which is characterized by a temperature of 06 to 0.17 °.
  • LixFeOy (1) [In the formula (1), x satisfies 3.5 ⁇ x ⁇ 4.7, and y satisfies 3.25 ⁇ y ⁇ 3.85. ]
  • the space group of the crystal structure is P b c a
  • the crystal lattice constants a and c satisfy 9.140 ⁇ ⁇ a ⁇ 9.205 ⁇ and 9.180 ⁇ ⁇ c ⁇ 9.220 ⁇ , respectively, and the lattice volume V. Is preferably 773 ⁇ 3 ⁇ V ⁇ 781 ⁇ 3 .
  • a positive electrode for a power storage device containing the pre-doping agent and the positive electrode active material is a preferred embodiment, and the content of the pre-doping agent is 1 to 1 to the total weight of the pre-doping agent and the positive electrode active material.
  • a positive electrode of 60% by weight is a preferred embodiment.
  • a power storage device having the positive electrode as a component is also a preferred embodiment.
  • the above-mentioned problem is a method for producing a predoping agent for a power storage device made of lithium iron oxide obtained by mixing and firing an iron raw material, a lithium raw material and a carbon raw material, and the iron raw material, the lithium raw material and carbon
  • a method for producing a predoping agent for a power storage device in which raw materials are mixed and fired at 650 to 1000 ° C. for 2 to 100 hours in an oxygen-free atmosphere, and the obtained powdery product is pulverized to obtain lithium iron oxide. It is also solved by that.
  • a lithium iron oxide having a specific composition has a full width at half maximum of a diffraction peak having a diffraction angle (2 ⁇ ) of 23.6 ⁇ 0.5 ° in an X-ray diffraction measurement. It is possible to provide a pre-doping agent for a power storage device having a large irreversible capacity. As a result, pre-doping can be performed without using a metallic lithium foil, so that it is possible to suppress a decrease in the volumetric energy density of the power storage device and reduce the manufacturing cost. Further, since lithium ions can be pre-doped at a lower charging voltage, decomposition of the electrolytic solution can be suppressed, and the device can be suitably used as a power storage device having a high charging depth and a high discharge capacity.
  • the predoping agent for a power storage device of the present invention (hereinafter, may be abbreviated as "predoping agent”) is composed of a lithium iron oxide represented by the following formula (1), and in the X-ray diffraction measurement, the diffraction angle ( 2 ⁇ ) is 23.6 ⁇ 0.5 °, and the half width of the diffraction peak is 0.06 to 0.17 °.
  • LixFeOy (1) [In the formula (1), x satisfies 3.5 ⁇ x ⁇ 4.7, and y satisfies 3.25 ⁇ y ⁇ 3.85. ]
  • a lithium iron oxide having a specific composition has a diffraction peak having a diffraction angle (2 ⁇ ) of 23.6 ⁇ 0.5 ° in the X-ray diffraction measurement. It was clarified that a pre-doping agent for a power storage device having a large irreversible capacity can be obtained when the half-value width is 0.06 to 0.17 °. As a result, the pre-doping treatment can be performed even at a low charging voltage, and the decomposition of the electrolytic solution can be suppressed. From the viewpoint of suppressing the decomposition of the electrolytic solution, the initial charging voltage performed as the pre-doping treatment is preferably 3.0 to 4.2V.
  • the pre-doping agent of the present invention has a large irreversible capacity, it is possible to reduce the amount of the pre-doping agent used when applying it to the positive electrode. Therefore, the ratio of the positive electrode active material can be increased, and the capacity of the power storage device can be increased.
  • the pre-doping agent of the present invention comprises a lithium iron oxide represented by the above formula (1), x satisfies 3.5 ⁇ x ⁇ 4.7, and y satisfies 3.25 ⁇ y ⁇ 3.85. It is a thing.
  • the composition ratio x is synonymous with Li / Fe (molar ratio).
  • x is less than 3.5, the amount of lithium is small, so that the amount of lithium doped in the negative electrode is insufficient, and a sufficient irreversible capacity may not be obtained.
  • x is preferably 3.7 or more, more preferably 3.8 or more, and even more preferably 3.9 or more.
  • x is preferably 4.6 or less, more preferably 4.5 or less, and even more preferably 4.3 or less. If y is less than 3.25, unreacted lithium and iron raw materials may remain. y is preferably 3.3 or more, more preferably 3.4 or more, and even more preferably 3.45 or more. If y exceeds 3.85, the iron in the lithium iron oxide may be in a highly oxidized state and the charge capacity may decrease. y is preferably 3.8 or less, more preferably 3.75 or less, and even more preferably 3.65 or less.
  • the half width is preferably 0.07 ° or more, more preferably 0.12 ° or more, and further preferably 0.13 ° or more. When the half width exceeds 0.17 °, polymorphic lithium iron oxide is formed, and the irreversible capacity may be reduced.
  • the half width is preferably 0.16 ° or less, more preferably 0.15 ° or less, and even more preferably 0.14 ° or less.
  • the space group of the crystal structure is P b c a
  • the crystal lattice constants a and c satisfy 9.140 ⁇ ⁇ a ⁇ 9.205 ⁇ and 9.180 ⁇ ⁇ c ⁇ 9.220 ⁇ , respectively.
  • the lattice volume V satisfies 773 ⁇ 3 ⁇ V ⁇ 781 ⁇ 3 .
  • the present inventors speculate that when the value of Li / Fe (molar ratio) becomes small, the crystal lattice constants a and c expand and the lattice volume becomes large, so that lithium is easily released.
  • the crystal lattice constant a is less than 9.140 ⁇ , the lattice volume V becomes small, so that lithium may be difficult to be released.
  • the crystal lattice constant a is preferably 9.140 ⁇ or more, more preferably 9.150 ⁇ or more, and further preferably 9.165 ⁇ or more.
  • the crystal lattice constant a exceeds 9.205 ⁇ , the amount of lithium is small, so that the lithium doped in the negative electrode is insufficient, and a sufficient irreversible capacity may not be obtained.
  • the crystal lattice constant a is preferably 9.205 ⁇ or less, more preferably 9.195 ⁇ or less, and further preferably 9.185 ⁇ or less.
  • the crystal lattice constant c is preferably 9.180 ⁇ or more, more preferably 9.190 ⁇ or more, and further preferably 9.195 ⁇ or more.
  • the crystal lattice constant c exceeds 9.220 ⁇ , the amount of lithium is small, so that the lithium doped in the negative electrode is insufficient, and a sufficient irreversible capacity may not be obtained.
  • the crystal lattice constant c is preferably 9.220 ⁇ or less, more preferably 9.213 ⁇ or less, and further preferably 9.205 ⁇ or less.
  • the lattice volume V is 773 ⁇ 3 or more, more preferably 774 ⁇ 3 or more, more preferably 776 ⁇ 3 or more.
  • the lattice volume V exceeds 781 ⁇ 3 , the amount of lithium is small, so that the lithium doped in the negative electrode is insufficient, and a sufficient irreversible capacity may not be obtained.
  • the lattice volume V is less 781 ⁇ 3, more preferably 780 ⁇ 3 or less, and more preferably 778 ⁇ 3 or less.
  • the volume resistivity is preferably 9.0 ⁇ 10 4 to 3.0 ⁇ 10 7 ⁇ ⁇ cm.
  • the volume resistivity is preferably 9.0 ⁇ 10 4 ⁇ ⁇ cm or more, more preferably 2.0 ⁇ 10 5 ⁇ ⁇ cm or more, and 5.0 ⁇ 10 5 ⁇ ⁇ cm or more. Is even more preferable.
  • the volume resistivity is preferably 3.0 ⁇ 10 7 ⁇ ⁇ cm or less, more preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or less, and 2.0 ⁇ 10 6 ⁇ ⁇ cm or less. Is even more preferable.
  • the specific surface area is preferably 2 to 10 m 2 / g.
  • the reaction area is small, lithium is not sufficiently released from the predoping agent, the charge capacity is lowered, and the irreversible capacity may be reduced.
  • the specific surface area is 2m 2 / g or more, more preferably 3m 2 / g or more, more preferably 4.3 m 2 / g or more. If the specific surface area is 10 m 2 / g or more, a side reaction may occur.
  • the specific surface area is preferably 9 m 2 / g or less, more preferably 8 m 2 / g or less, and even more preferably 7 m 2 / g or less.
  • the method for producing the pre-doping agent of the present invention is not particularly limited.
  • a method for producing a predoping agent for a power storage device made of lithium iron oxide obtained by mixing and firing an iron raw material, a lithium raw material, and a carbon raw material, wherein the iron raw material, the lithium raw material, and the carbon raw material are mixed (hereinafter,).
  • “Mixing step”), firing in an oxygen-free atmosphere at 650 to 1000 ° C. for 2 to 100 hours hereinafter, may be abbreviated as "baking step” to produce the obtained powder.
  • the material can be pulverized to preferably obtain lithium iron oxide.
  • the present inventors have studied that a predoping agent for an energy storage device made of the lithium iron oxide of the present invention can be obtained by mixing the iron raw material, the lithium raw material and the carbon raw material and firing at a specific temperature for a specific time. Confirmed by. In particular, when the iron raw material and the lithium raw material are reacted to produce lithium iron oxide, it is important to mix a certain amount of the carbon raw material. As is clear from the comparison between Examples and Comparative Examples described later, in Comparative Example 5 in which the carbon raw material was not used, the pre-doping agent had a small irreversible capacity, and the electric storage was produced by using the pre-doping agent of Comparative Example 5. The device has confirmed that the charging depth is low and the discharge capacity is also low.
  • the iron raw material used in the present invention is not particularly limited, and iron oxide hydroxide (III), iron oxide (II), iron oxide (III), ferrous sulfate (II), ferric sulfate (III), Iron (II) hydroxide, iron (III) hydroxide and the like are preferably used.
  • the lithium raw material used in the present invention is not particularly limited, and lithium hydroxide, lithium carbonate, lithium acetate, lithium nitrate, lithium oxide and the like are preferably used. These may be hydrates or anhydrides. Among them, lithium hydroxide is more preferably used.
  • the carbon raw material used in the present invention is not particularly limited, and activated carbon, acetylene black, polyvinyl alcohol, carbon nanotubes, carbon nanofibers, graphene and the like are preferably used.
  • the blending amount of the carbon raw material is preferably 1 to 50% by weight with respect to the total weight of the iron raw material, the lithium raw material and the carbon raw material. When the blending amount of the carbon raw material is less than 1% by weight, the reaction between lithium and iron becomes non-uniform, polymorphic lithium iron oxide is produced, and the irreversible capacity becomes small. In addition, it becomes difficult to pulverize the obtained powdery product.
  • the blending amount of the carbon raw material is preferably 5% by weight or more. Further, if the blending amount of the carbon raw material exceeds 50% by weight, the production cost is high, which is not preferable.
  • the blending amount of the carbon raw material is more preferably 30% by weight or less.
  • the iron raw material, the lithium raw material, and the carbon raw material are mixed. It may be mixed by a dry method or a wet method, but it is preferable to mix by a dry method. Above all, it is a preferable embodiment that the iron raw material, the lithium raw material and the carbon raw material are mixed in a powder state.
  • the firing step it is preferable to fire in an oxygen-free atmosphere, for example, an inert gas atmosphere, a hydrogen gas atmosphere, or a hydrogen-inert gas atmosphere, and nitrogen, argon, helium, neon, krypton, etc. are used as the inert gas. Suitable for use.
  • the firing temperature in the firing step is preferably 650 to 1000 ° C. If the calcination temperature is less than 650 ° C., the unreacted raw material remains, so that the lithium iron oxide represented by the above formula (1) may not be obtained.
  • the half-value width of the diffraction peak having a diffraction angle (2 ⁇ ) of 23.6 ⁇ 0.5 ° does not satisfy the range of 0.06 to 0.17 °, resulting in lithium iron oxide.
  • the firing temperature is more preferably 680 ° C. or higher, further preferably 725 ° C. or higher, and particularly preferably 775 ° C. or higher. If the calcination temperature exceeds 1000 ° C., the obtained powdery product may become hard and difficult to pulverize. In addition, the particles after pulverization become coarse, which may make it difficult to apply the particles to the electrodes.
  • the firing temperature is more preferably 950 ° C. or lower, further preferably 900 ° C. or lower, and particularly preferably 880 ° C. or lower.
  • the firing time in the firing step is preferably 2 to 100 hours. If the firing time is less than 2 hours, the unreacted raw material remains, so that the lithium iron oxide represented by the above formula (1) may not be obtained. Further, there is a possibility that the half-value width of the diffraction peak having a diffraction angle (2 ⁇ ) of 23.6 ⁇ 0.5 ° does not satisfy the range of 0.06 to 0.17 °, resulting in lithium iron oxide.
  • the firing time is preferably 2 hours or more, more preferably 10 hours or more, further preferably 24 hours or more, particularly preferably 48 hours or more, and most preferably 60 hours or more. preferable. On the other hand, if the firing time exceeds 100 hours, the productivity may decrease. The firing time is more preferably 90 hours or less.
  • the predoping agent for the power storage device of the present invention By using the lithium iron oxide obtained as described above as the predoping agent for the power storage device of the present invention, predoping can be performed without using a metallic lithium foil, so that the volumetric energy density of the power storage device can be reduced. It is possible to suppress the production cost and reduce the manufacturing cost, and it is possible to provide a power storage device having a high charging depth and a high discharge capacity.
  • the positive electrode for a power storage device composed of the pre-doping agent of the present invention and the positive electrode active material is a preferred embodiment.
  • the positive electrode active material a material used for a lithium ion battery or a lithium ion capacitor can be used.
  • the layered rock salt type lithium oxide include LiNiO 2 , LiCoO 2 , Li 2 MnO 3 , Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 , and Li (Ni 0.5 Co 0.2 Mn).
  • Li (Ni 0.6 Co 0.2 Mn 0.2 ) O 2 , Li (Ni 0.8 Co 0.1 Mn 0.1 ) O 2 , Li (Ni 0.8 Co) 0.15 Al 0.05 ) O 2 and the like can be mentioned, and examples of the spinel-type lithium oxide include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 and the like.
  • the content of the pre-doping agent is preferably 1 to 60% by weight based on the total weight of the pre-doping agent and the positive electrode active material.
  • the content of the predoping agent is less than 1% by weight, the irreversible capacity is small and the potential of the negative electrode such as graphite or silica may not be lowered, and the content of the predoping agent is 5% by weight or more. More preferably, it is more preferably 10% by weight or more.
  • the content of the pre-doping agent exceeds 60% by weight, the energy density may decrease as the content of the positive electrode active material decreases, and the content of the pre-doping agent is 55% by weight or less. preferable.
  • a power storage device having the positive electrode as a component is a more preferable embodiment.
  • the negative electrode in the power storage device carbon-based materials such as graphite and activated carbon, silica-based materials such as silica and silicon monoxide, metal materials such as tin, aluminum and germanium, and sulfur can be preferably used.
  • an electrolytic solution liquid electrolyte in which lithium salts such as LiPF 6 , LiBF 4 and LiClO 4 are dissolved in an organic solvent, a solid electrolyte and the like can be preferably used.
  • the type of the power storage device is not particularly limited, and at least one type of power storage device selected from the group consisting of a lithium ion battery, an all-solid-state battery, a lithium ion capacitor, and an electric double layer capacitor is preferable. Above all, at least one kind of power storage device selected from the group consisting of a lithium ion battery and a lithium ion capacitor is more preferable.
  • the lithium ion capacitors a graphite-based lithium ion capacitor that uses graphite for the negative electrode is a more preferable embodiment.
  • the peak position is corrected based on the peak of Si (111), and then the Rietveld method analysis ( ⁇ Phase fit> Default Rietveld) using Li 5 FeO 4 (ICSD: 01-075-1253) as an approximate structure model. ) was performed to calculate the crystal lattice constant and the lattice volume V. The results are shown in Table 1.
  • the above slurry was applied to an etched aluminum foil (JCC-20CB manufactured by Nippon Denki Kogyo Co., Ltd.), which is a current collector, and dried at 130 ° C. for 5 minutes.
  • An evaluation electrode positive electrode
  • An evaluation electrode was produced by punching a dried sheet with a punching machine.
  • Metallic lithium was used as the counter electrode, and a punched metal lithium foil was used.
  • a polypropylene separator was sandwiched between the evaluation electrode and the counter electrode to form an electrode, which was placed in a coin-shaped battery container.
  • a lithium ion capacitor was prepared using the predoping agents obtained in Examples and Comparative Examples, and predoping treatment was performed.
  • Pre-doping agent content (%) [mass of pre-doping agent / (mass of positive electrode active material + mass of pre-doping agent)] ⁇ 100 Further, the total mass ratio of the positive electrode active material and the pre-doping agent / the conductive auxiliary agent / the binder was adjusted to be 77/14/9. That is, the mass ratio of the positive electrode active material / pre-doping agent / conductive auxiliary agent / binder was adjusted to be 53.9 / 23.1 / 14/9. Finally, the prepared positive electrode paint is applied to an etched aluminum foil (“JCC-20CB” manufactured by Nippon Denki Kogyo Co., Ltd.), which is a current collector, and dried at 130 ° C. for 5 minutes to a size of 3 cm ⁇ 4 cm. A positive electrode was produced by cutting out. The design capacity at this time is 2.3 mAh.
  • a spherical graphite electrode (“HS-LIB-N-Gr-001” manufactured by Hosen Co., Ltd., nominal capacity: 1.6 mAh / cm 2 ) is used, and the size is 3.3 cm ⁇ 4.3 cm.
  • a negative electrode was produced by cutting out. The design capacity at this time is 22.7 mAh.
  • the prepared negative electrode paint was applied to a copper foil (manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd.), which is a current collector, and dried at 130 ° C. for 5 minutes to a size of 3.3 cm x 4.3 cm.
  • a negative electrode was produced by cutting out.
  • the design capacity at this time is 22.7 mAh.
  • the lithium ion capacitor of Production Example 8 was produced and pre-doped treatment was performed in the same manner as in Production Example 3 except that the negative electrode was changed to the above electrode.
  • Lithium-ion battery fabrication and pre-doping treatment A lithium ion battery was prepared using the predoping agents obtained in Examples and Comparative Examples, and predoping treatment was performed.
  • the content of the pre-doping agent at this time was adjusted to be 12% with respect to the total mass of the positive electrode active material and the pre-doping agent, as shown in the following calculation formula.
  • Pre-doping agent content (%) [mass of pre-doping agent / (mass of positive electrode active material + mass of pre-doping agent)] ⁇ 100
  • the total mass ratio of the positive electrode active material and the pre-doping agent / the conductive auxiliary agent / the binder was adjusted to be 83/11/6. That is, the mass ratio of the positive electrode active material / pre-doping agent / conductive auxiliary agent / binder was adjusted to be 73/10/11/6.
  • the prepared positive electrode paint is applied to an etched aluminum foil (“JCC-20CB” manufactured by Nippon Denki Kogyo Co., Ltd.), which is a current collector, and dried at 130 ° C. for 5 minutes to a size of 3 cm ⁇ 4 cm.
  • a positive electrode was produced by cutting out. The design capacity at this time is 8.2 mAh.
  • silicate as the negative electrode active material (“silgrain e-si” manufactured by Elchem Co., Ltd., acetylene black (“Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd.) as the conductive auxiliary agent, and polyvinylidene fluoride (PVDF, Co., Ltd.) as the binder).
  • Kureha's "KF polymer” was dissolved in N-methylpyrrolidone to prepare a negative electrode paint.
  • the mass ratio of the negative electrode active material / conductive auxiliary agent / binder at this time was adjusted to be 50/25/25.
  • the prepared negative electrode paint is applied to a copper foil (manufactured by Fukuda Metal Leaf Industry Co., Ltd.), which is a current collector, dried at 130 ° C. for 5 minutes, and then cut out to a size of 3.3 cm ⁇ 4.3 cm. By doing so, a negative electrode was produced.
  • the design capacity at this time is 12.7 mAh.
  • the charge depth of the graphite or silicon negative electrode after the pre-doped treatment was measured as follows.
  • the lithium ion capacitor after discharging to 2.2 V was disassembled, and graphite or silicon negative electrode was taken out and used as an evaluation electrode.
  • Metallic lithium was used as the counter electrode, and a polypropylene separator was sandwiched between the evaluation electrode and the counter electrode to form an electrode, and the electrode was placed in a coin-shaped battery container.
  • the capacitor characteristics (discharge capacity) of the lithium ion capacitors of Production Examples 1 to 13 and Comparative Production Examples 1 to 5 were evaluated. Specifically, a charge / discharge measuring device (manufactured by Hokuto Denko Co., Ltd.) was used to charge / discharge in the range of 2.2 to 3.8 V in an environment of 25 ° C. The charge / discharge rate was 1 C per weight of the positive electrode active material. The current density at the charge / discharge rate of 1C was 40 mA / g (per active material weight).
  • the charging depth of the silicon negative electrode after the pre-doping treatment was measured as follows.
  • the lithium ion battery after being discharged to 3.2 V in the above Production Example 14 and Comparative Preparation Example 6 was disassembled, and the silicon negative electrode was taken out and used as an evaluation electrode.
  • Metallic lithium was used as the counter electrode, and a polypropylene separator was sandwiched between the evaluation electrode and the counter electrode to form an electrode, and the electrode was placed in a coin-shaped battery container. Then, an electrolytic solution in which 1 M of LiPF 6 was dissolved in a propylene carbonate (PC) solvent was injected into the battery container, and then the battery container was sealed to manufacture a coin-type battery for electrochemical evaluation.
  • PC propylene carbonate
  • the charging depth was confirmed by charging the coin-type battery for electrochemical evaluation to 3.0 V.
  • the charging depth is a value indicating what percentage of the design capacity (12.7 mAh) of the negative electrode can be charged by the charging capacity measured by the charging operation, and is calculated by the following formula.
  • Charging depth (%) [Charging capacity (mAh) / Negative electrode design capacity 12.7 (mAh)] x 100
  • the battery characteristics (discharge capacity) of the lithium ion batteries of Production Example 14 and Comparative Preparation Example 6 were evaluated. Specifically, a charge / discharge measuring device (manufactured by Hokuto Denko Co., Ltd.) was used to charge / discharge in the range of 3.2 to 4.2 V in an environment of 25 ° C. The charge / discharge rate was 1 C per weight of the positive electrode active material. The current density at the charge / discharge rate of 1C was 160 mA / g (per active material weight).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

This pre-doping agent for a power storage device is characterized by being made of a lithium feroxide represented by formula (1) and is characterized in that, in X-ray diffraction measurement, the half width of the diffraction peak at a diffraction angle (2θ) of 23.6 ± 0.5° is 0.06° to 0.17°. This configuration makes it possible: to suppress a reduction in the volume energy density of the power storage device; to reduce the manufacturing cost; to pre-dope lithium ions at a lower charging voltage and thereby suppress electrolyte decomposition; and to provide a pre-doping agent for a power storage device that has a large irreversible capacity and can be suitably used as a power storage device demonstrating a large state of charge and a large discharge capacity. (1) LixFeOy [In formula (1), x satisfies 3.5 ≤ x ≤ 4.7, and y satisfies 3.25 ≤ y ≤ 3.85]

Description

蓄電デバイス用プリドープ剤及びその製造方法Pre-doping agent for power storage device and its manufacturing method
 本発明は、リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタなどの蓄電デバイスに用いられるプリドープ剤に関する。 The present invention relates to a predoping agent used in a power storage device such as a lithium ion battery, a lithium ion capacitor, and an electric double layer capacitor.
 リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタなどの蓄電デバイスにおいて、負極にリチウムイオンをプリドープして負極の電位を下げることにより、蓄電デバイスの高容量化を可能にすることが知られている。近年、集電体に複数の貫通孔を有する金属箔を用い、正極と負極とが多数積層した電極において金属リチウム箔を配置することにより電解液を介してリチウムイオンを負極にプリドープする方法が提案されている。また、近年、金属リチウム箔を用いないプリドープ方法も提案されている。 In power storage devices such as lithium ion batteries, lithium ion capacitors, and electric double layer capacitors, it is known that the capacity of the power storage device can be increased by pre-doping the negative electrode with lithium ions to lower the potential of the negative electrode. .. In recent years, a method has been proposed in which a metal foil having a plurality of through holes is used in a current collector, and lithium ions are pre-doped into the negative electrode via an electrolytic solution by arranging the metal lithium foil in an electrode in which a large number of positive electrodes and negative electrodes are laminated. Has been done. Further, in recent years, a pre-doping method that does not use a metallic lithium foil has also been proposed.
 特許文献1には、複数の貫通孔を備える電極集電体と、前記電極集電体に設けられる電極合材層と、を備える電極と、前記電極集電体に接続され、前記電極合材層にイオンを供給するイオン供給源とを有し、前記電極集電体には、所定の貫通孔開口率を備える第1領域と、前記第1領域よりも貫通孔開口率の大きな第2領域とが設けられ、前記第1領域は前記電極集電体の縁部であり、前記第2領域は前記電極集電体の中央部であることを特徴とする蓄電デバイスが記載されている。そして、前記蓄電デバイス内にはリチウム極が組み込まれ、前記リチウム極にはイオン供給源としての金属リチウム箔が圧着されたリチウム極集電体を有しており、電解液を注入することによりリチウム極から負極に対してリチウムイオンをプリドープすることが記載されている。これによれば、電解液の浸透状態を調整することができ、電極に対して均一にイオンをドーピングすることが可能になるとされている。しかしながら、特許文献1に記載のプリドープ方法では、集電体に複数の貫通孔を有する金属箔と金属リチウム箔とを使用するため製造コストが高くなり、さらに蓄電デバイスの体積エネルギー密度が低下してしまうという問題があった。 In Patent Document 1, an electrode having an electrode current collector having a plurality of through holes and an electrode mixture layer provided in the electrode current collector is connected to the electrode current collector and is connected to the electrode mixture. The electrode current collector has a first region having an ion supply source for supplying ions to the layer and having a predetermined through-hole opening ratio, and a second region having a through-hole opening ratio larger than that of the first region. The storage device is described, wherein the first region is an edge portion of the electrode current collector, and the second region is a central portion of the electrode current collector. A lithium electrode is incorporated in the power storage device, and the lithium electrode has a lithium electrode current collector to which a metallic lithium foil as an ion supply source is crimped, and lithium is injected by injecting an electrolytic solution. It is described that lithium ions are pre-doped from the electrode to the negative electrode. According to this, it is said that the permeation state of the electrolytic solution can be adjusted, and the electrodes can be uniformly doped with ions. However, in the pre-doping method described in Patent Document 1, since a metal foil having a plurality of through holes and a metallic lithium foil are used in the current collector, the manufacturing cost is high and the volumetric energy density of the power storage device is lowered. There was a problem that it would end up.
 特許文献2には、式:LiMe(4.5≦a≦6.5、0.5≦b≦1.5、3.5≦c≦4.5、Me:Co、Mn、Fe、Alの群から選ばれる1種以上)で表されるリチウム金属複合酸化物を有することを特徴とするリチウムイオンキャパシタに用いられるプリドープ剤及びこれを用いたリチウムイオンキャパシタ用正極等が記載されている。これによれば、前記リチウム金属複合酸化物は高電圧下で分解してリチウムを放出するが、不可逆容量が大きいため、充電時に多くのリチウムを放出しておきながら、放電時にはリチウムをほとんど吸収せず、多くのリチウムを負極にドープし得る材料であることが記載されている。また、特許文献2には、前記リチウム金属複合化酸化物に加えて、更に、炭素材料を有するプリドープ剤も記載されている。前記リチウム金属複合酸化物と前期炭素材料の接触面積が増加することで、導電性のよい炭素材料を通じて、リチウム金属複合化酸化物に効果的に電子が供給されやすくなる。これにより、リチウム金属複合酸化物の分解反応が活発に行われ、リチウム金属複合酸化物から多量のリチウムを放出することができると記載されている。しかしながら、特定の組成を有し、X線回折測定における回折ピークの半値幅が一定範囲にあるリチウム鉄酸化物とすることで、不可逆容量の大きいプリドープ剤が得られることについての記載はなかった。また、特許文献2では、初回充電時の正極電位は、4.3V(Li参照電極基準)以上、更には4.5V(Li参照電極基準)以上であることが好ましいとされており、一般的な電解液では酸化分解してしまうため、リチウムイオンキャパシタ等の蓄電デバイスの性能劣化が早くなってしまうという問題があり、改善が望まれていた。 Patent Document 2 describes the formula: Li a Me b O c (4.5 ≦ a ≦ 6.5, 0.5 ≦ b ≦ 1.5, 3.5 ≦ c ≦ 4.5, Me: Co, Mn. , A predoping agent used for a lithium ion capacitor characterized by having a lithium metal composite oxide represented by (one or more selected from the group of Fe, Al), and a positive electrode for a lithium ion capacitor using the same. Has been done. According to this, the lithium metal composite oxide decomposes under high voltage to release lithium, but since it has a large irreversible capacity, it releases a large amount of lithium during charging and absorbs most of the lithium during discharging. However, it is described that it is a material capable of doping the negative electrode with a large amount of lithium. Further, Patent Document 2 also describes a pre-doping agent having a carbon material in addition to the lithium metal composite oxide. By increasing the contact area between the lithium metal composite oxide and the carbon material in the previous period, electrons can be easily effectively supplied to the lithium metal composite oxide through the carbon material having good conductivity. As a result, it is stated that the decomposition reaction of the lithium metal composite oxide is actively carried out, and a large amount of lithium can be released from the lithium metal composite oxide. However, there is no description that a pre-doped agent having a specific composition and a large irreversible capacity can be obtained by using a lithium iron oxide having a half-value width of a diffraction peak in a certain range in X-ray diffraction measurement. Further, in Patent Document 2, it is preferable that the positive electrode potential at the time of initial charging is 4.3 V (based on Li reference electrode) or higher, and further preferably 4.5 V (based on Li reference electrode) or higher, which is general. Since the electrolytic solution is oxidatively decomposed, there is a problem that the performance of the power storage device such as a lithium ion capacitor deteriorates quickly, and improvement has been desired.
 特許文献3には、LiMnOを基本組成とするリチウムマンガン系酸化物と炭素材料とを複合化してなるプリドープ剤、並びに正極活物質を有する正極と、負極と、電解質とを有する電池に、初回充電を行うことで、前記正極活物質及び前記プリドープ剤から放出されたリチウムイオンを前記負極活物質に吸蔵させるとともに前期プリドープ剤からマンガン酸化物を生成させることを特徴とするリチウムイオン二次電池の製造方法であって、前記初回充電時の正極電位は4.5V(Li対極基準)以上であるリチウムイオン二次電池の製造方法が記載されている。これによれば、炭素材料とリチウムマンガン系酸化物とを複合化することで、リチウムマンガン系酸化物への導電パスが多く形成されて、充電時にリチウムマンガン系酸化物が分解されやすくなることが記載されている。特許文献3に記載のプリドープ剤は大きな不可逆容量を有しているとされている。しかしながら、初回充電時の正極電位は4.5V(Li対極基準)以上であることから、一般的な電解液では酸化分解してしまうため、リチウムイオンキャパシタ等の蓄電デバイスの性能劣化が早くなってしまうという問題があり、改善が望まれていた。 Patent Document 3 describes a battery having a positive electrode, a negative electrode, and an electrolyte having a predoping agent obtained by combining a lithium manganese oxide having Li 6 MnO 4 as a basic composition and a carbon material, and a positive electrode active material. The lithium ion secondary is characterized in that, by performing the initial charging, the positive electrode active material and the lithium ions released from the predoping agent are stored in the negative electrode active material and manganese oxide is generated from the pre-doping agent in the previous period. A method for manufacturing a lithium ion secondary battery in which the positive electrode potential at the time of initial charging is 4.5 V (Li counter electrode standard) or more is described. According to this, by combining the carbon material and the lithium manganese oxide, many conductive paths to the lithium manganese oxide are formed, and the lithium manganese oxide is easily decomposed during charging. Have been described. The predoping agent described in Patent Document 3 is said to have a large irreversible volume. However, since the positive electrode potential at the time of initial charging is 4.5 V (Li counter electrode standard) or more, it is oxidatively decomposed by a general electrolytic solution, so that the performance of the power storage device such as a lithium ion capacitor deteriorates faster. There was a problem that it would end up, and improvement was desired.
特許第5220510号Patent No. 5220510 特開2016-12620JP 2016-12620 特許第6217990号Patent No. 6217990
 本発明は上記課題を解決するためになされたものであり、蓄電デバイスの体積エネルギー密度の低下を抑制するとともに、製造コストを下げることが可能となり、より低い充電電圧でリチウムイオンをプリドープすることができるため電解液の分解を抑制することができ、充電深度が高く、放電容量の高い蓄電デバイスとして好適に用いることのできる不可逆容量の大きい蓄電デバイス用プリドープ剤を提供することを目的とするものである。 The present invention has been made to solve the above problems, and it is possible to suppress a decrease in the volumetric energy density of a power storage device, reduce a manufacturing cost, and predope lithium ions with a lower charging voltage. Therefore, it is an object of the present invention to provide a pre-doping agent for a power storage device having a large irreversible capacity, which can suppress decomposition of an electrolytic solution, has a high charging depth, and can be suitably used as a power storage device having a high discharge capacity. is there.
 上記課題は、下記式(1)で表されるリチウム鉄酸化物からなり、X線回析測定において、回折角(2θ)が23.6±0.5°の回折ピークの半値幅が0.06~0.17°であることを特徴とする蓄電デバイス用プリドープ剤を提供することによって解決される。
 LixFeOy (1)
[式(1)中、xは3.5≦x≦4.7を満たし、yは3.25≦y≦3.85を満たす。]
The above problem is composed of a lithium iron oxide represented by the following formula (1), and in the X-ray diffraction measurement, the half width of the diffraction peak having a diffraction angle (2θ) of 23.6 ± 0.5 ° is 0. This is solved by providing a pre-doping agent for a power storage device, which is characterized by a temperature of 06 to 0.17 °.
LixFeOy (1)
[In the formula (1), x satisfies 3.5 ≦ x ≦ 4.7, and y satisfies 3.25 ≦ y ≦ 3.85. ]
 このとき、結晶構造の空間群がP b c a であり、結晶格子定数a及びcが、それぞれ9.140Å≦a≦9.205Å、9.180Å≦c≦9.220Åを満たし、格子体積Vが773Å≦V≦781Åを満たすことが好適である。 At this time, the space group of the crystal structure is P b c a, the crystal lattice constants a and c satisfy 9.140 Å ≦ a ≦ 9.205 Å and 9.180 Å ≦ c ≦ 9.220 Å, respectively, and the lattice volume V. Is preferably 773 Å 3 ≤ V ≤ 781 Å 3 .
 また、このとき、前記プリドープ剤と正極活物質を含む蓄電デバイス用正極が好適な実施態様であり、前記プリドープ剤の含有量が、前記プリドープ剤と前記正極活物質の合計重量に対して1~60重量%である正極が好適な実施態様である。また、前記正極を構成要素とする蓄電デバイスも好適な実施態様である。 Further, at this time, a positive electrode for a power storage device containing the pre-doping agent and the positive electrode active material is a preferred embodiment, and the content of the pre-doping agent is 1 to 1 to the total weight of the pre-doping agent and the positive electrode active material. A positive electrode of 60% by weight is a preferred embodiment. Further, a power storage device having the positive electrode as a component is also a preferred embodiment.
 また、上記課題は、鉄原料、リチウム原料及び炭素原料を混合して焼成することにより得られるリチウム鉄酸化物からなる蓄電デバイス用プリドープ剤の製造方法であって、前記鉄原料、リチウム原料及び炭素原料を混合し、無酸素雰囲気中、650~1000℃で2~100時間焼成し、得られた粉末状生成物を粉砕してリチウム鉄酸化物を得る蓄電デバイス用プリドープ剤の製造方法を提供することによっても解決される。 Further, the above-mentioned problem is a method for producing a predoping agent for a power storage device made of lithium iron oxide obtained by mixing and firing an iron raw material, a lithium raw material and a carbon raw material, and the iron raw material, the lithium raw material and carbon Provided is a method for producing a predoping agent for a power storage device, in which raw materials are mixed and fired at 650 to 1000 ° C. for 2 to 100 hours in an oxygen-free atmosphere, and the obtained powdery product is pulverized to obtain lithium iron oxide. It is also solved by that.
 本発明により、特定の組成を有するリチウム鉄酸化物であって、X線回析測定において、回折角(2θ)が23.6±0.5°の回折ピークの半値幅が一定範囲にあり、不可逆容量の大きい蓄電デバイス用プリドープ剤を提供することができる。これにより、金属リチウム箔を使用することなくプリドープを行うことができるため、蓄電デバイスの体積エネルギー密度の低下を抑制するとともに、製造コストを下げることが可能となる。また、より低い充電電圧でリチウムイオンをプリドープすることができるため電解液の分解を抑制することができ、充電深度が高く、放電容量の高い蓄電デバイスとして好適に用いることができる。 According to the present invention, a lithium iron oxide having a specific composition has a full width at half maximum of a diffraction peak having a diffraction angle (2θ) of 23.6 ± 0.5 ° in an X-ray diffraction measurement. It is possible to provide a pre-doping agent for a power storage device having a large irreversible capacity. As a result, pre-doping can be performed without using a metallic lithium foil, so that it is possible to suppress a decrease in the volumetric energy density of the power storage device and reduce the manufacturing cost. Further, since lithium ions can be pre-doped at a lower charging voltage, decomposition of the electrolytic solution can be suppressed, and the device can be suitably used as a power storage device having a high charging depth and a high discharge capacity.
 本発明の蓄電デバイス用プリドープ剤(以下、「プリドープ剤」と略記することがある)は、下記式(1)で表されるリチウム鉄酸化物からなり、X線回析測定において、回折角(2θ)が23.6±0.5°の回折ピークの半値幅が0.06~0.17°であることを特徴とするものである。
 LixFeOy (1)
[式(1)中、xは3.5≦x≦4.7を満たし、yは3.25≦y≦3.85を満たす。]
The predoping agent for a power storage device of the present invention (hereinafter, may be abbreviated as "predoping agent") is composed of a lithium iron oxide represented by the following formula (1), and in the X-ray diffraction measurement, the diffraction angle ( 2θ) is 23.6 ± 0.5 °, and the half width of the diffraction peak is 0.06 to 0.17 °.
LixFeOy (1)
[In the formula (1), x satisfies 3.5 ≦ x ≦ 4.7, and y satisfies 3.25 ≦ y ≦ 3.85. ]
 本発明者らが鋭意検討を行った結果、特定の組成を有するリチウム鉄酸化物であって、X線回析測定において、回折角(2θ)が23.6±0.5°の回折ピークの半値幅が0.06~0.17°であることにより、不可逆容量の大きい蓄電デバイス用プリドープ剤が得られることが明らかとなった。これにより、低い充電電圧でもプリドープ処理を行うことができ、電解液の分解を抑制することができる。電解液の分解を抑制する観点から、プリドープ処理として行われる初回充電電圧は3.0~4.2Vであることが好ましい。また、本発明のプリドープ剤は不可逆容量が大きいため、正極へ適用する際にプリドープ剤の使用量を少なくすることが可能である。したがって、正極活物質の比率を増やすことができ、蓄電デバイスを高容量化することができる。 As a result of diligent studies by the present inventors, a lithium iron oxide having a specific composition has a diffraction peak having a diffraction angle (2θ) of 23.6 ± 0.5 ° in the X-ray diffraction measurement. It was clarified that a pre-doping agent for a power storage device having a large irreversible capacity can be obtained when the half-value width is 0.06 to 0.17 °. As a result, the pre-doping treatment can be performed even at a low charging voltage, and the decomposition of the electrolytic solution can be suppressed. From the viewpoint of suppressing the decomposition of the electrolytic solution, the initial charging voltage performed as the pre-doping treatment is preferably 3.0 to 4.2V. Further, since the pre-doping agent of the present invention has a large irreversible capacity, it is possible to reduce the amount of the pre-doping agent used when applying it to the positive electrode. Therefore, the ratio of the positive electrode active material can be increased, and the capacity of the power storage device can be increased.
 本発明のプリドープ剤は、上記式(1)で表されるリチウム鉄酸化物からなり、xは3.5≦x≦4.7を満たし、yは3.25≦y≦3.85を満たすものである。上記式(1)で表されるリチウム鉄酸化物において、組成比xはLi/Fe(モル比)と同義である。xが3.5未満の場合、リチウムの量が少ないため、負極にドープされるリチウムが不足し、十分な不可逆容量が得られないおそれがある。xは3.7以上であることが好ましく、3.8以上であることがより好ましく、3.9以上であることが更に好ましい。xが4.7を超える場合、結晶格子が収縮し、リチウムが放出されにくくなり、充電容量の低下にともなって不可逆容量が小さいプリドープ剤となるおそれがある。xは4.6以下であることが好ましく、4.5以下であることがより好ましく、4.3以下であることが更に好ましい。また、yが3.25未満の場合、未反応のリチウム、鉄原料がそれぞれ残存するおそれがある。yは3.3以上であることが好ましく、3.4以上であることがより好ましく、3.45以上であることが更に好ましい。yが3.85を超える場合、リチウム鉄酸化物中の鉄が高酸化状態となり、充電容量が低下するおそれがある。yは3.8以下であることが好ましく、3.75以下であることがより好ましく、3.65以下であることが更に好ましい。 The pre-doping agent of the present invention comprises a lithium iron oxide represented by the above formula (1), x satisfies 3.5 ≦ x ≦ 4.7, and y satisfies 3.25 ≦ y ≦ 3.85. It is a thing. In the lithium iron oxide represented by the above formula (1), the composition ratio x is synonymous with Li / Fe (molar ratio). When x is less than 3.5, the amount of lithium is small, so that the amount of lithium doped in the negative electrode is insufficient, and a sufficient irreversible capacity may not be obtained. x is preferably 3.7 or more, more preferably 3.8 or more, and even more preferably 3.9 or more. When x exceeds 4.7, the crystal lattice shrinks, lithium is less likely to be released, and there is a possibility that the predoping agent has a small irreversible capacity as the charging capacity decreases. x is preferably 4.6 or less, more preferably 4.5 or less, and even more preferably 4.3 or less. If y is less than 3.25, unreacted lithium and iron raw materials may remain. y is preferably 3.3 or more, more preferably 3.4 or more, and even more preferably 3.45 or more. If y exceeds 3.85, the iron in the lithium iron oxide may be in a highly oxidized state and the charge capacity may decrease. y is preferably 3.8 or less, more preferably 3.75 or less, and even more preferably 3.65 or less.
 後述する実施例と比較例との対比から明らかなように、上記式(1)で表されるリチウム鉄酸化物が特定の組成比を有する場合であっても、X線回析測定において、回折角(2θ)が23.6±0.5°の回折ピークの半値幅が0.06~0.17°の範囲を満たさない比較例5では不可逆容量の小さいプリドープ剤となることが確認された。また、比較例5のプリドープ剤を用いて作製された蓄電デバイスでは、充電深度が低く、放電容量も低いことが確認された。これに対し、前記半値幅が0.06~0.17°の範囲にある実施例1~5では、不可逆容量が大きく、これを用いて作製された蓄電デバイスは充電深度が高く、放電容量も高いことが確認された。したがって、X線回析測定において、前記半値幅が0.06~0.17°である構成を採用する意義が大きく、本発明のプリドープ剤により、製造コストを下げることが可能となり、より低い充電電圧でリチウムイオンをプリドープすることができるため電解液の分解を抑制することができ、充電深度が高く、放電容量の高い蓄電デバイスを提供することができる。前記半値幅が0.06°未満の場合、得られる粉末状生成物が固くなり、粉砕が困難となるおそれがある。加えて、粉砕後の粒子も粗大で、電極への塗工が困難となるおそれがある。前記半値幅は0.07°以上であることが好ましく、0.12°以上であることがより好ましく、0.13°以上であることが更に好ましい。前記半値幅が0.17°を超える場合、多形のリチウム鉄酸化物が生成しており、不可逆容量が小さくなるおそれがある。前記半値幅は0.16°以下であることが好ましく、0.15°以下であることがより好ましく、0.14°以下であることが更に好ましい。 As is clear from the comparison between Examples and Comparative Examples described later, even when the lithium iron oxide represented by the above formula (1) has a specific composition ratio, the X-ray diffraction measurement is performed. In Comparative Example 5 in which the half width of the diffraction peak having a folding angle (2θ) of 23.6 ± 0.5 ° did not satisfy the range of 0.06 to 0.17 °, it was confirmed that the predoping agent had a small irreversible capacity. .. Further, it was confirmed that the power storage device produced by using the pre-doping agent of Comparative Example 5 had a low charging depth and a low discharge capacity. On the other hand, in Examples 1 to 5 in which the half-value width is in the range of 0.06 to 0.17 °, the irreversible capacity is large, and the power storage device manufactured using this has a high charging depth and a discharge capacity. It was confirmed that it was high. Therefore, in the X-ray diffraction measurement, it is significant to adopt the configuration in which the half width is 0.06 to 0.17 °, and the predoping agent of the present invention makes it possible to reduce the manufacturing cost and lower the charge. Since lithium ions can be pre-doped with a voltage, decomposition of the electrolytic solution can be suppressed, and a power storage device having a high charging depth and a high discharge capacity can be provided. If the full width at half maximum is less than 0.06 °, the obtained powdery product may become hard and difficult to pulverize. In addition, the particles after pulverization are also coarse, which may make it difficult to apply the particles to the electrodes. The half width is preferably 0.07 ° or more, more preferably 0.12 ° or more, and further preferably 0.13 ° or more. When the half width exceeds 0.17 °, polymorphic lithium iron oxide is formed, and the irreversible capacity may be reduced. The half width is preferably 0.16 ° or less, more preferably 0.15 ° or less, and even more preferably 0.14 ° or less.
 本発明のプリドープ剤において、結晶構造の空間群がP b c a であり、結晶格子定数a及びcが、それぞれ9.140Å≦a≦9.205Å、9.180Å≦c≦9.220Åを満たし、格子体積Vが773Å≦V≦781Åを満たすことが好ましい。本発明者らの検討により、前記結晶格子定数a及びcと、Li/Fe(モル比)との間に相関があることが確認された。すなわち、Li/Fe(モル比)の値が小さくなると前記結晶格子定数a及びcが拡張して格子体積が大きくなり、リチウムが放出され易くなると本発明者らは推察している。前記結晶格子定数aが9.140Å未満の場合、格子体積Vが小さくなるため、リチウムが放出されにくくなるおそれがある。前記結晶格子定数aは9.140Å以上であることが好ましく、9.150Å以上であることがより好ましく、9.165Å以上であることが更に好ましい。一方、前記結晶格子定数aが9.205Åを超える場合、リチウムの量が少なくなるため、負極にドープされるリチウムが不足し、十分な不可逆容量が得られないおそれがある。前記結晶格子定数aは9.205Å以下であることが好ましく、9.195Å以下であることがより好ましく、9.185Å以下であることが更に好ましい。前記結晶格子定数cが9.180Å未満の場合、格子体積Vが小さくなるため、リチウムが放出されにくくなるおそれがある。前記結晶格子定数cは9.180Å以上であることが好ましく、9.190Å以上であることがより好ましく、9.195Å以上であることが更に好ましい。一方、前記結晶格子定数cが9.220Åを超える場合、リチウムの量が少ないため、負極にドープされるリチウムが不足し、十分な不可逆容量が得られないおそれがある。前記結晶格子定数cは9.220Å以下であることが好ましく、9.213Å以下であることがより好ましく、9.205Å以下であることが更に好ましい。前記格子体積Vが773Å未満の場合、格子体積Vが小さいためリチウムが放出されにくくなるおそれがある。前記格子体積Vは773Å以上であることが好ましく、774Å以上であることがより好ましく、776Å以上であることが更に好ましい。前記格子体積Vが781Åを超える場合、リチウムの量が少ないため、負極にドープされるリチウムが不足し、十分な不可逆容量が得られないおそれがある。前記格子体積Vは781Å以下であることが好ましく、780Å以下であることがより好ましく、778Å以下であることが更に好ましい。 In the predoping agent of the present invention, the space group of the crystal structure is P b c a, and the crystal lattice constants a and c satisfy 9.140 Å ≦ a ≦ 9.205 Å and 9.180 Å ≦ c ≦ 9.220 Å, respectively. It is preferable that the lattice volume V satisfies 773 Å 3 ≤ V ≤ 781 Å 3 . By the examination by the present inventors, it was confirmed that there is a correlation between the crystal lattice constants a and c and Li / Fe (molar ratio). That is, the present inventors speculate that when the value of Li / Fe (molar ratio) becomes small, the crystal lattice constants a and c expand and the lattice volume becomes large, so that lithium is easily released. When the crystal lattice constant a is less than 9.140 Å, the lattice volume V becomes small, so that lithium may be difficult to be released. The crystal lattice constant a is preferably 9.140 Å or more, more preferably 9.150 Å or more, and further preferably 9.165 Å or more. On the other hand, when the crystal lattice constant a exceeds 9.205 Å, the amount of lithium is small, so that the lithium doped in the negative electrode is insufficient, and a sufficient irreversible capacity may not be obtained. The crystal lattice constant a is preferably 9.205 Å or less, more preferably 9.195 Å or less, and further preferably 9.185 Å or less. When the crystal lattice constant c is less than 9.180 Å, the lattice volume V becomes small, so that lithium may be difficult to be released. The crystal lattice constant c is preferably 9.180 Å or more, more preferably 9.190 Å or more, and further preferably 9.195 Å or more. On the other hand, when the crystal lattice constant c exceeds 9.220 Å, the amount of lithium is small, so that the lithium doped in the negative electrode is insufficient, and a sufficient irreversible capacity may not be obtained. The crystal lattice constant c is preferably 9.220 Å or less, more preferably 9.213 Å or less, and further preferably 9.205 Å or less. When the lattice volume V is less than 773 Å 3 , lithium may be difficult to be released because the lattice volume V is small. Preferably the lattice volume V is 773Å 3 or more, more preferably 774Å 3 or more, more preferably 776Å 3 or more. When the lattice volume V exceeds 781 Å 3 , the amount of lithium is small, so that the lithium doped in the negative electrode is insufficient, and a sufficient irreversible capacity may not be obtained. Preferably the lattice volume V is less 781Å 3, more preferably 780 Å 3 or less, and more preferably 778Å 3 or less.
 本発明のプリドープ剤において、体積抵抗率は9.0×10~3.0×10Ω・cmであることが好ましい。前記体積抵抗率が9.0×10Ω・cm未満の場合、蓄電デバイス系内において、プリドープ剤へ優先的に電子が移動するため、プリドープ剤近傍の正極活物質のみしか利用されず、局所的な反応となることで容量が低下するおそれがある。前記体積抵抗率は9.0×10Ω・cm以上であることが好ましく、2.0×10Ω・cm以上であることがより好ましく、5.0×10Ω・cm以上であることが更に好ましい。前記体積抵抗率が3.0×10Ω・cmを超える場合、電子の移動が妨げられ、プリドープ剤から十分にリチウムが放出されず、不可逆容量が小さくなるおそれがある。前記体積抵抗率は3.0×10Ω・cm以下であることが好ましく、1.0×10Ω・cm以下であることがより好ましく、2.0×10Ω・cm以下であることが更に好ましい。 In the predoping agent of the present invention, the volume resistivity is preferably 9.0 × 10 4 to 3.0 × 10 7 Ω · cm. When the volume resistivity is less than 9.0 × 10 4 Ω · cm, electrons move preferentially to the pre-doping agent in the power storage device system, so that only the positive electrode active material in the vicinity of the pre-doping agent is used and locally. There is a risk that the capacity will decrease due to the reaction. The volume resistivity is preferably 9.0 × 10 4 Ω · cm or more, more preferably 2.0 × 10 5 Ω · cm or more, and 5.0 × 10 5 Ω · cm or more. Is even more preferable. If the volume resistivity exceeds 3.0 × 10 7 Ω · cm, impeded movement of electrons, sufficient lithium is not released from Puridopu agent, there is a risk that irreversible capacity is reduced. The volume resistivity is preferably 3.0 × 10 7 Ω · cm or less, more preferably 1.0 × 10 7 Ω · cm or less, and 2.0 × 10 6 Ω · cm or less. Is even more preferable.
 本発明のプリドープ剤において、比表面積は2~10m/gであることが好ましい。前記比表面積が2m/g未満の場合、反応面積が小さく、プリドープ剤から十分にリチウムが放出されず、充電容量が低下し、不可逆容量が減少するおそれがある。前記比表面積は2m/g以上であることが好ましく、3m/g以上であることがより好ましく、4.3m/g以上であることが更に好ましい。前記比表面積が10m/g以上の場合、副反応を引き起こすおそれがある。前記比表面積は9m/g以下であることが好ましく、8m/g以下であることがより好ましく、7m/g以下であることが更に好ましい。 In the predoping agent of the present invention, the specific surface area is preferably 2 to 10 m 2 / g. When the specific surface area is less than 2 m 2 / g, the reaction area is small, lithium is not sufficiently released from the predoping agent, the charge capacity is lowered, and the irreversible capacity may be reduced. Preferably the specific surface area is 2m 2 / g or more, more preferably 3m 2 / g or more, more preferably 4.3 m 2 / g or more. If the specific surface area is 10 m 2 / g or more, a side reaction may occur. The specific surface area is preferably 9 m 2 / g or less, more preferably 8 m 2 / g or less, and even more preferably 7 m 2 / g or less.
 本発明のプリドープ剤の製造方法としては特に限定されない。鉄原料、リチウム原料及び炭素原料を混合して焼成することにより得られるリチウム鉄酸化物からなる蓄電デバイス用プリドープ剤の製造方法であって、前記鉄原料、リチウム原料及び炭素原料を混合し(以下、「混合工程」と略記することがある)、無酸素雰囲気中、650~1000℃で2~100時間焼成し(以下、「焼成工程」と略記することがある)、得られた粉末状生成物を粉砕してリチウム鉄酸化物を好適に得ることができる。 The method for producing the pre-doping agent of the present invention is not particularly limited. A method for producing a predoping agent for a power storage device made of lithium iron oxide obtained by mixing and firing an iron raw material, a lithium raw material, and a carbon raw material, wherein the iron raw material, the lithium raw material, and the carbon raw material are mixed (hereinafter,). , "Mixing step"), firing in an oxygen-free atmosphere at 650 to 1000 ° C. for 2 to 100 hours (hereinafter, may be abbreviated as "baking step") to produce the obtained powder. The material can be pulverized to preferably obtain lithium iron oxide.
 前記鉄原料、リチウム原料及び炭素原料を混合し、特定の温度で特定の時間焼成することにより、本発明のリチウム鉄酸化物からなる蓄電デバイス用プリドープ剤が得られることが本発明者らの検討により確認された。特に、鉄原料とリチウム原料とを反応させてリチウム鉄酸化物を生成する際に、炭素原料を一定量配合させることが重要である。後述する実施例と比較例との対比から明らかなように、炭素原料を使用しなかった比較例5では、不可逆容量の小さいプリドープ剤となり、当該比較例5のプリドープ剤を用いて作製された蓄電デバイスでは、充電深度が低く、放電容量も低いことを確認している。 The present inventors have studied that a predoping agent for an energy storage device made of the lithium iron oxide of the present invention can be obtained by mixing the iron raw material, the lithium raw material and the carbon raw material and firing at a specific temperature for a specific time. Confirmed by. In particular, when the iron raw material and the lithium raw material are reacted to produce lithium iron oxide, it is important to mix a certain amount of the carbon raw material. As is clear from the comparison between Examples and Comparative Examples described later, in Comparative Example 5 in which the carbon raw material was not used, the pre-doping agent had a small irreversible capacity, and the electric storage was produced by using the pre-doping agent of Comparative Example 5. The device has confirmed that the charging depth is low and the discharge capacity is also low.
 本発明で用いられる鉄原料としては特に限定されず、酸化水酸化鉄(III)、酸化鉄(II)、酸化鉄(III)、硫酸第一鉄(II)、硫酸第二鉄(III)、水酸化鉄(II)、水酸化鉄(III)などが好適に使用される。 The iron raw material used in the present invention is not particularly limited, and iron oxide hydroxide (III), iron oxide (II), iron oxide (III), ferrous sulfate (II), ferric sulfate (III), Iron (II) hydroxide, iron (III) hydroxide and the like are preferably used.
 本発明で用いられるリチウム原料としては特に限定されず、水酸化リチウム、炭酸リチウム、酢酸リチウム、硝酸リチウム、酸化リチウムなどが好適に使用される。これらは水和物であっても無水物であっても構わない。中でも、水酸化リチウムがより好適に用いられる。 The lithium raw material used in the present invention is not particularly limited, and lithium hydroxide, lithium carbonate, lithium acetate, lithium nitrate, lithium oxide and the like are preferably used. These may be hydrates or anhydrides. Among them, lithium hydroxide is more preferably used.
 本発明で用いられる炭素原料としては特に限定されず、活性炭、アセチレンブラック、ポリビニルアルコール、カーボンナノチューブ、カーボンナノファイバー、グラフェンなどが好適に使用される。前記炭素原料の配合量は、前記鉄原料、前記リチウム原料及び前記炭素原料の合計重量に対して1~50重量%であることが好ましい。前記炭素原料の配合量が1重量%未満の場合、リチウムと鉄の反応が不均一となり、多形のリチウム鉄酸化物が生成し、不可逆容量が小さくなる。また、得られた粉末状生成物の粉砕が困難になる。前記炭素原料の配合量は5重量%以上が好ましい。また、前記炭素原料の配合量が50重量%を超える場合は、製造コストがかかってしまうため好ましくない。前記炭素原料の配合量は30重量%以下がより好ましい。 The carbon raw material used in the present invention is not particularly limited, and activated carbon, acetylene black, polyvinyl alcohol, carbon nanotubes, carbon nanofibers, graphene and the like are preferably used. The blending amount of the carbon raw material is preferably 1 to 50% by weight with respect to the total weight of the iron raw material, the lithium raw material and the carbon raw material. When the blending amount of the carbon raw material is less than 1% by weight, the reaction between lithium and iron becomes non-uniform, polymorphic lithium iron oxide is produced, and the irreversible capacity becomes small. In addition, it becomes difficult to pulverize the obtained powdery product. The blending amount of the carbon raw material is preferably 5% by weight or more. Further, if the blending amount of the carbon raw material exceeds 50% by weight, the production cost is high, which is not preferable. The blending amount of the carbon raw material is more preferably 30% by weight or less.
 前記混合工程では、前記鉄原料、前記リチウム原料及び前記炭素原料が混合される。乾式法により混合してもよいし、湿式法により混合しても構わないが、乾式法により混合することが好ましい。中でも、前記鉄原料、前記リチウム原料及び前記炭素原料を粉体状態で混合することが好適な実施態様である。 In the mixing step, the iron raw material, the lithium raw material, and the carbon raw material are mixed. It may be mixed by a dry method or a wet method, but it is preferable to mix by a dry method. Above all, it is a preferable embodiment that the iron raw material, the lithium raw material and the carbon raw material are mixed in a powder state.
 前記焼成工程では、無酸素雰囲気中、例えば、不活性ガス雰囲気、水素ガス雰囲気、水素-不活性ガス雰囲気中で焼成することが好ましく、不活性ガスとして窒素、アルゴン、ヘリウム、ネオン、クリプトンなどが好適に使用される。また、前記焼成工程における焼成温度は650~1000℃であることが好ましい。焼成温度が650℃未満の場合、未反応の原料が残存するため、上記式(1)で表されるリチウム鉄酸化物が得られないおそれがある。また、回折角(2θ)が23.6±0.5°の回折ピークの半値幅が0.06~0.17°の範囲を満たさないリチウム鉄酸化物となるおそれがある。焼成温度は680℃以上であることがより好ましく、725℃以上であることが更に好ましく、775℃以上であることが特に好ましい。焼成温度が1000℃を超える場合、得られる粉末状生成物が固くなり、粉砕が困難となるおそれがある。また、粉砕後の粒子が粗大になり、電極への塗工が困難となるおそれがある。また、回折角(2θ)が23.6±0.5°の回折ピークの半値幅が0.06~0.17°の範囲を満たさないリチウム鉄酸化物となるおそれがある。焼成温度は950℃以下であることがより好ましく、900℃以下であることが更に好ましく、880℃以下であることが特に好ましい。 In the firing step, it is preferable to fire in an oxygen-free atmosphere, for example, an inert gas atmosphere, a hydrogen gas atmosphere, or a hydrogen-inert gas atmosphere, and nitrogen, argon, helium, neon, krypton, etc. are used as the inert gas. Suitable for use. Further, the firing temperature in the firing step is preferably 650 to 1000 ° C. If the calcination temperature is less than 650 ° C., the unreacted raw material remains, so that the lithium iron oxide represented by the above formula (1) may not be obtained. Further, there is a possibility that the half-value width of the diffraction peak having a diffraction angle (2θ) of 23.6 ± 0.5 ° does not satisfy the range of 0.06 to 0.17 °, resulting in lithium iron oxide. The firing temperature is more preferably 680 ° C. or higher, further preferably 725 ° C. or higher, and particularly preferably 775 ° C. or higher. If the calcination temperature exceeds 1000 ° C., the obtained powdery product may become hard and difficult to pulverize. In addition, the particles after pulverization become coarse, which may make it difficult to apply the particles to the electrodes. Further, there is a possibility that the half-value width of the diffraction peak having a diffraction angle (2θ) of 23.6 ± 0.5 ° does not satisfy the range of 0.06 to 0.17 °, resulting in lithium iron oxide. The firing temperature is more preferably 950 ° C. or lower, further preferably 900 ° C. or lower, and particularly preferably 880 ° C. or lower.
 前記焼成工程における焼成時間としては、2~100時間であることが好ましい。焼成時間が2時間未満の場合、未反応の原料が残存するため、上記式(1)で表されるリチウム鉄酸化物が得られないおそれがある。また、回折角(2θ)が23.6±0.5°の回折ピークの半値幅が0.06~0.17°の範囲を満たさないリチウム鉄酸化物となるおそれがある。焼成時間は2時間以上であることが好ましく、10時間以上であることがより好ましく、24時間以上であることが更に好ましく、48時間以上であることが特に好ましく、60時間以上であることが最も好ましい。一方、焼成時間が100時間を超える場合、生産性が低下するおそれがある。焼成時間は90時間以下であることがより好ましい。 The firing time in the firing step is preferably 2 to 100 hours. If the firing time is less than 2 hours, the unreacted raw material remains, so that the lithium iron oxide represented by the above formula (1) may not be obtained. Further, there is a possibility that the half-value width of the diffraction peak having a diffraction angle (2θ) of 23.6 ± 0.5 ° does not satisfy the range of 0.06 to 0.17 °, resulting in lithium iron oxide. The firing time is preferably 2 hours or more, more preferably 10 hours or more, further preferably 24 hours or more, particularly preferably 48 hours or more, and most preferably 60 hours or more. preferable. On the other hand, if the firing time exceeds 100 hours, the productivity may decrease. The firing time is more preferably 90 hours or less.
 上述のようにして得られるリチウム鉄酸化物を本発明の蓄電デバイス用プリドープ剤として用いることにより、金属リチウム箔を使用することなくプリドープを行うことができるため、蓄電デバイスの体積エネルギー密度の低下を抑制するとともに、製造コストを下げることが可能となり、充電深度が高く、放電容量の高い蓄電デバイスを提供することができる。中でも、本発明のプリドープ剤と正極活物質とからなる蓄電デバイス用正極が好適な実施態様である。正極活物質としては、リチウムイオン電池やリチウムイオンキャパシタに使用される材料を用いることができ、例えば、Ni,Co,Mn,Alから選択される遷移金属元素を含む層状岩塩型リチウム酸化物;Ni,Co,Mn,Ti,Fe,Cr,Zn,Cuから選択される遷移金属元素を含むスピネル型リチウム酸化物;LiFePOで表されるオリビン型リチウムリン酸化合物;活性炭、アセチレンブラック、ケッチェンブラック、グラフェンシート等の炭素系材料を好適に用いることができる。前記層状岩塩型リチウム酸化物としては、LiNiO、LiCoO、LiMnO、Li(Ni1/3Co1/3Mn1/3)O、Li(Ni0.5Co0.2Mn0.3)O、Li(Ni0.6Co0.2Mn0.2)O、Li(Ni0.8Co0.1Mn0.1)O、Li(Ni0.8Co0.15Al0.05)Oなどが挙げられ、前記スピネル型リチウム酸化物としては、LiMn、LiMn1.5Ni0.5などが挙げられる。 By using the lithium iron oxide obtained as described above as the predoping agent for the power storage device of the present invention, predoping can be performed without using a metallic lithium foil, so that the volumetric energy density of the power storage device can be reduced. It is possible to suppress the production cost and reduce the manufacturing cost, and it is possible to provide a power storage device having a high charging depth and a high discharge capacity. Among them, the positive electrode for a power storage device composed of the pre-doping agent of the present invention and the positive electrode active material is a preferred embodiment. As the positive electrode active material, a material used for a lithium ion battery or a lithium ion capacitor can be used. For example, a layered rock salt type lithium oxide containing a transition metal element selected from Ni, Co, Mn, and Al; Ni. , Co, Mn, Ti, Fe, Cr, Zn, Cu Spinel-type lithium oxide containing a transition metal element; olivine-type lithium phosphate compound represented by LiFePO 4 ; activated carbon, acetylene black, Ketjen black , A carbon-based material such as a graphene sheet can be preferably used. Examples of the layered rock salt type lithium oxide include LiNiO 2 , LiCoO 2 , Li 2 MnO 3 , Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 , and Li (Ni 0.5 Co 0.2 Mn). 0.3 ) O 2 , Li (Ni 0.6 Co 0.2 Mn 0.2 ) O 2 , Li (Ni 0.8 Co 0.1 Mn 0.1 ) O 2 , Li (Ni 0.8 Co) 0.15 Al 0.05 ) O 2 and the like can be mentioned, and examples of the spinel-type lithium oxide include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 and the like.
 前記正極において、前記プリドープ剤の含有量が、前記プリドープ剤と前記正極活物質の合計重量に対して1~60重量%であることが好ましい。前記プリドープ剤の含有量が1重量%未満の場合、不可逆容量が小さく、黒鉛、けい素等の負極の電位を下げることができないおそれがあり、前記プリドープ剤の含有量は5重量%以上であることがより好ましく、10重量%以上であることが更に好ましい。一方、前記プリドープ剤の含有量が60重量%を超える場合、正極活物質の含有率低下にともなうエネルギー密度が減少するおそれがあり、前記プリドープ剤の含有量は55重量%以下であることがより好ましい。 In the positive electrode, the content of the pre-doping agent is preferably 1 to 60% by weight based on the total weight of the pre-doping agent and the positive electrode active material. When the content of the predoping agent is less than 1% by weight, the irreversible capacity is small and the potential of the negative electrode such as graphite or silica may not be lowered, and the content of the predoping agent is 5% by weight or more. More preferably, it is more preferably 10% by weight or more. On the other hand, when the content of the pre-doping agent exceeds 60% by weight, the energy density may decrease as the content of the positive electrode active material decreases, and the content of the pre-doping agent is 55% by weight or less. preferable.
 本発明において、前記正極を構成要素とする蓄電デバイスがより好適な実施態様である。蓄電デバイスにおける負極としては、黒鉛、活性炭等の炭素系材料、けい素、一酸化けい素等のけい素系材料、スズ、アルミ、ゲルマニウム等の金属材料、硫黄を好適に用いることができる。また、蓄電デバイスにおける電解質としては、LiPF、LiBF、LiClO等のリチウム塩を有機溶媒に溶解させた電解液(液体電解質)や、固体電解質等を好適に用いることができる。蓄電デバイスの種類としては特に限定されず、リチウムイオン電池、全固体電池、リチウムイオンキャパシタ及び電気二重層キャパシタからなる群から選択される少なくとも1種の蓄電デバイスが好適である。中でも、リチウムイオン電池及びリチウムイオンキャパシタからなる群から選択される少なくとも1種の蓄電デバイスがより好適である。リチウムイオンキャパシタの中でも、負極に黒鉛を使用する黒鉛系リチウムイオンキャパシタがより好適な実施態様である。 In the present invention, a power storage device having the positive electrode as a component is a more preferable embodiment. As the negative electrode in the power storage device, carbon-based materials such as graphite and activated carbon, silica-based materials such as silica and silicon monoxide, metal materials such as tin, aluminum and germanium, and sulfur can be preferably used. Further, as the electrolyte in the power storage device, an electrolytic solution (liquid electrolyte) in which lithium salts such as LiPF 6 , LiBF 4 and LiClO 4 are dissolved in an organic solvent, a solid electrolyte and the like can be preferably used. The type of the power storage device is not particularly limited, and at least one type of power storage device selected from the group consisting of a lithium ion battery, an all-solid-state battery, a lithium ion capacitor, and an electric double layer capacitor is preferable. Above all, at least one kind of power storage device selected from the group consisting of a lithium ion battery and a lithium ion capacitor is more preferable. Among the lithium ion capacitors, a graphite-based lithium ion capacitor that uses graphite for the negative electrode is a more preferable embodiment.
[プリドープ剤(LFO)の作製]
(実施例1)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)176g及び活性炭(株式会社クラレ製「クラレコール」)31gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例1のプリドープ剤であるリチウム鉄酸化物(Li/Fe=3.72(モル比))を得た。
[Preparation of pre-doping agent (LFO)]
(Example 1)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 176 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 31 g was dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 3.72 (molar ratio)), which was the predoping agent of Example 1.
(実施例2)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)180g及び活性炭(株式会社クラレ製「クラレコール」)31gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例2のプリドープ剤であるリチウム鉄酸化物(Li/Fe=3.84(モル比))を得た。
(Example 2)
Iron (III) Oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 180 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 31 g was dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 3.84 (molar ratio)), which is the predoping agent of Example 2.
(実施例3)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)198g及び活性炭(株式会社クラレ製「クラレコール」)33gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例3のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.19(モル比))を得た。
(Example 3)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 198 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 33 g was dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.19 (molar ratio)), which is the predoping agent of Example 3.
(実施例4)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)207g及び活性炭(株式会社クラレ製「クラレコール」)34gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例4のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.39(モル比))を得た。
(Example 4)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 207 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 34 g was dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.39 (molar ratio)), which is the predoping agent of Example 4.
(実施例5)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)216g及び活性炭(株式会社クラレ製「クラレコール」)35gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例5のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.58(モル比))を得た。
(Example 5)
Iron (III) oxide hydroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 216 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 35 g was dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.58 (molar ratio)), which is the predoping agent of Example 5.
(実施例6)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)198g及び活性炭(株式会社クラレ製「クラレコール」)33gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、900℃、10時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例6のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.19(モル比))を得た。
(Example 6)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 198 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 33 g was dry-mixed using a mixer. The obtained mixture was calcined in a nitrogen atmosphere at 900 ° C. for 10 hours using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.19 (molar ratio)), which is the predoping agent of Example 6.
(実施例7)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)198g及び活性炭(株式会社クラレ製「クラレコール」)33gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、950℃、5時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例7のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.19(モル比))を得た。
(Example 7)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 198 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 33 g was dry-mixed using a mixer. The obtained mixture was calcined at 950 ° C. for 5 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.19 (molar ratio)), which is the predoping agent of Example 7.
(実施例8)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)198g及び活性炭(株式会社クラレ製「クラレコール」)33gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、800℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例8のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.19(モル比))を得た。
(Example 8)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 198 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 33 g was dry-mixed using a mixer. The obtained mixture was calcined at 800 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.19 (molar ratio)), which is the predoping agent of Example 8.
(実施例9)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)198g及び活性炭(株式会社クラレ製「クラレコール」)33gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、750℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例9のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.19(モル比))を得た。
(Example 9)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 198 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 33 g was dry-mixed using a mixer. The obtained mixture was calcined at 750 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.19 (molar ratio)), which is the predoping agent of Example 9.
(実施例10)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)198g及び活性炭(株式会社クラレ製「クラレコール」)33gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、700℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、実施例10のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.19(モル比))を得た。
(Example 10)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 198 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 33 g was dry-mixed using a mixer. The obtained mixture was calcined at 700 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.19 (molar ratio)), which is the predoping agent of Example 10.
(比較例1)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)152g及び活性炭(株式会社クラレ製「クラレコール」)28gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、比較例1のプリドープ剤であるリチウム鉄酸化物(Li/Fe=3.21(モル比))を得た。
(Comparative Example 1)
Iron (III) oxide hydroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 152 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 28 g was dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Then, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 3.21 (molar ratio)) which was a predoping agent of Comparative Example 1.
(比較例2)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)229g及び活性炭(株式会社クラレ製「クラレコール」)37gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、比較例2のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.85(モル比))を得た。
(Comparative Example 2)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 229 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 37 g was dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.85 (molar ratio)), which is the predoping agent of Comparative Example 2.
(比較例3)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)239g及び活性炭(株式会社クラレ製「クラレコール」)38gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、比較例3のプリドープ剤であるリチウム鉄酸化物(Li/Fe=5.06(モル比))を得た。
(Comparative Example 3)
Iron (III) Oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 239 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 38 g was dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 5.06 (molar ratio)), which is the predoping agent of Comparative Example 3.
(比較例4)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g、水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)289g及び活性炭(株式会社クラレ製「クラレコール」)43gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、比較例4のプリドープ剤であるリチウム鉄酸化物(Li/Fe=6.12(モル比))を得た。
(Comparative Example 4)
Iron (III) oxide (III) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 100 g, lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 289 g and activated charcoal ("Kurarecol" manufactured by Kuraray Co., Ltd.) 43 g was dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 6.12 (molar ratio)), which is the predoping agent of Comparative Example 4.
(比較例5)
 酸化水酸化鉄(III)(富士フイルム和光純薬株式会社製)100g及び水酸化リチウム・一水和物(富士フイルム和光純薬株式会社製)198gを混合機を用いて乾式混合した。得られた混合物を焼成炉を用いて窒素雰囲気中、850℃、72時間焼成することにより、粉末状生成物を得た。次いで、得られた粉末状生成物を粉砕することにより、比較例5のプリドープ剤であるリチウム鉄酸化物(Li/Fe=4.19(モル比))を得た。
(Comparative Example 5)
100 g of iron (III) oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 198 g of lithium hydroxide monohydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were dry-mixed using a mixer. The obtained mixture was calcined at 850 ° C. for 72 hours in a nitrogen atmosphere using a calcining furnace to obtain a powdery product. Next, the obtained powdery product was pulverized to obtain lithium iron oxide (Li / Fe = 4.19 (molar ratio)), which is the predoping agent of Comparative Example 5.
[プリドープ剤の評価]
(組成分析)
 ICP発光分光分析法により、株式会社日立ハイテクサイエンス製のプラズマ発光分析装置「SPECTRO ARCOS」を用いて、実施例及び比較例で得られた各プリドープ剤について、Li/Feのモル比を測定した。結果を表1に示す。
[Evaluation of pre-doping agent]
(Composition analysis)
By ICP emission spectroscopic analysis method, the molar ratio of Li / Fe was measured for each of the predoping agents obtained in Examples and Comparative Examples using the plasma emission analyzer "SPECTRO RACOS" manufactured by Hitachi High-Tech Science Corporation. The results are shown in Table 1.
(結晶格子定数、格子体積及び半値幅の算出)
Philips社製XRD装置「X’pert-PRO」を用い、CuのKα線で、実施例及び比較例で得られた各プリドープ剤についてのピーク位置及び半値幅の測定を行った。この時、内標準物質としてSi粉末(富士フイルム和光純薬株式会社製)を各プリドープ剤に対して重量比で2wt%となるように混合して測定した。結晶格子定数及び格子体積の精密化は、解析ソフト(HighScore Plus)を使用した。解析は、Si(111)のピークを基準にピーク位置の補正を行った後、LiFeO(ICSD:01-075-1253)を近似構造モデルとして、Rietveld法解析(<Phase fit> Default Rietveld)を行うことで、結晶格子定数及び格子体積Vを算出した。結果を表1に示す。
(Calculation of crystal lattice constant, lattice volume and full width at half maximum)
Using an XRD apparatus "X'pert-PRO" manufactured by Philips, the peak position and full width at half maximum of each predoping agent obtained in Examples and Comparative Examples were measured with Kα rays of Cu. At this time, Si powder (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was mixed and measured as an internal standard substance so as to have a weight ratio of 2 wt% with respect to each predoping agent. Analysis software (High Score Plus) was used to refine the crystal lattice constant and lattice volume. In the analysis, the peak position is corrected based on the peak of Si (111), and then the Rietveld method analysis (<Phase fit> Default Rietveld) using Li 5 FeO 4 (ICSD: 01-075-1253) as an approximate structure model. ) Was performed to calculate the crystal lattice constant and the lattice volume V. The results are shown in Table 1.
(体積抵抗率の測定方法)
実施例及び比較例で得られた各プリドープ剤についての体積抵抗率を、高抵抗率計(株式会社三菱化学アナリテック製、ハイレスターUX)を用いて測定した。結果は5kN時の抵抗値を基に算出した。結果を表1に示す。
(Measurement method of volume resistivity)
The volume resistivity of each predoping agent obtained in Examples and Comparative Examples was measured using a high resistivity meter (High Lester UX, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The result was calculated based on the resistance value at 5 kN. The results are shown in Table 1.
(比表面積の測定方法)
 実施例及び比較例で得られた各プリドープ剤についての比表面積を、全自動比表面積測定装置(株式会社マウンテック製、Macsorb HM model-1208)を用いて、BET法にて測定した。脱気工程は、150℃-20分の条件で行った。結果を表1に示す。
(Method of measuring specific surface area)
The specific surface area of each of the predoping agents obtained in Examples and Comparative Examples was measured by the BET method using a fully automatic specific surface area measuring device (Mt. Tech, Inc., Macsorb HM model-1208). The degassing step was carried out under the conditions of 150 ° C. for 20 minutes. The results are shown in Table 1.
[蓄電デバイスの評価]
(電気化学的評価用コイン型電池の作製)
 実施例及び比較例で得られた各プリドープ剤が58wt%、導電助剤としてアセチレンブラック(電気化学工業株式会社製「デンカブラック」)が30wt%、及び結着剤としてポリフッ化ビニリデン(PVDF、株式会社クレハ製「KFポリマー」)が12wt%含まれるように、N-メチルピロリドンに溶解してスラリーを調製した。上記スラリーを集電体であるエッチングアルミ箔(日本蓄電器工業株式会社製JCC-20CB)に塗付し、130℃で5分間乾燥させた。乾燥させたシートを打ち抜き機で打ち抜くことで、評価用電極(正極)を作製した。対極には、金属リチウムを用い、金属リチウム箔を打ち抜いたものを使用した。評価用電極と対極との間に、ポリプロピレン製セパレーターを挟んで電極を構成し、コイン型の電池容器に入れた。そして、エチレンカーボネート(EC)とジエチルカーボネート(DEC)が、容量比でEC:DEC=1:1で混合された混合溶媒中に、1MのLiPFを溶解させた電解液を注入した後、電池容器を封口することにより、電気化学的評価用コイン型電池を製造した。
[Evaluation of power storage device]
(Manufacturing coin-type batteries for electrochemical evaluation)
Each predoping agent obtained in Examples and Comparative Examples was 58 wt%, acetylene black (“Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd.) was 30 wt% as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF, stock) was used as a binder. A slurry was prepared by dissolving it in N-methylpyrrolidone so as to contain 12 wt% of "KF polymer" manufactured by Kureha Corporation. The above slurry was applied to an etched aluminum foil (JCC-20CB manufactured by Nippon Denki Kogyo Co., Ltd.), which is a current collector, and dried at 130 ° C. for 5 minutes. An evaluation electrode (positive electrode) was produced by punching a dried sheet with a punching machine. Metallic lithium was used as the counter electrode, and a punched metal lithium foil was used. A polypropylene separator was sandwiched between the evaluation electrode and the counter electrode to form an electrode, which was placed in a coin-shaped battery container. Then, after injecting an electrolytic solution in which 1 M of LiPF 6 is dissolved in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed in a volume ratio of EC: DEC = 1: 1, the battery is used. By sealing the container, a coin-type battery for electrochemical evaluation was manufactured.
(充放電試験)
 上記作製したコイン型電池を用いて、電流密度8.67mA/g(活物質重量あたり)で充電終止電圧4.0Vになるまで定電流充電を行い、次いで定電圧充電(終了条件:0.867mA/g(活物質重量あたり)の電流値)を行った。その後、3分間の休止工程を行った。次いで、電流密度8.67mA/g(活物質重量あたり)で電圧が2.3Vになるまで定電流放電を行った。得られた充電容量、放電容量及び不可逆容量の値を表1に示す。
(Charge / discharge test)
Using the coin-type battery produced above, constant current charging is performed at a current density of 8.67 mA / g (per active material weight) until the final charging voltage reaches 4.0 V, and then constant voltage charging (end condition: 0.867 mA). / G (current value per active material weight)) was performed. Then, a resting step of 3 minutes was performed. Next, constant current discharge was performed at a current density of 8.67 mA / g (per weight of active material) until the voltage reached 2.3 V. Table 1 shows the values of the obtained charge capacity, discharge capacity and irreversible capacity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(リチウムイオンキャパシタの作製及びプリドープ処理)
 実施例及び比較例で得られたプリドープ剤を用いて、リチウムイオンキャパシタを作製し、プリドープ処理を行った。
(Preparation of lithium-ion capacitors and pre-doping treatment)
A lithium ion capacitor was prepared using the predoping agents obtained in Examples and Comparative Examples, and predoping treatment was performed.
(作製例1)
(正極の作製)
 まず、正極活物質として活性炭(株式会社クラレ製「クラレコール」)、プリドープ剤として実施例1のプリドープ剤、導電助剤としてアセチレンブラック(電気化学工業株式会社製「デンカブラック」)、結着剤としてポリフッ化ビニリデン(PVDF、株式会社クレハ製「KFポリマー」)をN-メチルピロリドンに溶解して正極塗料を作製した。
 なお、このときのプリドープ剤の含有量については、以下の計算式で示すように、正極活物質とプリドープ剤の合計質量に対して30%になるように調整した。
 プリドープ剤の含有量(%)=[プリドープ剤の質量/(正極活物質の質量+プリドープ剤の質量)]×100
 さらに、正極活物質とプリドープ剤の合計/導電助剤/結着剤の質量比は、77/14/9になるように調整した。つまり、正極活物質/プリドープ剤/導電助剤/結着剤の質量比については、53.9/23.1/14/9になるように調整した。
 最後に、作製した正極用塗料を集電体であるエッチングアルミ箔(日本蓄電器工業株式会社製「JCC-20CB」)に塗付し、130℃で5分間乾燥した後、3cm×4cmのサイズに切り抜くことによって正極を作製した。なお、この時の設計容量は2.3mAhとなっている。
(Production Example 1)
(Preparation of positive electrode)
First, activated carbon (“Kurehacol” manufactured by Kureha Corporation) as the positive electrode active material, the predoping agent of Example 1 as the prepolymer, acetylene black (“Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd.) as the conductive auxiliary agent, and the binder. Polyvinylidene fluoride (PVDF, "KF polymer" manufactured by Kureha Corporation) was dissolved in N-methylpyrrolidone to prepare a positive electrode paint.
The content of the pre-doping agent at this time was adjusted to be 30% with respect to the total mass of the positive electrode active material and the pre-doping agent, as shown in the following calculation formula.
Pre-doping agent content (%) = [mass of pre-doping agent / (mass of positive electrode active material + mass of pre-doping agent)] × 100
Further, the total mass ratio of the positive electrode active material and the pre-doping agent / the conductive auxiliary agent / the binder was adjusted to be 77/14/9. That is, the mass ratio of the positive electrode active material / pre-doping agent / conductive auxiliary agent / binder was adjusted to be 53.9 / 23.1 / 14/9.
Finally, the prepared positive electrode paint is applied to an etched aluminum foil (“JCC-20CB” manufactured by Nippon Denki Kogyo Co., Ltd.), which is a current collector, and dried at 130 ° C. for 5 minutes to a size of 3 cm × 4 cm. A positive electrode was produced by cutting out. The design capacity at this time is 2.3 mAh.
(負極の作製)
 負極には、球晶黒鉛電極(宝泉株式会社製「HS-LIB-N-Gr-001」、公称容量:1.6mAh/cm)を使用し、3.3cm×4.3cmのサイズに切り抜くことによって負極を作製した。なお、この時の設計容量は22.7mAhとなる。
(Preparation of negative electrode)
For the negative electrode, a spherical graphite electrode (“HS-LIB-N-Gr-001” manufactured by Hosen Co., Ltd., nominal capacity: 1.6 mAh / cm 2 ) is used, and the size is 3.3 cm × 4.3 cm. A negative electrode was produced by cutting out. The design capacity at this time is 22.7 mAh.
 (リチウムイオンキャパシタの作製)
 上記にて作製した正極及び負極、セパレータ(日本高度紙工業株式会社製)を積層した後、アルミラミネートケースに収納した。
 次に、電解液である1M LiPF in EC/DEC=1/1(キシダ化学株式会社製)を注液した後、真空封止することによって作製例1のリチウムイオンキャパシタを作製した。
 なお、作製例1のリチウムイオンキャパシタの正極の電気容量は2.3mAh、負極の電気容量は22.7mAhであり、正負極の容量比(負極/正極)は9.9であった。
(Manufacturing of lithium ion capacitor)
After laminating the positive electrode, the negative electrode, and the separator (manufactured by Nippon Kodoshi Paper Industry Co., Ltd.) prepared above, they were stored in an aluminum laminate case.
Next, a 1M LiPF 6 in EC / DEC = 1/1 (manufactured by Kishida Chemical Co., Ltd.), which is an electrolytic solution, was injected and then vacuum-sealed to prepare a lithium ion capacitor of Production Example 1.
The electric capacity of the positive electrode of the lithium ion capacitor of Production Example 1 was 2.3 mAh, the electric capacity of the negative electrode was 22.7 mAh, and the capacity ratio of the positive electrode (negative electrode / positive electrode) was 9.9.
(プリドープ処理)
 次に、作製した作製例1のリチウムイオンキャパシタを、充放電測定装置(北斗電工株式会社製)を用いて、25℃の環境下において0.02mA/cmの電流密度で4.0Vまで定電流充電を行い、次いで定電圧充電(終了条件:0.002mA/cmの電流値)を行った。その後、3分間の休止工程を行った。次いで2.2Vまで放電することによってプリドープ処理を施した。
(Pre-dope treatment)
Next, the prepared lithium ion capacitor of Production Example 1 was fixed to 4.0 V at a current density of 0.02 mA / cm 2 in an environment of 25 ° C. using a charge / discharge measuring device (manufactured by Hokuto Denko Co., Ltd.). Current charging was performed, and then constant voltage charging (end condition: current value of 0.002 mA / cm 2 ) was performed. Then, a resting step of 3 minutes was performed. Then, it was pre-doped by discharging to 2.2 V.
(作製例2~5、9~13)
 正極の作製において、プリドープ剤を表2に示すとおりに変更した以外は作製例1と同様にして、作製例2~5、9~13のリチウムイオンキャパシタを作製するとともにプリドープ処理を行った。
(Production Examples 2-5, 9-13)
In the preparation of the positive electrode, the lithium ion capacitors of Production Examples 2 to 5 and 9 to 13 were prepared and pre-doped treatment was performed in the same manner as in Production Example 1 except that the pre-doping agent was changed as shown in Table 2.
(作製例6)
 正極の作製において、実施例3のプリドープ剤を使用し、プリドープ剤の含有量について、正極活物質とプリドープ剤の合計質量に対して20%になるように調整した以外は作製例1と同様にして、作製例6のリチウムイオンキャパシタを作製するとともにプリドープ処理を行った。つまり、正極活物質/プリドープ剤/導電助剤/結着剤の質量比については、61.6/15.4/14/9になるように調整した。
(Production Example 6)
In the preparation of the positive electrode, the pre-doping agent of Example 3 was used, and the content of the pre-doping agent was adjusted to be 20% with respect to the total mass of the positive electrode active material and the pre-doping agent in the same manner as in Production Example 1. Then, the lithium ion capacitor of Production Example 6 was prepared and pre-doped treatment was performed. That is, the mass ratio of the positive electrode active material / pre-doping agent / conductive auxiliary agent / binder was adjusted to be 61.6 / 15.4 / 14/9.
(作製例7)
 正極の作製において、実施例3のプリドープ剤を使用し、プリドープ剤の含有量について、正極活物質とプリドープ剤の合計質量に対して40%になるように調整した以外は作製例1と同様にして、作製例7のリチウムイオンキャパシタを作製するとともにプリドープ処理を行った。つまり、正極活物質/プリドープ剤/導電助剤/結着剤の質量比については、46.2/30.8/14/9になるように調整した。
(Production Example 7)
In the preparation of the positive electrode, the pre-doping agent of Example 3 was used, and the content of the pre-doping agent was adjusted to be 40% with respect to the total mass of the positive electrode active material and the pre-doping agent in the same manner as in Production Example 1. Then, the lithium ion capacitor of Production Example 7 was prepared and pre-doped treatment was performed. That is, the mass ratio of the positive electrode active material / pre-doping agent / conductive auxiliary agent / binder was adjusted to be 46.2 / 30.8 / 14/9.
(作製例8)
(負極の作製)
 負極活物質としてけい素(富士フイルム和光純薬株式会社製)、導電助剤としてアセチレンブラック(電気化学工業株式会社製「デンカブラック」)、結着剤としてポリフッ化ビニリデン(PVDF、株式会社クレハ製「KFポリマー」)をN-メチルピロリドンに溶解して負極用塗料を作製した。なお、負極活物質/導電助剤/結着剤の質量比は、80/10/10になるように調整した。
 次に、作製した負極用塗料を集電体である銅箔(福田金属箔粉工業株式会社製)に塗付し、130℃で5分間乾燥した後、3.3cm×4.3cmのサイズに切り抜くことによって負極を作製した。なお、この時の設計容量は22.7mAhとなる。
 負極を上記電極に変更した以外は作製例3と同様にして、作製例8のリチウムイオンキャパシタを作製するとともにプリドープ処理を行った。
(Production Example 8)
(Preparation of negative electrode)
Citrate as a negative electrode active material (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), acetylene black as a conductive auxiliary agent ("Denka Black" manufactured by Denki Kagaku Kogyo Co., Ltd.), polyvinylidene fluoride (PVDF, manufactured by Kureha Co., Ltd.) as a binder "KF polymer") was dissolved in N-methylpyrrolidone to prepare a coating material for a negative electrode. The mass ratio of the negative electrode active material / conductive auxiliary agent / binder was adjusted to be 80/10/10.
Next, the prepared negative electrode paint was applied to a copper foil (manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd.), which is a current collector, and dried at 130 ° C. for 5 minutes to a size of 3.3 cm x 4.3 cm. A negative electrode was produced by cutting out. The design capacity at this time is 22.7 mAh.
The lithium ion capacitor of Production Example 8 was produced and pre-doped treatment was performed in the same manner as in Production Example 3 except that the negative electrode was changed to the above electrode.
(比較作製例1~5)
 正極の作製において、プリドープ剤を表2に示すとおりに変更した以外は作製例1と同様にして、比較作製例1~5のリチウムイオンキャパシタを作製するとともにプリドープ処理を行った。
(Comparative Production Examples 1 to 5)
In the preparation of the positive electrode, the lithium ion capacitors of Comparative Production Examples 1 to 5 were produced and pre-doped treatment was performed in the same manner as in Production Example 1 except that the pre-doping agent was changed as shown in Table 2.
(リチウムイオン電池の作製及びプリドープ処理)
 実施例及び比較例で得られたプリドープ剤を用いて、リチウムイオン電池を作製し、プリドープ処理を行った。
(Lithium-ion battery fabrication and pre-doping treatment)
A lithium ion battery was prepared using the predoping agents obtained in Examples and Comparative Examples, and predoping treatment was performed.
(作製例14)
(正極の作製)
 まず、正極活物質としてLi(Ni0.8Co0.1Mn0.1)O(宝泉株式会社製)、プリドープ剤として実施例3のプリドープ剤、導電助剤としてアセチレンブラック(電気化学工業株式会社製「デンカブラック」)、結着剤としてポリフッ化ビニリデン(PVDF、株式会社クレハ製「KFポリマー」)をN-メチルピロリドンに溶解して正極塗料を作製した。
 なお、このときのプリドープ剤の含有量については、以下の計算式で示すように、正極活物質とプリドープ剤の合計質量に対して12%になるように調整した。
 プリドープ剤の含有量(%)=[プリドープ剤の質量/(正極活物質の質量+プリドープ剤の質量)]×100
 さらに、正極活物質とプリドープ剤の合計/導電助剤/結着剤の質量比は、83/11/6になるように調整した。つまり、正極活物質/プリドープ剤/導電助剤/結着剤の質量比については、73/10/11/6になるように調整した。
 最後に、作製した正極用塗料を集電体であるエッチングアルミ箔(日本蓄電器工業株式会社製「JCC-20CB」)に塗付し、130℃で5分間乾燥した後、3cm×4cmのサイズに切り抜くことによって正極を作製した。なお、この時の設計容量は8.2mAhとなっている。
(Production Example 14)
(Preparation of positive electrode)
First, Li (Ni 0.8 Co 0.1 Mn 0.1 ) O 2 (manufactured by Hosen Co., Ltd.) as the positive electrode active material, the pre-doping agent of Example 3 as the pre-doping agent, and acetylene black (electrochemical) as the conductive auxiliary agent. Polyvinylidene fluoride (PVDF, "KF Polymer" manufactured by Kureha Co., Ltd.) was dissolved in N-methylpyrrolidone as a binder (“Denka Black” manufactured by Kogyo Co., Ltd.) to prepare a positive electrode paint.
The content of the pre-doping agent at this time was adjusted to be 12% with respect to the total mass of the positive electrode active material and the pre-doping agent, as shown in the following calculation formula.
Pre-doping agent content (%) = [mass of pre-doping agent / (mass of positive electrode active material + mass of pre-doping agent)] × 100
Further, the total mass ratio of the positive electrode active material and the pre-doping agent / the conductive auxiliary agent / the binder was adjusted to be 83/11/6. That is, the mass ratio of the positive electrode active material / pre-doping agent / conductive auxiliary agent / binder was adjusted to be 73/10/11/6.
Finally, the prepared positive electrode paint is applied to an etched aluminum foil (“JCC-20CB” manufactured by Nippon Denki Kogyo Co., Ltd.), which is a current collector, and dried at 130 ° C. for 5 minutes to a size of 3 cm × 4 cm. A positive electrode was produced by cutting out. The design capacity at this time is 8.2 mAh.
(負極の作製)
 まず、負極活物質としてけい素(エルケム社製「silgrain e-si」、導電助剤としてアセチレンブラック(電気化学工業株式会社製「デンカブラック」)、結着剤としてポリフッ化ビニリデン(PVDF、株式会社クレハ製「KFポリマー」)をN-メチルピロリドンに溶解して負極塗料を作製した。
 なお、このときの負極活物質/導電助剤/結着剤の質量比は、50/25/25になるように調整した。
 最後に、作製した負極用塗料を集電体である銅箔(福田金属箔工業株式会社製)に塗付し、130℃で5分間乾燥した後、3.3cm×4.3cmのサイズに切り抜くことによって負極を作製した。なお、この時の設計容量は12.7mAhとなる。
(Preparation of negative electrode)
First, silicate as the negative electrode active material (“silgrain e-si” manufactured by Elchem Co., Ltd., acetylene black (“Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd.) as the conductive auxiliary agent, and polyvinylidene fluoride (PVDF, Co., Ltd.) as the binder). Kureha's "KF polymer") was dissolved in N-methylpyrrolidone to prepare a negative electrode paint.
The mass ratio of the negative electrode active material / conductive auxiliary agent / binder at this time was adjusted to be 50/25/25.
Finally, the prepared negative electrode paint is applied to a copper foil (manufactured by Fukuda Metal Leaf Industry Co., Ltd.), which is a current collector, dried at 130 ° C. for 5 minutes, and then cut out to a size of 3.3 cm × 4.3 cm. By doing so, a negative electrode was produced. The design capacity at this time is 12.7 mAh.
 (リチウムイオン電池の作製)
 上記にて作製した正極及び負極、ポリエチレンセパレータを積層した後、アルミラミネートケースに収納した。
 次に、電解液である1M LiPF in PC(キシダ化学株式会社製)を注液した後、真空封止することによって作製例14のリチウムイオン電池を作製した。
 なお、作製例14のリチウムイオン電池の正極の電気容量は8.2mAh、負極の電気容量は12.7mAhであり、正負極の容量比(負極/正極)は1.5であった。
(Making a lithium-ion battery)
After laminating the positive electrode, the negative electrode, and the polyethylene separator prepared above, they were stored in an aluminum laminate case.
Next, a 1M LiPF 6 in PC (manufactured by Kishida Chemical Co., Ltd.), which is an electrolytic solution, was injected and then vacuum-sealed to prepare a lithium ion battery of Production Example 14.
The positive electrode of the lithium ion battery of Production Example 14 had an electric capacity of 8.2 mAh, a negative electrode had an electric capacity of 12.7 mAh, and a positive electrode / negative electrode capacity ratio (negative electrode / positive electrode) was 1.5.
(プリドープ処理)
 次に、作製した作製例14のリチウムイオン電池を、充放電測定装置(北斗電工株式会社製)を用いて、25℃の環境下において0.02mA/cmの電流密度で4.2Vまで定電流充電を行い、次いで定電圧充電(終了条件:0.002mA/cmの電流値)を行った。その後、3分間の休止工程を行った。次いで3.2Vまで放電することによってプリドープ処理を施した。
(Pre-dope treatment)
Next, the prepared lithium-ion battery of Production Example 14 was fixed to 4.2 V at a current density of 0.02 mA / cm 2 in an environment of 25 ° C. using a charge / discharge measuring device (manufactured by Hokuto Denko Co., Ltd.). Current charging was performed, and then constant voltage charging (end condition: current value of 0.002 mA / cm 2 ) was performed. Then, a resting step of 3 minutes was performed. Then, it was pre-doped by discharging to 3.2 V.
(比較作製例6)
正極の作製において、プリドープ剤を表2に示すとおりに変更した以外は作製例14と同様にして、比較作製例6のリチウムイオン電池を作製するとともにプリドープ処理を行った。
(Comparative Production Example 6)
In the preparation of the positive electrode, the lithium ion battery of Comparative Production Example 6 was produced and pre-doped treatment was performed in the same manner as in Production Example 14 except that the pre-doping agent was changed as shown in Table 2.
(充電深度の測定)
 プリドープ処理後の黒鉛又はけい素負極の充電深度の測定は、以下のようにして行った。上記作製例1~13、比較作製例1~5にて2.2Vまで放電した後のリチウムイオンキャパシタを解体し黒鉛又はけい素負極を取り出してこれを評価用電極とした。対極には金属リチウムを用い、評価用電極と対極との間に、ポリプロピレン製セパレーターを挟んで電極を構成し、コイン型の電池容器に電極を入れた。そして、エチレンカーボネート(EC)とジエチルカーボネート(DEC)が、容量比でEC:DEC=1:1で混合された混合溶媒中に、1MのLiPFを溶解させた電解液を電池容器に注入した後、電池容器を封口することにより、電気化学的評価用コイン型電池を製造した。電気化学的評価用コイン型電池を3.0Vまで充電することで充電深度を確認した。
 ここで、充電深度とは、上記充電操作によって測定された充電容量が負極の設計容量(22.7mAh)の何%を充電できたかを示す値であり、以下の計算式によって算出される。
 充電深度(%)=[充電容量(mAh)/負極設計容量22.7(mAh)]×100
(Measurement of charging depth)
The charge depth of the graphite or silicon negative electrode after the pre-doped treatment was measured as follows. In the above-mentioned production examples 1 to 13 and comparative production examples 1 to 5, the lithium ion capacitor after discharging to 2.2 V was disassembled, and graphite or silicon negative electrode was taken out and used as an evaluation electrode. Metallic lithium was used as the counter electrode, and a polypropylene separator was sandwiched between the evaluation electrode and the counter electrode to form an electrode, and the electrode was placed in a coin-shaped battery container. Then, an electrolytic solution in which 1 M of LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of EC: DEC = 1: 1 was injected into the battery container. Later, by sealing the battery container, a coin-type battery for electrochemical evaluation was manufactured. The charging depth was confirmed by charging the coin-type battery for electrochemical evaluation to 3.0 V.
Here, the charging depth is a value indicating what percentage of the design capacity (22.7 mAh) of the negative electrode can be charged by the charging capacity measured by the charging operation, and is calculated by the following formula.
Charging depth (%) = [Charging capacity (mAh) / Negative electrode design capacity 22.7 (mAh)] x 100
(キャパシタ特性(放電容量)の評価)
 上記作製例1~13、比較作製例1~5のリチウムイオンキャパシタについて、キャパシタ特性(放電容量)の評価を行った。具体的には、充放電測定装置(北斗電工株式会社製)を用いて、25℃の環境下において、2.2~3.8Vの範囲で充放電を行った。また、充放電レートは正極活物質重量あたり1Cで行った。なお、充放電レート1Cの際の電流密度は40mA/g(活物質重量あたり)であった。
(Evaluation of capacitor characteristics (discharge capacity))
The capacitor characteristics (discharge capacity) of the lithium ion capacitors of Production Examples 1 to 13 and Comparative Production Examples 1 to 5 were evaluated. Specifically, a charge / discharge measuring device (manufactured by Hokuto Denko Co., Ltd.) was used to charge / discharge in the range of 2.2 to 3.8 V in an environment of 25 ° C. The charge / discharge rate was 1 C per weight of the positive electrode active material. The current density at the charge / discharge rate of 1C was 40 mA / g (per active material weight).
(充電深度の測定)
 プリドープ処理後のけい素負極の充電深度の測定は、以下のようにして行った。上記作製例14、比較作成例6にて3.2Vまで放電した後のリチウムイオン電池を解体しけい素負極を取り出してこれを評価用電極とした。対極には金属リチウムを用い、評価用電極と対極との間に、ポリプロピレン製セパレーターを挟んで電極を構成し、コイン型の電池容器に電極を入れた。そして、プロピレンカーボネート(PC)溶媒中に、1MのLiPFを溶解させた電解液を電池容器に注入した後、電池容器を封口することにより、電気化学的評価用コイン型電池を製造した。電気化学的評価用コイン型電池を3.0Vまで充電することで充電深度を確認した。
 ここで、充電深度とは、上記充電操作によって測定された充電容量が負極の設計容量(12.7mAh)の何%を充電できたかを示す値であり、以下の計算式によって算出される。
 充電深度(%)=[充電容量(mAh)/負極設計容量12.7(mAh)]×100
(Measurement of charging depth)
The charging depth of the silicon negative electrode after the pre-doping treatment was measured as follows. The lithium ion battery after being discharged to 3.2 V in the above Production Example 14 and Comparative Preparation Example 6 was disassembled, and the silicon negative electrode was taken out and used as an evaluation electrode. Metallic lithium was used as the counter electrode, and a polypropylene separator was sandwiched between the evaluation electrode and the counter electrode to form an electrode, and the electrode was placed in a coin-shaped battery container. Then, an electrolytic solution in which 1 M of LiPF 6 was dissolved in a propylene carbonate (PC) solvent was injected into the battery container, and then the battery container was sealed to manufacture a coin-type battery for electrochemical evaluation. The charging depth was confirmed by charging the coin-type battery for electrochemical evaluation to 3.0 V.
Here, the charging depth is a value indicating what percentage of the design capacity (12.7 mAh) of the negative electrode can be charged by the charging capacity measured by the charging operation, and is calculated by the following formula.
Charging depth (%) = [Charging capacity (mAh) / Negative electrode design capacity 12.7 (mAh)] x 100
(電池特性(放電容量)の評価)
 上記作製例14、比較作成例6のリチウムイオン電池について、電池特性(放電容量)の評価を行った。具体的には、充放電測定装置(北斗電工株式会社製)を用いて、25℃の環境下において、3.2~4.2Vの範囲で充放電を行った。また、充放電レートは正極活物質重量あたり1Cで行った。なお、充放電レート1Cの際の電流密度は160mA/g(活物質重量あたり)であった。
(Evaluation of battery characteristics (discharge capacity))
The battery characteristics (discharge capacity) of the lithium ion batteries of Production Example 14 and Comparative Preparation Example 6 were evaluated. Specifically, a charge / discharge measuring device (manufactured by Hokuto Denko Co., Ltd.) was used to charge / discharge in the range of 3.2 to 4.2 V in an environment of 25 ° C. The charge / discharge rate was 1 C per weight of the positive electrode active material. The current density at the charge / discharge rate of 1C was 160 mA / g (per active material weight).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  下記式(1)で表されるリチウム鉄酸化物からなり、X線回析測定において、回折角(2θ)が23.6±0.5°の回折ピークの半値幅が0.06~0.17°であることを特徴とする蓄電デバイス用プリドープ剤。
     LixFeOy (1)
    [式(1)中、xは3.5≦x≦4.7を満たし、yは3.25≦y≦3.85を満たす。]
    It is composed of lithium iron oxide represented by the following formula (1), and in the X-ray diffraction measurement, the half width of the diffraction peak having a diffraction angle (2θ) of 23.6 ± 0.5 ° is 0.06 to 0. A pre-diffractive agent for a power storage device, which is characterized by having a temperature of 17 °.
    LixFeOy (1)
    [In the formula (1), x satisfies 3.5 ≦ x ≦ 4.7, and y satisfies 3.25 ≦ y ≦ 3.85. ]
  2.  結晶構造の空間群がP b c a であり、結晶格子定数a及びcが、それぞれ9.140Å≦a≦9.205Å、9.180Å≦c≦9.220Åを満たし、格子体積Vが773Å≦V≦781Åを満たす請求項1に記載のプリドープ剤。 The space group of the crystal structure is P b c a, the crystal lattice constants a and c satisfy 9.140 Å ≦ a ≦ 9.205 Å and 9.180 Å ≦ c ≦ 9.220 Å, respectively, and the lattice volume V is 773 Å 3. The predoping agent according to claim 1, which satisfies ≦ V ≦ 781Å 3 .
  3.  請求項1又は2に記載のプリドープ剤と正極活物質を含む蓄電デバイス用正極。 A positive electrode for a power storage device containing the pre-doping agent and the positive electrode active material according to claim 1 or 2.
  4.  前記プリドープ剤の含有量が、前記プリドープ剤と前記正極活物質の合計重量に対して1~60重量%である請求項3に記載の正極。 The positive electrode according to claim 3, wherein the content of the pre-doping agent is 1 to 60% by weight based on the total weight of the pre-doping agent and the positive electrode active material.
  5.  請求項3又は4に記載の正極を構成要素とする蓄電デバイス。 A power storage device having the positive electrode according to claim 3 or 4 as a component.
  6.  鉄原料、リチウム原料及び炭素原料を混合して焼成することにより得られるリチウム鉄酸化物からなる蓄電デバイス用プリドープ剤の製造方法であって、前記鉄原料、リチウム原料及び炭素原料を混合し、無酸素雰囲気中、650~1000℃で2~100時間焼成し、得られた粉末状生成物を粉砕してリチウム鉄酸化物を得る請求項1又は2に記載の蓄電デバイス用プリドープ剤の製造方法。

     
    A method for producing a predoping agent for a power storage device made of lithium iron oxide obtained by mixing and firing an iron raw material, a lithium raw material, and a carbon raw material. The iron raw material, the lithium raw material, and the carbon raw material are mixed and not used. The method for producing a predoping agent for a power storage device according to claim 1 or 2, wherein the powdery product obtained by firing at 650 to 1000 ° C. for 2 to 100 hours in an oxygen atmosphere is pulverized to obtain lithium iron oxide.

PCT/JP2020/030364 2019-08-09 2020-08-07 Pre-doping agent for power storage device and method for manufacturing pre-doping agent WO2021029357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021539270A JP7340024B2 (en) 2019-08-09 2020-08-07 Pre-dopant for power storage device and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019148046 2019-08-09
JP2019-148046 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029357A1 true WO2021029357A1 (en) 2021-02-18

Family

ID=74569542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030364 WO2021029357A1 (en) 2019-08-09 2020-08-07 Pre-doping agent for power storage device and method for manufacturing pre-doping agent

Country Status (2)

Country Link
JP (1) JP7340024B2 (en)
WO (1) WO2021029357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022172881A1 (en) * 2021-02-09 2022-08-18

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252043A (en) * 2007-04-25 2008-08-27 北京理工大学 Pre-embedding method of lithium ion super capacitor cathode
JP2016012620A (en) * 2014-06-27 2016-01-21 株式会社豊田自動織機 Pre-doping agent, positive electrode for lithium ion capacitor, and lithium ion capacitor and manufacturing method of the same
JP2020123460A (en) * 2019-01-29 2020-08-13 株式会社Gsユアサ Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268924B2 (en) * 1993-11-11 2002-03-25 三洋電機株式会社 Non-aqueous electrolyte battery
CN108565396A (en) * 2018-05-29 2018-09-21 溧阳天目先导电池材料科技有限公司 A kind of prelithiation film and its preparation method and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252043A (en) * 2007-04-25 2008-08-27 北京理工大学 Pre-embedding method of lithium ion super capacitor cathode
JP2016012620A (en) * 2014-06-27 2016-01-21 株式会社豊田自動織機 Pre-doping agent, positive electrode for lithium ion capacitor, and lithium ion capacitor and manufacturing method of the same
JP2020123460A (en) * 2019-01-29 2020-08-13 株式会社Gsユアサ Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022172881A1 (en) * 2021-02-09 2022-08-18
WO2022172881A1 (en) * 2021-02-09 2022-08-18 テイカ株式会社 Power storage device pre-doping agent and production method for same
JP7299431B2 (en) 2021-02-09 2023-06-27 テイカ株式会社 Pre-dopant for power storage device and method for producing the same

Also Published As

Publication number Publication date
JP7340024B2 (en) 2023-09-06
JPWO2021029357A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP7063981B2 (en) Negative electrode active material, negative electrode containing it and lithium secondary battery
JP5205424B2 (en) Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
JP5716093B2 (en) Positive electrode active material for lithium ion capacitor and method for producing the same
JP5396942B2 (en) Manufacturing method of active material, active material, electrode using the active material, and lithium ion secondary battery including the electrode
JP5487676B2 (en) Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
JP5704986B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20130098372A (en) Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
JP2002117833A (en) Nonaqueous electrolyte secondary battery
JP2007335325A (en) Cathode active material for nonaqueous electrolyte secondary battery and battery
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
KR20130107926A (en) Positive active material, method of preparing the same and lithium secondary battery using the same
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
JP5716269B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery
JP2016004708A (en) Cathode active material for lithium ion secondary battery and manufacturing method for the same, and lithium ion secondary battery using the same
JP7117536B2 (en) Negative electrode active material and battery
JP2005050556A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7340024B2 (en) Pre-dopant for power storage device and method for producing the same
JP5733550B2 (en) Lithium ion secondary battery
KR101708361B1 (en) Composite negative electrode active material, method for preparing the same, and lithium battery including the same
WO2018123603A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
WO2015001632A1 (en) Cathode material for lithium ion secondary battery, cathode for lithium ion secondary battery, lithium ion secondary battery, and method for producing each of same
KR102606394B1 (en) Pre-doping agent for power storage devices and method for manufacturing the same
KR101785269B1 (en) Composite negative electrode active material, method for preparing the same, and lithium battery including the same
KR101382665B1 (en) Positive active material for lithium ion secondary battery, method for preparing thereof, and lithium ion secondary battery including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539270

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852108

Country of ref document: EP

Kind code of ref document: A1