WO2015001632A1 - Cathode material for lithium ion secondary battery, cathode for lithium ion secondary battery, lithium ion secondary battery, and method for producing each of same - Google Patents

Cathode material for lithium ion secondary battery, cathode for lithium ion secondary battery, lithium ion secondary battery, and method for producing each of same Download PDF

Info

Publication number
WO2015001632A1
WO2015001632A1 PCT/JP2013/068270 JP2013068270W WO2015001632A1 WO 2015001632 A1 WO2015001632 A1 WO 2015001632A1 JP 2013068270 W JP2013068270 W JP 2013068270W WO 2015001632 A1 WO2015001632 A1 WO 2015001632A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
particles
particle
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2013/068270
Other languages
French (fr)
Japanese (ja)
Inventor
孝亮 馮
心 高橋
章 軍司
小西 宏明
寛 北川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/068270 priority Critical patent/WO2015001632A1/en
Publication of WO2015001632A1 publication Critical patent/WO2015001632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing them.
  • secondary batteries are used in natural energy power generation, ships, railways, electric vehicles, etc., which are being widely used as a technology with reduced environmental load.
  • natural energy power generation that uses a secondary battery as a storage system for generated electricity
  • a large-capacity storage capable of responding to fluctuations in the amount of power generation can be realized at low cost, and ships equipped with a secondary battery as a driving power supply
  • a lithium ion secondary battery in which Li + is in charge of electrical conduction has been promoted as a secondary battery meeting such a demand.
  • Lithium ion secondary batteries have characteristics of superior energy density compared to nickel hydrogen batteries and lead storage batteries, but in order to realize higher capacity, a positive electrode for lithium ion secondary batteries is configured New positive electrode active materials are being developed.
  • Li 2 MnO 3 -LiMO 2 solid solution positive electrode active material (hereinafter referred to as manganese-based solid solution positive electrode active material) is one of the positive electrode active materials for lithium ion secondary batteries expected to have high capacity. Since manganese-based solid solution positive electrode active materials have low raw material costs and high safety, improvements are being made to improve practicability. Heretofore, there has been known a technique for improving the electrical characteristics of a positive electrode by using manganese-based solid solution positive electrode active material particles in combination with other particles.
  • Patent Documents 1 and 2 disclose Li a Mn b M c O Z (M is a technology for providing a non-aqueous electrolyte battery excellent in storage capacity and cycle performance under high temperature and high temperature. And at least one element selected from the group consisting of Ni, Co, Al and F, wherein a, b, c and Z are 0 ⁇ a ⁇ 2.5, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, 2
  • Patent Document 3 discloses a composition formula (1) as a technology for providing a positive electrode active material for an electric device which can exhibit excellent initial charge / discharge efficiency while maintaining a high reversible capacity by maintaining a high reversible capacity.
  • Li Li 1.5 [Ni a Co b Mn c [Li] d] O 3
  • Li Li is lithium, Ni is nickel, Co is cobalt, Mn is manganese, O represents oxygen
  • Substance and the composition formula (2) LiM a ' Mn 2-a' O 4 (in the formula (2), Li is lithium, M is at least one metal element having a valence of 2 to 4, Mn is manganese, O is Represents oxygen, and a ′ satisfies the relation of 0 ⁇ a ′ ⁇ 2.0)), and has a crystal structure And a second active material composed of a spinel type transition metal oxide belonging to the space group Fd-3m, and the content ratio of the first active material to the second 3)
  • a positive electrode active material for an electric device is disclosed, which is characterized in that
  • the positive electrodes disclosed in Patent Document 1 and Patent Document 2 are produced by simply mixing primary particles of a lithium manganese-containing oxide and an Fe-containing phosphorus compound having an olivine structure.
  • the positive electrode disclosed in Patent Document 3 is manufactured by simply mixing the powder of the first active material and the powder of the second active material corresponding to primary particles.
  • the conductive path between the particles of the primary particles is not appropriately formed. Even if the total amount of active materials is unchanged, there is a problem that the energy density is reduced. Therefore, an object of the present invention is to provide a positive electrode material for a lithium ion secondary battery excellent in energy density and electron conductivity.
  • the positive electrode material for a lithium ion secondary battery has a general formula Li x Mn a M 1 b O 2 ⁇ c (wherein, M 1 represents Ni, Cu, Zn, Co, Fe, At least one element selected from the group consisting of Cr, V, Ti, Mg, Al, Sn, Mo, Nb, V, Zr, Ta, Ru and W, 1.0 ⁇ x ⁇ 1.4, A first particle represented by 0 ⁇ a ⁇ 1.0, 0 ⁇ b ⁇ 1.0, a + b ⁇ 1.0, 0 ⁇ c ⁇ 0.2), and the electric conductivity is 1.0 ⁇ It is characterized in that it comprises a composite particle of a second particle of 10 -5 S / m or more.
  • the positive electrode material for lithium ion secondary batteries excellent in energy density and electronic conductivity can be provided.
  • the positive electrode material according to the present embodiment is formed by combining a first particle, which is a primary particle of a manganese-based solid solution positive electrode active material, and a second particle, which is a primary particle of a compound that contributes to improvement of electron conductivity.
  • the present invention relates to a positive electrode material comprising secondary particles (composite particles) to be granulated.
  • the first particle according to the present embodiment is a positive electrode active material represented by a general formula Li x Mn a M1 b O 2 and contains at least Mn and M1 as a transition metal element.
  • the first particles, and Li 2 MnO 3 also having layered rock-salt structure as LiCoO 2, a solid solution of LiM1O 2, rewritten and Li [Li 1/3 Mn 2/3] O 2 -LiM1O 2 As such, the main Li is disposed between the layers of the layered structure, and a part of the excess Li is based on the regularly arranged structure in the metal layer formed by Mn and M1.
  • the manganese-based solid solution positive electrode active material having such a structure is capable of ionizing and desorbing not only Li arranged in the layer but also Li arranged in the metal layer, and therefore 200 mAh / g It becomes a positive electrode material which shows the comparatively high discharge capacity which exceeds.
  • the electron conductivity is not necessarily excellent, its improvement is desired. Therefore, in the positive electrode material according to the present embodiment, the first particles and the second particles excellent in electron conductivity described later are complexed to form secondary particles, thereby improving the electron conductivity of the particles. I am trying to In the present specification, the value of the electrical conductivity is used as a scale for evaluating the superiority or inferiority of the electron conductivity.
  • the electrical conductivity of a general manganese-based solid solution positive electrode active material is said to be 1.0 ⁇ 10 ⁇ 6 S / m or less.
  • the composition ratio x of Li is more than 1.0 and not more than 1.4.
  • the composition ratio of Li By setting the composition ratio of Li to a value exceeding 1.0, the crystal structure of the positive electrode active material becomes relatively stable, and the discharge capacity normally required can be secured.
  • the composition ratio of Li By setting the composition ratio of Li to 1.4 or less, the internal resistance and the decrease in electrochemical activity can be suppressed, and the discharge capacity normally required can be secured.
  • a voltage of about 5.0 V (vs. Li + / Li) or more is required to ionize and desorb Li from the positive electrode active material during charging, so There is a possibility that the battery may be oxidatively decomposed to reduce the battery life.
  • M1 is an electrochemically active element responsible for the redox reaction. Specifically, at least one element selected from transition metals such as Ni, Cu, Co, Fe, Cr, V, Ti, Mo, Nb, Zr, Ta, Ru, W, etc., or Zn, Mg, Al And at least one element selected from the group consisting of Sn. M1 can be suitably selected from these elements according to the desired characteristic given to a battery. For example, from the viewpoint of raw material cost, the ratio of expensive metals such as Co, Cr, Mo, Zr, Ta, Ru, W is low, and the ratio of relatively inexpensive metals such as Ni, Fe, Ti is high. preferable.
  • the ratio of elements having a relatively small atomic weight such as Ni, Fe, V, Ti, Mg, and Al, be high. Further, from the viewpoint of the discharge voltage, Ni and Fe are preferable, and Ni having a larger change in valence is preferable.
  • the composition ratio a of Mn is more than 0 and less than 1.0
  • the composition ratio b of M1 is more than 0 and less than 1.0
  • the composition ratio of Mn and the composition ratio of M1 b is a value satisfying the relationship of a + b ⁇ 1.0. That is, as long as the first particles according to the present embodiment contain both Mn and M1, the composition ratio of these can be set to an appropriate ratio. By satisfying such a relationship, the crystal structure of the positive electrode active material is relatively stably maintained.
  • the first particles according to the present embodiment are not limited to those having a composition that strictly satisfies the relationship of these values.
  • the composition may have a non-stoichiometric ratio, and some elements may be irregularly coordinated.
  • the second particle according to the present embodiment is a particle having electron conductivity superior to that of the first particle, and is a particle showing a value of at least 1.0 ⁇ 10 ⁇ 5 S / m or more.
  • electrical conductivity is a value in the case where the particle is pressurized and the density is 2.2 g / cm 3 at room temperature. Therefore, the composite particle formed by the first particle and the second particle has an improved electron conductivity as compared with the case of the first particle alone.
  • the second particles since the second particles usually have extremely small particle diameters, it is difficult to measure the electrical conductivity by the second particles alone. Therefore, the electrical conductivity of the second particle is estimated from the electrical conductivity of the composite particle and the first particle, as necessary.
  • the second particles according to this embodiment are mainly particles formed of a positive electrode active material.
  • a positive electrode active material for forming the second particles a positive electrode active capable of inserting and extracting lithium ions at 2.0 V (vs. Li + / Li) or more and 5.0 V or less (vs. Li + / Li) Any substance can be selected from positive electrode active materials used for general lithium ion secondary battery positive electrodes, but oxides having a stable crystal structure in a high voltage region of about 5.0 V are preferable.
  • spinel-structured positive electrode active materials represented by LiM 4 O 4 such as LiCoMnO 4
  • M3 and M4 are Ni, Cu, Zn, Co, Fe, Mn, Cr, V, Ti, Mg, Al, Sn, Mo, Nb, V, Zr, Ta, Ru and At least one element selected from the group consisting of W is shown.
  • Li y M2 d X e O f (wherein, M2 is, Ni, Cu, Zn, Co , Fe, Mn, Cr, V, Ti, Mg, Al, Sn, Mo, Nb, V, Zr At least one element selected from the group consisting of Ta, Ru and W, X is a typical element which forms an anion by binding to oxygen (O), and the composition ratio y of Li is 0 or more and 2
  • the positive electrode active material represented by the composition ratio d of M2 is 1 or more and 2 or less
  • the composition ratio e of X is 1 or more and 2 or less
  • the composition ratio f of O is 3 or more and 7 or less.
  • Such a positive electrode active material include olivine-structured positive electrode active materials such as LiFePO 4 , LiCoPO 4 , LiNiPO 4 , and LiMnPO 4 , and polyanion-based positive electrode active materials such as Li 2 MnSiO 4 .
  • the second particle according to the present embodiment may be formed by combining one type selected from among the plurality of types of positive electrode active materials described above with the first particle, but a combination of two or more types may be combined with the first particle. It may be complexed.
  • the second particle according to the present embodiment is a particle in which the electric conductivity at a density of 2.2 g / cm 3 exhibits a value of at least 1.0 ⁇ 10 ⁇ 5 S / m or more.
  • the particles may be made only of particles, but the conductive material for improving the electric conductivity of the second particles may be attached to the particle surface or coated on the particle surface.
  • the positive electrode active materials forming the second particles LiFePO 4 or the like having an olivine structure does not have good electron conductivity, so it is preferable to coat the conductive material to form the second particles.
  • the conductive material at least one of a metal oxide and a carbon material can be used.
  • a metal oxide a compound which has dispersibility and lithium ion conductivity and is chemically stable is preferable. Specifically, SnO 2 , TiO 2 , SiO 2 , V 2 O 3 , V 2 O 5 , WO 3 , NiO, CuO, ZrO 2 , TiO 2 -P 2 O 5 and the like can be mentioned.
  • the TiO 2 -P 2 O 5 may be doped with SnO 2 , CuO, NiO, FeO or the like.
  • crystals are released when lithium ions are released in the range of 2.0 V (vs.
  • a positive electrode active material in which the covalent bond between metal atom and oxygen atom is weak such as LiNiO 2 etc., Al 2 O 3 , MgO, ZnO, TiO 2 , ZrO 2 , MoO it is preferable to coat 2, V 2 O 5 or the like of the metal oxide as the withstand voltage process.
  • the carbon material utilized as a conductive support agent in a general lithium ion secondary battery can be used.
  • Specific examples thereof include carbon particles such as natural graphite and carbon black, and carbon fibers such as carbon nanotubes and carbon nanohorns.
  • the surface spacing of the Miller index (002) surface corresponding to the graphene surface is preferably 0.38 nm or less. By this, the electron conductivity of the composite particle can be stably improved.
  • the second particle according to the present embodiment preferably contains an olivine-structured positive electrode active material in that the discharge voltage is high, the particle diameter can be appropriately controlled, and the electron conductivity is excellent.
  • an active material in which LiFePO 4 , LiMnPO 4 or its transition metal site is substituted with at least one element selected from the group consisting of Co, V, Mo, Ti, Al, Mg and Fe.
  • an olivine structure positive electrode active material represented by a general formula LiMn z Fe 1-z PO 4 (in the formula, z is more than 0 and not more than 1) is preferable.
  • the particle diameter of the first particles forming the composite particles is 50 nm or more and 800 nm or less, preferably 60 nm or more and 800 nm or less.
  • the particle diameter of the second particles forming the composite particles is 5 nm or more and 400 nm or less, preferably 10 nm or more and 200 nm or less, and more preferably 20 nm or more and 200 nm or less.
  • the particle diameter is a particle observed on a scanning electron microscope (SEM) or a transmission electron microscope (TEM) on the outline of the particle image. It is defined as the distance of the largest of the distances between any two points present.
  • the BET specific surface area of the first particles forming the composite particles is 0.6 m 2 / g or more and 15.0 m 2 / g or less, preferably 0.8 m 2 / g or more and 10.0 m 2 / g or less, more preferably 1 .0m 2 / g or more 8.0m 2 / g or less.
  • BET specific surface area of the second particles forming the composite particles 3.0 m 2 / g or more 80.0m 2 / g or less, preferably 4.0 m 2 / g or more 70.0m 2 / g or less, more preferably Is 2.0 m 2 / g or more and 60.0 m 2 / g or less.
  • the BET specific surface area indicates the particle surface area per unit weight derived by the BET theory. For example, by using nitrogen as an adsorption gas, it is calculated from the adsorption amount at the equilibrium pressure and the adsorption isotherm at 77 K. be able to.
  • the average particle size of the second particles forming the composite particles is 1/2 or less, preferably 1/3 or less, more preferably 1/4 or less of the average particle size of the first particles forming the composite particles.
  • the average particle diameter is defined as a median diameter (D 50 ) based on the number of particles observed by observing several tens of fields of view using a scanning electron microscope or a transmission electron microscope.
  • the composite particles according to the present embodiment form secondary particles formed by combining the first particles and the second particles described above.
  • a collection of the composite particles is used as a positive electrode material included in a positive electrode for a lithium ion secondary battery.
  • the composite particle according to the present embodiment may be a composite of the first particle and the second particle, and the above-described conductive material.
  • the electric conductivity of the composite particle thus made into a positive electrode material is 1.0 ⁇ 10 ⁇ 5 S / m or more.
  • electrical conductivity is a value in the case where the powder of the composite particles is pressurized at a room temperature to make the density 2.2 g / cm 3 .
  • the particle size of the composite particles is 30 ⁇ m or less, preferably 0.5 ⁇ m or more and 30 ⁇ m or less. If the particle size is 30 ⁇ m or less, granulation as composite particles is relatively easy.
  • the first particles and the second particles are preferably uniformly dispersed. When these are uniformly dispersed, the conductive network inside the composite particle is properly constructed. Therefore, in the composite particle used as the positive electrode material, at least a portion of the second particle is dispersed in a region where the distance from the center of the composite particle is a half or less of the radius of the composite particle. Is preferred.
  • the center and the radius of the composite particle are the center and the radius of the area equivalent circle set in the electron microscope image.
  • the first particle contained in the composite particle has at least one second particle between the particle and the other first particle closest to the first particle.
  • the particles and the second particles are sintered. Such a configuration forms conductive paths between particles of the first particle.
  • the volume ratio V1 / V2 of the volume V1 of the first particle to the volume V2 of the second particle in any region of the composite particles is preferably more than 1.5, more preferably more than 2.0, More preferably, the value is more than 0, and more preferably, more than 4.0.
  • the content of the first particles in the composite particles is preferably 30% by volume to 99% by volume, and the content of the second particles is preferably 1% by volume to 70% by volume . When the first particle and the second particle satisfy such a volume relationship, the weight energy density and the volume energy density will be good.
  • the volume of each particle is a value calculated from the particle diameter described above assuming that the particle is spherical.
  • the volume ratio can be calculated by counting the number of particles contained in a field of view of several ⁇ m square for composite particles of a predetermined thickness using a transmission electron microscope and determining the total volume occupied by each particle. .
  • the volume ratio is observed for several tens of fields using a transmission electron microscope, and the arithmetic mean is determined.
  • the method of manufacturing the positive electrode material according to the present embodiment mainly includes the steps of mixing the raw materials, the steps of preparing the first particles, the steps of mixing the primary particles, and the step of granulating the composite particles. It contains.
  • the step of mixing the raw materials, the lithium-containing compound, the manganese-containing compound, and the compound containing the element of M1, which are the raw materials of the first particles, are mixed to obtain a raw material powder.
  • the mixing of the raw materials can be carried out by using a general precision grinder such as a ball mill, jet mill, sand mill or the like.
  • grains which concern on this embodiment the compound containing the element of a lithium containing compound, a manganese containing compound, and M1 is used in the ratio which achieves the element composition ratio of a desired positive electrode active material, respectively.
  • lithium-containing compounds examples include lithium carbonate (Li 2 CO 3 ), lithium chloride (LiCl), lithium sulfate (Li 2 SO 4 ), lithium nitrate (LiNO 3 ), lithium acetate (CH 3 CO 2 Li), water Lithium oxide (LiOH) or the like can be used. Since lithium may volatilize during firing, the composition ratio of lithium after firing tends to be lower than the composition ratio of charge. Therefore, as the amount of the lithium-containing compound, it is preferable to use, as a raw material, an amount of about 1.01% by mass or more and 1.05% by mass or less of the amount corresponding to the desired composition.
  • manganese-containing compounds examples include manganese carbonate (MnCO 3 ), manganese sulfate (MnSO 4 ), manganese nitrate (Mn (NO 3 ) 2 ), manganese acetate (Mn (CH 3 COO) 2 ), manganese oxide (MnO) And manganese hydroxide (Mn (OH) 2 ) can be used.
  • oxides, carbonates, sulfates, acetates, borates and the like can be used as a compound containing the element of M1 as a compound containing the element of M1.
  • the mixed compound is calcined to granulate the first particles which are primary particles.
  • the firing atmosphere may be performed under any of an inert gas atmosphere such as nitrogen or Ar and an oxidizing gas atmosphere such as in the air depending on the particles to be granulated.
  • the firing temperature can be set to a suitable temperature of about 500 ° C. or more and 1000 ° C. or less.
  • the step of mixing primary particles mixing of the primary particles and the second particles of the prepared first particles is performed.
  • a dispersion medium such as pure water is used for mixing to obtain a slurry in which primary particles are dispersed.
  • the first particles and the second particles are granulated as composite particles, it is necessary to appropriately manage the aggregation state of the first particles and the second particles.
  • a primary particle is made into the state couple
  • the binder include acetyl cellulose, polyacrylic acid, polymethacrylic acid, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone and the like.
  • a dispersant such as polyacrylate can be used in combination.
  • a dispersant such as polyacrylate can be used in combination.
  • the slurry in which the primary particles are mixed and dispersed is spray-dried using a spray dryer. Then, the mixed first particles and second particles are fired to granulate the composite particles.
  • the firing temperature in this step is preferably 400 ° C. or less. It is because there exists a possibility that the battery characteristic of the primary particle which forms composite particles or composite particles as a calcination temperature is high heat of a grade which greatly exceeds 400 ° C, for example. Moreover, it is preferable to remove the binder added at the time of mixing of primary particles by the heating at the time of baking. Therefore, as the binder, it is preferable to select one that can be removed by heating at 400 ° C. or less. Note that the firing may be performed under any of an inert gas atmosphere such as nitrogen or Ar and an oxidizing gas atmosphere such as in the air.
  • the composite particles thus granulated can be used as a positive electrode material for a lithium ion secondary battery having a function as a positive electrode active material.
  • the positive electrode for a lithium ion secondary battery according to the present embodiment includes the steps of preparing a positive electrode mixture slurry mainly using the positive electrode material, the conductive material, and the binder described above, and using the positive electrode mixture slurry as a positive electrode current collector. It manufactures by passing through the process of coating, and the process of shape
  • the manufactured positive electrode comprises a positive electrode material, a conductive material and a binder.
  • the conductive material used for the general positive electrode for lithium ion secondary batteries can be used.
  • the conductive material include natural graphite powder, carbon fiber, carbon black, metal powder, conductive polymer and the like.
  • carbon black includes acetylene black, furnace black, thermal black, channel black and the like
  • metal powders include aluminum, nickel, copper, silver and the like
  • conductive polymers include polyphenylene and the like.
  • the binder used for the general positive electrode for lithium ion secondary batteries can be used.
  • fluorine-based resins such as polyvinylidene fluoride (PVDF), polytetrafluorinated ethylene, and polyhexafluoropropylene, styrene-based resins such as styrene-butadiene rubber, and olefins such as polyethylene and polypropylene
  • PVDF polyvinylidene fluoride
  • styrene-based resins such as styrene-butadiene rubber
  • olefins such as polyethylene and polypropylene
  • acrylic resins such as polyacrylic acid, polymethacrylic acid and polyacrylonitrile
  • cellulose resins such as carboxymethyl cellulose and hydroxyethyl cellulose.
  • the positive electrode active material, the binder, and the conductive material are mixed to prepare a positive electrode mixture slurry.
  • a high-viscosity stirrer having a relatively high shear force
  • specific examples include a planetary mixer, a disperser mixer, and a rotation / revolution mixer.
  • solvent used for mixing examples include amides such as N-methylpyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, alcohols such as methanol, ethanol, propanol and isopropanol, ethylene glycol, Examples thereof include polyhydric alcohols such as diethylene glycol and glycerin, ethers, dimethyl sulfoxide, tetrahydrofuran, water and the like.
  • NMP N-methylpyrrolidone
  • N N-dimethylformamide
  • N N-dimethylacetamide
  • alcohols such as methanol, ethanol, propanol and isopropanol
  • ethylene glycol examples thereof include polyhydric alcohols such as diethylene glycol and glycerin, ethers, dimethyl sulfoxide, tetrahydrofuran, water and the like.
  • the prepared positive electrode mixture slurry is applied to the positive electrode current collector and dried to form a positive electrode mixture layer.
  • general coating means such as a die coater, a gravure coater, and a doctor blade can be used.
  • the positive electrode current collector an aluminum foil or the like having a thickness of about 10 ⁇ m to 30 ⁇ m is generally used, but may be in the form of expanded metal, punching metal or the like.
  • the positive electrode current collector on which the positive electrode mixture layer is formed is compression molded by applying a predetermined pressure by a roll press or the like, and then cut or punched into a desired shape to obtain a positive electrode for a lithium ion secondary battery.
  • the thickness of the positive electrode mixture layer formed by compression is, for example, about 50 ⁇ m to 300 ⁇ m.
  • the positive electrode for a lithium ion secondary battery produced through the above steps is applied to a lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery, a separator, and an electrolytic solution. According to such a positive electrode according to the present embodiment, it is possible to obtain a lithium ion secondary battery excellent in rate characteristics, reduced in internal resistance, and improved in output.
  • a negative electrode mixture containing a negative electrode active material and a binder is coated on a negative electrode current collector, as in the case of a negative electrode used for a general lithium ion secondary battery.
  • the negative electrode mixture layer formed and the negative electrode current collector are provided.
  • the negative electrode active material is not particularly limited as long as it is a negative electrode active material used for a general lithium ion secondary battery negative electrode, and, for example, graphite, coke, pyrolytic carbon, carbon fiber, hard carbon, amorphous Carbon materials such as carbon, lithium metal oxides such as Si, Ti, and Sn represented by lithium titanate, and elements such as Si, Al, Sn, Sb, In, Ga, alkaline earth metals and lithium Alloy, lithium metal, or a composite of these can be used.
  • a binder in a negative electrode the thing similar to the binder used in the above-mentioned positive electrode can be used.
  • the electrically conductive material used in the above-mentioned positive electrode can also be used.
  • a negative electrode for a lithium ion secondary battery is prepared by using a negative electrode active material, a conductive material, and a binder as main raw materials through a step of preparing a negative electrode mixture slurry and a step of applying a negative electrode mixture slurry to a negative electrode current collector. Manufactured.
  • the negative electrode active material and the binder solution are mixed in a solvent such as N-methyl pyrrolidone or water to prepare a negative electrode mixture slurry.
  • a desired amount may be weighed and mixed with the negative electrode active material and the binder.
  • the prepared negative electrode mixture slurry is applied to the negative electrode current collector and dried to form a negative electrode mixture layer.
  • a copper foil or the like having a thickness of about 5 ⁇ m to 20 ⁇ m is generally used, but may be in the form of expanded metal, punching metal or the like. Further, nickel or the like can be used instead of copper.
  • the negative electrode current collector on which the negative electrode mixture layer is formed is compression molded by applying a predetermined pressure by a roll press or the like, and then cut or punched into a desired shape to obtain a negative electrode for a lithium ion secondary battery.
  • the thickness of the negative electrode mixture layer formed by compression is, for example, about 20 ⁇ m or more and 70 ⁇ m or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to the present embodiment.
  • the lithium ion secondary battery 1 has a cylindrical shape.
  • the positive electrode 2 and the negative electrode 3 are stacked and arranged so as to sandwich the separator 4 and wound, and are housed in a metal battery can 5 made of stainless steel (SUS) or aluminum.
  • SUS stainless steel
  • a microporous film made of a polyolefin such as polyethylene or polypropylene, a resin such as polyamide or aramid, or a fibrous glass can be used.
  • the separator 4 may be coated with an insulating inorganic compound layer such as alumina or glass in order to improve heat resistance or flame retardancy.
  • the positive electrode 2 is electrically connected to the sealing lid 8 through the positive electrode lead 6, and the negative electrode 3 is electrically connected to the battery can 5 through the negative electrode lead 7.
  • the positive electrode lead 6 and the negative electrode 3, negative electrode Insulating plates 10 are respectively disposed between the leads 7 and the positive electrode 2 to prevent a short circuit.
  • the battery can 5 accommodating the electrodes is sealed by the gasket 9 and sealed by the sealing lid 8.
  • the exterior of the battery is not limited to the form shown in FIG. 1, and may be square, button-shaped or the like. In addition, it may be a bag-like aluminum laminate sheet or the like lined with an insulating sheet such as polyethylene or polypropylene.
  • a non-aqueous electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent is used as the electrolytic solution.
  • lithium salts include lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and the like. Or it can be used combining multiple types.
  • non-aqueous solvent linear or cyclic carbonate solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, and fluorine solvents such as perfluoroalkyl ether can be used. These carbonates may be fluorine-substituted derivatives or the like.
  • vinylene carbonate, phenylcyclohexane, 1,3-propanesultone, diphenyl disulfide, etc. are added to the electrolytic solution, and in order to improve flame retardancy, phosphoric acid ester etc. May be added.
  • the application of the lithium ion secondary battery according to the present embodiment is not particularly limited, and, for example, a storage system for a natural energy power generation system such as solar light or wind power, an elevator for recovering a part of kinetic energy Etc., can be used as a large power source exemplified as a power source for industrial equipment such as a power source for various business use or household use, a power source for railways, ships, power vehicles such as electric vehicles and hybrid electric vehicles, and the like. Further, it can be used as a small power source exemplified for various portable devices, information devices, household electric devices, electric tools, and the like.
  • the positive electrode material according to the present embodiment was manufactured, and the form of the composite particle was observed.
  • First particles in which the element of M1 in the general formula of the manganese solid solution positive electrode active material is Ni were prepared by the following procedure. First, lithium carbonate, manganese carbonate and nickel carbonate were added to a zirconia pot, acetone was added, and the mixture was pulverized and mixed without dissolution using a planetary ball mill. And the obtained slurry was dried and the raw material powder was obtained. The raw material powder was calcined at 500 ° C. for 12 hours in the air to obtain a calcined body of lithium transition metal oxide. Subsequently, the calcined body was added to a zirconia pot, acetone was added, and the mixture was pulverized and mixed without dissolution using a planetary ball mill.
  • the obtained slurry was dried and then fired in the air at 1000 ° C. for 12 hours to obtain first particles. Elemental analysis of the obtained first particles revealed that the composition was 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 .
  • a second particle was prepared by the following procedure. First, iron (III) citrate hydrate (FeC 6 H 5 O 7 ⁇ n H 2 O) as an Fe source, and manganese acetate tetrahydrate (Mn (CH 3 COO) 2. 4 H 2 O) as an Mn source Each was weighed so that Fe and Mn would be 2: 8 and dissolved in pure water, to which was added citric acid monohydrate (C 6 H 8 O 7 .H 2 O) as a chelating agent. The amount of chelating agent added was such that the total amount of citrate ions was 80 mol% with respect to the total amount of metal ions.
  • a chelating agent is added in order to prevent the formation of a precipitate and to dissolve the metal ion uniformly.
  • lithium dihydrogen phosphate and a lithium acetate aqueous solution were added to obtain a raw material solution in which these were dissolved.
  • the concentration of the raw material solution was adjusted so that the total concentration of iron ions and manganese ions was 0.2 mol / L.
  • the composition ratio of Li, Fe and Mn, and PO 4 was adjusted to be 1.05: 1: 1 to make the lithium excessive. The reason why lithium is used in excess is to suppress the occurrence of cation mixing between Li and Fe or Mn, and to compensate for the defects caused by the volatilization of part of Li at the time of firing.
  • lithium phosphate Li 3 PO 4
  • Composite particles have the advantage that the effect of this is reduced, as the conducting network is properly constructed.
  • the prepared raw material solution was spray-dried using a spray dryer to obtain a raw material powder in which each element was uniformly dispersed in a citric acid matrix. And the obtained raw material powder was temporarily baked at 400 degreeC in air over 10 hours using the box-type electric furnace.
  • sucrose was added in an amount of 7% by mass with respect to the total mass of the calcined body.
  • Sucrose is added as a carbon source to form a carbon material of a conductive material.
  • the sucrose also acts as a particle size control agent for the second particles to be prepared.
  • it was mixed using a ball mill for 2 hours.
  • the obtained slurry was spray-dried using a spray dryer to obtain a calcined powder.
  • the calcined powder was subjected to main firing at 700 ° C. for 10 hours in an Ar gas atmosphere using a tubular furnace, to obtain second particles which are olivine-structured positive electrode active materials. Elemental analysis of the obtained second particles revealed that the composition was LiFe 0.2 Mn 0.8 PO 4 .
  • the first particle of the composition of 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 obtained, and the second of the composition of LiFe 0.2 Mn 0.8 PO 4 are obtained.
  • Composite particles were granulated from the particles.
  • the first particles and the second particles were dispersed in pure water and mixed using a ball mill.
  • polyvinyl alcohol as a binder was added so as to be 1% by mass with respect to the total weight of the first particles and the second particles, and further mixing was performed.
  • the obtained slurry was spray-dried using a spray dryer to obtain a composite particle precursor powder.
  • the composite particle precursor powder was fired at 400 ° C. for 5 hours in a nitrogen gas atmosphere using an electric furnace to obtain composite particles.
  • the positive electrode for lithium ion secondary batteries was produced using the obtained composite particle.
  • the positive electrode active material, the conductive additive and the binder are uniformly mixed to prepare a positive electrode slurry, the positive electrode slurry is applied on a 20 ⁇ m thick aluminum current collector foil, dried at 120 ° C., and the electrode density is adjusted by a press.
  • An electrode plate was obtained by compression molding to 2.2 g / cm 3 . Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm and used as a positive electrode.
  • the cross section of the produced positive electrode was observed by a scanning type microscope, a transmission type microscope and energy dispersive X-ray analysis, and the form of the composite particle contained in the positive electrode mixture layer in the positive electrode was observed.
  • FIG. 2 is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example.
  • the composite particles 20 in the form shown in the figure were contained in a dispersed state.
  • the composite particle 20 includes a first particle 30 and a second particle 40, and aggregation of primary particles of the plurality of first particles 30 and primary particles of the plurality of second particles 40 is performed.
  • the composite particles 20 were formed by The conductive material 50 was attached to the surface of the second particle 40 to cover the second particle 40.
  • the second particles 40 are uniformly dispersed so as to be interposed between the dispersed first particles 30.
  • the second particles 40 which are positive electrode active materials, form a conductive network connecting the particles of the first particles 30, and therefore, in the positive electrode mixture layer without impairing the energy density. It is believed that the effect of improving the electron conductivity can be obtained.
  • FIG. 3 is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example.
  • the composite particles 20 in the form shown in FIG. 3 were contained in a dispersed state.
  • the conductive material 50 was attached to the surface of the second particle 40 to cover the second particle 40.
  • the second particles 40 are dispersed so as to be interposed between the dispersed first particles 30 in a state of being partially aggregated among the plurality of second particles 40.
  • the second particles 40 which are positive electrode active materials, form a conductive network connecting the particles of the first particles 30, and therefore, in the positive electrode mixture layer without impairing the energy density. It is believed that the effect of improving the electron conductivity can be obtained. Moreover, it is assumed that the effect is effective in spite of the fact that the second particles 40 are partially aggregated.
  • the second particle is dispersed in a region where the distance to the center of the composite particle is a half or less of the radius of the composite particle for many composite particles 20
  • the condition was recognized.
  • the content of the first particles in the composite particles was in the range of 30% by volume or more and 99% by volume or less.
  • the form shown in FIGS. 4 to 7 can be adopted as the positive electrode material according to the present embodiment. Conceivable.
  • FIG. 4 is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example.
  • the first particles 30 are made of a manganese-based solid solution positive electrode active material
  • the second particles 40 are made of a positive electrode active material and have a plate-like particle shape.
  • the conductive material 50 adheres to the surface of the second particle 40 and covers the second particle 40.
  • the second particles 40 are dispersed so as to be interposed between the plurality of dispersed first particles 30, and the conductive material 50 covering the second particles 40 is the first Good contact with the surface of the particles 30 to form a conductive path.
  • the second particle 40 which is a positive electrode active material, forms a conductive network connecting the plurality of particles of the first particle 30, so that the positive electrode mixture can be obtained without losing the energy density. It is considered that the effect of improving the electron conductivity in the layer can be obtained.
  • FIG. 5 is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example.
  • the first particles 30 are made of a manganese-based solid solution positive electrode active material
  • the second particles 41 are made of a positive electrode active material excellent in electron conductivity.
  • the second particles 41 themselves are not dispersed so that the second particles 41 whose surfaces are not covered with the conductive material 50 intervene between the respective particles of the dispersed first particles 30, and the second particles 41 themselves , Form a conductive path between the particles of the first particle 30.
  • the second particles 41 which are positive electrode active materials, form a conductive network connecting the particles of the first particles 30, so that in the positive electrode mixture layer, the energy density is not impaired. It is believed that the effect of improving the electron conductivity can be obtained. Also, the effect on the energy density is advantageous because it does not include the conductive material 50.
  • FIG. 6 is a schematic cross-sectional view showing one form of composite particles contained in the positive electrode material according to the example.
  • the first particles 30 are made of a manganese-based solid solution positive electrode active material
  • the second particles 40 are made of a positive electrode active material.
  • the composite particle 20 includes the first particle 30, the second particle 40, and the conductive material particle 50A, and the primary particles of the plurality of first particles 30 and the primary particles of the plurality of second particles 40.
  • the composite particles 20 are formed by aggregation of the particles and the plurality of conductive material particles 50A.
  • the conductive material 50 adheres to the surface of the second particle 40 and covers the second particle 40.
  • the second particles 40 and the conductive material particles 50A are dispersed so as to be interposed between the dispersed first particles 30 and the conductive material covering the second particles 40. 50 and the dispersed conductive material particles 50A form a conductive path between the particles of the first particles 30.
  • the second particle 40 and the conductive material particle 50A form a conductive network connecting the particles of the first particle 30, so that the electron conductivity in the positive electrode mixture layer is improved. It is thought that an effect can be obtained.
  • the second particle 40 which is a positive electrode active material, it is presumed that the energy density is unlikely to be impaired.
  • FIG. 7 is a schematic cross-sectional view showing one form of composite particles contained in a positive electrode material according to an example.
  • the positive electrode mixture layer contains a large number of composite particles 20 in the form shown in the figure in a dispersed state.
  • the first particles 30 are made of a manganese-based solid solution positive electrode active material
  • the second particles 40 are made of a positive electrode active material.
  • the composite particle 20 includes a first particle 30, a second particle 40, and a fibrous conductive material 50B.
  • the composite particle 20 includes primary particles of the plurality of first particles 30 and a plurality of second particles 40.
  • Composite particles 20 are formed by the aggregation of primary particles.
  • the conductive material 50 adheres to the surface of the second particle 40 and covers the second particle 40.
  • the second particles 40 and the fibrous conductive material 50B are dispersed so as to be interposed between the respective particles of the dispersed first particles 30, and the second particles 40 are coated.
  • the material 50 and the dispersed fibrous conductive material 50 B form a conductive path between the particles of the first particles 30.
  • the second particle 40 and the fibrous conductive material 50B form a conductive network connecting the particles of the first particle 20, so the electron conductivity in the positive electrode mixture layer is improved. It is believed that the effect of In addition, since the second particle 40, which is a positive electrode active material, constitutes a part of the conductive network connecting the particles of the first particle 30, energy density is unlikely to be impaired, and the effect on the electron conductivity is The conductive material 50B is considered to be advantageous because a conductive network connecting the plurality of particles of the first particle 30 is formed.
  • FIG. 8 is a schematic cross-sectional view showing one form of positive electrode active material particles contained in a positive electrode material according to a comparative example.
  • positive electrodes of conventional lithium ion secondary batteries there are positive electrodes in which other primary particles 40C are used in combination with positive electrode active material particles 30C which are primary particles.
  • a particle group in which positive electrode active material particles 30C are aggregated and a particle group in which other primary particles 40C are aggregated are usually aggregated. It is represented by the state as shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a cathode material that is for a lithium ion secondary battery and that has superior energy density and electron conductivity. The cathode material for a lithium ion secondary battery comprises a composite particle (20) of: a first particle (30), which is a cathode active material represented by general formula LixMnaM1bO2 (where in the formula, M1 is at least one element selected from the group consisting of Ni, Cu, Zn, Co, Fe, Cr, V, Ti, Mg, Al, Sn, Mo, Nb, V, Zr, Ta, Ru, and W, 1.0 < x ≤ 1.4, 0 < a < 1.0, 0 < b < 1.0, and a+b ≤ 1.0); and a second particle (40, 50) having an electrical conductivity of at least 1.0×10-5 S/m.

Description

リチウムイオン二次電池用正極材、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery and manufacturing method thereof
 本発明は、リチウムイオン二次電池用正極材、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法に関する。 The present invention relates to a positive electrode material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing them.
 現在、環境負荷が低減された技術として普及が進められている自然エネルギ発電や船舶、鉄道、電気自動車等では二次電池が利用されている。
 発電した電気の蓄電システムとして二次電池を利用する自然エネルギ発電においては、発電量の変動に対応できるだけの大容量の蓄電を低コストで実現すること、二次電池を駆動用電源として搭載する船舶、鉄道、電気自動車等においては、一回の充電による航続距離をより長くすることが求められている。
 そこで、このような要求に応える二次電池として、Liが電気伝導を担うリチウムイオン二次電池の開発が進められている。リチウムイオン二次電池は、ニッケル水素電池や鉛蓄電池と比較してエネルギ密度に優れた特性を有しているが、さらなる高容量化を実現するために、リチウムイオン二次電池用正極を構成する新たな正極活物質の開発が行われている。
At present, secondary batteries are used in natural energy power generation, ships, railways, electric vehicles, etc., which are being widely used as a technology with reduced environmental load.
In natural energy power generation that uses a secondary battery as a storage system for generated electricity, a large-capacity storage capable of responding to fluctuations in the amount of power generation can be realized at low cost, and ships equipped with a secondary battery as a driving power supply In railways, electric vehicles, etc., it is required to increase the range by one charge.
Then, development of a lithium ion secondary battery in which Li + is in charge of electrical conduction has been promoted as a secondary battery meeting such a demand. Lithium ion secondary batteries have characteristics of superior energy density compared to nickel hydrogen batteries and lead storage batteries, but in order to realize higher capacity, a positive electrode for lithium ion secondary batteries is configured New positive electrode active materials are being developed.
 高容量化が見込まれるリチウムイオン二次電池用正極活物質の一つとして、LiMnO-LiMO固溶体正極活物質(以下、マンガン系固溶体正極活物質と称する。)がある。マンガン系固溶体正極活物質は、原料費が低廉であり、安全性も高いため、実用性の向上に向けて改良が進められている。
 従来、マンガン系固溶体正極活物質粒子に他の粒子を併用することによって、正極の電気的特性を改良する技術が知られている。
Li 2 MnO 3 -LiMO 2 solid solution positive electrode active material (hereinafter referred to as manganese-based solid solution positive electrode active material) is one of the positive electrode active materials for lithium ion secondary batteries expected to have high capacity. Since manganese-based solid solution positive electrode active materials have low raw material costs and high safety, improvements are being made to improve practicability.
Heretofore, there has been known a technique for improving the electrical characteristics of a positive electrode by using manganese-based solid solution positive electrode active material particles in combination with other particles.
 例えば、特許文献1及び特許文献2には、高容量で、かつ高温下での貯蔵性能及びサイクル性能に優れた非水電解質電池を提供する技術として、LiMn(Mは、Ni、Co、Al及びFよりなる群から選択される一種以上の元素で、a,b,c及びZは0≦a≦2.5、0<b≦1、0≦c≦1、2≦Z≦3を満たす)で表されるリチウムマンガン含有酸化物と、オリビン構造のFe含有リン化合物とを含む正極が開示されている。 For example, Patent Documents 1 and 2 disclose Li a Mn b M c O Z (M is a technology for providing a non-aqueous electrolyte battery excellent in storage capacity and cycle performance under high temperature and high temperature. And at least one element selected from the group consisting of Ni, Co, Al and F, wherein a, b, c and Z are 0 ≦ a ≦ 2.5, 0 <b ≦ 1, 0 ≦ c ≦ 1, 2 The positive electrode containing the lithium manganese containing oxide represented by <= Z <= 3 and the Fe containing phosphorus compound of an olivine structure is disclosed.
 また、特許文献3には、高い可逆容量を維持することにより、高容量を維持しつつ、優れた初期充放電効率を発揮し得る電気デバイス用正極活物質を提供する技術として、組成式(1)Li1.5[NiCoMn[Li]]O(式(1)中、Liはリチウム、Niはニッケル、Coはコバルト、Mnはマンガン、Oは酸素を示し、a、b、c及びdは、0<d<0.5、a+b+c+d=1.5、1.0<a+b+c<1.5の関係を満足する。)で表される遷移金属酸化物からなる第一活物質と、組成式(2)LiMa’Mn2-a’(式(2)中、Liはリチウム、Mは原子価2~4の少なくとも1種の金属元素、Mnはマンガン、Oは酸素を示し、a’は0≦a’<2.0の関係を満足する。)で表され、結晶構造が空間群Fd-3mに帰属するスピネル型遷移金属酸化物からなる第二活物質と、を含有し、前記第一活物質と前記第二活物質との含有割合が、質量比で式(3)100:0<M:M<0:100(式(3)中、Mは第一活物質の質量、Mは第二活物質の質量を示す。)で表される関係を満足することを特徴とする電気デバイス用正極活物質が開示されている。 Further, Patent Document 3 discloses a composition formula (1) as a technology for providing a positive electrode active material for an electric device which can exhibit excellent initial charge / discharge efficiency while maintaining a high reversible capacity by maintaining a high reversible capacity. ) in Li 1.5 [Ni a Co b Mn c [Li] d] O 3 ( formula (1), Li is lithium, Ni is nickel, Co is cobalt, Mn is manganese, O represents oxygen, a, b, c and d are the first active consisting of the transition metal oxide represented by 0 <d <0.5, a + b + c + d = 1.5, 1.0 <a + b + c <1.5. Substance and the composition formula (2) LiM a ' Mn 2-a' O 4 (in the formula (2), Li is lithium, M is at least one metal element having a valence of 2 to 4, Mn is manganese, O is Represents oxygen, and a ′ satisfies the relation of 0 ≦ a ′ <2.0)), and has a crystal structure And a second active material composed of a spinel type transition metal oxide belonging to the space group Fd-3m, and the content ratio of the first active material to the second 3) The relationship represented by 100: 0 <M A : M B <0: 100 (in the formula (3), M A represents the mass of the first active material, and M B represents the mass of the second active material) A positive electrode active material for an electric device is disclosed, which is characterized in that
特開2012-033507号公報JP, 2012-033507, A 特開2010-225486号公報Unexamined-Japanese-Patent No. 2010-225486 国際公開第2013/005737号International Publication No. 2013/005737
 しかしながら、特許文献1及び特許文献2に開示される正極は、リチウムマンガン含有酸化物と、オリビン構造のFe含有リン化合物の、それぞれの一次粒子同士が単に混合されることによって作製されている。また、特許文献3に開示される正極は、一次粒子に相当する第1活物質の粉末と第2活物質の粉末とが単に混合されることによって作製されている。
 このように、マンガン系固溶体正極活物質の一次粒子と、併用する他の粒子の一次粒子同士が単に混合されてなる正極では、一次粒子同士の粒子間における導電パスが適切に形成されないため、正極活物質の総量が不変であっても、エネルギ密度が減殺されるという問題がある。
 したがって、本発明の課題は、エネルギ密度及び電子伝導性に優れたリチウムイオン二次電池用正極材を提供することにある。
However, the positive electrodes disclosed in Patent Document 1 and Patent Document 2 are produced by simply mixing primary particles of a lithium manganese-containing oxide and an Fe-containing phosphorus compound having an olivine structure. In addition, the positive electrode disclosed in Patent Document 3 is manufactured by simply mixing the powder of the first active material and the powder of the second active material corresponding to primary particles.
As described above, in the positive electrode in which the primary particles of the manganese-based solid solution positive electrode active material and the primary particles of other particles used in combination are simply mixed, the conductive path between the particles of the primary particles is not appropriately formed. Even if the total amount of active materials is unchanged, there is a problem that the energy density is reduced.
Therefore, an object of the present invention is to provide a positive electrode material for a lithium ion secondary battery excellent in energy density and electron conductivity.
 前記課題を解決するために本発明に係るリチウムイオン二次電池用正極材は、一般式LiMnM12±c(式中、M1は、Ni、Cu、Zn、Co、Fe、Cr、V、Ti、Mg、Al、Sn、Mo、Nb、V、Zr、Ta、Ru及びWからなる群より選択される少なくとも1種の元素であり、1.0<x≦1.4、0<a<1.0、0<b<1.0、a+b≦1.0、0≦c≦0.2である。)で表わされる第1の粒子と、電気伝導率が1.0×10-5S/m以上である第2の粒子と、の複合粒子を含んでなることを特徴とする。 In order to solve the above problems, the positive electrode material for a lithium ion secondary battery according to the present invention has a general formula Li x Mn a M 1 b O 2 ± c (wherein, M 1 represents Ni, Cu, Zn, Co, Fe, At least one element selected from the group consisting of Cr, V, Ti, Mg, Al, Sn, Mo, Nb, V, Zr, Ta, Ru and W, 1.0 <x ≦ 1.4, A first particle represented by 0 <a <1.0, 0 <b <1.0, a + b ≦ 1.0, 0 ≦ c ≦ 0.2), and the electric conductivity is 1.0 × It is characterized in that it comprises a composite particle of a second particle of 10 -5 S / m or more.
 本発明によれば、エネルギ密度及び電子伝導性に優れたリチウムイオン二次電池用正極材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for lithium ion secondary batteries excellent in energy density and electronic conductivity can be provided.
本実施形態に係るリチウムイオン二次電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the lithium ion secondary battery which concerns on this embodiment. 実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example. 実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example. 実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example. 実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example. 実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example. 実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example. 比較例に係る正極材に含まれる正極活物質粒子の一形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one form of the positive electrode active material particle contained in the positive electrode material which concerns on a comparative example.
 以下に本発明の一実施形態に係るリチウムイオン二次電池用正極材、リチウムイオン二次電池用正極、リチウムイオン二次電池及びこれらの製造方法について詳細に説明する。 Hereinafter, a positive electrode material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method of manufacturing the same according to an embodiment of the present invention will be described in detail.
 本実施形態に係る正極材は、マンガン系固溶体正極活物質の一次粒子である第1の粒子と、電子伝導性の向上に寄与する化合物の一次粒子である第2の粒子とが組み合わされて造粒される二次粒子(複合粒子)を含んでなる正極材に関する。 The positive electrode material according to the present embodiment is formed by combining a first particle, which is a primary particle of a manganese-based solid solution positive electrode active material, and a second particle, which is a primary particle of a compound that contributes to improvement of electron conductivity. The present invention relates to a positive electrode material comprising secondary particles (composite particles) to be granulated.
 本実施形態に係る第1の粒子は、一般式LiMnM1で表わされる正極活物質であって、遷移金属元素として少なくともMn及びM1を含有している。
 第1の粒子は、LiCoOと同様に層状岩塩型構造を有するLiMnOと、LiM1Oとの固溶体であり、Li[Li1/3Mn2/3]O-LiM1Oと書き換えられるように、主なLiは層状構造の層間に配置され、過剰なLiの一部は、MnとM1が形成する金属層内に規則配列した構造を基本としている。
 このような構造を有するマンガン系固溶体正極活物質は、層間に配置されているLiのみならず、金属層内に配列したLiもイオン化して脱離することが可能であるため、200mAh/gを超える比較的高い放電容量を示す正極材となる。
 しかしながら、必ずしも電子伝導性に優れてはいないため、その改善が望まれている。そこで、本実施形態に係る正極材では、第1の粒子と、後記する電子伝導性に優れた第2の粒子とを複合化して二次粒子を形成することによって、粒子の電子伝導性の改良を図っている。なお、本明細書においては、電子伝導性の優劣を評価する尺度として、電気伝導率の値を用いている。一般的なマンガン系固溶体正極活物質の電気伝導率は、1.0×10-6S/m以下であるとされている。
The first particle according to the present embodiment is a positive electrode active material represented by a general formula Li x Mn a M1 b O 2 and contains at least Mn and M1 as a transition metal element.
The first particles, and Li 2 MnO 3 also having layered rock-salt structure as LiCoO 2, a solid solution of LiM1O 2, rewritten and Li [Li 1/3 Mn 2/3] O 2 -LiM1O 2 As such, the main Li is disposed between the layers of the layered structure, and a part of the excess Li is based on the regularly arranged structure in the metal layer formed by Mn and M1.
The manganese-based solid solution positive electrode active material having such a structure is capable of ionizing and desorbing not only Li arranged in the layer but also Li arranged in the metal layer, and therefore 200 mAh / g It becomes a positive electrode material which shows the comparatively high discharge capacity which exceeds.
However, since the electron conductivity is not necessarily excellent, its improvement is desired. Therefore, in the positive electrode material according to the present embodiment, the first particles and the second particles excellent in electron conductivity described later are complexed to form secondary particles, thereby improving the electron conductivity of the particles. I am trying to In the present specification, the value of the electrical conductivity is used as a scale for evaluating the superiority or inferiority of the electron conductivity. The electrical conductivity of a general manganese-based solid solution positive electrode active material is said to be 1.0 × 10 −6 S / m or less.
 前記の一般式において、Liの組成比xは、1.0を超え1.4以下である。
 Liの組成比を1.0を超える値とすることにより、正極活物質の結晶構造が比較的安定になり、且つ通常要求される放電容量を確保することができる。
 また、Liの組成比を1.4以下とすることにより、内部抵抗と電気化学的活性の低下とが抑えられ、且つ通常要求される放電容量を確保することができる。Liの組成比が1.4を超えると、充電時において、Liをイオン化して正極活物質から脱離させるために5.0V(vs.Li/Li)程度以上の電圧を要するため、電解液の酸化分解を招き電池寿命が低下する虞がある。
In the above general formula, the composition ratio x of Li is more than 1.0 and not more than 1.4.
By setting the composition ratio of Li to a value exceeding 1.0, the crystal structure of the positive electrode active material becomes relatively stable, and the discharge capacity normally required can be secured.
In addition, by setting the composition ratio of Li to 1.4 or less, the internal resistance and the decrease in electrochemical activity can be suppressed, and the discharge capacity normally required can be secured. When the composition ratio of Li exceeds 1.4, a voltage of about 5.0 V (vs. Li + / Li) or more is required to ionize and desorb Li from the positive electrode active material during charging, so There is a possibility that the battery may be oxidatively decomposed to reduce the battery life.
 前記の一般式において、M1は、酸化還元反応を担う電気化学的に活性な元素とする。具体的には、Ni、Cu、Co、Fe、Cr、V、Ti、Mo、Nb、Zr、Ta、Ru、W等の遷移金属より選択される少なくとも1種の元素、又はZn、Mg、Al、Snからなる群より選択される少なくとも1種の元素である。
 M1は、電池に付与する所望の特性に応じて、これらの元素から適宜選択することが可能である。例えば、原料価格の観点からは、Co、Cr、Mo、Zr、Ta、Ru、W等の高価な金属の比率が低く、Ni、Fe、Ti等の比較的安価な金属の比率が高いことが好ましい。また、重量エネルギ密度の観点からは、Ni、Fe、V、Ti、Mg、Al等の比較的原子量の小さい元素の比率が高いことが好ましい。また、放電電圧の観点からは、Ni、Feが好ましく、より価数変化が大きいNiが好ましい。
In the above general formula, M1 is an electrochemically active element responsible for the redox reaction. Specifically, at least one element selected from transition metals such as Ni, Cu, Co, Fe, Cr, V, Ti, Mo, Nb, Zr, Ta, Ru, W, etc., or Zn, Mg, Al And at least one element selected from the group consisting of Sn.
M1 can be suitably selected from these elements according to the desired characteristic given to a battery. For example, from the viewpoint of raw material cost, the ratio of expensive metals such as Co, Cr, Mo, Zr, Ta, Ru, W is low, and the ratio of relatively inexpensive metals such as Ni, Fe, Ti is high. preferable. From the viewpoint of weight energy density, it is preferable that the ratio of elements having a relatively small atomic weight, such as Ni, Fe, V, Ti, Mg, and Al, be high. Further, from the viewpoint of the discharge voltage, Ni and Fe are preferable, and Ni having a larger change in valence is preferable.
 前記の一般式において、Mnの組成比aは、0を超え1.0未満であり、M1の組成比bは、0を超え1.0未満であり、Mnの組成比a及びM1の組成比bは、a+b≦1.0の関係を満たす値である。
 すなわち、本実施形態に係る第1の粒子は、Mn及びM1を共に含有している限り、これらの組成比は、適宜の比率とすることが可能である。このような関係を満たしていることにより、正極活物質の結晶構造が比較的安定に維持される。
In the above general formula, the composition ratio a of Mn is more than 0 and less than 1.0, the composition ratio b of M1 is more than 0 and less than 1.0, and the composition ratio of Mn and the composition ratio of M1 b is a value satisfying the relationship of a + b ≦ 1.0.
That is, as long as the first particles according to the present embodiment contain both Mn and M1, the composition ratio of these can be set to an appropriate ratio. By satisfying such a relationship, the crystal structure of the positive electrode active material is relatively stably maintained.
 但し、本実施形態に係る第1の粒子は、これらの値の関係を厳密に満足する組成のものに限られない。例えば、固溶体の層状構造が、実質的に形成されている限り、組成が不定比であってもよく、一部の元素が不規則配位していてもよい。 However, the first particles according to the present embodiment are not limited to those having a composition that strictly satisfies the relationship of these values. For example, as long as the layered structure of the solid solution is substantially formed, the composition may have a non-stoichiometric ratio, and some elements may be irregularly coordinated.
 本実施形態に係る第2の粒子は、第1の粒子よりも優れた電子伝導性を有する粒子であり、少なくとも1.0×10-5S/m以上の値を示す粒子である。なお、電気伝導率は、室温において、粒子を加圧し密度2.2g/cmとした場合における値である。
 そのため、第1の粒子と第2の粒子とにより形成される複合粒子は、第1の粒子単独の場合と比較して、電子伝導性が改善されることになる。なお、第2の粒子は、通常、極めて小さい粒子径を有しているため、第2の粒子単独で電気伝導率を計測することは困難である。そこで、第2の粒子の電気伝導率は、必要に応じて、複合粒子と第1の粒子の電気伝導率から見積もる。
The second particle according to the present embodiment is a particle having electron conductivity superior to that of the first particle, and is a particle showing a value of at least 1.0 × 10 −5 S / m or more. In addition, electrical conductivity is a value in the case where the particle is pressurized and the density is 2.2 g / cm 3 at room temperature.
Therefore, the composite particle formed by the first particle and the second particle has an improved electron conductivity as compared with the case of the first particle alone. In addition, since the second particles usually have extremely small particle diameters, it is difficult to measure the electrical conductivity by the second particles alone. Therefore, the electrical conductivity of the second particle is estimated from the electrical conductivity of the composite particle and the first particle, as necessary.
 本実施形態に係る第2の粒子は、主に、正極活物質により形成される粒子である。
 第2の粒子を形成する正極活物質としては、2.0V(vs.Li/Li)以上5.0V以下(vs.Li/Li)においてリチウムイオンを吸蔵及び放出することができる正極活物質であれば、一般的なリチウムイオン二次電池用正極に用いられる正極活物質から選択することができるが、5.0V程度の高電圧領域で結晶構造が安定な酸化物が好ましい。具体的には、LiMnO、LiCoO、LiNiO、LiCrO等のLiM3Oで表わされる層状構造正極活物質や、LiV、LiMn、LiNi0.5Mn1.5、LiCoMnO等のLiM4Oで表わされるスピネル構造正極活物質等が挙げられる。なお、前記の表記において、M3及びM4は、それぞれ、Ni、Cu、Zn、Co、Fe、Mn、Cr、V、Ti、Mg、Al、Sn、Mo、Nb、V、Zr、Ta、Ru及びWからなる群より選択される少なくとも1種の元素を示している。
 また、一般式LiM2(式中、M2は、Ni、Cu、Zn、Co、Fe、Mn、Cr、V、Ti、Mg、Al、Sn、Mo、Nb、V、Zr、Ta、Ru及びWからなる群より選択される少なくとも1種の元素であり、Xは、酸素(O)と結合してアニオンを形成する典型元素であり、Liの組成比yは0以上2以下、M2の組成比dは1以上2以下、Xの組成比eは1以上2以下、Oの組成比fは3以上7以下である。)で表わされる正極活物質が挙げられる。このような正極活物質としては、具体的には、LiFePO、LiCoPO、LiNiPO、LiMnPO等のオリビン構造正極活物質や、その他LiMnSiO等のポリアニオン系正極活物質等がある。
 本実施形態に係る第2の粒子は、前記した複数種の正極活物質の中から選択される1種を第1の粒子と複合化してもよいが、複数種の組み合わせて第1の粒子と複合化してもよい。
The second particles according to this embodiment are mainly particles formed of a positive electrode active material.
As a positive electrode active material for forming the second particles, a positive electrode active capable of inserting and extracting lithium ions at 2.0 V (vs. Li + / Li) or more and 5.0 V or less (vs. Li + / Li) Any substance can be selected from positive electrode active materials used for general lithium ion secondary battery positive electrodes, but oxides having a stable crystal structure in a high voltage region of about 5.0 V are preferable. Specifically, LiMnO 2, LiCoO 2, LiNiO 2, or layered cathode active material represented by LiM3O 2 such LiCrO 2, LiV 2 O 4, LiMn 2 O 4, LiNi 0.5 Mn 1.5 O 4 And spinel-structured positive electrode active materials represented by LiM 4 O 4 such as LiCoMnO 4 . In the above notation, M3 and M4 are Ni, Cu, Zn, Co, Fe, Mn, Cr, V, Ti, Mg, Al, Sn, Mo, Nb, V, Zr, Ta, Ru and At least one element selected from the group consisting of W is shown.
Further, in the general formula Li y M2 d X e O f ( wherein, M2 is, Ni, Cu, Zn, Co , Fe, Mn, Cr, V, Ti, Mg, Al, Sn, Mo, Nb, V, Zr At least one element selected from the group consisting of Ta, Ru and W, X is a typical element which forms an anion by binding to oxygen (O), and the composition ratio y of Li is 0 or more and 2 Hereinafter, the positive electrode active material represented by the composition ratio d of M2 is 1 or more and 2 or less, the composition ratio e of X is 1 or more and 2 or less, and the composition ratio f of O is 3 or more and 7 or less. Specific examples of such a positive electrode active material include olivine-structured positive electrode active materials such as LiFePO 4 , LiCoPO 4 , LiNiPO 4 , and LiMnPO 4 , and polyanion-based positive electrode active materials such as Li 2 MnSiO 4 .
The second particle according to the present embodiment may be formed by combining one type selected from among the plurality of types of positive electrode active materials described above with the first particle, but a combination of two or more types may be combined with the first particle. It may be complexed.
 また、本実施形態に係る第2の粒子は、密度2.2g/cmにおける電気伝導率が、少なくとも1.0×10-5S/m以上の値を示す粒子であれば、正極活物質のみからなる粒子としてもよいが、第2の粒子の電気伝導率を向上させる導電材が、粒子表面に付着又は粒子表面に被覆されたものでもよい。特に、第2の粒子を形成する正極活物質のうち、オリビン構造を有するLiFePO等は、電子伝導性が良好でないため、導電材を被覆して第2の粒子とすることが好ましい。 In addition, the second particle according to the present embodiment is a particle in which the electric conductivity at a density of 2.2 g / cm 3 exhibits a value of at least 1.0 × 10 −5 S / m or more. The particles may be made only of particles, but the conductive material for improving the electric conductivity of the second particles may be attached to the particle surface or coated on the particle surface. In particular, among the positive electrode active materials forming the second particles, LiFePO 4 or the like having an olivine structure does not have good electron conductivity, so it is preferable to coat the conductive material to form the second particles.
 導電材としては、金属酸化物及び炭素材料の少なくとも一方を用いることができる。
 金属酸化物としては、分散性及びリチウムイオン伝導性を有し、化学的に安定な化合物が好ましい。具体的には、SnO、TiO、SiO、V、V、WO、NiO、CuO、ZrO、TiO-P等が挙げられる。なお、TiO-Pとしては、SnO、CuO、NiO又はFeO等をドープしたものでもよい。
 なお、第2の粒子を形成する正極活物質のうち、2.0V(vs.Li/Li)以上5.0V(vs.Li/Li)以下の範囲において、リチウムイオンが脱離すると結晶構造が不安定となる正極活物質、特に、LiNiO等のように金属原子と酸素原子の共有結合が弱い正極活物質については、Al、MgO、ZnO、TiO、ZrO、MoO、V等の金属酸化物を耐電圧処理として被覆することが好ましい。
As the conductive material, at least one of a metal oxide and a carbon material can be used.
As the metal oxide, a compound which has dispersibility and lithium ion conductivity and is chemically stable is preferable. Specifically, SnO 2 , TiO 2 , SiO 2 , V 2 O 3 , V 2 O 5 , WO 3 , NiO, CuO, ZrO 2 , TiO 2 -P 2 O 5 and the like can be mentioned. The TiO 2 -P 2 O 5 may be doped with SnO 2 , CuO, NiO, FeO or the like.
In the positive electrode active material forming the second particles, crystals are released when lithium ions are released in the range of 2.0 V (vs. Li + / Li) to 5.0 V (vs. Li + / Li) or less With respect to a positive electrode active material whose structure becomes unstable, in particular, a positive electrode active material in which the covalent bond between metal atom and oxygen atom is weak such as LiNiO 2 etc., Al 2 O 3 , MgO, ZnO, TiO 2 , ZrO 2 , MoO it is preferable to coat 2, V 2 O 5 or the like of the metal oxide as the withstand voltage process.
 炭素材料としては、一般的なリチウムイオン二次電池において導電助剤として利用されている炭素材料を用いることができる。具体的には、天然黒鉛、カーボンブラック等の炭素粒子や、カーボンナノチューブ、カーボンナノホーン等の炭素繊維が挙げられる。炭素材料のうちグラフェン構造を有するものについては、グラフェン面に相当するミラー指数(002)の面の面間隔が、0.38nm以下であることが好ましい。これによって、複合粒子の電子伝導性を安定して向上させることができる。 As a carbon material, the carbon material utilized as a conductive support agent in a general lithium ion secondary battery can be used. Specific examples thereof include carbon particles such as natural graphite and carbon black, and carbon fibers such as carbon nanotubes and carbon nanohorns. Among carbon materials having a graphene structure, the surface spacing of the Miller index (002) surface corresponding to the graphene surface is preferably 0.38 nm or less. By this, the electron conductivity of the composite particle can be stably improved.
 本実施形態に係る第2の粒子としては、放電電圧が高く、粒径の制御を適切に行うことが可能であり、電子伝導性に優れる点で、オリビン構造正極活物質を含むことが好ましく、特にLiFePO、LiMnPOやその遷移金属サイトを、Co、V、Mo、Ti、Al、Mg及びFeからなる群より選択される少なくとも1種の元素で置換した活物質を含むことが好ましい。この中でも、一般式LiMnFe1-zPO(式中、zは0を超え1以下である。)で表わされるオリビン構造正極活物質が好ましい。 The second particle according to the present embodiment preferably contains an olivine-structured positive electrode active material in that the discharge voltage is high, the particle diameter can be appropriately controlled, and the electron conductivity is excellent. In particular, it is preferable to include an active material in which LiFePO 4 , LiMnPO 4 or its transition metal site is substituted with at least one element selected from the group consisting of Co, V, Mo, Ti, Al, Mg and Fe. Among these, an olivine structure positive electrode active material represented by a general formula LiMn z Fe 1-z PO 4 (in the formula, z is more than 0 and not more than 1) is preferable.
 これら本実施形態に係る複合粒子を成す第1の粒子及び第2の粒子は、粒子径が制御されていることが好ましい。
 複合粒子を成す第1の粒子の粒子径は、50nm以上800nm以下、好ましくは60nm以上800nm以下である。
 また、複合粒子を成す第2の粒子の粒子径は、5nm以上400nm以下、好ましくは10nm以上200nm以下、より好ましくは20nm以上200nm以下である。
 第1の粒子及び第2の粒子が、このような粒子径の関係を満たすことにより、エネルギ密度を損なうことなく、複合粒子内の電子伝導性を向上させることができる。
 なお、本明細書において、粒子径は、走査型電子顕微鏡(Scanning Electron Microscope;SEM)や透過型電子顕微鏡(Transmission Electron Microscope;TEM)を用いて観察される粒子において、その粒子像の輪郭線上に存在する任意の2点の間の距離のうち、最大のものの距離として定義される。
It is preferable that the particle sizes of the first particles and the second particles that constitute the composite particles according to the present embodiment be controlled.
The particle diameter of the first particles forming the composite particles is 50 nm or more and 800 nm or less, preferably 60 nm or more and 800 nm or less.
The particle diameter of the second particles forming the composite particles is 5 nm or more and 400 nm or less, preferably 10 nm or more and 200 nm or less, and more preferably 20 nm or more and 200 nm or less.
When the first particle and the second particle satisfy such a particle diameter relationship, it is possible to improve the electron conductivity in the composite particle without impairing the energy density.
In the present specification, the particle diameter is a particle observed on a scanning electron microscope (SEM) or a transmission electron microscope (TEM) on the outline of the particle image. It is defined as the distance of the largest of the distances between any two points present.
 複合粒子を成す第1の粒子のBET比表面積は、0.6m/g以上15.0m/g以下、好ましくは0.8m/g以上10.0m/g以下、より好ましくは1.0m/g以上8.0m/g以下である。
 また、複合粒子を成す第2の粒子のBET比表面積は、3.0m/g以上80.0m/g以下、好ましくは4.0m/g以上70.0m/g以下、より好ましくは2.0m/g以上60.0m/g以下である。
 第1の粒子及び第2の粒子が、このような範囲の比表面積を有することにより、タップ密度の低下が抑えられるため、作製される電池の体積エネルギ密度を維持することができる。
 なお、BET比表面積は、BET理論によって導かれる単位重量あたりの粒子表面積を示しており、例えば、吸着ガスとして窒素を用いることよって、測定した平衡圧における吸着量と77Kにおける吸着等温線から算出することができる。
The BET specific surface area of the first particles forming the composite particles is 0.6 m 2 / g or more and 15.0 m 2 / g or less, preferably 0.8 m 2 / g or more and 10.0 m 2 / g or less, more preferably 1 .0m 2 / g or more 8.0m 2 / g or less.
Further, BET specific surface area of the second particles forming the composite particles, 3.0 m 2 / g or more 80.0m 2 / g or less, preferably 4.0 m 2 / g or more 70.0m 2 / g or less, more preferably Is 2.0 m 2 / g or more and 60.0 m 2 / g or less.
Since the 1st particle and the 2nd particle have a specific surface area of such a range, the fall of the tap density is suppressed and, therefore, the volumetric energy density of the manufactured battery can be maintained.
The BET specific surface area indicates the particle surface area per unit weight derived by the BET theory. For example, by using nitrogen as an adsorption gas, it is calculated from the adsorption amount at the equilibrium pressure and the adsorption isotherm at 77 K. be able to.
 複合粒子を成す第2の粒子の平均粒子径は、複合粒子を成す第1の粒子の平均粒子径の1/2以下、好ましくは1/3以下、さらに好ましくは1/4以下である。
 第2の粒子の平均粒子径が、第1の粒子の平均粒子径の1/2以下であると、重量エネルギ密度及び体積エネルギ密度が良好となる。
 なお、平均粒子径は、走査型電子顕微鏡や透過型電子顕微鏡を用いて数十視野の観察を行い、観察される粒子の個数基準のメディアン径(D50)として定義される。
The average particle size of the second particles forming the composite particles is 1/2 or less, preferably 1/3 or less, more preferably 1/4 or less of the average particle size of the first particles forming the composite particles.
When the average particle size of the second particles is equal to or less than 1/2 of the average particle size of the first particles, the weight energy density and the volume energy density will be good.
The average particle diameter is defined as a median diameter (D 50 ) based on the number of particles observed by observing several tens of fields of view using a scanning electron microscope or a transmission electron microscope.
 本実施形態に係る複合粒子は、前記した第1の粒子と第2の粒子とが複合化されてなる二次粒子を形成している。この複合粒子の集合がリチウムイオン二次電池用の正極に含まれる正極材とされる。
 なお、本実施形態に係る複合粒子は、第1の粒子と第2の粒子と共に、前記した導電材が複合化されてなるものでもよい。
 このようにして正極材とされる複合粒子の電気伝導率は1.0×10-5S/m以上である。このような複合粒子とすることで、高容量化が見込まれるマンガン系固溶体正極活物質の電子伝導性を補うことができる。なお、電気伝導率は、室温において、複合粒子の粉体を加圧し密度2.2g/cmとした場合における値である。
The composite particles according to the present embodiment form secondary particles formed by combining the first particles and the second particles described above. A collection of the composite particles is used as a positive electrode material included in a positive electrode for a lithium ion secondary battery.
The composite particle according to the present embodiment may be a composite of the first particle and the second particle, and the above-described conductive material.
The electric conductivity of the composite particle thus made into a positive electrode material is 1.0 × 10 −5 S / m or more. By using such composite particles, it is possible to compensate for the electron conductivity of the manganese-based solid solution positive electrode active material expected to have a high capacity. In addition, electrical conductivity is a value in the case where the powder of the composite particles is pressurized at a room temperature to make the density 2.2 g / cm 3 .
 複合粒子の粒子径は、30μm以下、好ましくは0.5μm以上30μm以下である。
 粒子径が30μm以下であれば、複合粒子として造粒することが比較的容易である。
The particle size of the composite particles is 30 μm or less, preferably 0.5 μm or more and 30 μm or less.
If the particle size is 30 μm or less, granulation as composite particles is relatively easy.
 複合粒子においては、第1の粒子及び第2の粒子は、それぞれ均一に分散されていることが好ましい。これらが均一に分散されていると複合粒子内部の導電ネットワークが適切に構築される。
 したがって、正極材とされる複合粒子において、複合粒子の中心との距離が複合粒子の半径の1/2以下の距離である領域に、第2の粒子の少なくとも一部が分散している状態であることが好ましい。なお、複合粒子の中心及び半径は、電子顕微鏡像に設定する面積等価円の中心及び半径とする。
 また、複合粒子に含まれる第1の粒子は、その粒子と最も近接する他の第1の粒子との間に、少なくとも1個の第2の粒子を有していることが好ましく、第1の粒子及び第2の粒子が焼結されていることが好ましい。このような形態によって、第1の粒子の粒子間に導電パスが形成される。
In the composite particles, the first particles and the second particles are preferably uniformly dispersed. When these are uniformly dispersed, the conductive network inside the composite particle is properly constructed.
Therefore, in the composite particle used as the positive electrode material, at least a portion of the second particle is dispersed in a region where the distance from the center of the composite particle is a half or less of the radius of the composite particle. Is preferred. The center and the radius of the composite particle are the center and the radius of the area equivalent circle set in the electron microscope image.
In addition, it is preferable that the first particle contained in the composite particle has at least one second particle between the particle and the other first particle closest to the first particle. Preferably, the particles and the second particles are sintered. Such a configuration forms conductive paths between particles of the first particle.
 複合粒子の任意の領域における第1の粒子の体積V1と第2の粒子の体積V2の体積比率V1/V2は、1.5を超えることが好ましく、2.0を超えることがより好ましく、3.0を超えることがさらに好ましく、4.0を超えることが特に好ましい。また、複合粒子における第1の粒子の含有量が、30体積%以上99体積%以下であることが好ましく、第2の粒子の含有量が、1体積%以上70体積%以下であることが好ましい。
 第1の粒子及び第2の粒子が、このような体積の関係を満たすと、重量エネルギ密度及び体積エネルギ密度が良好となる。
 なお、各粒子の体積は、粒子を球形と仮定して前記した粒子径から算出される値とする。体積比率は、所定厚さの複合粒子について透過型電子顕微鏡を用いて、数μm角の視野内に含まれる各粒子数を計数し、各粒子が占める総体積を求めることにより算出することができる。体積比率は、透過型電子顕微鏡を用いて数十視野の観察を行い、その算術平均を求める。
The volume ratio V1 / V2 of the volume V1 of the first particle to the volume V2 of the second particle in any region of the composite particles is preferably more than 1.5, more preferably more than 2.0, More preferably, the value is more than 0, and more preferably, more than 4.0. The content of the first particles in the composite particles is preferably 30% by volume to 99% by volume, and the content of the second particles is preferably 1% by volume to 70% by volume .
When the first particle and the second particle satisfy such a volume relationship, the weight energy density and the volume energy density will be good.
The volume of each particle is a value calculated from the particle diameter described above assuming that the particle is spherical. The volume ratio can be calculated by counting the number of particles contained in a field of view of several μm square for composite particles of a predetermined thickness using a transmission electron microscope and determining the total volume occupied by each particle. . The volume ratio is observed for several tens of fields using a transmission electron microscope, and the arithmetic mean is determined.
 本実施形態に係る正極材の製造方法は、主に、原料を混合する工程と、第1の粒子を調製する工程と、一次粒子同士を混合する工程と、複合粒子を造粒する工程とを含んでなる。 The method of manufacturing the positive electrode material according to the present embodiment mainly includes the steps of mixing the raw materials, the steps of preparing the first particles, the steps of mixing the primary particles, and the step of granulating the composite particles. It contains.
 原料を混合する工程では、第1の粒子の原料である、含リチウム化合物、含マンガン化合物及びM1の元素を含む化合物の混合を行い原料粉末を得る。
 原料の混合は、ボールミル、ジェットミル、サンドミル等の一般的な精密粉砕機を用いることによって行うことができる。
 また、本実施形態に係る第1の粒子の原料としては、含リチウム化合物、含マンガン化合物及びM1の元素を含む化合物を所望の正極活物質の元素組成比を達成するような比率でそれぞれ用いる。
In the step of mixing the raw materials, the lithium-containing compound, the manganese-containing compound, and the compound containing the element of M1, which are the raw materials of the first particles, are mixed to obtain a raw material powder.
The mixing of the raw materials can be carried out by using a general precision grinder such as a ball mill, jet mill, sand mill or the like.
Moreover, as a raw material of 1st particle | grains which concern on this embodiment, the compound containing the element of a lithium containing compound, a manganese containing compound, and M1 is used in the ratio which achieves the element composition ratio of a desired positive electrode active material, respectively.
 含リチウム化合物としては、例えば、炭酸リチウム(LiCO)、塩化リチウム(LiCl)、硫酸リチウム(LiSO)、硝酸リチウム(LiNO)、酢酸リチウム(CHCOLi)、水酸化リチウム(LiOH)等を用いることができる。
 リチウムは、焼成中に揮発することがあるため、焼成後のリチウムの組成比は、仕込みの組成比を下回る傾向がある。そのため、含リチウム化合物の量は、所望の組成に相当する量の1.01質量%以上1.05質量%以下程度の量を原料として用いることが好ましい。
Examples of lithium-containing compounds include lithium carbonate (Li 2 CO 3 ), lithium chloride (LiCl), lithium sulfate (Li 2 SO 4 ), lithium nitrate (LiNO 3 ), lithium acetate (CH 3 CO 2 Li), water Lithium oxide (LiOH) or the like can be used.
Since lithium may volatilize during firing, the composition ratio of lithium after firing tends to be lower than the composition ratio of charge. Therefore, as the amount of the lithium-containing compound, it is preferable to use, as a raw material, an amount of about 1.01% by mass or more and 1.05% by mass or less of the amount corresponding to the desired composition.
 含マンガン化合物としては、例えば、炭酸マンガン(MnCO)、硫酸マンガン(MnSO)、硝酸マンガン(Mn(NO)、酢酸マンガン(Mn(CHCOO))、酸化マンガン(MnO)、水酸化マンガン(Mn(OH))等を用いることができる。 Examples of manganese-containing compounds include manganese carbonate (MnCO 3 ), manganese sulfate (MnSO 4 ), manganese nitrate (Mn (NO 3 ) 2 ), manganese acetate (Mn (CH 3 COO) 2 ), manganese oxide (MnO) And manganese hydroxide (Mn (OH) 2 ) can be used.
 また、M1の元素を含む化合物としては、酸化物、炭酸塩、硫酸塩、酢酸塩、蓚酸塩等を用いることができる。 Moreover, as a compound containing the element of M1, oxides, carbonates, sulfates, acetates, borates and the like can be used.
 第1の粒子を調製する工程では、混合された化合物を焼成して一次粒子である第1の粒子を造粒する。
 焼成の雰囲気としては、造粒する粒子に応じて、窒素やAr等の不活性ガス雰囲気及び空気中等の酸化ガス雰囲気のいずれかの下で行えばよい。
 また、焼成温度は、500℃以上1000℃以下程度の適宜の温度とすることができる。
In the step of preparing the first particles, the mixed compound is calcined to granulate the first particles which are primary particles.
The firing atmosphere may be performed under any of an inert gas atmosphere such as nitrogen or Ar and an oxidizing gas atmosphere such as in the air depending on the particles to be granulated.
The firing temperature can be set to a suitable temperature of about 500 ° C. or more and 1000 ° C. or less.
 一次粒子同士を混合する工程では、調製された第1の粒子の一次粒子と第2の粒子との混合を行う。混合には純水等の分散媒を用い、一次粒子が分散したスラリーを得る。
 この工程において、第1の粒子と第2の粒子とを複合粒子として造粒する際には、第1の粒子と第2の粒子との凝集状態を適切に管理する必要がある。そこで、一次粒子同士の混合の際に、結合剤を添加することによって、一次粒子同士を結合された状態とする。
 結合剤としては、アセチルセルロース、ポリアクリル酸、ポリメタクリル酸、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン等が挙げられる。
 また、第1の粒子と第2の粒子との分散性を向上させるため、ポリアクリル酸塩等の分散剤を併用することができる。
 なお、第2の粒子は、用いる粒子の種別に応じて、常法に従い調製したものを混合すればよい。
In the step of mixing primary particles, mixing of the primary particles and the second particles of the prepared first particles is performed. A dispersion medium such as pure water is used for mixing to obtain a slurry in which primary particles are dispersed.
In this step, when the first particles and the second particles are granulated as composite particles, it is necessary to appropriately manage the aggregation state of the first particles and the second particles. Then, when mixing primary particles, a primary particle is made into the state couple | bonded by adding a binder.
Examples of the binder include acetyl cellulose, polyacrylic acid, polymethacrylic acid, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone and the like.
Moreover, in order to improve the dispersibility of the first particles and the second particles, a dispersant such as polyacrylate can be used in combination.
In addition, what is necessary is just to mix the 2nd particle | grains according to the conventional method according to the classification of the particle | grains to be used.
 複合粒子を造粒する工程では、一次粒子が混合して分散したスラリーを、スプレードライヤを用いて噴霧乾燥する。そして、混合された第1の粒子と第2の粒子とを焼成して複合粒子の造粒を行う。
 この工程における焼成温度は、400℃以下とすることが好ましい。焼成温度が、例えば、400℃を大きく超える程度の高熱であると、複合粒子や複合粒子を形成している一次粒子の電池特性が損なわれる虞があるためである。
 また、一次粒子同士の混合の際に添加した結合剤は、焼成時の加熱により除去することが好ましい。したがって、結合剤としては、400℃以下の加熱で除去できるものを選択することが好ましい。
 なお、焼成は、窒素やAr等の不活性ガス雰囲気及び空気中等の酸化ガス雰囲気のいずれの下で行ってもよい。
In the step of granulating the composite particles, the slurry in which the primary particles are mixed and dispersed is spray-dried using a spray dryer. Then, the mixed first particles and second particles are fired to granulate the composite particles.
The firing temperature in this step is preferably 400 ° C. or less. It is because there exists a possibility that the battery characteristic of the primary particle which forms composite particles or composite particles as a calcination temperature is high heat of a grade which greatly exceeds 400 ° C, for example.
Moreover, it is preferable to remove the binder added at the time of mixing of primary particles by the heating at the time of baking. Therefore, as the binder, it is preferable to select one that can be removed by heating at 400 ° C. or less.
Note that the firing may be performed under any of an inert gas atmosphere such as nitrogen or Ar and an oxidizing gas atmosphere such as in the air.
 このようにして、造粒された複合粒子は、正極活物質としての機能を有するリチウムイオン二次電池用正極材として用いることができる。
 本実施形態に係るリチウムイオン二次電池用正極は、以上説明した正極材、導電材及びバインダを主な原料として、正極合剤スラリーを調製する工程と、正極合剤スラリーを正極集電体に塗工する工程と、正極を成形する工程とを経ることによって製造されるものである。製造される正極は、正極材、導電材及びバインダを含んでなる。
The composite particles thus granulated can be used as a positive electrode material for a lithium ion secondary battery having a function as a positive electrode active material.
The positive electrode for a lithium ion secondary battery according to the present embodiment includes the steps of preparing a positive electrode mixture slurry mainly using the positive electrode material, the conductive material, and the binder described above, and using the positive electrode mixture slurry as a positive electrode current collector. It manufactures by passing through the process of coating, and the process of shape | molding a positive electrode. The manufactured positive electrode comprises a positive electrode material, a conductive material and a binder.
 導電材としては、一般的なリチウムイオン二次電池用正極に用いられる導電材を用いることができる。
 導電材としては、具体的には、天然黒鉛粉末、炭素繊維、カーボンブラック、金属粉末、導電性ポリマー等が挙げられる。具体的には、カーボンブラックとしては、アセチレンブラック、ファーネスブラック、サーマルブラック、チャンネルブラック等、金属粉末としては、アルミニウム、ニッケル、銅、銀等、導電性ポリマーとしては、ポリフェニレン等が挙げられる。
As a conductive material, the conductive material used for the general positive electrode for lithium ion secondary batteries can be used.
Specific examples of the conductive material include natural graphite powder, carbon fiber, carbon black, metal powder, conductive polymer and the like. Specifically, carbon black includes acetylene black, furnace black, thermal black, channel black and the like, metal powders include aluminum, nickel, copper, silver and the like, and conductive polymers include polyphenylene and the like.
 バインダとしては、一般的なリチウムイオン二次電池用正極に用いられるバインダを用いることができる。
 具体的には、例えば、ポリフッ化ビニリデン(PVDF)、ポリ四フッ化エチレン、ポリ六フッ化プロピレン等のフッ素系樹脂や、スチレン-ブタジエンゴム等のスチレン系樹脂や、ポリエチレン、ポリプロピレン等のオレフィン系樹脂や、ポリアクリル酸、ポリメタクリル酸、ポリアクリロニトリル等のアクリル系樹脂や、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース系樹脂等が挙げられる。
As a binder, the binder used for the general positive electrode for lithium ion secondary batteries can be used.
Specifically, for example, fluorine-based resins such as polyvinylidene fluoride (PVDF), polytetrafluorinated ethylene, and polyhexafluoropropylene, styrene-based resins such as styrene-butadiene rubber, and olefins such as polyethylene and polypropylene Examples thereof include resins, acrylic resins such as polyacrylic acid, polymethacrylic acid and polyacrylonitrile, and cellulose resins such as carboxymethyl cellulose and hydroxyethyl cellulose.
 正極合剤スラリーを調製する工程では、正極活物質と、バインダと、導電材と、を混合して正極合剤スラリーを調製する。
 混合手段としては、せん断力が比較的強い高粘度用撹拌機を用いることが好ましく、具体的には、プラネタリーミキサ、ディスパーミキサ、自転・公転ミキサ等が挙げられる。
In the step of preparing the positive electrode mixture slurry, the positive electrode active material, the binder, and the conductive material are mixed to prepare a positive electrode mixture slurry.
As the mixing means, it is preferable to use a high-viscosity stirrer having a relatively high shear force, and specific examples include a planetary mixer, a disperser mixer, and a rotation / revolution mixer.
 混合に用いる溶媒としては、例えば、N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミドや、メタノール、エタノール、プロパノール、イソプロパノール等のアルコールや、エチレングリコール、ジエチレングリコール、グリセリン等の多価アルコールや、エーテル類や、ジメチルスルホキシド、テトラヒドロフラン、水等が挙げられる。 Examples of the solvent used for mixing include amides such as N-methylpyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, alcohols such as methanol, ethanol, propanol and isopropanol, ethylene glycol, Examples thereof include polyhydric alcohols such as diethylene glycol and glycerin, ethers, dimethyl sulfoxide, tetrahydrofuran, water and the like.
 正極合剤スラリーを正極集電体に塗工する工程では、調製された正極合剤スラリーを正極集電体に塗工し、乾燥させて正極合剤層を形成する。
 正極合剤スラリーの塗工には、ダイコーター、グラビアコーター、ドクターブレード等の一般的な塗工手段を用いることができる。
 正極集電体としては、10μm以上30μm以下程度の厚さのアルミニウム箔等が通常用いられるが、エキスパンドメタル、パンチングメタル等の形態であってもよい。
In the step of applying the positive electrode mixture slurry to the positive electrode current collector, the prepared positive electrode mixture slurry is applied to the positive electrode current collector and dried to form a positive electrode mixture layer.
For coating of the positive electrode mixture slurry, general coating means such as a die coater, a gravure coater, and a doctor blade can be used.
As the positive electrode current collector, an aluminum foil or the like having a thickness of about 10 μm to 30 μm is generally used, but may be in the form of expanded metal, punching metal or the like.
 正極合剤層が形成された正極集電体は、ロールプレス等により所定の圧力を負荷して圧縮成形した後、所望の形状に裁断又は打ち抜くことでリチウムイオン二次電池用正極とする。なお、圧縮されて形成される正極合剤層の厚さは、例えば、50μm以上300μm以下程度とする。
 以上の工程を経て作製されるリチウムイオン二次電池用正極は、リチウムイオン二次電池用負極と、セパレータと、電解液と、を含んでなるリチウムイオン二次電池に適用される。
 このような本実施形態に係る正極によれば、レート特性に優れ、内部抵抗が低減され、出力が向上したリチウムイオン二次電池が得られる。
The positive electrode current collector on which the positive electrode mixture layer is formed is compression molded by applying a predetermined pressure by a roll press or the like, and then cut or punched into a desired shape to obtain a positive electrode for a lithium ion secondary battery. The thickness of the positive electrode mixture layer formed by compression is, for example, about 50 μm to 300 μm.
The positive electrode for a lithium ion secondary battery produced through the above steps is applied to a lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery, a separator, and an electrolytic solution.
According to such a positive electrode according to the present embodiment, it is possible to obtain a lithium ion secondary battery excellent in rate characteristics, reduced in internal resistance, and improved in output.
 リチウムイオン二次電池用負極は、一般的なリチウムイオン二次電池に用いられる負極と同様に、負極活物質及びバインダを含む負極合剤が、負極集電体上に塗工される等して形成された負極合剤層と、負極集電体とを備えている。
 負極活物質としては、一般的なリチウムイオン二次電池用負極に用いられる負極活物質であれば特に制限されるものではなく、例えば、グラファイト、コークス、熱分解炭素、炭素繊維、ハードカーボン、アモルファスカーボン等の炭素材料や、チタン酸リチウムに代表されるSi、Ti、Sn等とのリチウム金属酸化物や、Si、Al、Sn、Sb、In、Ga、アルカリ土類金属等の元素とリチウムとの合金や、金属リチウムや、これらを複合化した材料を用いることができる。
 なお、負極におけるバインダとしては、前記した正極において用いられるバインダと同様のものを用いることができる。また、前記した正極において用いられる導電材を用いることもできる。
In the negative electrode for lithium ion secondary batteries, a negative electrode mixture containing a negative electrode active material and a binder is coated on a negative electrode current collector, as in the case of a negative electrode used for a general lithium ion secondary battery. The negative electrode mixture layer formed and the negative electrode current collector are provided.
The negative electrode active material is not particularly limited as long as it is a negative electrode active material used for a general lithium ion secondary battery negative electrode, and, for example, graphite, coke, pyrolytic carbon, carbon fiber, hard carbon, amorphous Carbon materials such as carbon, lithium metal oxides such as Si, Ti, and Sn represented by lithium titanate, and elements such as Si, Al, Sn, Sb, In, Ga, alkaline earth metals and lithium Alloy, lithium metal, or a composite of these can be used.
In addition, as a binder in a negative electrode, the thing similar to the binder used in the above-mentioned positive electrode can be used. Moreover, the electrically conductive material used in the above-mentioned positive electrode can also be used.
 リチウムイオン二次電池用負極は、負極活物質、導電材及びバインダを主な原料として、負極合剤スラリーを調製する工程、負極合剤スラリーを負極集電体に塗工する工程を経ることによって製造される。
 負極合剤スラリーを調製する工程では、負極活物質と、バインダ溶液とをN-メチルピロリドンや水等の溶媒中において混合して負極合剤スラリーを調製する。
 なお、負極に導電材を含有させる場合には、所望の量を秤量して、負極活物質及びバインダと共に混合すればよい。
A negative electrode for a lithium ion secondary battery is prepared by using a negative electrode active material, a conductive material, and a binder as main raw materials through a step of preparing a negative electrode mixture slurry and a step of applying a negative electrode mixture slurry to a negative electrode current collector. Manufactured.
In the step of preparing the negative electrode mixture slurry, the negative electrode active material and the binder solution are mixed in a solvent such as N-methyl pyrrolidone or water to prepare a negative electrode mixture slurry.
In the case where the negative electrode contains a conductive material, a desired amount may be weighed and mixed with the negative electrode active material and the binder.
 負極合剤スラリーを負極集電体に塗工する工程では、調製された負極合剤スラリーを負極集電体に塗工し、乾燥させて負極合剤層を形成する。
 負極集電体としては、5μm以上20μm以下程度の厚さの銅箔等が通常用いられるが、エキスパンドメタル、パンチングメタル等の形態であってもよい。また、銅に替えてニッケル等を用いることができる。
 負極合剤層が形成された負極集電体は、ロールプレス等により所定の圧力を負荷して圧縮成形した後、所望の形状に裁断又は打ち抜くことでリチウムイオン二次電池用負極とする。なお、圧縮されて形成される負極合剤層の厚さは、例えば、20μm以上70μm以下程度とする。
In the step of applying the negative electrode mixture slurry to the negative electrode current collector, the prepared negative electrode mixture slurry is applied to the negative electrode current collector and dried to form a negative electrode mixture layer.
As the negative electrode current collector, a copper foil or the like having a thickness of about 5 μm to 20 μm is generally used, but may be in the form of expanded metal, punching metal or the like. Further, nickel or the like can be used instead of copper.
The negative electrode current collector on which the negative electrode mixture layer is formed is compression molded by applying a predetermined pressure by a roll press or the like, and then cut or punched into a desired shape to obtain a negative electrode for a lithium ion secondary battery. The thickness of the negative electrode mixture layer formed by compression is, for example, about 20 μm or more and 70 μm or less.
 図1は、本実施形態に係るリチウムイオン二次電池の一例を示す断面模式図である。
 このリチウムイオン二次電池1は、円筒型の形状を有するものである。
 正極2及び負極3は、セパレータ4を挟むように積層配置されて捲回され、ステンレス鋼(Stainless steel;SUS)やアルミニウムを材質とする金属製電池缶5内に収容されている。
FIG. 1 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to the present embodiment.
The lithium ion secondary battery 1 has a cylindrical shape.
The positive electrode 2 and the negative electrode 3 are stacked and arranged so as to sandwich the separator 4 and wound, and are housed in a metal battery can 5 made of stainless steel (SUS) or aluminum.
 セパレータ4としては、ポリエチレン、ポリプロピレン等のポリオレフィンや、ポリアミド、アラミド等の樹脂製、繊維状ガラス製等の微多孔質薄膜を用いることができる。なお、セパレータ4には、耐熱性又は難燃性を向上させるためにアルミナ、ガラス等の絶縁性無機化合物層を被覆してもよい。 As the separator 4, a microporous film made of a polyolefin such as polyethylene or polypropylene, a resin such as polyamide or aramid, or a fibrous glass can be used. The separator 4 may be coated with an insulating inorganic compound layer such as alumina or glass in order to improve heat resistance or flame retardancy.
 正極2は、正極リード6を介して密閉蓋8と電気的に接続され、負極3は、負極リード7を介して電池缶5と電気的に接続されており、正極リード6と負極3、負極リード7と正極2の間には、それぞれ絶縁板10が配設されて短絡が防止されている。
 このように電極を収容した電池缶5は、乾燥空気中又は不活性ガス雰囲気の下で電解液が注入された後、ガスケット9で密封され、密閉蓋8で封止される。
 なお、電池の外装は、図1に示す形態に限られず、角型、ボタン型等であってもよい。また、ポリエチレンやポリプロピレン等の絶縁性シートで内張りされた袋状のアルミラミネートシート等であってもよい。
The positive electrode 2 is electrically connected to the sealing lid 8 through the positive electrode lead 6, and the negative electrode 3 is electrically connected to the battery can 5 through the negative electrode lead 7. The positive electrode lead 6 and the negative electrode 3, negative electrode Insulating plates 10 are respectively disposed between the leads 7 and the positive electrode 2 to prevent a short circuit.
Thus, after the electrolyte is injected in dry air or under an inert gas atmosphere, the battery can 5 accommodating the electrodes is sealed by the gasket 9 and sealed by the sealing lid 8.
The exterior of the battery is not limited to the form shown in FIG. 1, and may be square, button-shaped or the like. In addition, it may be a bag-like aluminum laminate sheet or the like lined with an insulating sheet such as polyethylene or polypropylene.
 電解液としては、リチウム塩を非水溶媒に溶解させた非水電解液が用いられる。
 リチウム塩としては、過塩素酸リチウム(LiClO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)等を一種又は複数種組み合わせて用いることができる。
 非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状又は環状のカーボネート系溶媒やパーフルオロアルキルエーテル等のフッ素系溶媒を用いることができる。なお、これらカーボネートは、フッ素置換する等した誘導体であってもよい。
 また、電解液には、電池寿命を向上させるために、ビニレンカーボネート、フェニルシクロヘキサン、1,3-プロパンサルトン、ジフェニルジスルフィド等を添加したり、難燃性を向上させるために、リン酸エステル等を添加してもよい。
A non-aqueous electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent is used as the electrolytic solution.
Examples of lithium salts include lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and the like. Or it can be used combining multiple types.
As the non-aqueous solvent, linear or cyclic carbonate solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, and fluorine solvents such as perfluoroalkyl ether can be used. These carbonates may be fluorine-substituted derivatives or the like.
In addition, in order to improve battery life, vinylene carbonate, phenylcyclohexane, 1,3-propanesultone, diphenyl disulfide, etc. are added to the electrolytic solution, and in order to improve flame retardancy, phosphoric acid ester etc. May be added.
 本実施形態に係るリチウムイオン二次電池の用途は、特に制限されるものではなく、例えば、太陽光や風力等の自然エネルギ発電システム用の蓄電システム、運動エネルギの一部を回収する形式のエレベータ等の産業用機器の電源、各種業務用又は家庭用の蓄電システム用の電源、鉄道、船舶、電気自動車やハイブリッド型電気自動車等の動力用電源等に例示される大型電源として用いることができる。
 また、各種携帯型機器、情報機器、家庭用電気機器、電動工具等に例示される小型電源として用いることができる。
The application of the lithium ion secondary battery according to the present embodiment is not particularly limited, and, for example, a storage system for a natural energy power generation system such as solar light or wind power, an elevator for recovering a part of kinetic energy Etc., can be used as a large power source exemplified as a power source for industrial equipment such as a power source for various business use or household use, a power source for railways, ships, power vehicles such as electric vehicles and hybrid electric vehicles, and the like.
Further, it can be used as a small power source exemplified for various portable devices, information devices, household electric devices, electric tools, and the like.
 次に、本発明の実施例を示して具体的に説明するが、本発明の技術的範囲はこれらに限定されるものではない。 EXAMPLES The present invention will next be described in detail by way of examples, which should not be construed as limiting the technical scope of the present invention.
 本実施形態に係る正極材を製造し、複合粒子の形態を観察した。 The positive electrode material according to the present embodiment was manufactured, and the form of the composite particle was observed.
 マンガン固溶体正極活物質の一般式においてM1の元素がNiである第1の粒子を、以下の手順で調製した。
 はじめに、炭酸リチウム、炭酸マンガン、炭酸ニッケルをジルコニア製ポットに加え、アセトンを添加し、遊星型ボールミルを用いて、溶解することなく粉砕・混合した。そして、得られたスラリーを乾燥し、原料粉末を得た。
 この原料粉末を大気中において500℃で12時間に亘って仮焼成し、リチウム遷移金属酸化物である仮焼成体とした。
 続いて、仮焼成体をジルコニア製ポットに加え、アセトンを添加し、遊星型ボールミルを用いて、溶解することなく粉砕及び混合した。
 得られたスラリーを乾燥した後、大気中において1000℃で12時間に亘って焼成し、第1の粒子を得た。
 得られた第1の粒子の元素分析を行ったところ、組成は0.5LiMnO-0.5LiNi0.625Mn0.375であった。
First particles in which the element of M1 in the general formula of the manganese solid solution positive electrode active material is Ni were prepared by the following procedure.
First, lithium carbonate, manganese carbonate and nickel carbonate were added to a zirconia pot, acetone was added, and the mixture was pulverized and mixed without dissolution using a planetary ball mill. And the obtained slurry was dried and the raw material powder was obtained.
The raw material powder was calcined at 500 ° C. for 12 hours in the air to obtain a calcined body of lithium transition metal oxide.
Subsequently, the calcined body was added to a zirconia pot, acetone was added, and the mixture was pulverized and mixed without dissolution using a planetary ball mill.
The obtained slurry was dried and then fired in the air at 1000 ° C. for 12 hours to obtain first particles.
Elemental analysis of the obtained first particles revealed that the composition was 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 .
 次に、第2の粒子を、以下の手順で調製した。
 はじめに、Fe源としてクエン酸鉄(III)水和物(FeC・nHO)、Mn源として酢酸マンガン四水和物(Mn(CHCOO)・4HO)をそれぞれ、FeとMnが2:8となるように秤量して純水に溶解させ、これに、キレート剤としてクエン酸一水和物(C・HO)を添加した。
 キレート剤の量は、クエン酸イオンの合計量が、金属イオンの合計量に対して80mol%となる量を添加した。なお、キレート剤は、沈殿の生成を防ぎ、金属イオンを均一に溶解させるために添加したものである。
 次いで、リン酸二水素リチウムと酢酸リチウム水溶液とを加え、これらを溶解した原料溶液を得た。この原料溶液濃度は、鉄イオン及びマンガンイオンの総濃度が、0.2mol/Lとなるように調整した。また、Liと、Fe及びMnと、POの組成比が、1.05:1:1となるように調製し、リチウムを過剰にした。リチウムを過剰に用いたのは、LiとFe又はMnとの間でカチオンミキシングが発生するのを抑制すると共に、焼成時にLiの一部が揮発するために生じる欠損を補うためである。
 過剰なリチウムは、リン酸と反応してリン酸リチウム(LiPO)を生成し、このリン酸リチウムが形成する相が電池の内部抵抗を増大させることがあるが、本実施形態に係る複合粒子では、導電ネットワークが適切に構築されているため、これによる影響が低減されるという利点がある。
Next, a second particle was prepared by the following procedure.
First, iron (III) citrate hydrate (FeC 6 H 5 O 7 · n H 2 O) as an Fe source, and manganese acetate tetrahydrate (Mn (CH 3 COO) 2. 4 H 2 O) as an Mn source Each was weighed so that Fe and Mn would be 2: 8 and dissolved in pure water, to which was added citric acid monohydrate (C 6 H 8 O 7 .H 2 O) as a chelating agent.
The amount of chelating agent added was such that the total amount of citrate ions was 80 mol% with respect to the total amount of metal ions. In addition, a chelating agent is added in order to prevent the formation of a precipitate and to dissolve the metal ion uniformly.
Next, lithium dihydrogen phosphate and a lithium acetate aqueous solution were added to obtain a raw material solution in which these were dissolved. The concentration of the raw material solution was adjusted so that the total concentration of iron ions and manganese ions was 0.2 mol / L. In addition, the composition ratio of Li, Fe and Mn, and PO 4 was adjusted to be 1.05: 1: 1 to make the lithium excessive. The reason why lithium is used in excess is to suppress the occurrence of cation mixing between Li and Fe or Mn, and to compensate for the defects caused by the volatilization of part of Li at the time of firing.
Excess lithium reacts with phosphoric acid to form lithium phosphate (Li 3 PO 4 ), and the phase formed by this lithium phosphate may increase the internal resistance of the battery, according to the present embodiment. Composite particles have the advantage that the effect of this is reduced, as the conducting network is properly constructed.
 次に、調製した原料溶液を、スプレードライヤを用いて噴霧乾燥し、クエン酸マトリックス中に各元素が均一に分散した原料粉末を得た。
 そして、得られた原料粉末を、箱形電気炉を用いて、空気中において400℃で10時間に亘って仮焼成した。
 得られた仮焼成体には、仮焼成体の総質量に対して7質量%となるスクロースを添加した。スクロースは、導電材の炭素材料を形成するための炭素源として添加したものである。このスクロースは、調製される第2の粒子の粒径制御剤としての作用も有している。
 続いて、スクロースを添加した仮焼成体を、分散媒として純水を加えた後、ボールミルを用いて2時間に亘って混合した。
Next, the prepared raw material solution was spray-dried using a spray dryer to obtain a raw material powder in which each element was uniformly dispersed in a citric acid matrix.
And the obtained raw material powder was temporarily baked at 400 degreeC in air over 10 hours using the box-type electric furnace.
To the obtained calcined body, sucrose was added in an amount of 7% by mass with respect to the total mass of the calcined body. Sucrose is added as a carbon source to form a carbon material of a conductive material. The sucrose also acts as a particle size control agent for the second particles to be prepared.
Subsequently, after adding pure water as a dispersion medium to the calcined body to which sucrose was added, it was mixed using a ball mill for 2 hours.
 次に、得られたスラリーを、スプレードライヤを用いて噴霧乾燥し、仮焼成体粉末を得た。
 そして、この仮焼成体粉末を、管状炉を用いて、Arガス雰囲気の下で、700℃で10時間に亘って本焼成し、オリビン構造正極活物質である第2の粒子を得た。
 得られた第2の粒子の元素分析を行ったところ、組成はLiFe0.2Mn0.8POであった。
Next, the obtained slurry was spray-dried using a spray dryer to obtain a calcined powder.
Then, the calcined powder was subjected to main firing at 700 ° C. for 10 hours in an Ar gas atmosphere using a tubular furnace, to obtain second particles which are olivine-structured positive electrode active materials.
Elemental analysis of the obtained second particles revealed that the composition was LiFe 0.2 Mn 0.8 PO 4 .
 次に、得られた0.5LiMnO-0.5LiNi0.625Mn0.375の組成の第1の粒子と、LiFe0.2Mn0.8POの組成の第2の粒子とから複合粒子を造粒した。
 はじめに、第1の粒子及び第2の粒子を、純水に分散させ、ボールミルを用いて混合した。
 次いで、第1の粒子及び第2の粒子の総重量に対して1質量%となるように結合剤のポリビニルアルコールを添加した上でさらに混合を行った。
 そして、得られたスラリーをスプレードライヤを用いて噴霧乾燥し、複合粒子前駆体粉末を得た。
 続いて、複合粒子前駆体粉末を、電気炉を用いて、窒素ガス雰囲気の下で、400℃で5時間に亘って焼成し、複合粒子を得た。
Next, the first particle of the composition of 0.5Li 2 MnO 3 -0.5LiNi 0.625 Mn 0.375 O 2 obtained, and the second of the composition of LiFe 0.2 Mn 0.8 PO 4 are obtained. Composite particles were granulated from the particles.
First, the first particles and the second particles were dispersed in pure water and mixed using a ball mill.
Subsequently, polyvinyl alcohol as a binder was added so as to be 1% by mass with respect to the total weight of the first particles and the second particles, and further mixing was performed.
Then, the obtained slurry was spray-dried using a spray dryer to obtain a composite particle precursor powder.
Subsequently, the composite particle precursor powder was fired at 400 ° C. for 5 hours in a nitrogen gas atmosphere using an electric furnace to obtain composite particles.
 次に、得られた複合粒子を用いてリチウムイオン二次電池用正極を作製した。
 正極活物質と導電助剤とバインダとを均一に混合して正極スラリーを作製し、正極スラリーを厚み20μmのアルミ集電体箔上に塗布し、120℃で乾燥し、プレスにて電極密度が2.2g/cmになるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き正極とした。
Next, the positive electrode for lithium ion secondary batteries was produced using the obtained composite particle.
The positive electrode active material, the conductive additive and the binder are uniformly mixed to prepare a positive electrode slurry, the positive electrode slurry is applied on a 20 μm thick aluminum current collector foil, dried at 120 ° C., and the electrode density is adjusted by a press. An electrode plate was obtained by compression molding to 2.2 g / cm 3 . Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm and used as a positive electrode.
 作製した正極の断面を走査型顕微鏡、透過型顕微鏡及びエネルギー分散型X線分析により観察し、正極中の正極合剤層に含まれる複合粒子の形態を観察した。 The cross section of the produced positive electrode was observed by a scanning type microscope, a transmission type microscope and energy dispersive X-ray analysis, and the form of the composite particle contained in the positive electrode mixture layer in the positive electrode was observed.
 図2は、実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。
 観察された正極合剤層には、図に示す形態の複合粒子20が分散した状態で含まれていた。
 複合粒子20は、第1の粒子30と、第2の粒子40とを含んでおり、複数の第1の粒子30の一次粒子と、複数の第2の粒子40の一次粒子とが凝集することによって複合粒子20を形成していた。
 第2の粒子40の表面には、導電材50が付着し、第2の粒子40を被覆していた。
 この形態では、第2の粒子40は、分散している第1の粒子30の各粒子間に介在するように均一に分散していた。
FIG. 2: is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example.
In the positive electrode mixture layer observed, the composite particles 20 in the form shown in the figure were contained in a dispersed state.
The composite particle 20 includes a first particle 30 and a second particle 40, and aggregation of primary particles of the plurality of first particles 30 and primary particles of the plurality of second particles 40 is performed. The composite particles 20 were formed by
The conductive material 50 was attached to the surface of the second particle 40 to cover the second particle 40.
In this form, the second particles 40 are uniformly dispersed so as to be interposed between the dispersed first particles 30.
 このような形態によれば、正極活物質である第2の粒子40によって、第1の粒子30の粒子間を結ぶ導電ネットワークが形成されるため、エネルギ密度を損なうことなく、正極合剤層における電子伝導性を向上する効果が得られると考えられる。 According to such a configuration, the second particles 40, which are positive electrode active materials, form a conductive network connecting the particles of the first particles 30, and therefore, in the positive electrode mixture layer without impairing the energy density. It is believed that the effect of improving the electron conductivity can be obtained.
 図3は、実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。
 観察された正極合剤層には、図3に示す形態の複合粒子20が分散した状態で含まれていた。
 第2の粒子40の表面には、導電材50が付着し、第2の粒子40を被覆していた。
 この形態では、第2の粒子40は、複数の第2の粒子40同士で一部凝集した状態で、分散している第1の粒子30の各粒子間に介在するように分散していた。
FIG. 3: is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example.
In the positive electrode mixture layer observed, the composite particles 20 in the form shown in FIG. 3 were contained in a dispersed state.
The conductive material 50 was attached to the surface of the second particle 40 to cover the second particle 40.
In this embodiment, the second particles 40 are dispersed so as to be interposed between the dispersed first particles 30 in a state of being partially aggregated among the plurality of second particles 40.
 このような形態によれば、正極活物質である第2の粒子40によって、第1の粒子30の粒子間を結ぶ導電ネットワークが形成されるため、エネルギ密度を損なうことなく、正極合剤層における電子伝導性を向上する効果が得られると考えられる。また、その効果は、第2の粒子40同士で一部凝集しているにも関わらず有効であると推察される。 According to such a configuration, the second particles 40, which are positive electrode active materials, form a conductive network connecting the particles of the first particles 30, and therefore, in the positive electrode mixture layer without impairing the energy density. It is believed that the effect of improving the electron conductivity can be obtained. Moreover, it is assumed that the effect is effective in spite of the fact that the second particles 40 are partially aggregated.
 形態の観察においては、複合粒子20の多数について、複合粒子の中心との距離が複合粒子の半径の1/2以下の距離である領域に、第2の粒子の少なくとも一部が分散している状態が認められた。また、複合粒子における第1の粒子の含有量は、30体積%以上99体積%以下の範囲にあった。 In the observation of the morphology, at least a part of the second particle is dispersed in a region where the distance to the center of the composite particle is a half or less of the radius of the composite particle for many composite particles 20 The condition was recognized. In addition, the content of the first particles in the composite particles was in the range of 30% by volume or more and 99% by volume or less.
 以上の、走査型顕微鏡、透過型顕微鏡及びエネルギー分散型X線分析による、複合粒子の形態の観察から、本実施形態に係る正極材としては、以下の図4~7に示す形態を採り得ると考えられる。 From the observation of the form of the composite particle by the scanning microscope, the transmission type microscope and the energy dispersive X-ray analysis described above, the form shown in FIGS. 4 to 7 can be adopted as the positive electrode material according to the present embodiment. Conceivable.
 図4は、実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。
 図4に示す形態において、第1の粒子30は、マンガン系固溶体正極活物質からなり、第2の粒子40は、正極活物質からなり、板状の粒子形状を有している。
 第2の粒子40の表面には、導電材50が付着し、第2の粒子40を被覆している。
 この形態では、第2の粒子40は、分散している第1の粒子30の複数の粒子間に介在するように分散し、第2の粒子40を被覆している導電材50が、第1の粒子30の表面に良好に接触し導電パスを形成するようになる。
FIG. 4: is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example.
In the embodiment shown in FIG. 4, the first particles 30 are made of a manganese-based solid solution positive electrode active material, and the second particles 40 are made of a positive electrode active material and have a plate-like particle shape.
The conductive material 50 adheres to the surface of the second particle 40 and covers the second particle 40.
In this form, the second particles 40 are dispersed so as to be interposed between the plurality of dispersed first particles 30, and the conductive material 50 covering the second particles 40 is the first Good contact with the surface of the particles 30 to form a conductive path.
 このような形態によれば、正極活物質である第2の粒子40によって、第1の粒子30の複数の粒子間を結ぶ導電ネットワークが形成されるため、エネルギ密度を損なうことなく、正極合剤層における電子伝導性を向上する効果が得られると考えられる。 According to such a configuration, the second particle 40, which is a positive electrode active material, forms a conductive network connecting the plurality of particles of the first particle 30, so that the positive electrode mixture can be obtained without losing the energy density. It is considered that the effect of improving the electron conductivity in the layer can be obtained.
 図5は、実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。
 図5に示す形態において、第1の粒子30は、マンガン系固溶体正極活物質からなり、第2の粒子41は、電子伝導性に優れた正極活物質からなる。
 この形態では、表面が導電材50によって被覆されていない第2の粒子41が、分散している第1の粒子30の各粒子間に介在するように均一に分散し、第2の粒子41自体が、第1の粒子30の粒子間に導電パスを形成するようになる。
FIG. 5: is a cross-sectional schematic diagram which shows one form of the composite particle contained in the positive electrode material which concerns on an Example.
In the embodiment shown in FIG. 5, the first particles 30 are made of a manganese-based solid solution positive electrode active material, and the second particles 41 are made of a positive electrode active material excellent in electron conductivity.
In this form, the second particles 41 themselves are not dispersed so that the second particles 41 whose surfaces are not covered with the conductive material 50 intervene between the respective particles of the dispersed first particles 30, and the second particles 41 themselves , Form a conductive path between the particles of the first particle 30.
 このような形態によれば、正極活物質である第2の粒子41によって、第1の粒子30の粒子間を結ぶ導電ネットワークが形成されるため、エネルギ密度を損なうことなく、正極合剤層における電子伝導性を向上する効果が得られると考えられる。また、エネルギ密度に関する効果は、導電材50を含んでいないため有利である。 According to such a configuration, the second particles 41, which are positive electrode active materials, form a conductive network connecting the particles of the first particles 30, so that in the positive electrode mixture layer, the energy density is not impaired. It is believed that the effect of improving the electron conductivity can be obtained. Also, the effect on the energy density is advantageous because it does not include the conductive material 50.
 図6は、実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。
 図6に示す形態において、第1の粒子30は、マンガン系固溶体正極活物質からなり、第2の粒子40は、正極活物質からなる。複合粒子20は、第1の粒子30と、第2の粒子40と、導電材粒子50Aとを含んでおり、複数の第1の粒子30の一次粒子と、複数の第2の粒子40の一次粒子と、複数の導電材粒子50Aとが凝集することによって複合粒子20を形成している。
 また、第2の粒子40の表面には、導電材50が付着し、第2の粒子40を被覆している。
 この形態では、第2の粒子40と導電材粒子50Aとは、分散している第1の粒子30の各粒子間に介在するように分散し、第2の粒子40を被覆している導電材50と分散されている導電材粒子50Aとが、第1の粒子30の粒子間に導電パスを形成するようになる。
FIG. 6 is a schematic cross-sectional view showing one form of composite particles contained in the positive electrode material according to the example.
In the embodiment shown in FIG. 6, the first particles 30 are made of a manganese-based solid solution positive electrode active material, and the second particles 40 are made of a positive electrode active material. The composite particle 20 includes the first particle 30, the second particle 40, and the conductive material particle 50A, and the primary particles of the plurality of first particles 30 and the primary particles of the plurality of second particles 40. The composite particles 20 are formed by aggregation of the particles and the plurality of conductive material particles 50A.
In addition, the conductive material 50 adheres to the surface of the second particle 40 and covers the second particle 40.
In this embodiment, the second particles 40 and the conductive material particles 50A are dispersed so as to be interposed between the dispersed first particles 30 and the conductive material covering the second particles 40. 50 and the dispersed conductive material particles 50A form a conductive path between the particles of the first particles 30.
 このような形態によれば、第2の粒子40と導電材粒子50Aとによって、第1の粒子30の粒子間を結ぶ導電ネットワークが形成されるため、正極合剤層における電子伝導性を向上する効果が得られると考えられる。また、正極活物質である第2の粒子40によって、第1の粒子30の粒子間を結ぶ導電ネットワークの一部が構成されるため、エネルギ密度が損なわれ難いと推察される。 According to such a configuration, the second particle 40 and the conductive material particle 50A form a conductive network connecting the particles of the first particle 30, so that the electron conductivity in the positive electrode mixture layer is improved. It is thought that an effect can be obtained. In addition, since a part of the conductive network connecting the particles of the first particle 30 is formed by the second particle 40 which is a positive electrode active material, it is presumed that the energy density is unlikely to be impaired.
 図7は、実施例に係る正極材に含まれる複合粒子の一形態を示す断面模式図である。
 正極合剤層には、図に示す形態の多数の複合粒子20が分散した状態で含まれている。
 図7に示す形態において、第1の粒子30は、マンガン系固溶体正極活物質からなり、第2の粒子40は、正極活物質からなる。複合粒子20は、第1の粒子30と、第2の粒子40と、繊維状導電材50Bとを含んでおり、複数の第1の粒子30の一次粒子と、複数の第2の粒子40の一次粒子とが凝集することによって複合粒子20を形成している。
 また、第2の粒子40の表面には、導電材50が付着し、第2の粒子40を被覆している。
 この形態では、第2の粒子40と繊維状導電材50Bとは、分散している第1の粒子30の各粒子間に介在するように分散し、第2の粒子40を被覆している導電材50と分散されている繊維状導電材50Bとが、第1の粒子30の粒子間に導電パスを形成するようになる。
FIG. 7 is a schematic cross-sectional view showing one form of composite particles contained in a positive electrode material according to an example.
The positive electrode mixture layer contains a large number of composite particles 20 in the form shown in the figure in a dispersed state.
In the embodiment shown in FIG. 7, the first particles 30 are made of a manganese-based solid solution positive electrode active material, and the second particles 40 are made of a positive electrode active material. The composite particle 20 includes a first particle 30, a second particle 40, and a fibrous conductive material 50B. The composite particle 20 includes primary particles of the plurality of first particles 30 and a plurality of second particles 40. Composite particles 20 are formed by the aggregation of primary particles.
In addition, the conductive material 50 adheres to the surface of the second particle 40 and covers the second particle 40.
In this embodiment, the second particles 40 and the fibrous conductive material 50B are dispersed so as to be interposed between the respective particles of the dispersed first particles 30, and the second particles 40 are coated. The material 50 and the dispersed fibrous conductive material 50 B form a conductive path between the particles of the first particles 30.
 このような形態によれば、第2の粒子40と繊維状導電材50Bとによって、第1の粒子20の粒子間を結ぶ導電ネットワークが形成されるため、正極合剤層における電子伝導性を向上する効果が得られると考えられる。また、正極活物質である第2の粒子40によって、第1の粒子30の粒子間を結ぶ導電ネットワークの一部が構成されるため、エネルギ密度が損なわれ難く、電子伝導性に関する効果は、繊維状導電材50Bによって、第1の粒子30の複数の粒子間を結ぶ導電ネットワークが形成されるため有利であると推察される。 According to such a configuration, the second particle 40 and the fibrous conductive material 50B form a conductive network connecting the particles of the first particle 20, so the electron conductivity in the positive electrode mixture layer is improved. It is believed that the effect of In addition, since the second particle 40, which is a positive electrode active material, constitutes a part of the conductive network connecting the particles of the first particle 30, energy density is unlikely to be impaired, and the effect on the electron conductivity is The conductive material 50B is considered to be advantageous because a conductive network connecting the plurality of particles of the first particle 30 is formed.
 図8は、比較例に係る正極材に含まれる正極活物質粒子の一形態を示す断面模式図である。
 従来のリチウムイオン二次電池の正極においては、正極材として、1次粒子である正極活物質粒子30Cに、他の1次粒子40Cを併用しているものがある。
 このような従来の正極材(比較例)における粒子の分散状態は、通常、正極活物質粒子30C同士が凝集した粒子群と、他の1次粒子40C同士が凝集した粒子群とが凝集した、図8に示すような状態に代表される。
 このような形態では、正極活物質粒子30C同士が凝集した領域(左側破線内部)の中央付近に存在する正極活物質粒子30C等において、良好な電子伝導性が確保されない虞があり、これに相当する容量低下を呈し、体積及び重量エネルギ密度が減殺されると考えられる。
FIG. 8 is a schematic cross-sectional view showing one form of positive electrode active material particles contained in a positive electrode material according to a comparative example.
Among positive electrodes of conventional lithium ion secondary batteries, there are positive electrodes in which other primary particles 40C are used in combination with positive electrode active material particles 30C which are primary particles.
In the dispersed state of particles in such a conventional positive electrode material (comparative example), a particle group in which positive electrode active material particles 30C are aggregated and a particle group in which other primary particles 40C are aggregated are usually aggregated. It is represented by the state as shown in FIG.
In such a form, there is a possibility that good electron conductivity may not be secured in positive electrode active material particles 30C and the like existing near the center of the region (inside the left broken line) where positive electrode active material particles 30C are aggregated. It is believed that the volume and weight energy density are diminished.
1 リチウムイオン二次電池
2 リチウムイオン二次電池用正極
3 リチウムイオン二次電池用負極
4 セパレータ
5 電池缶
6 正極リード
7 負極リード
8 密閉蓋
9 ガスケット
10 絶縁板
20 複合粒子
30 第1の粒子
40,41 第2の粒子
50,50A,50B 導電材(粒子)
REFERENCE SIGNS LIST 1 lithium ion secondary battery 2 positive electrode for lithium ion secondary battery 3 negative electrode for lithium ion secondary battery 4 separator 5 battery can 6 positive electrode lead 7 negative electrode lead 8 sealing lid 9 gasket 10 insulating plate 20 composite particles 30 first particles 40 , 41 second particles 50, 50A, 50B conductive material (particles)

Claims (13)

  1.  一般式LiMnM1
    (式中、M1は、Ni、Cu、Zn、Co、Fe、Cr、V、Ti、Mg、Al、Sn、Mo、Nb、V、Zr、Ta、Ru及びWからなる群より選択される少なくとも1種の元素であり、1.0<x≦1.4、0<a<1.0、0<b<1.0、a+b≦1.0である。)で表わされる正極活物質である第1の粒子と、
     電気伝導率が1.0×10-5S/m以上である第2の粒子と、
    の複合粒子を含んでなることを特徴とするリチウムイオン二次電池用正極材。
    General formula Li x Mn a M1 b O 2
    (Wherein, M 1 is at least selected from the group consisting of Ni, Cu, Zn, Co, Fe, Cr, V, Ti, Mg, Al, Sn, Mo, Nb, V, Zr, Ta, Ru and W It is one kind of element, and is a positive electrode active material represented by 1.0 <x ≦ 1.4, 0 <a <1.0, 0 <b <1.0, a + b ≦ 1.0). The first particle,
    A second particle having an electrical conductivity of 1.0 × 10 −5 S / m or more,
    A positive electrode material for a lithium ion secondary battery, comprising: composite particles of
  2.  前記第1の粒子の平均粒子径が、50nm以上800nm以下である
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
    The positive electrode material for a lithium ion secondary battery according to claim 1, wherein an average particle diameter of the first particles is 50 nm or more and 800 nm or less.
  3.  前記第2の粒子の平均粒子径が、5nm以上400nm以下である
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
    2. The positive electrode material for a lithium ion secondary battery according to claim 1, wherein an average particle size of the second particles is 5 nm or more and 400 nm or less.
  4.  前記複合粒子において、
     前記複合粒子の中心との距離が半径の1/2以下の距離である領域に、
     前記第2の粒子の少なくとも一部が分散している
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
    In the composite particle,
    In a region where the distance to the center of the composite particle is a distance of 1/2 or less of the radius,
    The positive electrode material for a lithium ion secondary battery according to claim 1, wherein at least a part of the second particles is dispersed.
  5.  前記複合粒子の平均粒子径が、0.5μ以上30μm以下である
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
    The positive electrode material for a lithium ion secondary battery according to claim 1, wherein an average particle diameter of the composite particles is 0.5 μm or more and 30 μm or less.
  6.  前記複合粒子における前記第1の粒子の含有量が、30体積%以上99体積%以下である
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
    The content of the said 1st particle | grains in the said composite particle is 30 volume% or more and 99 volume% or less, The positive electrode material for lithium ion secondary batteries of Claim 1 characterized by the above-mentioned.
  7.  前記第2の粒子が、2.0V以上5.0V以下においてリチウムイオンを吸蔵及び放出することができる正極活物質である
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
    The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the second particle is a positive electrode active material capable of inserting and extracting lithium ions at 2.0 V or more and 5.0 V or less. .
  8.  前記第2の粒子が、炭素材料により被覆されている
    ことを特徴とする請求項7に記載のリチウムイオン二次電池用正極材。
    The positive electrode material for a lithium ion secondary battery according to claim 7, wherein the second particles are coated with a carbon material.
  9.  前記第2の粒子が、
     一般式LiM2
    (式中、M2は、Ni、Cu、Zn、Co、Fe、Mn、Cr、V、Ti、Mg、Al、Sn、Mo、Nb、V、Zr、Ta、Ru及びWからなる群より選択される少なくとも1種の元素であり、Xは、酸素(O)と結合してアニオンを形成する典型元素であり、0≦y≦2、1≦d≦2、1≦e≦2、3≦f≦7である。)
    で表わされる正極活物質である
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
    The second particle is
    General formula Li y M2 d X e O f
    (Wherein, M 2 is selected from the group consisting of Ni, Cu, Zn, Co, Fe, Mn, Cr, V, Ti, Mg, Al, Sn, Mo, Nb, V, Zr, Ta, Ru and W X is a typical element which forms an anion by binding to oxygen (O), and 0 ≦ y ≦ 2, 1 ≦ d ≦ 2, 1 ≦ e ≦ 2, 3 ≦ f ≦ 7)
    The positive electrode active material for a lithium ion secondary battery according to claim 1, which is a positive electrode active material represented by
  10.  前記第2の粒子が、オリビン構造を有する正極活物質である
    ことを特徴とする請求項1に記載のリチウムイオン二次電池用正極材。
    The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the second particle is a positive electrode active material having an olivine structure.
  11.  請求項1に記載のリチウムイオン二次電池用正極材の製造方法であって、
     含リチウム化合物、含マンガン化合物及び前記M1の元素を含む化合物を混合する工程と、
     混合された化合物を焼成して前記第1の粒子を調製する工程と、
     調製された前記第1の粒子と前記第2の粒子とを混合する工程と、
     混合された前記第1の粒子と前記第2の粒子とを焼成して複合粒子を造粒する工程と、
    を含むことを特徴とするリチウムイオン二次電池用正極材の製造方法。
    It is a manufacturing method of the positive electrode material for lithium ion secondary batteries according to claim 1,
    Mixing the lithium-containing compound, the manganese-containing compound, and the compound containing the element of M1;
    Calcining the mixed compound to prepare the first particles;
    Mixing the prepared first particles and the second particles;
    Calcinating the mixed first particles and the second particles to granulate composite particles;
    A method for producing a positive electrode material for a lithium ion secondary battery, comprising:
  12.  請求項1から請求項10のいずれか1項に記載のリチウムイオン二次電池用正極材を含む
    ことを特徴とするリチウムイオン二次電池用正極。
    A positive electrode for a lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 10.
  13.  請求項12に記載のリチウムイオン二次電池用正極を備える
    ことを特徴とするリチウムイオン二次電池。
    A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to claim 12.
PCT/JP2013/068270 2013-07-03 2013-07-03 Cathode material for lithium ion secondary battery, cathode for lithium ion secondary battery, lithium ion secondary battery, and method for producing each of same WO2015001632A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068270 WO2015001632A1 (en) 2013-07-03 2013-07-03 Cathode material for lithium ion secondary battery, cathode for lithium ion secondary battery, lithium ion secondary battery, and method for producing each of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068270 WO2015001632A1 (en) 2013-07-03 2013-07-03 Cathode material for lithium ion secondary battery, cathode for lithium ion secondary battery, lithium ion secondary battery, and method for producing each of same

Publications (1)

Publication Number Publication Date
WO2015001632A1 true WO2015001632A1 (en) 2015-01-08

Family

ID=52143252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068270 WO2015001632A1 (en) 2013-07-03 2013-07-03 Cathode material for lithium ion secondary battery, cathode for lithium ion secondary battery, lithium ion secondary battery, and method for producing each of same

Country Status (1)

Country Link
WO (1) WO2015001632A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364697A (en) * 2018-03-26 2019-10-22 丰田自动车株式会社 Positive electrode and the secondary cell for using the positive electrode
KR20200027538A (en) * 2017-07-07 2020-03-12 씨에스아이알 Double active cathode material
CN111741928A (en) * 2018-02-22 2020-10-02 住友金属矿山株式会社 Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257862A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Electrode for secondary battery, and secondary battery
JP2008210701A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2009245808A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Lithium ion secondary battery, and power source for electric vehicle
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
JP2010225486A (en) * 2009-03-25 2010-10-07 Toshiba Corp Nonaqueous electrolyte battery
JP2011515812A (en) * 2008-03-26 2011-05-19 ビーワイディー カンパニー リミテッド Cathode material for lithium batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257862A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Electrode for secondary battery, and secondary battery
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
JP2008210701A (en) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2011515812A (en) * 2008-03-26 2011-05-19 ビーワイディー カンパニー リミテッド Cathode material for lithium batteries
JP2009245808A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Lithium ion secondary battery, and power source for electric vehicle
JP2010225486A (en) * 2009-03-25 2010-10-07 Toshiba Corp Nonaqueous electrolyte battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200027538A (en) * 2017-07-07 2020-03-12 씨에스아이알 Double active cathode material
KR102645751B1 (en) 2017-07-07 2024-03-11 씨에스아이알 Dual active cathode material
CN111741928A (en) * 2018-02-22 2020-10-02 住友金属矿山株式会社 Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
CN111741928B (en) * 2018-02-22 2023-04-28 住友金属矿山株式会社 Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
CN110364697A (en) * 2018-03-26 2019-10-22 丰田自动车株式会社 Positive electrode and the secondary cell for using the positive electrode
CN110364697B (en) * 2018-03-26 2022-06-28 丰田自动车株式会社 Positive electrode material and secondary battery using the same

Similar Documents

Publication Publication Date Title
JP6524158B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, non-aqueous electrolyte secondary battery, battery pack and vehicle
JP5205424B2 (en) Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
KR102572648B1 (en) Composite cathode active material for lithium battery, cathode for lithium battery including the same, and lithium battery including the cathode
WO2014171310A1 (en) Non-aqueous electrolyte secondary battery
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
KR101622352B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20150000564A (en) Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material
JP2008277152A (en) Active material, electrode, battery, and manufacturing method of active material
KR20100072047A (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
WO2014058068A1 (en) Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing positive electrode active substance for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
KR20130033425A (en) Lithium secondary battery
KR20130104334A (en) Positive active material, method of preparing the same, and lithium battery using the same
WO2015001631A1 (en) Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
KR20140009921A (en) Anode active material of high density and methode for preparation of the same
US9716274B2 (en) Cathode active material for sodium batteries, and sodium battery
JP5245201B2 (en) Negative electrode, secondary battery
KR20120117234A (en) Cathode active material, preparation method thereof, and cathode and lithium battery containing the material
JP2013054927A (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode material for lithium ion secondary battery
JP5548523B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP5017010B2 (en) Lithium secondary battery
WO2015001632A1 (en) Cathode material for lithium ion secondary battery, cathode for lithium ion secondary battery, lithium ion secondary battery, and method for producing each of same
US9350021B2 (en) Cathode active material, cathode, and nonaqueous secondary battery
WO2013129150A1 (en) Electrode active material, electrode using electrode active material, and secondary battery
CN114824188B (en) Material for forming positive electrode active material layer and nonaqueous electrolyte secondary battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP