WO2021029251A1 - ファイバレーザ、及び、レーザ光の出力方法 - Google Patents

ファイバレーザ、及び、レーザ光の出力方法 Download PDF

Info

Publication number
WO2021029251A1
WO2021029251A1 PCT/JP2020/029672 JP2020029672W WO2021029251A1 WO 2021029251 A1 WO2021029251 A1 WO 2021029251A1 JP 2020029672 W JP2020029672 W JP 2020029672W WO 2021029251 A1 WO2021029251 A1 WO 2021029251A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reflection mirror
core
laser
low
Prior art date
Application number
PCT/JP2020/029672
Other languages
English (en)
French (fr)
Inventor
松本 亮吉
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2021029251A1 publication Critical patent/WO2021029251A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the present invention relates to a fiber laser.
  • the present invention also relates to a method for outputting laser light using a fiber laser.
  • laser processing with excellent processing accuracy and processing speed has begun to be used instead of machining using blades and drills.
  • materials for example, metal
  • laser processing with excellent processing accuracy and processing speed has begun to be used instead of machining using blades and drills.
  • a fiber laser which can easily reduce the spot diameter of the laser beam, is particularly promising.
  • the fiber laser recursively amplifies the laser beam by using a resonator composed of a low reflection mirror provided at one end of the gain fiber and a high reflection mirror provided at the other end of the gain fiber.
  • the recursively amplified laser beam is output to the outside of the resonator through a low reflection mirror.
  • the gain fiber is usually composed of a double clad fiber in which a rare earth element is added to the core.
  • the low reflection mirror and the high reflection mirror are usually composed of fiber Bragg gratings. Examples of documents that disclose such a fiber laser include Patent Document 1.
  • the fiber laser may be used not only as a laser light source for processing but also as a laser light source for communication.
  • the fiber laser described above can only output laser light that is recursively amplified in the first core of the gain fiber. Therefore, under certain conditions, the laser light recursively amplified in the first core is used, and under other conditions, the laser light recursively amplified in the second core is used. It cannot be used flexibly.
  • the present invention has been made in view of the above problems.
  • One aspect of the present invention is to realize a fiber laser capable of outputting recursively amplified laser light in each of the two cores of a gain fiber.
  • Another aspect of the present invention is to realize a laser beam output method capable of outputting recursively amplified laser beam in each of the two cores of the gain fiber.
  • the gain fiber having the first core and the second core is provided on the optical path of the laser light emitted from the first end portion of the first core.
  • a high reflection mirror is provided, and at least a part of the reflection wavelength band of the first low reflection mirror is overlapped with at least a part of the reflection wavelength band of the first high reflection mirror, and the first A configuration is adopted in which at least a part of the reflection wavelength band of the low reflection mirror 2 can be overlapped with at least a part of the reflection wavelength band of the second high reflection mirror.
  • a first low-reflection mirror arranged on an optical path of laser light emitted from a first end of a first core of a gain fiber and the first low-reflection mirror.
  • the first low-reflection mirror is retrospectively amplified by a first resonator composed of a first high-reflection mirror arranged on the optical path of the laser light emitted from the second end of the core of the core.
  • the second low-reflection mirror is retrospectively amplified by a second resonator composed of a second high-reflection mirror arranged on the optical path of the laser light emitted from the second end of the core of the core.
  • a configuration is adopted that includes a second step of outputting laser light that has passed through.
  • a fiber laser capable of outputting recursively amplified laser light in each of the two cores of the gain fiber.
  • a laser light output method capable of outputting recursively amplified laser light in each of the two cores of the gain fiber.
  • FIG. 1 It is a block diagram which shows the structure of the fiber laser which concerns on one Embodiment of this invention. It is a perspective view which shows the state before and after bending by the 1st force of the multi-core fiber provided in the fiber laser of FIG. With respect to the fiber laser of FIG. 1, the reflections of the first low reflection mirror, the second low reflection mirror, the first high reflection mirror, and the second high reflection mirror before and after the multi-core fiber is bent by the first force. It is a figure which illustrated the relationship of the wavelength band. It is a perspective view which shows the state before and after bending by the 2nd force of the multi-core fiber provided in the fiber laser of FIG. With respect to the fiber laser of FIG.
  • the reflections of the first low reflection mirror, the second low reflection mirror, the first high reflection mirror, and the second high reflection mirror before and after the multi-core fiber is bent by the first force. It is a figure which illustrated the relationship of the wavelength band. It is a perspective view which shows the state before and after bending by the 2nd force of the multi-core fiber provided in the fiber laser of FIG. With respect to the fiber laser of FIG. 9, the reflections of the first low reflection mirror, the second low reflection mirror, the first high reflection mirror, and the second high reflection mirror before and after the multi-core fiber is bent by the second force. It is a figure which illustrated the relationship of the wavelength band.
  • FIG. 1 is a block diagram showing a configuration of a fiber laser 1.
  • the fiber laser 1 includes a gain fiber 11, low reflection mirrors 12a and 12b, high reflection mirrors 13a and 13b, excitation combiners 14a and 14b, excitation light source groups 15a and 15b, and a delivery fiber. 16a, 16b, and so on.
  • the gain fiber 11 is an optical fiber having a function of amplifying a laser beam by using the energy of the excitation light.
  • the gain fiber 11 includes a first core 11a and a second core 11b.
  • the gain fiber 11 a multi-core fiber in which a rare earth element is added to the first core 11a and the second core 11b is used.
  • ytterbium is used as a rare earth element to be added to the first core 11a and the second core 11b.
  • the rare earth element added to the first core 11a and the second core 11b is not limited to ytterbium.
  • rare earth elements other than ytterbium such as thulium, cerium, neodymium, europium, and erbium, may be added to the first core 11a and the second core 11b.
  • a first low reflection mirror 12a is provided on the optical path of the laser beam emitted from the first end portion 11a1 of the first core 11a of the gain fiber 11. Further, a first high reflection mirror 13a is provided on the optical path of the laser beam emitted from the second end portion 11a2 of the first core 11a of the gain fiber 11. On the other hand, a second low reflection mirror 12b is provided on the optical path of the laser beam emitted from the first end portion 11b1 of the second core 11b of the gain fiber 11. Further, a second high reflection mirror 13b is provided on the optical path of the laser beam emitted from the second end portion 11b2 of the second core 11b of the gain fiber 11.
  • the first low reflection mirror 12a and the first high reflection mirror 13a may overlap each other. It is possible.
  • the first low reflection mirror 12a and the first high reflection mirror 13a provided at both ends of the first core 11a of the gain fiber 11 are lasers having a wavelength ⁇ a belonging to the overlapping portion of these two reflection wavelength bands. It constitutes a first cavity Oa that recursively amplifies light.
  • the reflectance of the first low-reflection mirror 12a (for example, 10% or less) is lower than the reflectance of the first high-reflection mirror 13a (for example, 95% or more).
  • the reflection wavelength band refers to a range of wavelengths in which the difference between the reflectance at that wavelength and the maximum reflectance (reflectance at the wavelength at which the reflectance is maximized) is 20 dB or less.
  • the fiber laser 1 as will be described later, at least a part of the reflection wavelength band of the second low reflection mirror 12b and at least a part of the reflection wavelength band of the second high reflection mirror 13b overlap each other. It is possible. At this time, the second low reflection mirror 12b and the second high reflection mirror 13b provided at both ends of the second core 11b of the gain fiber 11 have a wavelength ⁇ b belonging to the overlapping portion of these two reflection wavelength bands (described above).
  • a second resonator Ob that recursively amplifies the laser beam having the same wavelength as the wavelength ⁇ a or a wavelength different from the wavelength ⁇ a described above is configured.
  • the reflectance of the second low-reflection mirror 12b (for example, 10% or less) is lower than the reflectance of the second high-reflection mirror 13b (for example, 95% or more). Therefore, the laser beam of the wavelength ⁇ b recursively amplified by the second resonator Ob is mainly output to the outside of the second resonator Ob through the second low reflection mirror 12b.
  • fiber bragg grating is used as the first low reflection mirror 12a, the second low reflection mirror 12b, the first high reflection mirror 13a, and the second high reflection mirror 13b.
  • the first low-reflection mirror 12a and the second low-reflection mirror 12b are realized as Bragg gratings written in each core of the first multi-core fiber MCF1.
  • the first high reflection mirror 13a and the second high reflection mirror 13b are realized as Bragg gratings written in each core of the second multi-core fiber MCF2.
  • the first multi-core fiber MCF1 and the second multi-core fiber MCF2 may be a multi-core fiber fused to the gain fiber 11 and different from the gain fiber 11, or may be a part of the gain fiber 11. ..
  • the first low reflection mirror 12a, the second low reflection mirror 12b, the first high reflection mirror 13a, and the second high reflection mirror 13b are not limited to the fiber bragg grating. If the mirrors have lower reflectances at wavelengths ⁇ a and ⁇ b than the first high-reflection mirror 13a and the second high-reflection mirror 13b (for example, 10% or less), the first low-reflection mirror 12a and the second high-reflection mirror 13b, respectively. It can be used as a second low reflection mirror 12b.
  • the first high-reflection mirror respectively. It can be used as the 13a and the second high reflection mirror 13b.
  • the first end portion 11a1 of the first core 11a and the first end portion 11b1 of the second core 11b are arranged at the same end portion of the gain fiber 11.
  • the second end 11a2 of the first core and the second end 11b2 of the second core 11b are arranged at the same end of the gain fiber 11. That is, the first low reflection mirror 12a and the second low reflection mirror 12b are arranged on the same end side of the gain fiber 11, and the first high reflection mirror 13a and the second high reflection mirror 13b gain. It is located on the same end side of the fiber 11.
  • the laser light (laser light having a wavelength of ⁇ a and the laser light having a wavelength of ⁇ b) amplified retrospectively in each of the two cores 11a and 11b of the gain fiber 11 is transferred to one end of the gain fiber 11. It is possible to realize a fiber laser that can output from each unit.
  • the first end 11a1 of the first core 11a and the first end 11b1 of the second core 11b are located at different ends of the gain fiber 11.
  • the second end 11a2 of the first core and the second end 11b2 of the second core 11b may be arranged at different ends of the gain fiber 11. That is, the first low reflection mirror 12a and the second high reflection mirror 13b are arranged on the same end side of the gain fiber 11, and the first high reflection mirror 13a and the second low reflection mirror 12b gain. It may be arranged on the same end side of the fiber 11.
  • the first axis which is the axis along the optical path of the laser beam emitted from the second end portion 11a2 of the first core 11a of the gain fiber 11
  • the first axis is assumed.
  • the first high-reflection mirror 13a and the second high-reflection mirror 13b are provided at the same position on the second axis, assuming a second axis that is an axis along the optical path of (FIG. 1). reference).
  • the first low-reflection mirror 12a and the second low-reflection mirror 12b may be provided at different positions on the first axis, or the first high-reflection mirror 13a and the second high-reflection mirror The 13b may be provided at a different position on the second axis.
  • the length of the fiber Bragg grating that functions as the first low-reflection mirror 12a is extended /shrinking and shrinking / stretching the length of the fiber Bragg grating acting as the second low reflection mirror 12b can be performed independently of each other.
  • each of the reflection wavelength band of the first low reflection mirror 12a and the reflection wavelength band of the second low reflection mirror 12b can be shifted independently.
  • the reflection wavelength band of the first high reflection mirror 13a and the reflection wavelength band of the second high reflection mirror 13b can be shifted independently.
  • the first excitation combiner 14a has at least one resonator side port 14ax and at least m light source group side input ports 14ay1 to 14aym (m is the number of excitation light sources constituting the first excitation light source group 15a). (Any natural number represented) and at least two light source group side output ports 14az1 to 14az2 are provided.
  • the resonator side port 14ax of the first excitation combiner 14a is connected to the first core 11a and the second core 11b of the gain fiber 11 via the first low reflection mirror 12a and the second low reflection mirror 12b. Has been done.
  • the excitation light generated by each of the excitation light sources 15a1 to 15am is input to the cladding of the gain fiber 11 via the first excitation combiner 14a, and the first core 11a and the second core 11b of the gain fiber 11 are input. It is used to transition the rare earth elements added to the to the inverted distribution state.
  • the first light source group side output port 14az1 of the first excitation combiner 14a is connected to the first delivery fiber 16a having a core and a cladding.
  • the laser beam of wavelength ⁇ a generated by the first resonator Oa is input to the core of the first delivery fiber 16a via the first excitation combiner 14a.
  • the second light source group side output port 14az2 of the first excitation combiner 14a is connected to a second delivery fiber 16b having a core and a cladding.
  • the laser beam of wavelength ⁇ b generated by the second resonator Ob is input to the core of the second delivery fiber 16b via the first excitation combiner 14a.
  • the core of the first delivery fiber 16a is an example of the first delivery fiber core
  • the core of the second delivery fiber 16b is an example of the second delivery fiber core.
  • a laser diode is used as the excitation light source 15a1 to 15am.
  • the excitation light sources 15a1 to 15am are not limited to the laser diode. That is, any light source capable of outputting light capable of transitioning the rare earth elements added to the first core 11a and the second core 11b of the gain fiber 11 to the population inversion state can be used as excitation light sources 15a1 to 15am. It can be used.
  • fumode fibers are used as the first delivery fiber 16a and the second delivery fiber 16b.
  • the first delivery fiber 16a and the second delivery fiber 16b are not limited to the fumode fiber.
  • the fumode fiber refers to an optical fiber having 25 or less waveguide modes among multimode fibers (optical fibers having two or more waveguide modes).
  • the second excitation combiner 14b has at least one resonator side port 14bx and at least n light source group side input ports 14by1 to 14byn (n is the number of excitation light sources constituting the second excitation light source group 15b). (Any natural number to represent) and.
  • the resonator side port 14bx of the second excitation combiner 14b is connected to the cladding of the gain fiber 11 via the first high reflection mirror 13a and the second high reflection mirror 13b.
  • the excitation light generated by each of the excitation light sources 15b1 to 15bn is input to the cladding of the gain fiber 11 via the second excitation combiner 14b, and the rare earth element added to the core of the gain fiber 11 is inverted and distributed. It is used to make a transition to.
  • a laser diode is used as the excitation light source 15b1 to 15bn.
  • the excitation light sources 15b1 to 15bn are not limited to the laser diode. That is, any light source capable of outputting light capable of transitioning the rare earth elements added to the first core 11a and the second core 11b of the gain fiber 11 to the population inversion state can be used as the excitation light sources 15b1 to 15bn. It can be used.
  • the fiber laser 1 is realized as a bidirectional excitation type fiber laser including a first excitation light source group 15a and a second excitation light source group 15b.
  • the fiber laser 1 can be realized as a one-way excitation type fiber laser having only the first excitation light source group 15a, or a one-way excitation type fiber having only the second excitation light source group 15b. It can also be realized as a laser. Further, the fiber laser 1 is not limited to these end face excitation type fiber lasers, and may be a side excitation type fiber laser.
  • the end face excitation type fiber laser refers to a type of fiber laser in which excitation light is input from the end face of the gain fiber to the gain fiber
  • the side excitation type fiber laser refers to the gain fiber from the side surface of the gain fiber. It refers to a type of fiber laser that inputs excitation light.
  • the gain fiber 11 a multi-core fiber having two cores 11a and 11b is used, but the present invention is not limited thereto. That is, as the gain fiber 11, a multi-core fiber having three or more cores may be used. This makes it possible to realize a fiber laser 1 capable of outputting laser light from three or more cores.
  • the fiber laser 1 can take three operation modes described below.
  • the first operation mode is an operation mode in which the laser beam of the wavelength ⁇ a amplified by the first resonator Oa is output via the first low reflection mirror 12a.
  • the energy of the excitation light output from the excitation light source groups 15a and 15b is mainly consumed in the first resonator Oa to amplify the laser light having the wavelength ⁇ a. Therefore, the amplification of the laser beam having the wavelength ⁇ b in the second resonator Ob is not performed, or even if it is performed, it can be ignored.
  • the first operation mode is realized when the gain of the first resonator Oa is higher than the gain of the second resonator Ob.
  • the gain of the first resonator Oa refers to the optical waveguide constituting the first resonator Oa (in the present embodiment, the first low reflection mirror 12a, the first core 11a of the gain fiber 11, and the first). It refers to the gain in consideration of the loss in the high reflection mirror 13a of No. 1 and the optical waveguide composed of the core of the optical fiber connecting the respective components.
  • the gain of the second resonator Ob is the optical waveguide constituting the second resonator Ob (in the present embodiment, the second low reflection mirror 12b, the second core 11b of the gain fiber 11). It refers to a gain that also takes into account the loss in the second high reflection mirror 13b and the optical waveguide composed of the fiber core connecting the respective components.
  • the second operation mode is an operation mode in which the laser beam of the wavelength ⁇ b amplified by the second resonator Ob is output via the second low reflection mirror 12b.
  • the energy of the excitation light output from the excitation light source groups 15a and 15b is mainly consumed to amplify the laser light having the wavelength ⁇ b in the second resonator Ob. Therefore, the amplification of the laser beam having the wavelength ⁇ a in the first resonator Oa is not performed, or if it is performed, it can be ignored.
  • the second operation mode is realized when the gain of the second resonator Ob is higher than the gain of the first resonator Oa.
  • the laser beam having the wavelength ⁇ a amplified by the first cavity Oa is output through the first low reflection mirror 12a and amplified by the second resonator Ob.
  • the energy of the excitation light output from the excitation light source groups 15a and 15b is used in the first resonator Oa to amplify the laser light of the wavelength ⁇ a, and the second resonance. It is used to amplify the laser beam of wavelength ⁇ b in the vessel Ob.
  • the third operation mode is realized when the gain of the first resonator Oa and the gain of the second resonator Ob are exactly equal.
  • the fiber laser 1 has a reflection wavelength band changing mechanism 17 as a mechanism for switching the operation mode (corresponding to the "operation mode switching mechanism" in the claims).
  • the reflection wavelength band changing mechanism 17 is a mechanism for changing the reflection wavelength band of the first low reflection mirror 12a and the reflection wavelength band of the second low reflection mirror 12b.
  • the fiber Bragg grating that functions as the first low reflection mirror 12a by bending the first multi-core fiber MCF1 by the first force F1 / second force F2.
  • a mechanism is used to extend / shorten the length of the fiber Bragg grating, which functions as a second low reflection mirror 12b, and to reduce / extend the length of the fiber Bragg grating.
  • the first force F1 refers to the force in the direction from the second low reflection mirror 12b toward the first low reflection mirror 12a
  • the second force F2 is the first low reflection mirror.
  • FIG. 2 is a perspective view showing a state of the first multi-core fiber MCF1 before and after being bent by the first force F1.
  • FIG. 3 shows a first low reflection mirror 12a, a second low reflection mirror 12b, a first high reflection mirror 13a, and a second height before and after the first multi-core fiber MCF1 is bent by the first force F1. It is a figure which illustrated the relationship of the reflection wavelength band of the reflection mirror 13b.
  • the bandwidth of the reflection wavelength band of the first low reflection mirror 12a and the second low reflection mirror 12b is set to, for example, 0.3 nm or more and 3 nm or less (2 nm in the illustrated example), and the first high reflection mirror 13a
  • the bandwidth of the reflection wavelength band of the second high reflection mirror 13b is set to, for example, 4 nm or more and 5 nm or less (4 nm in the illustrated example).
  • the central wavelength of the reflection wavelength band of the first low reflection mirror 12a and the second low reflection mirror 12b before the first multi-core fiber MCF1 is bent is set to, for example, 1082 nm
  • the first high reflection mirror The central wavelength of the reflection wavelength band of the 13a and the second high reflection mirror 13b is set to, for example, 1080 nm.
  • the length of the fiber Bragg grating functioning as the first low reflection mirror 12a is extended, and the length of the fiber Bragg grating functioning as the second low reflection mirror 12b is extended. Shrinks in length (see Figure 2). As a result, the reflection wavelength band of the first low reflection mirror 12a shifts to the long wavelength side, and the reflection wavelength band of the second low reflection mirror 12b shifts to the short wavelength side.
  • the reflection wavelength band of the first low reflection mirror 12a and the reflection wavelength band of the first high reflection mirror 13a do not have an overlapping portion, and the reflection wavelength band of the second low reflection mirror 12b and the second A state having an overlapping portion with the reflection wavelength band of the high reflection mirror 13b of the above is realized (see FIG. 3).
  • the gain of the second resonator Ob becomes higher than the gain of the first resonator Oa, and the transition to the second operation mode described above is realized.
  • FIG. 4 is a perspective view showing a state of the first multi-core fiber MCF1 before and after being bent by the second force F2.
  • FIG. 5 shows the first low reflection mirror 12a, the second low reflection mirror 12b, the first high reflection mirror 13a, and the second height before and after the first multi-core fiber MCF1 is bent by the second force F2. It is a figure which illustrated the relationship of the reflection wavelength band of the reflection mirror 13b.
  • the length of the fiber Bragg grating functioning as the first low reflection mirror 12a is shortened, and the length of the fiber Bragg grating functioning as the second low reflection mirror 12b is shortened. (See Fig. 4).
  • the reflection wavelength band of the first low reflection mirror 12a shifts to the short wavelength side
  • the reflection wavelength band of the second low reflection mirror 12b shifts to the long wavelength side.
  • the reflection wavelength band of the first low reflection mirror 12a and the reflection wavelength band of the first high reflection mirror 13a have overlapping portions, and the reflection wavelength band of the second low reflection mirror 12b and the second A state in which there is no overlap with the reflection wavelength band of the high reflection mirror 13b is realized (see 5). Then, the gain of the first resonator Oa becomes higher than the gain of the second resonator Ob, and the transition to the first operation mode described above is realized.
  • a configuration is adopted in which both the reflection wavelength band of the first low reflection mirror 12a and the reflection wavelength band of the second low reflection mirror 12b are changed, but the present invention is not limited to this.
  • a configuration may be adopted in which one of the reflection wavelength band of the first low reflection mirror 12a and the reflection wavelength band of the second low reflection mirror 12b is changed, or the reflection wavelength band of the first high reflection mirror 13a may be adopted.
  • a configuration may be adopted in which one or both of the second high reflection mirror 13b and the second high reflection mirror 13b are changed.
  • the reflection wavelength band of at least one of the first low-reflection mirror 12a, the second low-reflection mirror 12b, the first high-reflection mirror 13a, and the second high-reflection mirror 13b may be used to change. This is because it is sufficient to be able to change the magnitude relationship between the gain of the first resonator Oa and the gain of the second resonator Ob in order to realize the switching of the operation mode.
  • FIG. 6 is a block diagram showing the configuration of the fiber laser 1A according to the present modification.
  • the first difference between the fiber laser 1 shown in FIG. 1 and the fiber laser 1A shown in FIG. 6 is the arrangement of the first low reflection mirror 12a and the second low reflection mirror 12b.
  • the first low reflection mirror 12a and the second low reflection mirror 12b are arranged on the resonator side of the first excitation combiner 14a, respectively. Therefore, it is inevitable that the excitation light generated by the first excitation light source group 15a is incident on the first low reflection mirror 12a and the second low reflection mirror 12b, respectively.
  • the first low reflection mirror 12a and the second low reflection mirror 12b are arranged on the light source group side of the first excitation combiner 14a, respectively. More specifically, the first low reflection mirror 12a is inserted into the first delivery fiber 16a connected to the first light source group side output port 14az1 of the first excitation combiner 14a, and the second The low reflection mirror 12b of the above is inserted into the second delivery fiber 16b connected to the second light source group side output port 14az2 of the first excitation combiner 14a. Therefore, it is possible to prevent the excitation light generated by the first excitation light source group 15a from being incident on the first low reflection mirror 12a and the second low reflection mirror 12b, respectively.
  • the first low reflection mirror 12a and the second low reflection mirror 12a and the second low reflection mirror 12a are caused by the excitation light incident on the first low reflection mirror 12a and the second low reflection mirror 12b. It is possible to suppress a decrease in long-term reliability of the low reflection mirror 12b.
  • a fiber bragg grating is manufactured by performing (1) a step of removing the coating of the optical fiber, (2) a step of writing the grating on the core of the optical fiber, and (3) a step of recoating the optical fiber in this order. To. Therefore, in fiber Bragg grating, foreign matter mixed during recoating may remain on the surface of the clad.
  • Such foreign matter causes heat generation when excitation light is input to the cladding.
  • the fiber laser 1A shown in FIG. 6 even when the first low reflection mirror 12a and the second low reflection mirror 12b are configured by the fiber Bragg grating, the heat generated by the foreign matter mixed during the recoating is generated. Is unlikely to occur. Further, according to the fiber laser 1A shown in FIG. 6, it is possible to suppress the loss of the excitation light due to the excitation light incident on the first low reflection mirror 12a and the second low reflection mirror 12b.
  • the second difference between the fiber laser 1 shown in FIG. 1 and the fiber laser 1A shown in FIG. 6 is the reflection wavelength band of the fiber Bragg grating that functions as the first low reflection mirror 12a and the second low reflection mirror 12b. This is a method of shifting.
  • the fiber laser 1 shown in FIG. 1 by bending a first multi-core fiber MCF1 including a fiber Bragg grating that functions as a first low reflection mirror 12a and a second low reflection mirror 12b, these fiber Bragg gratings are used. The reflection wavelength band is shifted.
  • the fiber laser 1A shown in FIG. 6 by changing the temperature of the fiber Bragg grating functioning as the first low reflection mirror 12a and the second low reflection mirror 12b, these fiber Bragg gratings are The reflection wavelength band is shifted. Therefore, the fiber laser 1A shown in FIG. 6 has a first temperature changing mechanism 17a for changing the temperature of the fiber Bragg grating functioning as the first low reflection mirror 12a and a fiber functioning as the second low reflection mirror 12b. It is provided with a second temperature changing mechanism 17b that changes the temperature of the Bragg grating.
  • the first temperature changing mechanism 17a and the second temperature changing mechanism 17b can be realized by, for example, a Peltier element.
  • the period of the fiber Bragg grating increases mainly due to the thermal expansion of the glass, and as a result, the reflection wavelength band of the fiber Bragg grating shifts to the longer wavelength side.
  • the period of the Fiber Bragg grating is shortened mainly due to the heat shrinkage of the glass, and as a result, the reflection wavelength band of the Fiber Bragg grating is shifted to the short wavelength side.
  • FIG. 7 is a block diagram showing the configuration of the fiber laser 1B according to the present modification.
  • the first difference between the fiber laser 1 shown in FIG. 1 and the fiber laser 1B shown in FIG. 7 is the arrangement of the first low reflection mirror 12a and the second low reflection mirror 12b.
  • the first low reflection mirror 12a and the second low reflection mirror 12b are arranged on the resonator side of the first excitation combiner 14a, respectively. Therefore, it is inevitable that the excitation light generated by the first excitation light source group 15a is incident on the first low reflection mirror 12a and the second low reflection mirror 12b, respectively.
  • the first low reflection mirror 12a and the second low reflection mirror 12b are arranged on the light source group side of the first excitation combiner 14a, respectively. More specifically, the first low reflection mirror 12a is inserted into the first delivery fiber 16a connected to the first light source group side output port 14az1 of the first excitation combiner 14a, and the second The low reflection mirror 12b of the above is inserted into the second delivery fiber 16b connected to the second light source group side output port 14az2 of the first excitation combiner 14a. Therefore, it is possible to prevent the excitation light generated by the first excitation light source group 15a from being incident on the first low reflection mirror 12a and the second low reflection mirror 12b, respectively.
  • the first low-reflection mirror 12a and the second low-reflection mirror 12a and the second are caused by the excitation light incident on the first low-reflection mirror 12a and the second low-reflection mirror 12b. It is possible to suppress a decrease in long-term reliability of the low reflection mirror 12b. Further, according to the fiber laser 1B shown in FIG. 7, it is possible to suppress the loss of the excitation light due to the excitation light incident on the first low reflection mirror 12a and the second low reflection mirror 12b.
  • the second difference between the fiber laser 1 shown in FIG. 1 and the fiber laser 1B shown in FIG. 7 is the method of realizing the mechanism for switching the operation mode (corresponding to the "operation mode switching mechanism" in the claims). is there.
  • the operation mode is switched by changing the reflection wavelength band of the first low reflection mirror 12a or the reflection wavelength band of the second low reflection mirror 12b. ..
  • the operation mode is changed by changing the loss of the optical waveguide constituting the first resonator Oa or the loss of the optical waveguide constituting the second resonator Ob. Has been realized.
  • the first resonator Oa is formed by bending the optical fiber between the first excitation combiner 14a and the first low-reflection mirror 12a (reducing the bending radius).
  • the fiber laser 1B in a state where the loss of the constituent optical waveguide is increased is shown.
  • the optical fiber to be bent is connected to the first light source group side output port 14az1 of the first excitation combiner 14a, and the excitation light is not incident (or is incident). However, the power of the incident excitation light is so small that it can be ignored).
  • the fiber laser 1B is a mechanism for bending the optical fiber between the first high-reflection mirror 13a and the first low-reflection mirror 12a as a mechanism for switching the operation mode to the second operation mode (FIG. FIG. 7 may be provided (not shown). Further, instead of bending the optical fiber between the first excitation combiner 14a and the first low reflection mirror 12a, an optical waveguide constituting the first resonator Oa is applied by applying a lateral pressure to the optical fiber. Loss can also be increased.
  • the fiber laser 1B applies a lateral pressure to the optical fiber between the first excitation combiner 14a and the first low reflection mirror 12a as a mechanism for switching the operation mode to the second operation mode (FIG. FIG. 7 may be provided (not shown).
  • the second resonator Ob is formed by bending the optical fiber between the first excitation combiner 14a and the second low-reflection mirror 12b (reducing the bending radius).
  • the fiber laser 1B in a state where the loss of the constituent optical waveguide is increased is shown.
  • the gain of the first resonator Oa is larger than the gain of the second resonator Ob, the first operation mode is realized.
  • the optical fiber to be bent is connected to the second light source group side output port 14az2 of the first excitation combiner 14a, and the excitation light is not incident (or is incident). However, the power of the incident excitation light is so small that it can be ignored).
  • the fiber laser 1B is a mechanism for bending the optical fiber between the second high reflection mirror 13b and the second low reflection mirror 12b as a mechanism for switching the operation mode to the first operation mode (FIG. FIG. (Not shown in 7) may be provided. Further, instead of bending the optical fiber between the first excitation combiner 14a and the second low reflection mirror 12b, an optical waveguide constituting the second resonator Ob is applied by applying a lateral pressure to the optical fiber. Loss can also be increased.
  • the fiber laser 1B applies a lateral pressure to the optical fiber between the first excitation combiner 14a and the second low reflection mirror 12b as a mechanism for switching the operation mode to the first operation mode (FIG. FIG. 7 may be provided (not shown).
  • FIG. 8 is a block diagram showing the configuration of the fiber laser 1C according to the present modification.
  • the difference between the fiber laser 1 shown in FIG. 1 and the fiber laser 1C shown in FIG. 8 is the laser light output method.
  • a laser beam having a wavelength ⁇ a recursively amplified by the first resonator Oa is output from the core of the first delivery fiber 16a, and the second resonator Ob A configuration is adopted in which a recursively amplified laser beam having a wavelength of ⁇ b is output from the core of the second delivery fiber 16b.
  • the laser beam having a wavelength ⁇ a recursively amplified by the first cavity Oa and the wavelength recursively amplified by the second cavity Ob A configuration is adopted in which the laser beam of ⁇ b is output from the output fiber 18.
  • a multi-core fiber is used as the delivery fiber 16 that guides the laser light from the first excitation combiner 14a to the output fiber 18.
  • the first core 161 of the delivery fiber 16 is an example of the first delivery fiber core, and is used to guide the laser beam recursively amplified by the first resonator Oa.
  • the second core 162 of the delivery fiber 16 is an example of the second delivery fiber core, and is used for guiding the laser beam recursively amplified by the second resonator Ob.
  • the delivery fiber 16 is a multi-core optical fiber including a first core 161 and a second core 162 and a clad.
  • the output fiber 18 is a columnar (cylindrical in the present modification) first core 18a and a tubular shape (cylindrical in the present modification) surrounding the first core. ), And an optical fiber having the second core 18b is used.
  • the laser light of wavelength ⁇ a which is recursively amplified by the first resonator Oa and guided through the first core 161 of the delivery fiber 16, is the first core 18a and the second core 18b of the output fiber 18. It is coupled to one of them (the first core 18a in this modification).
  • the laser beam of wavelength ⁇ b that is recursively amplified by the second resonator Ob and guided through the second core 162 of the delivery fiber 16 is the first core 18a and the second core 18a of the output fiber 18. It is coupled to the other side of the core 18b (the second core 18b in this modification). This makes it possible to output two types of laser beams having different wavelengths and beam diameters from the opposite ends of the output fiber 18.
  • FIG. 9 is a block diagram showing a configuration of a fiber laser 1D according to this modification.
  • the main difference between the fiber laser 1 shown in FIG. 1 and the fiber laser 1D shown in FIG. 9 is the position where the second low reflection mirror 12b and the second high reflection mirror 13b are provided. Further, due to this main difference, the fiber laser 1 shown in FIG. 1 and the fiber laser 1D shown in FIG. 9 differ in the excitation combiner to which the second delivery fiber 16b is connected.
  • the first end portion 11a1 of the first core 11a and the first end portion 11b1 of the second core 11b are arranged at the same end portion of the gain fiber 11.
  • the second end 11a2 of the first core and the second end 11b2 of the second core 11b are arranged at the same end of the gain fiber 11. That is, in the fiber laser 1, the first low reflection mirror 12a and the second low reflection mirror 12b are arranged on the same end side of the gain fiber 11, and the first high reflection mirror 13a and the second height
  • the reflection mirror 13b and the reflection mirror 13b are arranged on the same end side of the gain fiber 11.
  • the first end portion 11a1 of the first core 11a and the first end portion 11b1 of the second core 11b are different ends of the gain fiber 11.
  • the second end 11a2 of the first core and the second end 11b2 of the second core 11b are arranged at different ends of the gain fiber 11. That is, in the fiber laser 1D, the first low reflection mirror 12a and the second high reflection mirror 13b are arranged on the same end side of the gain fiber 11, and the first high reflection mirror 13a and the second low reflection mirror 13a.
  • the reflection mirror 12b and the reflection mirror 12b are arranged on the same end side of the gain fiber 11.
  • each of the delivery fibers 16a and 16b is connected to the first light source group side output port 14az1 and the second light source group side output port 14az2 of the first excitation combiner 14a, respectively. ..
  • the first delivery fiber 16a is connected to the light source group side output port 14az of the first excitation combiner 14a
  • the second delivery fiber 16b is the second excitation. It is connected to the light source group side output port 14bz of the combiner 14b.
  • the laser light (laser light having a wavelength of ⁇ a and the laser light having a wavelength of ⁇ b) amplified recursively in each of the cores 11a and 11b is combined with the gain fiber 11. It is possible to realize a fiber laser capable of outputting from each end of the.
  • FIG. 10 is a perspective view showing a state of the first multi-core fiber MCF1 before and after being bent by the first force F1.
  • FIG. 11 shows a first low reflection mirror 12a, a second low reflection mirror 12b, a first high reflection mirror 13a, and a second height before and after the first multi-core fiber MCF1 is bent by the first force F1. It is a figure which illustrated the relationship of the reflection wavelength band of the reflection mirror 13b.
  • the bandwidth of the reflection wavelength band of the first low reflection mirror 12a and the second low reflection mirror 12b is set to, for example, 4 nm or more and 5 nm or less (4 nm in the illustrated example).
  • the bandwidth of the reflection wavelength band of the first high reflection mirror 13a and the second high reflection mirror 13b is set to, for example, 4 nm or more and 5 nm or less (4 nm in the illustrated example).
  • the central wavelength of the reflection wavelength band of the first low reflection mirror 12a and the second high reflection mirror 13b before the first multi-core fiber MCF1 is bent is set to, for example, 1082 nm, and the first high reflection mirror
  • the central wavelength of the reflection wavelength band of the 13a and the second low reflection mirror 12b is set to, for example, 1078 nm.
  • the length of the fiber Bragg grating functioning as the first low reflection mirror 12a is extended, and the length of the fiber Bragg grating functioning as the second high reflection mirror 13b is extended. Shrinks (see FIG. 10). As a result, the reflection wavelength band of the first low reflection mirror 12a shifts to the long wavelength side, and the reflection wavelength band of the second high reflection mirror 13b shifts to the short wavelength side.
  • the reflection wavelength band of the first low reflection mirror 12a and the reflection wavelength band of the first high reflection mirror 13a do not have an overlapping portion, and the reflection wavelength band of the second low reflection mirror 12b and the second A state having an overlapping portion with the reflection wavelength band of the high reflection mirror 13b of the above is realized (see (a) of FIG. 11).
  • the gain of the second resonator Ob becomes higher than the gain of the first resonator Oa, and the transition to the second operation mode described above is realized.
  • the reflection wavelength band of the first low reflection mirror 12a overlaps with the reflection wavelength band of the first high reflection mirror 13a (1 nm overlap in the illustrated example).
  • the reflection wavelength band of the second high reflection mirror 13b may overlap with the reflection wavelength band of the second low reflection mirror 12b (1 nm overlap in the illustrated example).
  • a state is realized in which the reflection wavelength band of the second low reflection mirror 12b and the reflection wavelength band of the second high reflection mirror 13b have overlapping portions without overlapping portions (see (b) of FIG. 11). ). That is, the transition to the second operation mode described above is realized.
  • FIG. 12 is a perspective view showing a state of the first multi-core fiber MCF1 before and after being bent by the second force F2.
  • FIG. 13 shows the first low reflection mirror 12a, the second low reflection mirror 12b, the first high reflection mirror 13a, and the second height before and after the first multi-core fiber MCF1 is bent by the second force F2. It is a figure which illustrated the relationship of the reflection wavelength band of the reflection mirror 13b.
  • the length of the fiber Bragg grating functioning as the first low reflection mirror 12a is shortened, and the second The length of the fiber Bragg grating that functions as the high-reflection mirror 13b of the above is increased (see FIG. 12).
  • the reflection wavelength band of the first low reflection mirror 12a shifts to the short wavelength side
  • the reflection wavelength band of the second high reflection mirror 13b shifts to the long wavelength side.
  • the reflection wavelength band of the first low reflection mirror 12a and the reflection wavelength band of the first high reflection mirror 13a have overlapping portions, and the reflection wavelength band of the second low reflection mirror 12b and the second A state in which there is no overlap with the reflection wavelength band of the high reflection mirror 13b is realized (see (a) of FIG. 13).
  • the gain of the first resonator Oa becomes higher than the gain of the second resonator Ob, and the transition to the first operation mode described above is realized.
  • the reflection wavelength band of the first low reflection mirror 12a overlaps with the reflection wavelength band of the first high reflection mirror 13a (1 nm overlap in the illustrated example).
  • the reflection wavelength band of the second high reflection mirror 13b may overlap with the reflection wavelength band of the second low reflection mirror 12b (1 nm overlap in the illustrated example).
  • a state is realized in which the reflection wavelength band of the second low reflection mirror 12b and the reflection wavelength band of the second high reflection mirror 13b have overlapping portions and do not have overlapping portions (FIG. 13 (b)). reference). That is, the transition to the first operation mode described above is realized.
  • the gain fiber having the first core and the second core is provided on the optical path of the laser light emitted from the first end portion of the first core.
  • a high reflection mirror is provided, and at least a part of the reflection wavelength band of the first low reflection mirror is overlapped with at least a part of the reflection wavelength band of the first high reflection mirror, and the first A configuration is adopted in which at least a part of the reflection wavelength band of the low reflection mirror 2 can be overlapped with at least a part of the reflection wavelength band of the second high reflection mirror.
  • the amplified laser light can be output through the first low reflection mirror.
  • the retrospective is performed in the second core.
  • the amplified laser light can be output through the second low reflection mirror. That is, according to the above configuration, it is possible to realize a fiber laser capable of outputting recursively amplified laser light in each of the two cores of the gain fiber.
  • the first delivery fiber core into which the laser beam emitted from the first low reflection mirror is input and the above-mentioned A first delivery fiber core further comprising a second delivery fiber core into which a laser beam emitted from a second low reflection mirror is input, the first low reflection mirror and the first high reflection mirror.
  • a first operation mode in which a laser beam having a first wavelength that is recursively amplified by a resonator and transmitted through the first low reflection mirror is output from the first delivery fiber core, and the second low reflection.
  • the second delivery fiber core is retroactively amplified by a second resonator composed of a mirror and the second high-reflection mirror, and transmits a laser beam of a second wavelength that has passed through the second low-reflection mirror.
  • a configuration is adopted in which a second operation mode output from is provided, and an operation mode switching mechanism for switching between the first operation mode and the second operation mode is further provided.
  • the first operation mode for outputting the recursively amplified laser light in the first core and the second operation for outputting the recursively amplified laser light in the second core can be switched freely.
  • the first delivery fiber core and the second delivery fiber core may be configured as different cores in the same multi-core optical fiber, respectively (for example, FIG. 8). (See), may be configured as the core of another optical fiber (see, eg, FIG. 1).
  • the operation mode switching mechanism includes the first low reflection mirror, the second low reflection mirror, and the first.
  • the operation mode is switched by changing the reflection wavelength band of at least one of the high-reflection mirror and the second high-reflection mirror.
  • the first operation mode for outputting the recursively amplified laser light in the first core and the second operation for outputting the recursively amplified laser light in the second core can be switched more reliably.
  • the at least one mirror is configured by a fiber bragg grating, and the operation mode switching mechanism is the fiber bragg.
  • a configuration is adopted in which the reflection wavelength band of the fiber Bragg grating is changed by changing the length or temperature of the grating.
  • the first operation mode for outputting the recursively amplified laser light in the first core and the second operation for outputting the recursively amplified laser light in the second core can be switched more reliably and more easily.
  • the at least one mirror is formed in a single optical fiber (multi-core fiber) and two fiber Bragg gratings are formed.
  • the operation mode switching mechanism bends the optical fiber (multi-core fiber) to extend the length of one of the two fiber Bragg gratings and shorten the length of the other of the two fiber Bragg gratings.
  • a configuration is adopted in which the reflection wavelength band of the two fiber Bragg gratings is changed.
  • the first operation mode for outputting the recursively amplified laser light in the first core and the second operation for outputting the recursively amplified laser light in the second core can be switched more reliably and more easily.
  • the operation mode switching mechanism is a loss of the optical waveguide constituting the first resonator or the second resonance.
  • a configuration is adopted in which the operation mode is switched by changing the loss of the optical waveguide constituting the vessel.
  • the first operation mode for outputting the recursively amplified laser light in the first core and the second operation for outputting the recursively amplified laser light in the second core can be switched more reliably.
  • the operation mode switching mechanism (1) bends the optical fiber included in the first cavity, and / Or, (2) applying lateral pressure to the optical fiber contained in the first cavity increases the loss of the optical waveguide constituting the first cavity, or (3) the second Loss of the optical waveguide constituting the second cavity by bending the optical fiber contained in the second cavity and / or (4) applying a lateral pressure to the optical fiber included in the second cavity.
  • the configuration is adopted to increase.
  • the first operation mode for outputting the recursively amplified laser light in the first core and the second operation for outputting the recursively amplified laser light in the second core can be switched more reliably and more easily.
  • the first core and the tubular first core surrounding the first core in addition to the configuration of the fiber laser according to any one of the second to seventh aspects, the first core and the tubular first core surrounding the first core.
  • An output fiber having two cores is further provided, and the laser beam recursively amplified by the first cavity is coupled to the first core and recursed by the second cavity.
  • the amplified laser beam is coupled to the second core, or the laser beam recursively amplified by the first resonator is coupled to the second core and the above-mentioned A configuration is adopted in which the laser beam recursively amplified by the second resonator is coupled to the first core.
  • the above effect is to be obtained by using a conventional fiber laser that can output only the amplified laser light in one core of the gain fiber, it is necessary to use two sets of the gain fiber and the excitation light source. , The problem that the utilization efficiency of the gain fiber and the excitation light source is lowered is likely to occur.
  • the fiber laser of the present invention capable of outputting the amplified laser light in each of the two cores of the gain fiber, the gain fiber and the excitation light source are used. Since it is sufficient to use one set, the problem that the utilization efficiency of the gain fiber and the excitation light source is lowered is unlikely to occur.
  • the first end portion of the first core and the second core in addition to the configuration of the fiber laser according to any one of the first to eighth aspects, is arranged at the same end portion of the gain fiber.
  • the first end portion of the first core and the second core in addition to the configuration of the fiber laser according to any one of the first to eighth aspects, the first end portion of the first core and the second core.
  • the configuration is adopted, which is arranged at a different end of the gain fiber from the first end of the above.
  • the first low reflection mirror arranged on the optical path of the laser light emitted from the first end of the first core of the gain fiber and the first low reflection mirror.
  • the first low-reflection mirror is retrospectively amplified by a first resonator composed of a first high-reflection mirror arranged on the optical path of the laser light emitted from the second end of the core of the core.
  • the second low-reflection mirror is retrospectively amplified by a second resonator composed of a second high-reflection mirror arranged on the optical path of the laser light emitted from the second end of the core of the core.
  • a configuration is adopted that includes a second step of outputting laser light that has passed through.
  • the amplified laser light can be output through the first low reflection mirror.
  • at least a part of the reflection wavelength band of the second low reflection mirror is overlapped with at least a part of the reflection wavelength band of the second high reflection mirror, so that the retrospective is performed in the second core.
  • the amplified laser light can be output through the second low reflection mirror. That is, according to the above configuration, it is possible to realize a laser light output method capable of outputting recursively amplified laser light in each of the two cores of the gain fiber.

Abstract

ゲインファイバの2つのコアの各々において再帰的に増幅されたレーザ光を出力することが可能なファイバレーザを実現する。ファイバレーザ(1)は、第1のコア(11a)及び第2のコア(11b)を有するゲインファイバ(11)と、第1のコア(11a)の一端に設けられた第1の低反射ミラー(12a)と、第1のコア(11a)の他端に設けられた第1の高反射ミラー(13a)と、第2のコア(11b)の一端に設けられた第2の低反射ミラー(12b)と、第2のコア(11b)の他端に設けられた第2の高反射ミラー(13b)と、を備えている。

Description

ファイバレーザ、及び、レーザ光の出力方法
 本発明は、ファイバレーザに関する。また、ファイバレーザを用いたレーザ光の出力方法に関する。
 材料(例えば、金属)の加工(例えば、切断、溶接、又は切削)において、ブレードやドリルなどを用いた機械加工の代わりに、加工精度及び加工速度に優れたレーザ加工が用いられ始めている。レーザ加工に用いるレーザ光源としては、レーザ光のスポット径を小さくすることが容易なファイバレーザが特に有望である。
 ファイバレーザは、ゲインファイバの一端に設けられた低反射ミラーと、ゲインファイバの他端に設けられた高反射ミラーと、により構成される共振器を用いて、レーザ光を再帰的に増幅する。再帰的に増幅されたレーザ光は、低反射ミラーを介して共振器の外部に出力される。ゲインファイバは、通常、コアに希土類元素が添加されたダブルクラッドファイバにより構成される。また、低反射ミラー及び高反射ミラーは、通常、ファイバブラッググレーティングにより構成される。このようなファイバレーザを開示した文献としては、例えば、特許文献1が挙げられる。
 なお、ファイバレーザは、加工用のレーザ光源としてだけでなく、通信用のレーザ光源としても用いられることもある。
日本国公開特許公報「特開2017-187554号公報」
 上述したファイバレーザは、ゲインファイバの第1のコアにおいて再帰的に増幅されたレーザ光しか出力することができない。このため、或る条件の下では第1のコアにおいて再帰的に増幅されたレーザ光を利用し、他の条件の下では第2のコアにおいて再帰的に増幅されたレーザ光を利用するといった、柔軟な使い方ができない。
 本発明は、上記の問題に鑑みてなされたものである。本発明の或る態様は、ゲインファイバの2つのコアの各々において再帰的に増幅されたレーザ光を出力することが可能なファイバレーザを実現することを目的とする。また、本発明の他の態様は、ゲインファイバの2つのコアの各々において再帰的に増幅されたレーザ光を出力することが可能なレーザ光の出力方法を実現することを目的とする。
 本発明の一態様に係るファイバレーザにおいては、第1のコア及び第2のコアを有するゲインファイバと、前記第1のコアの第1の端部から出射されるレーザ光の光路上に設けられた第1の低反射ミラーと、前記第1のコアの第2の端部から出射されるレーザ光の光路上に設けられた第1の高反射ミラーと、前記第2のコアの第1の端部から出射されるレーザ光の光路上に設けられた第2の低反射ミラーと、前記第2のコアの第2の端部から出射されるレーザ光の光路上に設けられた第2の高反射ミラーと、を備えており、前記第1の低反射ミラーの反射波長帯域の少なくとも一部を前記第1の高反射ミラーの反射波長帯域の少なくとも一部と重複させること、及び、前記第2の低反射ミラーの反射波長帯域の少なくとも一部を前記第2の高反射ミラーの反射波長帯域の少なくとも一部と重複させることが可能である、構成が採用されている。
 本発明の一態様に係るレーザ光の出力方法においては、ゲインファイバの第1のコアの第1の端部から出射するレーザ光の光路上に配置された第1の低反射ミラーと前記第1のコアの第2の端部から出射するレーザ光の光路上に配置された第1の高反射ミラーとにより構成される第1の共振器によって再帰的に増幅され、前記第1の低反射ミラーを透過したレーザ光を出力する第1の工程と、前記ゲインファイバの第2のコアの第1の端部から出射するレーザ光の光路上に配置された第2の低反射ミラーと前記第2のコアの第2の端部から出射するレーザ光の光路上に配置された第2の高反射ミラーとにより構成される第2の共振器によって再帰的に増幅され、前記第2の低反射ミラーを透過したレーザ光を出力する第2の工程と、を含んでいる、構成が採用されている。
 本発明の或る態様によれば、ゲインファイバの2つのコアの各々において再帰的に増幅されたレーザ光を出力することが可能なファイバレーザを実現することができる。また、本発明の他の態様によれば、ゲインファイバの2つのコアの各々において再帰的に増幅されたレーザ光を出力することが可能なレーザ光の出力方法を実現することができる。
本発明の一実施形態に係るファイバレーザの構成を示すブロック図である。 図1のファイバレーザが備えるマルチコアファイバの、第1の力によって曲げられる前後の状態を示す斜視図である。 図1のファイバレーザに関し、マルチコアファイバが第1の力によって曲げられる前後の、第1の低反射ミラー、第2の低反射ミラー、第1の高反射ミラー、及び第2の高反射ミラーの反射波長帯域の関係を例示した図である。 図1のファイバレーザが備えるマルチコアファイバの、第2の力によって曲げられる前後の状態を示す斜視図である。 図1のファイバレーザに関し、マルチコアファイバが第2の力によって曲げられる前後の、第1の低反射ミラー、第2の低反射ミラー、第1の高反射ミラー、及び第2の高反射ミラーの反射波長帯域の関係を例示した図である。 図1のファイバレーザの第1の変形例を示すブロック図である。 図1のファイバレーザの第2の変形例を示すブロック図である。 図1のファイバレーザの第3の変形例を示すブロック図である。 図1のファイバレーザの第4の変形例を示すブロック図である。 図9のファイバレーザが備えるマルチコアファイバの、第1の力によって曲げられる前後の状態を示す斜視図である。 図9のファイバレーザに関し、マルチコアファイバが第1の力によって曲げられる前後の、第1の低反射ミラー、第2の低反射ミラー、第1の高反射ミラー、及び第2の高反射ミラーの反射波長帯域の関係を例示した図である。 図9のファイバレーザが備えるマルチコアファイバの、第2の力によって曲げられる前後の状態を示す斜視図である。 図9のファイバレーザに関し、マルチコアファイバが第2の力によって曲げられる前後の、第1の低反射ミラー、第2の低反射ミラー、第1の高反射ミラー、及び第2の高反射ミラーの反射波長帯域の関係を例示した図である。
 (ファイバレーザの構成)
 本発明の一実施形態に係るファイバレーザ1の構成について、図1を参照して説明する。図1は、ファイバレーザ1の構成を表すブロック図である。
 ファイバレーザ1は、図1に示すように、ゲインファイバ11と、低反射ミラー12a,12bと、高反射ミラー13a,13bと、励起コンバイナ14a,14bと、励起光源群15a,15bと、デリバリファイバ16a,16bと、を備えている。
 ゲインファイバ11は、励起光のエネルギーを用いてレーザ光を増幅する機能を有する光ファイバである。ゲインファイバ11は、第1のコア11aと、第2のコア11bと、を備えている。
 なお、本実施形態においては、ゲインファイバ11として、第1のコア11a及び第2のコア11bに希土類元素が添加されたマルチコアファイバを用いている。なお、本実施形態においては、第1のコア11a及び第2のコア11bに添加する希土類元素として、イッテルビウムを用いている。ただし、第1のコア11a及び第2のコア11bに添加する希土類元素は、イッテルビウムに限定されない。例えば、ツリウム、セリウム、ネオジウム、ユーロピウム、エルビウムなど、イッテルビウム以外の希土類元素を第1のコア11a及び第2のコア11bに添加してもよい。
 ゲインファイバ11の第1のコア11aの第1の端部11a1から出射するレーザ光の光路上には、第1の低反射ミラー12aが設けられている。また、ゲインファイバ11の第1のコア11aの第2の端部11a2から出射するレーザ光の光路上には、第1の高反射ミラー13aが設けられている。一方、ゲインファイバ11の第2のコア11bの第1の端部11b1から出射するレーザ光の光路上には、第2の低反射ミラー12bが設けられている。また、ゲインファイバ11の第2のコア11bの第2の端部11b2から出射するレーザ光の光路上には、第2の高反射ミラー13bが設けられている。
 ファイバレーザ1においては、後述するように、第1の低反射ミラー12aの反射波長帯域の少なくとも一部と第1の高反射ミラー13aの反射波長帯域の少なくとも一部とを、互いに重複させることが可能である。このとき、ゲインファイバ11の第1のコア11aの両端に設けられた第1の低反射ミラー12a及び第1の高反射ミラー13aは、これら2つの反射波長帯域の重複部分に属する波長λaのレーザ光を再帰的に増幅する第1の共振器Oaを構成する。波長λaにおいて、第1の低反射ミラー12aの反射率(例えば、10%以下)は、第1の高反射ミラー13aの反射率(例えば、95%以上)よりも低い。したがって、第1の共振器Oaにて再帰的に増幅された波長λaのレーザ光は、主に、第1の低反射ミラー12aを介して第1の共振器Oaの外部に出力される。なお、反射波長帯域とは、その波長における反射率と最大反射率(反射率が最大になる波長における反射率)との差が20dB以下になる波長の範囲のことを指す。
 また、ファイバレーザ1においては、後述するように、第2の低反射ミラー12bの反射波長帯域の少なくとも一部と第2の高反射ミラー13bの反射波長帯域の少なくとも一部とを、互いに重複させることが可能である。このとき、ゲインファイバ11の第2のコア11bの両端に設けられた第2の低反射ミラー12b及び第2の高反射ミラー13bは、これら2つの反射波長帯域の重複部分に属する波長λb(前述した波長λaと同じ波長であってもよいし、前述した波長λaと異なる波長であってもよい)のレーザ光を再帰的に増幅する第2の共振器Obを構成する。波長λbにおいて、第2の低反射ミラー12bの反射率(例えば、10%以下)は、第2の高反射ミラー13bの反射率(例えば、95%以上)よりも低い。したがって、第2の共振器Obにて再帰的に増幅された波長λbのレーザ光は、主に、第2の低反射ミラー12bを介して第2の共振器Obの外部に出力される。
 なお、本実施形態においては、第1の低反射ミラー12a、第2の低反射ミラー12b、第1の高反射ミラー13a、及び第2の高反射ミラー13bとして、ファイバブラッググレーティングを用いている。第1の低反射ミラー12a及び第2の低反射ミラー12bは、第1のマルチコアファイバMCF1の各コアに書き込まれたブラッググレーティングとして実現されている。また、第1の高反射ミラー13a及び第2の高反射ミラー13bは、第2のマルチコアファイバMCF2の各コアに書き込まれたブラッググレーティングとして実現されている。第1のマルチコアファイバMCF1及び第2のマルチコアファイバMCF2は、ゲインファイバ11に融着された、ゲインファイバ11とは異なるマルチコアファイバであってもよいし、ゲインファイバ11の一部であってもよい。ただし、第1の低反射ミラー12a、第2の低反射ミラー12b、第1の高反射ミラー13a、及び第2の高反射ミラー13bは、ファイバブラッググレーティングに限定されない。波長λa及び波長λbにおける反射率が第1の高反射ミラー13a及び第2の高反射ミラー13bよりも低い(例えば、10%以下)のミラーであれば、それぞれ、第1の低反射ミラー12a及び第2の低反射ミラー12bとして利用することが可能である。また、波長λa及び波長λbにおける反射率が第1の低反射ミラー12a及び第2の低反射ミラー12bよりも高い(例えば、95%以上)のミラーであれば、それぞれ、第1の高反射ミラー13a及び第2の高反射ミラー13bとして用いることが可能である。
 また、本実施形態においては、第1のコア11aの第1の端部11a1と、第2のコア11bの第1の端部11b1とは、ゲインファイバ11の同じ端部に配置されており、第1コアの第2の端部11a2と、第2のコア11bの第2の端部11b2とは、ゲインファイバ11の同じ端部に配置されている。すなわち、第1の低反射ミラー12aと第2の低反射ミラー12bとがゲインファイバ11の同じ端部の側に配置され、第1の高反射ミラー13aと第2の高反射ミラー13bとがゲインファイバ11の同じ端部の側に配置されている。このため、ゲインファイバ11の2つのコア11a,11bの各々において再帰的に増幅されたレーザ光(波長がλaであるレーザ光及び波長がλbであるレーザ光)を、ゲインファイバ11の一方の端部からそれぞれ出力することが可能なファイバレーザを実現することができる。しかしながら、図9を参照して後述するように、第1のコア11aの第1の端部11a1と、第2のコア11bの第1の端部11b1とは、ゲインファイバ11の異なる端部に配置されており、第1コアの第2の端部11a2と、第2のコア11bの第2の端部11b2とは、ゲインファイバ11の異なる端部に配置されていてもよい。すなわち、第1の低反射ミラー12aと第2の高反射ミラー13bとがゲインファイバ11の同じ端部の側に配置され、第1の高反射ミラー13aと第2の低反射ミラー12bとがゲインファイバ11の同じ端部の側に配置されていてもよい。
 また、本実施形態においては、ゲインファイバ11の第1のコア11aの第2の端部11a2から出射するレーザ光の光路に沿った軸である第1の軸を仮定した場合に、第1の低反射ミラー12aと第2の低反射ミラー12bとを第1の軸における同一の位置に設けており、且つ、ゲインファイバ11の第2のコア11bの第1の端部11b1から出射するレーザ光の光路に沿った軸である第2の軸を仮定した場合に、第1の高反射ミラー13aと第2の高反射ミラー13bとを第2の軸における同一の位置に設けている(図1参照)。しかし、第1の低反射ミラー12aと第2の低反射ミラー12bとは、第1の軸における異なる位置に設けられていてもよいし、第1の高反射ミラー13aと第2の高反射ミラー13bとは、第2の軸における異なる位置に設けられていてもよい。例えば、第1の低反射ミラー12aと第2の低反射ミラー12bとを第1の軸における異なる位置に設けた場合、第1の低反射ミラー12aとして機能するファイバブラッググレーティングの長さを伸ばす/縮めることと、第2の低反射ミラー12bとして機能するファイバブラッググレーティングの長さを縮める/伸ばすこととを、互いに独立して実施することができる。したがって、第1の低反射ミラー12aの反射波長帯域及び第2の低反射ミラー12bの反射波長帯域の各々を独立してシフトさせることができる。同様に、第1の高反射ミラー13aの反射波長帯域及び第2の高反射ミラー13bの反射波長帯域の各々を独立してシフトさせることができる。
 第1の励起コンバイナ14aは、少なくとも1個の共振器側ポート14axと、少なくともm個の光源群側入力ポート14ay1~14aym(mは、第1の励起光源群15aを構成する励起光源の個数を表す任意の自然数)と、少なくとも2個の光源群側出力ポート14az1~14az2と、を備えている。第1の励起コンバイナ14aの共振器側ポート14axは、第1の低反射ミラー12a及び第2の低反射ミラー12bを介して、ゲインファイバ11の第1のコア11a及び第2のコア11bに接続されている。第1の励起コンバイナ14aの各光源群側入力ポート14ai(i=1,2,…,m)は、第1の励起光源群15aを構成する励起光源15aiに接続されている。励起光源15a1~15amの各々にて生成された励起光は、第1の励起コンバイナ14aを介して、ゲインファイバ11のクラッドに入力され、ゲインファイバ11の第1のコア11a及び第2のコア11bに添加された希土類元素を反転分布状態に遷移させるために利用される。一方、第1の励起コンバイナ14aの第1の光源群側出力ポート14az1は、コアとクラッドとを備えている第1のデリバリファイバ16aに接続されている。第1の共振器Oaにて生成された波長λaのレーザ光は、第1の励起コンバイナ14aを介して第1のデリバリファイバ16aのコアに入力される。また、第1の励起コンバイナ14aの第2の光源群側出力ポート14az2は、コアとクラッドとを備えている第2のデリバリファイバ16bに接続されている。第2の共振器Obにて生成された波長λbのレーザ光は、第1の励起コンバイナ14aを介して第2のデリバリファイバ16bのコアに入力される。第1のデリバリファイバ16aのコアは、第1のデリバリファイバコアの一例であり、第2のデリバリファイバ16bのコアは、第2のデリバリファイバコアの一例である。
 なお、本実施形態においては、励起光源15a1~15amとして、レーザダイオードを用いている。ただし、励起光源15a1~15amは、レーザダイオードに限定されない。すなわち、ゲインファイバ11の第1のコア11a及び第2のコア11bに添加された希土類元素を反転分布状態に遷移させることが可能な光を出力可能な光源であれば、励起光源15a1~15amとして利用することができる。また、本実施形態においては第1のデリバリファイバ16a及び第2のデリバリファイバ16bとして、フューモードファイバを用いている。ただし、第1のデリバリファイバ16a及び第2のデリバリファイバ16bは、フューモードファイバに限定されない。すなわち、第1の共振器Oa及び第2の共振器Obから出力されたレーザ光を導波可能な光ファイバであれば、シングルモードファイバ、又は、フューモードファイバ以外のマルチモードファイバであっても、第1のデリバリファイバ16a及び第2のデリバリファイバ16bとして用いることが可能である。なお、フューモードファイバとは、マルチモードファイバ(導波モードの数が2以上の光ファイバ)のうち、導波モードの数が25以下の光ファイバのことを指す。
 第2の励起コンバイナ14bは、少なくとも1個の共振器側ポート14bxと、少なくともn個の光源群側入力ポート14by1~14byn(nは、第2の励起光源群15bを構成する励起光源の個数を表す任意の自然数)と、を備えている。第2の励起コンバイナ14bの共振器側ポート14bxは、第1の高反射ミラー13a及び第2の高反射ミラー13bを介して、ゲインファイバ11のクラッドに接続されている。第2の励起コンバイナ14bの各光源群側入力ポート14bj(j=1,2,…,n)は、第2の励起光源群15bを構成する励起光源15bjに接続されている。励起光源15b1~15bnの各々にて生成された励起光は、第2の励起コンバイナ14bを介して、ゲインファイバ11のクラッドに入力され、ゲインファイバ11のコアに添加された希土類元素を反転分布状態に遷移させるために利用される。
 なお、本実施形態においては、励起光源15b1~15bnとして、レーザダイオードを用いている。ただし、励起光源15b1~15bnは、レーザダイオードに限定されない。すなわち、ゲインファイバ11の第1のコア11a及び第2のコア11bに添加された希土類元素を反転分布状態に遷移させることが可能な光を出力可能な光源であれば、励起光源15b1~15bnとして利用することができる。
 なお、本実施形態において、ファイバレーザ1は、第1の励起光源群15aと第2の励起光源群15bとを備えた双方向励起型のファイバレーザとして実現されているが、本発明は、これに限定されない。すなわち、ファイバレーザ1は、第1の励起光源群15aのみを備えた片方向励起型のファイバレーザとして実現することもできるし、第2の励起光源群15bのみを備えた片方向励起型のファイバレーザとして実現することもできる。また、ファイバレーザ1は、これらの端面励起型のファイバレーザに限定されず、側面励起型のファイバレーザであってもよい。なお、端面励起型のファイバレーザとは、ゲインファイバの端面からゲインファイバに励起光を入力するタイプのファイバレーザのことを指し、側面励起型のファイバレーザとは、ゲインファイバの側面からゲインファイバに励起光を入力するタイプのファイバレーザのことを指す。また、本実施形態においては、ゲインファイバ11として、2つのコア11a,11bを備えたマルチコアファイバを用いているが、本発明は、これに限定されない。すなわち、ゲインファイバ11として、3つ以上のコアを備えたマルチコアファイバを用いてもよい。これにより、3つ以上のコアからレーザ光を出力することが可能なファイバレーザ1を実現することができる。
 (ファイバレーザの動作)
 ファイバレーザ1の動作について、図2~図5を参照して説明する。
 ファイバレーザ1は、以下に説明する3つの動作モードを取り得る。
 第1の動作モードは、第1の共振器Oaにて増幅された波長λaのレーザ光を、第1の低反射ミラー12aを介して出力する動作モードである。第1の動作モードにおいては、励起光源群15a,15bから出力された励起光のエネルギーが、主に、第1の共振器Oaにおいて波長λaのレーザ光を増幅するために消費される。したがって、第2の共振器Obにおける波長λbのレーザ光の増幅は、行われないか、行われたとしても無視し得る程度である。第1の動作モードは、第1の共振器Oaのゲインが第2の共振器Obのゲインよりも高いときに実現される。なお、第1の共振器Oaのゲインとは、第1の共振器Oaを構成する光導波路(本実施形態においては、第1の低反射ミラー12a、ゲインファイバ11の第1のコア11a、第1の高反射ミラー13a、及び、それぞれの構成要素を接続する光ファイバのコアにより構成される光導波路)における損失も考慮に入れたゲインのことを指す。同様に、第2の共振器Obのゲインとは、第2の共振器Obを構成する光導波路(本実施形態においては、第2の低反射ミラー12b、ゲインファイバ11の第2のコア11b、第2の高反射ミラー13b、及び、それぞれの構成要素を接続するファイバのコアにより構成される光導波路)における損失も考慮に入れたゲインのことを指す。
 第2の動作モードは、第2の共振器Obにて増幅された波長λbのレーザ光を、第2の低反射ミラー12bを介して出力する動作モードである。第2の動作モードにおいては、励起光源群15a,15bから出力された励起光のエネルギーが、主に、第2の共振器Obにおいて波長λbのレーザ光を増幅するために消費される。したがって、第1の共振器Oaにおける波長λaのレーザ光の増幅は、行われないか、行われたとしても無視し得る程度である。第2の動作モードは、第2の共振器Obのゲインが第1の共振器Oaのゲインよりも高いときに実現される。
 第3の動作モードは、第1の共振器Oaにて増幅された波長λaのレーザ光を、第1の低反射ミラー12aを介して出力すると共に、第2の共振器Obにて増幅された波長λbのレーザ光を、第2の低反射ミラー12bを介して出力する動作モードである。第3の動作モードにおいては、励起光源群15a,15bから出力された励起光のエネルギーが、第1の共振器Oaにおいて波長λaのレーザ光を増幅するために利用されると共に、第2の共振器Obにおいて波長λbのレーザ光を増幅するために利用される。第3の動作モードは、第1の共振器Oaのゲインと第2の共振器Obのゲインとが丁度等しくなったときに実現される。
 ファイバレーザ1は、動作モードを切り替えるための機構(特許請求の範囲における「動作モード切替機構」に相当)として、反射波長帯域変更機構17を有している。
 反射波長帯域変更機構17は、第1の低反射ミラー12aの反射波長帯域と、第2の低反射ミラー12bの反射波長帯域と、を変更するための機構である。本実施形態においては、反射波長帯域変更機構17として、第1の力F1/第2の力F2によって第1のマルチコアファイバMCF1を曲げることによって、第1の低反射ミラー12aとして機能するファイバブラッググレーティングの長さを伸ばす/縮めると共に、第2の低反射ミラー12bとして機能するファイバブラッググレーティングの長さを縮める/伸ばす機構を用いている。ここで、第1の力F1とは、第2の低反射ミラー12bから第1の低反射ミラー12aに向かう方向の力のことを指し、第2の力F2とは、第1の低反射ミラー12aから第2の低反射ミラー12bに向かう方向の力のことを指す。ファイバブラッググレーティングの長さを伸ばすと、そのファイバブラッググレーティングの周期が大きくなり、その結果、そのファイバブラッググレーティングの反射波長帯域が長波長側にシフトする。逆に、ファイバブラッググレーティングの長さを縮めると、そのファイバブラッググレーティングの周期が小さくなり、その結果、そのファイバブラッググレーティングの反射波長帯域が短波長側にシフトする。
 図2は、第1の力F1によって曲げられる前後の第1のマルチコアファイバMCF1の状態を示す斜視図である。図3は、第1のマルチコアファイバMCF1が第1の力F1によって曲げられる前後の第1の低反射ミラー12a、第2の低反射ミラー12b、第1の高反射ミラー13a、及び第2の高反射ミラー13bの反射波長帯域の関係を例示した図である。
 第1の低反射ミラー12a及び第2の低反射ミラー12bの反射波長帯域の帯域幅は、例えば、0.3nm以上3nm以下(図示した例では2nm)に設定され、第1の高反射ミラー13a及び第2の高反射ミラー13bの反射波長帯域の帯域幅は、例えば、4nm以上5nm以下(図示した例では4nm)に設定される。また、第1のマルチコアファイバMCF1が曲げられる前の第1の低反射ミラー12a及び第2の低反射ミラー12bの反射波長帯域の中心波長は、例えば、1082nmに設定され、第1の高反射ミラー13a及び第2の高反射ミラー13bの反射波長帯域の中心波長は、例えば、1080nmに設定される。
 第1のマルチコアファイバMCF1を第1の力F1によって曲げることによって、第1の低反射ミラー12aとして機能するファイバブラッググレーティングの長さが伸びると共に、第2の低反射ミラー12bとして機能するファイバブラッググレーティングの長さが縮む(図2参照)。これにより、第1の低反射ミラー12aの反射波長帯域が長波長側にシフトすると共に、第2の低反射ミラー12bの反射波長帯域が短波長側にシフトする。その結果、第1の低反射ミラー12aの反射波長帯域と第1の高反射ミラー13aの反射波長帯域とは、重複部分を有さず、第2の低反射ミラー12bの反射波長帯域と第2の高反射ミラー13bの反射波長帯域とは、重複部分を有する状態が実現される(図3参照)。そうすると、第2の共振器Obのゲインが第1の共振器Oaのゲインよりも高くなり、上述した第2の動作モードへの遷移が実現される。
 図4は、第2の力F2によって曲げられる前後の第1のマルチコアファイバMCF1の状態を示す斜視図である。図5は、第1のマルチコアファイバMCF1が第2の力F2によって曲げられる前後の第1の低反射ミラー12a、第2の低反射ミラー12b、第1の高反射ミラー13a、及び第2の高反射ミラー13bの反射波長帯域の関係を例示した図である。
 第1のマルチコアファイバMCF1を第2の力F2によって曲げることによって、第1の低反射ミラー12aとして機能するファイバブラッググレーティングの長さが縮むと共に、第2の低反射ミラー12bとして機能するファイバブラッググレーティングの長さが伸びる(図4参照)。これにより、第1の低反射ミラー12aの反射波長帯域が短波長側にシフトすると共に、第2の低反射ミラー12bの反射波長帯域が長波長側にシフトする。その結果、第1の低反射ミラー12aの反射波長帯域と第1の高反射ミラー13aの反射波長帯域とは、重複部分を有し、第2の低反射ミラー12bの反射波長帯域と第2の高反射ミラー13bの反射波長帯域とは、重複部分を有さない状態が実現される(5参照)。そうすると、第1の共振器Oaのゲインが第2の共振器Obのゲインよりも高くなり、上述した第1の動作モードへの遷移が実現される。
 なお、本実施形態においては、第1の低反射ミラー12aの反射波長帯域及び第2の低反射ミラー12bの反射波長帯域の両方を変更する構成を採用しているが、これに限定されない。例えば、第1の低反射ミラー12aの反射波長帯域及び第2の低反射ミラー12bの反射波長帯域の一方を変更する構成を採用してもよいし、第1の高反射ミラー13aの反射波長帯域及び第2の高反射ミラー13bの一方又は両方を変更する構成を採用してもよい。より一般的に言うと、第1の低反射ミラー12a、第2の低反射ミラー12b、第1の高反射ミラー13a、及び第2の高反射ミラー13bのうち、少なくとも1つのミラーの反射波長帯域を変更する構成であればよい。動作モードの切り替えを実現するには、第1の共振器Oaのゲインと第2の共振器Obのゲインとの大小関係を変化させることができれば十分だからである。
 (ファイバレーザの第1の変形例)
 ファイバレーザ1の第1の変形例(以下、「ファイバレーザ1A」とも記載する)について、図6を参照して説明する。図6は、本変形例に係るファイバレーザ1Aの構成を示すブロック図である。
 図1に示すファイバレーザ1と図6に示すファイバレーザ1Aとの第1の相違点は、第1の低反射ミラー12a及び第2の低反射ミラー12bの配置である。
 すなわち、図1に示すファイバレーザ1においては、第1の低反射ミラー12a及び第2の低反射ミラー12bが、それぞれ、第1の励起コンバイナ14aの共振器側に配置されている。このため、第1の低反射ミラー12a及び第2の低反射ミラー12bに、それぞれ、第1の励起光源群15aにて生成された励起光が入射することが避けられない。
 これに対して、図6に示すファイバレーザ1Aにおいては、第1の低反射ミラー12a及び第2の低反射ミラー12bが、それぞれ、第1の励起コンバイナ14aの光源群側に配置されている。より具体的に言うと、第1の低反射ミラー12aが、第1の励起コンバイナ14aの第1の光源群側出力ポート14az1に接続された第1のデリバリファイバ16aに挿入されており、第2の低反射ミラー12bが、第1の励起コンバイナ14aの第2の光源群側出力ポート14az2に接続された第2のデリバリファイバ16bに挿入されている。このため、第1の低反射ミラー12a及び第2の低反射ミラー12bに、それぞれ、第1の励起光源群15aにて生成された励起光が入射することが避けられる。
 したがって、図6に示すファイバレーザ1Aによれば、第1の低反射ミラー12a及び第2の低反射ミラー12bに励起光が入射することに起因する、第1の低反射ミラー12a及び第2の低反射ミラー12bの長期信頼性の低下を抑制することが可能である。例えば、ファイバブラッググレーティングは、(1)光ファイバの被覆を除去する工程、(2)光ファイバのコアにグレーティングを書き込む工程、(3)光ファイバをリコートする工程をこの順に実施することによって製造される。このため、ファイバブラッググレーティングにおいては、リコートの際に混入した異物がクラッドの表面に残留する可能性がある。このような異物は、クラッドに励起光を入力した際の発熱要因となる。しかしながら、図6に示すファイバレーザ1Aによれば、第1の低反射ミラー12a及び第2の低反射ミラー12bがファイバブラッググレーティングにより構成されている場合であっても、リコート時に混入した異物の発熱が生じ難い。また、図6に示すファイバレーザ1Aによれば、第1の低反射ミラー12a及び第2の低反射ミラー12bに励起光が入射することに起因する、励起光の損失を抑制することができる。
 図1に示すファイバレーザ1と図6に示すファイバレーザ1Aとの第2の相違点は、第1の低反射ミラー12a及び第2の低反射ミラー12bとして機能するファイバブラッググレーティングの反射波長帯域をシフトさせる方法である。
 図1に示すファイバレーザ1においては、第1の低反射ミラー12a及び第2の低反射ミラー12bとして機能するファイバブラッググレーティングを含む第1のマルチコアファイバMCF1を曲げることによって、これらのファイバブラッググレーティングの反射波長帯域をシフトさせている。これに対して、図6に示すファイバレーザ1Aにおいては、第1の低反射ミラー12a及び第2の低反射ミラー12bとして機能するファイバブラッググレーティングの温度を変更することによって、これらのファイバブラッググレーティングの反射波長帯域をシフトさせている。このため、図6に示すファイバレーザ1Aは、第1の低反射ミラー12aとして機能するファイバブラッググレーティングの温度を変更する第1の温度変更機構17aと、第2の低反射ミラー12bとして機能するファイバブラッググレーティングの温度を変更する第2の温度変更機構17bと、を備えている。第1の温度変更機構17a及び第2の温度変更機構17bは、例えば、ペルチェ素子によって実現することが可能である。
 なお、ファイバブラッググレーティングの温度を高くすると、主にガラスの熱膨張により、そのファイバブラッググレーティングの周期が大きくなり、その結果、そのファイバブラッググレーティングの反射波長帯域が長波長側へとシフトする。逆に、ファイバブラッググレーティングの温度を低くすると、主にガラスの熱収縮により、そのファイバブラッググレーティングの周期が小さくなり、その結果、そのファイバブラッググレーティングの反射波長帯域が短波長側へとシフトする。
 (ファイバレーザの第2の変形例)
 ファイバレーザ1の第2の変形例(以下、「ファイバレーザ1B」とも記載する)について、図7を参照して説明する。図7は、本変形例に係るファイバレーザ1Bの構成を示すブロック図である。
 図1に示すファイバレーザ1と図7に示すファイバレーザ1Bとの第1の相違点は、第1の低反射ミラー12a及び第2の低反射ミラー12bの配置である。
 すなわち、図1に示すファイバレーザ1においては、第1の低反射ミラー12a及び第2の低反射ミラー12bが、それぞれ、第1の励起コンバイナ14aの共振器側に配置されている。このため、第1の低反射ミラー12a及び第2の低反射ミラー12bに、それぞれ、第1の励起光源群15aにて生成された励起光が入射することが避けられない。
 これに対して、図7に示すファイバレーザ1Bにおいては、第1の低反射ミラー12a及び第2の低反射ミラー12bが、それぞれ、第1の励起コンバイナ14aの光源群側に配置されている。より具体的に言うと、第1の低反射ミラー12aが、第1の励起コンバイナ14aの第1の光源群側出力ポート14az1に接続された第1のデリバリファイバ16aに挿入されており、第2の低反射ミラー12bが、第1の励起コンバイナ14aの第2の光源群側出力ポート14az2に接続された第2のデリバリファイバ16bに挿入されている。このため、第1の低反射ミラー12a及び第2の低反射ミラー12bに、それぞれ、第1の励起光源群15aにて生成された励起光が入射することが避けられる。
 したがって、図7に示すファイバレーザ1Bによれば、第1の低反射ミラー12a及び第2の低反射ミラー12bに励起光が入射することに起因する、第1の低反射ミラー12a及び第2の低反射ミラー12bの長期信頼性の低下を抑制することが可能である。また、図7に示すファイバレーザ1Bによれば、第1の低反射ミラー12a及び第2の低反射ミラー12bに励起光が入射することに起因する、励起光の損失を抑制することができる。
 図1に示すファイバレーザ1と図7に示すファイバレーザ1Bとの第2の相違点は、動作モードを切り替えるための機構(特許請求の範囲における「動作モード切替機構」に相当)の実現方法である。
 すなわち、図1に示すファイバレーザ1においては、第1の低反射ミラー12aの反射波長帯域又は第2の低反射ミラー12bの反射波長帯域を変更することによって、動作モードの切り替えを実現している。これに対して、図7に示すファイバレーザ1Bにおいては、第1の共振器Oaを構成する光導波路の損失又は第2の共振器Obを構成する光導波路の損失を変更することによって、動作モードの切り替えを実現している。
 図7の(a)においては、第1の励起コンバイナ14aと第1の低反射ミラー12aとの間の光ファイバに曲げを与える(曲げ半径を小さくする)ことによって、第1の共振器Oaを構成する光導波路の損失を大きくした状態のファイバレーザ1Bを示している。この場合、第2の共振器Obのゲインが第1の共振器Oaのゲインよりも大きくなるので、第2の動作モードが実現される。また、図7に示すように、曲げを与えられる光ファイバは、第1の励起コンバイナ14aの第1の光源群側出力ポート14az1に接続されており、励起光が入射しない(又は、入射するとしても、入射する励起光のパワーは無視し得る程度に小さい)光ファイバである。したがって、曲げた部分から励起光が漏出することに起因する不具合の発生を抑止することができる。なお、ファイバレーザ1Bは、動作モードを第2の動作モードに切り替えるための機構として、第1の高反射ミラー13aと第1の低反射ミラー12aとの間の光ファイバに曲げを与える機構(図7において不図示)を備えていてもよい。また、第1の励起コンバイナ14aと第1の低反射ミラー12aとの間の光ファイバに曲げを与える代わりに、当該光ファイバに側圧を加えることによって、第1の共振器Oaを構成する光導波路の損失を大きくすることもできる。この場合、ファイバレーザ1Bは、動作モードを第2の動作モードに切り替えるための機構として、第1の励起コンバイナ14aと第1の低反射ミラー12aとの間の光ファイバに側圧を加える機構(図7において不図示)を備えていてもよい。
 図7の(b)においては、第1の励起コンバイナ14aと第2の低反射ミラー12bとの間の光ファイバに曲げを与える(曲げ半径を小さくする)ことによって、第2の共振器Obを構成する光導波路の損失を大きくした状態のファイバレーザ1Bを示している。この場合、第1の共振器Oaのゲインが第2の共振器Obのゲインよりも大きくなるので、第1の動作モードが実現される。また、図7に示すように、曲げを与えられる光ファイバは、第1の励起コンバイナ14aの第2の光源群側出力ポート14az2に接続されており、励起光が入射しない(又は、入射するとしても、入射する励起光のパワーは無視し得る程度に小さい)光ファイバである。したがって、曲げた部分から励起光が漏出することに起因する不具合の発生を抑止することができる。なお、ファイバレーザ1Bは、動作モードを第1の動作モードに切り替えるための機構として、第2の高反射ミラー13bと第2の低反射ミラー12bとの間の光ファイバに曲げを与える機構(図7において不図示)を備えていてもよい。また、第1の励起コンバイナ14aと第2の低反射ミラー12bとの間の光ファイバに曲げを与える代わりに、当該光ファイバに側圧を加えることによって、第2の共振器Obを構成する光導波路の損失を大きくすることもできる。この場合、ファイバレーザ1Bは、動作モードを第1の動作モードに切り替えるための機構として、第1の励起コンバイナ14aと第2の低反射ミラー12bとの間の光ファイバに側圧を加える機構(図7において不図示)を備えていてもよい。
 (ファイバレーザの第3の変形例)
 ファイバレーザ1の第3の変形例(以下、「ファイバレーザ1C」とも記載する)について、図8を参照して説明する。図8は、本変形例に係るファイバレーザ1Cの構成を示すブロック図である。
 図1に示すファイバレーザ1と図8に示すファイバレーザ1Cとの相違点は、レーザ光の出力方法である。
 図1に示すファイバレーザ1においては、第1の共振器Oaにて再帰的に増幅された波長λaのレーザ光を第1のデリバリファイバ16aのコアから出力し、第2の共振器Obにて再帰的に増幅された波長λbのレーザ光を第2のデリバリファイバ16bのコアから出力する構成が採用されている。これに対して、図8に示すファイバレーザ1Cにおいては、第1の共振器Oaにて再帰的に増幅された波長λaのレーザ光と第2の共振器Obにて再帰的に増幅された波長λbのレーザ光とを、出力ファイバ18から出力する構成が採用されている。なお、図8に示すファイバレーザ1Cにおいては、第1の励起コンバイナ14aから出力ファイバ18までレーザ光を導波するデリバリファイバ16として、マルチコアファイバを用いている。このデリバリファイバ16の第1のコア161は、第1のデリバリファイバコアの一例であり、第1の共振器Oaにて再帰的に増幅されたレーザ光を導波するために用いられる。また、このデリバリファイバ16の第2のコア162は、第2のデリバリファイバコアの一例であり、第2の共振器Obにて再帰的に増幅されたレーザ光を導波するために用いられる。このように、ファイバレーザ1Cにおいて、デリバリファイバ16は、第1のコア161と、第2のコア162と、クラッドと、を備えているマルチコア光ファイバである。
 本変形例に係るファイバレーザ1Cにおいては、出力ファイバ18として、柱状(本変形例においては円柱状)の第1のコア18aと、第1のコアを取り囲む筒状(本変形例においては円筒状)の第2のコア18bと、を有する光ファイバを用いている。第1の共振器Oaにて再帰的に増幅され、デリバリファイバ16の第1のコア161を導波された波長λaのレーザ光は、出力ファイバ18の第1のコア18a及び第2のコア18bの一方(本変形例においては第1のコア18a)に結合される。一方、第2の共振器Obにて再帰的に増幅され、デリバリファイバ16の第2のコア162を導波された波長λbのレーザ光は、出力ファイバ18の第1のコア18a及び第2のコア18bの他方(本変形例においては第2のコア18b)に結合される。これにより、波長及びビーム径の異なる2種類のレーザビームを、出力ファイバ18の反対側の端部から出力することが可能になる。
 (ファイバレーザの第4の変形例)
 ファイバレーザ1の第4の変形例(以下、「ファイバレーザ1D」とも記載する)について、図9を参照して説明する。図9は、本変形例に係るファイバレーザ1Dの構成を示すブロック図である。
 図1に示すファイバレーザ1と図9に示すファイバレーザ1Dとの主たる相違点は、第2の低反射ミラー12b及び第2の高反射ミラー13bが設けられている位置である。また、この主たる相違点に起因して、図1に示すファイバレーザ1と図9に示すファイバレーザ1Dとは、第2のデリバリファイバ16bが接続されている励起コンバイナが相違する。
 図1に示すファイバレーザ1においては、第1のコア11aの第1の端部11a1と、第2のコア11bの第1の端部11b1とは、ゲインファイバ11の同じ端部に配置されており、第1コアの第2の端部11a2と、第2のコア11bの第2の端部11b2とは、ゲインファイバ11の同じ端部に配置されている。すなわち、ファイバレーザ1においては、第1の低反射ミラー12aと第2の低反射ミラー12bとがゲインファイバ11の同じ端部の側に配置され、第1の高反射ミラー13aと第2の高反射ミラー13bとがゲインファイバ11の同じ端部の側に配置されている。これに対して、図9に示すファイバレーザ1Dにおいては、第1のコア11aの第1の端部11a1と、第2のコア11bの第1の端部11b1とは、ゲインファイバ11の異なる端部に配置されており、第1コアの第2の端部11a2と、第2のコア11bの第2の端部11b2とは、ゲインファイバ11の異なる端部に配置されている。すなわち、ファイバレーザ1Dにおいては、第1の低反射ミラー12aと第2の高反射ミラー13bとがゲインファイバ11の同じ端部の側に配置され、第1の高反射ミラー13aと第2の低反射ミラー12bとがゲインファイバ11の同じ端部の側に配置されている。
 また、ファイバレーザ1においては、デリバリファイバ16a,16bの各々が、それぞれ、第1の励起コンバイナ14aの第1の光源群側出力ポート14az1及び第2の光源群側出力ポート14az2に接続されている。これに対して、ファイバレーザ1Dにおいては、第1のデリバリファイバ16aが第1の励起コンバイナ14aの光源群側出力ポート14azに接続されており、且つ、第2のデリバリファイバ16bが第2の励起コンバイナ14bの光源群側出力ポート14bzに接続されている。
 本変形例に係るファイバレーザ1Dにおいては、コア11a,11bの各々において再帰的に増幅されたレーザ光(波長がλaであるレーザ光及び波長がλbであるレーザ光)を、ゲインファイバ11の両方の端部からそれぞれ出力することが可能なファイバレーザを実現することができる。
 図10は、第1の力F1によって曲げられる前後の第1のマルチコアファイバMCF1の状態を示す斜視図である。図11は、第1のマルチコアファイバMCF1が第1の力F1によって曲げられる前後の第1の低反射ミラー12a、第2の低反射ミラー12b、第1の高反射ミラー13a、及び第2の高反射ミラー13bの反射波長帯域の関係を例示した図である。
 図11の(a)に示すように、第1の低反射ミラー12a及び第2の低反射ミラー12bの反射波長帯域の帯域幅は、例えば、4nm以上5nm以下(図示した例では4nm)に設定され、第1の高反射ミラー13a及び第2の高反射ミラー13bの反射波長帯域の帯域幅は、例えば、4nm以上5nm以下(図示した例では4nm)に設定される。また、第1のマルチコアファイバMCF1が曲げられる前の第1の低反射ミラー12a及び第2の高反射ミラー13bの反射波長帯域の中心波長は、例えば、1082nmに設定され、第1の高反射ミラー13a及び第2の低反射ミラー12bの反射波長帯域の中心波長は、例えば、1078nmに設定される。
 第1のマルチコアファイバMCF1を第1の力F1によって曲げることによって、第1の低反射ミラー12aとして機能するファイバブラッググレーティングの長さが伸びると共に、第2の高反射ミラー13bとして機能するファイバブラッググレーティングの長さが縮む(図10参照)。これにより、第1の低反射ミラー12aの反射波長帯域が長波長側にシフトすると共に、第2の高反射ミラー13bの反射波長帯域が短波長側にシフトする。その結果、第1の低反射ミラー12aの反射波長帯域と第1の高反射ミラー13aの反射波長帯域とは、重複部分を有さず、第2の低反射ミラー12bの反射波長帯域と第2の高反射ミラー13bの反射波長帯域とは、重複部分を有する状態が実現される(図11の(a)参照)。そうすると、第2の共振器Obのゲインが第1の共振器Oaのゲインよりも高くなり、上述した第2の動作モードへの遷移が実現される。
 なお、図11の(b)に示すように、第1の低反射ミラー12aの反射波長帯域は、第1の高反射ミラー13aの反射波長帯域と重複(図示した例では1nm重複)していてもよく、第2の高反射ミラー13bの反射波長帯域は、第2の低反射ミラー12bの反射波長帯域と重複(図示した例では1nm重複)していてもよい。この場合であっても、第1のマルチコアファイバMCF1を第1の力F1によって曲げることによって、第1の低反射ミラー12aの反射波長帯域と第1の高反射ミラー13aの反射波長帯域とが、重複部分を有さず、第2の低反射ミラー12bの反射波長帯域と第2の高反射ミラー13bの反射波長帯域とが、重複部分を有する状態が実現される(図11の(b)参照)。すなわち、上述した第2の動作モードへの遷移が実現される。
 図12は、第2の力F2によって曲げられる前後の第1のマルチコアファイバMCF1の状態を示す斜視図である。図13は、第1のマルチコアファイバMCF1が第2の力F2によって曲げられる前後の第1の低反射ミラー12a、第2の低反射ミラー12b、第1の高反射ミラー13a、及び第2の高反射ミラー13bの反射波長帯域の関係を例示した図である。
 図13の(a)に示すように、第1のマルチコアファイバMCF1を第2の力F2によって曲げることによって、第1の低反射ミラー12aとして機能するファイバブラッググレーティングの長さが縮むと共に、第2の高反射ミラー13bとして機能するファイバブラッググレーティングの長さが伸びる(図12参照)。これにより、第1の低反射ミラー12aの反射波長帯域が短波長側にシフトすると共に、第2の高反射ミラー13bの反射波長帯域が長波長側にシフトする。その結果、第1の低反射ミラー12aの反射波長帯域と第1の高反射ミラー13aの反射波長帯域とは、重複部分を有し、第2の低反射ミラー12bの反射波長帯域と第2の高反射ミラー13bの反射波長帯域とは、重複部分を有さない状態が実現される(図13の(a)参照)。そうすると、第1の共振器Oaのゲインが第2の共振器Obのゲインよりも高くなり、上述した第1の動作モードへの遷移が実現される。
 なお、図13の(b)に示すように、第1の低反射ミラー12aの反射波長帯域は、第1の高反射ミラー13aの反射波長帯域と重複(図示した例では1nm重複)していてもよく、第2の高反射ミラー13bの反射波長帯域は、第2の低反射ミラー12bの反射波長帯域と重複(図示した例では1nm重複)していてもよい。この場合であっても、第1のマルチコアファイバMCF1を第2の力F2によって曲げることによって、第1の低反射ミラー12aの反射波長帯域と第1の高反射ミラー13aの反射波長帯域とが、重複部分を有し、第2の低反射ミラー12bの反射波長帯域と第2の高反射ミラー13bの反射波長帯域とが、重複部分を有さない状態が実現される(図13の(b)参照)。すなわち、上述した第1の動作モードへの遷移が実現される。
 (まとめ)
 本発明の態様1に係るファイバレーザにおいては、第1のコア及び第2のコアを有するゲインファイバと、前記第1のコアの第1の端部から出射されるレーザ光の光路上に設けられた第1の低反射ミラーと、前記第1のコアの第2の端部から出射されるレーザ光の光路上に設けられた第1の高反射ミラーと、前記第2のコアの第1の端部から出射されるレーザ光の光路上に設けられた第2の低反射ミラーと、前記第2のコアの第2の端部から出射されるレーザ光の光路上に設けられた第2の高反射ミラーと、を備えており、前記第1の低反射ミラーの反射波長帯域の少なくとも一部を前記第1の高反射ミラーの反射波長帯域の少なくとも一部と重複させること、及び、前記第2の低反射ミラーの反射波長帯域の少なくとも一部を前記第2の高反射ミラーの反射波長帯域の少なくとも一部と重複させることが可能である、構成が採用されている。
 上記の構成によれば、第1の低反射ミラーの反射波長帯域の少なくとも一部を第1の高反射ミラーの反射波長帯域の少なくとも一部と重複させることにより、第1のコアにおいて再帰的に増幅されたレーザ光を、第1の低反射ミラーを介して出力することができる。また、上記の構成によれば、第2の低反射ミラーの反射波長帯域の少なくとも一部を第2の高反射ミラーの反射波長帯域の少なくとも一部と重複させることにより、第2のコアにおいて再帰的に増幅されたレーザ光を、第2の低反射ミラーを介して出力することができる。すなわち、上記の構成によれば、ゲインファイバの2つのコアの各々において再帰的に増幅されたレーザ光を出力することが可能なファイバレーザを実現することができる。
 本発明の態様2に係るファイバレーザにおいては、態様1に係るファイバレーザの構成に加えて、前記第1の低反射ミラーから出射されるレーザ光が入力される第1のデリバリファイバコアと、前記第2の低反射ミラーから出射されるレーザ光が入力される第2のデリバリファイバコアと、を更に備え、前記第1の低反射ミラー及び前記第1の高反射ミラーにより構成される第1の共振器によって再帰的に増幅され、前記第1の低反射ミラーを透過した第1の波長のレーザ光を前記第1のデリバリファイバコアから出力する第1の動作モードと、前記第2の低反射ミラー及び前記第2の高反射ミラーにより構成される第2の共振器によって再帰的に増幅され、前記第2の低反射ミラーを透過した第2の波長のレーザ光を前記第2のデリバリファイバコアから出力する第2の動作モードと、を有し、前記第1の動作モードと前記第2の動作モードとを切り替える動作モード切替機構を更に備えている、構成が採用されている。
 上記の構成によれば、第1のコアにおいて再帰的に増幅されたレーザ光を出力する第1の動作モードと、第2のコアにおいて再帰的に増幅されたレーザ光を出力する第2の動作モードとを、自在に切り替えることができる。なお、本発明の態様2に係るファイバレーザにおいて、第1のデリバリファイバコア及び第2のデリバリファイバコアは、それぞれ、同一のマルチコア光ファイバにおける別のコアとして構成されてもよいし(例えば図8参照)、別の光ファイバのコアとして構成されてもよい(例えば図1参照)。
 本発明の態様3に係るファイバレーザにおいては、態様2に係るファイバレーザの構成に加えて、前記動作モード切替機構は、前記第1の低反射ミラー、前記第2の低反射ミラー、前記第1の高反射ミラー、及び前記第2の高反射ミラーのうち、少なくとも1つのミラーの反射波長帯域を変更することによって、動作モードを切り替える、構成が採用されている。
 上記の構成によれば、第1のコアにおいて再帰的に増幅されたレーザ光を出力する第1の動作モードと、第2のコアにおいて再帰的に増幅されたレーザ光を出力する第2の動作モードとを、より確実に切り替えることができる。
 本発明の態様4に係るファイバレーザにおいては、態様3に係るファイバレーザの構成に加えて、前記少なくとも1つのミラーは、ファイバブラッググレーティングにより構成されており、前記動作モード切替機構は、前記ファイバブラッググレーティングの長さ又は温度を変更することによって、前記ファイバブラッググレーティングの反射波長帯域を変更する、構成が採用されている。
 上記の構成によれば、第1のコアにおいて再帰的に増幅されたレーザ光を出力する第1の動作モードと、第2のコアにおいて再帰的に増幅されたレーザ光を出力する第2の動作モードとを、より確実に、且つ、より簡単に切り替えることができる。
 本発明の態様5に係るファイバレーザにおいては、態様4に係るファイバレーザの構成に加えて、前記少なくとも1つのミラーは、単一の光ファイバ(マルチコアファイバ)内に形成された2つのファイバブラッググレーティングであり、前記動作モード切替機構は、前記光ファイバ(マルチコアファイバ)を曲げ、前記2つのファイバブラッググレーティングの一方の長さを伸ばすと共に、前記2つのファイバブラッググレーティングの他方の長さを縮めることによって、前記2つのファイバブラッググレーティングの反射波長帯域を変更する、構成が採用されている。
 上記の構成によれば、第1のコアにおいて再帰的に増幅されたレーザ光を出力する第1の動作モードと、第2のコアにおいて再帰的に増幅されたレーザ光を出力する第2の動作モードとを、より確実に、且つ、更に簡単に切り替えることができる。
 本発明の態様6に係るファイバレーザにおいては、態様2に係るファイバレーザの構成に加えて、前記動作モード切替機構は、前記第1の共振器を構成する光導波路の損失又は前記第2の共振器を構成する光導波路の損失を変更することによって、動作モードを切り替える、構成が採用されている。
 上記の構成によれば、第1のコアにおいて再帰的に増幅されたレーザ光を出力する第1の動作モードと、第2のコアにおいて再帰的に増幅されたレーザ光を出力する第2の動作モードとを、より確実に切り替えることができる。
 本発明の態様7に係るファイバレーザにおいては、態様6に係るファイバレーザの構成に加えて、前記動作モード切替機構は、(1)前記第1の共振器に含まれる光ファイバを曲げること、及び/又は、(2)前記第1の共振器に含まれる光ファイバに側圧を与えることによって、前記第1の共振器を構成する光導波路の損失を増大させるか、又は、(3)前記第2の共振器に含まれる光ファイバを曲げること、及び/又は、(4)前記第2の共振器に含まれる光ファイバに側圧を与えることによって、前記第2の共振器を構成する光導波路の損失を増大させる、構成が採用されている。
 上記の構成によれば、第1のコアにおいて再帰的に増幅されたレーザ光を出力する第1の動作モードと、第2のコアにおいて再帰的に増幅されたレーザ光を出力する第2の動作モードとを、より確実に、且つ、より簡単に切り替えることができる。
 本発明の態様8に係るファイバレーザにおいては、態様2~態様7の何れか一態様に係るファイバレーザの構成に加えて、第1のコア、及び、前記第1のコアを取り囲む筒状の第2のコアを有する出力ファイバを更に備えており、前記第1の共振器にて再帰的に増幅されたレーザ光が前記第1のコアに結合されると共に、前記第2の共振器にて再帰的に増幅されたレーザ光が前記第2のコアに結合されるか、又は、前記第1の共振器にて再帰的に増幅されたレーザ光が前記第2のコアに結合されると共に、前記第2の共振器にて再帰的に増幅されたレーザ光が前記第1のコアに結合される、構成が採用されている。
 上記の構成によれば、ビーム径の小さい第1のレーザビームとビーム径の大きい第2のレーザビームとを出力ファイバから出力することが可能なファイバレーザを実現することができる。
 なお、ゲインファイバの1つのコアにおいて増幅されたレーザ光しか出力することができない従来のファイバレーザを用いて上記の効果を得ようとした場合、ゲインファイバ及び励起光源を二組用いる必要があるので、ゲインファイバ及び励起光源の利用効率が低下するという問題を生じ易い。これに対して、ゲインファイバの2つのコアの各々において増幅されたレーザ光を出力することが可能な本発明のファイバレーザを用いて上記の効果を得ようとした場合、ゲインファイバ及び励起光源を一組用いれば十分なので、ゲインファイバ及び励起光源の利用効率が低下するという問題を生じ難い。
 本発明の態様9に係るファイバレーザにおいては、態様1~8の何れか一態様に係るファイバレーザの構成に加えて、前記第1のコアの前記第1の端部と、前記第2のコアの前記第1の端部とは、前記ゲインファイバの同じ端部に配置されている、構成が採用されている。
 上記の構成によれば、ゲインファイバの2つのコアの各々において再帰的に増幅されたレーザ光を、ゲインファイバの一方の端部からそれぞれ出力することが可能なファイバレーザを実現することができる。
 本発明の態様10に係るファイバレーザにおいては、態様1~8の何れか一態様に係るファイバレーザの構成に加えて、前記第1のコアの前記第1の端部と、前記第2のコアの前記第1の端部とは、前記ゲインファイバの異なる端部に配置されている、構成が採用されている。
 上記の構成によれば、ゲインファイバの2つのコアの各々において再帰的に増幅されたレーザ光を、ゲインファイバの両方の端部からそれぞれ出力することが可能なファイバレーザを実現することができる。
 本発明の態様11に係るレーザ光の出力方法においては、ゲインファイバの第1のコアの第1の端部から出射するレーザ光の光路上に配置された第1の低反射ミラーと前記第1のコアの第2の端部から出射するレーザ光の光路上に配置された第1の高反射ミラーとにより構成される第1の共振器によって再帰的に増幅され、前記第1の低反射ミラーを透過したレーザ光を出力する第1の工程と、前記ゲインファイバの第2のコアの第1の端部から出射するレーザ光の光路上に配置された第2の低反射ミラーと前記第2のコアの第2の端部から出射するレーザ光の光路上に配置された第2の高反射ミラーとにより構成される第2の共振器によって再帰的に増幅され、前記第2の低反射ミラーを透過したレーザ光を出力する第2の工程と、を含んでいる、構成が採用されている。
 上記の構成によれば、第1の低反射ミラーの反射波長帯域の少なくとも一部を第1の高反射ミラーの反射波長帯域の少なくとも一部と重複させることにより、第1のコアにおいて再帰的に増幅されたレーザ光を、第1の低反射ミラーを介して出力することができる。また、上記の構成によれば、第2の低反射ミラーの反射波長帯域の少なくとも一部を第2の高反射ミラーの反射波長帯域の少なくとも一部と重複させることにより、第2のコアにおいて再帰的に増幅されたレーザ光を、第2の低反射ミラーを介して出力することができる。すなわち、上記の構成によれば、ゲインファイバの2つのコアの各々において再帰的に増幅されたレーザ光を出力することが可能なレーザ光の出力方法を実現することができる。
 (付記事項)
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 1        ファイバレーザ
 11       ゲインファイバ
 12a      第1の低反射ミラー
 12b      第2の低反射ミラー
 13a      第1の高反射ミラー
 13b      第2の高反射ミラー
 14a      第1の励起コンバイナ
 14b      第2の励起コンバイナ
 15a      第1の励起光源群
 15b      第2の励起光源群
 16a      第1のデリバリファイバ
 16b      第2のデリバリファイバ
 16       デリバリファイバ
 161      第1のコア(第1のデリバリファイバコア)
 162      第2のコア(第2のデリバリファイバコア)
 17       反射波長帯域変更機構(動作モード切替機構)
 18       出力ファイバ
 Oa       第1の共振器
 Ob       第2の共振器

 

Claims (11)

  1.  第1のコア及び第2のコアを有するゲインファイバと、
     前記第1のコアの第1の端部から出射されるレーザ光の光路上に設けられた第1の低反射ミラーと、前記第1のコアの第2の端部から出射されるレーザ光の光路上に設けられた第1の高反射ミラーと、
     前記第2のコアの第1の端部から出射されるレーザ光の光路上に設けられた第2の低反射ミラーと、前記第2のコアの第2の端部から出射されるレーザ光の光路上に設けられた第2の高反射ミラーと、を備えており、
     前記第1の低反射ミラーの反射波長帯域の少なくとも一部を前記第1の高反射ミラーの反射波長帯域の少なくとも一部と重複させること、及び、前記第2の低反射ミラーの反射波長帯域の少なくとも一部を前記第2の高反射ミラーの反射波長帯域の少なくとも一部と重複させることが可能である、
    ことを特徴とするファイバレーザ。
  2.  前記第1の低反射ミラーから出射されるレーザ光が入力される第1のデリバリファイバコアと、
     前記第2の低反射ミラーから出射されるレーザ光が入力される第2のデリバリファイバコアと、を更に備え、
     前記第1の低反射ミラー及び前記第1の高反射ミラーにより構成される第1の共振器によって再帰的に増幅され、前記第1の低反射ミラーを透過した第1の波長のレーザ光を前記第1のデリバリファイバコアから出力する第1の動作モードと、前記第2の低反射ミラー及び前記第2の高反射ミラーにより構成される第2の共振器によって再帰的に増幅され、前記第2の低反射ミラーを透過した第2の波長のレーザ光を前記第2のデリバリファイバコアから出力する第2の動作モードと、を有し、
     前記第1の動作モードと前記第2の動作モードとを切り替える動作モード切替機構を更に備えている、
    ことを特徴とする請求項1に記載のファイバレーザ。
  3.  前記動作モード切替機構は、前記第1の低反射ミラー、前記第2の低反射ミラー、前記第1の高反射ミラー、及び前記第2の高反射ミラーのうち、少なくとも1つのミラーの反射波長帯域を変更することによって、動作モードを切り替える、
    ことを特徴とする請求項2に記載のファイバレーザ。
  4.  前記少なくとも1つのミラーは、ファイバブラッググレーティングであり、
     前記動作モード切替機構は、前記ファイバブラッググレーティングの長さ又は温度を変更することによって、前記ファイバブラッググレーティングの反射波長帯域を変更する、ことを特徴とする請求項3に記載のファイバレーザ。
  5.  前記少なくとも1つのミラーは、マルチコアファイバ内に形成された2つのファイバブラッググレーティングであり、
     前記動作モード切替機構は、前記マルチコアファイバを曲げ、前記2つのファイバブラッググレーティングの一方の長さを伸ばすと共に、前記2つのファイバブラッググレーティングの他方の長さを縮めることによって、前記2つのファイバブラッググレーティングの反射波長帯域を変更する、
    ことを特徴とする請求項4に記載のファイバレーザ。
  6.  前記動作モード切替機構は、前記第1の共振器を構成する光導波路の損失又は前記第2の共振器を構成する光導波路の損失を変更することによって、動作モードを切り替える、ことを特徴とする請求項2に記載のファイバレーザ。
  7.  前記動作モード切替機構は、
     (1)前記第1の共振器に含まれる光ファイバを曲げること、及び/又は、(2)前記第1の共振器に含まれる光ファイバに側圧を与えることによって、前記第1の共振器を構成する光導波路の損失を増大させるか、又は、
     (3)前記第2の共振器に含まれる光ファイバを曲げること、及び/又は、(4)前記第2の共振器に含まれる光ファイバに側圧を与えることによって、前記第2の共振器を構成する光導波路の損失を増大させる、
    ことを特徴とする請求項6に記載のファイバレーザ。
  8.  第1のコア、及び、前記第1のコアを取り囲む筒状の第2のコアを有する出力ファイバを更に備えており、
     前記第1の共振器にて再帰的に増幅されたレーザ光が前記第1のコアに結合されると共に、前記第2の共振器にて再帰的に増幅されたレーザ光が前記第2のコアに結合されるか、又は、前記第1の共振器にて再帰的に増幅されたレーザ光が前記第2のコアに結合されると共に、前記第2の共振器にて再帰的に増幅されたレーザ光が前記第1のコアに結合される、
    ことを特徴とする請求項2~7の何れか1項に記載のファイバレーザ。
  9.  前記第1のコアの前記第1の端部と、前記第2のコアの前記第1の端部とは、前記ゲインファイバの同じ端部に配置されている、
    ことを特徴とする請求項1~8の何れか1項に記載のファイバレーザ。
  10.  前記第1のコアの前記第1の端部と、前記第2のコアの前記第1の端部とは、前記ゲインファイバの異なる端部に配置されている、
    ことを特徴とする請求項1~8の何れか1項に記載のファイバレーザ。
  11.  ゲインファイバの第1のコアの第1の端部から出射するレーザ光の光路上に配置された第1の低反射ミラーと前記第1のコアの第2の端部から出射するレーザ光の光路上に配置された第1の高反射ミラーとにより構成される第1の共振器によって再帰的に増幅され、前記第1の低反射ミラーを透過したレーザ光を出力する第1の工程と、
     前記ゲインファイバの第2のコアの第1の端部から出射するレーザ光の光路上に配置された第2の低反射ミラーと前記第2のコアの第2の端部から出射するレーザ光の光路上に配置された第2の高反射ミラーとにより構成される第2の共振器によって再帰的に増幅され、前記第2の低反射ミラーを透過したレーザ光を出力する第2の工程と、を含んでいる、
    ことを特徴とするレーザ光の出力方法。
PCT/JP2020/029672 2019-08-09 2020-08-03 ファイバレーザ、及び、レーザ光の出力方法 WO2021029251A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019147902A JP6778796B1 (ja) 2019-08-09 2019-08-09 ファイバレーザ、及び、レーザ光の出力方法
JP2019-147902 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029251A1 true WO2021029251A1 (ja) 2021-02-18

Family

ID=73022431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029672 WO2021029251A1 (ja) 2019-08-09 2020-08-03 ファイバレーザ、及び、レーザ光の出力方法

Country Status (2)

Country Link
JP (1) JP6778796B1 (ja)
WO (1) WO2021029251A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202768A1 (ja) * 2021-03-24 2022-09-29 古河電気工業株式会社 レーザ装置および加工装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242548A (ja) * 1997-02-24 1998-09-11 Hitachi Cable Ltd Er添加マルチコアファイバ及びそれを用いた光増幅器
JP2005175171A (ja) * 2003-12-10 2005-06-30 Fujikura Ltd Qスイッチ光ファイバレーザ
JP2009187970A (ja) * 2008-02-01 2009-08-20 Toshiba Corp ファイバレーザ装置、レーザ加工方法及び電子デバイス
JP2018006581A (ja) * 2016-07-01 2018-01-11 株式会社フジクラ 光コンバイナ、光増幅器、及び、レーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242548A (ja) * 1997-02-24 1998-09-11 Hitachi Cable Ltd Er添加マルチコアファイバ及びそれを用いた光増幅器
JP2005175171A (ja) * 2003-12-10 2005-06-30 Fujikura Ltd Qスイッチ光ファイバレーザ
JP2009187970A (ja) * 2008-02-01 2009-08-20 Toshiba Corp ファイバレーザ装置、レーザ加工方法及び電子デバイス
JP2018006581A (ja) * 2016-07-01 2018-01-11 株式会社フジクラ 光コンバイナ、光増幅器、及び、レーザ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202768A1 (ja) * 2021-03-24 2022-09-29 古河電気工業株式会社 レーザ装置および加工装置

Also Published As

Publication number Publication date
JP2021028953A (ja) 2021-02-25
JP6778796B1 (ja) 2020-11-04

Similar Documents

Publication Publication Date Title
US6751241B2 (en) Multimode fiber laser gratings
US6212310B1 (en) High power fiber gain media system achieved through power scaling via multiplexing
JP3987840B2 (ja) クラッディング励起光ファイバ利得装置
US6801550B1 (en) Multiple emitter side pumping method and apparatus for fiber lasers
JP4243327B2 (ja) フォトニックバンドギャップファイバ及びファイバ増幅器
US6490078B2 (en) Optical fiber for optical amplifier, optical fiber amplifier and optical fiber laser
CN102388512A (zh) 基于滤波器光纤的级联拉曼光纤激光器系统
US8320039B2 (en) Cladding-pumped optical amplifier having reduced susceptibility to spurious lasing
CN212810845U (zh) 高功率光纤激光放大器系统
JP5469099B2 (ja) 光合波器及びファイバレーザ
KR20080052237A (ko) 이중 클래드 구조의 이득 고정형 광 증폭기
WO2021014895A1 (ja) ファイバレーザ、及び、レーザ光の出力方法
WO2021029251A1 (ja) ファイバレーザ、及び、レーザ光の出力方法
JP2002006348A (ja) 光増幅器
JP2010028053A (ja) ファイバレーザ装置、レーザ加工装置及びレーザ加工方法
CN212935127U (zh) 一种激光器
JP5643632B2 (ja) マルチポートカプラ、及び、それを用いた光ファイバ増幅器及びファイバレーザ装置及び共振器
JP2018060024A (ja) 光ファイバ及びファイバレーザ
WO2021045074A1 (ja) 光増幅装置
WO2019172398A1 (ja) 余剰光除去装置及びファイバレーザ
JP5202820B2 (ja) 光結合器、ファイバレーザ及び光ファイバ増幅器
JP4873645B2 (ja) 光ファイバラマンレーザ装置
WO2022202768A1 (ja) レーザ装置および加工装置
WO2022044088A1 (ja) 希土類添加ファイバ及び光ファイバ増幅器
JP7136996B2 (ja) ファイバレーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852394

Country of ref document: EP

Kind code of ref document: A1