WO2021029059A1 - 端末 - Google Patents

端末 Download PDF

Info

Publication number
WO2021029059A1
WO2021029059A1 PCT/JP2019/031997 JP2019031997W WO2021029059A1 WO 2021029059 A1 WO2021029059 A1 WO 2021029059A1 JP 2019031997 W JP2019031997 W JP 2019031997W WO 2021029059 A1 WO2021029059 A1 WO 2021029059A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
terminal
gnb100b
procedure
candidate cell
Prior art date
Application number
PCT/JP2019/031997
Other languages
English (en)
French (fr)
Inventor
徹 内野
天楊 閔
高橋 秀明
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201980099168.3A priority Critical patent/CN114208286A/zh
Priority to PCT/JP2019/031997 priority patent/WO2021029059A1/ja
Publication of WO2021029059A1 publication Critical patent/WO2021029059A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters

Definitions

  • the present invention relates to a terminal that transitions to a target radio base station without using a reestablishment procedure.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G New Radio
  • the network determines a target radio base station (also called a target cell) based on quality information such as measurement reports sent from the terminal, and after preparing for the handover, a handover command is issued to the terminal. Will be sent to.
  • a target radio base station also called a target cell
  • the target radio base station does not receive the handover command from the source radio base station (also called the source cell). There is a problem that a momentary interruption of the wireless link may occur due to the transition to.
  • Non-Patent Document 1 a procedure called Conditional HO is being studied.
  • the source radio base station notifies the terminal in advance of the target candidate cell setting information including the target candidate cell and the transition condition to the target candidate cell.
  • the terminal executes a random access procedure with the target radio base station that manages the target candidate cell without waiting for the handover command, and transitions to the target radio base station. .. This makes it possible to avoid a momentary interruption of the wireless link.
  • the terminal can transition to the target radio base station and return from the HOF without performing the reestablishment procedure (RRC Reestablishment procedure) with the target radio base station.
  • RRC Reestablishment procedure reestablishment procedure
  • new identification information such as security information is shared between the terminal and the target radio base station in the RRC Reestablishment procedure, but in the Conditional HO, the RRC Reestablishment procedure.
  • the new identification information is not shared between the terminal and the target radio base station.
  • the target radio base station cannot authenticate the terminal transitioning to the target radio base station, and the malicious terminal transitions to the target radio base station. there is a possibility.
  • the present invention has been made in view of such a situation, and a terminal capable of authenticating a terminal transitioning to a target radio base station on the network side without performing a re-establishment procedure due to a handover failure is provided.
  • the purpose is to provide.
  • the terminal (200) includes a control unit (240) that performs a procedure for transitioning to a target radio base station (100B) without performing a re-establishment procedure due to a handover failure, and the target radio.
  • the control unit (240) includes a transmission unit (210) that transmits a specific message to the target radio base station (100B), and the control unit (240) is said to be said when the handover fails.
  • the identification information shared between the terminal (200) and the target radio base station (100B) is maintained, and the identification information is included for the specific message.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of gNB100A, 100B, and 100C.
  • FIG. 3 is a functional block configuration diagram of the terminal 200.
  • FIG. 4 is a diagram showing a sequence of Conditional HO procedures.
  • FIG. 5 is a diagram showing a recovery sequence from a radio link failure (RLF) in a conventional handover (HO) procedure.
  • FIG. 6 is a diagram showing a recovery sequence (operation example 1) from a radio link failure (RLF) in the Conditional HO procedure.
  • FIG. 7 is a diagram showing a recovery sequence (operation example 2) from a radio link failure (RLF) in the Conditional HO procedure.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of gNB100A, 100B, and 100C.
  • FIG. 3 is a functional block configuration diagram of the terminal 200.
  • FIG. 4 is a diagram
  • FIG. 8 is a diagram showing a recovery sequence (operation example 3) from a radio link failure (RLF) in the Conditional HO procedure.
  • FIG. 9 is a diagram illustrating an information element (IE) in VarRLF-Report.
  • FIG. 10 is a diagram illustrating an information element (IE) in RRC Reconfiguration Complete.
  • FIG. 11A is a diagram illustrating an information element (IE) in RRC Setup Complete.
  • FIG. 11B is a diagram illustrating an information element (IE) in RRC Setup Complete.
  • FIG. 12 is a diagram illustrating an information element (IE) in RRC Reestablishment Complete.
  • FIG. 13 is a diagram illustrating an information element (IE) in RRC Resume Complete.
  • FIG. 14 is a diagram illustrating an information element (IE) in the UE Information Request.
  • FIG. 15A is a diagram illustrating an information element (IE) in UE Information Response.
  • FIG. 15B is a diagram illustrating an information element (IE) in UE Information Response.
  • FIG. 15C is a diagram illustrating an information element (IE) in UE Information Response.
  • FIG. 16 is a diagram showing an RRC Reconfiguration Complete transmission sequence in the Conditional HO procedure.
  • FIG. 17 is a diagram showing an HO stop sequence (operation example 1) in the Conditional HO procedure.
  • FIG. 18 is a diagram showing an HO stop sequence (operation example 2) in the Conditional HO procedure.
  • FIG. 19 is a diagram showing an HO change sequence (operation example 1) in the Conditional HO procedure.
  • FIG. 20 is a diagram showing an HO change sequence (operation example 2) in the Conditional HO procedure.
  • FIG. 21 is a diagram showing an HO change sequence (operation example 3) in the Conditional HO procedure.
  • FIG. 22 is a diagram showing an operation flow of the gNB 100A that encapsulates the setting information of the target candidate cell.
  • FIG. 23 is a diagram illustrating a configuration (configuration example 1) of RRC Reconfiguration in the Conditional HO procedure.
  • FIG. 24 is a diagram illustrating a configuration (configuration example 2) of RRC Reconfiguration in the Conditional HO procedure.
  • FIG. 25 is a diagram showing a transaction ID assignment sequence (operation example 1) in the Conditional HO procedure.
  • FIG. 26 is a diagram showing a transaction ID assignment sequence (operation example 2) in the Conditional HO procedure.
  • FIG. 27 is a diagram showing a return sequence from a handover failure (HOF) in the Conditional HO procedure.
  • FIG. 28 is a diagram showing an operation flow of the terminal 200 that restarts the wireless bearer after a wireless link failure (RLF) in the Conditional HO procedure.
  • FIG. 29 is a diagram illustrating a condition for restarting the radio bearer after a radio link failure (RLF) in the Conditional HO procedure.
  • FIG. 30 is a diagram showing an example of the hardware configuration of the gNB100A, 100B, 100C and the terminal 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system according to New Radio (NR), and includes a Next Generation-Radio Access Network (NG-RAN, not shown) and a terminal 200.
  • NR New Radio
  • NG-RAN Next Generation-Radio Access Network
  • NG-RAN includes radio base stations 100A, 100B, 100C (hereinafter, gNB100A, 100B, 100C).
  • gNB100A, 100B, 100C radio base stations 100A, 100B, 100C.
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to NR.
  • NG-RAN and 5GC may be simply expressed as a network.
  • Each of gNB100A, 100B, and 100C is a wireless base station according to NR, and executes wireless communication according to terminal 200 and NR.
  • Each of gNB100A, 100B, 100C and terminal 200 bundles Massive MIMO and multiple component carriers (CC) that generate a more directional beam by controlling radio signals transmitted from multiple antenna elements. It can support carrier aggregation (CA) to be used and dual connectivity (DC) that simultaneously communicates between multiple NG-RAN Nodes and terminals.
  • CC is also called a carrier.
  • Each of gNB100A, 100B, and 100C forms one or more cells and manages the cells.
  • the terminal 200 can transition between cells formed by gNB100A, 100B, and 100C.
  • transition between cells formed by gNB100A, 100B, 100C may be expressed as “transition between gNB100A, 100B, 100C” or “transition between radio base stations 100A, 100B, 100C". it can.
  • “cells under gNB100A, 100B, 100C” means “cells formed by gNB100A, 100B, 100C".
  • Transition typically means a handover between cells or a handover between gNBs, but the behavior of the terminal 200 such that the cell to be connected or the gNB to be connected is changed, such as cell reselection.
  • Can include (behavior).
  • the "target cell” typically means a transition destination cell to which the terminal 200 transitions, but may also include a cell (potential target cell) to which the terminal 200 can transition.
  • the “target gNB” typically means a transition destination gNB to which the terminal 200 transitions, but may also include a gNB (potential target gNB) to which the terminal 200 can transition.
  • gNB100B and 100C are the target gNBs.
  • the cell to which the terminal can transition may be called a candidate cell.
  • the gNB to which the terminal can transition may be called a candidate gNB.
  • the “source cell” means the cell of the transition source.
  • “Source gNB” means the transition source gNB.
  • gNB100A is the source gNB.
  • the terminal 200 executes a conditional handover (hereinafter, Conditional HO) procedure.
  • the Conditional HO procedure may be abbreviated as the CHO procedure.
  • the source gNB100A notifies the terminal 200 in advance of the candidate cell of the transition destination to which the terminal 200 transitions (hereinafter, the target candidate cell).
  • the terminal 200 executes a random access (RA) procedure with the target gNB100B (or target gNB100C) that manages the target candidate cell without receiving a handover command from the source gNB. Then, it transitions to the target gNB100B (or the target gNB100C).
  • RA random access
  • the wireless communication system 10 may include an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) instead of the NG-RAN.
  • E-UTRAN includes a plurality of E-UTRAN Nodes, specifically eNB (or en-gNB), and is connected to the LTE-compliant core network (EPC).
  • EPC LTE-compliant core network
  • FIG. 2 is a functional block configuration diagram of gNB100A, 100B, and 100C. Since gNB100A, 100B, and 100C have the same configuration, the description of gNB100B and 100C will be omitted. As shown in FIG. 2, the gNB100A includes a transmission unit 110, a reception unit 120, a holding unit 130, and a control unit 140.
  • the transmission unit 110 transmits a downlink signal (DL signal) according to the NR.
  • the receiving unit 120 receives the uplink signal (UL signal) according to the NR.
  • the transmitting unit 110 and the receiving unit 120 execute wireless communication with the terminal 200 via the control channel or the data channel.
  • the transmission unit 110 transmits a signal according to NR to another gNB.
  • the receiving unit 220 receives a signal according to NR from another gNB.
  • the transmission unit 110 transmits an RRC message such as RRC Reconfiguration, which will be described later, to the terminal 200.
  • the transmission unit 110 transmits the CHO request described later to the target gNB.
  • the transmission unit 210 transmits CHO request ACK, HO cancellation and HO modification, which will be described later, to the source gNB.
  • CHO request ACK includes setting information of target candidate cells under the target gNB.
  • the receiving unit 120 receives RRC messages such as RRC Reconfiguration Complete, RRC Reconfiguration Complete1, RRC Reconfiguration Complete2, RRCSetupComplete, and RRCReestablishmentComplete, which will be described later, from the terminal 200.
  • RRC messages such as RRC Reconfiguration Complete, RRC Reconfiguration Complete1, RRC Reconfiguration Complete2, RRCSetupComplete, and RRCReestablishmentComplete, which will be described later, from the terminal 200.
  • the receiving unit 120 receives CHO request ACK, HO cancellation and HO modification, which will be described later, from the target gNB.
  • the receiving unit 120 receives the CHO request described later from the source gNB.
  • the holding unit 130 holds the setting information of the target candidate cell under the target gNB.
  • the control unit 140 controls each functional block constituting the gNB 100A.
  • control unit 140 determines to delete the setting information of the target candidate cell according to the state of the target candidate cell under gNB100A.
  • the control unit 140 causes the transmission unit 110 to send a HO cancellation instructing the source gNB to delete the setting information of the target candidate cell under the gNB100A.
  • the control unit 140 transmits HO cancellation to the source gNB if the terminal 200 does not transition within the specified time based on the setting information of the target candidate cell under gNB100A. Send to 110.
  • control unit 140 determines to change the setting information of the target candidate cell according to the state of the target candidate cell under gNB100A.
  • the control unit 140 causes the transmission unit 110 to send a HO modification instructing the source gNB to change the setting information of the target candidate cell under the gNB100A.
  • the control unit 140 When gNB100A is the source gNB, the control unit 140 includes a list including a plurality of setting information of the target candidate cells under the target gNB in the RRC Reconfiguration.
  • FIG. 3 is a functional block configuration diagram of the terminal 200.
  • the terminal 200 includes a transmission unit 210, a reception unit 220, a holding unit 230, and a control unit 240.
  • the transmission unit 210 transmits an uplink signal (UL signal) according to NR.
  • the receiving unit 220 receives the downlink signal (DL signal) according to the NR.
  • the transmitting unit 210 and the receiving unit 220 execute wireless communication with each of the gNB 100A to 100C via the control channel or the data channel.
  • the transmission unit 210 transmits RRC messages such as RRC Reconfiguration Complete, RRC Reconfiguration Complete1, RRC Reconfiguration Complete2, RRCSetupComplete, and RRCReestablishmentComplete, which will be described later.
  • RRC messages such as RRC Reconfiguration Complete, RRC Reconfiguration Complete1, RRC Reconfiguration Complete2, RRCSetupComplete, and RRCReestablishmentComplete, which will be described later.
  • the receiving unit 220 receives an RRC message such as RRC Reconfiguration described later.
  • the holding unit 230 holds the setting information of the target candidate cells under the target gNB.
  • the setting information of the target candidate cell is included in RRC Reconfiguration.
  • the control unit 240 controls each functional block constituting the terminal 200.
  • the control unit 240 performs the RA procedure between the terminal 200 and the target gNB without performing the reestablishment procedure (RRC Reestablishment procedure) in accordance with the RLF, and transitions to the target gNB.
  • RRC Reestablishment procedure reestablishment procedure
  • the control unit 240 transitions to the target gNB based on the setting information of the target candidate cell under the target gNB without performing the RRC Reestablishment procedure in accordance with the RLF.
  • the control unit 240 Based on the setting information of the target candidate cell under the target gNB, the control unit 240 performs the RA procedure between the terminal 200 and the target gNB without receiving the handover command, and transitions to the target gNB.
  • the control unit 240 transitions to the target gNB according to the HOF without performing the RRC Reestablishment procedure.
  • the control unit 240 includes RLF information for notifying the occurrence of RLF, information on the cell where RLF was detected, and terminal 200 for detecting RLF in the above-mentioned RRC messages such as RRC Reconfiguration Complete, RRC Reconfiguration Complete2, RRC SetupComplete, and RRC Reestablishment Complete. Includes RLF detection information, etc., including location information of.
  • the control unit 240 causes the transmitting unit 210 to transmit the RRC Reconfiguration Complete1 before starting the RA procedure. After transmitting RRC Reconfiguration Complete1, the receiving unit 220 receives RRC Reconfiguration including the changed setting information of the target candidate cell.
  • the control unit 240 When the receiving unit 220 receives the setting information of the target candidate cell under the target gNB by using the RRC Reconfiguration to which the transaction ID is assigned by the source gNB, the control unit 240 includes the transaction ID in the RRC Reconfiguration Complete1. .. The control unit 240 causes the transmission unit 210 to transmit the RRC Reconfiguration Complete1 toward the source gNB.
  • the control unit 240 When the receiving unit 220 receives the setting information of the target candidate cell under the target gNB to which the transaction ID is given by the target gNB, the control unit 240 includes the transaction ID in RRC Reconfiguration Complete2. After the RA procedure is successful, the control unit 240 causes the transmission unit 210 to transmit the RRC Reconfiguration Complete2 toward the target gNB.
  • the control unit 240 maintains all or part of the setting information of the target candidate cell under the target gNB shared between the terminal 200 and the target gNB, and includes it in RRC Reconfiguration Complete2.
  • the set setting information to be maintained includes security information, identification information of the terminal 200, and the like.
  • the control unit 240 causes the transmission unit 210 to transmit the RRC Reconfiguration Complete2 toward the target gNB.
  • the control unit 240 restarts the wireless vera stopped between the terminal 200 and the target gNB when performing the procedure for transitioning to the target gNB.
  • the control unit 240 restarts the radio bearer stopped between the terminal 200 and the target gNB when performing the RA procedure in the procedure of transitioning to the target gNB.
  • control unit 240 restarts the wireless bearer stopped between the terminal 200 and the target gNB when the receiving unit 220 receives a message instructing the restart of the wireless bearer.
  • FIG. 4 is a diagram showing a sequence of Conditional HO procedures. As shown in FIG. 4, when the source gNB100A finds the target gNB100B, 100C based on the measurement report received from the terminal 200, it transmits a Conditional HO request (CHO request) to the target gNB100B, 100C (S11). ).
  • a Conditional HO request (CHO request)
  • the target gNB100B When the target gNB100B receives a CHO request from the source gNB100A, it sends a CHO request response (CHO request ACK) including setting information of a cell (called a target candidate cell) under the target gNB100B to the source gNB100A (S13).
  • the setting information of the target candidate cell includes the information of the target candidate cell and the transition condition to the target candidate cell.
  • the target gNB100C when it receives a CHO request from the source gNB100A, it sends a CHO request response (CHO request ACK) including setting information of cells under the target gNB100C (called a target candidate cell) to the source gNB100A (S13). ..
  • the setting information of the target candidate cell includes the information of the target candidate cell and the transition condition to the target candidate cell.
  • the source gNB100A When the source gNB100A receives the CHO request ACK from the target gNB100B, 100C, it sends a radio resource control (RRC) reconfiguration message (RRC Reconfiguration) including the Conditional HO configuration (CHO configuration) to the terminal 200 (S15).
  • RRC radio resource control
  • RRC Reconfiguration radio resource control
  • the CHO configuration includes the setting information of the target candidate cells transmitted from each of the targets gNB100B and 100C.
  • the terminal 200 When the terminal 200 receives the CHO configuration from the source gNB100A, it monitors the Conditional HO condition (CHO condition) (S17). Specifically, the terminal 200 determines whether or not the transition condition to the target candidate cell included in the setting information of each target candidate cell is satisfied.
  • CHO condition Conditional HO condition
  • the terminal 200 decides to start the handover (HO) to the target candidate cell without receiving the handover command from the source gNB100A. (S19).
  • the terminal 200 determines the start of HO to the target candidate cell under the target gNB100B.
  • the target candidate cell of the transition destination that satisfies the transition condition is also called a CHO cell.
  • the source gNB100A may receive only the target candidate cell information from the target gNB100B and 100C at S13. In this case, the source gNB100A transmits the CHO configuration including the information of the target candidate cell and the condition for triggering the handover (HO) by the terminal 200 to the terminal 200 in S15.
  • the terminal 200 determines in S17 whether or not the condition for triggering HO is satisfied.
  • the terminal 200 determines the target candidate cell of the transition destination in S19 and starts the handover to the target candidate cell.
  • the terminal 200 determines the transition destination target candidate cell based on, for example, the priority of each target candidate cell given by the source gNB100A, the state of the cell included in the information of each target candidate cell, and the like.
  • terminal 200 When terminal 200 decides to start HO to the target candidate cell under target gNB100B, it executes a random access (RA) procedure between target gNB100B and terminal 200 and synchronizes between target gNB100B and terminal 200. (S21). As a result, the terminal 200 connects to the target gNB100B.
  • RA random access
  • the terminal 200 When the terminal 200 connects to the target gNB100B, it sends an RRC reconfiguration complete message (RRC Reconfiguration Complete) to the target gNB100B (S23).
  • RRC Reconfiguration Complete RRC Reconfiguration Complete
  • FIG. 5 is a diagram showing a return sequence from RLF in the conventional HO procedure.
  • the source gNB100A finds the target gNB100B based on the measurement report received from the terminal 200, the source gNB100A transmits an HO request (HO request) to the target gNB100B (S51).
  • HO request HO request
  • the target gNB100B When the target gNB100B receives the HO request from the source gNB100A, it sends a HO request response (HO request ACK) including information on the cells under the target gNB100B (called the target cell) to the source gNB100A (S53).
  • HO request ACK HO request response
  • the source gNB100A When the source gNB100A receives the HO request ACK from the target gNB100B, it sends an RRC reconfiguration message (RRC Reconfiguration) including a handover command (HO command) to the terminal 200 (S55).
  • RRC Reconfiguration RRC reconfiguration message
  • HO command a handover command
  • the HO command contains the target cell information transmitted from the target gNB100B.
  • the terminal 200 When the terminal 200 receives the HO command from the source gNB100A, it executes a random access (RA) procedure between the target gNB100B and the terminal 200 to try to establish synchronization between the target gNB100B and the terminal 200. (S57).
  • RA random access
  • Terminal 200 executes cell reselection at S57 when RLF occurs during execution of RA procedure and RA procedure fails (S59).
  • the terminal 200 decides to reconnect to the cell under the target gNB100B, the terminal 200 performs an RRC Reestablishment procedure between the target gNB100B and the terminal 200.
  • the terminal 200 sends an RRC reestablishment request message (RRC Reestablishment request) to the target gNB100B (S61).
  • RRC Reestablishment request an RRC reestablishment request message
  • the target gNB100B receives the RRC Reestablishment request from the terminal 200, it sends an RRC reestablishment message (RRC Reestablishment) to the terminal 200 (S63).
  • the RRC Reestablishment contains configuration information used to reestablish the RRC connection between the target gNB100B and the terminal 200.
  • the terminal 200 When the terminal 200 receives the RRC Reestablishment from the target gNB100B, the terminal 200 reestablishes the RRC connection between the target gNB100B and the terminal 200, and sends an RRC reestablishment completion message (RRCReestablishmentComplete) (S65).
  • RRCReestablishmentComplete RRC reestablishment completion message
  • the terminal 200 includes RLF information in RRC Reestablishment Complete and performs RLF notification.
  • the RLF information is included in the RRC Reestablishment Complete to notify the network side that an RLF has occurred between the terminal 200 and the target gNB100B.
  • the target gNB100B When the target gNB100B receives RRC Reestablishment Complete from terminal 200, it sends RRC Reconfiguration to terminal 200 (S67). When the terminal 200 receives the RRC Reconfiguration from the target gNB100B, the terminal 200 reconfigures the RRC connection and sends the RRC Reconfiguration Complete to the target gNB100B (S69).
  • FIG. 6 is a diagram showing a return sequence from RLF (operation example 1) in the Conditional HO procedure. Since S101 to S109 in FIG. 6 are the same processes as S11 to S19 in FIG. 4, the description thereof will be omitted.
  • terminal 200 When terminal 200 decides to start HO to a target candidate cell under target gNB100B without receiving a handover command from source gNB100A, it executes a random access (RA) procedure between target gNB100B and terminal 200. , Attempts to establish synchronization between target gNB100B and terminal 200 (S111).
  • RA random access
  • the terminal 200 reselects the target candidate cell (CHO cell) of the transition destination that satisfies the transition condition (S113). In the present embodiment, the terminal 200 reselects the target candidate cell under the target gNB100B.
  • terminal 200 When terminal 200 reselects a target candidate cell under target gNB100B, it executes a random access (RA) procedure between target gNB100B and terminal 200 to establish synchronization between target gNB100B and terminal 200 ( S115). As a result, the terminal 200 connects to the target gNB100B.
  • RA random access
  • the terminal 200 When the terminal 200 connects to the target gNB100B, it sends an RRC reconfiguration complete message (RRC Reconfiguration Complete) to the target gNB100B (S117).
  • RRC Reconfiguration Complete RRC Reconfiguration Complete
  • the terminal 200 includes RLF information in RRC Reconfiguration Complete and performs RLF notification.
  • the RLF information is included in the RRC Reconfiguration Complete to notify the network side that an RLF has occurred between the terminal 200 and the target gNB100B.
  • RLF information is represented by 1 bit. In this case, for example, when RLF occurs, "1" is set as RLF information, and when RLF does not occur, "0" is set as RLF information.
  • the RLF information is included in the message indicating that the Conditional HO procedure has been completed, that is, the terminal 200 has applied the setting information of the target candidate cell.
  • the terminal 200 may include RLF information and RLF detection information in RRC Reconfiguration Complete.
  • the RLF detection information includes cell information such as an identifier of a cell in which RLF is detected (in this embodiment, a cell under the target gNB100B), and location information of the terminal 200 in which RLF is detected (Global Navigation Satellite System (Global Navigation Satellite System). GNSS) information, etc.), Radio Access Technology (RAT) information in which RLF was detected, frequency information used when RLF was detected, bandwidth portion (BWP) used when RLF was detected. Includes at least one of the information and the location where the RLF was detected (such as Global Positioning System (GPS) information).
  • GPS Global Positioning System
  • the source gNB100A may receive only the target candidate cell information from the target gNB100B and 100C at S103 in the same manner as S13.
  • the terminal 200 sets the transition destination target candidate cell (CHO) based on the priority of each target candidate cell given by the source gNB100A in S113, the state of the cell included in the information of each target candidate cell, and the like. Reselect cell).
  • the terminal 200 when returning from RLF using CHO cell reselection, the terminal 200 can transition to the target gNB and return from RLF early without performing the RRC Reestablishment procedure.
  • FIG. 7 is a diagram showing a return sequence from RLF (operation example 2) in the Conditional HO procedure. Since S101 to S115 in FIG. 7 are the same processes as S101 to S115 in FIG. 6, description thereof will be omitted.
  • the terminal 200 when the terminal 200 receives the RRC Reconfiguration from the source gNB100A, it immediately transmits the RRC Reconfiguration Complete1 (S105a).
  • the terminal 200 When the terminal 200 connects to the target gNB100B by the RA procedure of S115, it sends an RRC reconfiguration completion message 2 (RRC Reconfiguration Complete 2) or an RRC setup completion message (RRC Setup Complete) to the target gNB100B (S117a).
  • RRC Reconfiguration Complete 2 RRC Reconfiguration Complete 2
  • RRC setup completion message RRC Setup Complete
  • RRC Reconfiguration Complete1 and RRC Reconfiguration Complete2 have the same configuration as RRC Reconfiguration Complete.
  • the terminal 200 includes RLF information in RRC Reconfiguration Complete 2 or RRC Setup Complete and performs RLF notification. Further, in S117a, the terminal 200 may include RLF information and RLF detection information in RRC Reconfiguration Complete 2 or RRC Setup Complete.
  • FIG. 8 is a diagram showing a return sequence from RLF (operation example 3) in the Conditional HO procedure. Since S101 to S111 in FIG. 8 are the same processes as S101 to S111 in FIG. 6, description thereof will be omitted.
  • the source gNB100A finds only the target gNB100B based on the measurement report received from the terminal 200. Therefore, the source gNB100A transmits a CHO request to the target gNB100B (S101), and receives a CHO request ACK including the setting information of the target candidate cell from the target gNB100B (S103).
  • the terminal 200 reselects the target candidate cell (CHO cell) of the transition destination that satisfies the transition condition. However, when the terminal 200 does not have a transition destination target candidate cell that satisfies the transition condition, the terminal 200 reselects a transition destination cell other than the target candidate cell (transition destination cell other than the CHO cell) (S131). In the present embodiment, the terminal 200 reselects the cell under the target gNB100C.
  • the terminal 200 decides to reconnect to the cell under the target gNB100C, the RRC Reestablishment procedure is performed between the target gNB100C and the terminal 200.
  • the terminal 200 sends an RRC Reestablishment request to the target gNB100C (S133).
  • the target gNB100C receives the RRC Reestablishment request from the terminal 200, it sends the RRC Reestablishment to the terminal 200 (S135).
  • the RRC Reestablishment contains configuration information used to reestablish the RRC connection between the target gNB100C and the terminal 200.
  • the terminal 200 When the terminal 200 receives the RRC Reestablishment from the target gNB100C, it reestablishes the RRC connection between the target gNB100C and the terminal 200 and sends the RRC Reestablishment Complete (S137).
  • the terminal 200 includes RLF information in RRC Reestablishment Complete and performs RLF notification. Further, in S137, the terminal 200 may include the RLF information and the RLF detection information in the RRC Reestablishment Complete.
  • FIG. 9 is a diagram illustrating IE in the VarRL F-Report.
  • the terminal 200 includes the RLF information in rlf-Report-r16 in VarRLF-Report.
  • the terminal 200 may include the RLF information and the RLF detection information in rlf-Report-r16 in VarRLF-Report.
  • FIG. 10 is a diagram illustrating IE in RRC Reconfiguration Complete.
  • the terminal 200 when the RLF information is included in the VarRLF-Report, the terminal 200 includes the RLF information in the rlf-InfoAvailable-r16 in the RRC Reconfiguration Complete in S117 of FIG.
  • the terminal 200 may include the RLF information and the RLF detection information in rlf-InfoAvailable-r16 in RRC Reconfiguration Complete.
  • RRC Reconfiguration Complete2 has the same configuration as RRC Reconfiguration Complete. Therefore, when the RLF information is included in the VarRLF-Report, the terminal 200 includes the RLF information in the rlf-InfoAvailable-r16 in the RRC Reconfiguration Complete2 in S117a of FIG. The terminal 200 may include the RLF information and the RLF detection information in rlf-InfoAvailable-r16 in RRC Reconfiguration Complete2.
  • FIG. 11A and 11B are diagrams for explaining IE in RRC Setup Complete.
  • the terminal 200 when the RLF information is included in the VarRLF-Report, the terminal 200 includes the RLF information in the rlf-InfoAvailable-r16 in the RRCSetupComplete in S117a of FIG.
  • the terminal 200 may include the RLF information and the RLF detection information in rlf-InfoAvailable-r16 in RRCSetupComplete.
  • FIG. 12 is a diagram illustrating IE in RRC Reestablishment Complete.
  • the terminal 200 when the RLF information is included in the VarRLF-Report, the terminal 200 includes the RLF information in the rlf-InfoAvailable-r16 in the RRC Reestablishment Complete in S137 of FIG.
  • the terminal 200 may include the RLF information and the RLF detection information in rlf-InfoAvailable-r16 in RRC Reestablishment Complete.
  • FIG. 13 is a diagram illustrating IE in RRC Resume Complete.
  • RRC Resume Complete is based on the reception of the RRC message instructing the terminal 200 to restart the radio bearer, as described in "(3.9) Resuming the radio bearer after RLF in the Conditional HO procedure" described later. It is used to notify the network that the wireless bearer has been restarted.
  • the terminal 200 when the RLF information is included in the VarRLF-Report, the terminal 200 notifies that the restart of the wireless bearer is completed after returning from the RLF.
  • Rlc-InfoAvailable-r16 in the RRC Resume Complete. May include RLF information.
  • the terminal 200 may include the RLF information and the RLF detection information in rlf-InfoAvailable-r16 in RRC Resume Complete.
  • FIG. 14 is a diagram illustrating an information element (IE) in the UE Information Request.
  • the terminal 200 can notify the network of the occurrence of RLF based on the request from the network.
  • the network requests the terminal 200 for RLF notification by using rlf-ReportReq-r16 in UEInformationRequest.
  • 15A to 15C are diagrams for explaining IE in UE Information Response.
  • the terminal 200 When the terminal 200 is requested to notify the RLF by using the UE Information Request from the network, the terminal 200 includes the RLF information in the rlf-Cause-r16 in the UE Information Response as shown in FIG. 15A.
  • the terminal 200 may include the RLF information and the RLF detection information in rlf-Cause-r16 in the UE Information Response.
  • the message including the RLF information is a message indicating that the Conditional HO procedure has been completed, that is, that the setting information of the target candidate cell has been applied (for example, RRC Reconfiguration). Complete, RRC Reconfiguration Complete 2, RRC Setup Complete), but not limited to this.
  • the message containing the RLF information may be the first RRC message sent to the transition destination target gNB.
  • the message including the RLF information may be a message having a specific identifier.
  • the identifier may be a transaction identifier, packet data convergence protocol (PDCP) sequence number (SN), PDCP count value, wireless link control (RLC) sequence number (SN), or hybrid automatic repeat request processing (HARQ). process) An identifier is given.
  • the terminal 200 may notify the network side of the RLF information at a timing other than the Conditional HO procedure.
  • the terminal 200 includes the RLF information and the RLF detection information in the same message, but the present invention is not limited to this, and these information may be included in different messages. Further, the terminal 200 may include the RLF information in the message when instructed by the network. Similarly, the terminal 200 may include the RLF detection information in the message when instructed by the network.
  • the terminal 200 may include the plurality of RLF detection information in the same message and send it to the transition destination target gNB. Further, the terminal 200 may include only a predetermined number of RLF detection information (for example, one RLF detection information) in the same message and transmit it to the transition destination target gNB.
  • the terminal 200 may give priority to the plurality of RLF detection information. For example, when the terminal 200 detects RLF at the same frequency as that used in the cell under the target gNB of the transition destination, the terminal 200 gives high priority to the RLF detection information including the information of the frequency. Further, the terminal 200 may transmit a plurality of RLF detection information to the target gNB of the transition destination with the priority specified from the network.
  • the terminal 200 may delete some RLF detection information from the message. In this case, the terminal 200 may notify the transition destination target gNB that some RLF detection information has been deleted.
  • the terminal 200 may recreate the message.
  • FIG. 16 is a diagram showing an RRC Reconfiguration Complete transmission sequence in the Conditional HO procedure. Since S151 to S155 in FIG. 16 are the same processes as S11 to S15 in FIG. 4, description thereof will be omitted.
  • the terminal 200 Upon receiving the RRC Reconfiguration including the CHO configuration from the source gNB100A, the terminal 200 immediately acquires the setting information of the target candidate cell and sends the RRC Reconfiguration Complete1 to the source gNB100A (S155a).
  • the terminal 200 When the terminal 200 sends RRC Reconfiguration Complete1 to the source gNB100A, it monitors the CHO condition (S157). Specifically, the terminal 200 determines whether or not the transition condition to the target candidate cell included in the setting information of each target candidate cell is satisfied.
  • the processing on the radio base station side becomes complicated. Therefore, when the terminal 200 changes the setting information of the target candidate cell, the terminal 200 notifies that the RRC connection reconfiguration is completed. It is necessary to notify the change using RRC Reconfiguration after receiving.
  • the source gNB100A when the source gNB100A changes the setting information of the target candidate cell, after receiving RRC Reconfiguration Complete1 from the terminal 200 on S155a, the source gNB100A uses RRC Reconfiguration to change the setting information of the target candidate cell. Notify 200 (S159).
  • the source gNB100A includes the changed target candidate cell setting information in the RRC Reconfiguration.
  • the source gNB100A may include the difference between the changed target candidate cell setting information and the target candidate cell setting information transmitted in S155 in the new RRC Reconfiguration.
  • the RRC Reconfiguration sent by S155 is also called the first configuration message.
  • RRC Reconfiguration Complete1 transmitted by S155a is also called a completion message for the first configuration message.
  • the RRC Reconfiguration sent by S159 is also called the second configuration message.
  • the terminal 200 Upon receiving the RRC Reconfiguration from the source gNB100A, the terminal 200 immediately acquires the setting information of the changed target candidate cell and sends the RRC Reconfiguration Complete1 to the source gNB100A (S159a). The terminal 200 updates the setting information of the target candidate cell acquired in S155 based on the changed setting information of the target candidate cell.
  • the terminal 200 decides to start the handover (HO) to the target candidate cell without receiving the handover command from the source gNB100A. (S161). In the present embodiment, the terminal 200 determines the start of HO to the target candidate cell under the target gNB100B.
  • terminal 200 When terminal 200 decides to start HO to a target candidate cell under target gNB100B, it executes a random access (RA) procedure between target gNB100B and terminal 200 to synchronize between target gNB100B and terminal 200. Is established (S163). As a result, the terminal 200 connects to the target gNB100B.
  • RA random access
  • the terminal 200 When the terminal 200 connects to the target gNB100B, it sends RRC Reconfiguration Complete2 or RRC Setup Complete to the target gNB100B (S165).
  • the source gNB100A sends RRC Reconfiguration to the terminal 200 in order to change the setting information of the target candidate cell, but it is not limited to this.
  • the source gNB100A may send an RRC Reconfiguration to the terminal 200 in order to change the configuration (UE configuration) of the terminal 200 in addition to the setting information of the target candidate cell.
  • the source gNB100A includes the changed UE configuration in the RRC Reconfiguration.
  • the source gNB100A may include the difference between the changed UE configuration and the previously transmitted UE configuration in the RRC Reconfiguration.
  • FIG. 17 is a diagram showing an HO stop sequence (operation example 1) in the Conditional HO procedure. Since S201 to S207 shown in FIG. 17 are the same processes as S151 to S157 shown in FIG. 16, description thereof will be omitted.
  • the CHO request ACK sent by S203 is also called the first message.
  • the HO cancellation sent by S209 is also called a second message.
  • the target gNB100B When the target gNB100B identifies that the target candidate cell under it is in a state unsuitable for the transition of the terminal 200, it sends an HO deletion message (HO cancellation) to the source gNB100A (S209).
  • HO deletion message HO cancellation
  • the target gNB100B determines that the load increases in the target candidate cells under it and the target candidate cells are in a state unsuitable for the transition of the terminal 200, the target gNB100B transmits HO cancellation in S209. You may.
  • the target gNB100B sets the target candidate cell. However, it may be determined that the terminal 200 is in a state unsuitable for transition.
  • the target gNB100B changes the target candidate cell to the terminal 200. Determine that you are in a state that is not suitable for.
  • the target gNB100B may send HO cancellation on S209.
  • the target gNB100B may send a HO cancellation at S209.
  • UE context release UE context release
  • the target gNB100B may directly transmit the HO cancellation to the source gNB100A.
  • Xn signaling is used for transmission of HO cancellation.
  • the target gNB100B may send a HO cancellation to the source gNB100A via the core network.
  • NG signaling is used for transmission of HO cancellation.
  • the source gNB100A When the source gNB100A receives the HO cancellation from the target gNB100B, the source gNB100A receives the RRC Reconfiguration Complete1 from the terminal 200 on the S205a, and then uses the RRC Reconfiguration to notify the terminal 200 of the change in the setting information of the target candidate cell ( S211).
  • the source gNB100A includes information instructing to delete the setting information of the target candidate cell under the target gNB100B in the RRC Reconfiguration.
  • the source gNB100A may include the CHO configuration in which the setting information of the target candidate cell under the target gNB100B is deleted in the RRC Reconfiguration.
  • the terminal 200 When the terminal 200 receives the RRC Reconfiguration from the source gNB100A, it immediately transmits the RRC Reconfiguration Complete1 to the source gNB100A (S211a). The terminal 200 deletes the setting information of the target candidate cell under the target gNB100B based on the reception of RRC Reconfiguration.
  • the terminal 200 decides to start the handover (HO) to the target candidate cell without receiving the handover command from the source gNB100A. (S213).
  • the terminal 200 determines the start of HO to the target candidate cell under the target gNB100C.
  • terminal 200 When terminal 200 decides to start HO to a target candidate cell under target gNB100C, it executes a random access (RA) procedure between target gNB100C and terminal 200 to synchronize between target gNB100C and terminal 200. (S215). As a result, the terminal 200 connects to the target gNB100C.
  • RA random access
  • the terminal 200 When the terminal 200 connects to the target gNB100C, it sends RRC Reconfiguration Complete2 or RRC Setup Complete to the target gNB100C (S217).
  • FIG. 18 is a diagram showing an HO stop sequence (operation example 2) in the Conditional HO procedure. Since S231 to S239 shown in FIG. 18 are the same processes as S201 to S209 shown in FIG. 17, description thereof will be omitted.
  • the source gNB100A finds only the target gNB100B based on the measurement report received from the terminal 200. Therefore, the source gNB100A transmits a CHO request to the target gNB100B (S231), and receives a CHO request ACK including the setting information of the target candidate cell from the target gNB100B (S233).
  • the source gNB100A finds the target gNB100C existing around the source gNB100A after receiving the HO cancellation from the target gNB100B, it sends a CHO request to the target gNB100C (S241).
  • the target gNB100C When the target gNB100C receives a CHO request from the source gNB100A, it sends a CHO request ACK containing the setting information of the target candidate cell under the target gNB100C to the source gNB100A (S243).
  • the source gNB100A When the source gNB100A receives the HO cancellation from the target gNB100B and receives the CHO request ACK from the target gNB100C, the source gNB100A receives the RRC Reconfiguration Complete1 from the terminal 200 on the S235a, and then uses the RRC Reconfiguration to generate the target candidate cell. Notify the terminal 200 of the change in the setting information (S245).
  • the source gNB100A deletes the setting information of the target candidate cell under the target gNB100B, and includes the CHO configuration including the setting information of the target candidate cell under the target gNB100C in the RRC Reconfiguration.
  • the terminal 200 When the terminal 200 receives the RRC Reconfiguration from the source gNB100A, it immediately transmits the RRC Reconfiguration Complete1 to the source gNB100A (S245a). The terminal 200 applies the CHO configuration including the setting information of the target candidate cell under the target gNB100C based on the reception of the RRC Reconfiguration.
  • the terminal 200 decides to start the handover (HO) to the target candidate cell without receiving the handover command from the source gNB100A. (S247).
  • the terminal 200 determines the start of HO to the target candidate cell under the target gNB100C.
  • terminal 200 When terminal 200 decides to start HO to a target candidate cell under target gNB100C, it executes a random access (RA) procedure between target gNB100C and terminal 200 to synchronize between target gNB100C and terminal 200. (S249). As a result, the terminal 200 connects to the target gNB100C.
  • RA random access
  • the terminal 200 When the terminal 200 connects to the target gNB100C, it sends RRC Reconfiguration Complete2 or RRC Setup Complete to the target gNB100C (S251).
  • FIG. 19 is a diagram showing an HO change sequence (operation example 1) in the Conditional HO procedure. Since S301, S303, and S309 to S315 shown in FIG. 19 are the same processes as S11, S13, and S17 to S23 shown in FIG. 4, description thereof will be omitted.
  • the CHO request ACK transmitted by S303 is also called the first message.
  • the HO modification sent by S305 is also called the second message.
  • the target gNB100B uses CHO request ACK in S303 to transmit the setting information of the target candidate cells under it to the source gNB100A, and then the state of the target candidate cells has changed. Once identified, an HO modification message (HO modification) is sent to the source gNB100A (S305).
  • HO modification HO modification
  • the target gNB100B may send a HO modification in S305. ..
  • the target gNB100B may directly send the HO modification to the source gNB100A.
  • Xn signaling is used to transmit HO modification.
  • the target gNB100B may send a HO modification to the source gNB100A via the core network.
  • NG signaling is used to transmit HO modification.
  • the source gNB100A When the source gNB100A receives the HO modification from the target gNB100B, it changes the setting information of the target candidate cell under the target gNB100B and then transmits the RRC Reconfiguration including the CHO configuration to the terminal 200 (S307).
  • FIG. 20 is a diagram showing an HO change sequence (operation example 2) in the Conditional HO procedure. Since S301 to S313 shown in FIG. 20 are the same processes as S301 to S313 shown in FIG. 19, the description thereof will be omitted.
  • the terminal 200 when the terminal 200 receives the RRC Reconfiguration from the source gNB100A, it immediately transmits the RRC Reconfiguration Complete1 (S307a).
  • the terminal 200 When the terminal 200 connects to the target gNB100B according to the RA procedure of S313, it sends RRC Reconfiguration Complete 2 or RRC Setup Complete 2 to the target gNB100B (S315a).
  • FIG. 21 is a diagram showing an HO change sequence (operation example 3) in the Conditional HO procedure. Since S301, S303, S307, S307a, and S309 shown in FIG. 21 have the same processing as S301, S303, S307, S307a, and S309 shown in FIG. 20, the description thereof will be omitted.
  • the target gNB100B when the target gNB100B identifies that the state of the target candidate cell under it has changed, it transmits HO modification to the source gNB100A (S331).
  • the source gNB100A When the source gNB100A receives the HO modification from the target gNB100B, the source gNB100A receives the RRC Reconfiguration Complete1 from the terminal 200 on the S307a, and then uses the RRC Reconfiguration to notify the terminal 200 of the change in the setting information of the target candidate cell ( S333).
  • the source gNB100A includes the CHO configuration in which the setting information of the target candidate cell under the target gNB100B is changed in the RRC Reconfiguration.
  • the terminal 200 When the terminal 200 receives the RRC Reconfiguration from the source gNB100A, it immediately transmits the RRC Reconfiguration Complete1 to the source gNB100A (S333a). The terminal 200 changes the setting information of the target candidate cell under the target gNB100B based on the reception of RRC Reconfiguration.
  • the terminal 200 decides to start the handover (HO) to the target candidate cell without receiving the handover command from the source gNB100A. (S335).
  • the terminal 200 determines the start of HO to the target candidate cell under the target gNB100B.
  • terminal 200 When terminal 200 decides to start HO to a target candidate cell under target gNB100B, it executes a random access (RA) procedure between target gNB100B and terminal 200 to synchronize between target gNB100B and terminal 200. (S337). As a result, the terminal 200 connects to the target gNB100B.
  • RA random access
  • the terminal 200 When the terminal 200 connects to the target gNB100B, it sends RRC Reconfiguration Complete2 or RRC Setup Complete to the target gNB100B (S339).
  • RRC Reconfiguration stores the setting information of the target candidate cell under the target gNB100B and the setting information of the target candidate cell under the target gNB100C. It should be noted that "storing the setting information of a plurality of target candidate cells in RRC Reconfiguration" is also expressed as "encapsulating the setting information of a plurality of target candidate cells in RRC Reconfiguration".
  • FIG. 22 is a diagram showing an operation flow for encapsulating the setting information of the target candidate cell.
  • the source gNB100A transmits a CHO request to the targets gNB100B and 100C (S350).
  • the source gNB100A receives the setting information of the target candidate cell from each of the target gNB100B and 100C (S353), the setting information of the target candidate cell is encapsulated in the RRC Reconfiguration (S355).
  • the source gNB100A When the source gNB100A encapsulates the setting information of a plurality of target candidate cells in the RRC Reconfiguration, the source gNB100A transmits the RRC Reconfiguration to the terminal 200 (S357).
  • FIG. 23 is a diagram illustrating a configuration (configuration example 1) of RRC Reconfiguration in the Conditional HO procedure.
  • the message group for the downlink dedicated control channel includes RRC Reconfiguration, RRC resume message (RRC Resume), RRC release message (RRC Release), RRC Reestablishment, and security mode command. (Security Mode Command) etc. are included.
  • DL-DCCH is a downlink dedicated control channel used for the terminal 200 that has established an RRC connection.
  • the terminal 200 receives the above-mentioned RRC message or the like via the DL-DCCH.
  • a new information element is set in the conventional RRC Reconfiguration, and the setting information of the target candidate cell under the target gNB100B and the setting information of the target candidate cell under the target gNB100C are set in the IE. Include in.
  • the RRC reconfiguration list (RRCReconfigurationList) is set as a new IE in the conventional RRCReconfiguration, and the configuration for cell1 and configuration for cell2 are set in the RRCReconfigurationList.
  • the number of configurations for cells is not limited to two.
  • the source gNB100A when the source gNB100A receives the setting information of the target candidate cell under the target gNB100B from the target gNB100B, the setting information of the target candidate cell is included in the configuration for cell1 in the RRC Reconfiguration List. Similarly, when the source gNB100A receives the setting information of the target candidate cell under the target gNB100C from the target gNB100C, the source gNB100A includes the setting information of the target candidate cell in the configuration for cell2 in the RRC Reconfiguration List.
  • the RRCReconfigurationList is also called CHO configuration.
  • the terminal 200 receives the RRC Reconfiguration from the source gNB100A, the terminal 200 acquires the setting information of the target candidate cell under the target gNB100B and the setting information of the target candidate cell under the target gNB100C from the configuration for cell1 and the configuration for cell2 in the RRC Reconfiguration. ..
  • the target candidate cell setting information may include at least one of the following information in addition to the target candidate cell information and the transition condition to the target candidate cell.
  • Target candidate cell configuration Security information (for example, security key update information)
  • Transaction identifier for example, security key update information
  • FIG. 24 is a diagram illustrating a configuration (configuration example 2) of RRC Reconfiguration in the Conditional HO procedure.
  • the DL-DCCH message includes RRC Reconfiguration, RRC Resume, RRC Release, RRC Reestablishment, Security Mode Command, RRC Reconfiguration 1, and the like.
  • RRC Reconfiguration 1 is a new message different from the conventional RRC Reconfiguration, and is an RRC reconfiguration message used in the Conditional HO procedure.
  • the name of the new message is not limited to RRC Reconfiguration 1.
  • the information element (IE) set in RRC Reconfiguration1 includes the setting information of the target candidate cell under the target gNB100B and the setting information of the target candidate cell under the target gNB100C.
  • the RRC reconfiguration list (RRCReconfigurationList) is set in the new RRCReconfiguration1, and the configuration for cell1 and configuration for cell2 are set in the RRCReconfigurationList.
  • the number of configurations for cells is not limited to two.
  • the source gNB100A when the source gNB100A receives the setting information of the target candidate cell under the target gNB100B from the target gNB100B, the setting information of the target candidate cell is included in the configuration for cell1 in the RRC Reconfiguration List. Similarly, when the source gNB100A receives the setting information of the target candidate cell under the target gNB100C from the target gNB100C, the source gNB100A includes the setting information of the target candidate cell in the configuration for cell2 in the RRC Reconfiguration List.
  • the terminal 200 When the terminal 200 receives RRC Reconfiguration1 from the source gNB100A, the terminal 200 acquires the setting information of the target candidate cell under the target gNB100B and the setting information of the target candidate cell under the target gNB100C from the configuration for cell1 and the configuration for cell2 in the RRCReconfiguration1. ..
  • FIG. 25 is a diagram showing an ID assignment sequence (operation example 1) in the Conditional HO procedure. Since S401, S403, and S409 to S413 shown in FIG. 25 are the same processes as S11, S13, and S17 to S21 shown in FIG. 4, description thereof will be omitted.
  • the source gNB100A when the source gNB100A receives the CHO request ACK from the targets gNB100B, 100C, the source gNB100A includes the CHO configuration in the RRC Reconfiguration and assigns the transaction ID to the RRC Reconfiguration (S405).
  • the source gNB100A includes the identification information of the target candidate cell under the target gNB100B and the identification information of the target candidate cell under the target gNB100C in the RRCReconfigurationList in the RRCReconfiguration, and also includes a predetermined information element in the RRCReconfiguration ( Set the transaction ID in IE) (see FIG. 23).
  • the RRCReconfigurationList is also called CHO configuration.
  • the source gNB100A includes the identification information of the target candidate cell under the target gNB100B and the identification information of the target candidate cell under the target gNB100C in the RRC Reconfiguration List in RRC Reconfiguration1 which is the RRC reconstruction message used in Conditional HO, and also includes the identification information of the target candidate cell under the target gNB100C.
  • a transaction ID may be set in a predetermined information element (IE) in Reconfiguration 1 (see FIG. 24).
  • the transaction ID may be one of 0 to 3 or a fixed value of 0. In the present embodiment, the transaction ID takes a value of one of 0 to 3.
  • the source gNB100A may assign a transaction ID to the RRCReconfigurationList included in the RRCReconfiguration, that is, a group of setting information of the encapsulated target candidate cell, instead of assigning the transaction ID to the RRCReconfiguration.
  • the source gNB100A sets RRC Reconfiguration
  • the source gNB100A sends the RRC Reconfiguration to the terminal 200 (S407).
  • the terminal 200 When the terminal 200 receives the RRC Reconfiguration from the source gNB100A, it immediately acquires the setting information of the target candidate cell and sends the RRC Reconfiguration Complete1 to the source gNB100A (S407a).
  • the terminal 200 includes the transaction ID given to the RRC Reconfiguration received from the source gNB100A in the RRC Reconfiguration Complete1.
  • Terminal 200 monitors CHO conditions (S409), starts HO to target gNB100B (S411), executes RA procedure (S413) between target gNB100B and terminal 200, and connects to target gNB100B to RRC Reconfiguration Complete2. Is sent to the target gNB100B (S415).
  • FIG. 26 is a diagram showing an ID assignment sequence (operation example 2) in the Conditional HO procedure. Since S401 and S437 to S441 shown in FIG. 26 are the same processes as S11 and S17 to S21 shown in FIG. 4, description thereof will be omitted.
  • the target gNB100B when the target gNB100B receives the CHO request from the source gNB100A, the target gNB100B includes the setting information of the target candidate cell under the target gNB100B in the CHO request ACK and adds the transaction ID to the setting information of the target candidate cell. Grant (S431). Specifically, the target gNB100B includes the transaction ID in the setting information of the target candidate cell.
  • the target gNB100C when the target gNB100C receives a CHO request from the source gNB100A, the target gNB100C includes the setting information of the target candidate cell under the target gNB100C in the CHO request ACK and assigns a transaction ID to the setting information of the target candidate cell (S431). ). Specifically, the target gNB100B includes the transaction ID in the setting information of the target candidate cell.
  • the transaction ID may be one of 0 to 3 or a fixed value of 0. In the present embodiment, the transaction ID takes a value of one of 0 to 3.
  • the source gNB100A When the source gNB100A receives the CHO request ACK from the target gNB 100B, 100C, the source gNB100A includes the CHO configuration in the RRC Reconfiguration. Specifically, the source gNB100A contains the identification information of the target candidate cell under the target gNB100B to which the transaction ID is assigned and the identification information of the target candidate cell under the target gNB100C to which the transaction ID is assigned to the RRCReconfigurationList in the RRCReconfiguration. (See FIG. 23). The RRCReconfigurationList is also called CHO configuration.
  • the source gNB100A may include the identification information of the target candidate cell under the target gNB100B and the identification information of the target candidate cell under the target gNB100C in the RRC Reconfiguration List in the RRC Reconfiguration1 which is the RRC reconstruction message used in the Conditional HO. (See FIG. 24).
  • the source gNB100A sends the RRC Reconfiguration to the terminal 200 (S435).
  • the terminal 200 When the terminal 200 receives the RRC Reconfiguration from the source gNB100A, it immediately acquires the setting information of the target candidate cell and sends the RRC Reconfiguration Complete1 to the source gNB100A (S435a).
  • Terminal 200 performs CHO condition monitoring (S437), starts HO to target gNB100B (S439), and performs RA procedure (S441) between target gNB100B and terminal 200, and when connected to target gNB100B, RRC Reconfiguration Complete2. Is sent to the target gNB100B (S443).
  • the terminal 200 includes the transaction ID included in the setting information of the target candidate cell under the target gNB100B in RRC Reconfiguration Complete2.
  • the target is the case where HOF occurs when the terminal 200 receives the HO command from the source gNB while monitoring the CHO condition, interrupts the CHO, and preferentially transitions to the target gNB. .. In this case, the terminal 200 maintains all or part of the setting information of the target candidate cell under the target gNB.
  • FIG. 27 is a diagram showing a return sequence from HOF in the Conditional HO procedure. Since S501 to S507 in FIG. 27 are the same processes as S11 to S17 in FIG. 4, description thereof will be omitted.
  • the source gNB100A decides to preferentially transition the terminal 200 to the target candidate cell under the target gBN100B
  • the source gNB100A sends a HO request to the target gNB100B (S509).
  • the target gNB100B receives the HO request from the source gNB100A
  • the target gNB100B sends an HO request ACK to the source gNB100A (S511).
  • the source gNB100A When the source gNB100A receives the HO request ACK from the target gNB 100B, it sends a HO command to the terminal 200 (S513).
  • the terminal 200 receives the HO command from the source gNB100A while monitoring the CHO condition, the terminal 200 attempts a handover procedure between the target gNB100B and the terminal 200 (S515).
  • the terminal 200 reselects the target candidate cell (CHO cell) of the transition destination that satisfies the transition condition (S517).
  • the terminal 200 reselects the target candidate cell under the target gNB100B.
  • the terminal 200 maintains all or part of the setting information of the target candidate cell under the target gNB100B.
  • “maintaining all or part of the setting information of the target candidate cell” means “considering that all or part of the setting information of the target candidate cell is applicable” or “maintaining all or part of the setting information of the target candidate cell”. It can also be expressed as “considering all or part of it as valid”.
  • the information maintained by the terminal 200 is, for example, security information.
  • the information maintained by the terminal 200 may be the identification information of the terminal 200.
  • Examples of the identification information of the terminal 200 include the following information.
  • Short Media Access Control Identifier (short MAC-ID) Cell / Wireless Network / Temporary Identifier (C-RNTI) Implicit / Wireless Network / Temporary Identifier (I-RNTI)
  • terminal 200 When terminal 200 reselects a target candidate cell under target gNB100B, it executes a random access (RA) procedure between target gNB100B and terminal 200 to establish synchronization between target gNB100B and terminal 200 ( S519). As a result, the terminal 200 connects to the target gNB100B.
  • RA random access
  • the terminal 200 When the terminal 200 connects to the target gNB100B, it sends an RRC reconfiguration complete message (RRC Reconfiguration Complete) to the target gNB100B (S521).
  • RRC Reconfiguration Complete RRC Reconfiguration Complete
  • the terminal 200 includes all or part of the setting information of the target candidate cell maintained in S517 in RRC Reconfiguration Complete and transmits it to the target gNB100B using the signaling radio bearer 1 (SRB1). Good. Instead of SRB1, the terminal 200 includes all or part of the setting information of the target candidate cell maintained in S517 in the RRC Reestablishment request and transmits it to the target gNB100B using the signaling radio bearer 0 (SRB0). You may.
  • SRB0 is a wireless bearer for the common control channel (CCCH).
  • SRB1 is a radio bearer for individual control channels (DCCH).
  • the terminal 200 may include information indicating that all or part of the setting information of the target candidate cell is maintained in RRC Reconfiguration Complete and transmit it to the target gNB100B.
  • the terminal 200 may include the setting information of the target candidate cell maintained in S517 and the information that can be converted to one-to-one in RRC Reconfiguration Complete and transmit it to the target gNB100B.
  • the target gNB100B can determine whether or not the terminal 200 is a terminal that is permitted to transition to the target gNB100B.
  • This operation is applied when HOF occurs when the terminal 200 receives a HO command from the source gNB, interrupts the CHO, and preferentially transitions to the target gNB while monitoring the CHO condition. Not limited to. For example, when the terminal 200 monitors the CHO condition, the transition condition to the target candidate cell under the target gNB is satisfied, and the HO is performed to the target candidate cell without receiving the HO command from the source gNB. This operation is also applicable when HOF occurs.
  • the wireless bearer includes a signaling wireless bearer (SRB) and a data wireless bearer (DRB).
  • SRB is for control plane data and the DRB is for user plane data.
  • SRB0, 1, 2, and 3 can be set for SRB depending on the application.
  • SRB0 is a wireless bearer for CCCH.
  • SRB1 to SRB3 are wireless bearers for DCCH.
  • the DRB is a wireless bearer for user data.
  • SRB1 is used for sending and receiving RRC messages and NAS messages before the establishment of SRB2.
  • SRB2 is used for sending and receiving NAS messages, has a lower priority than SRB1, and is set by the network after AS security is activated.
  • SRB3 is used to send and receive specific RRC messages in E-UTRA-NR Dual Connectivity (EN-DC).
  • the terminal 200 when the terminal 200 detects RLF when transitioning to the target gNB100B by using the setting information of the target candidate cell under the target gNB100B, all the devices except the SRB0 are detected between the target gNB100B and the terminal 200. Suspend the wireless bearer and reconnect to the target gNB100B.
  • FIG. 28 is a diagram showing an operation flow of the terminal 200 that restarts the wireless bearer after RLF in the Conditional HO procedure.
  • FIG. 29 is a diagram illustrating a condition for restarting the radio bearer after RLF in the Conditional HO procedure.
  • the terminal 200 reselects the CHO cell in the Conditional HO procedure (S601). Specifically, the terminal 200 reselects the target target candidate cell (CHO cell) of the transition destination that satisfies the transition condition. In the present embodiment, the terminal 200 reselects the target candidate cell under the target gNB100B.
  • the terminal 200 When the terminal 200 reselects the target candidate cell under the target gNB100B, the terminal 200 starts the transition to the target gNB100B based on the setting information of the target candidate cell (S603). In this case, all radio bearers stopped between the target gNB 100B and the terminal 200 may be restarted (condition A in FIG. 29).
  • the terminal 200 starts a random access (RA) procedure between the target gNB100B and the terminal 200 with the transition to the target gNB100B (S605).
  • RA random access
  • the terminal 200 completes the RA procedure between the target gNB100B and the terminal 200 (S607), the terminal 200 establishes synchronization between the target gNB100B and the terminal 200. As a result, the terminal 200 connects to the target gNB100B. In this case, all radio bearers stopped between the target gNB 100B and the terminal 200 may be restarted (condition C in FIG. 29).
  • the terminal 200 When the terminal 200 receives an RRC message instructing the restart of the wireless bearer from the network between S601 and S607, the terminal 200 restarts all the wireless bearers stopped between the target gNB100B and the terminal 200. It may be good (condition D in FIG. 29).
  • the terminal 200 may notify the network that the restart of the wireless bearer is completed by using the RRC restart completion message (RRCResumeComplete).
  • the terminal 200 When the terminal 200 connects to the target gNB100B, it sends RRC Reconfiguration Complete to the target gNB100B (S609).
  • the terminal 200 performs a procedure of transitioning to the target gNB100B without performing a reestablishment procedure (RRC Reestablishment procedure) in accordance with the handover failure (HOF).
  • the terminal 200 sends a specific message (RRC Reconfiguration Complete) to the target gNB100B in the procedure of transitioning to the target gNB100B.
  • the terminal 200 maintains the identification information shared between the terminal 200 and the target gNB100B in the event of a handover failure (HOF), and includes the identification information for a specific message (RRC Reconfiguration Complete).
  • the identification information is shared between the terminal 200 and the target gNB100B even when returning from the HOF.
  • the terminal transitioning to the target gNB100B can be authenticated on the network side, and it is possible to prevent the malicious terminal from transitioning to the target radio base.
  • the terminal 200 maintains a short MAC-ID shared between the terminal 200 and the target gNB100B in the event of a handover failure (HOF), and in response to a specific message (RRC Reconfiguration Complete). Include short MAC-ID.
  • HAF handover failure
  • RRC Reconfiguration Complete a specific message
  • the terminal transitioning to the target gNB100B can be authenticated on the network side, and it is possible to avoid the malicious terminal transitioning to the target radio base.
  • NR has been described as an example, but Conditional HO is also applicable to LTE, and the same operation may be executed in LTE as well.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification ( Broadcast, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these. ..
  • a functional block that makes transmission function is called a transmitting unit or a transmitter.
  • the method of realizing each is not particularly limited.
  • FIG. 30 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the function of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • long TTIs eg, normal TTIs, subframes, etc.
  • short TTIs eg, shortened TTIs, etc.
  • TTI length the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
  • Physical RB Physical RB: PRB
  • Sub-Carrier Group: SCG sub-carrier Group: SCG
  • REG resource element group
  • PRB pair an RB pair, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may also represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier.
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as “judgment” or “decision”.
  • judgment and “decision” mean that “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include that some action is regarded as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the terminal transitioning to the target radio base station can be authenticated on the network side without performing the re-establishment procedure due to the handover failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末(200)は、ハンドオーバ失敗に伴って、再確立手順を行わずに、ターゲットgNB(100B)に遷移する手順を行う制御部(240)と、ターゲットgNB(100B)に遷移する手順において、ターゲットgNB(100B)に特定のメッセージを送信する送信部(210)と、を備える。制御部(240)は、ハンドオーバ失敗時に、端末(200)とターゲットgNB(100B)との間において共有する識別情報を維持し、特定のメッセージに対して、当該識別情報を含める。

Description

端末
 本発明は、再確立手順を用いることなく、ターゲット無線基地局に遷移する端末に関する。
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G又はNew Radio(NR)などと呼ばれるLTEの後継システムの仕様が検討されている。
 従来のハンドオーバ(HO)手順では、ネットワークが、端末から送信された測定報告などの品質情報に基づいて、ターゲット無線基地局(ターゲットセルとも呼ばれる)を決定し、ハンドオーバの準備後に、ハンドオーバコマンドが端末に送信される。
 しかしながら、端末が、ネットワーク側でのハンドオーバの準備中に、適切なハンドオーバのポイントを通過してしまうと、ソース無線基地局(ソースセルとも呼ばれる)からハンドオーバコマンドを受信せずに、ターゲット無線基地局に遷移するため、無線リンクの瞬断が発生し得る問題がある。
 そこで、このような問題を解決するため、Conditional HOと呼ばれる手順が検討されている(非特許文献1)。
 Conditional HOでは、ソース無線基地局が、端末に対して、予めターゲット候補セルと、ターゲット候補セルへの遷移条件とを含むターゲット候補セルの設定情報を通知する。
 ターゲット候補セルへの遷移条件が満たされると、端末は、ハンドオーバコマンドを待たずに、当該ターゲット候補セルを管理するターゲット無線基地局とランダムアクセス手順を実行して、当該ターゲット無線基地局に遷移する。これにより、無線リンクの瞬断を回避し得る。
 さらに、Conditional HOを用いて、ハンドオーバ失敗(HOF)から早期に復帰する手順も検討されている。
 この場合、端末は、ターゲット無線基地局と再確立手順(RRC Reestablishment手順)を行うことなく、ターゲット無線基地局に遷移し、HOFから復帰することができる。
"New WID: NR mobility enhancements", RP-190489, 3GPP TSG RAN Meeting #83, 3GPP, 2019年3月
 しかしながら、Conditional HOに従ったセル遷移手順をHOFからの復帰に適用する場合、次のような問題がある。
 具体的には、従来、HOFからの復帰時には、RRC Reestablishment手順において、セキュリティ情報などの新たな識別情報が、端末とターゲット無線基地局との間で共有されるが、Conditional HOでは、RRC Reestablishment手順が行われないため、新たな識別情報が、端末とターゲット無線基地局との間で共有されない。
 このため、Conditional HOを用いたHOFからの復帰時には、ターゲット無線基地局は、当該ターゲット無線基地局に遷移する端末を認証することができず、悪意のある端末が当該ターゲット無線基地局に遷移する可能性がある。
 そこで、本発明は、このような状況に鑑みてなされたものであり、ハンドオーバ失敗に伴って、再確立手順を行わずに、ターゲット無線基地局に遷移する端末をネットワーク側で認証し得る端末を提供することを目的とする。
 本発明の一態様に係る端末(200)は、ハンドオーバ失敗に伴って、再確立手順を行わずに、ターゲット無線基地局(100B)に遷移する手順を行う制御部(240)と、前記ターゲット無線基地局(100B)に遷移する手順において、前記ターゲット無線基地局(100B)に特定のメッセージを送信する送信部(210)と、を備え、前記制御部(240)は、前記ハンドオーバ失敗時に、前記端末(200)と前記ターゲット無線基地局(100B)との間において共有する識別情報を維持し、前記特定のメッセージに対して、前記識別情報を含める。
図1は、無線通信システム10の全体概略構成図である。 図2は、gNB100A, 100B, 100Cの機能ブロック構成図である。 図3は、端末200の機能ブロック構成図である。 図4は、Conditional HO手順のシーケンスを示す図である。 図5は、従来のハンドオーバ(HO)手順における無線リンク障害(RLF)からの復帰シーケンスを示す図である。 図6は、Conditional HO手順における無線リンク障害(RLF)からの復帰シーケンス(動作例1)を示す図である。 図7は、Conditional HO手順における無線リンク障害(RLF)からの復帰シーケンス(動作例2)を示す図である。 図8は、Conditional HO手順における無線リンク障害(RLF)からの復帰シーケンス(動作例3)を示す図である。 図9は、VarRLF-Report内の情報要素(IE)を説明する図である。 図10は、RRC Reconfiguration Complete内の情報要素(IE)を説明する図である。 図11Aは、RRC Setup Complete内の情報要素(IE)を説明する図である。 図11Bは、RRC Setup Complete内の情報要素(IE)を説明する図である。 図12は、RRC Reestablishment Complete内の情報要素(IE)を説明する図である。 図13は、RRC Resume Complete内の情報要素(IE)を説明する図である。 図14は、UE Information Request内の情報要素(IE)を説明する図である。 図15Aは、UE Information Response内の情報要素(IE)を説明する図である。 図15Bは、UE Information Response内の情報要素(IE)を説明する図である。 図15Cは、UE Information Response内の情報要素(IE)を説明する図である。 図16は、Conditional HO手順におけるRRC Reconfiguration Complete送信シーケンスを示す図である。 図17は、Conditional HO手順におけるHO中止シーケンス(動作例1)を示す図である。 図18は、Conditional HO手順におけるHO中止シーケンス(動作例2)を示す図である。 図19は、Conditional HO手順におけるHO変更シーケンス(動作例1)を示す図である。 図20は、Conditional HO手順におけるHO変更シーケンス(動作例2)を示す図である。 図21は、Conditional HO手順におけるHO変更シーケンス(動作例3)を示す図である。 図22は、ターゲット候補セルの設定情報をカプセル化するgNB100Aの動作フローを示す図である。 図23は、Conditional HO手順におけるRRC Reconfigurationの構成(構成例1)を説明する図である。 図24は、Conditional HO手順におけるRRC Reconfigurationの構成(構成例2)を説明する図である。 図25は、Conditional HO手順におけるトランザクションID付与シーケンス(動作例1)を示す図である。 図26は、Conditional HO手順におけるトランザクションID付与シーケンス(動作例2)を示す図である。 図27は、Conditional HO手順におけるハンドオーバ失敗(HOF)からの復帰シーケンスを示す図である。 図28は、Conditional HO手順における無線リンク障害(RLF)後に無線ベアラを再開する端末200の動作フローを示す図である。 図29は、Conditional HO手順における無線リンク障害(RLF)後に無線ベアラを再開する条件を説明する図である。 図30は、gNB100A, 100B, 100C及び端末200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network(NG-RAN、不図示)及び端末200を含む。
 NG-RANは、無線基地局100A, 100B, 100C(以下、gNB100A, 100B, 100C)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RANは、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、NRに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN及び5GCは、単にネットワークと表現されてもよい。
 gNB100A, 100B, 100Cの各々は、NRに従った無線基地局であり、端末200とNRに従った無線通信を実行する。gNB100A, 100B, 100Cの各々及び端末200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及び複数のNG-RAN Nodeと端末との間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。なお、CCはキャリアとも呼称される。
 gNB100A, 100B, 100Cの各々は、1つ以上のセルを形成し、当該セルを管理する。端末200は、gNB100A, 100B, 100Cが形成するセル間を遷移することができる。なお、「gNB100A, 100B, 100Cが形成するセル間を遷移する」は、「gNB100A, 100B, 100C間を遷移する」又は「無線基地局100A, 100B, 100C間を遷移する」と表現することもできる。また、「gNB100A, 100B, 100C配下のセル」は、「gNB100A, 100B, 100Cによって形成されるセル」を意味する。
 「遷移」とは、典型的には、セル間のハンドオーバ、又はgNB間のハンドオーバを意味するが、セル再選択など、接続先のセル又は接続先のgNBが変更されるような端末200の挙動(behavior)を含み得る。
 「ターゲットセル」とは、典型的には、端末200が遷移する遷移先のセルを意味するが、端末200が遷移可能なセル(潜在的なターゲットセル)も含み得る。また、「ターゲットgNB」とは、典型的には、端末200が遷移する遷移先のgNBを意味するが、端末200が遷移可能なgNB(潜在的なターゲットgNB)も含み得る。本実施形態では、gNB100B, 100CがターゲットgNBである。なお、端末が遷移可能なセルは、候補セルと呼ばれもよい。また、端末が遷移可能なgNBは、候補gNBと呼ばれてもよい。
 一方、「ソースセル」とは、遷移元のセルを意味する。「ソースgNB」とは、遷移元のgNBを意味する。本実施形態では、gNB100AがソースgNBである。
 無線通信システム10では、端末200は、条件付きハンドオーバ(以下、Conditional HO)手順を実行する。なお、Conditional HO手順は、CHO手順と略されることがある。
 Conditional HO手順では、後述するように、ソースgNB100Aが、端末200が遷移する遷移先のセルの候補(以下、ターゲット候補セル)を、予め端末200に通知する。ターゲット候補セルへの遷移条件が満たされると、端末200は、ソースgNBからハンドオーバコマンドを受信せずに、当該ターゲット候補セルを管理するターゲットgNB100B(又はターゲットgNB100C)とランダムアクセス(RA)手順を実行して、ターゲットgNB100B(又はターゲットgNB100C)に遷移する。
 なお、無線通信システム10は、NG-RANの代わりに、Evolved Universal Terrestrial Radio Access Network(E-UTRAN)を含んでもよい。この場合、E-UTRANは、複数のE-UTRAN Node、具体的には、eNB(又はen-gNB)を含み、LTEに従ったコアネットワーク(EPC)と接続される。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100A, 100B, 100C及び端末200の機能ブロック構成について説明する。以下、本実施形態における特徴に関連する部分についてのみ説明する。したがって、gNB100A, 100B, 100C及び端末200は、本実施形態における特徴に直接関係しない他の機能ブロックを備えることは勿論である。
 図2は、gNB100A, 100B, 100Cの機能ブロック構成図である。なお、gNB100A, 100B, 100Cは同じ構成を有するため、gNB100B, 100Cの説明は省略する。図2に示すように、gNB100Aは、送信部110、受信部120、保持部130及び制御部140を備える。
 送信部110は、NRに従った下りリンク信号(DL信号)を送信する。受信部120は、NRに従った上りリンク信号(UL信号)を受信する。具体的には、送信部110及び受信部120は、制御チャネルまたはデータチャネルを介して、端末200と無線通信を実行する。
 送信部110は、NRに従った信号を他のgNBに送信する。受信部220は、NRに従った信号を他のgNBから受信する。
 送信部110は、後述するRRC ReconfigurationなどのRRCメッセージを端末200に送信する。
 送信部110は、gNB100AがソースgNBである場合、後述するCHO requestをターゲットgNBに送信する。送信部210は、gNB100AがターゲットgNBである場合、後述するCHO request ACK, HO cancellation及びHO modificationをソースgNBに送信する。CHO request ACKは、ターゲットgNB配下のターゲット候補セルの設定情報を含む。
 受信部120は、後述するRRC Reconfiguration Complete, RRC Reconfiguration Complete1, RRC Reconfiguration Complete2, RRC SetupComplete, RRC Reestablishment CompleteなどのRRCメッセージを端末200から受信する。
 受信部120は、gNB100AがソースgNBである場合、後述するCHO request ACK, HO cancellation及びHO modificationをターゲットgNBから受信する。受信部120は、gNB100AがターゲットgNBである場合、後述するCHO requestをソースgNBから受信する。
 保持部130は、gNB100AがソースgNBである場合、ターゲットgNB配下のターゲット候補セルの設定情報を保持する。
 制御部140は、gNB100Aを構成する各機能ブロックを制御する。
 制御部140は、gNB100AがターゲットgNBである場合、gNB100A配下のターゲット候補セルの状態に応じて、当該ターゲット候補セルの設定情報の削除を決定する。
 制御部140は、gNB100AがターゲットgNBである場合、ソースgNBに向けて、gNB100A配下のターゲット候補セルの設定情報の削除を指示するHO cancellationを送信部110に送信させる。
 制御部140は、gNB100AがターゲットgNBである場合、端末200がgNB100A配下のターゲット候補セルの設定情報に基づいて、規定された時間内に遷移しないと、ソースgNBに向けて、HO cancellationを送信部110に送信させる。
 制御部140は、gNB100AがターゲットgNBである場合、gNB100A配下のターゲット候補セルの状態に応じて、当該ターゲット候補セルの設定情報の変更を決定する。
 制御部140は、gNB100AがターゲットgNBである場合、ソースgNBに向けて、gNB100A配下のターゲット候補セルの設定情報の変更を指示するHO modificationを送信部110に送信させる。
 制御部140は、gNB100AがソースgNBである場合、ターゲットgNB配下のターゲット候補セルの設定情報を複数含むリストを、RRC Reconfigurationに含める。
 図3は、端末200の機能ブロック構成図である。図3に示すように、端末200は、送信部210、受信部220、保持部230及び制御部240を備える。
 送信部210は、NRに従った上りリンク信号(UL信号)を送信する。受信部220は、NRに従った下りリンク信号(DL信号)を受信する。具体的には、送信部210及び受信部220は、制御チャネルまたはデータチャネルを介して、gNB100A~100Cの各々と無線通信を実行する。
 送信部210は、後述するRRC Reconfiguration Complete, RRC Reconfiguration Complete1, RRC Reconfiguration Complete2, RRC SetupComplete, RRC Reestablishment CompleteなどのRRCメッセージを送信する。
 受信部220は、後述するRRC ReconfigurationなどのRRCメッセージを受信する。
 保持部230は、ターゲットgNB配下のターゲット候補セルの設定情報を保持する。ターゲット候補セルの設定情報は、RRC Reconfigurationに含まれる。
 制御部240は、端末200を構成する各機能ブロックを制御する。
 制御部240は、RLFに伴って、再確立手順(RRC Reestablishment手順)を行わずに、端末200とターゲットgNBとの間においてRA手順を行って、ターゲットgNBに遷移する。
 制御部240は、RLFに伴って、RRC Reestablishment手順を行わずに、ターゲットgNB配下のターゲット候補セルの設定情報に基づいて、ターゲットgNBに遷移する。
 制御部240は、ターゲットgNB配下のターゲット候補セルの設定情報に基づいて、ハンドオーバコマンドを受信せずに、端末200とターゲットgNBとの間においてRA手順を行って、ターゲットgNBに遷移する。
 制御部240は、HOFに伴って、RRC Reestablishment手順を行わずに、ターゲットgNBに遷移する。
 制御部240は、上述したRRC Reconfiguration Complete, RRC Reconfiguration Complete2, RRC SetupComplete, RRC Reestablishment CompleteなどのRRCメッセージに、RLFの発生を通知するRLF情報、RLFを検出したセルの情報、RLFを検出した端末200の位置情報などを含むRLF検出情報などを含める。
 制御部240は、受信部220が、ターゲット候補の設定情報を含むRRC Reconfigurationを受信した場合に、RA手順の開始前に、RRC Reconfiguration Complete1を送信部210に送信させる。なお、受信部220は、RRC Reconfiguration Complete1の送信後に、変更されたターゲット候補セルの設定情報を含むRRC Reconfigurationを受信する。
 制御部240は、受信部220が、ソースgNBによってトランザクションIDが付与されたRRC Reconfigurationを用いて、ターゲットgNB配下のターゲット候補セルの設定情報を受信した場合に、当該トランザクションIDをRRC Reconfiguration Complete1に含める。制御部240は、ソースgNBに向けて、当該RRC Reconfiguration Complete1を送信部210に送信させる。
 制御部240は、受信部220が、ターゲットgNBによってトランザクションIDが付与されたターゲットgNB配下のターゲット候補セルの設定情報を受信した場合に、当該トランザクションIDをRRC Reconfiguration Complete2に含める。制御部240は、RA手順の成功後に、ターゲットgNBに向けて、当該RRC Reconfiguration Complete2を送信部210に送信させる。
 制御部240は、HOF時に、端末200とターゲットgNBとの間において共有するターゲットgNB配下のターゲット候補セルの設定情報の全て又は一部を維持し、RRC Reconfiguration Complete2に含める。維持される設定情報は、セキュリティ情報、端末200の識別情報などを含む。制御部240は、RA手順の成功後に、ターゲットgNBに向けて、当該RRC Reconfiguration Complete2を送信部210に送信させる。
 制御部240は、ターゲットgNBに遷移する手順を行う場合に、端末200とターゲットgNBとの間において停止された無線ベラを再開する。
 制御部240は、ターゲットgNBに遷移する手順において、RA手順を行う場合に、端末200とターゲットgNBとの間において停止された無線ベアラを再開する。
 制御部240は、ターゲットgNBに遷移する手順において、受信部220が、無線ベアラの再開を指示するメッセージを受信する場合に、端末200とターゲットgNBとの間において停止された無線ベアラを再開する。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、Conditional HO手順を説明した上で、次の動作について、順に説明する。
  ・Conditional HO手順における無線リンク障害(RLF)からの復帰
  ・Conditional HO手順におけるRRC Reconfiguration Complete送信タイミング
  ・Conditional HO手順におけるハンドオーバ(HO)中止、
  ・Conditional HO手順におけるハンドオーバ(HO)変更、
  ・Conditional HO手順におけるRRC Reconfigurationの構成
  ・Conditional HO手順におけるトランザクション識別子(ID)付与
  ・Conditional HO手順におけるハンドオーバ失敗(HOF)からの復帰
  ・Conditional HO手順における無線リンク障害(RLF)後の無線ベアラの再開
 (3.1)Conditional HO手順
 図4は、Conditional HO手順のシーケンスを示す図である。図4に示すように、ソースgNB100Aは、端末200から受信した測定報告に基づいて、ターゲットgNB100B, 100Cを見出すと、ターゲットgNB100B, 100Cに対して、Conditional HO要求(CHO request)を送信する(S11)。
 ターゲットgNB100Bは、ソースgNB100AからCHO requestを受信すると、ターゲットgNB100B配下のセル(ターゲット候補セルという)の設定情報を含むCHO request応答(CHO request ACK)を、ソースgNB100Aに送信する(S13)。ターゲット候補セルの設定情報は、ターゲット候補セルの情報と、ターゲット候補セルへの遷移条件と含む。
 同様に、ターゲットgNB100Cは、ソースgNB100AからCHO requestを受信すると、ターゲットgNB100C配下のセル(ターゲット候補セルという)の設定情報を含むCHO request応答(CHO request ACK)を、ソースgNB100Aに送信する(S13)。ターゲット候補セルの設定情報は、ターゲット候補セルの情報と、ターゲット候補セルへの遷移条件と含む。
 ソースgNB100Aは、ターゲットgNB100B, 100CからCHO request ACKを受信すると、Conditional HO構成(CHO configuration)を含む無線リソース制御(RRC)再構成メッセージ(RRC Reconfiguration)を、端末200に送信する(S15)。CHO configurationは、ターゲットgNB100B, 100Cの各々から送信されたターゲット候補セルの設定情報を含む。
 端末200は、ソースgNB100AからCHO configurationを受信すると、Conditional HO条件(CHO条件)を監視する(S17)。具体的には、端末200は、各ターゲット候補セルの設定情報に含まれるターゲット候補セルへの遷移条件が満たされるか否かを判定する。
 端末200は、端末200の移動などにより、ターゲット候補セルへの遷移条件が満たされると判定すると、ソースgNB100Aからハンドオーバコマンドを受信せずに、当該ターゲット候補セルへのハンドオーバ(HO)の開始を決定する(S19)。本実施形態では、端末200は、ターゲットgNB100B配下のターゲット候補セルへのHOの開始を決定する。遷移条件が満たされる遷移先のターゲット候補セルは、CHOセルとも呼称される。
 なお、ソースgNB100Aは、S13にて、ターゲットgNB100B, 100Cから、ターゲット候補セルの情報のみを受信してもよい。この場合、ソースgNB100Aは、S15にて、ターゲット候補セルの情報と、端末200がハンドオーバ(HO)をトリガする条件とを含むCHO configurationを、端末200に送信する。
 この場合、端末200は、S17にて、HOをトリガする条件が満たされるか否かを判定する。端末200は、端末200の移動などにより、HOをトリガする条件が満たされると判定すると、S19にて、遷移先のターゲット候補セルを決定し、当該ターゲット候補セルへのハンドオーバを開始する。端末200は、例えば、ソースgNB100Aによって付与された各ターゲット候補セルの優先度、各ターゲット候補セルの情報に含まれるセルの状態などに基づいて、遷移先のターゲット候補セルを決定する。
 端末200は、ターゲットgNB100B配下のターゲット候補セルへのHOの開始を決定すると、ターゲットgNB100Bと端末200との間でランダムアクセス(RA)手順を実行して、ターゲットgNB100Bと端末200との間で同期を確立する(S21)。これにより、端末200は、ターゲットgNB100Bに接続する。
 端末200は、ターゲットgNB100Bに接続すると、RRC再構成完了メッセージ(RRC Reconfiguration Complete)をターゲットgNB100Bに送信する(S23)。
 (3.2)Conditional HO手順におけるRLFからの復帰
 次に、Conditional HO手順におけるRLFからの復帰について説明する。最初に、従来のHO手順におけるRLFからの復帰について説明する。
 図5は、従来のHO手順におけるRLFからの復帰シーケンスを示す図である。図5に示すように、ソースgNB100Aは、端末200から受信した測定報告に基づいて、ターゲットgNB100Bを見出すと、ターゲットgNB100Bに対して、HO要求(HO request)を送信する(S51)。
 ターゲットgNB100Bは、ソースgNB100AからHO requestを受信すると、ターゲットgNB100B配下のセル(ターゲットセルという)の情報を含むHO request応答(HO request ACK)を、ソースgNB100Aに送信する(S53)。
 ソースgNB100Aは、ターゲットgNB100BからHO request ACKを受信すると、ハンドオーバコマンド(HO command)を含むRRC再構成メッセージ(RRC Reconfiguration)を、端末200に送信する(S55)。HO commandは、ターゲットgNB100Bから送信されたターゲットセルの情報を含む。
 端末200は、ソースgNB100AからHO commandを受信すると、ターゲットgNB100Bと端末200との間でランダムアクセス(RA)手順を実行して、ターゲットgNB100Bと端末200との間で同期の確立を試みる。(S57)。
 端末200は、S57にて、RA手順の実行中に、RLFが発生して、RA手順に失敗すると、セル再選択を実行する(S59)。端末200は、ターゲットgNB100B配下のセルに再接続することを決定すると、ターゲットgNB100Bと端末200との間でRRC再確立(RRC Reestablishment)手順を行う。
 具体的には、端末200は、RRC再確立要求メッセージ(RRC Reestablishment request)を、ターゲットgNB100Bに送信する(S61)。ターゲットgNB100Bは、端末200からRRC Reestablishment requestを受信すると、RRC再確立メッセージ(RRC Reestablishment)を端末200に送信する(S63)。RRC Reestablishmentは、ターゲットgNB100Bと端末200との間でRRCコネクションを再確立するために用いられる設定情報を含む。
 端末200は、ターゲットgNB100BからRRC Reestablishmentを受信すると、ターゲットgNB100Bと端末200との間でRRCコネクションを再確立し、RRC再確立完了メッセージ(RRC Reestablishment Complete)を送信する(S65)。
 S65にて、端末200は、RRC Reestablishment CompleteにRLF情報を含めて、RLF通知を行う。RLF情報は、端末200とターゲットgNB100Bとの間でRLFが発生したことを、ネットワーク側に通知するために、RRC Reestablishment Completeに含められる。
 ターゲットgNB100Bは、端末200からRRC Reestablishment Completeを受信すると、RRC Reconfigurationを端末200に送信する(S67)。端末200は、ターゲットgNB100BからRRC Reconfigurationを受信すると、RRCコネクションの再構成を実行し、RRC Reconfiguration CompleteをターゲットgNB100Bに送信する(S69)。
 (3.2.1)動作例1
 次に、Conditional HO手順におけるRLFからの復帰の動作例1について説明する。本動作例では、Conditional HO手順において、RLFが発生してRA手順が失敗した場合に、端末200は、遷移先のターゲット候補セル(CHOセル)を再選択し、RA手順を実行した後に、RRC再構成完了メッセージ(RRC Reconfiguration Complete)を用いて、RLFの発生をネットワーク側に通知する。
 図6は、Conditional HO手順におけるRLFからの復帰シーケンス(動作例1)を示す図である。図6のS101~S109は、図4のS11~S19と同じ処理であるため、説明を省略する。
 端末200は、ソースgNB100Aからハンドオーバコマンドを受信せずに、ターゲットgNB100B配下のターゲット候補セルへのHOの開始を決定すると、ターゲットgNB100Bと端末200との間でランダムアクセス(RA)手順を実行して、ターゲットgNB100Bと端末200との間で同期の確立を試みる(S111)。
 端末200は、S111にて、RA手順の実行中に、RLFが発生して、RA手順に失敗すると、遷移条件を満たす遷移先のターゲット候補セル(CHOセル)を再選択する(S113)。本実施形態では、端末200は、ターゲットgNB100B配下のターゲット候補セルを再選択する。
 端末200は、ターゲットgNB100B配下のターゲット候補セルを再選択すると、ターゲットgNB100Bと端末200との間でランダムアクセス(RA)手順を実行して、ターゲットgNB100Bと端末200との間で同期を確立する(S115)。これにより、端末200は、ターゲットgNB100Bに接続する。
 端末200は、ターゲットgNB100Bに接続すると、RRC再構成完了メッセージ(RRC Reconfiguration Complete)をターゲットgNB100Bに送信する(S117)。
 S117にて、端末200は、RRC Reconfiguration CompleteにRLF情報を含めて、RLF通知を行う。RLF情報は、端末200とターゲットgNB100Bとの間でRLFが発生したことを、ネットワーク側に通知するために、RRC Reconfiguration Completeに含められる。例えば、RLF情報は、1ビットで表される。この場合、例えば、RLFが発生した場合には、RLF情報として「1」が設定され、RLFが発生しない場合には、RLF情報として「0」が設定される。
 このように、RLF情報は、Conditional HO手順が完了したこと、すなわち、端末200がターゲット候補セルの設定情報を適用したことを示すメッセージに含まれる。
 S117にて、端末200は、RRC Reconfiguration Completeに、RLF情報とRLF検出情報とを含めてもよい。RLF検出情報は、例えば、RLFが検出されたセル(本実施形態では、ターゲットgNB100B配下のセル)の識別子などのセル情報、RLFを検出した端末200の位置情報(グローバル・ナビゲーション・サテライト・システム(GNSS)情報など)、RLFが検出された無線アクセス技術(RAT)情報、RLFが検出された際に使用されていた周波数情報、RLFが検出された際に使用されていた帯域幅部分(BWP)情報、及びRLFが検出された位置(グローバル・ポジショニング・システム(GPS)情報など)のうち、少なくとも1つを含む。
 なお、ソースgNB100Aは、S13と同様に、S103にて、ターゲットgNB100B, 100Cから、ターゲット候補セルの情報のみを受信してもよい。この場合、端末200は、S113にて、ソースgNB100Aによって付与された各ターゲット候補セルの優先度、各ターゲット候補セルの情報に含まれるセルの状態などに基づいて、遷移先のターゲット候補セル(CHOセル)を再選択する。
 上述したように、CHOセルの再選択を用いてRLFから復帰する場合、端末200は、RRC Reestablishment手順を行うことなく、ターゲットgNBに遷移し、RLFから早期に復帰することができる。
 (3.2.2)動作例2
 次に、Conditional HO手順におけるRLFからの復帰の動作例2について説明する。本動作例では、動作例1にて、端末200が、S105にて、ソースgNB100AからRRC Reconfigurationを受信すると、直ちに、RRC再構成完了メッセージ1(RRC Reconfiguration Complete 1)を送信する。
 図7は、Conditional HO手順におけるRLFからの復帰シーケンス(動作例2)を示す図である。図7のS101~S115は、図6のS101~S115と同じ処理であるため、説明を省略する。
 図7に示すように、端末200は、ソースgNB100AからRRC Reconfigurationを受信すると、直ちに、RRC Reconfiguration Complete1を送信する(S105a)。
 端末200は、S115のRA手順によりターゲットgNB100Bに接続すると、RRC再構成完了メッセージ2(RRC Reconfiguration Complete 2)又はRRCセットアップ完了メッセージ(RRC Setup Complete)をターゲットgNB100Bに送信する(S117a)。
 なお、RRC Reconfiguration Complete1及びRRC Reconfiguration Complete2は、RRC Reconfiguration Completeと同様の構成を有する。
 S117aにて、端末200は、RRC Reconfiguration Complete 2又はRRC Setup CompleteにRLF情報を含めて、RLF通知を行う。また、S117aにて、端末200は、RRC Reconfiguration Complete 2又はRRC Setup Completeに、RLF情報とRLF検出情報とを含めてもよい。
 (3.2.3)動作例3
 次に、Conditional HO手順におけるRLFからの復帰の動作例3について説明する。本動作例では、動作例1にて、Conditional HO手順において、RLFが発生してRA手順が失敗した場合に、端末200は、ターゲット候補セル以外の遷移先のセル(CHOセル以外の遷移先のセル)を再選択し、RRC Reestablishment手順を行う。
 図8は、Conditional HO手順におけるRLFからの復帰シーケンス(動作例3)を示す図である。図8のS101~S111は、図6のS101~S111と同じ処理であるため、説明を省略する。
 なお、本動作例では、ソースgNB100Aは、端末200から受信した測定報告に基づいて、ターゲットgNB100Bのみを見出す。このため、ソースgNB100Aは、ターゲットgNB100Bに対して、CHO requestを送信し(S101)、ターゲットgNB100Bから、ターゲット候補セルの設定情報を含むCHO request ACKを受信する(S103)。
 端末200は、S111にて、RA手順の実行中に、RLFが発生して、RA手順に失敗すると、遷移条件を満たす遷移先のターゲット候補セル(CHOセル)を再選択する。しかしながら、端末200が、遷移条件を満たす遷移先のターゲット候補セルが存在しない場合、ターゲット候補セル以外の遷移先のセル(CHOセル以外の遷移先セル)を再選択する(S131)。本実施形態では、端末200は、ターゲットgNB100C配下のセルを再選択する。
 端末200は、ターゲットgNB100C配下のセルに再接続することを決定すると、ターゲットgNB100Cと端末200との間でRRC Reestablishment手順を行う。
 具体的には、端末200は、RRC Reestablishment requestを、ターゲットgNB100Cに送信する(S133)。ターゲットgNB100Cは、端末200からRRC Reestablishment requestを受信すると、RRC Reestablishmentを端末200に送信する(S135)。RRC Reestablishmentは、ターゲットgNB100Cと端末200との間でRRCコネクションを再確立するために用いられる設定情報を含む。
 端末200は、ターゲットgNB100CからRRC Reestablishmentを受信すると、ターゲットgNB100Cと端末200との間でRRCコネクションを再確立し、RRC Reestablishment Completeを送信する(S137)。
 S137にて、端末200は、RRC Reestablishment CompleteにRLF情報を含めて、RLF通知を行う。また、S137にて、端末200は、RRC Reestablishment Completeに、RLF情報とRLF検出情報とを含めてもよい。
 (3.2.4)情報要素(IE)
 次に、上述したRLF通知に用いられる各メッセージのIEについて説明する。
 図9は、VarRLF-Report内のIEを説明する図である。図9に示すように、端末200は、RLF情報をVarRLF-Report内のrlf-Report-r16に含める。なお、端末200は、RLF情報及びRLF検出情報をVarRLF-Report内のrlf-Report-r16に含めてもよい。
 図10は、RRC Reconfiguration Complete内のIEを説明する図である。図10に示すように、端末200は、RLF情報がVarRLF-Reportに含まれている場合、図6のS117にてRLF情報をRRC Reconfiguration Complete内のrlf-InfoAvailable-r16に含める。なお、端末200は、RLF情報及びRLF検出情報をRRC Reconfiguration Complete内のrlf-InfoAvailable-r16に含めてもよい。
 なお、上述したように、RRC Reconfiguration Complete2は、RRC Reconfiguration Completeと同様の構成を有する。従って、端末200は、RLF情報がVarRLF-Reportに含まれている場合、図7のS117aにてRLF情報をRRC Reconfiguration Complete2内のrlf-InfoAvailable-r16に含める。なお、端末200は、RLF情報及びRLF検出情報をRRC Reconfiguration Complete2内のrlf-InfoAvailable-r16に含めてもよい。
 図11A及び図11Bは、RRC Setup Complete内のIEを説明する図である。図11Aに示すように、端末200は、RLF情報がVarRLF-Reportに含まれている場合、図7のS117aにてRLF情報をRRC Setup Complete内のrlf-InfoAvailable-r16に含める。なお、端末200は、RLF情報及びRLF検出情報をRRC Setup Complete内のrlf-InfoAvailable-r16に含めてもよい。
 図12は、RRC Reestablishment Complete内のIEを説明する図である。図12に示すように、端末200は、RLF情報がVarRLF-Reportに含まれている場合、図8のS137にてRLF情報をRRC Reestablishment Complete内のrlf-InfoAvailable-r16に含める。なお、端末200は、RLF情報及びRLF検出情報をRRC Reestablishment Complete内のrlf-InfoAvailable-r16に含めてもよい。
 図13は、RRC Resume Complete内のIEを説明する図である。RRC Resume Completeは、後述の「(3.9)Conditional HO手順におけるRLF後の無線ベアラの再開」で説明するように、端末200が、無線ベアラの再開を指示するRRCメッセージの受信に基づいて、無線ベアラの再開を完了したことを、ネットワークに通知するのに用いられる。
 図13に示すように、端末200は、RLF情報がVarRLF-Reportに含まれている場合、RLFからの復帰後に無線ベアラの再開を完了したことを通知するRRC Resume Complete内のrlf-InfoAvailable-r16に、RLF情報を含めてもよい。なお、端末200は、RLF情報及びRLF検出情報をRRC Resume Complete内のrlf-InfoAvailable-r16に含めてもよい。
 図14は、UE Information Request内の情報要素(IE)を説明する図である。端末200は、ネットワークからの要求に基づいて、当該ネットワークに対して、RLFの発生を通知することができる。図14に示すように、ネットワークは、UE Information Request内のrlf-ReportReq-r16を用いて、RLF通知を端末200に要求する。
 図15A~図15Cは、UE Information Response内のIEを説明する図である。端末200は、ネットワークから、UE Information Requestを用いて、RLF通知を要求されると、図15Aに示すように、RLF情報をUE Information Response内のrlf-Cause-r16に含める。なお、端末200は、RLF情報及びRLF検出情報をUE Information Response内のrlf-Cause-r16に含めてもよい。
 (3.2.5)その他
 動作例1,2では、RLF情報を含むメッセージは、Conditional HO手順が完了したこと、すなわち、ターゲット候補セルの設定情報を適用したことを示すメッセージ(例えば、RRC Reconfiguration Complete, RRC Reconfiguration Complete 2, RRC Setup Complete)であったが、これに限定されない。
 例えば、RLF情報を含むメッセージは、遷移先のターゲットgNBに送信される最初のRRCメッセージでもよい。また、RLF情報を含むメッセージは、特定の識別子を有するメッセージでもよい。当該識別子として、トランザクション識別子、パケット・データ・コンバージェンス・プロトコル(PDCP)シーケンス番号(SN)、PDCPカウント値、無線リンク制御(RLC)シーケンス番号(SN)、又はハイブリッド・オートマチック・リピート・リクエスト処理(HARQ process)識別子が挙げられる。
 また、端末200は、Conditional HO手順以外のタイミングで、RLF情報をネットワーク側に通知してもよい。
 動作例1~3では、端末200は、RLF情報及びRLF検出情報を、同一のメッセージに含めたが、これに限定されず、これらの情報を異なるメッセージに含めてもよい。また、端末200は、ネットワークから指示がある場合に、RLF情報をメッセージに含めてもよい。同様に、端末200は、ネットワークから指示がある場合に、RLF検出情報をメッセージに含めてもよい。
 複数のRLFが発生した場合、端末200は、複数のRLF検出情報を同一のメッセージに含めて、遷移先のターゲットgNBに送信してもよい。また、端末200は、所定数のRLF検出情報(例えば、1つのRLF検出情報)のみを同一のメッセージに含めて、遷移先のターゲットgNBに送信してもよい。
 複数のRLFが発生した場合、端末200は、複数のRLF検出情報に優先度を付与してもよい。例えば、端末200は、遷移先のターゲットgNB配下のセルで使用されている周波数と同じ周波数でRLFを検出した場合には、当該周波数の情報を含むRLF検出情報には高優先度を付与する。また、端末200は、ネットワークから指定された優先度で、複数のRLF検出情報を、遷移先のターゲットgNBに送信してもよい。
 また、複数のRLF検出情報を同一のメッセージに含めると、当該メッセージが許容する最大サイズを超える場合には、端末200は、当該メッセージから、一部のRLF検出情報を削除してもよい。この場合、端末200は、一部のRLF検出情報を削除したことを、遷移先のターゲットgNBに通知してもよい。
 さらに、端末200は、複数のRLF検出情報を含むメッセージを作成した後に、再度RLFを検出する場合には、当該メッセージを作成し直してもよい。
 (3.3)Conditional HO手順におけるRRC Reconfiguration Complete送信タイミング
 次に、Conditional HO手順におけるRRC Reconfiguration Complete送信タイミングについて説明する。図4に示したConditional HO手順では、端末200は、RA手順に成功した場合に、RRC Reconfiguration Completeの送信を実行する。これに対して、本動作では、端末200は、RRC Reconfigurationを受信すると、直ちにRRC Reconfiguration Completeの送信を実行する。すなわち、端末200は、RA手順の開始前に、RRC Reconfiguration Completeの送信を実行する。
 図16は、Conditional HO手順におけるRRC Reconfiguration Complete送信シーケンスを示す図である。図16のS151~S155は、図4のS11~S15と同じ処理であるため、説明を省略する。
 端末200は、ソースgNB100Aから、CHO configurationを含むRRC Reconfigurationを受信すると、直ちに、ターゲット候補セルの設定情報を取得して、RRC Reconfiguration Complete1をソースgNB100Aに送信する(S155a)。
 端末200は、RRC Reconfiguration Complete1をソースgNB100Aに送信すると、CHO条件を監視する(S157)。具体的には、端末200は、各ターゲット候補セルの設定情報に含まれるターゲット候補セルへの遷移条件が満たされるか否かを判定する。
 RRC処理を並行して実行すると無線基地局側の処理が複雑になるため、端末200は、ターゲット候補セルの設定情報を変更する場合、RRCコネクションの再構成が完了したことを通知するRRC Reconfiguration Completeを受信した後に、RRC Reconfigurationを用いて、当該変更を通知する必要がある。
 このため、ソースgNB100Aは、ターゲット候補セルの設定情報を変更する場合、S155aにて、端末200からRRC Reconfiguration Complete1を受信した後に、RRC Reconfigurationを用いて、ターゲット候補セルの設定情報の変更を、端末200に通知する(S159)。
 S159にて、ソースgNB100Aは、変更されたターゲット候補セルの設定情報を、RRC Reconfigurationに含める。なお、ソースgNB100Aは、変更されたターゲット候補セルの設定情報と、S155にて送信したターゲット候補セルの設定情報との差分を、新規のRRC Reconfigurationに含めてもよい。
 S155で送信されるRRC Reconfigurationは、第1の設定メッセージとも呼称される。S155aで送信されるRRC Reconfiguration Complete1は、第1の設定メッセージに対する完了メッセージとも呼称される。S159で送信されるRRC Reconfigurationは、第2の設定メッセージとも呼称される。
 端末200は、ソースgNB100Aから、RRC Reconfigurationを受信すると、直ちに、変更されたターゲット候補セルの設定情報を取得して、RRC Reconfiguration Complete1をソースgNB100Aに送信する(S159a)。端末200は、変更されたターゲット候補セルの設定情報に基づいて、S155にて取得したターゲット候補セルの設定情報を更新する。
 端末200は、端末200の移動などにより、ターゲット候補セルへの遷移条件が満たされると判定すると、ソースgNB100Aからハンドオーバコマンドを受信せずに、当該ターゲット候補セルへのハンドオーバ(HO)の開始を決定する(S161)。本実施形態では、端末200は、ターゲットgNB100B配下のターゲット候補セルへのHOの開始を決定する。
 端末200は、ターゲットgNB100B配下のターゲット候補セルへのHOの開始を決定すると、ターゲットgNB100Bと端末200との間でランダムアクセス(RA)手順を実行して、ターゲットgNB100Bと端末200との間で同期を確立する(S163)。これにより、端末200は、ターゲットgNB100Bに接続する。
 端末200は、ターゲットgNB100Bに接続するとRRC Reconfiguration Complete2又はRRC Setup CompleteをターゲットgNB100Bに送信する(S165)。
 なお、S159にて、ソースgNB100Aは、ターゲット候補セルの設定情報を変更するために、RRC Reconfigurationを端末200に送信しているが、これに限定されない。例えば、ソースgNB100Aは、ターゲット候補セルの設定情報の他に、端末200の構成(UE configuration)を変更するために、RRC Reconfigurationを端末200に送信してもよい。
 この場合、ソースgNB100Aは、変更されたUE configurationを、RRC Reconfigurationに含める。なお、ソースgNB100Aは、変更されたUE configurationと、先に送信したUE configurationとの差分を、RRC Reconfigurationに含めてもよい。
 (3.4)Conditional HO手順におけるHO中止
 次に、Conditional HO手順におけるHO中止について説明する。本動作では、ターゲットgNBが、ターゲット候補セルの設定情報をソースgNBに送信した後に、当該ターゲット候補セルの設定情報の削除を、ソースgNBに指示する。本実施形態では、ターゲットgNB100Bが、ターゲット候補セルの設定情報の削除を、ソースgNB100Aに指示する。
 (3.4.1)動作例1
 最初に、Conditional HO手順におけるHO中止の動作例1について説明する。図17は、Conditional HO手順におけるHO中止シーケンス(動作例1)を示す図である。図17に示すS201~S207は、図16に示すS151~S157と同じ処理であるため、説明を省略する。
 なお、S203で送信されるCHO request ACKは、第1のメッセージとも呼称される。S209で送信されるHO cancellationは、第2のメッセージとも呼称される。
 ターゲットgNB100Bは、配下のターゲット候補セルが、端末200が遷移するのに相応しくない状態にあることを識別すると、HO削除メッセージ(HO cancellation)をソースgNB100Aに送信する(S209)。
 具体的には、ターゲットgNB100Bは、配下のターゲット候補セルで負荷が増大し、当該ターゲット候補セルが、端末200が遷移するのに相応しくない状態にあることを決定すると、S209にてHO cancellationを送信してもよい。
 この場合、多数の端末が、ターゲットgNB100B配下のターゲット候補セルに遷移して、接続端末の数が、当該ターゲット候補セルが許容する接続端末の最大数を超えると、ターゲットgNB100Bは、当該ターゲット候補セルが、端末200が遷移するのに相応しくない状態にあることを決定してもよい。
 例えば、呼受付制御(CAC)において、ターゲットgNB100B配下のターゲット候補セルにおいて、接続端末の数が、UEコンテキストの最大数を超えると、ターゲットgNB100Bは、当該ターゲット候補セルが、端末200が遷移するのに相応しくない状態にあることを決定する。
 また、端末200が、ターゲットgNB100B配下のターゲット候補セルの設定情報に基づいて、規定された時間内に、当該ターゲット候補セルに遷移しない場合(例えば、端末200が、規定された時間を超えても、インアクティブ状態にある場合)、ターゲットgNB100Bは、S209にてHO cancellationを送信してもよい。
 さらに、ターゲットgNB100Bが、ソースgNB以外のgNB又はng-eNBから、UEコンテキスト解放(UE context release)を受信した場合、ターゲットgNB100Bは、S209にてHO cancellationを送信してもよい。
 なお、S209にて、ターゲットgNB100Bは、ソースgNB100Aに対して、直接HO cancellationを送信してもよい。この場合、HO cancellationの送信には、例えば、Xnシグナリングが用いられる。代わりに、ターゲットgNB100Bは、ソースgNB100Aに対して、コアネットワークを介して、HO cancellationを送信してもよい。この場合、HO cancellationの送信には、例えば、NGシグナリングが用いられる。
 ソースgNB100Aは、ターゲットgNB100BからHO cancellationを受信すると、S205aにて、端末200からRRC Reconfiguration Complete1を受信した後に、RRC Reconfigurationを用いて、ターゲット候補セルの設定情報の変更を、端末200に通知する(S211)。
 具体的には、ソースgNB100Aは、ターゲットgNB100B配下のターゲット候補セルの設定情報を削除することを指示する情報を、RRC Reconfigurationに含める。なお、ソースgNB100Aは、ターゲットgNB100B配下のターゲット候補セルの設定情報を削除したCHO configurationを、RRC Reconfigurationに含めてもよい。
 端末200は、ソースgNB100Aから、RRC Reconfigurationを受信すると、直ちに、RRC Reconfiguration Complete1をソースgNB100Aに送信する(S211a)。端末200は、RRC Reconfigurationの受信に基づいて、ターゲットgNB100B配下のターゲット候補セルの設定情報を削除する。
 端末200は、端末200の移動などにより、ターゲット候補セルへの遷移条件が満たされると判定すると、ソースgNB100Aからハンドオーバコマンドを受信せずに、当該ターゲット候補セルへのハンドオーバ(HO)の開始を決定する(S213)。本実施形態では、端末200は、ターゲットgNB100C配下のターゲット候補セルへのHOの開始を決定する。
 端末200は、ターゲットgNB100C配下のターゲット候補セルへのHOの開始を決定すると、ターゲットgNB100Cと端末200との間でランダムアクセス(RA)手順を実行して、ターゲットgNB100Cと端末200との間で同期を確立する(S215)。これにより、端末200は、ターゲットgNB100Cに接続する。
 端末200は、ターゲットgNB100Cに接続するとRRC Reconfiguration Complete2又はRRC Setup CompleteをターゲットgNB100Cに送信する(S217)。
 (3.4.2)動作例2
次に、Conditional HO手順におけるHO中止の動作例2について説明する。図18は、Conditional HO手順におけるHO中止シーケンス(動作例2)を示す図である。図18に示すS231~S239は、図17に示すS201~S209と同じ処理であるため、説明を省略する。
 なお、本動作例では、ソースgNB100Aは、端末200から受信した測定報告に基づいて、ターゲットgNB100Bのみを見出す。このため、ソースgNB100Aは、ターゲットgNB100Bに対して、CHO requestを送信し(S231)、ターゲットgNB100Bから、ターゲット候補セルの設定情報を含むCHO request ACKを受信する(S233)。
 ソースgNB100Aは、ターゲットgNB100BからHO cancellationを受信した後、ソースgNB100Aの周囲に存在するターゲットgNB100Cを見出すと、ターゲットgNB100Cに対して、CHO requestを送信する(S241)。
 ターゲットgNB100Cは、ソースgNB100AからCHO requestを受信すると、ターゲットgNB100C配下のターゲット候補セルの設定情報を含むCHO request ACKを、ソースgNB100Aに送信する(S243)。
 ソースgNB100Aは、ターゲットgNB100BからHO cancellationを受信し、かつ、ターゲットgNB100CからCHO request ACKを受信すると、S235aにて、端末200からRRC Reconfiguration Complete1を受信した後に、RRC Reconfigurationを用いて、ターゲット候補セルの設定情報の変更を、端末200に通知する(S245)。
 具体的には、ソースgNB100Aは、ターゲットgNB100B配下のターゲット候補セルの設定情報を削除し、かつ、ターゲットgNB100C配下のターゲット候補セルの設定情報を含むCHO configurationを、RRC Reconfigurationに含める。
 端末200は、ソースgNB100Aから、RRC Reconfigurationを受信すると、直ちに、RRC Reconfiguration Complete1をソースgNB100Aに送信する(S245a)。端末200は、RRC Reconfigurationの受信に基づいて、ターゲットgNB100C配下のターゲット候補セルの設定情報を含むCHO configurationを適用する。
 端末200は、端末200の移動などにより、ターゲット候補セルへの遷移条件が満たされると判定すると、ソースgNB100Aからハンドオーバコマンドを受信せずに、当該ターゲット候補セルへのハンドオーバ(HO)の開始を決定する(S247)。本実施形態では、端末200は、ターゲットgNB100C配下のターゲット候補セルへのHOの開始を決定する。
 端末200は、ターゲットgNB100C配下のターゲット候補セルへのHOの開始を決定すると、ターゲットgNB100Cと端末200との間でランダムアクセス(RA)手順を実行して、ターゲットgNB100Cと端末200との間で同期を確立する(S249)。これにより、端末200は、ターゲットgNB100Cに接続する。
 端末200は、ターゲットgNB100Cに接続するとRRC Reconfiguration Complete2又はRRC Setup CompleteをターゲットgNB100Cに送信する(S251)。
 (3.5)Conditional HO手順におけるHO変更
 次に、Conditional HO手順におけるHO変更について説明する。本動作では、ターゲットgNBが、ターゲット候補セルの設定情報をソースgNBに送信した後に、当該ターゲット候補セルの設定情報の変更を、ソースgNBに指示する。本実施形態では、ターゲットgNB100Bが、ターゲット候補セルの設定情報の変更を、ソースgNB100Aに指示する。
 (3.5.1)動作例1
 最初に、Conditional HO手順におけるHO変更の動作例1について説明する。図19は、Conditional HO手順におけるHO変更シーケンス(動作例1)を示す図である。図19に示すS301, S303, S309~S315は、図4に示すS11, S13, S17~S23と同じ処理であるため、説明を省略する。
 なお、S303で送信されるCHO request ACKは、第1のメッセージとも呼称される。S305で送信されるHO modificationは、第2のメッセージとも呼称される。
 図19に示すように、ターゲットgNB100Bは、S303にて、CHO request ACKを用いて、配下のターゲット候補セルの設定情報を、ソースgNB100Aに送信した後、当該ターゲット候補セルの状態が変化したことを識別すると、HO変更メッセージ(HO modification)をソースgNB100Aに送信する(S305)。
 具体的には、ターゲットgNB100Bは、配下のターゲット候補セルで負荷状態が変化し、当該ターゲット候補セルへの遷移条件を変更する必要があると決定すると、S305にてHO modificationを送信してもよい。
 なお、S305にて、ターゲットgNB100Bは、ソースgNB100Aに対して、直接HO modificationを送信してもよい。この場合、HO modificationの送信には、例えば、Xnシグナリングが用いられる。代わりに、ターゲットgNB100Bは、ソースgNB100Aに対して、コアネットワークを介して、HO modificationを送信してもよい。この場合、HO modificationの送信には、例えば、NGシグナリングが用いられる。
 ソースgNB100Aは、ターゲットgNB100BからHO modificationを受信すると、ターゲットgNB100B配下のターゲット候補セルの設定情報を変更した上で、CHO configurationを含むRRC Reconfigurationを、端末200に送信する(S307)。
 (3.5.2)動作例2
 次に、Conditional HO手順におけるHO変更の動作例2について説明する。図20は、Conditional HO手順におけるHO変更シーケンス(動作例2)を示す図である。図20に示すS301~S313は、図19に示すS301~S313と同じ処理であるため、説明を省略する。
 図20に示すように、端末200は、ソースgNB100AからRRC Reconfigurationを受信すると、直ちに、RRC Reconfiguration Complete1を送信する(S307a)。
 端末200は、S313のRA手順によりターゲットgNB100Bに接続すると、RRC Reconfiguration Complete 2又はRRC Setup CompleteをターゲットgNB100Bに送信する(S315a)。
 (3.5.3)動作例3
 次に、Conditional HO手順におけるHO変更の動作例3について説明する。図21は、Conditional HO手順におけるHO変更シーケンス(動作例3)を示す図である。図21に示すS301, S303, S307, S307a, S309は、図20に示すS301, S303, S307, S307a, S309と同じ処理であるため、説明を省略する。
 図21に示すように、ターゲットgNB100Bは、配下のターゲット候補セルの状態が変化したことを識別すると、HO modificationをソースgNB100Aに送信する(S331)。
 ソースgNB100Aは、ターゲットgNB100BからHO modificationを受信すると、S307aにて、端末200からRRC Reconfiguration Complete1を受信した後に、RRC Reconfigurationを用いて、ターゲット候補セルの設定情報の変更を、端末200に通知する(S333)。
 具体的には、ソースgNB100Aは、ターゲットgNB100B配下のターゲット候補セルの設定情報を変更したCHO configurationを、RRC Reconfigurationに含める。
 端末200は、ソースgNB100Aから、RRC Reconfigurationを受信すると、直ちに、RRC Reconfiguration Complete1をソースgNB100Aに送信する(S333a)。端末200は、RRC Reconfigurationの受信に基づいて、ターゲットgNB100B配下のターゲット候補セルの設定情報を変更する。
 端末200は、端末200の移動などにより、ターゲット候補セルへの遷移条件が満たされると判定すると、ソースgNB100Aからハンドオーバコマンドを受信せずに、当該ターゲット候補セルへのハンドオーバ(HO)の開始を決定する(S335)。本実施形態では、端末200は、ターゲットgNB100B配下のターゲット候補セルへのHOの開始を決定する。
 端末200は、ターゲットgNB100B配下のターゲット候補セルへのHOの開始を決定すると、ターゲットgNB100Bと端末200との間でランダムアクセス(RA)手順を実行して、ターゲットgNB100Bと端末200との間で同期を確立する(S337)。これにより、端末200は、ターゲットgNB100Bに接続する。
 端末200は、ターゲットgNB100Bに接続するとRRC Reconfiguration Complete2又はRRC Setup CompleteをターゲットgNB100Bに送信する(S339)。
 (3.6)Conditional HO手順におけるRRC Reconfigurationの構成
 次に、Conditional HO手順におけるRRC Reconfigurationの構成について説明する。本構成では、RRC Reconfigurationは、ターゲットgNB100B配下のターゲット候補セルの設定情報、及びターゲットgNB100C配下のターゲット候補セルの設定情報を格納する。なお、「複数のターゲット候補セルの設定情報をRRC Reconfigurationに格納する」ことは、「複数のターゲット候補セルの設定情報をRRC Reconfigurationにカプセル化する」とも表現される。
 最初に、ターゲット候補セルの設定情報をカプセル化する動作フローを説明する。図22は、ターゲット候補セルの設定情報をカプセル化する動作フローを示す図である。図22に示すように、ソースgNB100Aは、CHO requestをターゲットgNB100B, 100Cに送信する(S350)。
 ソースgNB100Aは、ターゲットgNB100B, 100Cの各々から、ターゲット候補セルの設定情報を受信する(S353)と、当該ターゲット候補セルの設定情報を、RRC Reconfigurationにカプセル化する(S355)。
 ソースgNB100Aは、複数のターゲット候補セルの設定情報を、RRC Reconfigurationにカプセル化すると、当該RRC Reconfigurationを端末200に送信する(S357)。
 (3.6.1)構成例1
 次に、ターゲット候補セルの設定情報のカプセル化について詳細に説明する。図23は、Conditional HO手順におけるRRC Reconfigurationの構成(構成例1)を説明する図である。
 図23に示すように、下りリンク専用制御チャネル(DL-DCCH)用メッセージ群には、RRC Reconfiguration, RRC再開メッセージ(RRC Resume), RRC解放メッセージ(RRC Release), RRC Reestablishment, セキュリティ・モード・コマンド(Security Mode Command)などが含まれる。
 DL-DCCHは、RRCコネクションを確立した端末200に使用される下りリンク専用制御チャネルである。端末200は、DL-DCCHを介して、上述したRRCメッセージなどを受信する。
 本構成例では、従来のRRC Reconfiguration内に、新規の情報要素(IE)を設定して、ターゲットgNB100B配下のターゲット候補セルの設定情報、及びターゲットgNB100C配下のターゲット候補セルの設定情報を、当該IEに含める。
 具体的には、従来のRRC Reconfiguration内に、新規IEとして、RRC再構成リスト(RRCReconfigurationList)が設定され、かつ、RRCReconfigurationList内に、configuration for cell1及びconfiguration for cell2が設定される。なお、configuration for cellの数は、2つには限定されない。
 このような構成において、ソースgNB100Aは、ターゲットgNB100Bから、ターゲットgNB100B配下のターゲット候補セルの設定情報を受信すると、当該ターゲット候補セルの設定情報をRRCReconfigurationList内のconfiguration for cell1に含める。同様に、ソースgNB100Aは、ターゲットgNB100Cから、ターゲットgNB100C配下のターゲット候補セルの設定情報を受信すると、当該ターゲット候補セルの設定情報をRRCReconfigurationList内のconfiguration for cell2に含める。
 なお、RRCReconfigurationListは、CHO configurationとも呼称される。端末200は、ソースgNB100AからRRC Reconfigurationを受信すると、RRC Reconfiguration内のconfiguration for cell1及びconfiguration for cell2から、ターゲットgNB100B配下のターゲット候補セルの設定情報及びターゲットgNB100C配下のターゲット候補セルの設定情報を取得する。
 ターゲット候補セルの設定情報として、ターゲット候補セルの情報、及びターゲット候補セルへの遷移条件の他に、次の情報のうち、少なくとも1つを含んでもよい。
  測定条件
  ターゲット候補セルの構成
  セキュリティ情報(例えば、セキュリティ鍵の更新情報)
  トランザクション識別子
 (3.6.2)構成例2
 図24は、Conditional HO手順におけるRRC Reconfigurationの構成(構成例2)を説明する図である。図24に示すように、DL-DCCH用メッセージには、RRC Reconfiguration, RRC Resume, RRC Release, RRC Reestablishment, Security Mode Command, RRC Reconfiguration1などが含まれる。
 RRC Reconfiguration1は、従来のRRC Reconfigurationとは異なる新規のメッセージであり、Conditional HO手順で用いられるRRC再構成メッセージである。なお、当該新規メッセージの呼称は、RRC Reconfiguration1には限定されない。本構成例では、RRC Reconfiguration1内に設定された情報要素(IE)に、ターゲットgNB100B配下のターゲット候補セルの設定情報、及びターゲットgNB100C配下のターゲット候補セルの設定情報を含める。
 具体的には、新規のRRC Reconfiguration1内にRRC再構成リスト(RRCReconfigurationList)が設定され、かつ、RRCReconfigurationList内に、configuration for cell1及びconfiguration for cell2が設定される。なお、configuration for cellの数は、2つには限定されない。
 このような構成において、ソースgNB100Aは、ターゲットgNB100Bから、ターゲットgNB100B配下のターゲット候補セルの設定情報を受信すると、当該ターゲット候補セルの設定情報をRRCReconfigurationList内のconfiguration for cell1に含める。同様に、ソースgNB100Aは、ターゲットgNB100Cから、ターゲットgNB100C配下のターゲット候補セルの設定情報を受信すると、当該ターゲット候補セルの設定情報をRRCReconfigurationList内のconfiguration for cell2に含める。
 端末200は、ソースgNB100AからRRC Reconfiguration1を受信すると、RRC Reconfiguration1内のconfiguration for cell1及びconfiguration for cell2から、ターゲットgNB100B配下のターゲット候補セルの設定情報及びターゲットgNB100C配下のターゲット候補セルの設定情報を取得する。
 (3.7)Conditional HO手順におけるトランザクションID付与
 次に、Conditional HO手順におけるトランザクションID付与について説明する。本動作では、ソースgNB又はターゲットgNBが、Conditional HO手順で利用されるトランザクションIDの付与を実行する。
 (3.7.1)動作例1
 最初に、Conditional HO手順におけるID付与の動作例1について説明する。本動作例では、ソースgNBが、Conditional HO手順で利用されるトランザクションIDの付与を実行する。
 図25は、Conditional HO手順におけるID付与シーケンス(動作例1)を示す図である。図25に示すS401, S403, S409~S413は、図4に示すS11, S13, S17~S21と同じ処理であるため、説明を省略する。
 図25に示すように、ソースgNB100Aは、ターゲットgNB100B, 100CからCHO request ACKを受信すると、RRC ReconfigurationにCHO configurationを含めるとともに、RRC ReconfigurationにトランザクションIDを付与する(S405)。
 具体的には、ソースgNB100Aは、RRC Reconfiguration内のRRCReconfigurationListに、ターゲットgNB100B配下のターゲット候補セルの識別情報及びターゲットgNB100C配下のターゲット候補セルの識別情報を含めるとともに、RRC Reconfiguration内の所定の情報要素(IE)にトランザクションIDを設定する(図23参照)。なお、RRCReconfigurationListは、CHO configurationとも呼称される。
 なお、ソースgNB100Aは、Conditional HOで用いられるRRC再構成メッセージであるRRC Reconfiguration1内のRRCReconfigurationListに、ターゲットgNB100B配下のターゲット候補セルの識別情報及びターゲットgNB100C配下のターゲット候補セルの識別情報を含めるとともに、RRC Reconfiguration1内の所定の情報要素(IE)にトランザクションIDを設定してもよい(図24参照)。
 トランザクションIDは、0~3のうちの1つの値でもよいし、固定値0でもよい。本実施形態では、トランザクションIDは、0~3のうちの1つの値をとる。
 ソースgNB100Aは、RRC ReconfigurationにトランザクションIDを付与する代わりに、RRCReconfigurationに含まれるRRCReconfigurationList、すなわち、カプセル化されたターゲット候補セルの設定情報のグループにトランザクションIDを付与してもよい。
 ソースgNB100Aは、RRC Reconfigurationを設定すると、当該RRC Reconfigurationを、端末200に送信する(S407)。
 端末200は、ソースgNB100Aから、RRC Reconfigurationを受信すると、直ちに、ターゲット候補セルの設定情報を取得して、RRC Reconfiguration Complete1をソースgNB100Aに送信する(S407a)。
 S407aにて、端末200は、ソースgNB100Aから受信したRRC Reconfigurationに付与されたトランザクションIDをRRC Reconfiguration Complete1に含める。
 端末200は、CHO条件の監視(S409)、ターゲットgNB100BへのHOの開始(S411)、及びターゲットgNB100Bと端末200との間でRA手順(S413)を実行し、ターゲットgNB100Bに接続するとRRC Reconfiguration Complete2をターゲットgNB100Bに送信する(S415)。
 (3.7.2)動作例2
 次に、Conditional HO手順におけるID付与の動作例2について説明する。本動作例では、ターゲットgNBが、Conditional HO手順で利用されるトランザクションIDの付与を実行する。
 図26は、Conditional HO手順におけるID付与シーケンス(動作例2)を示す図である。図26に示すS401, S437~S441は、図4に示すS11, S17~S21と同じ処理であるため、説明を省略する。
 図26に示すように、ターゲットgNB100Bは、ソースgNB100AからCHO requestを受信すると、CHO request ACKに、ターゲットgNB100B配下のターゲット候補セルの設定情報を含めるとともに、当該ターゲット候補セルの設定情報にトランザクションIDを付与する(S431)。具体的には、ターゲットgNB100Bは、ターゲット候補セルの設定情報に、当該トランザクションIDを含める。
 同様に、ターゲットgNB100Cは、ソースgNB100AからCHO requestを受信すると、CHO request ACKに、ターゲットgNB100C配下のターゲット候補セルの設定情報を含めるとともに、当該ターゲット候補セルの設定情報にトランザクションIDを付与する(S431)。具体的には、ターゲットgNB100Bは、ターゲット候補セルの設定情報に、当該トランザクションIDを含める。
 トランザクションIDは、0~3のうちの1つの値でもよいし、固定値0でもよい。本実施形態では、トランザクションIDは、0~3のうちの1つの値をとる。
 ソースgNB100Aは、ターゲットgNB100B, 100CからCHO request ACKを受信すると、RRC ReconfigurationにCHO configurationを含める。具体的には、ソースgNB100Aは、RRC Reconfiguration内のRRCReconfigurationListに、トランザクションIDが付与されたターゲットgNB100B配下のターゲット候補セルの識別情報、及びトランザクションIDが付与されたターゲットgNB100C配下のターゲット候補セルの識別情報を含める(図23参照)。なお、RRCReconfigurationListは、CHO configurationとも呼称される。
 なお、ソースgNB100Aは、Conditional HOで用いられるRRC再構成メッセージであるRRC Reconfiguration1内のRRCReconfigurationListに、ターゲットgNB100B配下のターゲット候補セルの識別情報及びターゲットgNB100C配下のターゲット候補セルの識別情報を含めてもよい(図24参照)。
 ソースgNB100Aは、RRC Reconfigurationを設定すると、当該RRC Reconfigurationを、端末200に送信する(S435)。
 端末200は、ソースgNB100Aから、RRC Reconfigurationを受信すると、直ちに、ターゲット候補セルの設定情報を取得して、RRC Reconfiguration Complete1をソースgNB100Aに送信する(S435a)。
 端末200は、CHO条件の監視(S437)、ターゲットgNB100BへのHOの開始(S439)、及びターゲットgNB100Bと端末200との間でRA手順(S441)を実行し、ターゲットgNB100Bに接続するとRRC Reconfiguration Complete2をターゲットgNB100Bに送信する(S443)。
 S443にて、端末200は、ターゲットgNB100B配下のターゲット候補セルの設定情報に含まれるトランザクションIDを、RRC Reconfiguration Complete2に含める。
 (3.8)Conditional HO手順におけるHOFからの復帰
 次に、Conditional HO手順におけるにHOFからの復帰ついて説明する。本動作では、端末200が、CHO条件の監視中に、ソースgNBからHO commandを受信して、CHOを中断し、優先的にターゲットgNBに遷移する際に、HOFが発生する場合を対象とする。この場合、端末200は、当該ターゲットgNB配下のターゲット候補セルの設定情報の全て又は一部を維持する。
 図27は、Conditional HO手順におけるHOFからの復帰シーケンスを示す図である。図27のS501~S507は、図4のS11~S17と同じ処理であるので、説明を省略する。
 ソースgNB100Aは、ターゲットgBN100B配下のターゲット候補セルに、端末200を優先的に遷移させることを決定する場合、HO requestをターゲットgNB100Bに送信する(S509)。ターゲットgNB100Bは、ソースgNB100AからHO requestを受信すると、HO request ACKをソースgNB100Aに送信する(S511)。
 ソースgNB100Aは、ターゲットgNB100BからHO request ACKを受信すると、HO commandを端末200に送信する(S513)。端末200は、CHO条件の監視中に、ソースgNB100AからHO commandを受信すると、ターゲットgNB100Bと端末200との間でハンドオーバ手順を試みる(S515)。
 端末200は、S515にて、ハンドオーバ手順の実行中にHOFが発生して、ハンドオーバ手順に失敗すると、遷移条件を満たす遷移先のターゲット候補セル(CHOセル)を再選択する(S517)。本実施形態では、端末200は、ターゲットgNB100B配下のターゲット候補セルを再選択する。
 S517にて、端末200は、ターゲットgNB100B配下のターゲット候補セルの設定情報の全部又は一部を維持する。なお、「ターゲット候補セルの設定情報の全部又は一部を維持する」ことは、「ターゲット候補セルの設定情報の全部又は一部を適用可能であると見なす」又は「ターゲット候補セルの設定情報の全部又は一部を有効であると見なす」とも表現することができる。
 S517にて、ターゲット候補セルの設定情報において、端末200により維持される情報は、例えば、セキュリティ情報である。なお、ターゲットgNB100Bが、予め端末200の識別情報を取得している場合には、端末200により維持される情報は、端末200の識別情報であってもよい。
 端末200の識別情報として、例えば、次の情報が挙げられる。
  ショート・メディア・アクセス・コントロール識別子(short MAC-ID)
  セル・無線ネットワーク・一時識別子(C-RNTI)
  暗示的・無線ネットワーク・一時識別子(I-RNTI)
 端末200は、ターゲットgNB100B配下のターゲット候補セルを再選択すると、ターゲットgNB100Bと端末200との間でランダムアクセス(RA)手順を実行して、ターゲットgNB100Bと端末200との間で同期の確立する(S519)。これにより、端末200は、ターゲットgNB100Bに接続する。
 端末200は、ターゲットgNB100Bに接続すると、RRC再構成完了メッセージ(RRC Reconfiguration Complete)をターゲットgNB100Bに送信する(S521)。
 S521にて、端末200は、S517で維持されるターゲット候補セルの設定情報の全て又は一部をRRC Reconfiguration Completeに含めて、シグナリング無線ベアラ1(SRB1)を用いて、ターゲットgNB100Bに送信してもよい。SRB1の代わりに、端末200は、S517で維持されるターゲット候補セルの設定情報の全て又は一部を、RRC Reestablishment requestに含めて、シグナリング無線ベアラ0(SRB0)を用いて、ターゲットgNB100Bに送信してもよい。
 なお、SRB0は、共通制御チャネル(CCCH)用の無線ベアラである。SRB1は、個別制御チャネル(DCCH)用の無線ベアラである。
 また、S521にて、端末200は、ターゲット候補セルの設定情報の全て又は一部を維持していることを示す情報を、RRC Reconfiguration Completeに含めて、ターゲットgNB100Bに送信してもよい。
 さらに、S521にて、端末200は、S517で維持されるターゲット候補セルの設定情報と1対1に変換可能な情報を、RRC Reconfiguration Completeに含めて、ターゲットgNB100Bに送信してもよい。
 これにより、端末200とターゲットgNB100Bとの間において、例えば、セキュリティ情報、又は端末200の識別情報が共有される。このため、ターゲットgNB100Bは、端末200がターゲットgNB100Bへの遷移が許可された端末であるか否かを判別することができる。
 なお、本動作の適用は、端末200が、CHO条件の監視中に、ソースgNBからHO commandを受信して、CHOを中断し、優先的にターゲットgNBに遷移する際に、HOFが発生する場合に限定されない。例えば、端末200が、CHO条件を監視し、ターゲットgNB配下のターゲット候補セルへの遷移条件が満たされ、ソースgNBからHO commandを受信せずに、当該ターゲット候補セルへのHOを行う際に、HOFが発生する場合にも、本動作は適用可能である。
 (3.9)Conditional HO手順におけるRLF後の無線ベアラの再開
 次に、Conditional HO手順におけるにRLF後の無線ベアラの再開について説明する。本動作では、Condition HO手順において、端末200が、ターゲットgNBに再接続する場合、特定の条件に基づいて、RLFの発生に伴って停止される無線ベアラを再開(resume)する。
 なお、無線ベアラには、シグナリング無線ベアラ(SRB)及びデータ無線ベアラ(DRB)が含まれる。SRBは、制御プレーンデータ用であり、DRBは、ユーザプレーンデータ用である。また、SRBには、用途に応じてSRB0, 1, 2, 3が設定され得る。
 SRB0は、CCCH用の無線ベアラである。SRB1~SRB3は、DCCH用の無線ベアラである。DRBは、ユーザデータ用の無線ベアラである。
 SRB1は、SRB2の確立前のRRCメッセージ及びNASメッセージの送受信に用いられる。
 SRB2は、NASメッセージの送受信に用いられ、SRB1よりも優先順位が低く、ASセキュリティのアクティブ化後にネットワークによって設定される。
 SRB3は、E-UTRA-NR Dual Connectivity(EN-DC)における、特定のRRCメッセージの送受信に用いられる。
 本実施形態では、端末200は、ターゲットgNB100B配下のターゲット候補セルの設定情報を用いて、ターゲットgNB100Bに遷移する場合にRLFを検出すると、ターゲットgNB100Bと端末200との間において、SRB0を除く全ての無線ベアラを停止(suspend)し、当該ターゲットgNB100Bに再接続する。
 図28は、Conditional HO手順におけるRLF後に無線ベアラを再開する端末200の動作フローを示す図である。図29は、Conditional HO手順におけるRLF後に無線ベアラを再開する条件を説明する図である。
 図28に示すように、端末200は、Conditional HO手順において、CHOセルの再選択を行う(S601)。具体的には、端末200は、遷移条件を満たす遷移先のターゲットターゲット候補セル(CHOセル)を再選択する。本実施形態では、端末200は、ターゲットgNB100B配下のターゲット候補セルを再選択する。
 端末200は、ターゲットgNB100B配下のターゲット候補セルを再選択すると、当該ターゲット候補セルの設定情報に基づいて、ターゲットgNB100Bへの遷移を開始する(S603)。この場合、ターゲットgNB100Bと端末200との間で停止された全ての無線ベアラを再開してもよい(図29の条件A)。
 端末200は、ターゲットgNB100Bへの遷移に伴って、ターゲットgNB100Bと端末200との間でランダムアクセス(RA)手順を開始する(S605)。この場合、ターゲットgNB100Bと端末200との間で停止された全ての無線ベアラを再開してもよい(図29の条件B)。
 端末200は、ターゲットgNB100Bと端末200との間でRA手順を完了する(S607)と、ターゲットgNB100Bと端末200との間で同期を確立する。これにより、端末200は、ターゲットgNB100Bに接続する。この場合、ターゲットgNB100Bと端末200との間で停止された全ての無線ベアラを再開してもよい(図29の条件C)。
 なお、端末200は、S601~S607の間において、ネットワークから、無線ベアラの再開を指示するRRCメッセージを受信した場合、ターゲットgNB100Bと端末200との間で停止された全ての無線ベアラを再開してもよい(図29の条件D)。
 この場合、端末200は、RRC再開完了メッセージ(RRC Resume Complete)を用いて、無線ベアラの再開が完了したことを、ネットワークに通知してもよい。
 端末200は、ターゲットgNB100Bに接続すると、RRC Reconfiguration CompleteをターゲットgNB100Bに送信する(S609)。
 (4)作用・効果
 上述した実施形態によれば、端末200は、ハンドオーバ失敗(HOF)に伴って、再確立手順(RRC Reestablishment手順)を行わずに、ターゲットgNB100Bに遷移する手順を行う。端末200は、ターゲットgNB100Bに遷移する手順において、ターゲットgNB100Bに特定のメッセージ(RRC Reconfiguration Complete)を送信する。端末200は、ハンドオーバ失敗(HOF)時に、端末200とターゲットgNB100Bとの間において共有する識別情報を維持し、特定のメッセージ(RRC Reconfiguration Complete)に対して、当該識別情報を含める。
 このような構成により、HOFからの復帰時にも、端末200とターゲットgNB100Bとの間において、識別情報が共有される。
 このため、ターゲットgNB100Bに遷移する端末をネットワーク側で認証することができ、悪意のある端末が当該ターゲット無線基地に遷移するのを回避し得る。
 上述した実施形態によれば、端末200は、ハンドオーバ失敗(HOF)時に、端末200とターゲットgNB100Bとの間において共有するshort MAC-IDを維持し、特定のメッセージ(RRC Reconfiguration Complete)に対して、short MAC-IDを含める。
 このような構成によっても、ターゲットgNB100Bに遷移する端末をネットワーク側で認証することができ、悪意のある端末が当該ターゲット無線基地に遷移するのを回避し得る。
 (5)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、NRを例として説明したが、Conditional HOは、LTEにも適用可能であり、LTEにおいても同様の動作が実行されてもよい。
 上述した実施形態の説明に用いたブロック構成図(図2及び図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100A, 100B, 100C及び端末200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図30は、当該装置のハードウェア構成の一例を示す図である。図30に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロックは、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間毎に異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 上述した端末によれば、ハンドオーバ失敗に伴って、再確立手順を行わずに、ターゲット無線基地局に遷移する端末をネットワーク側で認証し得るため、有用である。
10 無線通信システム
100A, 100B, 100C gNB
110 送信部
120 受信部
130 保持部
140 制御部
200 端末
210 送信部
220 受信部
230 保持部
240 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス

Claims (2)

  1.  端末であって、
     ハンドオーバ失敗に伴って、再確立手順を行わずに、ターゲット無線基地局に遷移する手順を行う制御部と、
     前記ターゲット無線基地局に遷移する手順において、前記ターゲット無線基地局に特定のメッセージを送信する送信部と、
    を備え、
     前記制御部は、前記ハンドオーバ失敗時に、前記端末と前記ターゲット無線基地局との間において共有する識別情報を維持し、前記特定のメッセージに対して、前記識別情報を含める端末。
  2.  前記制御部は、前記ハンドオーバ失敗時に、前記端末と前記ターゲット無線基地局との間において共有するショート・メディア・アクセス・コントロール識別子(short MAC-ID)を維持し、前記特定のメッセージに対して、前記short MAC-IDを含める請求項1に記載の端末。
     
     
PCT/JP2019/031997 2019-08-14 2019-08-14 端末 WO2021029059A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980099168.3A CN114208286A (zh) 2019-08-14 2019-08-14 终端
PCT/JP2019/031997 WO2021029059A1 (ja) 2019-08-14 2019-08-14 端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031997 WO2021029059A1 (ja) 2019-08-14 2019-08-14 端末

Publications (1)

Publication Number Publication Date
WO2021029059A1 true WO2021029059A1 (ja) 2021-02-18

Family

ID=74569642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031997 WO2021029059A1 (ja) 2019-08-14 2019-08-14 端末

Country Status (2)

Country Link
CN (1) CN114208286A (ja)
WO (1) WO2021029059A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523824A (ja) * 2012-07-31 2015-08-13 富士通株式会社 ユーザ機器コンテキストの識別方法、ユーザ機器及び基地局
JP2017513255A (ja) * 2014-03-03 2017-05-25 テレフオンアクチーボラゲット エルエム エリクソン(パブル) セル間でのモビリティ及び/又はアクセス選択のステアリング

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848553B (zh) * 2010-04-28 2012-05-09 新邮通信设备有限公司 长期演进系统中的无线资源控制连接重建立方法和基站
KR20140143070A (ko) * 2013-06-05 2014-12-15 주식회사 케이티 무선랜 연결 실패 처리 방법 및 그 장치
WO2017149361A1 (en) * 2016-03-04 2017-09-08 Telefonaktiebolaget L M Ericsson (Publ) Handover notification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523824A (ja) * 2012-07-31 2015-08-13 富士通株式会社 ユーザ機器コンテキストの識別方法、ユーザ機器及び基地局
JP2017513255A (ja) * 2014-03-03 2017-05-25 テレフオンアクチーボラゲット エルエム エリクソン(パブル) セル間でのモビリティ及び/又はアクセス選択のステアリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM: "Running CR for introduction of even further mobility enhancement in E-UTRAN", 3GPP TSG RAN WG2 #106 R2-1907137, 17 May 2019 (2019-05-17), pages 1 - 17, XP051711429 *

Also Published As

Publication number Publication date
CN114208286A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
JP7454579B2 (ja) 端末
JP7440522B2 (ja) 端末
JP7288061B2 (ja) 端末
WO2021075225A1 (ja) 端末
WO2021028992A1 (ja) 端末
WO2021029048A1 (ja) マスターノード及びセカンダリノード
JP7300510B2 (ja) 無線基地局
WO2021029059A1 (ja) 端末
WO2021029056A1 (ja) 端末
WO2021029057A1 (ja) 無線基地局
RU2799077C1 (ru) Терминал
JP7402874B2 (ja) 端末
WO2021075378A1 (ja) 端末
JP7445673B2 (ja) 端末
RU2820769C1 (ru) Терминал
WO2020261460A1 (ja) 端末
US20230014196A1 (en) Base station and radio communication method
US20230052093A1 (en) Base station and radio communication method
WO2021090502A1 (ja) 端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP