WO2021029289A1 - 六フッ化マンガン酸カリウム、六フッ化マンガン酸カリウムの製造方法及びマンガン賦活複フッ化物蛍光体の製造方法 - Google Patents

六フッ化マンガン酸カリウム、六フッ化マンガン酸カリウムの製造方法及びマンガン賦活複フッ化物蛍光体の製造方法 Download PDF

Info

Publication number
WO2021029289A1
WO2021029289A1 PCT/JP2020/029900 JP2020029900W WO2021029289A1 WO 2021029289 A1 WO2021029289 A1 WO 2021029289A1 JP 2020029900 W JP2020029900 W JP 2020029900W WO 2021029289 A1 WO2021029289 A1 WO 2021029289A1
Authority
WO
WIPO (PCT)
Prior art keywords
potassium
hydrofluoric acid
hexafluoride
solution
phosphor
Prior art date
Application number
PCT/JP2020/029900
Other languages
English (en)
French (fr)
Inventor
真義 市川
基 田中
伊藤 和弘
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202080049614.2A priority Critical patent/CN114096485A/zh
Priority to US17/623,447 priority patent/US20220348478A1/en
Priority to JP2021539228A priority patent/JPWO2021029289A1/ja
Publication of WO2021029289A1 publication Critical patent/WO2021029289A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/06Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/615Halogenides
    • C09K11/616Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/674Halogenides
    • C09K11/675Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present disclosure relates to a method for producing potassium hexafluoromanganate and potassium hexafluoride manganate, and a method for producing a manganese-activated difluoride phosphor.
  • LEDs Light emitting diodes
  • display backlights lighting, and the like.
  • an LED having a blue light emitting diode and a yellow phosphor is generally used.
  • green phosphors and red phosphors have come to be used in combination instead of yellow phosphors.
  • Fluorescent materials generally have a structure in which an element that serves as a luminescence center is dissolved in a parent crystal.
  • the red phosphor include a difluoride phosphor in which Mn 4+ is dissolved as a light emitting center in a mother crystal composed of a difluoride.
  • the double fluoride phosphors for example, the general formula K 2 SiF 6 was activated by solid solution Mn 4+ in host crystal containing double fluoride: manganese activated double fluoride phosphor represented by Mn 4+ (hereinafter, KSF phosphor) and the like.
  • KSF phosphor manganese activated double fluoride phosphor represented by Mn 4+ (hereinafter, KSF phosphor) and the like.
  • the KSF phosphor is attracting attention because it is efficiently excited by blue light and has an emission spectrum with a narrow half width.
  • a method for producing a KSF phosphor for example, a plurality of types of hydrofluoric acid aqueous solutions in which a raw material having a constituent element of the phosphor is dissolved in a hydrofluoric acid aqueous solution are prepared, and these are mixed and reacted.
  • Patent Document 2 A method for producing a phosphor by preparing a plurality of dissolved hydrofluoric acid aqueous solutions, mixing them and reacting them, and further adding a solvent that becomes a poor solvent for the phosphor to precipitate the phosphor (for example).
  • Patent Document 2 A method for producing a phosphor by preparing a plurality of dissolved hydrofluoric acid aqueous solutions, mixing them and reacting them, and further adding a solvent that becomes a poor solvent for the phosphor to precipitate the phosphor (for example).
  • hexapotassium fluoride manganate represented by the general formula K 2 MnF 6 is used as a raw material used in the production method of the KSF phosphor described above.
  • Potassium permanganate hexafluoride is generally prepared in one step in the process of producing KSF phosphors. Examples of the method for preparing potassium permanganate hexafluoride include the Bode method (Non-Patent Document 1) and the electrolytic precipitation method.
  • An object of the present disclosure is to provide potassium permanganate capable of producing a phosphor having excellent internal quantum efficiency, and to provide a method for producing potassium permanganate. It is also an object of the present disclosure to provide a method for producing a manganese-activated difluoride phosphor having excellent internal quantum efficiency.
  • the potassium permanganate can provide a phosphor having excellent internal quantum efficiency.
  • potassium permanganate which has a diffuse reflectance of 60% or more for light having a wavelength of 550 nm
  • the reason why the obtained phosphor has excellent internal quantum efficiency is not always clear.
  • the present inventors speculate as follows.
  • the region having a wavelength of around 550 nm is a region where absorption is observed when an element such as Mn 3+ that does not contribute to fluorescence emission is contained in the phosphor.
  • the high diffuse reflectance of the region means that the proportion of elements such as Mn 3+ in manganese constituting potassium hexafluoride is small, and the element that is the center of light emission in the manganese ( Here, it is shown that the ratio of Mn 4+ ) is high. That is, when potassium hexafluoride manganese having a diffuse reflectance of 60% or more with respect to light having a wavelength of 550 nm is used as a raw material, a manganese-activated difluoride phosphor having a high Mn 4+ ratio can be produced, and the fluorescence thereof.
  • the body is also considered to be excellent in internal quantum efficiency.
  • the above-mentioned potassium permanganate may have a diffuse reflectance of 90% or more with respect to light having a wavelength of 850 nm.
  • a phosphor with further reduced unnecessary absorption can be obtained by using this as a raw material.
  • One aspect of the present disclosure is a step of preparing a hydrofluoric acid aqueous solution in which potassium hydrogen fluoride and potassium permanganate are dissolved in an aqueous solution having a hydrofluoric acid concentration of 58% by mass or more, and the above-mentioned foot.
  • a method for producing potassium permanganate which comprises a step of adding a hydrogen peroxide solution to an aqueous hydrofluoric acid solution to precipitate potassium permanganate hexafluoride.
  • One aspect of the present disclosure is a step of preparing a hydrofluoric acid aqueous solution in which potassium hexafluoride is dissolved in an aqueous solution having a hydrofluoric acid concentration of 58% by mass or more, and the above-mentioned hydrofluoric acid aqueous solution.
  • a method for producing potassium hexafluoride which comprises a step of adding potassium hydrogen fluoride to reprecipitate potassium hexafluoride manganate.
  • potassium hexafluoride is dissolved in an aqueous solution of hydrofluoric acid having a concentration of 58% by mass or more, and then a hydrogen peroxide solution is added to add manganese hexafluoride.
  • the composition of manganese constituting the above potassium permanganate can be adjusted so that the proportion of Mn 4+ is high.
  • One aspect of the present disclosure provides a method for producing a manganese-activated difluoride phosphor, which comprises a step of dissolving the above-mentioned potassium hexafluoride in an aqueous hydrofluoric acid solution.
  • potassium permanganate capable of producing a phosphor having excellent internal quantum efficiency
  • a method for producing potassium permanganate it is also possible to provide a method for producing a manganese-activated difluoride phosphor having excellent internal quantum efficiency.
  • FIG. 1 is a diagram showing a diffuse reflection spectrum of potassium permanganate prepared in Example 1.
  • FIG. 2 is a diagram showing a diffuse reflection spectrum of potassium permanganate prepared in Example 2.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component in the composition are present, unless otherwise specified. ..
  • hexafluoride potassium manganate is represented by the general formula: represented by K 2 MnF 6, diffuse reflectance to light of wavelength 550nm is 60% or more. Potassium permanganate hexafluoride can reduce the absorption of unnecessary excitation light in a phosphor produced from it. That is, potassium hexafluoride manganate is useful as a raw material for a manganese-activated difluoride phosphor.
  • the manganese-activated difluoride phosphor include manganese-activated potassium silicate hexafluoride (K 2 SiF 6 : Mn 4+ ), K 2 GeF 6 : Mn 4+ , and K 2 TiF 6 : Mn 4+. ..
  • potassium and manganese can be quantitatively analyzed by the ICP-MS method. Further, in the composition of the constituent elements of potassium hexafluoride manganate, fluorine can be analyzed by an ion chromatograph method. That is, the measurement as described above, it is possible to identify hexafluoride potassium manganate can be the composition to verify that represented by K 2 MnF 6.
  • the diffuse reflectance for light having a wavelength of 550 nm is 60% or more, but the diffuse reflectance may be, for example, 65% or more, 70% or more, or 75% or more.
  • the internal quantum efficiency of the difluoride phosphor produced by using potassium hexafluoride as a raw material can be further improved.
  • the upper limit of the diffuse reflectance is not particularly limited and may be 100%.
  • the diffuse reflectance may be adjusted within the above range, and may be, for example, 60 to 100%, 70 to 100%, 75 to 100%, or the like.
  • the diffuse reflectance for light having a wavelength of 850 nm may be, for example, 90% or more, 92% or more, 95% or more, or 98% or more.
  • the internal quantum efficiency of the difluoride phosphor produced by using potassium hexafluoride as a raw material can be further improved.
  • the upper limit of the diffuse reflectance is not particularly limited and may be 100%.
  • the diffuse reflectance may be adjusted within the above range, and may be, for example, 90 to 100%, 92 to 100%, 95 to 100%, 98 to 100%, or the like.
  • the diffuse reflectance for light having a wavelength of 310 nm may be, for example, 14% or more, 16% or more, 20% or more, 25% or more, 30% or more, or 35% or more.
  • the internal quantum efficiency of the difluoride phosphor produced by using potassium hexafluoride as a raw material can be further improved.
  • the upper limit of the diffuse reflectance may be, for example, 80% or less, 70% or less, 60% or less, or 55% or less.
  • the diffuse reflectance may be adjusted within the above range, and may be, for example, 14 to 80%, 16 to 80%, 25 to 80%, or the like.
  • the diffuse reflectance means a value determined from the diffuse reflection spectrum of potassium permanganate measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, trade name: V-550). To do.
  • the diffuse reflectance is specifically measured and obtained by the operation described in the examples described in the present specification.
  • the above-mentioned potassium permanganate hexafluoride can be produced, for example, by the following method.
  • the first embodiment of the method for producing potassium hexafluoride is hydrofluoric acid in which potassium hydrogen fluoride and potassium permanganate are dissolved in an aqueous solution having a concentration of hydrofluoric acid of 60% by mass or more. It includes a step of preparing an aqueous solution and a step of adding a hydrofluoric acid solution to the hydrofluoric acid aqueous solution to precipitate potassium permanganate.
  • an aqueous solution having a hydrofluoric acid concentration of 58% by mass or more is used.
  • the lower limit of the concentration of hydrofluoric acid in the aqueous hydrofluoric acid solution may be, for example, 59% by mass or more, or 60% by mass or more.
  • the valence of manganese which is a constituent element of potassium hexafluoromanganate, can be adjusted.
  • Mn incorporated into potassium permanganate by stabilizing Mn 4+ in an aqueous solution and suppressing the generation of Mn having other valences such as Mn 3+ that does not contribute to fluorescence emission.
  • the proportion of 4+ can be increased. Since Mn 3+ can absorb light having a wavelength of 550 nm, the diffuse reflectance of the obtained potassium hexafluoromanganate with respect to light having a wavelength of 550 nm can be further improved by reducing the proportion of Mn 3+ .
  • the upper limit of the concentration of hydrofluoric acid in the aqueous hydrofluoric acid solution is not particularly limited, but may be, for example, 70% by mass or less, or 65% by mass or less.
  • the concentration of hydrofluoric acid in the aqueous hydrofluoric acid solution can be adjusted within the above range, and may be, for example, 58 to 70% by mass, or 60 to 65% by mass.
  • the content of potassium hydrogen fluoride and potassium permanganate in the aqueous hydrofluoric acid solution is hexafluoride. It can be appropriately adjusted according to the elemental composition of potassium permanganate.
  • the hydrofluoric acid aqueous solution may contain other compounds in addition to potassium hydrogen fluoride and potassium permanganate.
  • examples of other compounds include potassium fluoride and the like.
  • Potassium bifluoride, potassium permanganate, and the above other compounds may be partially or completely dispersed in the solution in the hydrofluoric acid aqueous solution, and may be completely dissolved and ionized, etc. It may be in the state of
  • the step of adding hydrogen peroxide solution to the hydrofluoric acid aqueous solution to precipitate potassium permanganate hexafluoride is preferably carried out over a certain period of time while stirring the aqueous solution.
  • the stirring time may be adjusted according to the volume of the solution, the pH of the solution, potassium hydrogen fluoride, potassium permanganate, the blending amount of the above other compounds, and the like.
  • the stirring time may be about 10 minutes to 12 hours, preferably 1 to 3 hours, from the viewpoint of reactivity and productivity.
  • the stirring may be, for example, magnetic stirring, mechanical stirring, or the like.
  • the stirring speed may be adjusted according to the volume of the solution, potassium hydrogen fluoride, potassium permanganate, the amount of the above-mentioned other compounds, and the like.
  • the stirring speed is not particularly limited, but may be, for example, 200 to 500 rpm.
  • the temperature of the hydrofluoric acid aqueous solution can be set to around room temperature.
  • the lower limit of the temperature of the hydrofluoric acid aqueous solution in the above step may be, for example, more than 5 ° C., 10 ° C. or higher, 15 ° C. or higher, 20 ° C. or higher, or 25 ° C. or higher from the viewpoint of improving productivity.
  • the upper limit of the temperature of the hydrofluoric acid aqueous solution in the above step may be, for example, 40 ° C. or lower or 30 ° C.
  • the temperature of the hydrofluoric acid aqueous solution in the above step can be adjusted within the above range, and may be, for example, 10 to 30 ° C. or 25 to 30 ° C.
  • the concentration of the hydrogen peroxide solution added to the hydrofluoric acid aqueous solution may be, for example, 25% by mass or more, or 30% by mass or more.
  • the lower limit of the amount of hydrogen peroxide compounded is, for example, 15 parts by mass or more, 17 parts by mass or more, 20 parts by mass or more, and 23 parts by mass or more, based on 100 parts by mass of potassium permanganate. You can. By setting the lower limit of the blending amount of hydrogen peroxide within the above range, the reaction can be carried out efficiently and the yield can be improved.
  • the upper limit of the amount of hydrogen peroxide blended may be, for example, 35 parts by mass or less, or 33 parts by mass or less, based on 100 parts by mass of potassium permanganate.
  • the blending amount of hydrogen peroxide can be adjusted within the above range, and may be, for example, 15 to 35 parts by mass or 25 to 33 parts by mass based on 100 parts by mass of potassium permanganate.
  • the second embodiment of the method for producing potassium hexafluoride prepares a hydrofluoric acid aqueous solution in which potassium hexafluoride is dissolved in an aqueous solution having a hydrofluoric acid concentration of 58% by mass or more. It includes a step and a step of adding potassium hydrogen fluoride to the aqueous hydrofluoric acid solution to reprecipitate potassium hexafluoride manganate.
  • potassium hexafluoride manganate is generally prepared in one step in the process of producing a difluoride phosphor, and potassium hexafluoride manganate is isolated and then recrystallized and purified.
  • the conventional potassium permanganate hexafluoride is formed as containing manganese of various valences and is consumed as it is as a phosphor raw material. Therefore, Mn in the obtained phosphor is obtained.
  • the ratio of 4+ is not always high.
  • potassium hexafluoride manganese in the method for producing potassium hexafluoride manganese according to the present embodiment, potassium hexafluoride is dissolved in an aqueous solution of hydrofluoric acid having a specific concentration or higher, and the aqueous solution is recrystallized and purified.
  • the composition of manganese constituting potassium hexafluoride can be adjusted so that the ratio of Mn 4+ is high.
  • the ratio of Mn of other valences such as Mn 3+ that does not contribute to fluorescence emission to the manganese constituting the obtained potassium permanganate is reduced, and the diffusion reflectance for light having a wavelength of 550 nm is improved. It is possible to obtain the prepared potassium permanganate hexafluoride.
  • the above-mentioned potassium hexafluoride manganate is useful as a raw material used for producing a difluoride phosphor.
  • the difluoride phosphor include manganese-activated difluoride phosphors and the like.
  • Examples of the manganese-activated difluoride phosphor include manganese-activated potassium silicate hexafluoride (K 2 SiF 6 : Mn 4+ ), K 2 GeF 6 : Mn 4+ , and K 2 TiF 6 : Mn 4+. ..
  • potassium permanganate hexafluoride dissolved in a hydrofluoric acid aqueous solution having a concentration of 60% by mass or more can be prepared by a conventional method such as a Bode method and an electrolytic precipitation method. Potassium permanganate hexafluoride can be used.
  • an aqueous solution having a hydrofluoric acid concentration of 58% by mass or more is used.
  • the lower limit of the concentration of hydrofluoric acid in the aqueous hydrofluoric acid solution may be, for example, 59% by mass or more, or 60% by mass or more.
  • Mn incorporated into potassium permanganate by stabilizing Mn 4+ in an aqueous solution and suppressing the generation of Mn having other valences such as Mn 3+ that does not contribute to fluorescence emission.
  • the proportion of 4+ can be increased. Since Mn 3+ can absorb light having a wavelength of 550 nm, the diffuse reflectance of the obtained potassium hexafluoromanganate with respect to light having a wavelength of 550 nm can be further improved by reducing the proportion of Mn 3+ .
  • the upper limit of the concentration of hydrofluoric acid in the aqueous hydrofluoric acid solution is not particularly limited, but may be, for example, 70% by mass or less, or 65% by mass or less.
  • the concentration of hydrofluoric acid in the aqueous hydrofluoric acid solution can be adjusted within the above range, and may be, for example, 58 to 70% by mass, or 60 to 65% by mass.
  • the lower limit of the blending amount of potassium hydrogen fluoride is 200 parts by mass or more, 300 parts by mass or more, or 450 parts by mass with reference to 100 parts by mass of potassium hexafluoride from the viewpoint of improving the yield. It may be more than one part.
  • the upper limit of the amount of potassium hydrogen fluoride to be blended is 1000 parts by mass or less and 800 parts by mass based on 100 parts by mass of potassium permanganate from the viewpoint of improving the ease of handling of purified potassium permanganate. It may be less than a part, or less than 500 parts by mass.
  • the blending amount of potassium hydrogen fluoride can be adjusted within the above range, and may be, for example, 200 to 800 parts by mass or 200 to 500 parts by mass based on 100 parts by mass of potassium permanganate hexafluoride. ..
  • One embodiment of the method for producing a manganese-activated compound fluoride phosphor has a step of dissolving the above-mentioned potassium hexafluoride in an aqueous hydrofluoric acid solution.
  • the above-mentioned potassium hexafluoride is dissolved in hydrofluoric acid or an aqueous solution of hydrofluoric acid, and further, a compound serving as a potassium source and a silicon source are used.
  • a production method comprising a step of preparing a solution in which a compound and a compound serving as a fluorine source are dissolved, heating the solution and evaporating to dryness to obtain a manganese-activated difluoride phosphor can be mentioned.
  • a production method for example, a compound obtained by dissolving the above-mentioned potassium hexafluoride in a hydrofluoric acid or an aqueous solution of silicofluoric acid and further serving as a potassium source.
  • a production method comprising a step of preparing a solution in which a compound serving as a silicon source and a compound serving as a fluorine source are dissolved, and cooling the solution to obtain a manganese-activated difluoride phosphor.
  • a compound obtained by dissolving the above-mentioned potassium hexafluoride in a hydrofluoric acid or an aqueous solution of silicofluoric acid and further serving as a potassium source for example, a compound obtained by dissolving the above-mentioned potassium hexafluoride in a hydrofluoric acid or an aqueous solution of silicofluoric acid and further serving as a potassium source.
  • a solution in which a compound serving as a silicon source and a compound serving as a fluorine source are dissolved is prepared, and a poor solvent for the manganese-activated difluoride phosphor is added to the solution to reduce the solubility of the manganese-activated difluoride phosphor.
  • It may be a production method having a step of obtaining a phosphor by precipitating a manganese-activated difluoride phosphor.
  • K 2 SiF 6 By the method for producing a manganese-activated double fluoride phosphors described above, for example, K 2 SiF 6: it is possible to produce a phosphor or the like including a Mn 4+.
  • the phosphor containing K 2 SiF 6 : Mn 4+ may be a fluoride represented by K 2 SiF 6 in which a part of the site of the tetravalent element is replaced with manganese.
  • K potassium
  • Si silicon
  • F fluorine
  • Mn manganese
  • Some of the elements in the crystal may be missing by being replaced by the elements.
  • the other element may be at least one selected from the group consisting of, for example, sodium (Na), germanium (Ge), titanium (Ti), and oxygen (O).
  • the manganese-activated compound fluoride phosphor produced as described above has excellent internal quantum efficiency.
  • the internal quantum efficiency of the manganese-activated difluoride phosphor can be greater than 86%, greater than or equal to 87%, greater than or equal to 88%, greater than or equal to 89%, or greater than or equal to 90%.
  • the above-mentioned manganese-activated compound fluoride phosphor can be more excellent in internal quantum efficiency than the conventional manganese-activated compound fluoride phosphor, and is therefore useful as, for example, a red phosphor used for LEDs.
  • Example 1 [Preparation of KMF (K 2 MnF 6 )]
  • KMF K 2 MnF 6
  • hydrofluoric acid concentration: 60% by mass
  • 619.12 g of potassium hydrogen fluoride powder manufactured by Kanto Chemical Co., Ltd.
  • 21.0 g of hydrofluoric acid were measured here.
  • An aqueous hydrofluoric acid solution was prepared by dissolving potassium permanganate powder (manufactured by Kanto Chemical Co., Ltd.).
  • the K 2 MnF 6 powder of Example 1 was obtained.
  • the K 2 MnF 6 powder was prepared at room temperature (25 ° C.).
  • Example 2 [Preparation of KMF (K 2 MnF 6 )]
  • hydrofluoric acid concentration: 48% by mass
  • 516 g of potassium bifluoride powder manufactured by Kanto Chemical Co., Ltd.
  • 24.0 g of permanganate were measured.
  • An aqueous solution of hydrofluoric acid was prepared by dissolving potassium acid powder (manufactured by Kanto Chemical Co., Ltd.).
  • the K 2 MnF 6 powder of Example 2 was obtained.
  • the K 2 MnF 6 powder was prepared at room temperature (25 ° C.).
  • Example 2 K 2 MnF 6 powder (powder before the operation using hydrofluoric acid (concentration: 60% by mass)) once prepared using hydrofluoric acid (concentration: 48% by mass) was used.
  • the K 2 MnF 6 powder of Comparative Example 1 was used.
  • the solution was stirred for a while to complete the precipitation of the yellow powder.
  • the yellow powder was precipitated by terminating the stirring and allowing the solution to stand. Then, the supernatant was removed, and the yellow powder was washed with hydrofluoric acid (concentration: 24% by mass, manufactured by Stella Chemifa) and methanol (manufactured by Kanto Chemical Co., Inc.). After washing, the yellow powder was collected by filtration. After the recovered yellow powder is dried, it is classified using a nylon sieve having a mesh opening of 75 ⁇ m, and 20.3 g of yellow powder KSF (manganese-activated compound fluoride phosphor) is obtained as the powder that has passed through the sieve. Obtained. The volume median diameter (D50) of the KSF was 28 ⁇ m.
  • a standard reflector manufactured by Labsphere, trade name: Spectralon having a reflectance of 99% was set in the side opening ( ⁇ 10 mm) of the integrating sphere ( ⁇ 60 mm).
  • Monochromatic light dispersed at a wavelength of 455 nm from a light emitting source (Xe lamp) was introduced into the integrating sphere by an optical fiber, and the spectrum of the reflected light was measured by a spectroscope.
  • the number of excited photons (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm.
  • a concave cell filled with a phosphor so as to have a smooth surface is set in the opening of the integrating sphere, irradiated with the monochromatic light having a wavelength of 455 nm, and the spectrum of the reflected light and fluorescence of the excitation is measured. Measured by a spectroscope. From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated. The number of excited reflected light photons was calculated in the same wavelength range as the number of excited light photons, and the number of fluorescent photons was calculated in the range of 465 to 800 nm.
  • potassium permanganate capable of producing a phosphor having excellent internal quantum efficiency
  • a method for producing potassium permanganate it is also possible to provide a method for producing a manganese-activated difluoride phosphor having excellent internal quantum efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本開示の一側面は、一般式:KMnFで表され、波長550nmの光に対する拡散反射率が60%以上である、六フッ化マンガン酸カリウムを提供する。

Description

六フッ化マンガン酸カリウム、六フッ化マンガン酸カリウムの製造方法及びマンガン賦活複フッ化物蛍光体の製造方法
 本開示は、六フッ化マンガン酸カリウム、六フッ化マンガン酸カリウムの製造方法、及びマンガン賦活複フッ化物蛍光体の製造方法に関する。
 発光ダイオード(LED)は、画像表示装置、ディスプレイのバックライト、照明等に広く用いられている。LEDを用いた画像表示装置では、一般に青色発光ダイオードと、黄色蛍光体と、を有するLEDが使用されている。近年、画像表示装置に対する高演色化の要請から、黄色蛍光体に代えて、緑色蛍光体及び赤色蛍光体が併用して用いられるようになってきている。
 蛍光体は一般に、母体結晶中に発光中心となる元素を固溶させた構造を有する。赤色蛍光体としては、例えば、複フッ化物からなる母体結晶中に、発光中心としてMn4+を固溶させた複フッ化物蛍光体等が挙げられる。複フッ化物蛍光体としては、例えば、複フッ化物を含む母体結晶中にMn4+を固溶させ賦活した一般式KSiF:Mn4+で表されるマンガン賦活複フッ化物蛍光体(以下、KSF蛍光体ともいう)などが挙げられる。KSF蛍光体は、青色光で効率よく励起され、半値幅が狭い発光スペクトルを有することから着目されている。
 KSF蛍光体の製造方法としては、例えば、蛍光体の構成元素を有する原料をフッ化水素酸水溶液中に溶解させた複数種のフッ化水素酸水溶液を調製し、これを混合して反応させること、若しくは、上記フッ化水素酸水溶液と固体原料とを反応させること、によって蛍光体を製造する方法(例えば、特許文献1)、又は、蛍光体の構成元素を有する原料をフッ化水素酸水溶液に溶解させた複数種のフッ化水素酸水溶液を調製し、これを混合した反応させ、蛍光体の貧溶媒となる溶媒を更に加え蛍光体を析出させることによって、蛍光体を製造する方法(例えば、特許文献2)などが知られている。
 上述のKSF蛍光体の製造方法に使用する原料として、一般式KMnFで表される六フッ化マンガン酸カリウムが用いられている。六フッ化マンガン酸カリウムは、一般的には、KSF蛍光体の製造過程における一工程で調製される。六フッ化マンガン酸カリウムの調製方法としては、例えば、Bode法(非特許文献1)、及び電解析出法などが挙げられる。
特開2010-209331号公報 米国特許第3576756号明細書
H.Bode,H.Jenssen,andF.Bandte,Angew.Chem.,1953,304
 本開示は、内部量子効率に優れる蛍光体を製造可能な六フッ化マンガン酸カリウムを提供すること、及び六フッ化マンガン酸カリウムの製造方法を提供することを目的とする。本開示はまた、内部量子効率に優れるマンガン賦活複フッ化物蛍光体の製造方法を提供することを目的とする。
 本開示の一側面は、一般式:KMnFで表され、波長550nmの光に対する拡散反射率が60%以上である、六フッ化マンガン酸カリウムを提供する。
 上記六フッ化マンガン酸カリウムは、内部量子効率に優れる蛍光体を与えることができる。波長550nmの光に対する拡散反射率が60%以上である六フッ化マンガン酸カリウムを原料とする場合に、得られる蛍光体が内部量子効率に優れたものとなる理由は必ずしも定かではない。しかし、本発明者らは以下のように推測する。波長550nm付近の領域は、蛍光発光に寄与しないMn3+等の元素が蛍光体中に含まれる場合に吸収がみられる領域である。そして、当該領域の拡散反射率が高いことは、六フッ化マンガン酸カリウムを構成するマンガン中に占めるMn3+等の元素の割合が少ないことを意味し、当該マンガンに占める発光中心となる元素(ここではMn4+)の割合が高いことを示す。すなわち、波長550nmの光に対する拡散反射率が60%以上である六フッ化マンガン酸カリウムを原料とする場合、Mn4+の割合が高いマンガン賦活複フッ化物蛍光体を製造することができ、当該蛍光体は内部量子効率にも優れると考えられる。
 上記六フッ化マンガン酸カリウムは、波長850nmの光に対する拡散反射率が90%以上であってもよい。六フッ化マンガン酸カリウムの波長850nmの光に対する拡散反射率が上記範囲内である場合、これを原料として用いることで、不要な吸収がより低減された蛍光体を得ることができる。
 本開示の一側面は、フッ化水素酸の濃度が58質量%以上である水溶液に、フッ化水素カリウム、及び過マンガン酸カリウムを溶解させたフッ化水素酸水溶液を調製する工程と、上記フッ化水素酸水溶液に過酸化水素水を加えて、六フッ化マンガン酸カリウムを析出させる工程と、を有する、六フッ化マンガン酸カリウムの製造方法を提供する。
 上記六フッ化マンガン酸カリウムの製造方法は、58質量%以上の濃度のフッ化水素酸水溶液を用いることから、水溶液中でMn4+を安定化させることができ、蛍光発光に寄与しないMn3+等の他の価数のMnが生じることを抑制することができる。このため、過酸化水素水を加えて、六フッ化マンガン酸カリウムを析出させる過程において、六フッ化マンガン酸カリウム中へのMn3+等の他の価数のMnの取り込みを低減することができる。このような作用によって、内部量子効率に優れる蛍光体を製造するための原料となり得る六フッ化マンガン酸カリウムを製造することができる。
 本開示の一側面は、フッ化水素酸の濃度が58質量%以上である水溶液に、六フッ化マンガン酸カリウムを溶解させたフッ化水素酸水溶液を調製する工程と、上記フッ化水素酸水溶液にフッ化水素カリウムを加えて、六フッ化マンガン酸カリウムを再析出させる工程と、を有する、六フッ化マンガン酸カリウムの製造方法を提供する。
 上記六フッ化マンガン酸カリウムの製造方法は、58質量%以上の濃度のフッ化水素酸水溶液に六フッ化マンガン酸カリウムを溶解させ、その後、過酸化水素水を加えて、六フッ化マンガン酸カリウムを析出させる過程において、上記六フッ化マンガン酸カリウムを構成していたマンガンの組成をMn4+の割合が高くなるように、調整することができる。このような作用によって、内部量子効率に優れる蛍光体を製造するための原料となり得る六フッ化マンガン酸カリウムを製造することができる。
 本開示の一側面は、上述の六フッ化マンガン酸カリウムをフッ化水素酸水溶液に溶解させる工程を有する、マンガン賦活複フッ化物蛍光体の製造方法を提供する。
 上記マンガン賦活複フッ化物蛍光体の製造方法は、上述の六フッ化マンガン酸カリウムを原料として用いていることから、内部量子効率に優れる複フッ化物蛍光体を製造できる。
 本開示によれば、内部量子効率に優れる蛍光体を製造可能な六フッ化マンガン酸カリウムを提供すること、及び六フッ化マンガン酸カリウムの製造方法を提供することができる。本開示によればまた、内部量子効率に優れるマンガン賦活複フッ化物蛍光体の製造方法を提供することができる。
図1は、実施例1で調製した六フッ化マンガン酸カリウムの拡散反射スペクトルを示す図である。 図2は、実施例2で調製した六フッ化マンガン酸カリウムの拡散反射スペクトルを示す図である。
 以下、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 六フッ化マンガン酸カリウムの一実施形態は、一般式:KMnFで表され、波長550nmの光に対する拡散反射率が60%以上である。六フッ化マンガン酸カリウムは、これを原料として製造される蛍光体における不要な励起光の吸収を低減することができる。すなわち、六フッ化マンガン酸カリウムは、マンガン賦活複フッ化物蛍光体の原料として有用である。マンガン賦活複フッ化物蛍光体としては、例えば、マンガン賦活六フッ化ケイ酸カリウム(KSiF:Mn4+)、KGeF:Mn4+、及びKTiF:Mn4+等が挙げられる。
 六フッ化マンガン酸カリウムの構成元素における組成において、カリウム及びマンガンについては、ICP-MS法によって定量的に分析することができる。また六フッ化マンガン酸カリウムの構成元素における組成において、フッ素については、イオンクロマトグラフ法によって分析することができる。すなわち、上述のような測定によって、六フッ化マンガン酸カリウムを同定することができ、その組成がKMnFで表されることを確認することができる。
 六フッ化マンガン酸カリウムにおいて、波長550nmの光に対する拡散反射率が60%以上であるが、上記拡散反射率は、例えば、65%以上、70%以上、又は75%以上であってもよい。波長550nmの光に対する拡散反射率が上述の範囲内であると、六フッ化マンガン酸カリウムを原料として用いて製造される複フッ化物蛍光体の内部量子効率をより向上させることができる。上記拡散反射率の上限値は特に制限されるものではなく、100%であってもよい。上記拡散反射率は上述の範囲内で調整してよく、例えば、60~100%、70~100%、又は75~100%等であってよい。
 六フッ化マンガン酸カリウムにおいて、波長850nmの光に対する拡散反射率は、例えば、90%以上、92%以上、95%以上、又は98%以上であってもよい。波長850nmの光に対する拡散反射率が上述の範囲内であると、六フッ化マンガン酸カリウムを原料として用いて製造される複フッ化物蛍光体の内部量子効率をより向上させることができる。上記拡散反射率の上限値は特に制限されるものではなく、100%であってもよい。上記拡散反射率は上述の範囲内で調整してよく、例えば、90~100%、92~100%、95~100%、又は98~100%等であってよい。
 六フッ化マンガン酸カリウムにおいて、波長310nmの光に対する拡散反射率は、例えば、14%以上、16%以上、20%以上、25%以上、30%以上、又は35%以上であってもよい。波長310nmの光に対する拡散反射率が上述の範囲内であると、六フッ化マンガン酸カリウムを原料として用いて製造される複フッ化物蛍光体の内部量子効率をより向上させることができる。上記拡散反射率の上限値は、例えば、80%以下、70%以下、60%以下、又は55%以下であってよい。上記拡散反射率は上述の範囲内で調整してよく、例えば、14~80%、16~80%、又は25~80%等であってよい。
 本明細書において拡散反射率は、紫外可視分光光度計(日本分光株式会社製、商品名:V-550)を用い測定される六フッ化マンガン酸カリウムの拡散反射スペクトルから決定される値を意味する。拡散反射率は、具体的には本明細書に記載の実施例に記載の操作によって測定して求める。
 上述の六フッ化マンガン酸カリウムは、例えば、以下のような方法で製造することができる。六フッ化マンガン酸カリウムの製造方法の第一実施形態は、フッ化水素酸の濃度が60質量%以上である水溶液に、フッ化水素カリウム、及び過マンガン酸カリウムを溶解させたフッ化水素酸水溶液を調製する工程と、上記フッ化水素酸水溶液に過酸化水素水を加えて、六フッ化マンガン酸カリウムを析出させる工程と、を有する。
 本実施形態に係る製造方法においては、フッ化水素酸の濃度が58質量%以上である水溶液を用いる。フッ化水素酸水溶液におけるフッ化水素酸の濃度の下限値は、例えば、59質量%以上、又は60質量%以上であってよい。フッ化水素酸水溶液の濃度の下限値が上述の範囲内であることによって、六フッ化マンガン酸カリウムの構成元素となるマンガンの価数を調整することができる。より具体的には、水溶液中におけるMn4+を安定化させ、蛍光発光に寄与しないMn3+等の他の価数のMnが生じることを抑制することで、六フッ化マンガン酸カリウムに取り込まれるMn4+の割合を増加させることができる。Mn3+は波長550nmの光を吸収できることから、Mn3+の割合を低減することによって、得られる六フッ化マンガン酸カリウムの波長550nmの光に対する拡散反射率をより向上させることができる。フッ化水素酸水溶液におけるフッ化水素酸の濃度の上限値は、特に制限されるものではないが、例えば、70質量%以下、又は65質量%以下であってよい。フッ化水素酸水溶液の濃度の上限値が上述の範囲内であることによって、操業性にぐれる。フッ化水素酸水溶液におけるフッ化水素酸の濃度は上述の範囲内で調整することができ、例えば、58~70質量%であってよく、60~65質量%であってよい。
 フッ化水素カリウム、及び過マンガン酸カリウムを溶解させたフッ化水素酸水溶液を調製する工程において、フッ化水素酸水溶液中において、フッ化水素カリウム及び過マンガン酸カリウムの含有量は、六フッ化マンガン酸カリウムの元素組成に合わせて適宜調整することができる。
 フッ化水素酸水溶液は、フッ化水素カリウム及び過マンガン酸カリウムに加えて、他の化合物を含んでもよい。他の化合物としては、例えば、フッ化カリウム等が挙げられる。
 フッ化水素酸水溶液中において、フッ化水素カリウム、過マンガン酸カリウム、及び上記他の化合物は、例えば、溶液中に一部又は全部が分散した状態であってもよく、完全に溶解及び電離等した状態であってもよい。
 上記フッ化水素酸水溶液に過酸化水素水を加えて、六フッ化マンガン酸カリウムを析出させる工程は、上記水溶液を撹拌しながら、一定時間かけて行うことが好ましい。撹拌時間は、溶液の容量、溶液のpH、フッ化水素カリウム、過マンガン酸カリウム、及び上記他の化合物の配合量等に応じて調整してもよい。撹拌時間は、反応性及び生産性の観点から、10分間~12時間程度であってよく、好ましくは1~3時間である。撹拌は、例えば、磁力撹拌及び機械撹拌等であってよい。撹拌速度は、溶液の容量、フッ化水素カリウム、過マンガン酸カリウム、及び上記他の化合物の配合量等に応じて調整してもよい。撹拌速度は特に制限されるものではないが、例えば、200~500rpmであってよい。
 上記フッ化水素酸水溶液に過酸化水素水を加えて、六フッ化マンガン酸カリウムを析出させる工程において、フッ化水素酸水溶液の温度は室温付近に設定することもできる。上記工程におけるフッ化水素酸水溶液の温度の下限値は、生産性を向上させる観点から、例えば、5℃超、10℃以上、15℃以上、20℃以上、又は25℃以上であってよい。上記工程におけるフッ化水素酸水溶液の温度の上限値は、六フッ化マンガン酸カリウムの製造における溶液の取り扱い性を向上させる観点から、例えば、40℃以下、又は30℃以下であってよい。上記工程におけるフッ化水素酸水溶液の温度は上述の範囲内で調整することができ、例えば、10~30℃であってよく、25~30℃であってよい。
 上記フッ化水素酸水溶液に加える過酸化水素水の濃度は、例えば、25質量%以上、又は30質量%以上であってよい。過酸化水素の配合量の下限値は、歩留まりの観点から、過マンガン酸カリウム100質量部を基準として、例えば、15質量部以上、17質量部以上、20質量部以上、23質量部以上であってよい。過酸化水素の配合量の下限値を上記範囲内とすることによって、効率よく反応させることができ、収率を向上させることができる。過酸化水素の配合量の上限値は、過マンガン酸カリウム100質量部を基準として、例えば、35質量部以下、又は33質量部以下であってよい。過酸化水素の配合量の上限値を上記範囲内とすることによって、過剰な反応を抑制でき、収率を向上させることができる。過酸化水素の配合量は上述の範囲内で調整することができ、過マンガン酸カリウム100質量部を基準として、例えば、15~35質量部、又は25~33質量部であってよい。
 六フッ化マンガン酸カリウムの製造方法の第二実施形態は、フッ化水素酸の濃度が58質量%以上である水溶液に、六フッ化マンガン酸カリウムを溶解させたフッ化水素酸水溶液を調製する工程と、上記フッ化水素酸水溶液にフッ化水素カリウムを加えて、六フッ化マンガン酸カリウムを再析出させる工程と、を有する。
 従来、六フッ化マンガン酸カリウムは、複フッ化物蛍光体の製造過程における一工程で調製されることが一般的であり、六フッ化マンガン酸カリウムを単離し、そのうえで更に再結晶精製を行うことは行われていない。つまり、従来の六フッ化マンガン酸カリウムには、種々の価数のマンガンが含まれたものとして形成されており、そのまま蛍光体原料として消費されることになるから、得られる蛍光体中のMn4+の割合は必ずしも高くない。これに対して、本実施形態に係る六フッ化マンガン酸カリウムの製造方法では、六フッ化マンガン酸カリウムを、特定の濃度以上のフッ化水素酸水溶液に溶解させ、そこ水溶液から再結晶精製させることによって、六フッ化マンガン酸カリウムを構成していたマンガンの組成をMn4+の割合が高くなるように調製することができる。これによって、得られる六フッ化マンガン酸カリウムを構成していたマンガンに占める蛍光発光に寄与しないMn3+等の他の価数のMnの割合が低減され、波長550nmの光に対する拡散反射率を向上させた六フッ化マンガン酸カリウムを得ることができる。
 上述の六フッ化マンガン酸カリウムは、複フッ化物蛍光体の製造に用いる原料として有用である。複フッ化物蛍光体としては、例えば、マンガン賦活複フッ化物蛍光体等が挙げられる。マンガン賦活複フッ化物蛍光体としては、例えば、マンガン賦活六フッ化ケイ酸カリウム(KSiF:Mn4+)、KGeF:Mn4+、及びKTiF:Mn4+等が挙げられる。
 本実施形態に係る製造方法において、濃度が60質量%以上であるフッ化水素酸水溶液に溶解させる六フッ化マンガン酸カリウムは、例えば、Bode法及び電解析出法等の従来法によって調製可能な六フッ化マンガン酸カリウムを用いることができる。
 本実施形態に係る製造方法においては、フッ化水素酸の濃度が58質量%以上である水溶液を用いる。フッ化水素酸水溶液におけるフッ化水素酸の濃度の下限値は、例えば、59質量%以上、又は60質量%以上であってよい。フッ化水素酸水溶液の濃度の下限値を上記範囲内とすることによって、六フッ化マンガン酸カリウムの構成元素となるマンガンの価数を調整することができる。より具体的には、水溶液中におけるMn4+を安定化させ、蛍光発光に寄与しないMn3+等の他の価数のMnが生じることを抑制することで、六フッ化マンガン酸カリウムに取り込まれるMn4+の割合を増加させることができる。Mn3+は、波長550nmの光を吸収できることから、Mn3+の割合を低減することによって、得られる六フッ化マンガン酸カリウムの波長550nmの光に対する拡散反射率をより向上させることができる。フッ化水素酸水溶液におけるフッ化水素酸の濃度の上限値は、特に制限されるものではないが、例えば、70質量%以下、又は65質量%以下であってよい。フッ化水素酸水溶液の濃度の上限値が上述の範囲内であることによって、操業性にぐれる。フッ化水素酸水溶液におけるフッ化水素酸の濃度は上述の範囲内で調整することができ、例えば、58~70質量%であってよく、60~65質量%であってよい。
 本実施形態において、フッ化水素カリウムの配合量の下限値は、歩留まりを向上させる観点から、六フッ化マンガン酸カリウム100質量部を基準として、200質量部以上、300質量部以上、又は450質量部以上であってよい。フッ化水素カリウムの配合量の上限値は、精製する六フッ化マンガン酸カリウムの取扱いやすさを向上させる観点から、六フッ化マンガン酸カリウム100質量部を基準として、1000質量部以下、800質量部以下、又は500質量部以下であってよい。フッ化水素カリウムの配合量は上述の範囲内で調整することができ、六フッ化マンガン酸カリウム100質量部を基準として、例えば、200~800質量部、又は200~500質量部であってよい。
 マンガン賦活複フッ化物蛍光体の製造方法の一実施形態は、上述の六フッ化マンガン酸カリウムをフッ化水素酸水溶液に溶解させる工程を有する。
 当該製造方法のより具体的な一態様としては、例えば、フッ化水素酸若しくはケイフッ化水素酸水溶液に、上述の六フッ化マンガン酸カリウムを溶解させ、更に、カリウム源となる化合物、ケイ素源となる化合物、及びフッ素源となる化合物を溶解させた溶液を調製し、当該溶液を加熱し蒸発乾固させてマンガン賦活複フッ化物蛍光体を得る工程を有する製造方法が挙げられる。また、当該製造方法のより具体的な別の一態様としては、例えば、フッ化水素酸若しくはケイフッ化水素酸水溶液に、上述の六フッ化マンガン酸カリウムを溶解させ、更に、カリウム源となる化合物、ケイ素源となる化合物、及びフッ素源となる化合物を溶解させた溶液を調製し、上記溶液を冷却してマンガン賦活複フッ化物蛍光体を得る工程を有する製造方法が挙げられる。また、当該製造方法のより具体的な別の一態様としては、例えば、フッ化水素酸若しくはケイフッ化水素酸水溶液に、上述の六フッ化マンガン酸カリウムを溶解させ、更に、カリウム源となる化合物、ケイ素源となる化合物、及びフッ素源となる化合物を溶解させた溶液を調製し、上記溶液に上記マンガン賦活複フッ化物蛍光体の貧溶媒を添加しマンガン賦活複フッ化物蛍光体の溶解度を低下させて、マンガン賦活複フッ化物蛍光体を析出させることで蛍光体を得る工程を有する製造方法であってもよい。
 上述のマンガン賦活複フッ化物蛍光体の製造方法においては、波長550nmの光に対する拡散反射率が60%以上である六フッ化マンガン酸カリウム、例えば、Mn3+等の他の価数のMnの割合が低減された六フッ化マンガン酸カリウムを用いていることから、従来の六フッ化マンガン酸カリウムに比べて、Mn4+をマンガン賦活複フッ化物蛍光体により効率的に供給することができる。このため、得られるマンガン賦活複フッ化物蛍光体は、発光強度に優れると共に、550nmの光の吸収が抑制されることから、内部量子効率にもより優れる。
 上述のマンガン賦活複フッ化物蛍光体の製造方法によって、例えば、KSiF:Mn4+を含む蛍光体等を製造することができる。KSiF:Mn4+を含む蛍光体は、KSiFで表されるフッ化物であって、4価の元素のサイトの一部がマンガンで置換されたものであってよい。フッ化物蛍光体は、その構成元素であるカリウム(K)、ケイ素(Si)、フッ素(F)、及びマンガン(Mn)の一部がその他の元素に置換されていてもよく、価数の異なる元素によって置換されることによって結晶中の元素が一部欠落していてもよい。その他の元素は、例えば、ナトリウム(Na)、ゲルマニウム(Ge)、チタン(Ti)、及び酸素(O)からなる群より選択される少なくとも一種であってもよい。
 上述のようにして製造されるマンガン賦活複フッ化物蛍光体は内部量子効率に優れる。マンガン賦活複フッ化物蛍光体の内部量子効率は、86%超、87%以上、88%以上、89%以上、又は90%以上とすることができる。上述のマンガン賦活複フッ化物蛍光体は、従来のマンガン賦活複フッ化物蛍光体よりも内部量子効率に優れたものとなり得ることから、例えば、LEDに用いる赤色蛍光体として有用である。
 以上、幾つかの実施形態について説明したが、共通する構成については互いの説明を適用することができる。また本開示は、上記実施形態に何ら限定されるものではない。
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
(実施例1)
[KMF(KMnF)の調製]
 容量が2000mLのフッ素樹脂製ビーカーに、1600mLのフッ化水素酸(濃度:60質量%)を測り取り、ここに619.12gのフッ化水素カリウム粉末(関東化学株式会社製)及び21.0gの過マンガン酸カリウム粉末(関東化学株式会社製)を溶解させることでフッ化水素酸水溶液を調製した。得られたフッ化水素酸水溶液をマグネチックスターラーによって350rpmの撹拌速度で撹拌しながら、11.96gの過酸化水素水(濃度:30質量%、関東化学株式会社製)を少しずつ滴下して加えた。過酸化水素水の滴下量が一定量を超えたところで黄緑色粉末が析出しはじめ、ビーカー内の溶液の色が紫色から変化したことを確認した。
 溶液が変色してからしばらく溶液を撹拌した後、撹拌を停止し析出粉末を沈殿させた。析出粉末が沈殿したところで、上澄みを除去してから、ビーカーにメタノール(関東化学株式会社製)を加えて、溶液を撹拌した。その後、溶液の撹拌を停止し析出粉末を再び沈殿させ、上澄みを除去し、再度メタノールを加えて撹拌した。ビーカー内の溶液が中性になるまで、上述の操作を繰り返した。ビーカー内の溶液が中性になったところで、再度析出粉末を沈殿させ、濾過によって析出粉末を回収した。回収された析出粉末を乾燥させることで、メタノールを除去した。析出粉末を、ICP-MS法及びイオンクロマトグラフ法によって元素組成を分析することで、実施例1のKMnF粉末が得られていることを確認した。KMnF粉末の調製は常温(25℃)で行った。
(実施例2)
[KMF(KMnF)の調製]
 容量が2000mLのフッ素樹脂製ビーカーに、1600mLのフッ化水素酸(濃度:48質量%)を測り取り、ここに516gのフッ化水素カリウム粉末(関東化学株式会社製)及び24.0gの過マンガン酸カリウム粉末(関東化学株式会社製)を溶解させることでフッ化水素酸水溶液を調製した。得られたフッ化水素酸水溶液をマグネチックスターラーによって350rpmの撹拌速度で撹拌しながら、18.25gの過酸化水素水(濃度:30質量%、関東化学株式会社製)を少しずつ滴下して加えた。過酸化水素水の滴下量が一定量を超えたところで黄色粉末が析出しはじめ、ビーカー内の溶液の色が紫色から変化したことを確認した。
 溶液が変色してからしばらく溶液を撹拌した後、撹拌を停止し析出粉末を沈殿させた。析出粉末が沈殿したところで、上澄みを除去してから、ビーカーにメタノール(関東化学株式会社製)を加えて、溶液を撹拌した。その後、溶液の撹拌を停止し析出粉末を再び沈殿させ、上澄みを除去し、再度メタノールを加えて撹拌した。ビーカー内の溶液が中性になるまで、上述の操作を繰り返した。ビーカー内の溶液が中性になったところで、再度析出粉末を沈殿させ、濾過によって析出粉末を回収した。回収された析出粉末を乾燥させることで、メタノールを除去した。析出粉末を、ICP-MS法及びイオンクロマトグラフ法によって元素組成を分析することで、KMnF粉末が形成されていることを確認した。KMnF粉末の調製は常温(25℃)で行った。
 上述のようにして得られたKMnF粉末を用いて、更に次の操作を行った。すなわち、容量が500mLのフッ素樹脂製ビーカーに、100mLのフッ化水素酸(濃度:60質量%)を測り取り、ここに14.57gの上述のとおり調製したKMnF粉末を溶解させることでフッ化水素酸水溶液を調製した。得られたフッ化水素酸水溶液をマグネチックスターラーによって350rpmの撹拌速度で撹拌しながら、46.9gのフッ化水素カリウム粉末(関東化学株式会社製)を溶解させたフッ化水素酸水溶液を少しずつ滴下して加えた。フッ化水素カリウムの配合量が一定量を超えたところで黄緑色粉末が析出しはじめたことを確認した。
 溶液中に沈殿が発生してからしばらく溶液を撹拌した後、撹拌を停止し析出粉末を沈殿させた。析出粉末が沈殿したところで、上澄みを除去してから、ビーカーにメタノール(関東化学株式会社製)を加えて、溶液を撹拌した。その後、溶液の撹拌を停止し析出粉末を再び沈殿させ、上澄みを除去し、再度メタノールを加えて撹拌した。ビーカー内の溶液が中性になるまで、上述の操作を繰り返した。ビーカー内の溶液が中性になったところで、再度析出粉末を沈殿させ、濾過によって析出粉末を回収した。回収された析出粉末を乾燥させることで、メタノールを除去した。析出粉末を、ICP-MS法及びイオンクロマトグラフ法によって元素組成を分析することで、実施例2のKMnF粉末を得られていることを確認した。KMnF粉末の調製は常温(25℃)で行った。
(比較例1)
 実施例2において、フッ化水素酸(濃度:48質量%)を用いて一旦調製したKMnF粉末(フッ化水素酸(濃度:60質量%)を用いた操作を行う前の粉末)を比較例1のKMnF粉末とした。
<KMnF粉末の拡散反射率の測定>
 実施例1,2及び比較例1のそれぞれのKMnF粉末の拡散反射率を測定し、波長550nm、850nm及び310nmの光に対する拡散反射率を決定した。拡散反射率は、紫外可視分光光度計(日本分光株式会社製、商品名:V-550)を用いて測定した。標準反射板(スペクトラロン)でベースライン補正を行い、測定対象となるKMnF粉末を充填した固体試料ホルダーを取り付けて、250~850nmの波長範囲で拡散反射率の測定を行った。結果を表1に示す。また、実施例1及び実施例2の拡散反射スペクトルをそれぞれ図1及び図2に示す。図1及び図2には比較のため、比較例1の拡散反射スペクトルを併記する。
<マンガン賦活複フッ化物蛍光体の製造用原料としてのKMnF粉末の評価>
 実施例1,2及び比較例1のそれぞれのKMnF粉末を用いて、後述するようにしてマンガン賦活複フッ化物蛍光体を製造した。得られたマンガン賦活複フッ化物蛍光体の内部量子効率を測定した。結果を表1に示す。
[マンガン賦活複フッ化物蛍光体の製造]
 まず、容量が500mLのフッ素樹脂製ビーカーに、200mLのフッ化水素酸(濃度:55質量%、ステラケミファ社製)を測り取り、ここに25.6gのフッ化水素カリウム粉末(富士フイルム和光純薬株式会社製)を溶解させることでフッ化水素酸水溶液を調製した。得られたフッ化水素酸水溶液を撹拌しながら、6.9gの二酸化ケイ素粉末(デンカ株式会社製、商品名:FB-50R)と、1.2gの上記KMnF粉末を加えた。二酸化ケイ素粉末を溶液に加えるとすぐに黄色粉末(KSiF:Mn4+で表される化合物)が生成し始めることを目視にて確認した。なお、二酸化ケイ素粉末を溶液に加えると溶解熱の発生によって溶液温度が上昇したが、二酸化ケイ素粉末を加え始めてから約3分後に最高温度に到達し、その後、溶液温度は常温まで降下した。これは、二酸化ケイ素粉末の溶解が終了に伴うものと考えられる。
 二酸化ケイ素粉末が完全に溶解した後、しばらく溶液の撹拌を続けて黄色粉末の析出を完了させた。撹拌を終了し溶液を静置することによって黄色粉末を沈殿させた。その後、上澄みを除去し、フッ化水素酸(濃度:24質量%、ステラケミファ社製)及びメタノール(関東化学株式会社製)を用いて、黄色粉末を洗浄した。洗浄後、濾過によって黄色粉末を回収した。回収された黄色粉末を乾燥させた後、目開きが75μmのナイロン製篩を用いて分級し、篩を通過した粉末として20.3gの黄色粉末状のKSF(マンガン賦活複フッ化物蛍光体)を得た。上記KSFの体積メジアン径(D50)は、28μmであった。
[マンガン賦活複フッ化物蛍光体の内部量子効率測定]
 分光器(大塚電子株式会社製、商品名:MCPD-7000)を用いて、実施例1、2及び比較例1のそれぞれのKMnF粉末を用いて調製したマンガン賦活複フッ化物蛍光体の内部量子効率を測定した。なお、内部量子効率は、波長が455nmの近紫外光を用いて蛍光体を励起した場合の内部量子効率である。
 まず、積分球(φ60mm)の側面開口部(φ10mm)に反射率が99%の標準反射板(Labsphere社製、商品名:スペクトラロン)をセットした。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した単色光を光ファイバーにより導入し、分光器によって反射光のスペクトルを測定した。その際、450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
 次に、凹型のセルに表面が平滑になるように蛍光体を充填したものを積分球の開口部にセットし、波長455nmの上記単色光を照射し、励起の反射光及び蛍光のスペクトルを上記分光器によって測定した。得られたスペクトルデータから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465~800nmの範囲で算出した。
 得られた三種類のフォトン数Qex、Qref、及びQemから、内部量子効率(=Qem/(Qex-Qref)×100)を算出した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるとおり、波長550nmの光に対する拡散反射率が60%以上である実施例1,2の六フッ化マンガン酸カリウム粉末を原料として用いて製造されたマンガン賦活複フッ化物蛍光体は内部量子効率に優れることが確認された。
 本開示によれば、内部量子効率に優れる蛍光体を製造可能な六フッ化マンガン酸カリウムを提供すること、及び六フッ化マンガン酸カリウムの製造方法を提供することができる。本開示によればまた、内部量子効率に優れるマンガン賦活複フッ化物蛍光体の製造方法を提供することができる。

Claims (5)

  1.  一般式:KMnFで表され、
     波長550nmの光に対する拡散反射率が60%以上である、六フッ化マンガン酸カリウム。
  2.  波長850nmの光に対する拡散反射率が90%以上である、請求項1に記載の六フッ化マンガン酸カリウム。
  3.  フッ化水素酸の濃度が58質量%以上である水溶液に、フッ化水素カリウム、及び過マンガン酸カリウムを溶解させたフッ化水素酸水溶液を調製する工程と、
     前記フッ化水素酸水溶液に過酸化水素水を加えて、六フッ化マンガン酸カリウムを析出させる工程と、を有する、六フッ化マンガン酸カリウムの製造方法。
  4.  フッ化水素酸の濃度が58質量%以上である水溶液に、六フッ化マンガン酸カリウムを溶解させたフッ化水素酸水溶液を調製する工程と、
     前記フッ化水素酸水溶液にフッ化水素カリウムを加えて、六フッ化マンガン酸カリウムを再析出させる工程と、を有する、六フッ化マンガン酸カリウムの製造方法。
  5.  請求項1又は2に記載の六フッ化マンガン酸カリウムをフッ化水素酸水溶液に溶解させる工程を有する、マンガン賦活複フッ化物蛍光体の製造方法。
PCT/JP2020/029900 2019-08-09 2020-08-04 六フッ化マンガン酸カリウム、六フッ化マンガン酸カリウムの製造方法及びマンガン賦活複フッ化物蛍光体の製造方法 WO2021029289A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080049614.2A CN114096485A (zh) 2019-08-09 2020-08-04 六氟锰酸钾、六氟锰酸钾的制造方法、以及锰活化的复合氟化物荧光体的制造方法
US17/623,447 US20220348478A1 (en) 2019-08-09 2020-08-04 Potassium hexafluoromanganate, method for producing potassium hexafluoromanganate, and method for producing manganese-activated complex fluoride phosphor
JP2021539228A JPWO2021029289A1 (ja) 2019-08-09 2020-08-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019147537 2019-08-09
JP2019-147537 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029289A1 true WO2021029289A1 (ja) 2021-02-18

Family

ID=74570373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029900 WO2021029289A1 (ja) 2019-08-09 2020-08-04 六フッ化マンガン酸カリウム、六フッ化マンガン酸カリウムの製造方法及びマンガン賦活複フッ化物蛍光体の製造方法

Country Status (5)

Country Link
US (1) US20220348478A1 (ja)
JP (1) JPWO2021029289A1 (ja)
CN (1) CN114096485A (ja)
TW (1) TW202112672A (ja)
WO (1) WO2021029289A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039920A (ja) * 2016-09-08 2018-03-15 三菱ケミカル株式会社 フッ化物蛍光体の製造方法
JP2018058722A (ja) * 2016-10-04 2018-04-12 デンカ株式会社 マンガン付活複フッ化物蛍光体原料用のフッ化マンガン酸カリウム及びそれを用いたマンガン付活複フッ化物蛍光体の製造方法
JP2018123017A (ja) * 2017-01-31 2018-08-09 デンカ株式会社 六フッ化マンガン酸カリウム及びそれを用いたマンガン付活複フッ化物蛍光体
JP2019044018A (ja) * 2017-08-30 2019-03-22 デンカ株式会社 フッ化物蛍光体及び発光装置
JP2019044017A (ja) * 2017-08-30 2019-03-22 デンカ株式会社 フッ化物蛍光体及び発光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112029B2 (ja) * 2014-01-30 2017-04-12 信越化学工業株式会社 複フッ化物蛍光体の製造方法
US11702348B2 (en) * 2016-08-19 2023-07-18 Current Lighting Solutions, Llc Purified potassium hexafluoromanganate and methods for purifying potassium hexafluoromanganate
JP6812231B2 (ja) * 2016-12-20 2021-01-13 デンカ株式会社 フッ化物蛍光体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039920A (ja) * 2016-09-08 2018-03-15 三菱ケミカル株式会社 フッ化物蛍光体の製造方法
JP2018058722A (ja) * 2016-10-04 2018-04-12 デンカ株式会社 マンガン付活複フッ化物蛍光体原料用のフッ化マンガン酸カリウム及びそれを用いたマンガン付活複フッ化物蛍光体の製造方法
JP2018123017A (ja) * 2017-01-31 2018-08-09 デンカ株式会社 六フッ化マンガン酸カリウム及びそれを用いたマンガン付活複フッ化物蛍光体
JP2019044018A (ja) * 2017-08-30 2019-03-22 デンカ株式会社 フッ化物蛍光体及び発光装置
JP2019044017A (ja) * 2017-08-30 2019-03-22 デンカ株式会社 フッ化物蛍光体及び発光装置

Also Published As

Publication number Publication date
TW202112672A (zh) 2021-04-01
JPWO2021029289A1 (ja) 2021-02-18
US20220348478A1 (en) 2022-11-03
CN114096485A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
KR102615700B1 (ko) 형광체의 제조 방법
JP6155383B2 (ja) 蛍光体、発光素子及び発光装置
TWI662105B (zh) 螢光體及其製造方法、以及使用其螢光體之發光裝置
KR20160127066A (ko) 형광체, 발광 소자 및 발광 장치
WO2015093430A1 (ja) 蛍光体の製造方法
US10669476B2 (en) Potassium fluoromanganate for use as raw material of manganese-activated complex fluoride phosphor and manganese-activated complex fluoride phosphor production method using same
JP6826445B2 (ja) 六フッ化マンガン酸カリウム及びそれを用いたマンガン付活複フッ化物蛍光体
WO2021029289A1 (ja) 六フッ化マンガン酸カリウム、六フッ化マンガン酸カリウムの製造方法及びマンガン賦活複フッ化物蛍光体の製造方法
KR20220024538A (ko) 형광체 및 형광체의 제조 방법
WO2021029290A1 (ja) 六フッ化マンガン酸カリウム、及びマンガン賦活複フッ化物蛍光体の製造方法
JP7242368B2 (ja) フッ化物蛍光体の製造方法
CN113366085B (zh) 红色荧光体及其制造方法
JP6812231B2 (ja) フッ化物蛍光体の製造方法
WO2020209032A1 (ja) 赤色蛍光体及びその製造方法
CN107429159B (zh) 荧光体、发光装置及荧光体的制造方法
WO2015129742A1 (ja) 蛍光体、発光素子及び発光装置
WO2023176559A1 (ja) 複フッ化物蛍光体の製造方法
WO2023157885A1 (ja) 蛍光体の製造方法
JP2017008263A (ja) 蛍光体の製造方法
TW202334375A (zh) 紅色螢光體及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539228

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852525

Country of ref document: EP

Kind code of ref document: A1