WO2021029282A1 - Transporting roller and method for manufacturing same - Google Patents

Transporting roller and method for manufacturing same Download PDF

Info

Publication number
WO2021029282A1
WO2021029282A1 PCT/JP2020/029848 JP2020029848W WO2021029282A1 WO 2021029282 A1 WO2021029282 A1 WO 2021029282A1 JP 2020029848 W JP2020029848 W JP 2020029848W WO 2021029282 A1 WO2021029282 A1 WO 2021029282A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
elastic body
transport roller
molding
shaft portion
Prior art date
Application number
PCT/JP2020/029848
Other languages
French (fr)
Japanese (ja)
Inventor
基 森
大 阿久津
賀文 今津
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202080056164.XA priority Critical patent/CN114206758B/en
Priority to JP2021539224A priority patent/JP7414068B2/en
Publication of WO2021029282A1 publication Critical patent/WO2021029282A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/06Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
    • B65H5/066Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers the articles resting on rollers or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/02Separating articles from piles using friction forces between articles and separator
    • B65H3/06Rollers or like rotary separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/46Supplementary devices or measures to assist separation or prevent double feed
    • B65H3/52Friction retainers acting on under or rear side of article being separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/06Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/11Dimensional aspect of article or web
    • B65H2701/113Size
    • B65H2701/1131Size of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/03Image reproduction devices

Definitions

  • the present invention relates to a transport roller and a method for manufacturing the same. More specifically, in a transport roller having a resin shaft portion, sink marks are less likely to occur during molding, and the shaft portion is inexpensive, highly accurate, and wear resistant to the shaft portion. Regarding transport rollers and the like having excellent properties.
  • the paper transport roller used in laser beam printers and multifunction devices is a combination of an elastic body for gripping the paper, a roller for kicking the paper, a gear for transmitting rotational drive, and a shaft.
  • the number of parts is large and the assembly man-hours are high, which is a factor in increasing the cost.
  • FIG. 1 is a schematic view of a conventional transport roller having a metal shaft portion.
  • the metal transport roller 1 is composed of a metal shaft portion (also referred to as a shaft) 2, a kick-out roller portion 3, a tubular elastic body portion 4, and a gear portion 5.
  • a metal shaft portion also referred to as a shaft
  • a kick-out roller portion 3 a tubular elastic body portion 4
  • a gear portion 5 a gear portion 5.
  • an elastic body such as rubber is used in order to stably convey the paper in contact with the paper to be conveyed.
  • FIG. 2 is a schematic view of a transport roller having a resin shaft portion.
  • the resin transport roller 11 is composed of a resin shaft portion 12, a resin kick-out roller portion 13, a tubular elastic body portion 14, and a resin gear portion 15.
  • a thick resin is molded by the resin kick-out roller portion 13 or the like, it will sink, so a meat stealing shape is added to take measures.
  • the shape of the meat steal makes it harder to sink, but when the resin is transferred to the uneven part of the meat steal, it sticks to the mold and cannot be released from the mold well, resulting in new dimensional accuracy and deformation. Problems will occur.
  • this method since the bearing is supported by the resin, it is important to select the resin to suppress the shaft wear.
  • the present invention has been made in view of the above problems and situations, and the problem to be solved is that in a transport roller having a resin shaft portion, sink marks are less likely to occur during molding, and the cost is low, high accuracy, and the like. It is an object of the present invention to provide a transport roller having excellent wear resistance of a shaft portion and a method for manufacturing the same.
  • the present inventor is a transport roller for transporting an object to be transported in a process of examining the cause of the problem
  • the transport roller is at least a resin shaft and the above. It is composed of an elastic body part that conveys the object to be transported, and because the resin shaft part has a specific structure, sink marks are less likely to occur during molding, and it is inexpensive, highly accurate, and has abrasion resistance of the shaft part. It has been found that an excellent transport roller can be obtained.
  • a transport roller that transports the object to be transported.
  • the transport roller is composed of at least a resin shaft portion and an elastic body portion that transports the object to be transported.
  • thermoplastic resin is any one of polyacetal, polypropylene or rubber-modified polystyrene.
  • a method for manufacturing a transport roller for transporting an object to be transported which is composed of at least a resin shaft portion and an elastic body portion for transporting the object to be transported.
  • a method for manufacturing a transport roller which comprises a step of injecting and foaming a molten resin containing the thermoplastic resin to form a shaft portion made of the resin.
  • An insert that integrates the shaft portion and the elastic body portion by setting the elastic body portion in a mold, then filling the mold with the molten resin for the shaft portion, foaming the mold, and then solidifying the mold portion.
  • the transport roller in a transport roller having a resin shaft portion, sink marks are less likely to occur during molding, the transport roller is inexpensive, highly accurate, and has excellent wear resistance of the shaft portion, and a method for manufacturing the same. Can be provided.
  • the melted resin is injected into the mold while being pressed into the mold to mold the product.
  • the degree of injection molding varies depending on the type of resin, the product taken out after cooling is more often compared to the state of the melted resin. It contracts more or less. Therefore, the finished product does not have the same shape as the inner surface of the mold, and may be dented or, in extreme cases, deep holes may be opened. The defect due to this shrinkage is called "sink".
  • the transport roller of the present invention is composed of at least a resin shaft portion and an elastic body portion that transports the object to be transported, and the resin shaft portion has a porous structure having holes inside. It is a feature.
  • a step of injection-foaming a molten resin containing the thermoplastic resin and molding the resin shaft portion can be performed. it can.
  • the resin shaft portion is injection-foam molded to form a porous structure having pores inside, thereby suppressing molding shrinkage due to gas pressure due to foaming to prevent sink marks, and the said. Since the gas pressure of foaming is low, the generation of internal stress is reduced, so that the generation of warpage can also be suppressed. Further, since the gas pressure of the foam is low, there is an advantage that PL marks described later on the elastic body portion can be suppressed.
  • Schematic diagram showing a specific flow of integral molding by insert molding of an elastic body part, a sliding member, and a shaft part Schematic diagram showing a specific flow of integral molding by insert molding of an elastic body part, a sliding member, and a shaft part.
  • Schematic diagram showing a specific flow of integral molding by insert molding of an elastic body part, a sliding member, and a shaft part Schematic diagram showing a specific flow of integral molding by insert molding of an elastic body part, a sliding member, and a shaft part.
  • Graph showing the relationship of deformation of Schematic diagram illustrating a transport roller having a sliding member Schematic diagram showing a transport roller having a sliding member Enlarged view of the sliding member
  • the transport roller of the present invention is a transport roller that transports an object to be transported, and the transport roller is composed of at least a resin shaft portion and an elastic body portion that transports the object to be transported. It is characterized by having a porous structure having pores inside the portion. This feature is a technical feature common to or corresponding to the following embodiments.
  • the shaft portion contains a thermoplastic resin and a chemical foaming agent from the viewpoint of exhibiting the effect of the present invention.
  • Chemical foaming agents have a cost advantage because they do not require special equipment and the materials are inexpensive.
  • the transport roller has a structure in which the elastic body portion is insert-molded and integrated with the shaft portion, man-hours can be reduced and costs can be reduced by a simple structure in manufacturing the transport roller. From the point of view, it is preferable.
  • thermoplastic resin is any one of polyacetal, polypropylene or rubber-modified polystyrene means that the sliding performance and cost of the thermoplastic resin, and that the elastic body portion is insert-molded and integrated with the shaft portion. It is a preferable material from the viewpoint of having a modified structure.
  • the foaming agent is a baking soda-based foaming agent from the viewpoint of ease of handling and cost.
  • the porosity represented by the formula (1) in the shaft portion is within the range of 4 to 15% from the viewpoint of suppressing sink marks and warpage while maintaining rigidity.
  • the method for manufacturing a transport roller of the present invention is a method for manufacturing a transport roller for transporting an object to be transported, which comprises at least a resin shaft portion and an elastic body portion for transporting the object to be transported. It is characterized by having a step of forming a shaft portion made of the resin by injection foam molding of a molten resin containing a thermoplastic resin.
  • the elastic body portion is set in a mold, and then the molten resin is filled in the mold for the shaft portion, foamed, and then solidified to integrate the shaft portion and the elastic body portion. It is a preferred embodiment to have an insert molding step to allow.
  • thermoplastic resin and the chemical foaming agent to prepare a composition for the molten resin.
  • the transport roller of the present invention is a transport roller that transports an object to be transported, and the transport roller is composed of at least a resin shaft portion and an elastic body portion that transports the object to be transported. It is characterized by having a porous structure having pores inside the portion.
  • porous structure as used in the present invention means a structure having a large number of pores or voids inside the molded product, and defines the pores or voids by the porosity represented by the formula (1) described later. Therefore, the size of the holes and the state of connection between the holes are not particularly limited.
  • the "elastic body” referred to in the present invention is a material having rubber elastic properties, has a high elastic limit, and has a low elastic modulus (generally, Young's modulus is 50 MPa or less).
  • the “object to be transported” generally refers to a recording medium, and various media such as paper, resin plate, metal, cloth, and rubber can be used as the recording medium.
  • various media such as paper, resin plate, metal, cloth, and rubber can be used as the recording medium.
  • the paper include plain paper, paperboard, coated paper, resin-coated paper, and synthetic paper.
  • the “object to be transported” is not limited to the recording medium.
  • the basic paper feeding mechanism in devices such as laser beam printers and copiers is as introduced in Patent Document 1, for example. That is, as shown in the schematic view showing the paper feed device in which the paper transport roller is arranged in FIG. 3, the paper 52 is stacked and set in the paper feed cassette 50, and is taken out by the hopping roller 51. Further, after the hopping roller 51, a stacking prevention roller 53, 54, a transport roller 55, 56, etc. are arranged. In FIG. 3, the stacking prevention roller 54 is operated by a drive shaft 57, and a friction rubber 58 is wound around the roller main body 61.
  • the transport roller of the present invention is used for the hopping roller 51, the stacking prevention rollers 53, 54, the transport roller 55, 56, etc., but is used in many laser beam printers, copiers, and the like. Transport rollers are used and are not limited to these.
  • injection foam molding which is a feature of the present invention, will be described.
  • Injection foam molding in the present invention has a bubble structure (also referred to as vacancies) by injection-filling a mold with a molten resin having foamability in the injection molding process. This is a molding technique for obtaining a molded product.
  • injection foam molding if an attempt is made to increase the porosity, filling will be insufficient and voids and unfilling are likely to occur. When the porosity is lowered, there is no foaming effect and sink marks, and the effects expected of the foamed molded product (prevention of sink marks, low warpage, etc.) do not appear.
  • Injection foam molding methods include chemical foaming, physical foaming, and thermal expansion microcapsules, all of which are effective, but in terms of cost, no special equipment is required and the materials are inexpensive.
  • the chemical foaming method is the most effective.
  • an organic foaming agent such as ADCA (azodicarbonamide) and an inorganic foaming agent such as baking soda are decomposed and reacted by resin heat to generate gas and foam.
  • ADCA azodicarbonamide
  • an inorganic foaming agent such as baking soda
  • baking soda is suitable for resin molding because the foaming residue is sodium carbonate, which is harmless and has little effect on mold stains.
  • a polycarboxylic acid As the organic chemical effervescent agent, a polycarboxylic acid, an azo compound, a nitroso compound, a hydrazine derivative, a semicarbazide compound and the like can be used.
  • polycarboxylic acids in organic chemical foaming agents include citric acid, oxalic acid, fumaric acid, and phthalic acid.
  • azo compound examples include azodicarboxylic amide (ADCA), 1,1'-azobis (1-acetoxy-1-phenylethane), dimethyl-2,2'-azobisbutyrate, and dimethyl-2,2'. -Azobisisobutyrate, 2,2'-azobis (2,4,4-trimethylpentane), 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis [N- (2) -Carboxyethyl) -2-methyl-propionamidine] and the like.
  • ADCA azodicarboxylic amide
  • 1,1'-azobis (1-acetoxy-1-phenylethane
  • dimethyl-2,2'-azobisbutyrate dimethyl-2,2'.
  • -Azobisisobutyrate 2,2'-azobis (2,4,4-trimethylpentane
  • 1,1'-azobis cyclohexane-1-carbonitrile
  • nitroso compound examples include N, N'-dinitrosopentamethylenetetramine (DPT).
  • hydrazine derivative examples include 4,4'-oxybis (benzenesulfonyl hydrazide), diphenylsulfone-3,3'-disulfonylhydrazide and the like.
  • semicarbazide compound examples include p-toluenesulfonyl semicarbazide.
  • organic chemical foaming agents include trihydrazinotriazine and the like.
  • bicarbonate in the inorganic chemical foaming agent include sodium hydrogen carbonate, ammonium hydrogen carbonate and the like.
  • carbonates include sodium carbonate, ammonium carbonate and the like.
  • organic acid metal salts include sodium citrate.
  • nitrite is ammonium nitrite.
  • foaming agents it is preferable to use a foaming agent that does not decompose below the melting temperature of the resin constituting the foamed molded product but decomposes below the decomposition temperature.
  • a foaming agent azodicarbonamide (ADCA), sodium hydrogen carbonate, citric acid, sodium citrate and the like can be preferably used.
  • ADCA azodicarbonamide
  • sodium hydrogen carbonate citric acid, sodium citrate and the like
  • a nonflammable gas As the foaming agent, it is preferable to use a nonflammable gas as the main component of the generated gas.
  • a foaming agent include azodicarbonamide and the like as a foaming agent that generates nitrogen gas and carbon dioxide gas, and sodium hydrogencarbonate as a foaming agent that generates carbon dioxide gas.
  • the foaming agent that generates nitrogen gas include dinitrosopentamethylenetetramine, p, p'-oxybisbenzenesulfonylhydrazide and the like.
  • the amount of the foaming agent added to the resin material for the foamed molded product is determined in consideration of the type of the foaming agent, the weight reduction rate of the obtained foamed molded product, etc., but is usually the resin material for the foamed molded product. It is 0.2 to 10 parts by mass with respect to 100 parts by mass.
  • the injection foam molding method will be explained in detail.
  • a known method can be applied to the injection foam molding method itself, and the molding conditions may be appropriately adjusted according to the melt flow rate (MFR) of the thermoplastic resin, the type of foaming agent, the type of molding machine, or the shape of the mold.
  • MFR melt flow rate
  • the resin temperature is 170 to 250 ° C.
  • the mold temperature is 10 to 100 ° C.
  • the molding cycle is 1 to 60 minutes
  • the injection speed is 10 to 300 mm / sec
  • the injection pressure is 10 to 200 MPa
  • the filling pressure of the resin inward is set under conditions such as 1 to 20 MPa.
  • a mold composed of a fixed mold and a movable mold that can move forward and backward at an arbitrary position is used, and after the injection is completed, the movable mold is used.
  • a core back method of retracting and foaming a non-foamed layer is formed on the surface, the foamed layer inside tends to become uniform fine bubbles, and a foamed molded product having excellent lightness and good impact resistance can be obtained. It is preferable because it is easy.
  • a method of retreating the movable type it may be performed in one step, it may be performed in multiple steps of two or more steps, and the speed of retreating may be appropriately adjusted.
  • a short shot method may be adopted in which the filling amount of the molten resin in the mold is adjusted to be small and foam molding is performed in the cavity portion.
  • the porosity defined by the following formula (1) is in the range of 4 to 15% in the shaft portion. Is preferable.
  • Porosity (%) (mass of shaft part when resin of shaft part is not made into porous structure-mass of shaft part of porous structure) / (shaft when resin of shaft part is not made into porous structure) Part mass) x 100
  • the porosity is calculated by measuring the masses of the non-foamed molded product (shaft portion when not made into a porous structure) and the foamed molded product (shaft portion having a porous structure) having the same volume, and the mass difference is that of the foamed molded product. Since the mass is reduced due to the pores, the difference in mass is divided by the mass of the non-foamed molded product to express the porosity (%). The mass refers to the average mass of the molded product.
  • the "porosity" referred to in the present application is synonymous with the "forosity" generally referred to in the injection foam molding method.
  • the porosity can be controlled by the filling rate of the molten resin in the mold. When the filling rate is low, the porosity is large, and when the filling rate is high, the porosity is small.
  • FIG. 4 is a graph showing changes in the foaming state (porosity) depending on the resin filling rate.
  • Injection foam molding is performed using an injection molding machine "J140AD-110H" (manufactured by Japan Steel Works, Ltd.) under molding conditions of a cylinder temperature of 230 ° C, a mold temperature of 50 ° C, an injection speed of 30 mm / sec, and a holding pressure of 5 MPa. Pieces were made.
  • J140AD-110H manufactured by Japan Steel Works, Ltd.
  • FIG. 5 is a graph evaluating the warp reduction effect of foam molding.
  • the amount of warpage was evaluated by placing the above-molded test piece on a flat table and measuring the maximum value of the amount of warp with the end floating from the flat table with a caliper. The measurement was carried out at 25 ° C. and 50% RH, after adjusting the humidity for 24 hours, the rise of the end portion was measured.
  • the amount of warpage is reduced to 1/5 by foam molding as compared with normal molding (non-foam molding).
  • PC Polycarbonate
  • PC-GF polycarbonate containing glass fibers
  • POM polyacetal
  • HIPS high-impact (impact-resistant) polystyrene
  • PP polypropylene
  • COP cycloolefin
  • a baking soda-based foaming agent polystyrene ES405 manufactured by Eiwa Kasei Co., Ltd. was added to the resin in an amount of 3% by mass, and a plate-shaped molded product having a void ratio of 10% and a width of 300 mm was injected.
  • Foam molding was performed to evaluate bending strength and bending elasticity.
  • Bending strength refers to the maximum bending stress that the test piece can withstand during the bending test. Measured with Tencilon under the test conditions of JIS K7171 (2008). For example, a test piece of an injection foam molded product conforms to JIS K7171 under the conditions of a bending speed of 100 mm / min, a jig tip R5 mm, a span interval of 100 mm, and a test piece (width 50 mm ⁇ length 150 mm ⁇ thickness 4 mm). Measure and obtain. As a measuring device, Tencilon RTC-1225A manufactured by Orientec Co., Ltd. is used, and the measurement is performed at a temperature of 23 ° C. and a humidity of 55% RH. The evaluation is made based on the ratio (%) of the bending strength of the foam-molded test piece to the non-foam-molded test piece.
  • the flexural modulus is measured according to JIS K7171 (2008) and evaluated according to the following criteria.
  • the test piece is measured and obtained under the conditions of a bending speed of 100 mm / min, a jig tip R5 mm, a span interval of 100 mm, and a test piece (width 50 mm ⁇ length 150 mm ⁇ thickness 4 mm) in accordance with JIS K7171.
  • a measuring device Tencilon RTC-1225A manufactured by Orientec Co., Ltd. is used, and the measurement is performed at a temperature of 23 ° C. and a humidity of 55% RH.
  • the evaluation is made based on the ratio (%) of the flexural modulus of the foam-molded test piece to the test piece not foam-molded.
  • thermoplastic resin Using polyacetal (POM) as the thermoplastic resin, a test piece was prepared by injection foam molding as described above, and the abrasion resistance was evaluated by the abrasion tester shown in FIG. 7A. The porosity was set to 9%.
  • a steel wire spring 202 is brought into point contact with the cylindrical resin material 201, and the resin material is rotated while applying a pressure (about 140 MPa) equivalent to that of a paper ejection roller. After the test for a certain period of time, the wear depth of the resin (see FIG. 7B) is measured and converted into a wear volume.
  • FIG. 9A is a schematic diagram illustrating the generation of PL marks.
  • a part of the tube protrudes from the parting line (PL) between the fixed side mold and the movable mold due to the filling pressure of the molten resin to form burrs.
  • FIG. 9B is a graph showing the relationship between the resin filling pressure and the PL mark for each mold temperature.
  • TPS polyethylene-based elastomer
  • PP polypropylene
  • PP and baking soda-based foaming agent Polyslen ES405 manufactured by Eiwa Kasei Co., Ltd.
  • the filling pressure of the molten resin into the mold was changed at an injection speed of 20 mm / sec to increase the height of the PL marks generated. It was measured.
  • the porosity was set to 10%.
  • the first embodiment of the transport roller of the present invention is a transport roller that transports an object to be transported, and the transport roller is It is characterized in that it is composed of at least a resin shaft portion and an elastic body portion that conveys the object to be transported, and the shaft portion has a porous structure having holes inside.
  • the transport roller has a structure in which the elastic body portion is insert-molded on the outer periphery of the shaft portion.
  • the elastic body portion is a material having rubber elastic properties, has a high elastic limit, and has a low elastic modulus (generally, Young's modulus is 50 MPa or less).
  • the elastic body does not have to be made with the same mold as the shaft, and it can be made of rubber products as well as thermoplastic elastomers, and the manufacturing method may be cut out of an extruded tube other than injection molding, and is not particularly limited. ..
  • the elastic body portion according to the present invention is preferably a molded product obtained by molding a thermoplastic elastomer into a cylindrical shape (tube shape).
  • the absolute value of the difference between the values of the solubility parameters of the resin material used as the matrix material of the thermoplastic elastomer contained in the elastic body portion and the resin material used for the shaft portion to be injection-molded is within 1.0.
  • having a structure in which the elastic body portion and the shaft portion are melt-bonded is a viewpoint of integrally molding the elastic body portion and the shaft portion (hereinafter, also referred to as integral molding). Therefore, it is preferable.
  • thermoplastic elastomer used for the elastic body is a styrene elastomer, a chlorinated polyethylene elastomer, a vinyl chloride elastomer, an olefin elastomer, a urethane elastomer, an ester elastomer, an amide elastomer, an ionomer elastomer, or an ethylene / ethylene acrylate.
  • Elastomers selected from the group consisting of copolymerization-based elastomers and ethylene / vinyl acetate copolymer-based elastomers are preferable, and styrene-based elastomers and olefin-based elastomers are more preferable.
  • styrene-based elastomer examples include SBS (styrene-butadiene-styrene block copolymer), SIS (styrene-isoprene-styrene block copolymer), SEBS (styrene-ethylene-butylene-styrene block copolymer: hydride SBS), and SEEPS ( Styrene-ethylene-ethylene-propylene-styrene block copolymer), SEPS (styrene-ethylene-propylene-styrene block copolymer: hydride SIS), HSBR (hydride styrene-butadiene random copolymer) and the like can be mentioned.
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEBS styrene-ethylene-
  • thermoplastic elastomers examples include "Septon” (trade name, manufactured by Kuraray), “Tough Tech” (trade name, manufactured by Asahi Kasei Chemicals), and “Dynaron” (trade name, manufactured by JSR). be able to.
  • TPOs Thermoplastic Organic Elastomers
  • PP polypropylene
  • PE polyethylene
  • PE polyethylene
  • EPM ethylene-propylene rubber
  • the TPO is broadly divided into three types: a blend type of polyolefin and rubber components, their dynamic cross-linking type (TPV: Themoplastic Vulcanize), and a polymerization type (R-TPO: Reactor-TPO). Can be separated.
  • TPV Themoplastic Vulcanize
  • R-TPO Reactor-TPO
  • thermoplastic resin is blended in the range of 25 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer, and the thermoplastic elastomer is blended.
  • a composition that is dynamically vulcanized by sulfur vulcanization or resin vulcanization and dispersed in the thermoplastic resin is preferably used.
  • thermoplastic resin as the matrix material for the thermoplastic elastomer from the viewpoint of integrally molding the elastic body portion and the shaft portion by melt joining, and the thermoplastic used for the shaft portion.
  • resin acrylonitrile-butadiene-styrene (ABS), thermoplastic (POM), polypropylene (PP), polyethylene (PE) or polycarbonate (PC) are preferably exemplified.
  • the value of the solubility parameter of the resin material used as the matrix material of the thermoplastic elastomer and the resin material used for the shaft portion is preferably 1.0 or less, and the resins are melted by heating and the resins are easily melt-bonded to each other to achieve integral molding.
  • “Melting joint” generally means that heat or pressure or both are applied to the joints of two or more types of members, and if necessary, an appropriate filler metal is added to make the joints continuous. It refers to a joining method for forming a member, and in the present invention, it means that the resins are melted by heating or the like and come into contact with each other, so that the resins are mixed at the interface and integrally molded as one mixture.
  • integral molding refers to a state in which the members to be joined do not separate unless force is applied.
  • the solubility parameter value (also referred to as SP value) of the resin material is calculated by the Bicerano method based on the regression equation obtained by statistically analyzing the correlation between the molecular structure and the physical property value of the polymer material. Specifically, in the software "Scigress Version 2.6" (manufactured by Fujitsu Limited) installed on a commercially available personal computer, the structure of each compound is substituted and the value calculated by the Bicerano method is adopted.
  • Table I shows the thermoplastic elastomer species (silicone rubber, fluorine-based rubber, ethylene propylene rubber (EPDM), natural rubber, olefin-type elastomer, styrene-based elastomer (SBR), and matrix grades) used for the elastic body portion according to the present invention.
  • the results of the degree of peeling of the shaft are shown.
  • the absolute value of the difference between the solubility parameter values of the resin material used as the matrix material of the thermoplastic elastomer contained in the elastic body portion and the resin material used for the shaft portion is within 1.0. It can be seen that sometimes the resin materials are melt-bonded to each other to enable integral molding.
  • the shaft portion does not have to have a special shape for preventing the elastic body portion from being displaced, and in terms of structure and mold design. Will have the advantage of. For example. Advantages include the ability to accurately produce a molded product without the effects of mold release during molding, and the ease of designing the elastic body when obtaining a predetermined nip amount without interfering with the anti-displacement shape. Be done.
  • the toner used during printing (styrene acrylic and polyester are used and the melting point is around 100 ° C.) may adhere to the elastic body of the transport roller.
  • Table II shows the thermoplastic elastomer species (silicone rubber, fluororubber, ethylene propylene rubber (EPDM), natural rubber, olefin-type elastomer, styrene-based elastomer (SBR), and matrix grades) used for the elastic body portion according to the present invention.
  • the shaft portion contains a resin reinforcing agent in order to suppress deformation of the bearing portion and improve durability.
  • a fibrous filler such as polybenzazole fiber, carbon fiber, aramid fiber, metal fiber, glass fiber, ceramic fiber or polyparaphenylene terephthalamide fiber can be mixed in the thermoplastic resin forming the shaft portion.
  • the fibrous filler is more preferably at least one of carbon fibers and glass fibers.
  • the average diameter of the fibrous filler is preferably in the range of 0.2 to 10.0 ⁇ m, and the average aspect ratio is preferably in the range of 10 to 100.
  • the average length of the fibrous filler is preferably 100 ⁇ m or less because the shorter the average length, the less likely it is to affect the surface smoothness of the shaft portion. Further, if the average length of the fibrous filler is 10 ⁇ m or more, sufficient strength can be obtained.
  • the average aspect ratio of the fibrous filler is in the range of 10 to 100. If it is within this range, it is easily compatible with the resin, and it is considered that the reinforcing effect of the shaft portion is good.
  • fibrous filler examples include carbon fiber milled fiber (manufactured by Mitsubishi Chemical Co., Ltd.), glass fiber T-289DE (manufactured by JEOL Ltd.), milled fiber (manufactured by Asahi Glass Fiber Co., Ltd.), and the like. Can be done.
  • composition for the elastic body portion and the shaft portion may contain various polymers and additives other than the thermoplastic elastomer and the thermoplastic resin as long as the object of the present invention is not impaired.
  • additives include antioxidants, heat-resistant stabilizers, weather-resistant stabilizers, light-resistant stabilizers, UV absorbers, antistatic agents, anti-aging agents, fatty acid metal salts, softeners, dispersants, nucleating agents, and lubricants. , Flame retardants, pigments, dyes, organic fillers.
  • Each component and other additives are injection-foamed when a predetermined amount thereof is uniformly mixed using a Henschel mixer, V-blender, ribbon blender, tumbler blender, etc., and then processed into a normal pellet shape using an extruder. It can be used as a resin composition suitable for molding.
  • the method for manufacturing a transport roller of the present invention is a method for manufacturing a transport roller for transporting an object to be transported, which is composed of at least a resin shaft portion and an elastic body portion for transporting the object to be transported. It is characterized by having a step of forming a shaft portion made of the resin by injection foam molding of a molten resin containing a thermoplastic resin, the elastic body portion is set in a mold, and then the shaft portion is used. It is preferable to have an insert molding step of integrating the shaft portion and the elastic body portion by filling the mold with the molten resin, foaming the mold, and then solidifying the resin.
  • the elastic body portion does not need to be made of the same mold as the shaft portion, and can be made of a rubber product as well as a thermoplastic elastomer, and the manufacturing method may be injection molding or cutting out of an extruded tube.
  • the elastic body portion is molded by the following method.
  • Known molding methods for obtaining a molded product include, for example, an injection molding method, an injection compression molding method, an extrusion molding method, a deformed extrusion method, a transfer molding method, a hollow molding method, a gas-assisted hollow molding method, and a blow molding method.
  • Extrusion blow molding, IMC (in-mold coating molding) molding method, rotary molding method, multi-layer molding method, two-color molding method, insert molding method, sandwich molding method, foam molding method, pressure molding method and the like can be mentioned.
  • IMC in-mold coating molding
  • insert molding means that a tube such as an elastic body portion or a sliding member described later, which is inserted and set in a mold, is filled with a molten thermoplastic resin to form an elastic body portion or a sliding member.
  • a molding method that integrates the elastic body portion and the shaft portion that penetrates the sliding member.
  • FIG. 10 is a schematic view showing an outline of integral molding by insert molding of an elastic body portion and a shaft portion.
  • the elastic body portion 102 is set at a predetermined position on the open / close mold 101 by the member setting means 106.
  • the molten resin is prepared in advance by the step of mixing the thermoplastic resin and the chemical foaming agent and preparing a composition for the molten resin.
  • the mold 101 is closed, and the thermoplastic resin (molten resin 104) melted from the injection molding means 103 is injected into the space forming the shaft portion to mold the shaft portion 105.
  • the one-sided mold 101 is removed to obtain a transport roller in which the elastic body portion 102 and the shaft portion 105 are integrally molded.
  • the transport roller of the present invention preferably has a structure in which the thermoplastic elastomer layer is integrated on the outer periphery of the roller shaft portion by insert molding.
  • FIG. 11 shows the case where the absolute value of the difference between the solubility parameter values of the resin material used for the shaft portion and the resin material used for the elastic body portion exceeds 1.0 and is melt-bonded within 1.0. It is a schematic diagram which shows the transport roller at the time of melt-joining in.
  • FIG. 11A is a schematic view showing a case where the absolute value of the difference between the solubility parameter values of the resin material used as the matrix material of the thermoplastic elastomer and the resin material used for the shaft portion exceeds 1.0. is there.
  • FIG. 11 and E of FIG. 11 are schematic views showing a conventional case in which a shape for preventing displacement to the periphery of an elastic roller is provided in response to such an idling defect.
  • a convex shape 107 made of resin is given to the shaft portion 105 around the elastic body roller 102 (see D in FIG. 11), or a concave shape in which resin is injected into the elastic body part is given to the elastic body part. (See E in FIG. 11).
  • F in FIG. 11 shows a case where the absolute value of the difference between the values of the solubility parameters of the resin material used as the matrix material of the thermoplastic elastomer and the resin material used for the shaft portion is within 1.0.
  • the resin materials are integrally molded for melt-bonding, and even if molding shrinkage occurs when the thermoplastic resin of the shaft is cooled, the shaft is melt-bonded, so that the shaft is an elastic part. It is possible to suppress idling failure without peeling from the resin (see G in FIG. 11 and H in FIG. 11).
  • FIG. 12 is a schematic view showing a specific flow of integral molding by insert molding of an elastic body portion, a sliding member described later, and a shaft portion.
  • a specific example of integrally molding the elastic body portion, the sliding member described later, and the shaft portion will be shown.
  • FIG. 12A is a step of setting an elastic body portion and a tube which is a sliding member at a necessary position during mold opening.
  • the tubular elastic body portion 102 and the tubular sliding member 152 for bearings are set in the mold opening mold 151.
  • the tube may be inserted into the mold by hand, but it is desirable to use a robot such as a take-out machine during mass production. Further, the tube may be set on either the fixed side or the movable side of the mold. You can judge the better one from the mold mechanism.
  • the mold holding of the tube can be carried out by light press-fitting the diameter of the tube, but it is also possible to incorporate a mechanism such as air suction or adhesion into the mold.
  • FIG. 12B is a step of molding the mold and injecting the thermoplastic resin for the shaft portion from the gate portion.
  • the mold opening mold 151 in which the tubular elastic body portion 102 and the tubular sliding member 152 for bearings are set is closed, and the molten resin 154 is injected from the injection molding means 153 to form the shaft portion. ..
  • the gate portion 155 prevents leakage of the molten resin.
  • Molding resin for shaft Polypropylene (PP SP value 8.1) Baking soda-based foaming agent (Polyslen ES405 manufactured by Eiwa Kasei Co., Ltd.) was added to the resin in an amount of 3% by mass, and the porosity was 10%.
  • Elastic tube Polyethylene elastomer (TPS: Polypropylene (PP) matrix SP value 8.1) ⁇ Resin temperature: 220 °C ⁇ Mold temperature: 50 °C -Holding condition: 20 MPa-10s cycle
  • TPS Polypropylene
  • PP Polypropylene
  • FIG. 12D is a step of opening the mold 151 and taking out the insert molded product. It is preferable to project and take out by an ejector pin or the like as in normal injection molding. After taking it out, the gate is cut to separate the molded part from the runner or the like.
  • the transport roller according to the first embodiment of the present invention is obtained in which the elastic body portion 102, the sliding member 152 described later, and the shaft portion 105 which is a foam molded body are integrally molded by insert molding. Be done.
  • the resin portion constituting the shaft portion is in contact with both sides of the side surface portion of the elastic body portion.
  • the height of the resin portion is within the range of 30 to 70% of the thickness of the elastic body portion, and the resin portion has a structure in which the elastic body portion is held by shrinkage during molding. ,preferable.
  • FIG. 13 is a schematic view showing a method of providing a resin portion on the side surface of the elastic body portion and physically holding the elastic body portion by a force of molding shrinkage, and holding the elastic body portion on the side surface resin portion of the elastic body portion by molding shrinkage. It is a graph which shows the relationship between the deformation of an elastic body part.
  • FIGS. 13A to 13C are schematic views showing a method of providing a resin portion on the side surface of the elastic body portion and physically holding the elastic body portion by a force of molding shrinkage.
  • a convex resin portion is provided on the shaft portion 105 on the side surface of the elastic body portion 105, and is 0% with respect to the thickness of the elastic body portion (see A in FIG. 13). It is a case of physically holding at a height of 70% (see B in FIG. 13) and 100% (see C in FIG. 13).
  • FIG. 13 is a schematic view showing that the elastic body portion 102 is deformed by the resin portion on the side surface of the elastic body portion due to the molding shrinkage of the shaft portion 105.
  • the arrow indicates the direction of molding shrinkage.
  • FIG. 13E is a graph showing the relationship between the holding of the elastic body portion side resin portion during molding shrinkage and the deformation of the elastic body portion.
  • the horizontal axis indicates the ratio (%) of the height of the resin for the shaft portion in contact with the elastic body
  • the vertical axis indicates the roundness indicating the degree of deformation of the elastic body. Due to the molding shrinkage of the resin for the shaft portion, the elastic body portion is deformed and the roundness is deteriorated. Therefore, it is necessary to adjust the shape within a certain degree of deformation (roundness).
  • “Roundness” measures the contours of the elastic body surface on the 2 or 3 equatorial planes that form 90 ° with each other using a commercially available roundness measuring device, and measures the contours of the elastic body surfaces in the radial direction from the respective minimum circumscribed circles to the elastic body surface. The maximum value of the distance can be calculated as the roundness.
  • the degree of deformation of the elastic body can achieve the target roundness change of 0.2 mm or less in the area below the black dotted line.
  • the rubber hardness is low and it does not deform as much as A40 °. Further, in order to hold the elastic body portion and keep the roundness change within the target even at A40 °, which has a low rubber hardness, the height of the side resin needs to be 30% of the thickness of the elastic body portion. On the other hand, if the rubber hardness is A80 or higher, the height of the side resin needs to be 80% or more of the thickness of the elastic body part, and a nip (the elastic body part elastically deforms to grip the paper) is obtained. It becomes a problem because it cannot be transformed.
  • the rubber hardness of the elastic body portion is A80 ° or less, and in order to keep the change in roundness within the target and to obtain the effect of the nip of the elastic body, the elastic body
  • the height of the resin for the shaft portion in contact with the elastic body portion is preferably in the range of 30 to 70% with respect to the thickness of the elastic body portion.
  • the resin portion constituting the shaft portion is said to have a height within a range of 30 to 70% of the thickness of the elastic body portion. It is characterized by having a step of molding by injection foam molding so as to be in contact with both sides of a side surface portion of the elastic body portion, and then holding the elastic body portion by shrinkage during molding of the resin portion.
  • the elastic body portion is set in the mold according to the flow of integral molding by insert molding of the elastic body portion and the sliding member and the shaft portion shown in FIG. 12 (FIGS. 12A to 12D).
  • create a mold so that the resin portions constituting the shaft portion are in contact with both sides of the side surface portion of the elastic body portion at a predetermined height, inject the thermoplastic resin for the shaft portion, cool it, and then take out the insert molded product. Just do it.
  • a portion corresponding to the bearing portion of the shaft portion has a tubular sliding member, and the sliding portion is provided. It is preferable that the member and the shaft portion have a structure in which they are insert-molded and integrated.
  • Plasticizing metal shafts include dimensional accuracy and rigidity.
  • Materials with good slidability are usually crystalline resins such as polyacetal (POM) and nylon (PA6, PA66), but their dimensional accuracy is not very good.
  • POM polyacetal
  • PA6, PA66 nylon
  • amorphous resin having good dimensional accuracy or a resin to which a resin reinforcing agent such as glass fiber is added to increase the rigidity is used, a problem occurs in slidability. Therefore, a material having good slidability may be used only for the sliding member.
  • FIG. 14 is a schematic view illustrating a transport roller having a sliding member.
  • FIG. 14A shows a paper feed unit 160 having four bearing portions. The part surrounded by the alternate long and short dash line is the bearing.
  • FIG. 14B shows a transport roller in which four sliding members 152 are insert-molded on the shaft portion 105.
  • FIG. 14C is an enlarged view of the sliding member 152, which is a cylindrical (tube-shaped) member.
  • the limit PV value is a limit value at which the sliding surface of the material is deformed or melted due to frictional heat generation.
  • the sliding member it is preferable to select a material having better wear resistance than polypropylene (PP), which is preferable as the shaft resin, according to the wear test apparatus and procedure shown in FIGS. 7A and 7B.
  • PP polypropylene
  • Table III shows the results of wear resistance tests for various resins.
  • test materials are polymethylmethacrylate (PMMA), tetrafluoroethylene (PTFE), high-impact (impact-resistant) polystyrene (HIPS), tetrafluoroethylene (PFA), polypropylene (PP), and polyphenylene sulfide (shown in Table III).
  • PMMA polymethylmethacrylate
  • PTFE tetrafluoroethylene
  • HIPS high-impact (impact-resistant) polystyrene
  • PFA tetrafluoroethylene
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PES polyetheretherketone
  • PA66 ultrahigh molecular weight polyethylene
  • PE polyacetal
  • the sliding member As the sliding member according to the present invention, polyacetal (POM), ultrahigh molecular weight polyethylene (PE), nylon (PA66), polyphenylene sulfide (PPS), which have better wear resistance than polypropylene (PP), Alternatively, it is preferable to use polyetheretherketone (PEEK). Among them, it is preferable that the sliding member contains polyacetal (POM) from the viewpoint of wear resistance and cost.
  • POM polyacetal
  • PE ultrahigh molecular weight polyethylene
  • PA66 nylon
  • PPS polyphenylene sulfide
  • PEEK polyetheretherketone
  • the sliding member contains polyacetal (POM) from the viewpoint of wear resistance and cost.
  • a portion corresponding to a bearing portion of the shaft portion is formed of a tubular sliding member, and the sliding member is used as a mold. It is preferable to have an insert molding step of integrating the shaft portion and the sliding member by injection foam molding in which the molten resin is filled in a mold and then foamed and solidified for the shaft portion.
  • the molding of the tube-shaped sliding member may be injection molding or cutting out of an extruded tube in the same manner as the molding of the tubular elastic body.
  • the present invention has been described above based on a preferred embodiment, the present invention is not limited to this, and other detailed configurations of each member constituting the transport roller, a mold, and injection molding are performed.
  • the detailed configuration of the device can also be appropriately changed without departing from the spirit of the present invention.
  • the transport roller of the present invention is a transport roller having a resin shaft portion, which is less likely to cause sink marks during molding, is inexpensive, highly accurate, and has excellent wear resistance of the shaft portion. It is suitably used for paper transporting rollers used in machines and multifunction devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention addresses the problem of providing: a transporting roller, which has a resin-made shaft part, and in which sink marks are hardly caused during molding, and which has a low price, high accuracy, and excellent wear resistance of a shaft part; and a method for manufacturing the same. The transporting roller according to the present invention is for transporting an object to be transported, the transporting roller being characterized by comprising at least a resin-made shaft part and an elastic body part for transporting the object to be transported, wherein the shaft part has a porous structure having pores therein.

Description

搬送用ローラー及びその製造方法Transport roller and its manufacturing method
 本発明は、搬送用ローラー及びその製造方法に関し、より詳しくは、樹脂製の軸部を有する搬送用ローラーおいて、成形時にヒケが発生しにくく、安価、高精度で、かつ軸部の耐摩耗性に優れる搬送用ローラー等に関する。 The present invention relates to a transport roller and a method for manufacturing the same. More specifically, in a transport roller having a resin shaft portion, sink marks are less likely to occur during molding, and the shaft portion is inexpensive, highly accurate, and wear resistant to the shaft portion. Regarding transport rollers and the like having excellent properties.
 レーザービームプリンターや複合機等に用いられている紙の搬送用のローラーは、紙をグリップするための弾性体部と紙を蹴り出すころ部と回転駆動を伝えるギア部とシャフトとを組み合わせた構成となっており、部品点数が多く組立工数もかかりコスト増の要因になっている。 The paper transport roller used in laser beam printers and multifunction devices is a combination of an elastic body for gripping the paper, a roller for kicking the paper, a gear for transmitting rotational drive, and a shaft. As a result, the number of parts is large and the assembly man-hours are high, which is a factor in increasing the cost.
 図1は、従来の金属製の軸部を有する搬送用ローラーの模式図である。 FIG. 1 is a schematic view of a conventional transport roller having a metal shaft portion.
 金属製の搬送用ローラー1は、金属製軸部(シャフトともいう。)2に、蹴り出しころ部3とチューブ状の弾性体部4とギア部5から構成されており、弾性体部4は、OA機器等の紙送り用ローラー部品において、例えば、被搬送物である紙等と接触して安定的に紙を搬送するため、ゴム等の弾性体を用いている。 The metal transport roller 1 is composed of a metal shaft portion (also referred to as a shaft) 2, a kick-out roller portion 3, a tubular elastic body portion 4, and a gear portion 5. In the paper feed roller parts of OA equipment and the like, for example, an elastic body such as rubber is used in order to stably convey the paper in contact with the paper to be conveyed.
 近年、上記搬送ローラーのコストダウンのために金属製シャフトに代わり、シャフトと蹴り出しころ部とギア部を同一の摺動樹脂材料で成形し、弾性体部を後から組み立てる方式が考えられている。 In recent years, in order to reduce the cost of the transport roller, a method has been considered in which the shaft, the kicking roller portion, and the gear portion are formed of the same sliding resin material instead of the metal shaft, and the elastic body portion is assembled later. ..
 図2は、樹脂製の軸部を有する搬送用ローラーの模式図である。 FIG. 2 is a schematic view of a transport roller having a resin shaft portion.
 樹脂製の搬送用ローラー11は、樹脂製軸部12に、樹脂製蹴り出しころ部13とチューブ状の弾性体部14及び樹脂製ギア部15から構成されている。しかしながら、この方式では上記樹脂製蹴り出しころ部13等で厚肉の樹脂を成形するとヒケてしまうため、肉盗み形状をつけて対策を取っている。肉盗み形状により均肉化することでヒケづらくはなるが、肉盗みの凹凸部に樹脂が転写されると金型に貼り付き、金型から上手く離型できずに寸法精度、変形などの新たな問題が発生してしまう。また、この方式では、樹脂で軸受けするため軸摩耗を抑えるための樹脂選定が重要である。 The resin transport roller 11 is composed of a resin shaft portion 12, a resin kick-out roller portion 13, a tubular elastic body portion 14, and a resin gear portion 15. However, in this method, if a thick resin is molded by the resin kick-out roller portion 13 or the like, it will sink, so a meat stealing shape is added to take measures. The shape of the meat steal makes it harder to sink, but when the resin is transferred to the uneven part of the meat steal, it sticks to the mold and cannot be released from the mold well, resulting in new dimensional accuracy and deformation. Problems will occur. Further, in this method, since the bearing is supported by the resin, it is important to select the resin to suppress the shaft wear.
 一方、樹脂製の軸部と弾性体部の組立てを削減する方法として、弾性体部に射出成形が可能な熱可塑性エラストマーを用いて、弾性体部を2色成形する方法が知られている(例えば、特許文献1~3参照。)。ここで、2色成形とは異なる2種の樹脂を1つの部品に成形する技術をいう。 On the other hand, as a method of reducing the assembly of the resin shaft portion and the elastic body portion, a method of molding the elastic body portion in two colors by using a thermoplastic elastomer capable of injection molding on the elastic body portion is known ( For example, see Patent Documents 1 to 3). Here, it refers to a technique of molding two types of resins different from two-color molding into one part.
 しかしながら、上記方法では、2色成形用の設備が必要になることや、2回成形するために金型機構が複雑になるなど生産性が悪いこと、軸部を形成する樹脂に弾性体との密着性を持たせるために、凹凸形状を付与させるため金型加工、成形が困難になる等の問題点も多くあり、組立工程はなくなってもコストダウンにはつながらないという現状があった。 However, in the above method, equipment for two-color molding is required, productivity is poor due to complicated mold mechanism for molding twice, and the resin forming the shaft portion is made of an elastic body. There are many problems such as difficulty in mold processing and molding because the uneven shape is given in order to have adhesiveness, and even if the assembly process is eliminated, the cost cannot be reduced.
特開平9-202486号公報Japanese Unexamined Patent Publication No. 9-202486 特開2001-31265号公報Japanese Unexamined Patent Publication No. 2001-31265 特開2006-312293号公報Japanese Unexamined Patent Publication No. 2006-31293
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、樹脂製の軸部を有する搬送用ローラーおいて、成形時にヒケが発生しにくく、安価、高精度で、かつ軸部の耐摩耗性に優れる搬送用ローラー及びその製造方法を提供することである。 The present invention has been made in view of the above problems and situations, and the problem to be solved is that in a transport roller having a resin shaft portion, sink marks are less likely to occur during molding, and the cost is low, high accuracy, and the like. It is an object of the present invention to provide a transport roller having excellent wear resistance of a shaft portion and a method for manufacturing the same.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、被搬送物を搬送する搬送用ローラーであって、前記搬送用ローラーが、少なくとも樹脂製の軸部と前記被搬送物を搬送する弾性体部で構成され、前記樹脂製の軸部が、特定の構造を有することによって、成形時にヒケが発生しにくく、安価、高精度で、かつ軸部の耐摩耗性に優れる搬送用ローラーが得られることを見出した。 In order to solve the above problems, the present inventor is a transport roller for transporting an object to be transported in a process of examining the cause of the problem, and the transport roller is at least a resin shaft and the above. It is composed of an elastic body part that conveys the object to be transported, and because the resin shaft part has a specific structure, sink marks are less likely to occur during molding, and it is inexpensive, highly accurate, and has abrasion resistance of the shaft part. It has been found that an excellent transport roller can be obtained.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problem according to the present invention is solved by the following means.
 1.被搬送物を搬送する搬送用ローラーであって、
 前記搬送用ローラーが、少なくとも樹脂製の軸部と前記被搬送物を搬送する弾性体部で構成され、
 前記軸部が内部に空孔を有する多孔質構造であることを特徴とする搬送用ローラー。
1. 1. A transport roller that transports the object to be transported.
The transport roller is composed of at least a resin shaft portion and an elastic body portion that transports the object to be transported.
A transport roller characterized in that the shaft portion has a porous structure having holes inside.
 2.前記軸部が、熱可塑性樹脂と化学発泡剤とを含有することを特徴とする第1項に記載の搬送用ローラー。 2. The transport roller according to item 1, wherein the shaft portion contains a thermoplastic resin and a chemical foaming agent.
 3.前記搬送用ローラーが、前記弾性体部がインサート成形されて前記軸部と一体化された構造を有することを特徴とする第1項又は第2項に記載の搬送用ローラー。 3. The transport roller according to item 1 or 2, wherein the transport roller has a structure in which the elastic body portion is insert-molded and integrated with the shaft portion.
 4.前記熱可塑性樹脂が、ポリアセタール、ポロプロピレン又はゴム変性ポリスチレンのいずれかであることを特徴とする第1項から第3項までのいずれか一項に記載の搬送用ローラー。 4. The transport roller according to any one of items 1 to 3, wherein the thermoplastic resin is any one of polyacetal, polypropylene or rubber-modified polystyrene.
 5.前記化学発泡剤が、重曹系発泡剤であることを特徴とする第2項から第4項までのいずれか一項に記載の搬送用ローラー。 5. The transport roller according to any one of items 2 to 4, wherein the chemical foaming agent is a baking soda-based foaming agent.
 6.前記軸部において、下記式(1)で表される空隙率が4~15%の範囲内であることを特徴とする第1項から第5項までのいずれか一項に記載の搬送用ローラー。
 式(1)
  空隙率(%)=(軸部の樹脂を用い多孔質構造にしない場合の軸部の質量-多孔質構造の軸部の質量)/(軸部の樹脂を用い多孔質構造にしない場合の軸部の質量)×100
6. The transport roller according to any one of items 1 to 5, wherein the porosity represented by the following formula (1) is in the range of 4 to 15% in the shaft portion. ..
Equation (1)
Porosity (%) = (mass of shaft part when resin of shaft part is not made into porous structure-mass of shaft part of porous structure) / (shaft when resin of shaft part is not made into porous structure) Part mass) x 100
 7.少なくとも樹脂製の軸部と被搬送物を搬送する弾性体部とで構成された、被搬送物を搬送する搬送用ローラーの製造方法であって、
 前記熱可塑性樹脂を含有する溶融樹脂を射出発泡成形して、前記樹脂製の軸部を成形する工程を有することを特徴とする搬送用ローラーの製造方法。
7. A method for manufacturing a transport roller for transporting an object to be transported, which is composed of at least a resin shaft portion and an elastic body portion for transporting the object to be transported.
A method for manufacturing a transport roller, which comprises a step of injecting and foaming a molten resin containing the thermoplastic resin to form a shaft portion made of the resin.
 8.前記弾性体部を金型にセットし、次いで前記軸部用として前記溶融樹脂を金型に充填し、発泡させた後に固化させることによって、前記軸部と前記弾性体部とを一体化させるインサート成形工程を有することを特徴とする第7項に記載の搬送用ローラーの製造方法。 8. An insert that integrates the shaft portion and the elastic body portion by setting the elastic body portion in a mold, then filling the mold with the molten resin for the shaft portion, foaming the mold, and then solidifying the mold portion. The method for manufacturing a transport roller according to item 7, wherein the method includes a molding step.
 9.前記熱可塑性樹脂と化学発泡剤とを混合し、前記溶融樹脂用の組成物を調製する工程を有することを特徴とする第7項又は第8項に記載の搬送用ローラーの製造方法。 9. The method for producing a transport roller according to item 7 or 8, further comprising a step of mixing the thermoplastic resin and a chemical foaming agent to prepare a composition for the molten resin.
 本発明の上記手段により、樹脂製の軸部を有する搬送用ローラーおいて、成形時にヒケが発生しにくく、安価、高精度で、かつ軸部の耐摩耗性に優れる搬送用ローラー及びその製造方法を提供することができる。 According to the above means of the present invention, in a transport roller having a resin shaft portion, sink marks are less likely to occur during molding, the transport roller is inexpensive, highly accurate, and has excellent wear resistance of the shaft portion, and a method for manufacturing the same. Can be provided.
 本発明の効果は、以下のように説明される。 The effect of the present invention is explained as follows.
 射出成形では、溶解した樹脂を金型内に加圧しながら射出して製品を成形するが、樹脂の種類によって程度差は有るものの、冷えて取り出された製品は溶けた樹脂の状態と較べて多かれ少なかれ収縮する。そのためでき上がった製品は金型の内面そのままの形状とはならず、へこんだり、極端な場合には深い穴が開いてしまったりする。この収縮による不良を「ヒケ」と呼ぶ。 In injection molding, the melted resin is injected into the mold while being pressed into the mold to mold the product. Although the degree of injection molding varies depending on the type of resin, the product taken out after cooling is more often compared to the state of the melted resin. It contracts more or less. Therefore, the finished product does not have the same shape as the inner surface of the mold, and may be dented or, in extreme cases, deep holes may be opened. The defect due to this shrinkage is called "sink".
 この収縮は当然ながら射出された材料の量に比例するので、製品に厚みの有るものほどヒケを生じやすい。ヒケの発生を防ぐには、なるべく均等な製品設計を行い、同一製品内でもブロック状に厚みがある部分には製品の品質に影響しない形で意図的に凹部を形成する(いわゆる「肉抜き」「肉盗み」)を施すといった配慮が必要になる。また逆に、ヒケることを予め計算してその部分に厚みを持たせ、ヒケた状態で狙った形状を得るという方法もあるが、これには極めて高度な金型製作技術が要求される。 This shrinkage is naturally proportional to the amount of injected material, so the thicker the product, the more likely it is to sink. In order to prevent the occurrence of sink marks, design the product as evenly as possible, and intentionally form recesses in the thick block-shaped part of the same product so as not to affect the quality of the product (so-called "lightening"). Consideration such as "stealing meat") is required. On the contrary, there is also a method of calculating the sink mark in advance and giving the portion a thickness to obtain the desired shape in the sink mark, but this requires extremely advanced mold manufacturing technology.
 また、搬送用ローラーを樹脂製にするには、剛性を確保しなければならず、肉厚中心部では上記ヒケの発生に加えて、成形収縮時の内部応力により反りが発生しやすい。前記ヒケ対策には樹脂の充填密度を高める手法も有効であり、このために射出圧力や背圧を強める方法も取られる。しかしながら、高圧でヒケを回避しようとすると前記内部応力による反りがより発生しやすくなる。 Further, in order to make the transport roller made of resin, rigidity must be ensured, and in addition to the above-mentioned sink marks at the center of the wall thickness, warpage is likely to occur due to internal stress during molding shrinkage. A method of increasing the resin filling density is also effective as a countermeasure against sink marks, and for this purpose, a method of increasing injection pressure and back pressure is also taken. However, when trying to avoid sink marks at high pressure, warpage due to the internal stress is more likely to occur.
 本発明の搬送用ローラーは、少なくとも樹脂製の軸部と前記被搬送物を搬送する弾性体部で構成され、前記樹脂製の軸部が、内部に空孔を有する多孔質構造であることを特徴とする。前記軸部を内部に空孔を有する多孔質構造にするには、例えば、前記熱可塑性樹脂を含有する溶融樹脂を射出発泡成形して、前記樹脂製の軸部を成形する工程によって行うことができる。 The transport roller of the present invention is composed of at least a resin shaft portion and an elastic body portion that transports the object to be transported, and the resin shaft portion has a porous structure having holes inside. It is a feature. In order to form the shaft portion into a porous structure having pores inside, for example, a step of injection-foaming a molten resin containing the thermoplastic resin and molding the resin shaft portion can be performed. it can.
 前記樹脂製の軸部を、射出発泡成形することによって、内部に空孔を有する多孔質構造にすることにより、発泡によるガス圧により成形収縮することを抑制してヒケを防止し、かつ、当該発泡のガス圧が低圧であることにより、内部応力の発生を小さくすることから、反りの発生も抑制することができる。
 また、当該発泡のガス圧が低圧であることにより、弾性体部の後述するPL痕を抑制できるという利点もある。
The resin shaft portion is injection-foam molded to form a porous structure having pores inside, thereby suppressing molding shrinkage due to gas pressure due to foaming to prevent sink marks, and the said. Since the gas pressure of foaming is low, the generation of internal stress is reduced, so that the generation of warpage can also be suppressed.
Further, since the gas pressure of the foam is low, there is an advantage that PL marks described later on the elastic body portion can be suppressed.
従来の金属製の軸部を有する搬送用ローラーの模式図Schematic diagram of a transport roller with a conventional metal shaft 樹脂製の軸部を有する搬送用ローラーの模式図Schematic diagram of a transport roller having a resin shaft 紙搬送ローラーを配置した給紙装置を示す模式図Schematic diagram showing a paper feed device in which a paper transport roller is arranged 樹脂充填率による発泡状態(空隙率)の変化を示すグラフGraph showing change in foaming state (porosity) depending on resin filling rate 発泡成形による反り低減効果を評価したグラフGraph evaluating the effect of reducing warpage by foam molding 発泡成形による曲げ強度を評価したグラフGraph evaluating bending strength by foam molding 発泡成形による曲げ弾性率を評価したグラフGraph evaluating flexural modulus due to foam molding 摩耗試験の概要を説明する概略図Schematic diagram illustrating the outline of the wear test 摩耗試験の摩耗深さを説明する模式図Schematic diagram illustrating the wear depth of the wear test 発泡成形による耐摩耗性を評価したグラフGraph evaluating wear resistance due to foam molding PL痕の発生を説明する模式図Schematic diagram illustrating the generation of PL scars 金型温度別の樹脂の充填圧とPL痕の関係を示すグラフGraph showing the relationship between resin filling pressure and PL marks by mold temperature 弾性体部と軸部とのインサート成形による一体化成形の概略を示す模式図Schematic diagram showing the outline of integral molding by insert molding of elastic body part and shaft part 金型を閉じて、射出成形手段から溶融された熱可塑性樹脂を注入して軸部を成形する模式図Schematic diagram of closing the mold and injecting molten thermoplastic resin from the injection molding means to mold the shaft 弾性体部と軸部が一体化成形された搬送用ローラーの模式図Schematic diagram of a transport roller in which the elastic body and shaft are integrally molded 軸部に用いる樹脂材料と、弾性体部に用いられる樹脂材料との溶解度パラメータの値の差の絶対値が、1.0を超えて溶融接合された場合と、1.0以内で溶融接合された場合の搬送用ローラーを示す模式図When the absolute value of the difference between the solubility parameter values of the resin material used for the shaft portion and the resin material used for the elastic body portion exceeds 1.0 and is melt-bonded, and when it is melt-bonded within 1.0. Schematic diagram showing a transport roller in the case of 弾性体部、摺動部材と、軸部とのインサート成形による一体化成形の具体的なフローを示す模式図Schematic diagram showing a specific flow of integral molding by insert molding of an elastic body part, a sliding member, and a shaft part. 弾性体部、摺動部材と、軸部とのインサート成形による一体化成形の具体的なフローを示す模式図Schematic diagram showing a specific flow of integral molding by insert molding of an elastic body part, a sliding member, and a shaft part. 弾性体部、摺動部材と、軸部とのインサート成形による一体化成形の具体的なフローを示す模式図Schematic diagram showing a specific flow of integral molding by insert molding of an elastic body part, a sliding member, and a shaft part. 弾性体部、摺動部材と、軸部とのインサート成形による一体化成形の具体的なフローを示す模式図Schematic diagram showing a specific flow of integral molding by insert molding of an elastic body part, a sliding member, and a shaft part. 弾性体部側面に樹脂部を設けて、成形収縮の力にて弾性体部を物理的に保持する方法を示す模式図と、弾性体部側面樹脂部での成形収縮での保持と弾性体部の変形の関係を示すグラフA schematic diagram showing a method of providing a resin portion on the side surface of the elastic body portion and physically holding the elastic body portion by a force of molding shrinkage, and holding and holding the elastic body portion by molding shrinkage on the side surface resin portion of the elastic body portion. Graph showing the relationship of deformation of 摺動部材を有する搬送用ローラーを説明する模式図Schematic diagram illustrating a transport roller having a sliding member 摺動部材を有する搬送用ローラーを示す模式図Schematic diagram showing a transport roller having a sliding member 摺動部材の拡大図Enlarged view of the sliding member
 本発明の搬送用ローラーは、被搬送物を搬送する搬送用ローラーであって、前記搬送用ローラーが、少なくとも樹脂製の軸部と前記被搬送物を搬送する弾性体部で構成され、前記軸部の内部に空孔を有する多孔質構造であることを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。 The transport roller of the present invention is a transport roller that transports an object to be transported, and the transport roller is composed of at least a resin shaft portion and an elastic body portion that transports the object to be transported. It is characterized by having a porous structure having pores inside the portion. This feature is a technical feature common to or corresponding to the following embodiments.
 本発明の実施態様としては、本発明の効果発現の観点から、前記軸部が、熱可塑性樹脂と化学発泡剤とを含有することが、好ましい。化学発泡剤は、専用設備が不要であり、材料も安価であることから、コスト上の利点がある。 As an embodiment of the present invention, it is preferable that the shaft portion contains a thermoplastic resin and a chemical foaming agent from the viewpoint of exhibiting the effect of the present invention. Chemical foaming agents have a cost advantage because they do not require special equipment and the materials are inexpensive.
 また、前記搬送用ローラーが、前記弾性体部がインサート成形されて前記軸部と一体化された構造を有することが、搬送用ローラーの製造に当たり、簡素な構造によって工数を削減できコスト低下を図れる観点から、好ましい。 Further, since the transport roller has a structure in which the elastic body portion is insert-molded and integrated with the shaft portion, man-hours can be reduced and costs can be reduced by a simple structure in manufacturing the transport roller. From the point of view, it is preferable.
 また、前記熱可塑性樹脂が、ポリアセタール、ポロプロピレン又はゴム変性ポリスチレンのいずれかであることが、熱可塑性樹脂としての摺動性能及びコスト、並びに前記弾性体部がインサート成形されて前記軸部と一体化された構造を有する観点から、好ましい材料である。 Further, the fact that the thermoplastic resin is any one of polyacetal, polypropylene or rubber-modified polystyrene means that the sliding performance and cost of the thermoplastic resin, and that the elastic body portion is insert-molded and integrated with the shaft portion. It is a preferable material from the viewpoint of having a modified structure.
 前記発泡剤が、重曹系発泡剤であることが、扱いやすさ及びコストの観点から、好ましい。 It is preferable that the foaming agent is a baking soda-based foaming agent from the viewpoint of ease of handling and cost.
 前記軸部において、前記式(1)で表される空隙率が4~15%の範囲内であることが、剛性を維持しながらヒケや反りを抑制する観点から、好ましい。 It is preferable that the porosity represented by the formula (1) in the shaft portion is within the range of 4 to 15% from the viewpoint of suppressing sink marks and warpage while maintaining rigidity.
 本発明の搬送用ローラーの製造方法は、少なくとも樹脂製の軸部と被搬送物を搬送する弾性体部とで構成された、被搬送物を搬送する搬送用ローラーの製造方法であって、前記熱可塑性樹脂を含有する溶融樹脂を射出発泡成形して、前記樹脂製の軸部を成形する工程を有することを特徴とする。 The method for manufacturing a transport roller of the present invention is a method for manufacturing a transport roller for transporting an object to be transported, which comprises at least a resin shaft portion and an elastic body portion for transporting the object to be transported. It is characterized by having a step of forming a shaft portion made of the resin by injection foam molding of a molten resin containing a thermoplastic resin.
 また、前記弾性体部を金型にセットし、次いで前記軸部用として前記溶融樹脂を金型に充填し、発泡させた後に固化させることによって、前記軸部と前記弾性体部とを一体化させるインサート成形工程を有することが、好ましい実施形態である。 Further, the elastic body portion is set in a mold, and then the molten resin is filled in the mold for the shaft portion, foamed, and then solidified to integrate the shaft portion and the elastic body portion. It is a preferred embodiment to have an insert molding step to allow.
 加えて、前記熱可塑性樹脂と化学発泡剤とを混合し、前記溶融樹脂用の組成物を調製する工程を有するとが、好ましい実施形態である。 In addition, it is a preferable embodiment to have a step of mixing the thermoplastic resin and the chemical foaming agent to prepare a composition for the molten resin.
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
 ≪本発明の搬送用ローラーの概要≫
 本発明の搬送用ローラーは、被搬送物を搬送する搬送用ローラーであって、前記搬送用ローラーが、少なくとも樹脂製の軸部と前記被搬送物を搬送する弾性体部で構成され、前記軸部の内部に空孔を有する多孔質構造であることを特徴とする。
<< Outline of the transport roller of the present invention >>
The transport roller of the present invention is a transport roller that transports an object to be transported, and the transport roller is composed of at least a resin shaft portion and an elastic body portion that transports the object to be transported. It is characterized by having a porous structure having pores inside the portion.
 本発明でいう「多孔質構造」とは、成形体内部に多数の空孔又は空隙を有する構造をいい、後述する式(1)で表される空隙率で当該空孔又は空隙を規定するものであり、空孔の大きさや空孔同士の連結状態などは特に限定されるものではない。 The "porous structure" as used in the present invention means a structure having a large number of pores or voids inside the molded product, and defines the pores or voids by the porosity represented by the formula (1) described later. Therefore, the size of the holes and the state of connection between the holes are not particularly limited.
 本発明でいう「弾性体」とはゴム弾性の性質を持っている材料であり、弾性限界が高く、弾性率が低いものである(概ねヤング率が50MPa以下)。 The "elastic body" referred to in the present invention is a material having rubber elastic properties, has a high elastic limit, and has a low elastic modulus (generally, Young's modulus is 50 MPa or less).
 ここで、「被搬送物を搬送する搬送用ローラー」の一般的な形態について説明する。 Here, the general form of the "transport roller for transporting the object to be transported" will be described.
 「被搬送物」とは、一般に記録媒体をいい、記録媒体としては、紙、樹脂板、金属、布帛、ゴムなどの種々の媒体が用いられ得る。また、紙としては、普通紙、板紙、塗工紙、レジンコート紙、合成紙などを挙げることができる。なお、「被搬送物」は、前記記録媒体に限定されるものではない。 The "object to be transported" generally refers to a recording medium, and various media such as paper, resin plate, metal, cloth, and rubber can be used as the recording medium. Examples of the paper include plain paper, paperboard, coated paper, resin-coated paper, and synthetic paper. The “object to be transported” is not limited to the recording medium.
 レーザービームプリンターや複写機等の装置における基本的な紙送機構は、例えば、特許文献1において、紹介されているとおりである。すなわち、図3の紙搬送ローラーを配置した給紙装置を示す模式図に示されるように、用紙52が給紙カセット50内に積まれてセットされ、ホッピングローラー51により取り出される。また、ホッピングローラー51の後には重ね送り防止ローラー53、54及び搬送用ローラー55、56等が配置されている。なお、図3では、重ね送り防止ローラー54は、駆動軸57で作動し、ローラー本体61には摩擦ゴム58が巻かれている。 The basic paper feeding mechanism in devices such as laser beam printers and copiers is as introduced in Patent Document 1, for example. That is, as shown in the schematic view showing the paper feed device in which the paper transport roller is arranged in FIG. 3, the paper 52 is stacked and set in the paper feed cassette 50, and is taken out by the hopping roller 51. Further, after the hopping roller 51, a stacking prevention roller 53, 54, a transport roller 55, 56, etc. are arranged. In FIG. 3, the stacking prevention roller 54 is operated by a drive shaft 57, and a friction rubber 58 is wound around the roller main body 61.
 本発明の搬送用ローラーは、上記ホッピングローラー51、重ね送り防止ローラー53、54及び搬送用ロ-ラー55、56などに使用されるものであるが、レーザービームプリンターや複写機等には多数の搬送用ローラーが使用されており、これらに限定されるものではない。 The transport roller of the present invention is used for the hopping roller 51, the stacking prevention rollers 53, 54, the transport roller 55, 56, etc., but is used in many laser beam printers, copiers, and the like. Transport rollers are used and are not limited to these.
 まず、本発明の特徴である、「射出発泡成形」について説明する。 First, "injection foam molding", which is a feature of the present invention, will be described.
〔1〕射出発泡成形
 本発明でいう「射出発泡成形」とは射出成形のプロセスにおいて発泡性を持った溶融樹脂を金型内に射出充填することによって気泡構造(空孔ともいう。)を持った成形体を得る成形技術である。射出発泡成形では空隙率を高くしようとすると充填不足となりボイド、未充填が起こりやすい。空隙率を低くすると発泡効果がなくヒケたり、発泡成形体に期待する効果(ヒケ防止や低反り化など)などが現れない。
[1] Injection foam molding "Injection foam molding" in the present invention has a bubble structure (also referred to as vacancies) by injection-filling a mold with a molten resin having foamability in the injection molding process. This is a molding technique for obtaining a molded product. In injection foam molding, if an attempt is made to increase the porosity, filling will be insufficient and voids and unfilling are likely to occur. When the porosity is lowered, there is no foaming effect and sink marks, and the effects expected of the foamed molded product (prevention of sink marks, low warpage, etc.) do not appear.
 射出発泡成形の方式としては、化学発泡方式、物理発泡方式、熱膨張性マイクロカプセルを用いた方式などあり、どれも効果があるが、コストの関係から言うと専用設備がいらず、材料も安価である化学発泡方式が一番有効である。 Injection foam molding methods include chemical foaming, physical foaming, and thermal expansion microcapsules, all of which are effective, but in terms of cost, no special equipment is required and the materials are inexpensive. The chemical foaming method is the most effective.
 化学発泡方式は、ADCA(アゾジカーボンアミド)などの有機系発泡剤や重曹などの無機系発泡剤が樹脂熱により分解・反応してガスを発生し発泡する。 In the chemical foaming method, an organic foaming agent such as ADCA (azodicarbonamide) and an inorganic foaming agent such as baking soda are decomposed and reacted by resin heat to generate gas and foam.
 中でも、重曹は発泡残渣が炭酸ナトリウムで害がなく、型汚れにも影響が少ないため、樹脂成形に向いている。 Among them, baking soda is suitable for resin molding because the foaming residue is sodium carbonate, which is harmless and has little effect on mold stains.
 物理発泡方式は、窒素や二酸化炭素の超臨界流体を溶融樹脂に供給して発泡させる。トレクサル社の「MuCell(登録商標)」などが知られている。 In the physical foaming method, a supercritical fluid of nitrogen or carbon dioxide is supplied to the molten resin for foaming. Trexal's "MuCell®" is known.
 熱膨張性マイクロカプセルを用いた方式は、熱膨張性マイクロカプセルが熱により膨張することによって発泡する。クレハ社のクレハマイクロスフェアーなどが知られている。 The method using heat-expandable microcapsules foams when the heat-expandable microcapsules expand due to heat. Kureha Microsphere of Kureha is known.
 化学発泡方式をさらに詳細に説明する。 The chemical foaming method will be explained in more detail.
 用いられる発泡剤として有機系化学発泡剤としては、ポリカルボン酸、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体、セミカルバジド化合物等を用いることができる。 As the effervescent agent used, as the organic chemical effervescent agent, a polycarboxylic acid, an azo compound, a nitroso compound, a hydrazine derivative, a semicarbazide compound and the like can be used.
 有機系化学発泡剤において、ポリカルボン酸の具体例としては、クエン酸、シュウ酸、フマル酸、フタル酸などが挙げられる。 Specific examples of polycarboxylic acids in organic chemical foaming agents include citric acid, oxalic acid, fumaric acid, and phthalic acid.
 アゾ化合物の具体例としては、アゾジカルボンアミド(ADCA)、1,1′-アゾビス(1-アセトキシ-1-フェニルエタン)、ジメチル-2,2′-アゾビスブチレート、ジメチル-2,2′-アゾビスイソブチレート、2,2′-アゾビス(2,4,4-トリメチルペンタン)、1,1′-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2′-アゾビス[N-(2-カルボキシエチル)-2-メチル-プロピオンアミジン]等が挙げられる。 Specific examples of the azo compound include azodicarboxylic amide (ADCA), 1,1'-azobis (1-acetoxy-1-phenylethane), dimethyl-2,2'-azobisbutyrate, and dimethyl-2,2'. -Azobisisobutyrate, 2,2'-azobis (2,4,4-trimethylpentane), 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis [N- (2) -Carboxyethyl) -2-methyl-propionamidine] and the like.
 ニトロソ化合物の具体例としては、N,N′-ジニトロソペンタメチレンテトラミン(DPT)が挙げられる。 Specific examples of the nitroso compound include N, N'-dinitrosopentamethylenetetramine (DPT).
 ヒドラジン誘導体の具体例としては、4,4′-オキシビス(ベンゼンスルホニルヒドラジド)、ジフェニルスルホン-3,3′-ジスルホニルヒドラジド等が挙げられる。 Specific examples of the hydrazine derivative include 4,4'-oxybis (benzenesulfonyl hydrazide), diphenylsulfone-3,3'-disulfonylhydrazide and the like.
 セミカルバジド化合物の具体例としては、p-トルエンスルホニルセミカルバジドが挙げられる。 Specific examples of the semicarbazide compound include p-toluenesulfonyl semicarbazide.
 その他の有機系化学発泡剤の具体例としては、トリヒドラジノトリアジン等が挙げられる。 Specific examples of other organic chemical foaming agents include trihydrazinotriazine and the like.
 無機系化学発泡剤において、重炭酸塩の具体例としては、炭酸水素ナトリウム、炭酸水素アンモニウム等が挙げられる。 Specific examples of bicarbonate in the inorganic chemical foaming agent include sodium hydrogen carbonate, ammonium hydrogen carbonate and the like.
 炭酸塩の具体例としては、炭酸ナトリウム、炭酸アンモニウム等が挙げられる。 Specific examples of carbonates include sodium carbonate, ammonium carbonate and the like.
 有機酸金属塩の具体例としては、クエン酸ナトリウムが挙げられる。 Specific examples of organic acid metal salts include sodium citrate.
 亜硝酸塩の具体例としては、亜硝酸アンモニウムが挙げられる。 A specific example of nitrite is ammonium nitrite.
 これらの発泡剤のうち、発泡成形体を構成する樹脂の溶融温度以下では分解せず、分解温度以下で分解する発泡剤を用いることが好ましい。このような発泡剤としては、アゾジカルボンアミド(ADCA)、炭酸水素ナトリウム、クエン酸、クエン酸ナトリウムなどを好ましく用いることができる。特に、得られる発泡成形体に臭気や色むらが発生することを防止する観点からは、炭酸水素ナトリウム(重曹)を用いることが好ましい。 Among these foaming agents, it is preferable to use a foaming agent that does not decompose below the melting temperature of the resin constituting the foamed molded product but decomposes below the decomposition temperature. As such a foaming agent, azodicarbonamide (ADCA), sodium hydrogen carbonate, citric acid, sodium citrate and the like can be preferably used. In particular, it is preferable to use sodium hydrogen carbonate (baking soda) from the viewpoint of preventing odor and color unevenness from being generated in the obtained foamed molded product.
 発泡剤としては、発生するガスの主成分が不燃性ガスであるものを用いることが好ましい。このような発泡剤の具体例を示すと、窒素ガス及び炭酸ガスが発生する発泡剤としては、アゾジカルボンアミド等が挙げられ、炭酸ガスが発生する発泡剤としては、炭酸水素ナトリウムが挙げられ、窒素ガスが発生する発泡剤としては、ジニトロソペンタメチレンテトラミン、p,p′-オキシビスベンゼンスルホニルヒドラジド等が挙げられる。 As the foaming agent, it is preferable to use a nonflammable gas as the main component of the generated gas. Specific examples of such a foaming agent include azodicarbonamide and the like as a foaming agent that generates nitrogen gas and carbon dioxide gas, and sodium hydrogencarbonate as a foaming agent that generates carbon dioxide gas. Examples of the foaming agent that generates nitrogen gas include dinitrosopentamethylenetetramine, p, p'-oxybisbenzenesulfonylhydrazide and the like.
 発泡成形体用樹脂材料に対して添加される発泡剤の添加量は、発泡剤の種類、得られる発泡成形体の軽量化率などを考慮して定められるが、通常、発泡成形体用樹脂材料100質量部に対して0.2~10質量部である。 The amount of the foaming agent added to the resin material for the foamed molded product is determined in consideration of the type of the foaming agent, the weight reduction rate of the obtained foamed molded product, etc., but is usually the resin material for the foamed molded product. It is 0.2 to 10 parts by mass with respect to 100 parts by mass.
 射出発泡成形法について具体的に説明する。射出発泡成形法自体は公知の方法が適用でき、熱可塑性樹脂のメルトフローレート(MFR)、発泡剤の種類、成形機の種類又は金型の形状によって適宜成形条件を調整すればよい。通常、熱可塑性樹脂としてポリプロピレン系樹脂の場合は樹脂温度170~250℃、金型温度10~100℃、成形サイクル1~60分、射出速度10~300mm/秒、射出圧10~200MPa、金型内への樹脂の充填圧は1~20MPaの範囲等の条件で行われる。 The injection foam molding method will be explained in detail. A known method can be applied to the injection foam molding method itself, and the molding conditions may be appropriately adjusted according to the melt flow rate (MFR) of the thermoplastic resin, the type of foaming agent, the type of molding machine, or the shape of the mold. Usually, in the case of polypropylene resin as the thermoplastic resin, the resin temperature is 170 to 250 ° C., the mold temperature is 10 to 100 ° C., the molding cycle is 1 to 60 minutes, the injection speed is 10 to 300 mm / sec, the injection pressure is 10 to 200 MPa, and the mold is used. The filling pressure of the resin inward is set under conditions such as 1 to 20 MPa.
 また、金型内で発泡させる方法としては種々有るが、なかでも固定型と任意の位置に前進及び後退が可能な可動型とから構成される金型を使用し、射出完了後、可動型を後退させて発泡させる、いわゆるコアバック法が、表面に非発泡層が形成され、内部の発泡層が均一微細気泡になりやすく、軽量性に優れ、耐衝撃性の良好な発泡成形体が得られやすいことから好ましい。可動型を後退させる方法としては、一段階で行ってもよいし、二段階以上の多段階で行ってもよく、後退させる速度も適宜調整してもよい。 In addition, there are various methods for foaming in the mold, but among them, a mold composed of a fixed mold and a movable mold that can move forward and backward at an arbitrary position is used, and after the injection is completed, the movable mold is used. In the so-called core back method of retracting and foaming, a non-foamed layer is formed on the surface, the foamed layer inside tends to become uniform fine bubbles, and a foamed molded product having excellent lightness and good impact resistance can be obtained. It is preferable because it is easy. As a method of retreating the movable type, it may be performed in one step, it may be performed in multiple steps of two or more steps, and the speed of retreating may be appropriately adjusted.
 また、予め金型内を不活性ガス等で圧力をかけながらポリプロピレン系樹脂を金型内に導入するいわゆるカウンタープレッシャー法を併用することで、スワールマークと呼ばれる表面外観不良を低減することができるため好ましい。 In addition, by using the so-called counter pressure method in which polypropylene-based resin is introduced into the mold while applying pressure in the mold with an inert gas or the like in advance, it is possible to reduce surface appearance defects called swirl marks. preferable.
 さらに、金型への溶融樹脂の充填量を少なめに調整し、キャビティ部において発泡成形するショートショット法を採用してもよい。 Further, a short shot method may be adopted in which the filling amount of the molten resin in the mold is adjusted to be small and foam molding is performed in the cavity portion.
 得られる射出発泡成形体は、軽量性と剛性のバランス及びヒケや反り防止に優れることから、前記軸部において、下記式(1)で定義される空隙率が4~15%の範囲内であることが好ましい。 Since the obtained injection foam molded product is excellent in balance between lightness and rigidity and prevention of sink marks and warpage, the porosity defined by the following formula (1) is in the range of 4 to 15% in the shaft portion. Is preferable.
 式(1)
  空隙率(%)=(軸部の樹脂を用い多孔質構造にしない場合の軸部の質量-多孔質構造の軸部の質量)/(軸部の樹脂を用い多孔質構造にしない場合の軸部の質量)×100
Equation (1)
Porosity (%) = (mass of shaft part when resin of shaft part is not made into porous structure-mass of shaft part of porous structure) / (shaft when resin of shaft part is not made into porous structure) Part mass) x 100
 上記空隙率は、同じ体積の非発泡成形体(多孔質構造にしない場合の軸部)と発泡成形体(多孔質構造の軸部)の質量を測定算出し、その質量差は発泡成形体の空孔部分による質量低下であることから、その質量差を非発泡成形体の質量で除することによって、空隙率(%)として表すものである。前記質量は成形体の平均質量をいう。なお、本願でいう「空隙率」とは、射出発泡成形法で一般的に言われる「発泡率」と同義である。 The porosity is calculated by measuring the masses of the non-foamed molded product (shaft portion when not made into a porous structure) and the foamed molded product (shaft portion having a porous structure) having the same volume, and the mass difference is that of the foamed molded product. Since the mass is reduced due to the pores, the difference in mass is divided by the mass of the non-foamed molded product to express the porosity (%). The mass refers to the average mass of the molded product. The "porosity" referred to in the present application is synonymous with the "forosity" generally referred to in the injection foam molding method.
 空隙率は、金型への溶融樹脂の充填率によって制御することができ、充填率が低いと空隙率は大きくなり、充填率が高いと空隙率は小さくなる。 The porosity can be controlled by the filling rate of the molten resin in the mold. When the filling rate is low, the porosity is large, and when the filling rate is high, the porosity is small.
 図4は、樹脂充填率による発泡状態(空隙率)の変化を示すグラフである。 FIG. 4 is a graph showing changes in the foaming state (porosity) depending on the resin filling rate.
 樹脂としてポリカーボネート(PC)及びポリアセタール(POM)を用い、重曹系発泡剤(英和化成社製ポリスレンES405)を樹脂に3質量%添加して、金型に射出発泡成形したときの、溶融樹脂の充填率(横軸)と空隙率の関係を示した。併せて成形体としての、ボイドの発生する領域(ボイド領域)及びヒケが発生する領域(ヒケ領域)を示した。 Filling of molten resin when polycarbonate (PC) and polyacetal (POM) are used as the resin, and 3% by mass of a baking soda-based foaming agent (Polyslen ES405 manufactured by Eiwa Kasei Co., Ltd.) is added to the resin for injection foam molding into a mold. The relationship between the rate (horizontal axis) and the porosity is shown. At the same time, a region where voids are generated (void region) and a region where sink marks are generated (sink region) as a molded product are shown.
 図4から、空隙率が4%未満では、ガス圧が不足し成形収縮を打ち消しきれずにヒケが発生しやすくなり、空隙率が15%を超えると、ボイド(空洞、空孔)の発生が大きくなり成形体の変形や剛性が低下しやすいことが分かる。したがって、射出発泡成形としては、空隙率が4~15%の範囲になるように、発泡剤種及び使用量の選択、金型への樹脂充填率の調整、射出に係る温度及び圧力などを調整することが好ましい。 From FIG. 4, when the porosity is less than 4%, the gas pressure is insufficient and the molding shrinkage cannot be completely canceled, and sink marks are likely to occur. When the porosity exceeds 15%, voids (cavities, vacancies) are generated. It can be seen that the size increases and the deformation and rigidity of the molded body tend to decrease. Therefore, in injection foam molding, the foaming agent type and amount used are selected, the resin filling rate in the mold is adjusted, the temperature and pressure related to injection are adjusted so that the porosity is in the range of 4 to 15%. It is preferable to do so.
 (射出発泡成形の効果)
(1)発泡成形による反り低減効果
 熱可塑性樹脂としてポリカーボネート(PC)及びポリアセタール(POM)を用いて、重曹系発泡剤(英和化成社製ポリスレンES405)を樹脂に3質量%添加し、空隙率10%で300mm長、厚さ4mmの板状の成形品を射出発泡成形して、反り量を評価した。射出発泡成形は、射出成形機「J140AD-110H」(日本製鋼所社製)を用い、シリンダー温度230℃、金型温度50℃、射出速度30mm/sec、及び保圧5MPaの成形条件で、試験片を作製した。
(Effect of injection foam molding)
(1) Warpage reduction effect by foam molding Using polycarbonate (PC) and polyacetal (POM) as thermoplastic resins, a baking soda-based foaming agent (Polyslen ES405 manufactured by Eiwa Kasei Co., Ltd.) was added to the resin in an amount of 3% by mass, and the porosity was 10 A plate-shaped molded product having a length of 300 mm and a thickness of 4 mm was injection-foam molded and the amount of warpage was evaluated. Injection foam molding is performed using an injection molding machine "J140AD-110H" (manufactured by Japan Steel Works, Ltd.) under molding conditions of a cylinder temperature of 230 ° C, a mold temperature of 50 ° C, an injection speed of 30 mm / sec, and a holding pressure of 5 MPa. Pieces were made.
 図5は、発泡成形による反り低減効果を評価したグラフである。 FIG. 5 is a graph evaluating the warp reduction effect of foam molding.
 反り量の評価は、上記成型後の試験片を平面台の上に置き、端部が平面台から浮いている反り量の最大値をノギスにて測定して評価した。測定は、25℃・50%RHにおいて、24時間調湿した後、端部の立ち上がりを測定した。 The amount of warpage was evaluated by placing the above-molded test piece on a flat table and measuring the maximum value of the amount of warp with the end floating from the flat table with a caliper. The measurement was carried out at 25 ° C. and 50% RH, after adjusting the humidity for 24 hours, the rise of the end portion was measured.
 結果は、図5で示すように、通常成形(非発泡成形)に比較して、発泡成形により反り量は1/5に低減する。 As a result, as shown in FIG. 5, the amount of warpage is reduced to 1/5 by foam molding as compared with normal molding (non-foam molding).
(2)発泡成形での強度・剛性への影響
 熱可塑性樹脂としてポリカーボネート(PC)、ガラス繊維入りポリカーボネート(PC-GF)、ポリアセタール(POM)、ハイインパクト(耐衝撃性)ポリスチレン(HIPS)、ポリプロピレン(PP)、及びシクロオレフィン(COP)を用いて、重曹系発泡剤(英和化成社製ポリスレンES405)を樹脂に3質量%添加し、空隙率10%で300mm幅の板状の成形品を射出発泡成形して、曲げ強度及び曲げ弾性率を評価した。
(2) Effect on strength and rigidity in foam molding Polycarbonate (PC), polycarbonate containing glass fibers (PC-GF), polyacetal (POM), high-impact (impact-resistant) polystyrene (HIPS), polypropylene as thermoplastic resins Using (PP) and cycloolefin (COP), a baking soda-based foaming agent (polystyrene ES405 manufactured by Eiwa Kasei Co., Ltd.) was added to the resin in an amount of 3% by mass, and a plate-shaped molded product having a void ratio of 10% and a width of 300 mm was injected. Foam molding was performed to evaluate bending strength and bending elasticity.
 曲げ強度は、曲げ試験中,試験片が耐える最大曲げ応力をいう。テンシロンにて、JIS K7171(2008)の試験条件で測定する。例えば、射出発泡成形体の試験片を、JIS K7171に準拠し、曲げ速度100mm/分、治具先端R5mm、スパン間隔100mm、試験片(幅50mm×長さ150mm×厚さ4mm)の条件にて測定して求める。測定装置は、オリエンテック社製テンシロンRTC-1225Aを用い、温度23℃、湿度55%RH下で行う。発泡成形しない試験片に対し、発泡成形した試験片の曲げ強度の比率(%)をもって評価する。 Bending strength refers to the maximum bending stress that the test piece can withstand during the bending test. Measured with Tencilon under the test conditions of JIS K7171 (2008). For example, a test piece of an injection foam molded product conforms to JIS K7171 under the conditions of a bending speed of 100 mm / min, a jig tip R5 mm, a span interval of 100 mm, and a test piece (width 50 mm × length 150 mm × thickness 4 mm). Measure and obtain. As a measuring device, Tencilon RTC-1225A manufactured by Orientec Co., Ltd. is used, and the measurement is performed at a temperature of 23 ° C. and a humidity of 55% RH. The evaluation is made based on the ratio (%) of the bending strength of the foam-molded test piece to the non-foam-molded test piece.
 曲げ弾性率は、JIS K7171(2008)に準拠して曲げ弾性率を測定し、以下の基準で評価する。上記試験片を、JIS K7171に準拠し、曲げ速度100 mm/分、治具先端R5mm、スパン間隔100mm、試験片(幅50mm×長さ150mm×厚さ4mm)の条件にて測定して求める。測定装置は、オリエンテック社製テンシロンRTC-1225Aを用い、温度23℃、湿度55%RH下で行う。発泡成形しない試験片に対し、発泡成形した試験片の曲げ弾性率の比率(%)をもって評価する。 The flexural modulus is measured according to JIS K7171 (2008) and evaluated according to the following criteria. The test piece is measured and obtained under the conditions of a bending speed of 100 mm / min, a jig tip R5 mm, a span interval of 100 mm, and a test piece (width 50 mm × length 150 mm × thickness 4 mm) in accordance with JIS K7171. As a measuring device, Tencilon RTC-1225A manufactured by Orientec Co., Ltd. is used, and the measurement is performed at a temperature of 23 ° C. and a humidity of 55% RH. The evaluation is made based on the ratio (%) of the flexural modulus of the foam-molded test piece to the test piece not foam-molded.
 結果は、図6A曲げ強度、図6B曲げ弾性率で示すように、発泡成形体にした場合、曲げ弾性率は全体に低下は小さいが、曲げ強度は熱可塑性樹脂種類に依存し、ポリアセタール(POM)、ハイインパクト(耐衝撃性)ポリスチレン(HIPS)、ポリプロピレン(PP)、及びシクロオレフィン(COP)が優れており、中でもポリアセタール(POM)及び、ポリプロピレン(PP)は劣化が小さく、本発明に係る軸部成形に用いられる樹脂として好ましいことが分かる。なお、図6A及び図6Bでは、通常成形強度(非発泡成形強度)を100%としたときの、各材料の曲げ強度及び曲げ弾性率の比率(%)を示した。 As a result, as shown in FIG. 6A bending strength and FIG. 6B bending elasticity, in the case of a foam molded product, the decrease in bending elasticity is small as a whole, but the bending strength depends on the type of thermoplastic resin, and polypropylene (POM). ), High-impact (impact resistant) polystyrene (HIPS), polypropylene (PP), and cycloolefin (COP) are excellent, and among them, polyacetal (POM) and polypropylene (PP) have less deterioration and are related to the present invention. It can be seen that the resin used for forming the shaft portion is preferable. In addition, in FIG. 6A and FIG. 6B, the ratio (%) of the bending strength and the bending elastic modulus of each material was shown when the normal molding strength (non-foam molding strength) was set to 100%.
(3)発泡成形による耐摩耗性試験
 発泡成形するとスワールマークと言われるガス模様が発生してその影響で摩耗性が懸念されることから、耐摩耗性試験を実施した。
(3) Abrasion resistance test by foam molding Since a gas pattern called a swirl mark is generated during foam molding and there is concern about abrasion resistance due to the effect, an abrasion resistance test was conducted.
 熱可塑性樹脂としてポリアセタール(POM)を用い、前述のとおり射出発泡成形にて、試験片を作成し、図7Aで示す摩耗性試験機にて耐摩耗性を評価した。なお、空隙率は9%に設定した。 Using polyacetal (POM) as the thermoplastic resin, a test piece was prepared by injection foam molding as described above, and the abrasion resistance was evaluated by the abrasion tester shown in FIG. 7A. The porosity was set to 9%.
 (耐摩耗試験)
 円柱形状の樹脂材料201に鋼製の線ばね202を点接触させ、排紙ころ相当の圧力(約140MPa)をかけながら樹脂材料を回転する。一定時間試験後に樹脂の摩耗深さ(図7B参照)を測定し、摩耗体積に変換する。
(Abrasion resistance test)
A steel wire spring 202 is brought into point contact with the cylindrical resin material 201, and the resin material is rotated while applying a pressure (about 140 MPa) equivalent to that of a paper ejection roller. After the test for a certain period of time, the wear depth of the resin (see FIG. 7B) is measured and converted into a wear volume.
 結果は、図8で示すように、実際は通常成形に比べて摩耗性の劣化は見られず、発泡成形によって、摩耗量は1/4に減少する。同条件にて通常成形品には大量の摩耗粉が付着し耐久性に問題がある。 As a result, as shown in FIG. 8, in reality, no deterioration in wear resistance was observed as compared with normal molding, and the amount of wear was reduced to 1/4 by foam molding. Under the same conditions, a large amount of abrasion powder is usually attached to the molded product, and there is a problem in durability.
(4)発泡成形時の充填圧の影響
 射出発泡成形時の樹脂の充填圧により、後述するチューブ状の弾性体部が成形樹脂の発泡時の圧力によって、チューブが変形して、固定側金型と可動型金型の間にバリ状にはみ出す故障が発生することがある。これを本発明では、「PL(パーティングライン)痕」と呼称する。
(4) Effect of filling pressure during foam molding The tube-shaped elastic body, which will be described later, is deformed by the pressure during foaming of the molding resin due to the filling pressure of the resin during injection foam molding, and the fixed side mold A failure may occur in which a burr-like protrusion occurs between the mold and the movable mold. This is referred to as a "PL (parting line) mark" in the present invention.
 図9Aは、PL痕の発生を説明する模式図である。 FIG. 9A is a schematic diagram illustrating the generation of PL marks.
 固定側金型と可動型金型の間のパーティングライン(PL)に溶融樹脂の充填圧力によって、チューブの一部がはみ出してバリを形成する。 A part of the tube protrudes from the parting line (PL) between the fixed side mold and the movable mold due to the filling pressure of the molten resin to form burrs.
 図9Bは、金型温度別の樹脂の充填圧とPL痕の関係を示すグラフである。 FIG. 9B is a graph showing the relationship between the resin filling pressure and the PL mark for each mold temperature.
 チューブ状の弾性体部に、ポリエチレン系エラストマー(TPS)を2種(ゴム硬度A40°及びA80°)用い、成形樹脂としてポリプロピレン(PP)、重曹系発泡剤(英和化成社製ポリスレンES405)を樹脂に3質量%添加し、樹脂温度210℃、金型温度57℃に設定後、射出速度20mm/secにて溶融樹脂の金型への充填圧を変化させて、発生するPL痕の高さを測定した。なお、空隙率は10%に設定した。 Two types of polyethylene-based elastomer (TPS) (rubber hardness A40 ° and A80 °) are used for the tubular elastic body, and polypropylene (PP) and baking soda-based foaming agent (Polyslen ES405 manufactured by Eiwa Kasei Co., Ltd.) are used as molding resins. After setting the resin temperature to 210 ° C. and the mold temperature to 57 ° C., the filling pressure of the molten resin into the mold was changed at an injection speed of 20 mm / sec to increase the height of the PL marks generated. It was measured. The porosity was set to 10%.
 図9Bより、PL痕の目標値0.05mmを満たすには、弾性体のゴム硬度に関係なく、充填圧を20MPa以下に設定することが好ましいことが分かる。 From FIG. 9B, it can be seen that in order to satisfy the target value of 0.05 mm for PL marks, it is preferable to set the filling pressure to 20 MPa or less regardless of the rubber hardness of the elastic body.
 なお、通常の射出成形では20MPa以下ではヒケてしまい成形精度が出ないが、射出発泡成形ではむしろ充填圧をかけないように成形することが好ましい。 In normal injection molding, sink marks occur at 20 MPa or less and molding accuracy is not obtained, but in injection foam molding, it is preferable to mold without applying filling pressure.
〔2〕搬送用ローラーの射出発泡成形
〔2.1〕第1実施形態
 本発明の搬送用ローラーの第1実施形態は、被搬送物を搬送する搬送用ローラーであって、前記搬送用ローラーが、少なくとも樹脂製の軸部と前記被搬送物を搬送する弾性体部で構成され、前記軸部が内部に空孔を有する多孔質構造であることを特徴とする。
[2] Injection foam molding of a transport roller [2.1] First embodiment The first embodiment of the transport roller of the present invention is a transport roller that transports an object to be transported, and the transport roller is It is characterized in that it is composed of at least a resin shaft portion and an elastic body portion that conveys the object to be transported, and the shaft portion has a porous structure having holes inside.
 さらに、前記搬送用ローラーが、前記軸部の外周上に前記弾性体部がインサート成形された構造を有することが好ましい。 Further, it is preferable that the transport roller has a structure in which the elastic body portion is insert-molded on the outer periphery of the shaft portion.
 前記弾性体部は、ゴム弾性の性質を持っている材料であり、弾性限界が高く、弾性率が低いものである(概ねヤング率が50MPa以下)。弾性体部は軸部と同一金型で作る必要はなく、熱可塑性エラストマーはもちろん、ゴム製品でも可能で、その製法も射出成形意外に押出加工チューブの切り出しでもよく、特に限定されるものではない。 The elastic body portion is a material having rubber elastic properties, has a high elastic limit, and has a low elastic modulus (generally, Young's modulus is 50 MPa or less). The elastic body does not have to be made with the same mold as the shaft, and it can be made of rubber products as well as thermoplastic elastomers, and the manufacturing method may be cut out of an extruded tube other than injection molding, and is not particularly limited. ..
 特に、本発明に係る弾性体部は、熱可塑性エラストマーを円筒形(チューブ状)に成形した成形物であることが好ましい。 In particular, the elastic body portion according to the present invention is preferably a molded product obtained by molding a thermoplastic elastomer into a cylindrical shape (tube shape).
 また、前記弾性体部が含有する熱可塑性エラストマーのマトリックス材として用いられる樹脂材料と、前記射出発泡成形される軸部に用いる樹脂材料との溶解度パラメータの値の差の絶対値が1.0以内であり、かつ、前記弾性体部と前記軸部が溶融接合された構造を有することが、前記弾性体部と前記軸部とを一体化して成形する(以下、一体化成形ともいう。)観点から、好ましい。 Further, the absolute value of the difference between the values of the solubility parameters of the resin material used as the matrix material of the thermoplastic elastomer contained in the elastic body portion and the resin material used for the shaft portion to be injection-molded is within 1.0. Moreover, having a structure in which the elastic body portion and the shaft portion are melt-bonded is a viewpoint of integrally molding the elastic body portion and the shaft portion (hereinafter, also referred to as integral molding). Therefore, it is preferable.
 前記弾性体部に用いられる熱可塑性エラストマーは、スチレン系エラストマー、塩素化ポリエチレン系エラストマー、塩化ビニル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、エステル系エラストマー、アミド系エラストマー、アイオノマーエラストマー、エチレン・エチレンアクリレート共重合体系エラストマー及びエチレン・酢酸ビニル共重合体系エラストマーからなる群より選ばれたエラストマーであることが好ましく、中でもスチレン系エラストマー及びオレフィン系エラストマーであることが、より好ましい。 The thermoplastic elastomer used for the elastic body is a styrene elastomer, a chlorinated polyethylene elastomer, a vinyl chloride elastomer, an olefin elastomer, a urethane elastomer, an ester elastomer, an amide elastomer, an ionomer elastomer, or an ethylene / ethylene acrylate. Elastomers selected from the group consisting of copolymerization-based elastomers and ethylene / vinyl acetate copolymer-based elastomers are preferable, and styrene-based elastomers and olefin-based elastomers are more preferable.
 前記スチレン系エラストマーとしては、例えば、SBS(スチレン-ブタジエン-スチレンブロックコポリマー)、SIS(スチレン-イソプレン-スチレンブロックコポリマー)、SEBS(スチレン-エチレン-ブチレン-スチレンブロックコポリマー:水素化SBS)、SEEPS(スチレン-エチレン-エチレン-プロピレン-スチレンブロックコポリマー)、SEPS(スチレン-エチレン-プロピレン-スチレンブロックコポリマー:水素化SIS)、HSBR(水素化スチレン-ブタジエンランダムコポリマー)等を挙げることができる。市販のスチレン系熱可塑性エラストマーとしては、例えば、「セプトン」(商品名、クラレ社製)、「タフテック」(商品名、旭化成ケミカルズ社製)、「ダイナロン」(商品名、JSR社製)を挙げることができる。 Examples of the styrene-based elastomer include SBS (styrene-butadiene-styrene block copolymer), SIS (styrene-isoprene-styrene block copolymer), SEBS (styrene-ethylene-butylene-styrene block copolymer: hydride SBS), and SEEPS ( Styrene-ethylene-ethylene-propylene-styrene block copolymer), SEPS (styrene-ethylene-propylene-styrene block copolymer: hydride SIS), HSBR (hydride styrene-butadiene random copolymer) and the like can be mentioned. Examples of commercially available styrene-based thermoplastic elastomers include "Septon" (trade name, manufactured by Kuraray), "Tough Tech" (trade name, manufactured by Asahi Kasei Chemicals), and "Dynaron" (trade name, manufactured by JSR). be able to.
 オレフィン系熱可塑性エラストマー(TPO:Thermoplastic Olefinic Elastomer)は、ポリプロピレン(PP)やポリエチレン(PE)等のポリオレフィンをハードセグメント(本発明でいうマトリックス材)とし、エチレン-プロピレンゴム(EPM、EPDM)などのゴム成分をソフトセグメントとする熱可塑性エラストマーである。また前記TPOは、ポリオレフィンとゴム成分のブレンドタイプ、それらの動的架橋タイプ(TPV:Themoplastic Vulcanizatesとして区別して呼ぶこともある)、及び重合タイプ(R-TPO:Reactor-TPO)の3タイプに大別できる。 Olefin-based thermoplastic elastomers (TPOs: Thermoplastic Organic Elastomers) use polypropylene (PP), polyethylene (PE), and other polyolefins as hard segments (matrix materials in the present invention), such as ethylene-propylene rubber (EPM, EPDM). A thermoplastic elastomer having a rubber component as a soft segment. The TPO is broadly divided into three types: a blend type of polyolefin and rubber components, their dynamic cross-linking type (TPV: Themoplastic Vulcanize), and a polymerization type (R-TPO: Reactor-TPO). Can be separated.
 市販品としては、例えば、三菱化学(株)のTPOである「サーモラン(登録商標)」及び「TREXPRENE(登録商標)」が挙げられる。 Examples of commercially available products include "Thermoran (registered trademark)" and "TREXPRENE (registered trademark)", which are TPOs of Mitsubishi Chemical Corporation.
 前記熱可塑性エラストマーと前記マトリックス材としての熱可塑性樹脂とを配合する場合は、熱可塑性エラストマー100質量部に対して、熱可塑性樹脂を25~100質量部の範囲で配合し、前記熱可塑性エラストマーを硫黄加硫又は樹脂加硫により動的加硫して前記熱可塑性樹脂中に分散させた組成物が好ましく用いられる。 When the thermoplastic elastomer and the thermoplastic resin as the matrix material are blended, the thermoplastic resin is blended in the range of 25 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer, and the thermoplastic elastomer is blended. A composition that is dynamically vulcanized by sulfur vulcanization or resin vulcanization and dispersed in the thermoplastic resin is preferably used.
 前述のとおり、前記熱可塑性エラストマーは、マトリックス材として上記熱可塑性樹脂を用いることが、溶融接合によって前記弾性体部と前記軸部とを一体化成形する観点から好ましく、当該軸部に用いる熱可塑性樹脂としては、アクリロニトリル・ブタジエン・スチレン(ABS)、ポリアセタール(POM)、ポリプロピレン(PP)、ポリエチレン(PE)又はポリカーボネート(PC)が好ましく例示される。 As described above, it is preferable to use the thermoplastic resin as the matrix material for the thermoplastic elastomer from the viewpoint of integrally molding the elastic body portion and the shaft portion by melt joining, and the thermoplastic used for the shaft portion. As the resin, acrylonitrile-butadiene-styrene (ABS), thermoplastic (POM), polypropylene (PP), polyethylene (PE) or polycarbonate (PC) are preferably exemplified.
 ここで、前記弾性体部と前記軸部が溶融接合された構造を有するためには、前記熱可塑性エラストマーのマトリックス材として用いられる樹脂材料と、前記軸部に用いる樹脂材料との溶解度パラメータの値の差の絶対値が1.0以内であることが好ましく、加熱により樹脂が溶融し、樹脂同士が容易に溶融接合することで、一体化成形が達成される。 Here, in order to have a structure in which the elastic body portion and the shaft portion are melt-bonded, the value of the solubility parameter of the resin material used as the matrix material of the thermoplastic elastomer and the resin material used for the shaft portion. The absolute value of the difference is preferably 1.0 or less, and the resins are melted by heating and the resins are easily melt-bonded to each other to achieve integral molding.
 「溶融接合」とは、一般的に2種以上の部材の接合部に、熱又は圧力もしくはその両者を加え、必要であれば適当な溶加材を加えて、接合部が連続性を持つ一体化された部材とする接合方法をいい、本発明では、樹脂同士が加熱等により溶融し、かつ接することでその界面で樹脂の混合が起こり、一つの混合物として一体化成形されることをいう。 "Melting joint" generally means that heat or pressure or both are applied to the joints of two or more types of members, and if necessary, an appropriate filler metal is added to make the joints continuous. It refers to a joining method for forming a member, and in the present invention, it means that the resins are melted by heating or the like and come into contact with each other, so that the resins are mixed at the interface and integrally molded as one mixture.
 また、「一体化成形」とは、接合している部材が、力を加えない限り分離しない状態をいう。 In addition, "integral molding" refers to a state in which the members to be joined do not separate unless force is applied.
 ここで、樹脂材料の溶解度パラメータ値(SP値ともいう。)は、分子構造と高分子材料の物性値との相関を統計的に解析して得られる回帰式に基づくBicerano法によって算出する。具体的には、市販のパーソナルコンピュータにインストールしたソフトウェア「Scigress Version 2.6」(富士通社製)において、それぞれの化合物の構造を代入し、Bicerano法によって算出される値を採用する。 Here, the solubility parameter value (also referred to as SP value) of the resin material is calculated by the Bicerano method based on the regression equation obtained by statistically analyzing the correlation between the molecular structure and the physical property value of the polymer material. Specifically, in the software "Scigress Version 2.6" (manufactured by Fujitsu Limited) installed on a commercially available personal computer, the structure of each compound is substituted and the value calculated by the Bicerano method is adopted.
 表Iに、本発明に係る前記弾性体部に用いる熱可塑性エラストマー種(シリコーンゴム、フッ素系ゴム、エチレンプロピレンゴム(EPDM)、天然ゴム、オレフィン形エラストマー、スチレン系エラストマー(SBR)及びマトリックス材種(ポリプロピレン、ポリエステル系樹脂、アクリル系樹脂)と、前記軸部に用いる熱可塑性樹脂種(ポリプロピレン、ポリエチレン、ポリカーボネート、ポリアセタール)とのそれぞれの溶解度パラメータ値と、成形部品にしたときの弾性体部と軸部の剥離程度(剥離不可、簡単に剥離する、又は接合していないとの評価)の結果を示した。 Table I shows the thermoplastic elastomer species (silicone rubber, fluorine-based rubber, ethylene propylene rubber (EPDM), natural rubber, olefin-type elastomer, styrene-based elastomer (SBR), and matrix grades) used for the elastic body portion according to the present invention. The solubility parameter values of (polypropylene, polyester resin, acrylic resin) and the thermoplastic resin type (polypropylene, polyethylene, polycarbonate, polyacetal) used for the shaft portion, and the elastic body portion when made into a molded part. The results of the degree of peeling of the shaft (evaluation that it cannot be peeled, easily peeled, or not joined) are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表Iから、前記弾性体部が含有する熱可塑性エラストマーのマトリックス材として用いられる樹脂材料と、前記軸部に用いる樹脂材料との溶解度パラメータの値の差の絶対値が、1.0以内であるときに、樹脂材料同士が溶融接合して、一体化成形が可能になることが分かる。 From Table I, the absolute value of the difference between the solubility parameter values of the resin material used as the matrix material of the thermoplastic elastomer contained in the elastic body portion and the resin material used for the shaft portion is within 1.0. It can be seen that sometimes the resin materials are melt-bonded to each other to enable integral molding.
 したがって、前記弾性体部が含有する熱可塑性エラストマーのマトリックス材として用いられる樹脂材料と、前記軸部に用いる樹脂材料との組み合わせを最適化することで、一体化成形が可能となり、しかも当該弾性体部と当該軸部とがインサート成形された構造を有することによって、前記軸部が、前記弾性体部のズレ防止用の特別な形状を有さなくてもよいなどの構造上及び金型設計上の利点を有することになる。例えば。成形時の離型の影響などなく成形物を精度良く作れることや、ズレ防止形状が干渉することなく、所定のニップ量を得るときの弾性体部の設計が容易になるなど、の利点が挙げられる。 Therefore, by optimizing the combination of the resin material used as the matrix material of the thermoplastic elastomer contained in the elastic body portion and the resin material used for the shaft portion, integral molding becomes possible, and the elastic body portion is further formed. By having a structure in which the portion and the shaft portion are insert-molded, the shaft portion does not have to have a special shape for preventing the elastic body portion from being displaced, and in terms of structure and mold design. Will have the advantage of. For example. Advantages include the ability to accurately produce a molded product without the effects of mold release during molding, and the ease of designing the elastic body when obtaining a predetermined nip amount without interfering with the anti-displacement shape. Be done.
 また、印刷時には使われるトナー(スチレンアクリルとポリエステル系が使われ、融点が100℃付近。)が搬送用ローラーの弾性体部に付着する不具合が発生することがある。 In addition, the toner used during printing (styrene acrylic and polyester are used and the melting point is around 100 ° C.) may adhere to the elastic body of the transport roller.
 表IIに、本発明に係る前記弾性体部に用いる熱可塑性エラストマー種(シリコーンゴム、フッ素系ゴム、エチレンプロピレンゴム(EPDM)、天然ゴム、オレフィン形エラストマー、スチレン系エラストマー(SBR)及びマトリックス材種(ポリプロピレン、ポリエステル系樹脂、アクリル系樹脂)の組み合わせを下記表IIに記載のように変化させ、かつ、搬送時の温度を80~100℃に変化させたときの弾性体部へのトナー付着程度を評価した。 Table II shows the thermoplastic elastomer species (silicone rubber, fluororubber, ethylene propylene rubber (EPDM), natural rubber, olefin-type elastomer, styrene-based elastomer (SBR), and matrix grades) used for the elastic body portion according to the present invention. Degree of toner adhesion to elastic body when the combination of (polypropylene, polyester resin, acrylic resin) is changed as shown in Table II below and the temperature during transportation is changed to 80 to 100 ° C. Was evaluated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表IIから、搬送時の温度を80~100℃に変化させたときの弾性体部へのトナー付着を目視で評価したところ、オレフィン系エラストマー又はスチレン系エラストマーとマトリックス材としてポリプロピレン(PP)を用いた熱可塑性エラストマーを弾性体部に用いれば、各温度についてトナー付着が抑制できるとの実験結果が得られた。したがって、熱可塑性エラストマーのマトリックス材としてはポリプロピレン(PP)が優れていることが分かる。 From Table II, when the toner adhesion to the elastic body when the temperature during transportation was changed to 80 to 100 ° C. was visually evaluated, polypropylene (PP) was used as the matrix material with the olefin elastomer or styrene elastomer. Experimental results have been obtained that toner adhesion can be suppressed at each temperature by using the existing thermoplastic elastomer for the elastic body. Therefore, it can be seen that polypropylene (PP) is excellent as the matrix material for the thermoplastic elastomer.
 一方、前記軸部は、軸受け部の変形抑制、耐久性向上のために樹脂強化剤を含有することも好ましい。例えば、前記軸部を形成する熱可塑性樹脂中に、ポリベンザゾール繊維、カーボン繊維、アラミド繊維、金属繊維、ガラス繊維、セラミック繊維又はポリパラフェニレンテレフタルアミド繊維などの繊維状フィラーを混合することが好ましい。中でも、当該繊維状のフィラーとしては、カーボン繊維又はガラス繊維のうちの少なくとも一方であることがより好ましい。 On the other hand, it is also preferable that the shaft portion contains a resin reinforcing agent in order to suppress deformation of the bearing portion and improve durability. For example, a fibrous filler such as polybenzazole fiber, carbon fiber, aramid fiber, metal fiber, glass fiber, ceramic fiber or polyparaphenylene terephthalamide fiber can be mixed in the thermoplastic resin forming the shaft portion. preferable. Above all, the fibrous filler is more preferably at least one of carbon fibers and glass fibers.
 前記繊維状フィラーの平均径は、0.2~10.0μmの範囲内であり、かつ平均アスペクト比が10~100の範囲内であることが好ましい。繊維状のフィラーの平均径は、小さい方が軸部の表面平滑性に影響を与えにくいため、10μm以下が望ましい。また、0.2μm以上であれば十分な強度を得ることができる。 The average diameter of the fibrous filler is preferably in the range of 0.2 to 10.0 μm, and the average aspect ratio is preferably in the range of 10 to 100. The smaller the average diameter of the fibrous filler, the less likely it is to affect the surface smoothness of the shaft portion, so the average diameter is preferably 10 μm or less. Further, if it is 0.2 μm or more, sufficient strength can be obtained.
 また、繊維状のフィラーの平均長さも、短い方が軸部の表面平滑性に影響を与えにくいため100μm以下が望ましい。また、繊維状の充填剤の平均長さは、10μm以上であれば十分な強度を得ることができる。 Also, the average length of the fibrous filler is preferably 100 μm or less because the shorter the average length, the less likely it is to affect the surface smoothness of the shaft portion. Further, if the average length of the fibrous filler is 10 μm or more, sufficient strength can be obtained.
 さらに、繊維状のフィラーの平均アスペクト比が10~100の範囲内であることが好ましい。この範囲内であると樹脂と相溶しやすく、軸部の補強効果が良好であると考えられる。 Further, it is preferable that the average aspect ratio of the fibrous filler is in the range of 10 to 100. If it is within this range, it is easily compatible with the resin, and it is considered that the reinforcing effect of the shaft portion is good.
 具体的な繊維状のフィラーとしては、例えば、炭素繊維ミルドファイバー(三菱ケミカル株式会社製)、ガラス繊維T-289DE(日本電子硝子社製)、ミルドファイバー(旭グラスファイバー社製)等を挙げることができる。 Specific examples of the fibrous filler include carbon fiber milled fiber (manufactured by Mitsubishi Chemical Co., Ltd.), glass fiber T-289DE (manufactured by JEOL Ltd.), milled fiber (manufactured by Asahi Glass Fiber Co., Ltd.), and the like. Can be done.
 さらに、前記弾性体部及び軸部用組成物は、本発明の目的を損なわない範囲内で、熱可塑性エラストマーや熱可塑性樹脂以外の各種の重合体や添加剤を含有してもよい。添加剤の具体例としては、酸化防止剤、耐熱安定剤、耐候安定剤、耐光安定剤、紫外線吸収剤、帯電防止剤、老化防止剤、脂肪酸金属塩、軟化剤、分散剤、核剤、滑剤、難燃剤、顔料、染料、有機充填剤が挙げられる。 Further, the composition for the elastic body portion and the shaft portion may contain various polymers and additives other than the thermoplastic elastomer and the thermoplastic resin as long as the object of the present invention is not impaired. Specific examples of additives include antioxidants, heat-resistant stabilizers, weather-resistant stabilizers, light-resistant stabilizers, UV absorbers, antistatic agents, anti-aging agents, fatty acid metal salts, softeners, dispersants, nucleating agents, and lubricants. , Flame retardants, pigments, dyes, organic fillers.
 各成分及びその他の添加剤は、その所定量を、ヘンシェルミキサー、V-ブレンダー、リボンブレンダー又はタンブラーブレンダー等を用いて均一に混合し、次いで押出機を用いて通常ペレット状に加工すると、射出発泡成形に適した樹脂組成物として利用することができる。 Each component and other additives are injection-foamed when a predetermined amount thereof is uniformly mixed using a Henschel mixer, V-blender, ribbon blender, tumbler blender, etc., and then processed into a normal pellet shape using an extruder. It can be used as a resin composition suitable for molding.
 本発明の搬送用ローラーの製造方法は、少なくとも樹脂製の軸部と被搬送物を搬送する弾性体部とで構成された、被搬送物を搬送する搬送用ローラーの製造方法であって、前記熱可塑性樹脂を含有する溶融樹脂を射出発泡成形して、前記樹脂製の軸部を成形する工程を有することを特徴とし、前記弾性体部を金型にセットし、次いで前記軸部用として前記溶融樹脂を金型に充填し、発泡させた後に固化させることによって、前記軸部と前記弾性体部とを一体化させるインサート成形工程を有することが好ましい。 The method for manufacturing a transport roller of the present invention is a method for manufacturing a transport roller for transporting an object to be transported, which is composed of at least a resin shaft portion and an elastic body portion for transporting the object to be transported. It is characterized by having a step of forming a shaft portion made of the resin by injection foam molding of a molten resin containing a thermoplastic resin, the elastic body portion is set in a mold, and then the shaft portion is used. It is preferable to have an insert molding step of integrating the shaft portion and the elastic body portion by filling the mold with the molten resin, foaming the mold, and then solidifying the resin.
 前記弾性体部は、前述したように、軸部と同一金型で作る必要はなく、熱可塑性エラストマーはもちろん、ゴム製品でも可能であり、その製法も射出成形や押出加工チューブの切り出しでもよい。例えば、弾性体部が以下の方法によって成形されることが好ましい。 As described above, the elastic body portion does not need to be made of the same mold as the shaft portion, and can be made of a rubber product as well as a thermoplastic elastomer, and the manufacturing method may be injection molding or cutting out of an extruded tube. For example, it is preferable that the elastic body portion is molded by the following method.
 1)熱可塑性エラストマー及びマトリックス材を用いて、円筒状(チューブ状)成形物を押出成形する。 1) Extrude a cylindrical (tube-shaped) molded product using a thermoplastic elastomer and a matrix material.
 2)得られた円筒状成形物を寸法調整のために研摩し、目的とするローラーの長さに切断後、洗浄する。 2) The obtained cylindrical molded product is polished for dimensional adjustment, cut to the desired roller length, and then washed.
 3)切断された円筒状成形物を軸部とのインサート成形による一体化成形のために金型にセットする。 3) Set the cut cylindrical molded product in the mold for integral molding by insert molding with the shaft.
 成形物を得るための公知の成形法としては、例えば、射出成形法、射出圧縮成形法、押出成形法、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコ-ティング成形)成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられるが、本発明では、前記弾性体部と前記軸部とを射出発泡成形法を用いて、インサート成形することが、好ましい。 Known molding methods for obtaining a molded product include, for example, an injection molding method, an injection compression molding method, an extrusion molding method, a deformed extrusion method, a transfer molding method, a hollow molding method, a gas-assisted hollow molding method, and a blow molding method. Extrusion blow molding, IMC (in-mold coating molding) molding method, rotary molding method, multi-layer molding method, two-color molding method, insert molding method, sandwich molding method, foam molding method, pressure molding method and the like can be mentioned. In the present invention, it is preferable to insert mold the elastic body portion and the shaft portion by using an injection foam molding method.
 本発明において「インサート成形」とは、金型内に挿入、セットした弾性体部や後述する摺動部材などのチューブに、溶融した熱可塑性樹脂を充填して、弾性体部や摺動部材と当該弾性体部や摺動部材を貫通する軸部とを、一体化する成形方法をいう。 In the present invention, "insert molding" means that a tube such as an elastic body portion or a sliding member described later, which is inserted and set in a mold, is filled with a molten thermoplastic resin to form an elastic body portion or a sliding member. A molding method that integrates the elastic body portion and the shaft portion that penetrates the sliding member.
 図10は、弾性体部と軸部とのインサート成形による一体化成形の概略を示す模式図である。 FIG. 10 is a schematic view showing an outline of integral molding by insert molding of an elastic body portion and a shaft portion.
 図10Aにおいて、開閉型の金型101に部材セット手段106によって、弾性体部102を所定の位置にセットする。 In FIG. 10A, the elastic body portion 102 is set at a predetermined position on the open / close mold 101 by the member setting means 106.
 あらかじめ、前記熱可塑性樹脂と化学発泡剤とを混合し、溶融樹脂用の組成物を調製する工程によって溶融樹脂を準備する。
 図10Bにおいて、金型101を閉じて、射出成形手段103から溶融された熱可塑性樹脂(溶融樹脂104)を軸部を形成する空間に注入して、軸部105を成形する。
The molten resin is prepared in advance by the step of mixing the thermoplastic resin and the chemical foaming agent and preparing a composition for the molten resin.
In FIG. 10B, the mold 101 is closed, and the thermoplastic resin (molten resin 104) melted from the injection molding means 103 is injected into the space forming the shaft portion to mold the shaft portion 105.
 図10Cにおいて、一面金型101をはずし、弾性体部102と軸部105が一体化成形された搬送用ローラーを得る。 In FIG. 10C, the one-sided mold 101 is removed to obtain a transport roller in which the elastic body portion 102 and the shaft portion 105 are integrally molded.
 上記のように、本発明の搬送用ローラーは、熱可塑性エラストマー層がローラー軸部の外周にインサート成形により一体化されている構造を有することが好ましい。 As described above, the transport roller of the present invention preferably has a structure in which the thermoplastic elastomer layer is integrated on the outer periphery of the roller shaft portion by insert molding.
 図11は、軸部に用いる樹脂材料と、弾性体部に用いられる樹脂材料との溶解度パラメータの値の差の絶対値が、1.0を超えて溶融接合された場合と、1.0以内で溶融接合された場合の搬送用ローラーを示す模式図である。 FIG. 11 shows the case where the absolute value of the difference between the solubility parameter values of the resin material used for the shaft portion and the resin material used for the elastic body portion exceeds 1.0 and is melt-bonded within 1.0. It is a schematic diagram which shows the transport roller at the time of melt-joining in.
 図11のAは、前記熱可塑性エラストマーのマトリックス材として用いられる樹脂材料と、前記軸部に用いる樹脂材料との溶解度パラメータの値の差の絶対値が1.0を超える場合を示す模式図である。 FIG. 11A is a schematic view showing a case where the absolute value of the difference between the solubility parameter values of the resin material used as the matrix material of the thermoplastic elastomer and the resin material used for the shaft portion exceeds 1.0. is there.
 この場合は、樹脂の充填時には、弾性体部102と軸部105は密着しているが(図11のB参照)、軸部の熱可塑性樹脂が冷却されると成形収縮により、弾性体部から剥がれ、空回り不良などが発生する(図11のC参照)。冷却時の軸部105に付与した矢印は成形収縮の方向を表す。 In this case, when the resin is filled, the elastic body portion 102 and the shaft portion 105 are in close contact with each other (see B in FIG. 11), but when the thermoplastic resin of the shaft portion is cooled, the elastic body portion due to molding shrinkage Peeling, poor idling, etc. occur (see C in FIG. 11). The arrow given to the shaft portion 105 during cooling indicates the direction of molding shrinkage.
 図11のD及び図11のEは、このような空回り不良に対して、弾性体ローラー周辺へのずれ防止形状を付与した従来のケースを示す模式図である。 D of FIG. 11 and E of FIG. 11 are schematic views showing a conventional case in which a shape for preventing displacement to the periphery of an elastic roller is provided in response to such an idling defect.
 例えば、弾性体ローラー102周辺に軸部105に樹脂製の凸形状107を付与したり(図11のD参照)、弾性体部内部に樹脂が注入される凹形状を弾性体部に付与したりする(図11のE参照)必要がある。 For example, a convex shape 107 made of resin is given to the shaft portion 105 around the elastic body roller 102 (see D in FIG. 11), or a concave shape in which resin is injected into the elastic body part is given to the elastic body part. (See E in FIG. 11).
 それに対し、図11のFは、前記熱可塑性エラストマーのマトリックス材として用いられる樹脂材料と、前記軸部に用いる樹脂材料との溶解度パラメータの値の差の絶対値が1.0以内である場合であり、前記樹脂材料同士が溶融接合するために一体化成形し、軸部の熱可塑性樹脂が冷却されるときの成形収縮が生じたとしても溶融接合しているために、軸部が弾性体部から剥がれることがなく、空回り不良を抑制することができる(図11のG及び図11のH参照)。 On the other hand, F in FIG. 11 shows a case where the absolute value of the difference between the values of the solubility parameters of the resin material used as the matrix material of the thermoplastic elastomer and the resin material used for the shaft portion is within 1.0. There is, the resin materials are integrally molded for melt-bonding, and even if molding shrinkage occurs when the thermoplastic resin of the shaft is cooled, the shaft is melt-bonded, so that the shaft is an elastic part. It is possible to suppress idling failure without peeling from the resin (see G in FIG. 11 and H in FIG. 11).
 図12は、弾性体部、後述する摺動部材と、軸部とのインサート成形による一体化成形の具体的なフローを示す模式図である。なお、ここでは、弾性体部と後述する摺動部材と、軸部とを一体化成形する具体例を示す。 FIG. 12 is a schematic view showing a specific flow of integral molding by insert molding of an elastic body portion, a sliding member described later, and a shaft portion. Here, a specific example of integrally molding the elastic body portion, the sliding member described later, and the shaft portion will be shown.
 図12Aは、金型の型開き中に必要な箇所に弾性体部及び摺動部材であるチューブをセットする工程である。 FIG. 12A is a step of setting an elastic body portion and a tube which is a sliding member at a necessary position during mold opening.
 図中、型開きの金型151にチューブ状の弾性体部102及び軸受け用のチューブ状の摺動部材152をセットする。
 チューブの金型組み込みは手で金型に挿入しもよいが、量産時は取出し機などのロボット等を用いて実施するのが望ましい。また、チューブのセットは金型の固定側又は可動側のどちらでも構わない。金型機構などから良い方を判断すればよい。チューブの金型保持はチューブの径部の軽圧入で実施することができるが、エア吸引や粘着などの機構を金型に盛り込むことでも可能である。
In the figure, the tubular elastic body portion 102 and the tubular sliding member 152 for bearings are set in the mold opening mold 151.
The tube may be inserted into the mold by hand, but it is desirable to use a robot such as a take-out machine during mass production. Further, the tube may be set on either the fixed side or the movable side of the mold. You can judge the better one from the mold mechanism. The mold holding of the tube can be carried out by light press-fitting the diameter of the tube, but it is also possible to incorporate a mechanism such as air suction or adhesion into the mold.
 図12Bは、金型を型締めして軸部用熱可塑性樹脂をゲート部より注入する工程である。 FIG. 12B is a step of molding the mold and injecting the thermoplastic resin for the shaft portion from the gate portion.
 図中、チューブ状の弾性体部102及び軸受け用のチューブ状の摺動部材152をセットした型開きの金型151を閉じ射出成形手段153より、溶融樹脂154を注入し、軸部を成形する。樹脂を注入する際は、ゲート部155により溶融樹脂の漏れを防ぐ。 In the figure, the mold opening mold 151 in which the tubular elastic body portion 102 and the tubular sliding member 152 for bearings are set is closed, and the molten resin 154 is injected from the injection molding means 153 to form the shaft portion. .. When injecting the resin, the gate portion 155 prevents leakage of the molten resin.
 樹脂の注入条件としては以下の条件が一例として挙げられるが、これに限定されるものではない。 The following conditions can be given as an example of the resin injection conditions, but the conditions are not limited to these.
 〈溶融接合ありのケース例:第1実施形態〉
 軸部用成形樹脂:ポリプロピレン(PP SP値8.1)
         重曹系発泡剤(英和化成社製ポリスレンES405)を樹脂に3質量%添加、空隙率10%
 弾性体チューブ:ポリエチレン系エラストマー(TPS:ポリプリピレン(PP)マトリックス SP値8.1)
・樹脂温度:220℃
・金型温度:50℃
・保圧条件:20MPa-10sサイクル
 図12Cは、溶融樹脂を注入充填後、溶融樹脂を金型内で発泡し、次いで冷却して、弾性体部、摺動部材と軸部とを一体化させる工程である。
<Case example with melt bonding: 1st embodiment>
Molding resin for shaft: Polypropylene (PP SP value 8.1)
Baking soda-based foaming agent (Polyslen ES405 manufactured by Eiwa Kasei Co., Ltd.) was added to the resin in an amount of 3% by mass, and the porosity was 10%.
Elastic tube: Polyethylene elastomer (TPS: Polypropylene (PP) matrix SP value 8.1)
・ Resin temperature: 220 ℃
・ Mold temperature: 50 ℃
-Holding condition: 20 MPa-10s cycle In FIG. 12C, after injecting and filling the molten resin, the molten resin is foamed in the mold and then cooled to integrate the elastic body portion, the sliding member and the shaft portion. It is a process.
 発泡に係る条件等は、前述の射出発泡成形条件の好ましい範囲から適宜調整することが好ましい。 It is preferable to appropriately adjust the conditions related to foaming from the preferable range of the above-mentioned injection foam molding conditions.
 冷却は、低温の水等の低温媒体を金型151内の流路に循環させ、金型の温度が熱可塑性樹脂のガラス転移温度Tg以下になるまで金型151を冷却する。このとき、以下定義される平均冷却速度を0.4~3.0K/secに調整することが好ましい。
(平均冷却速度)=(金型151の冷却時の吸熱量:J/sec)/(金型151の熱容量:J/cm3/K)/(金型151の大きさ:cm3
 図12Dは、金型151を型開きしてインサート成形品を取り出す工程である。通常の射出成形と同様にエジェクターピンなどにより突出し取り出すことが好ましい。取り出した後、ゲートカットして成形部をランナーなどから切り離す。
For cooling, a low-temperature medium such as low-temperature water is circulated in the flow path in the mold 151, and the mold 151 is cooled until the temperature of the mold becomes equal to or lower than the glass transition temperature Tg of the thermoplastic resin. At this time, it is preferable to adjust the average cooling rate defined below to 0.4 to 3.0 K / sec.
(Average cooling rate) = (heat absorption amount when cooling the mold 151: J / sec) / (heat capacity of the mold 151: J / cm 3 / K) / (size of the mold 151: cm 3 )
FIG. 12D is a step of opening the mold 151 and taking out the insert molded product. It is preferable to project and take out by an ejector pin or the like as in normal injection molding. After taking it out, the gate is cut to separate the molded part from the runner or the like.
 この工程により、弾性体部102、後述する摺動部材152と、発泡成形体である軸部105とがインサート成形により一体化成形された、本発明の第1実施形態に係る搬送用ローラーが得られる。 By this step, the transport roller according to the first embodiment of the present invention is obtained in which the elastic body portion 102, the sliding member 152 described later, and the shaft portion 105 which is a foam molded body are integrally molded by insert molding. Be done.
〔2〕第2実施形態(変形例)
 本発明の別の実施形態(第2実施形態:変形例)として、本発明の搬送用ローラーが、前記軸部を構成する樹脂部が、前記弾性体部の側面部の両面に接しており、前記樹脂部の高さが前記弾性体部の厚さの30~70%の範囲内であり、かつ、前記樹脂部が成形時の収縮により前記弾性体部を保持している構造を有することが、好ましい。
[2] Second embodiment (modification example)
As another embodiment of the present invention (second embodiment: modified example), in the transport roller of the present invention, the resin portion constituting the shaft portion is in contact with both sides of the side surface portion of the elastic body portion. The height of the resin portion is within the range of 30 to 70% of the thickness of the elastic body portion, and the resin portion has a structure in which the elastic body portion is held by shrinkage during molding. ,preferable.
 これは、搬送ローラーに求められる機能の1つに摺動性(低摩擦、耐摩耗性)があり、軸部の樹脂としては一般的に摺動性が良く安価なポリアセタール(POM:SP値11付近)、又はナイロン(PA6、PA66:SP値13付近)などを用いる要求もあり、かつ弾性体部として、安価なシリコーンゴム、フッ素系ゴム、又はエチレンプロピレンゴム(EPDM)などを用いる要求もあり、その際は、当該材料の組み合わせでは溶融接合での一体化が難しいことから、弾性体部側面に樹脂部を設けて、成形収縮の力にて弾性体部を物理的に保持する方法で対応することが好ましい。 This is because one of the functions required of the transport roller is slidability (low friction, wear resistance), and as a resin for the shaft portion, the slidability is generally good and inexpensive polyacetal (POM: SP value 11). There is also a demand for using nylon (PA6, PA66: around SP value 13), etc., and there is also a demand for using inexpensive silicone rubber, fluororubber, ethylene propylene rubber (EPDM), etc. as the elastic body part. In that case, since it is difficult to integrate by melt joining with the combination of the materials, a method of providing a resin part on the side surface of the elastic body part and physically holding the elastic body part by the force of molding shrinkage is used. It is preferable to do so.
 図13は、弾性体部側面に樹脂部を設けて、成形収縮の力にて弾性体部を物理的に保持する方法を示す模式図と、弾性体部側面樹脂部での成形収縮での保持と弾性体部の変形の関係を示すグラフである。 FIG. 13 is a schematic view showing a method of providing a resin portion on the side surface of the elastic body portion and physically holding the elastic body portion by a force of molding shrinkage, and holding the elastic body portion on the side surface resin portion of the elastic body portion by molding shrinkage. It is a graph which shows the relationship between the deformation of an elastic body part.
 図13のA~図13のCは、弾性体部側面に樹脂部を設けて、成形収縮の力にて弾性体部を物理的に保持する方法を示す模式図である。
 図13のA~図13のCは、弾性体部105側面に軸部105に凸型の樹脂部を設けて、弾性体部の厚さに対して、0%(図13のA参照)、70%(図13のB参照)及び100%(図13のC参照)の高さで物理的に保持したケースである。
13A to 13C are schematic views showing a method of providing a resin portion on the side surface of the elastic body portion and physically holding the elastic body portion by a force of molding shrinkage.
In FIGS. 13A to 13C, a convex resin portion is provided on the shaft portion 105 on the side surface of the elastic body portion 105, and is 0% with respect to the thickness of the elastic body portion (see A in FIG. 13). It is a case of physically holding at a height of 70% (see B in FIG. 13) and 100% (see C in FIG. 13).
 図13のDは、弾性体部102が軸部105の成形収縮により、弾性体部側面樹脂部によって変形することを示す模式図である。矢印が成形収縮の方向である。 D in FIG. 13 is a schematic view showing that the elastic body portion 102 is deformed by the resin portion on the side surface of the elastic body portion due to the molding shrinkage of the shaft portion 105. The arrow indicates the direction of molding shrinkage.
 図13のEは、弾性体部側面樹脂部での成形収縮での保持と弾性体部の変形の関係を示すグラフである。 FIG. 13E is a graph showing the relationship between the holding of the elastic body portion side resin portion during molding shrinkage and the deformation of the elastic body portion.
 横軸は弾性体に接する前記軸部用の樹脂の高さの割合(%)を示し、縦軸は弾性体の変形の度合いを表す真円度を示す。軸部用樹脂の成形収縮により、弾性体部に変形が生じ、真円度が劣化するため、一定の変形度(真円度)以内に調整する必要がある。 The horizontal axis indicates the ratio (%) of the height of the resin for the shaft portion in contact with the elastic body, and the vertical axis indicates the roundness indicating the degree of deformation of the elastic body. Due to the molding shrinkage of the resin for the shaft portion, the elastic body portion is deformed and the roundness is deteriorated. Therefore, it is necessary to adjust the shape within a certain degree of deformation (roundness).
 「真円度」は、市販の真円度測定器で互いに90°をなす2又は3赤道平面上の弾性体表面の輪郭を測定し、それぞれの最小外接円から弾性体表面までの半径方向の距離の最大の値を真円度として求めることがきる。 "Roundness" measures the contours of the elastic body surface on the 2 or 3 equatorial planes that form 90 ° with each other using a commercially available roundness measuring device, and measures the contours of the elastic body surfaces in the radial direction from the respective minimum circumscribed circles to the elastic body surface. The maximum value of the distance can be calculated as the roundness.
 図13のEのグラフでは、弾性体部のゴムチューブの硬度違い(A40°、A80°)×接合方法違い(溶融接合、物理的接合)の4種の結果である。 In the graph of E in FIG. 13, there are four types of results: different hardness of the rubber tube of the elastic body (A40 °, A80 °) × different joining method (melt joining, physical joining).
 弾性体部の変形の度合いが目標の真円度変化として、0.2mm以下を達成できるのは、黒の点線以下の領域である。 The degree of deformation of the elastic body can achieve the target roundness change of 0.2 mm or less in the area below the black dotted line.
 この結果から、ゴム硬度が低いA40°程変形しないことがわかる。また、ゴム硬度が低いA40°でも弾性体部を保持して真円度変化を目標以内にするには、側面樹脂の高さは弾性体部の厚さの30%が必要となる。一方、ゴム硬度が高いA80以上だと側面樹脂の高さは弾性体部の厚さの80%以上が必要となり、ニップ(弾性体部が弾性変形して紙をグリップすること。)を得るための変形ができなくなり問題となる。 From this result, it can be seen that the rubber hardness is low and it does not deform as much as A40 °. Further, in order to hold the elastic body portion and keep the roundness change within the target even at A40 °, which has a low rubber hardness, the height of the side resin needs to be 30% of the thickness of the elastic body portion. On the other hand, if the rubber hardness is A80 or higher, the height of the side resin needs to be 80% or more of the thickness of the elastic body part, and a nip (the elastic body part elastically deforms to grip the paper) is obtained. It becomes a problem because it cannot be transformed.
 したがって、上記結果から、前記弾性体部のゴム硬度が、A80°以下であることが、好ましく、真円度変化を目標以内にし、かつ前記弾性体のニップの効果を得るために、前記弾性体に接する前記軸部用の樹脂の高さは、弾性体部の厚さに対して30~70%の範囲であることが好ましい。 Therefore, from the above results, it is preferable that the rubber hardness of the elastic body portion is A80 ° or less, and in order to keep the change in roundness within the target and to obtain the effect of the nip of the elastic body, the elastic body The height of the resin for the shaft portion in contact with the elastic body portion is preferably in the range of 30 to 70% with respect to the thickness of the elastic body portion.
 なお、溶融接合する第1実施形態の場合は、真円度変化は図7Bのグラフからゴム硬度の影響を受けないことが分かる。 In the case of the first embodiment of melt joining, it can be seen from the graph of FIG. 7B that the change in roundness is not affected by the rubber hardness.
 第2実施形態における本発明の搬送用ローラーの製造方法は、前記軸部を構成する樹脂部を、高さが前記弾性体部の厚さの30~70%の範囲内となるように、前記弾性体部の側面部の両面に接するように射出発泡成形によって成形し、次いで、前記樹脂部の成形時の収縮により前記弾性体部を保持させる工程を有することを特徴とする。 In the method for manufacturing a transport roller of the present invention in the second embodiment, the resin portion constituting the shaft portion is said to have a height within a range of 30 to 70% of the thickness of the elastic body portion. It is characterized by having a step of molding by injection foam molding so as to be in contact with both sides of a side surface portion of the elastic body portion, and then holding the elastic body portion by shrinkage during molding of the resin portion.
 具体的には、図12で示した弾性体部、摺動部材と軸部とのインサート成形による一体化成形のフロー(図12A~図12D)にしたがって、金型に弾性体部をセットし、当該弾性体部の側面部の両面に前記軸部を構成する樹脂部が所定の高さで接するように金型を作成し、軸部用の熱可塑性樹脂を注入、冷却後インサート成形品を取り出せばよい。 Specifically, the elastic body portion is set in the mold according to the flow of integral molding by insert molding of the elastic body portion and the sliding member and the shaft portion shown in FIG. 12 (FIGS. 12A to 12D). Create a mold so that the resin portions constituting the shaft portion are in contact with both sides of the side surface portion of the elastic body portion at a predetermined height, inject the thermoplastic resin for the shaft portion, cool it, and then take out the insert molded product. Just do it.
 例えば、以下の条件を例示することができるが、これに限定されるものではない。 For example, the following conditions can be exemplified, but the conditions are not limited to these.
 〈溶融接合なしのケース例:第2実施形態〉
 軸部用成形樹脂:ポリアセタール(POM SP値11)
         重曹系発泡剤(英和化成社製ポリスレンES405)を樹脂に3質量%添加、空隙率10%
 弾性体チューブ:ポリエチレン系エラストマー(TPS:ポリプロピレン(PP)マトリックス SP値8.1)
・樹脂温度:210℃
・金型温度:70℃
・保圧条件:20MPa-10sサイクル
・前記弾性体部に接する樹脂部の高さ:前記弾性体部の厚さの30~70%
<Case example without melt bonding: Second embodiment>
Shaft molding resin: Polyacetal (POM SP value 11)
Baking soda-based foaming agent (Polyslen ES405 manufactured by Eiwa Kasei Co., Ltd.) was added to the resin in an amount of 3% by mass, and the porosity was 10%.
Elastic tube: Polyethylene elastomer (TPS: Polypropylene (PP) matrix SP value 8.1)
-Resin temperature: 210 ° C
・ Mold temperature: 70 ℃
-Holding condition: 20 MPa-10s cycle-Height of the resin part in contact with the elastic body part: 30 to 70% of the thickness of the elastic body part
〔3〕第3実施形態(変形例)
 本発明の搬送用ローラーの別の実施形態(第3実施形態:変形例)としては、前記軸部の軸受け部に相当する部分が、チューブ状の摺動部材を有しており、前記摺動部材と前記軸部とがインサート成形されて一体化された構造を有することが、好ましい。
[3] Third Embodiment (Modified example)
In another embodiment of the transport roller of the present invention (third embodiment: modified example), a portion corresponding to the bearing portion of the shaft portion has a tubular sliding member, and the sliding portion is provided. It is preferable that the member and the shaft portion have a structure in which they are insert-molded and integrated.
 金属軸をプラスチック化する上での問題として、寸法精度面、剛性面などが挙げられる。通常摺動性がよい材料は、ポリアセタール(POM)やナイロン(PA6、PA66)などの結晶性樹脂であるが、寸法精度はあまりよくない。しかしながら寸法精度がよい非晶性樹脂にしたり、剛性を上げるためにガラスファイバーなどの樹脂強化剤を加えた樹脂にしたりすると、摺動性に問題が発生する。したがって、摺動部材のみに摺動性のよい材料を用いればよい。 Problems in plasticizing metal shafts include dimensional accuracy and rigidity. Materials with good slidability are usually crystalline resins such as polyacetal (POM) and nylon (PA6, PA66), but their dimensional accuracy is not very good. However, if an amorphous resin having good dimensional accuracy or a resin to which a resin reinforcing agent such as glass fiber is added to increase the rigidity is used, a problem occurs in slidability. Therefore, a material having good slidability may be used only for the sliding member.
 図14は、摺動部材を有する搬送用ローラーを説明する模式図である。 FIG. 14 is a schematic view illustrating a transport roller having a sliding member.
 図14Aは、軸受け部を4箇所有する給紙ユニット160を示す。一点鎖線の円で囲った部分が軸受け部である。 FIG. 14A shows a paper feed unit 160 having four bearing portions. The part surrounded by the alternate long and short dash line is the bearing.
 図14Bは、軸部105に摺動部材152を4個インサート成形した搬送用ローラーを示す。 FIG. 14B shows a transport roller in which four sliding members 152 are insert-molded on the shaft portion 105.
 図14Cは、摺動部材152の拡大図であり、円筒状(チューブ状)部材である。 FIG. 14C is an enlarged view of the sliding member 152, which is a cylindrical (tube-shaped) member.
 前記給紙ユニット中、軸受け部には圧力がかかり摩擦が発生するため、耐摩耗性が良い摺動材料が用いられることが好ましい。摺動特性を示す指標として、摩擦係数や限界PV値(荷重圧力×速度)などがあるが、使用する条件、環境により適切な材料を選択する必要がある。 In the paper feed unit, pressure is applied to the bearing portion to generate friction, so it is preferable to use a sliding material having good wear resistance. There are friction coefficient and limit PV value (load pressure x speed) as indexes showing sliding characteristics, but it is necessary to select an appropriate material depending on the conditions and environment of use.
 ここで、限界PV値とは、材料の摺動表面が摩擦発熱によって変形もしくは溶融する限界値である。 Here, the limit PV value is a limit value at which the sliding surface of the material is deformed or melted due to frictional heat generation.
 摺動部材としては、図7A及び図7Bで示す摩耗試験装置及び手順により、軸部用樹脂として好ましいポリプロピレン(PP)より耐摩耗性が良好な材料を選定することが好ましい。 As the sliding member, it is preferable to select a material having better wear resistance than polypropylene (PP), which is preferable as the shaft resin, according to the wear test apparatus and procedure shown in FIGS. 7A and 7B.
 各種樹脂の耐摩耗性試験の結果を表IIIに示した。 Table III shows the results of wear resistance tests for various resins.
 試験材料は、表IIIに示す、ポリメチルメタクリレート(PMMA)、テトラフルオロエチレン(PTFE)、ハイインパクト(耐衝撃性)ポリスチレン(HIPS)、テトラフルオロエチレン(PFA)、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ナイロン(PA66)、超高分子量ポリエチレン(PE)及びポリアセタール(POM)で実施した。 The test materials are polymethylmethacrylate (PMMA), tetrafluoroethylene (PTFE), high-impact (impact-resistant) polystyrene (HIPS), tetrafluoroethylene (PFA), polypropylene (PP), and polyphenylene sulfide (shown in Table III). PPS), polyetheretherketone (PEEK), nylon (PA66), ultrahigh molecular weight polyethylene (PE) and polyacetal (POM).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表IIIより、本発明に係る摺動部材としては、ポリプロピレン(PP)より耐摩耗性が良好な、ポリアセタール(POM)、超高分子量ポリエチレン(PE)、ナイロン(PA66)、ポリフェニレンサルファイド(PPS)、又はポリエーテルエーテルケトン(PEEK)を用いることが好ましい。なかでも、前記摺動部材が、ポリアセタール(POM)を含有することが、摩耗耐性とコストの観点から好ましい。 From Table III, as the sliding member according to the present invention, polyacetal (POM), ultrahigh molecular weight polyethylene (PE), nylon (PA66), polyphenylene sulfide (PPS), which have better wear resistance than polypropylene (PP), Alternatively, it is preferable to use polyetheretherketone (PEEK). Among them, it is preferable that the sliding member contains polyacetal (POM) from the viewpoint of wear resistance and cost.
 本発明の第3実施形態(変形例)に係る搬送用ローラーの製造方法は、前記軸部の軸受け部に相当する部分をチューブ状の摺動部材で形成し、前記摺動部材を金型にセットし、次いで前記軸部用として溶融樹脂を金型に充填及び発泡して固化させる射出発泡成形によって、前記軸部と前記摺動部材とを一体化させるインサート成形工程を有することが、好ましい。 In the method for manufacturing a transport roller according to a third embodiment (modification example) of the present invention, a portion corresponding to a bearing portion of the shaft portion is formed of a tubular sliding member, and the sliding member is used as a mold. It is preferable to have an insert molding step of integrating the shaft portion and the sliding member by injection foam molding in which the molten resin is filled in a mold and then foamed and solidified for the shaft portion.
 当該工程の詳細は、前述の図12A~図12Dの工程に示すとおりである。チューブ状の摺動部材の成形は、前記チューブ状の弾性体の成形と同様に、射出成形や押出加工チューブの切り出しでもよい。 The details of the process are as shown in the above-mentioned steps of FIGS. 12A to 12D. The molding of the tube-shaped sliding member may be injection molding or cutting out of an extruded tube in the same manner as the molding of the tubular elastic body.
 以上、本発明について、好適な実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その他、搬送用ローラーを構成する各部材の細部構成及び金型や射出成形を行う装置の細部構成に関しても、本発明の趣旨を逸脱することのない範囲で適宜変更可能である。 Although the present invention has been described above based on a preferred embodiment, the present invention is not limited to this, and other detailed configurations of each member constituting the transport roller, a mold, and injection molding are performed. The detailed configuration of the device can also be appropriately changed without departing from the spirit of the present invention.
 本発明の搬送用ローラーは、樹脂製の軸部を有する搬送用ローラーおいて、成形時にヒケが発生しにくく、安価、高精度で、かつ軸部の耐摩耗性に優れることにより、レーザービームプリンターや複合機等に用いられている紙の搬送用ローラーに好適に利用される。 The transport roller of the present invention is a transport roller having a resin shaft portion, which is less likely to cause sink marks during molding, is inexpensive, highly accurate, and has excellent wear resistance of the shaft portion. It is suitably used for paper transporting rollers used in machines and multifunction devices.
 1 金属製の搬送用ローラー
 2 軸部
 3 蹴り出しころ部
 4 弾性体部
 5 ギア部
 11 樹脂製の搬送用ローラー
 12 樹脂製軸部
 13 樹脂製蹴り出しころ部
 14 弾性体部
 15 樹脂製ギア部
 50 給紙カセット
 51 ホッピングローラー
 52 用紙
 53、54 重ね送り防止ローラー
 55、56 搬送用ローラー
 57 駆動軸
 58 摩擦ゴム
 61 ローラー本体
 101 金型
 102 弾性体部
 103 射出成形手段
 104 溶融樹脂
 105 軸部
 106 部材セット手段
 107 凸形状
 108 凹形状
 151 型開きの金型
 152 摺動部材
 153 射出成形手段
 154 溶融樹脂
 155 ゲート
 160 給紙ユニット
 201 樹脂材料
 202 線ばね
1 Metal transfer roller 2 Shaft 3 Kick-out roller part 4 Elastic body part 5 Gear part 11 Resin transfer roller 12 Resin shaft part 13 Resin kick-out roller part 14 Elastic body part 15 Resin gear part 50 Paper cassette 51 Hopping roller 52 Paper 53, 54 Stacking prevention roller 55, 56 Transport roller 57 Drive shaft 58 Friction rubber 61 Roller body 101 Mold 102 Elastic body part 103 Injection molding means 104 Molten resin 105 Shaft part 106 member Setting means 107 Convex shape 108 Concave shape 151 Mold opening mold 152 Sliding member 153 Injection molding means 154 Molten resin 155 Gate 160 Feeding unit 201 Resin material 202 Wire spring

Claims (9)

  1.  被搬送物を搬送する搬送用ローラーであって、
     前記搬送用ローラーが、少なくとも樹脂製の軸部と前記被搬送物を搬送する弾性体部で構成され、
     前記軸部が内部に空孔を有する多孔質構造であることを特徴とする搬送用ローラー。
    A transport roller that transports the object to be transported.
    The transport roller is composed of at least a resin shaft portion and an elastic body portion that transports the object to be transported.
    A transport roller characterized in that the shaft portion has a porous structure having holes inside.
  2.  前記軸部が、熱可塑性樹脂と化学発泡剤とを含有することを特徴とする請求項1に記載の搬送用ローラー。 The transport roller according to claim 1, wherein the shaft portion contains a thermoplastic resin and a chemical foaming agent.
  3.  前記搬送用ローラーが、前記弾性体部がインサート成形されて前記軸部と一体化された構造を有することを特徴とする請求項1又は請求項2に記載の搬送用ローラー。 The transport roller according to claim 1 or 2, wherein the transport roller has a structure in which the elastic body portion is insert-molded and integrated with the shaft portion.
  4.  前記熱可塑性樹脂が、ポリアセタール、ポロプロピレン又はゴム変性ポリスチレンのいずれかであることを特徴とする請求項1から請求項3までのいずれか一項に記載の搬送用ローラー。 The transport roller according to any one of claims 1 to 3, wherein the thermoplastic resin is any one of polyacetal, polypropylene or rubber-modified polystyrene.
  5.  前記化学発泡剤が、重曹系発泡剤であることを特徴とする請求項2から請求項4までのいずれか一項に記載の搬送用ローラー。 The transport roller according to any one of claims 2 to 4, wherein the chemical foaming agent is a baking soda-based foaming agent.
  6.  前記軸部において、下記式(1)で表される空隙率が4~15%の範囲内であることを特徴とする請求項1から請求項5までのいずれか一項に記載の搬送用ローラー。
     式(1)
      空隙率(%)=(軸部の樹脂を用い多孔質構造にしない場合の軸部の質量-多孔質構造の軸部の質量)/(軸部の樹脂を用い多孔質構造にしない場合の軸部の質量)×100
    The transport roller according to any one of claims 1 to 5, wherein the porosity represented by the following formula (1) is in the range of 4 to 15% in the shaft portion. ..
    Equation (1)
    Porosity (%) = (mass of shaft part when resin of shaft part is not made into porous structure-mass of shaft part of porous structure) / (shaft when resin of shaft part is not made into porous structure) Part mass) x 100
  7.  少なくとも樹脂製の軸部と被搬送物を搬送する弾性体部とで構成された、被搬送物を搬送する搬送用ローラーの製造方法であって、
     前記熱可塑性樹脂を含有する溶融樹脂を射出発泡成形して、前記樹脂製の軸部を成形する工程を有することを特徴とする搬送用ローラーの製造方法。
    A method for manufacturing a transport roller for transporting an object to be transported, which is composed of at least a resin shaft portion and an elastic body portion for transporting the object to be transported.
    A method for manufacturing a transport roller, which comprises a step of injecting and foaming a molten resin containing the thermoplastic resin to form a shaft portion made of the resin.
  8.  前記弾性体部を金型にセットし、次いで前記軸部用として前記溶融樹脂を金型に充填し、発泡させた後に固化させることによって、前記軸部と前記弾性体部とを一体化させるインサート成形工程を有することを特徴とする請求項7に記載の搬送用ローラーの製造方法。 An insert that integrates the shaft portion and the elastic body portion by setting the elastic body portion in a mold, then filling the mold with the molten resin for the shaft portion, foaming the mold, and then solidifying the mold portion. The method for manufacturing a transport roller according to claim 7, further comprising a molding step.
  9.  前記熱可塑性樹脂と化学発泡剤とを混合し、前記溶融樹脂用の組成物を調製する工程を有することを特徴とする請求項7又は請求項8に記載の搬送用ローラーの製造方法。 The method for manufacturing a transport roller according to claim 7, wherein the method includes a step of mixing the thermoplastic resin and a chemical foaming agent to prepare a composition for the molten resin.
PCT/JP2020/029848 2019-08-09 2020-08-04 Transporting roller and method for manufacturing same WO2021029282A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080056164.XA CN114206758B (en) 2019-08-09 2020-08-04 Conveying roller and method for manufacturing the same
JP2021539224A JP7414068B2 (en) 2019-08-09 2020-08-04 Conveyance roller and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146990 2019-08-09
JP2019-146990 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029282A1 true WO2021029282A1 (en) 2021-02-18

Family

ID=74570306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029848 WO2021029282A1 (en) 2019-08-09 2020-08-04 Transporting roller and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP7414068B2 (en)
WO (1) WO2021029282A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210429A (en) * 2013-04-04 2014-11-13 キヤノン株式会社 Method for producing shaft member from resin, metal mold for molding, and roller shaft
JP2015223840A (en) * 2014-05-27 2015-12-14 株式会社ハタ技研 Non-sticking roller production method and non-sticking roller
WO2017171031A1 (en) * 2016-04-01 2017-10-05 株式会社カネカ Injection-molded foam of resin composition with satisfactory surface property and capable of weight reduction and rib design
JP2017218509A (en) * 2016-06-08 2017-12-14 株式会社プライムポリマー Fiber-reinforced resin composition and injection foam molding method
JP2018070855A (en) * 2016-10-26 2018-05-10 エフテックス有限会社 Method for producing injection foam molding of carbon fiber reinforced and modified polyester resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314019A (en) 2004-04-27 2005-11-10 Fuiisa Kk Sheet conveying roller, and equipment using the same
JP5231820B2 (en) 2008-01-22 2013-07-10 積水化学工業株式会社 Manufacturing method of foam injection molded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210429A (en) * 2013-04-04 2014-11-13 キヤノン株式会社 Method for producing shaft member from resin, metal mold for molding, and roller shaft
JP2015223840A (en) * 2014-05-27 2015-12-14 株式会社ハタ技研 Non-sticking roller production method and non-sticking roller
WO2017171031A1 (en) * 2016-04-01 2017-10-05 株式会社カネカ Injection-molded foam of resin composition with satisfactory surface property and capable of weight reduction and rib design
JP2017218509A (en) * 2016-06-08 2017-12-14 株式会社プライムポリマー Fiber-reinforced resin composition and injection foam molding method
JP2018070855A (en) * 2016-10-26 2018-05-10 エフテックス有限会社 Method for producing injection foam molding of carbon fiber reinforced and modified polyester resin

Also Published As

Publication number Publication date
JP7414068B2 (en) 2024-01-16
CN114206758A (en) 2022-03-18
JPWO2021029282A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
US10703029B2 (en) Process and device for producing foamed molded object
JP5099855B2 (en) Foam molded article using polypropylene resin composition and method for producing the foam molded article
JPH10128795A (en) Molded piece
WO2021029282A1 (en) Transporting roller and method for manufacturing same
WO2001096084A1 (en) Method of injection molding of thermoplastic resin
JP5479772B2 (en) Foam molded body and method for producing the same
JP5075506B2 (en) Manufacturing method of foam molded article
CN114206758B (en) Conveying roller and method for manufacturing the same
JP2010158866A (en) Molded body and method of manufacturing molded body
JP4612266B2 (en) Thermoplastic resin molded article excellent in wood texture and method for producing the same
WO2021029281A1 (en) Conveyance roller and method for manufacturing same
JP6551146B2 (en) Foam molded body and method for producing the same, and method for producing resin material for foam molded body
US20030037633A1 (en) Thermoplastic polyolefin elastomer steering wheel
WO2007122957A1 (en) Injection molding system
JP5072170B2 (en) Manufacturing method of three-layer structure
JP5034710B2 (en) Thermoplastic resin composition foamed molded article and method for producing the same
JP5258028B2 (en) Injection molded resin molded products
JP7123233B2 (en) Injection mold, injection molding machine including the same, and method for manufacturing injection products using the same
JP4303844B2 (en) Method for producing fiber-containing lightweight resin tray
EP4306578A1 (en) Surface member of exterior flooring, and method for producing same
JP2020111029A (en) Manufacturing method of foamed molding
KR100554596B1 (en) Method for Formation of Polymer
JP7259894B2 (en) Foam-molded article, method for producing foam-molded article, and method for suppressing appearance defects of foam-molded article
JP2008307771A (en) Multilayered molding system and manufacturing method of multilayered molded article
JP2003094477A (en) Method for injection molding polymer alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539224

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852522

Country of ref document: EP

Kind code of ref document: A1