WO2021028421A1 - Substituted (2-heteroaryloxyphenyl)isoxazolines and salts thereof and their use as herbicidal active substances - Google Patents

Substituted (2-heteroaryloxyphenyl)isoxazolines and salts thereof and their use as herbicidal active substances Download PDF

Info

Publication number
WO2021028421A1
WO2021028421A1 PCT/EP2020/072465 EP2020072465W WO2021028421A1 WO 2021028421 A1 WO2021028421 A1 WO 2021028421A1 EP 2020072465 W EP2020072465 W EP 2020072465W WO 2021028421 A1 WO2021028421 A1 WO 2021028421A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
hydrogen
halogen
alkoxy
plants
Prior art date
Application number
PCT/EP2020/072465
Other languages
German (de)
French (fr)
Inventor
Michael Charles MCLEOD
Ralf Braun
Harald Jakobi
David Michael BARBER
Dirk Schmutzler
Anu Bheemaiah MACHETTIRA
Elisabeth ASMUS
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Publication of WO2021028421A1 publication Critical patent/WO2021028421A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • Substituted 5- (2-heteroaryloxyphenyl) isoxazolines and their salts and their use as herbicidal active ingredients Description The invention relates to the technical field of crop protection agents, in particular that of herbicides for the selective control of weeds and grass weeds in crops of useful plants. This invention specifically relates to substituted 5- (2-heteroaryloxyphenyl) isoxazolines and their salts, processes for their preparation and their use as herbicides.
  • Plant protection agents known to date for the selective control of harmful plants in crops of useful plants or active ingredients for controlling undesired vegetation sometimes have disadvantages when they are used, be it that they (a) have no or insufficient herbicidal activity against certain harmful plants, (b) too little Spectrum of harmful plants that can be controlled with an active ingredient, (c) too low selectivity in crops of useful plants and / or (d) have a toxicologically unfavorable profile.
  • active ingredients which can be used as plant growth regulators in some useful plants lead to undesirably reduced crop yields in other useful plants or are incompatible with the cultivated plant or only compatible with a narrow application rate range.
  • WO 2009 / 0944075- (2-pyridinyloxyphenyl) isoxazolines are materially described which have an unsubstituted pyridine ring.
  • certain substituted 5- (2-heteroaryloxyphenyl) isoxazolines or their salts are particularly suitable as herbicidal active ingredients.
  • the present invention relates to 5- (2-heteroaryloxyphenyl) isoxazolines of the general formula (I) or salts thereof substituted therewith where Z is -CR7- or -N-, R1 is hydrogen, halogen, hydroxy, amino, cyano, nitro, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl ( C2-C4) -alkenyl, (C2-C4) -haloalkenyl, (C2-C4) -alkynyl, (C2-C4) -haloalkynyl, (C1-C4) -alkoxy, (C1-C4) -haloalkoxy, (C1- C6) -cycloalkoxy, (C1-C4) -alkoxy- (C1-C4) -alkyl, (C1-C4) -haloalkoxy- (C1- C6) -cycl
  • the compounds of the general formula (I) can be prepared by adding a suitable inorganic or organic acid, such as, for example, mineral acids, such as, for example, HCl, HBr, H2SO4, H3PO4 or HNO3, or organic acids, e.g. B. carboxylic acids, such as formic acid, acetic acid, propionic acid, oxalic acid, lactic acid or salicylic acid or sulfonic acids, such as p-toluenesulfonic acid, to a basic group, such as amino, alkylamino, dialkylamino, piperidino, morpholino or pyridino, form salts. These salts then contain the conjugate base of the acid as an anion.
  • a suitable inorganic or organic acid such as, for example, mineral acids, such as, for example, HCl, HBr, H2SO4, H3PO4 or HNO3, or organic acids, e.g. B. carboxylic acids, such as for
  • Suitable substituents which are present in deprotonated form can form internal salts with groups which can themselves be protonated, such as amino groups. Salt formation can also be caused by the action of a base Compounds of general formula (I) take place.
  • Suitable bases are, for example, organic amines such as trialkylamines, morpholine, piperidine and pyridine, and ammonium, alkali or alkaline earth metal hydroxides, carbonates and hydrogen carbonates, in particular sodium and potassium hydroxide, sodium and potassium carbonate and sodium and potassium hydrogen carbonate.
  • salts are compounds in which the acidic hydrogen is replaced by a cation suitable for agriculture, for example metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or also ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NRaRbRcRd] +, in which Ra to Rd each independently represent an organic radical, in particular alkyl, aryl, arylalkyl or alkylaryl.
  • a cation suitable for agriculture for example metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or also ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NRaRbRcRd] +, in which Ra to Rd each independently represent an organic radical, in particular alkyl, aryl, arylalkyl or al
  • Alkylsulfonium and alkylsulfoxonium salts such as (C1-C4) -trialkylsulfonium and (C1-C4) -trialkylsulfoxonium salts, are also suitable.
  • the substituted 5- (2-heteroaryloxyphenyl) isoxazolines of the general formula (I) according to the invention may, depending on external conditions such as pH, solvent and temperature, possibly exist in various tautomeric structures, all of which are encompassed by the general formula (I) .
  • the compounds of the formula (I) used according to the invention and their salts are also referred to below as “compounds of the general formula (I)”.
  • Preferred subject matter of the invention are compounds of the general formula (I) in which Z is -CR7- or -N-, R1 is hydrogen, halogen, cyano, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3- C6) -cycloalkyl, (C2-C4) -alkenyl, (C2-C4) -haloalkenyl, (C2-C4) -alkynyl or (C2-C4) -haloalkynyl, R2 and R3 independently of one another represent hydrogen, halogen, cyano, ( C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C2-C4) -alkenyl, (C2-C4) -haloalkenyl, (C2-C4) -alkynyl or (C2- C4) - Haloalkynyl, R4
  • Particularly preferred subject matter of the invention are compounds of the general formula (I) in which Z is -CR7- or -N-, R1 is hydrogen, halogen, (C1-C4) -alkyl or (C1-C4) -haloalkyl, R2 and R3 independently each other for hydrogen, halogen, (C1-C4) -alkyl or (C1-C4) -haloalkyl, R4 for hydrogen, halogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, ( C 3 -C 6 ) cycloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (C 1 -C 4 ) alkoxy, carboxyl, (C 1 -C 4 ) alkoxycarbonyl , carboxy (C 1 - C 4) alkyl or (C 1 -C 4) alkoxycarbon
  • Very particularly preferred subject of the invention are compounds of the general formula (I) in which Z is -CR7- or -N-, R1 is hydrogen, (C1-C4) -alkyl or (C1-C4) -haloalkyl, R2 is hydrogen, R3 is hydrogen, R4 is hydrogen, halogen, (C1-C4) -alkyl, (C1-C4) -Haloalkyl, (C1-C4) -alkoxy, carboxyl or (C1-C4) -alkoxycarbonyl, R5 independently of one another represent halogen, cyano, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C2-C4 ) - Alkenyl or (C2-C4) -alkynyl, n is 0, 1 or 2, R6 is hydrogen, halogen, cyano, (C 1 -C 4 ) -alkyl or (C 1 -C 4 ) -hal
  • Extremely preferred subject of the invention are compounds of the general formula (I) in which Z is -CR7- or -N-, R1 is hydrogen, methyl or trifluoromethyl, R2 is hydrogen, R3 is hydrogen, R4 is chlorine, bromine, methyl , Difluoromethyl, trifluoromethyl, methoxy, carboxyl, methoxycarbonyl or ethoxycarbonyl, R5 independently represents fluorine, bromine, methyl, vinyl or cyano, n is 0 or 1, R6 represents hydrogen, fluorine or chlorine, and R7 represents hydrogen or fluorine, where R6 and R7 are not simultaneously hydrogen.
  • radical definitions given above apply both to the end products of the general formula (I) and correspondingly to the starting materials or intermediates required in each case for the preparation. These radical definitions can be combined as desired with one another, that is to say also between the specified preferred ranges.
  • compounds according to the invention of the general formula (I) mentioned or their salts or their use according to the invention are of particular interest in which individual radicals are one of those already mentioned or mentioned below have preferred meanings, or in particular those in which one or more of the preferred meanings already mentioned or mentioned below occur in combination.
  • the terms used above and below are explained.
  • the general rule for the designation of chemical groups is that the connection to the framework or the rest of the molecule takes place via the last-mentioned structural element of the chemical group in question , ie for example in the case of (C2-C8) -alkenyloxy via the oxygen atom, and in the case of heterocyclyl- (C1-C8) -alkyl or R12O (O) C- (C1-C8) -alkyl in each case via the carbon atom the alkyl group.
  • alkylsulfonyl on its own or as part of a chemical group - stands for straight-chain or branched alkylsulfonyl, preferably having 1 to 4 carbon atoms, for example (but not limited to) (C1-C4) -Alkylsulfonyl such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl.
  • alkylthio on its own or as part of a chemical group - stands for straight-chain or branched S-alkyl, preferably with 1 to 4 carbon atoms, such as (C1-C4) -alkylthio, for example (but not limited to) (C1-C4 ) -Alkylthio such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio, 1,1-dimethylethylthio.
  • alkylsulfinyl such as methylsulfinyl, ethylsulfinyl, propylsulfinyl, 1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl, 2-methylpropylsulfinyl, 1,1-dimethylethylsulfinyl.
  • Alkoxy means an alkyl radical bonded via an oxygen atom, e.g. B.
  • (but not limited to) (C 1 -C 4 ) -alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1-dimethylethoxy.
  • Cycloalkoxy means a cycloalkyl radical bonded via an oxygen atom.
  • the number of carbon atoms relates to the alkyl radical in the alkylcarbonyl group.
  • the number of carbon atoms relates to the alkyl radical in the alkoxycarbonyl group.
  • halogen means, for example, fluorine, chlorine, bromine or iodine. If the term is used for a radical, "halogen” means, for example, a fluorine, chlorine, bromine or iodine atom.
  • alkyl means a straight-chain or branched open-chain, saturated hydrocarbon radical which is optionally mono- or polysubstituted and in the latter case is referred to as “substituted alkyl”.
  • Preferred substituents are halogen atoms, alkoxy, haloalkoxy, cyano, alkylthio, haloalkylthio, amino or nitro groups, which are particularly preferred Methoxy, methyl, fluoroalkyl, cyano, nitro, fluorine, chlorine, bromine or iodine.
  • the prefix “bis” also includes the combination of different alkyl radicals, e.g. B. methyl (ethyl) or ethyl (methyl).
  • perhaloalkyl also includes the term perfluoroalkyl.
  • Haloalkoxy is, for example, OCF3, OCHF2, OCH2F, OCF2CF3, OCH2CF3 and OCH2CH2Cl; the same applies to haloalkenyl and other halogen-substituted radicals.
  • (C 1 -C 4 ) -alkyl means a shorthand for straight-chain or branched alkyl with one to 4 carbon atoms corresponding to the range given for carbon atoms, ie includes the radicals methyl, ethyl, 1-propyl, 2 -Propyl, 1-butyl, 2-butyl, 2-methylpropyl or tert-butyl.
  • General alkyl radicals with a larger specified range of carbon atoms e.g. B.
  • (C 1 -C 6 ) -Alkyl accordingly also include straight-chain or branched alkyl radicals with a larger number of carbon atoms, ie according to the example also the alkyl radicals with 5 and 6 carbon atoms.
  • the hydrocarbon radicals such as alkyl, alkenyl and alkynyl radicals, including those in composite radicals, are preferably the lower carbon skeletons, for example with 1 to 6 carbon atoms or, in the case of unsaturated groups, with 2 to 6 carbon atoms.
  • Alkyl radicals including those in the composite radicals such as alkoxy, haloalkyl, etc., mean, for example, methyl, ethyl, n- or i-propyl, n-, i-, t- or 2-butyl, pentyls, hexyls such as n-hexyl, i -Hexyl and 1,3-dimethylbutyl, heptyls such as n-heptyl, 1-methylhexyl and 1,4-dimethylpentyl; Alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals corresponding to the alkyl radicals, at least one double bond or triple bond being present.
  • alkenyl also includes, in particular, straight-chain or branched open-chain hydrocarbon radicals with more than one double bond, such as 1,3-butadienyl and 1,4-pentadienyl, but also allenyl or cumulenyl radicals with one or more cumulative double bonds, such as for example allenyl (1,2-propadienyl) and 1,2-butadienyl.
  • Alkenyl means, for example, vinyl, which can optionally be substituted by further alkyl radicals, e.g.
  • alkynyl particularly also includes straight-chain or branched open-chain hydrocarbon radicals with more than one triple bond or with one or more triple bonds and one or more double bonds, such as 1,3-butatrienyl.
  • (C2-C4) -Alkynyl means, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl.
  • cycloalkyl means a carbocyclic, saturated ring system with preferably 3-6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which is optionally further substituted, preferably by hydrogen, alkyl, alkoxy, cyano, nitro, alkylthio , Haloalkylthio, halogen, alkenyl, alkynyl, haloalkyl, AMino, alkylamino, bisalkylamino, alkocycarbonyl, hydroxycarbonyl, arylalkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl.
  • cyclic systems with substituents are included, with substituents with a double bond on the cycloalkyl radical, e.g. B. an alkylidene group such as methylidene are included.
  • multicyclic aliphatic systems are also included, such as, for example, bicyclo [1.1.0] butan-1-yl, bicyclo [1.1.0] butan-2-yl, bicyclo [2.1.0] pentan-1-yl , Bicyclo [1.1.1] pentan-1-yl, bicyclo [2.1.0] pentan-2-yl, bicyclo [2.1.0] pentan-5-yl, bicyclo [2.1.1] hexyl, bicyclo [2.2.1 ] hept-2-yl, bicyclo [2.2.2] octan-2-yl, bicyclo [3.2.1] octan-2-yl, bicyclo [3.2.2] nonan-2-yl, adamantan-1-yl and adamantane -2-yl, but also systems such as B.
  • spirocyclic aliphatic systems are also included, such as spiro [2.2] pent-1-yl, spiro [2.3] hex-1-yl, spiro [2.3] hex-4-yl, 3-spiro [2.3] hex-5-yl, spiro [3.3] hept-1-yl, spiro [3.3] hept-2-yl.
  • Cycloalkenyl means a carbocyclic, non-aromatic, partially unsaturated ring system with preferably 4-6 C atoms, eg 1-cyclobutenyl, 2-cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, or 1-cyclohexenyl, 2-cyclohexenyl , 3-Cyclohexenyl, 1,3-Cyclohexadienyl or 1,4-Cyclohexadienyl, with substituents with a double bond on the cycloalkenyl radical, e.g. B. an alkylidene group such as methylidene are included.
  • alkylidene e.g. B. also in the form (C1-C10) -Alkyliden, denotes the remainder of a straight-chain or branched open-chain hydrocarbon radical which is bonded via a double bond.
  • Cycloalkylidene means a carbocyclic radical which is bonded via a double bond.
  • Arylalkyl stands for an aryl radical attached via an alkyl group.
  • haloalkylthio - on its own or as part of a chemical group - stands for straight-chain or branched S-haloalkyl, preferably with 1 to 4 carbon atoms, such as (C1-C4) -haloalkylthio, e.g.
  • trifluoromethylthio pentafluoroethylthio, Difluoromethyl, 2,2-difluoroeth-1-ylthio, 2,2,2-difluoroeth-1-ylthio, 3,3,3-prop-1-ylthio.
  • "trialkylsilyl” - on its own or as part of a chemical group - stands for straight-chain or branched Si-alkyl, preferably with 1 to 6 carbon atoms, such as tri- [(C 1 -C 2 ) -alkyl] silyl, eg (but not limited to) trimethylsilyl, triethylsilyl.
  • the compounds can form tautomers by hydrogen shift, which structurally formally would not be covered by the general formula (I), then these tautomers are nevertheless included in the definition of the compounds of the general formula (I) according to the invention, unless a specific tautomer is the subject of consideration is.
  • many carbonyl compounds can exist both in the keto form and in the enol form, both forms being encompassed by the definition of the compound of the general formula (I).
  • the compounds of the general formula (I) can be present as stereoisomers, depending on the nature and linkage of the substituents.
  • the possible stereoisomers defined by their specific spatial shape, such as enantiomers, diastereomers, Z and E isomers, are all encompassed by the general formula (I).
  • stereoisomers can be obtained from the mixtures obtained during the preparation by customary separation methods. The chromatographic separation can be carried out both on an analytical scale to determine the enantiomeric excess or the diastereomeric excess, as well as on a preparative scale to produce test samples for biological testing. Likewise, stereoisomers can be selectively produced by using stereoselective reactions using optically active starting materials and / or auxiliaries.
  • the invention thus also relates to all stereoisomers which are encompassed by the general formula (I) but are not indicated with their specific stereoform, and to mixtures thereof. If the compounds are obtained as solids, they can also be purified by recrystallization or digestion. If individual compounds (I) are not satisfactorily accessible in the ways described below, they can be prepared by derivatizing other compounds (I).
  • Suitable isolation, purification and stereoisomer separation processes for compounds of the general formula (I) are methods which are generally known to the person skilled in the art from analogous cases, for example by physical processes such as crystallization, chromatography processes, especially column chromatography and HPLC (high pressure liquid chromatography), distillation , optionally under reduced pressure, extraction and other processes, any remaining mixtures can usually be separated by chromatographic separation, for example on chiral solid phases.
  • processes such as crystallization, for example diastereomeric salts, which can be obtained from the diastereomeric mixtures with optically active acids and, if acidic groups are present, with optically active bases, are suitable.
  • the present invention also claims processes for the preparation of the compounds of the general formula (I) according to the invention.
  • the compounds of the general formula (I) according to the invention can be prepared, inter alia, starting from known processes.
  • the synthetic routes used and investigated are based on commercially available or easily manufactured building blocks.
  • the groupings R1, R2, R3, R4, R5, R6, Z and n of the general formula (I) have the meanings defined above in the schemes below, unless the definitions are exemplary, but not restrictive.
  • Compounds according to the invention can be prepared, for example, by the method given in Scheme 1. Scheme 1.
  • the isoxazolines of the general formula (I) can be prepared via an alkylation of the phenols (EI) in the presence of bases with the pyridine or pyrimidine (E-II), where LG is a leaving group (such as a halogen or -SO2Me) .
  • the base can be a carbonate salt of an alkali metal (such as sodium, potassium, or cesium).
  • the reactions are generally carried out in an organic solvent, such as, for example, acetonitrile, dimethylformamide, or 1-methyl-2-pyrrolidone, at temperatures between 0 ° C. and the boiling point of the solvent.
  • the phenols of the general formula (EI) can be prepared by cyclizing the chloroximes (E-IV) with alkenes (E-III) in the presence of bases such as, for example, sodium hydrogen carbonate or potassium hydrogen carbonate.
  • bases such as, for example, sodium hydrogen carbonate or potassium hydrogen carbonate.
  • the reactions are generally carried out in an organic solvent, such as, for example, isopropanol or dimethoxyethane, at temperatures between 0 ° C. and the boiling point of the solvent.
  • Chloroximes of the general formula (E-IV) are known from the literature and can be prepared from the corresponding oximes. Such reactions are known to the person skilled in the art and are described, for example, in Angewandte Chemie - International Edition, 2016, 55, 8353-8357. Synthesis Examples: Synthesis Example No.
  • Example No.1-17 1H-NMR (400 MHz, CDCl3 d , ppm) 8.11 (d, 1H), 7.69-7.66 (m, 1H), 7.48-7.46 (m, 1H), 7.40-7.36 (m, 1H), 7.27-7.25 (m, 1H), 7.07 (dd, 1H), 6.91 (d, 1H), 6.48 (t, 1H), 5.88 (dd, 1H), 3.49-3.40 (m, 1H), 3.19 - 3.11 (m, 1H).
  • Example no.1-18 1H-NMR (400 MHz, CDCl3 d , ppm) 8.42 (s, 2H), 7.50 (dd, 1H), 7.44-7.40 (m, 1H), 7.34-7.30 (m, 1H) , 7.15 (dd, 1H), 6.49 (t, 1H), 5.90 (dd, 1H), 3.52-3.45 (m, 1H), 3.17-3.10 (m, 1H).
  • Example no.1-19 1H-NMR (400 MHz, CDCl3 d , ppm) 8.50 (s, 2H), 7.50 (dd, 1H), 7.44-7.40 (m, 1H), 7.35-7.31 (m, 1H) , 7.15 (dd, 1H), 6.49 (t, 1H), 5.88 (dd, 1H), 3.52-3.45 (m, 1H), 3.17-3.10 (m, 1H).
  • Example # 1-32 1H-NMR (400 MHz, CDCl3 d , ppm) 7.88 (d, 1H), 7.53 (dd, 1H), 7.37 (dd, 1H), 7.05-7.00 (m, 1H), 6.95 - 6.93 (m, 1H), 6.49 (t, 1H), 6.07 (dd, 1H), 3.50-3.34 (m, 2H).
  • Example No. 1-39 1H-NMR (400 MHz, CDCl3 d , ppm) 7.82 (d, 1H), 7.40-7.34 (m, 1H), 7.04-6.98 (m, 1H), 6.93-6.90 (m, 1H), 6.49 (t, 1H), 6.10 (dd, 1H), 3.57-3.35 (m, 2H).
  • Example # 1-41 1H-NMR (400 MHz, CDCl3 d , ppm) 8.48 (s, 2H), 7.45-7.36 (m, 2H), 7.09 (dd, 1H), 6.96 (dd, 1H), 6.17 (dd, 1H), 5.61 (dd, 1H), 5.46 (dd, 1H), 3.50-3.35 (m, 2H)
  • Example # 1-46 1H-NMR (400 MHz, CDCl 3 6, ppm) 7.88 (d, 1H), 7.54 (dd, 1H), 7.43-7.37 (m, 1H), 7.06-7.01 (m, 1H ), 6.96-6.94 (m, 1H), 6.16 (dd, 1H), 3.54-3.39 (m, 2H).
  • Example # 1-51 1H-NMR (400 MHz, CDCl3 d , ppm) 8.48 (s, 2H), 7.66 (dd, 1H), 7.39-7.33 (m, 2H), 7.12 (dd, 1H), 5.74 (dd, 1H), 3.86 (s, 3H), 3.28 (dd, 1H), 2.95 (dd, 1H).
  • Example # 1-52 1H-NMR (400 MHz, CDCl3 d , ppm) 8.41 (s, 2H), 7.66 (dd, 1H), 7.39-7.32 (m, 2H), 7.12 (dd, 1H), 5.75 (dd, 1H), 3.86 (s, 3H), 3.28 (dd, 1H), 2.95 (dd, 1H).
  • NMR peak list method The 1H-NMR data of selected examples are noted in the form of 1H-NMR peak lists. For each signal peak, first the 6 value in ppm and then the signal intensity is listed in round brackets. The 6 -value - signal intensity number pairs of different signal peaks are listed separated from each other by semicolons.
  • the peak list of an example therefore has the form: d 1 (intensity1; d2 (intensity2); ising ..; d i (intensity; ising; d n (intensityn)
  • the intensity of sharp signals correlates with the height of the signals in a printed one
  • Example of an NMR spectrum in cm shows the real ratios of the signal intensities.
  • For broad signals several peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum can be shown.
  • For calibration of the chemical shift of 1H-NMR- Spectra we use tetramethylsilane and / or the chemical shift of the solvent, especially in the case of spectra measured in DMSO.
  • the tetramethylsilane peak can appear in NMR peak lists, but does not have to.
  • the lists of 1H-NMR peaks are similar to the classic 1H-NMR printouts and therefore usually contain all the peaks that are listed in a classic NMR interpretation.
  • they can show solvent signals, signals of stereoisomers of the target compounds, which are also the subject of the invention, and / or peaks of impurities.
  • our lists of 1H-NMR peaks show the usual solvent peaks, for example peaks from DMSO in DMSO-D6 and the peak from water, which are usually averaged have a high intensity.
  • the peaks of stereoisomers of the target compounds and / or peaks of impurities usually have a lower intensity on average than the peaks of the target compounds (for example with a purity of> 90%). Such stereoisomers and / or impurities can be typical of the particular manufacturing process. Your peaks can thus help to identify the reproduction of our manufacturing process using “by-product fingerprints”.
  • An expert who calculates the peaks of the target compounds with known methods can isolate the peaks of the target compounds as required, with additional intensity filters being used if necessary. This isolation would be similar to the relevant peak picking in the classical 1H-NMR interpretation. Further details on 1H-NMR peak lists can be found in Research Disclosure Database Number 564025.
  • the present invention furthermore relates to the use of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in one of the embodiments characterized as preferred or particularly preferred, in particular one or more compounds of the formulas (1 -1) to (1-64) and / or salts thereof, each as defined above, as a herbicide and / or plant growth regulator, preferably in crops of useful and / or ornamental plants.
  • the present invention also relates to a method for controlling harmful plants and / or for regulating the growth of plants, characterized in that an effective amount of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in one of the embodiments characterized as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-64) and / or their salts, in each case as defined above, or an agent according to the invention as defined below, on the (harmful) plants, (harmful) plant seeds, the soil in which or on which the (harmful) plants grow, or the area under cultivation is applied.
  • an effective amount of one or more compounds of the general formula (I) and / or their salts as defined above, preferably in one of the embodiments characterized as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-64) and / or their salts, in each case as defined above, or an agent according to the invention as defined below, on the (harmful) plants, (harmful) plant
  • the present invention also relates to a method for controlling undesired plants, preferably in crops of useful plants, characterized in that an effective amount of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in one of the as preferred or particularly preferred embodiment, in particular one or more compounds of the formulas (1-1) to (1-64) and / or their salts, in each case as defined above, or an agent according to the invention, as defined below, to undesired Plants (e.g. harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), the seeds of the unwanted plants (ie plant seeds, e.g.
  • undesired Plants e.g. harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants
  • the seeds of the unwanted plants ie plant seeds, e.g.
  • the soil in which or on which the unwanted plants grow e.g. the soil of cultivated land or non-cultivated land
  • the cultivated area i.e. area, on which the unwanted plants will grow
  • the present invention also relates to a method for controlling the growth of plants, preferably of useful plants, characterized in that an effective amount of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in one of the embodiments characterized as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-64) and / or their salts, in each case as defined above, or an agent according to the invention as defined below, the plant, the seed of the plant (i.e. plant seeds, e.g. grains, seeds or vegetative reproductive organs such as tubers or parts of shoots with buds), the soil in or on which the plants grow (e.g.
  • the seed of the plant i.e. plant seeds, e.g. grains, seeds or vegetative reproductive organs such as tubers or parts of shoots with buds
  • the soil in or on which the plants grow e.g.
  • the soil of cultivated land or non-cultivated land) or the cultivation area ie area on which the plants will grow
  • the compounds according to the invention or the agents according to the invention can be applied, for example, by pre-sowing (if appropriate also by incorporation into the soil), pre-emergence and / or post-emergence methods.
  • one or more compounds of the general formula (I) and / or their salts are preferably used for controlling harmful plants or for regulating growth in crops of useful plants or ornamentals, the useful plants or ornamentals in a preferred embodiment are transgenic plants.
  • the compounds of the general formula (I) according to the invention and / or their salts are suitable for combating the following genera of monocotyledonous and dicotyledonous harmful plants: Monocotyledonous harmful plants of the genera: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Rottbo, Monochoria, Pohalia, Phalaris, Paspalum, Sagleum, Pohalis, Phleittum, Phleittum, Phleittum, Phalaris, Rottbo Scirpus, Setaria, Sorghum.
  • the compounds of the general formula (I) according to the invention are applied to the surface of the earth (pre-emergence method) before the harmful plants (weeds and / or weeds) germinate, either the emergence of the weed or weed seedlings is completely prevented or they grow to the cotyledon stage , but then stop growing and finally die off completely after three to four weeks.
  • the active ingredients of the general formula (I) are applied to the green parts of the plant by the post-emergence method, growth stops after the treatment and the harmful plants remain in the growth stage present at the time of application or die after a certain time, so that in this way one for the Weed competition harmful to crops is eliminated very early and sustainably.
  • the compounds of the general formula (I) according to the invention have excellent herbicidal activity against monocotyledon and dicotyledon weeds, crop plants of economically important crops, for example dicotyledon crops of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledon cultures of the genera Allium, Ananas, Asparagus, Panicum Oryza, Hordeum , Saccharum, Secale, Sorghum, Triticale, Triticum, Zea, depending on the structure of the respective compound according to the invention and the amount applied, are only insignificantly damaged or not at all.
  • the present compounds are very suitable for the selective control of undesired vegetation in crops such as useful agricultural crops or ornamental crops.
  • the compounds of the general formula (I) according to the invention (depending on their particular structure and the amount applied) have excellent growth-regulatory properties in crop plants. They intervene in a regulating manner in the plant's own metabolism and can thus be used to specifically influence plant constituents and to facilitate harvesting, for example by triggering desiccation and stunted growth.
  • they are also suitable for the general control and inhibition of undesired vegetative growth without killing the plants. Inhibition of vegetative growth plays a major role in many monocotyledon and dicotyledon crops, since it can reduce or completely prevent storage, for example.
  • the active compounds of the general formula (I) can also be used for controlling harmful plants in crops of plants modified by genetic engineering or by conventional mutagenesis.
  • the transgenic plants are generally distinguished by particularly advantageous properties, for example by resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties relate to the crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known.
  • transgenic crops preference is given to using the compounds of the general formula (I) according to the invention and / or their salts in economically important transgenic crops of useful and ornamental plants, for example of cereals such as wheat, barley, rye, oats, millet, rice and maize or else Cultures of sugar beet, cotton, soy, canola, potato, tomato, pea and other vegetables.
  • the compounds of the general formula (I) according to the invention can preferably also be used as herbicides in crops of useful plants which are resistant or have been made resistant by genetic engineering to the phytotoxic effects of the herbicides.
  • the compounds of the general formula (I) according to the invention can also be used for controlling harmful plants in crops of known or genetically modified plants which are yet to be developed.
  • the transgenic plants are generally distinguished by particularly advantageous properties, for example by resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties relate to the crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known.
  • the use of the compounds of general formula (I) according to the invention or their salts in economically important transgenic crops of useful and ornamental plants for example of cereals such as wheat, barley, rye, oats, triticale, millet, rice, cassava and maize, is preferred Cultures of sugar beet, cotton, soy, canola, potato, tomato, pea and other vegetables.
  • the compounds of the general formula (I) can preferably be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or which have been made resistant by genetic engineering.
  • new plants with modified properties can be produced using genetic engineering.
  • Numerous molecular biological techniques with which new transgenic plants with modified properties can be produced are known to the person skilled in the art.
  • nucleic acid molecules can be introduced into plasmids which allow mutagenesis or a sequence change by recombination of DNA sequences.
  • base exchanges can be carried out, partial sequences removed or natural ones or synthetic sequences can be added.
  • adapters or linkers can be attached to the fragments.
  • the production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, one sense RNA to achieve a cosuppression effect, or by expressing at least one appropriately constructed ribozyme that specifically cleaves transcripts of the gene product mentioned above.
  • DNA molecules can be used that include the entire coding sequence of a gene product including any flanking sequences that may be present, as well as DNA molecules that only include parts of the coding sequence, these parts having to be long enough to be in the cells to bring about an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but which are not completely identical.
  • the synthesized protein can be localized in any desired compartment of the plant cell.
  • the coding region can be linked to DNA sequences which ensure the localization in a certain compartment.
  • sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J.11 (1992), 3219-3227).
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated into whole plants using known techniques. In principle, the transgenic plants can be plants of any plant species, ie both monocotyledonous and dicotyledonous plants.
  • the compounds of the general formula (I) according to the invention can preferably be used in transgenic crops which are effective against growth substances such as dicamba or against herbicides, the essential plant enzymes, e.g.
  • acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydoxyphenylpyruvate dioxygenases (HPPD ) inhibit, respectively against herbicides from the Group of sulfonylureas, the glyphosate, glufosinate or benzoylisoxazole and analogous active substances are resistant.
  • ALS acetolactate synthases
  • EPSP synthases glutamine synthases
  • HPPD hydoxyphenylpyruvate dioxygenases
  • the compounds of the general formula (I) according to the invention are used in transgenic crops, in addition to the effects on harmful plants that can be observed in other crops, there are often effects that are specific to the application in the respective transgenic crop, for example a modified or specially expanded weed spectrum, that can be combated, changed application rates that can be used for the application, preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compounds of the general formula (I) according to the invention and / or salts thereof as herbicides for controlling harmful plants in crops of useful or ornamental plants, optionally in transgenic crops.
  • the use of compounds of the formula (I) according to the invention for combating harmful plants or for regulating the growth of plants also includes the case in which a compound of the general formula (I) or its salt is only used after application to the plant, in the plant or in the Soil is formed from a precursor substance ("prodrug").
  • the invention also relates to the use of one or more compounds of the general formula (I) or their salts or an agent according to the invention (as defined below) (in a process) for controlling harmful plants or for regulating the growth of plants, characterized in that one an effective amount of one or more compounds of the general formula (I) or their salts are applied to the plants (harmful plants, optionally together with the useful plants), plant seeds, the soil in which or on which the plants grow, or the area under cultivation.
  • the invention also relates to a herbicidal and / or plant growth-regulating agent, characterized in that the agent (A) contains one or more compounds of the general formula (I) and / or their salts as defined above, preferably in one of the embodiments characterized as preferred or particularly preferred, in particular one or more compounds of the formulas (I-1) to ( I-64) and / or their salts, in each case as defined above, and (b) one or more further substances selected from groups (i) and / or (ii): (i) one or more further agrochemically active substances, preferably selected from the group consisting of insecticides, acaricides, nematicides, further herbicides (ie those which do not correspond to the general formula (I) defined above), fungicides, safeners, fertilizers and / or further growth regulators, (ii) one or more in crop protection common formulation auxiliaries.
  • the agent (A) contains one or more compounds of the general formula (I) and / or their salts as defined
  • a herbicidal or plant growth regulating agent according to the invention preferably comprises one, two, three or more formulation auxiliaries (ii) which are customary in crop protection and selected from the group consisting of surfactants, emulsifiers, dispersants, film formers, thickeners, inorganic salts, dusting agents, at 25 ° C and 1013 mbar solid carriers, preferably adsorptive, granulated inert materials, wetting agents, antioxidants, stabilizers, buffer substances, antifoams, water, organic solvents, preferably organic solvents which are miscible with water in any ratio at 25 ° C and 1013 mbar.
  • the compounds of the general formula (I) according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules.
  • the invention therefore also relates to herbicidal and plant growth-regulating agents which contain compounds of the general formula (I) and / or their salts.
  • the compounds of the general formula (I) according to the invention and / or their salts can be formulated in various ways, depending on the prevailing biological and / or chemico-physical parameters.
  • Possible formulation options include, for example: Wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions, suspension concentrates (SC), dispersions based on oil or water, oil-miscible solutions, capsule suspensions (CS), dusts (DP), pickling agents, granulates for litter and soil application, granulates (GR) in the form of micro, spray, lift and adsorption granulates, water-dispersible granulates ( WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.
  • WP Wettable powders
  • SP water-soluble powders
  • EC emulsifiable concentrates
  • EW emulsions
  • SC suspension concentrates
  • CS dispersions based on oil or water, oil-miscible solutions
  • Wettable powders are preparations that are uniformly dispersible in water which, in addition to the active ingredient, besides a diluent or inert substance, also ionic and / or nonionic surfactants (wetting agents, dispersants), e.g.
  • polyoxyethylated alkylphenols polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkanesulfonates, sodium ligninsulfonates, alkylbenzenesulfonates , 2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium, dibutylnaphthalene sulfonic acid sodium or oleoylmethyltaurin acid sodium.
  • the herbicidally active ingredients are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air jet mills, and simultaneously or subsequently mixed with the formulation auxiliaries.
  • Emulsifiable concentrates are produced by dissolving the active ingredient in an organic solvent, e.g. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and / or nonionic surfactants (emulsifiers).
  • alkylarylsulphonic acid calcium salts such as calcium dodecylbenzenesulphonate or nonionic emulsifiers
  • fatty acid polyglycol esters alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products
  • alkyl polyethers such as sorbitan oxyethylene fatty acid esters such as sorbitan fatty acid esters such as sorbitan fatty acid esters or sorbitan oxyethylene fatty acid esters, for example sorbitan oxyethylene fatty acid esters.
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. They can be produced, for example, by wet grinding using commercially available bead mills and, if necessary, addition of surfactants, such as those already listed above for the other types of formulation.
  • Emulsions for example oil-in-water emulsions (EW) can be prepared, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic solvents and optionally surfactants, such as those already listed above for the other types of formulation.
  • Granules can either be produced by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils, to the surface of carrier materials such as sand, kaolinite or granulated inert material.
  • adhesives e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils
  • Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules - if desired as a mixture with fertilizers.
  • Water-dispersible granules are generally produced by the customary processes such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • the agrochemical preparations, preferably herbicidal or plant growth regulating agents of the present invention preferably contain a total amount of 0.1 to 99% by weight, preferably 0.5 to 95% by weight, more preferably 1 to 90% by weight, particularly preferably 2 to 80% by weight, of active ingredients of the general formula (I) and their salts.
  • the active ingredient concentration is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of customary formulation components.
  • the active ingredient concentration can be about 1 to 90, preferably 5 to 80% by weight.
  • Dust-like formulations contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, sprayable solutions contain about 0.05 to 80, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is liquid or solid and which granulating aids, fillers, etc. are used.
  • the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned contain, if appropriate, the respective customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity influencing agents.
  • formulation auxiliaries are described, inter alia, in "Chemistry and Technology of Agrochemical Formulations", ed. DA Knowles, Kluwer Academic Publishers (1998).
  • the compounds of the general formula (I) according to the invention or their salts can be used as such or in the form of their preparations (formulations) combined with other pesticidally active substances, such as insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and / or growth regulators e.g. as a ready-to-use formulation or as tank mixes.
  • pesticidally active substances such as insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and / or growth regulators e.g. as a ready-to-use formulation or as tank mixes.
  • the combination formulations can be prepared on the basis of the formulations mentioned above, taking into account the physical properties and stabilities of the active ingredients to be combined.
  • Combination partners for the compounds of the general formula (I) according to the invention in mixture formulations or in the tank mix are, for example, known active ingredients which act on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate- Synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen oxidase, can be used, as they are for example in Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc.
  • the safeners which are used in an antidoteic content, reduce the phytotoxic side effects of the herbicides / pesticides used, for example in economically important crops such as grain (wheat, barley, rye, maize, rice, millet), sugar beet, sugar cane, rape, cotton and soy, preferably grain.
  • the weight ratio of herbicide (mixture) to safener generally depends on the amount of herbicide applied and the effectiveness of the respective safener and can vary within wide limits, for example in the range from 200: 1 to 1: 200, preferably 100: 1 to 1: 100, in particular 20: 1 to 1:20.
  • the safeners can be formulated analogously to the compounds of the general formula (I) or their mixtures with other herbicides / pesticides and are provided and used as a finished formulation or tank mix with the herbicides.
  • the herbicide or herbicide-safener formulations in commercially available form are diluted, if appropriate, in the customary manner, for example in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules using water.
  • Preparations in dust form, soil granules or granules as well as sprayable solutions are usually no longer diluted with other inert substances before use. External conditions such as temperature, humidity etc.
  • the application rate of the compounds of the general formula (I) and / or their salts can vary within wide limits.
  • the total amount of compounds of the general formula (I) and their salts is preferably in the range from 0.001 to 10.0 kg / ha, preferably in the range from 0.005 to 5 kg / ha, more preferably in Range from 0.01 to 1.5 kg / ha, particularly preferably in the range from 0.05 to 1 kg / ha. This applies to both pre-emergence and post-emergence use.
  • the total application rate is preferably in the range from 0.001 to 2 kg / ha, preferably in the range from 0.005 to 1 kg / ha, in particular in the range from 10 to 500 g / ha, very particularly preferably in the range from 20 to 250 g / ha. This applies to both pre-emergence and post-emergence use.
  • the application as a stalk shortener can take place in different stages of the growth of the plants.
  • mixed formulations or in a tank mix are, for example, known active ingredients which act on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate -3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II or protoporphyrinogen oxidase, can be used, such as those from Weed Research 26 (1986) 441-445 or "The Pesticide Manual ", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 and the literature cited there.
  • herbicidal mixture partners are: Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-6- (4-chloro- 2-fluoro-3-methylphenyl) -5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor- potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsubutazolin, beflazolin, ben- ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone
  • plant growth regulators as possible mixing partners are: acibenzolar, acibenzolar-S-methyl, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, brassinolide, catechin, chlormequat chloride, cloprop, cyclanilide, 3- (cycloprop-1-enyl) propionic acid, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal- dipotassium, -disodium, and mono (N, N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic, acid, indol-3-acetic acid (IAA), 4- indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, jasmonic acid, ja
  • S1a compounds of the dichlorophenylpyrazoline-3-carboxylic acid type (S1a), preferably compounds such as 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid, 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline- 3-carboxylic acid ethyl ester (S1-1) ("Mefenpyr-diethyl”), and related compounds, as described in WO-A-91/07874; S1b) Derivatives of dichlorophenylpyrazole carboxylic acid (S1b), preferably compounds such as ethyl 1- (2,4-dichlorophenyl)
  • S3 Active ingredients of the dichloroacetamide type (S3), which are often used as pre-emergence safeners (soil-acting safeners), such as.
  • B. "Dichlormid” (N, N-diallyl-2,2-dichloroacetamide) (S3-1), “R-29148” (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from the company Stauffer (S3-2), "R-28725" (3-dichloroacetyl-2,2, -dimethyl-1,3-oxazolidine) from Stauffer (S3-3), "Benoxacor” (4-dichloroacetyl-3,4 -dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4), "PPG-1292” (N-allyl-N - [(1,3-dioxolan-2-yl) methyl] dichloroacetamide ) from PPG Industries (S
  • S4a N-acylsulfonamides of the formula (S4a) and their salts as described in WO-A-97/45016, wherein R A 1 is (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, the last two radicals mentioned by v A substituents from the group consisting of halogen, (C 1 -C 4 ) alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 ) alkylthio and, in the case of cyclic radicals, also by (C 1 -C 4 ) alkyl and (C 1 -C 4 ) haloalkyl; R A 2 halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; m A 1 or 2; v A is 0, 1,
  • S5 Active ingredients from the class of the hydroxyaromatics and the aromatic-aliphatic carboxylic acid derivatives (S5), for example ethyl 3,4,5-triacetoxybenzoate, 3,5-dimethoxy-4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydroxysalicylic acid, 4-fluorosalicyclic acid , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001.
  • S6 Active ingredients from the class of 1,2-dihydroquinoxalin-2-ones (S6), e.g.
  • S7 Compounds from the class of diphenylmethoxyacetic acid derivatives (S7), for example diphenylmethoxyacetic acid methyl ester (CAS Reg.Nr.41858-19-9) (S7-1), diphenylmethoxyacetic acid ethyl ester or diphenylmethoxyacetic acid as described in WO-A-98/38856.
  • S7-1 diphenylmethoxyacetic acid methyl ester
  • S7-1 diphenylmethoxyacetic acid ethyl ester
  • diphenylmethoxyacetic acid as described in WO-A-98/38856.
  • R D 1 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy
  • R D 2 is hydrogen or (C 1 -C 4 ) alkyl
  • R D 3 is hydrogen, (C 1 -C 8 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or Aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or their salts, nD is an integer from 0 to 2.
  • Active ingredients from the class of the 3- (5-tetrazolylcarbonyl) -2-quinolones for example 1,2-dihydro-4-hydroxy-1-ethyl -3- (5-tetrazolylcarbonyl) -2-quinolone (CAS-Reg.Nr .: 219479-18- 2), 1,2-dihydro-4-hydroxy-1-methyl-3- (5-tetrazolyl-carbonyl) -2-quinolone (CAS Reg. No. 95855-00-8), as described in WO-A-1999/000020.
  • S11 Active ingredients of the type of oxyimino compounds (S11), which are known as seed dressings, such as. B. "Oxabetrinil” ((Z) -1,3-Dioxolan-2-ylmethoxyimino (phenyl) acetonitrile) (S11-1), which is known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim” (1- (4-chlorophenyl) -2,2,2-trifluoro-1-ethanone-O- (1,3-dioxolan-2-ylmethyl) oxime) (S11-2), which is used as a seed dressing safener for millet against damage from Metolachlor is known, and "Cyometrinil” or “CGA-43089” ((Z) -Cyanomethoxyimino (phenyl) acetonitrile) (S11-3), which is known as a seed dressing safener for millet against
  • S12 Active ingredients from the class of isothiochromanones (S12), such as methyl - [(3-oxo-1H-2-benzothiopyran-4 (3H) -ylidene) methoxy] acetate (CAS Reg.No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361.
  • S12 isothiochromanones
  • S13 One or more compounds from group (S13): "Naphthalic anhydride” (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), which is known as a seed dressing safener for maize against damage from thiocarbamate herbicides, "Fenclorim” (4.6 -Dichlor-2-phenylpyrimidine) (S13-2) which is known as a safener for pretilachlor in sown rice, "Flurazole” (benzyl-2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13 -3), which is known as a seed dressing safener for millet against damage from alachlor and metolachlor, "CL 304415” (CAS-Reg.Nr.31541-57-8) (4-Carboxy-3,4-dihydro-2H- 1-benzopyran-4-acetic acid) (S13-4) from American Cyanamid, which is known as a safener for
  • Preferred safeners in combination with the compounds according to the invention of the general formula (I) and / or their salts, in particular with the compounds of the formulas (1-1) to (1-64) and / or their salts are: cloquintocet-mexyl, cyprosulfamide, Fenchlorazole-ethyl ester, isoxadifen-ethyl, mefenpyr-diethyl, fenclorim, cumyluron, S4-1 and S4-5, and particularly preferred safeners are: cloquintocet-mexyl, cyprosulfamide, isoxadifen-ethyl and mefenpyr-diethyl.
  • Table A1 Post-emergence effects against Alopecurus myosuroides (ALOMY)
  • Table A2 Post-emergence effects against Digitaria sanguinalis (DIGSA)
  • Table A3 Post-emergence effects against Poa annua (POAAN)
  • Table A4 Post-emergence effects against Abutilon theophrasti (ABUTH)
  • Table A5 Post-emergence effect against Amaranthus retroflexus (AMARE)
  • Table A6 Post-emergence effects against Bassia scoparia (KCHSC)
  • Table A7 Post-emergence effects against Stellaria media (STEME)
  • Table A8 Post-emergence effects against Veronica persica (VERPE)
  • Table A9 Post-emergence effects against Echinochloa crus-galli (ECHCG)
  • Table A10 Post-emergence effects against Setaria viridis (SETVI)
  • VERPE Veronica persica
  • EHCG Echinochloa crus-galli
  • SETVI Setaria viridis
  • 1-2, 1-3, 1-4, 1-5, 1-6, 1-9, 1-10, 1-12, 1 according to the invention have -13, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-21, 1-22, 1-32, 1-33, 1-34, 1-35 , 1-37, 1-38, 1-39, 1-40, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1 -49, 1-51 and 1-52 with post-emergence treatment a very good herbicidal activity against the harmful plants Alopecurus myosuroides (ALOMY), Digitaria sanguinalis (DIGSA), Poa annua (POAAN), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE ), Bassia scoparia (KCHSC), Stellaria media (STEME), Veronica persica (VERPE), Echinochloa crus-galli (ECHCG) and Setaria viridis (SETVI) at an application rate of 320
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were then applied to the surface of the covering soil as an aqueous suspension or emulsion, with the addition of 0.5% additive, with a water application rate of 600 liters per hectare applied. After the treatment, the pots were placed in the greenhouse and under good growing conditions for the test plants kept.
  • WP wettable powders
  • EC emulsion concentrates
  • Tables B1 to B12 below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and an application rate corresponding to 320 g / ha, which were obtained in accordance with the aforementioned test procedure.
  • Table B3 Pre-emergence effects against Echinochloa crus-galli (ECHCG)
  • Table B4 Pre-emergence effect against Lolium rigidum (LOLRI)
  • Table B6 Pre-emergence effects against Setaria viridis (SETVI)
  • Table B7 Pre-emergence effects against Abutilon theophrasti (ABUTH)
  • Table B8 Pre-emergence effect against Amaranthus retroflexus (AMARE)
  • Table B9 Pre-emergence effects against Bassia scoparia (KCHSC)
  • Table B12 Pre-emergence effects against Veronica persica (VERPE)
  • VERPE Veronica persica
  • Table B12 Pre-emergence effects against Veronica persica
  • the compounds according to the invention no. 1-2, 1-3, 1-4, 1-5, 1-6, 1-9, 1-12, 1-13, 1 -15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-21, 1-22, 1-32, 1-33, 1-34, 1-35, 1-37 , 1-38, 1-39, 1-40, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1-49, 1 -51 and 1-52 with pre-emergence treatment a very good herbicidal activity against the harmful plants
  • Alopecurus myosuroides Alopecurus myosuroides (ALOMY), Digitaria sanguinalis (DIGSA), Echinochloa crus-galli (ECHCG), Lolium rigidum (LOLRI), Poa annua (POAAN), Setaria
  • Table C1 Post-emergence effects against Setaria viridis (SETVI) Table C2: Post-emergence effects against Abutilon theophrasti (ABUTH) Table C3: Post-emergence effects against Amaranthus retroflexus (AMARE) Table C4: Post-emergence effects against Pharbitis purpurea (PHBPU) Table C5: Post-emergence effect against Polygonum convolvulus (POLCO) Table C6: Post-emergence effects against Viola tricolor (VIOTR) Table C7: Post-emergence effects against Veronica persica (VERPE) As the results in Tables C1-C7 show by way of example, the compounds Nos.
  • Tables D1 to D9 below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and an application rate corresponding to 80 g / ha, which were obtained in accordance with the aforementioned test procedure.
  • Table D1 Pre-emergence effects against Alopecurus myosuroides (ALOMY)
  • Table D2 Pre-emergence effects against Avena fatua (AVEFA)
  • Table D3 Pre-emergence effects against Digitaria sanguinalis (DIGSA)
  • Table D4 Pre-emergence effects against Setaria viridis (SETVI)
  • Table D6 Pre-emergence effect against Amaranthus retroflexus (AMARE)
  • Table D7 Pre-emergence effect against Polygonum convolvulus (POLCO)
  • Table D8 Pre-emergence effects against Viola tricolor (VIOTR)
  • Table D9 Pre-emergence effects against Veronica persica (VERPE)
  • Viola tricolor Viola tricolor
  • Alopecurus myosuroides when treated pre-emergence Alopecurus myosuroides when treated pre-emergence (ALOMY), Avena fatua (AVEFA), Digitaria sanguinalis (DIGSA), Setaria viridis (SETVI), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE), Polygonum convolvulus (POLCO), Viola tricolor (VIOTR) and Veronica persica (VERPE ) at an application rate of 80 g of active ingredient per hectare.
  • Alopecurus myosuroides when treated pre-emergence Avena fatua (AVEFA), Digitaria sanguinalis (DIGSA), Setaria viridis (SETVI), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE), Polygonum convolvulus (POLCO), Viola tricolor (VIOTR) and Veronica persica (VERPE ) at an application rate of 80 g of active ingredient per hectare.

Abstract

The invention relates to substituted 5-(2-heteroaryloxyphenyl)isoxazolines of the general formula (I) and to their use as herbicides, in particular for controlling weeds and/or weed grasses in crops of cultivated plants and/or as plant growth regulators for influencing the growth of crops of cultivated plants. The invention also relates to herbicidal and/or plant growth-controlling agents comprising one or more compounds of the general formula (I).

Description

Substituierte 5-(2-Heteroaryloxyphenyl)isoxazoline sowie deren Salze und ihre Verwendung als herbizide Wirkstoffe Beschreibung Die Erfindung betrifft das technische Gebiet der Pflanzenschutzmittel, insbesondere das der Herbizide zur selektiven Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen. Speziell betrifft diese Erfindung substituierte 5-(2-Heteroaryloxyphenyl)isoxazoline sowie deren Salze, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide. Bisher bekannte Pflanzenschutzmittel zur selektiven Bekämpfung von Schadpflanzen in Nutzpflanzenkulturen oder Wirkstoffe zur Bekämpfung von unerwünschtem Pflanzenwuchs weisen bei ihrer Anwendung teilweise Nachteile auf, sei es, dass sie (a) keine oder aber eine unzureichende herbizide Wirkung gegen bestimmte Schadpflanzen, (b) ein zu geringes Spektrum der Schadpflanzen, das mit einem Wirkstoff bekämpft werden kann, (c) zu geringe Selektivität in Nutzpflanzenkulturen und/oder (d) ein toxikologisch ungünstiges Profil besitzen. Weiterhin führen manche Wirkstoffe, die als Pflanzenwachstumsregulatoren bei einigen Nutzpflanzen eingesetzt werden können, bei anderen Nutzpflanzen zu unerwünscht verminderten Ernteerträgen oder sind mit der Kulturpflanze nicht oder nur in einem engen Aufwandmengenbereich verträglich. Einige der bekannten Wirkstoffe lassen sich wegen schwer zugänglicher Vorprodukte und Reagenzien im industriellen Maßstab nicht wirtschaftlich herstellen oder besitzen nur unzureichende chemische Stabilitäten. Bei anderen Wirkstoffen hängt die Wirkung zu stark von Umweltbedingungen, wie Wetter- und Bodenverhältnissen ab. Die herbizide Wirkung dieser bekannten Verbindungen, insbesondere bei niedrigen Aufwandmengen, bzw. deren Verträglichkeit gegenüber Kulturpflanzen bleiben verbesserungswürdig. In WO 94/17059 sind verschiedene 3-(2-Pyrimidinyloxyphenyl)isoxazoline als Herbizide beschrieben. In WO 2015/108779 und WO 2015/089003 sind verschiedene Pyrimidinyloxybenzole als Herbizide beschrieben, die in der 2-Position des Benzols einen aromatischen heterocyclischen Ring tragen. Daneben werden in WO 2009/0944075-(2-Pyridinyloxyphenyl)isoxazoline stofflich beschrieben, die einen unsubstitutierten Pyridin-Ring tragen. Ausgewählte 5-(2-Heteroaryloxyphenyl)isoxazoline, oder deren Salze, sowie deren Verwendung als herbizide Wirkstoffe, sind dagegen noch nicht beschrieben. Überraschenderweise wurde nun gefunden, dass bestimmte substituierte 5-(2- Heteroaryloxyphenyl)isoxazoline oder deren Salze, als herbizide Wirkstoffe besonders gut geeignet sind. Gegenstand der vorliegenden Erfindung sind damit substituierte 5-(2-Heteroaryloxyphenyl)isoxazoline der allgemeinen Formel (I) oder deren Salze
Figure imgf000003_0001
worin Z für -CR7- oder -N- steht, R1 für Wasserstoff, Halogen, Hydroxy, Amino, Cyano, Nitro, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C6)-Cycloalkoxy, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl- (C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)- Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)- Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)-Alkylaminocarbonyl, (C2-C6)- Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)-Cycloalkylcarbonylamino, (C1-C4)- Alkoxycarbonylamino, (C1-C4)-Alkylaminocarbonylamino, (C2-C6)- Dialkylaminocarbonylamino, Carboxy-(C1-C4)-alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylthio, (C1-C4)-Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)- Haloalkylsulfonyl, (C3-C6)-Cycloalkylsulfonyl, (C1-C4)-Alkylaminosulfonyl, (C2-C6)- Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl steht, R2 und R3unabhängig voneinander für Wasserstoff, Halogen, Hydroxy, Amino, Cyano, Nitro, (C1-C4)- Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)- Alkinyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C6)-Cycloalkoxy, (C1- C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)-alkyl, (C1-C4)- Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)- Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)- Alkylaminocarbonyl, (C2-C6)-Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)- Cycloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino, (C1-C4)-Alkylaminocarbonylamino, (C2-C6)-Dialkylaminocarbonylamino, Carboxy-(C1-C4)-alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)- alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylthio, (C1-C4)-Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)- Haloalkylsulfonyl, (C3-C6)-Cycloalkylsulfonyl, (C1-C4)-Alkylaminosulfonyl, (C2-C6)- Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl stehen, R4 für Wasserstoff, Halogen, Hydroxy, Amino, Cyano, Nitro, Formyl, Formamid, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C6)-Cycloalkoxy, (C1-C4)- Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)-alkyl, (C1-C4)- Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)- Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)- Alkylaminocarbonyl, (C2-C6)-Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)- Cycloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino, (C1-C4)-Alkylaminocarbonylamino, (C2-C6)-Dialkylaminocarbonylamino, Carboxy-(C1-C4)-alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)- alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkylcarbonyl-(C1-C4)-alkyl, (C3-C6)- Cycloalkylcarbonyl-(C1-C4)-alkyl, Cyano-(C1-C4)-alkyl, (C1-C4)-Alkylthio, (C1-C4)- Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)-Haloalkylsulfonyl, (C3-C6)- Cycloalkylsulfonyl, (C1-C4)-Alkylaminosulfonyl, (C2-C6)-Dialkylaminosulfonyl oder (C3-C6)- Trialkylsilyl steht, R5 unabhängig voneinander für Halogen, Hydroxy, Amino, Cyano, Nitro, Formyl, Formamid, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C6)- Cycloalkoxy, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)- Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)- alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)-Alkylaminocarbonyl, (C2-C6)-Dialkylaminocarbonyl, (C3-C6)- Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)-Cycloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino, (C1-C4)- Alkylaminocarbonylamino, (C2-C6)-Dialkylaminocarbonylamino, Carboxy-(C1-C4)-alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)-alkyl, (C3-C6)- Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylthio, (C1-C4)-Haloalkylthio, (C3-C6)- Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)-Haloalkylsulfonyl, (C3-C6)-Cycloalkylsulfonyl, (C1-C4)- Alkylaminosulfonyl, (C2-C6)-Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl steht, n ist gleich 0, 1, 2, 3, oder 4, R6 für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C1-C4)-Alkoxy oder (C1-C4)-Haloalkoxy steht, und R7 für Wasserstoff oder Halogen steht, wobei R6 und R7 nicht gleichzeitig Wasserstoff sind. Die Verbindungen der allgemeinen Formel (I) können durch Anlagerung einer geeigneten anorganischen oder organischen Säure, wie beispielsweise Mineralsäuren, wie beispielsweise HCl, HBr, H2SO4, H3PO4 oder HNO3, oder organische Säuren, z. B. Carbonsäuren, wie Ameisensäure, Essigsäure, Propionsäure, Oxalsäure, Milchsäure oder Salicylsäure oder Sulfonsäuren, wie zum Beispiel p- Toluolsulfonsäure, an eine basische Gruppe, wie z.B. Amino, Alkylamino, Dialkylamino, Piperidino, Morpholino oder Pyridino, Salze bilden. Diese Salze enthalten dann die konjugierte Base der Säure als Anion. Geeignete Substituenten, die in deprotonierter Form, wie z.B. Sulfonsäuren, bestimmte Sulfonsäureamide oder Carbonsäuren, vorliegen, können innere Salze mit ihrerseits protonierbaren Gruppen, wie Aminogruppen bilden. Salzbildung kann auch durch Einwirkung einer Base auf Verbindungen der allgemeinen Formel (I) erfolgen. Geeignete Basen sind beispielsweise organische Amine, wie Trialkylamine, Morpholin, Piperidin und Pyridin sowie Ammonium-, Alkali- oder Erdalkalimetallhydroxide, -carbonate und -hydrogencarbonate, insbesondere Natrium- und Kaliumhydroxid, Natrium- und Kaliumcarbonat und Natrium- und Kaliumhydrogencarbonat. Diese Salze sind Verbindungen, in denen der azide Wasserstoff durch ein für die Landwirtschaft geeignetes Kation ersetzt wird, beispielsweise Metallsalze, insbesondere Alkalimetallsalze oder Erdalkalimetallsalze, insbesondere Natrium- und Kaliumsalze, oder auch Ammoniumsalze, Salze mit organischen Aminen oder quartäre Ammoniumsalze, zum Beispiel mit Kationen der Formel [NRaRbRcRd]+, worin Ra bis Rd jeweils unabhängig voneinander einen organischen Rest, insbesondere Alkyl, Aryl, Arylalkyl oder Alkylaryl darstellen. Infrage kommen auch Alkylsulfonium- und Alkylsulfoxoniumsalze, wie (C1-C4)-Trialkylsulfonium- und (C1-C4)-Trialkylsulfoxoniumsalze. Die erfindungsgemäßen substituierten 5-(2-Heteroaryloxyphenyl)isoxazoline der allgemeinen Formel (I) können in Abhängigkeit von äußeren Bedingungen, wie pH-Wert, Lösungsmittel und Temperatur eventuell in verschiedenen tautomeren Strukturen vorliegen, die alle von der allgemeinen Formel (I) umfasst sind. Im Folgenden werden die erfindungsgemäß verwendeten Verbindungen der Formel (I) und ihre Salze auch als "Verbindungen der allgemeinen Formel (I)" bezeichnet. Bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin Z für -CR7- oder -N- steht, R1 für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl oder (C2-C4)-Haloalkinyl steht, R2 und R3unabhängig voneinander für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl oder (C2-C4)- Haloalkinyl stehen, R4 für Wasserstoff, Halogen, Cyano, Formyl, Formamid, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl, (C2-C4)- Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C6)-Cycloalkoxy, (C1-C4)-Alkoxy-(C1- C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)- Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)-Alkylaminocarbonyl, (C2-C6)-Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)- Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)-Cycloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino, (C1-C4)-Alkylaminocarbonylamino, (C2-C6)- Dialkylaminocarbonylamino, Carboxy-(C1-C4)-alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkylcarbonyl-(C1-C4)-alkyl, (C3-C6)- Cycloalkylcarbonyl-(C1-C4)-alkyl, Cyano-(C1-C4)-alkyl, (C1-C4)-Alkylthio, (C1-C4)- Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)-Haloalkylsulfonyl, (C3-C6)- Cycloalkylsulfonyl, (C1-C4)-Alkylaminosulfonyl, (C2-C6)-Dialkylaminosulfonyl oder (C3-C6)- Trialkylsilyl steht, R5 unabhängig voneinander für Halogen, Hydroxy, Amino, Cyano, Nitro, Formyl, Formamid, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C6)- Cycloalkoxy, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)- Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)- alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)-Alkylaminocarbonyl, (C2-C6)-Dialkylaminocarbonyl, (C3-C6)- Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)-Cycloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino, (C1-C4)- Alkylaminocarbonylamino, (C2-C6)-Dialkylaminocarbonylamino, Carboxy-(C1-C4)-alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)-alkyl, (C3-C6)- Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylthio, (C1-C4)-Haloalkylthio, (C3-C6)- Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)-Haloalkylsulfonyl, (C3-C6)-Cycloalkylsulfonyl, (C1-C4)- Alkylaminosulfonyl, (C2-C6)-Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl steht, ist gleich 0, 1, 2, oder 3, R6 für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C1-C4)-Alkoxy oder (C1-C4)-Haloalkoxy steht, und R7 für Wasserstoff oder Halogen steht, wobei R6 und R7 nicht gleichzeitig Wasserstoff sind. Besonders bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin Z für -CR7- oder -N- steht, R1 für Wasserstoff, Halogen, (C1-C4)-Alkyl oder (C1-C4)-Haloalkyl steht, R2 und R3unabhängig voneinander für Wasserstoff, Halogen, (C1-C4)-Alkyl oder (C1-C4)-Haloalkyl stehen, R4 für Wasserstoff, Halogen, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)- Alkenyl, (C2-C4)-Alkinyl, (C1-C4)-Alkoxy, Carboxyl, (C1-C4)-Alkoxycarbonyl, Carboxy-(C1- C4)-alkyl oder (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl steht, R5 unabhängig voneinander für Halogen, Amino, Cyano, Nitro, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl oder (C1-C4)-Alkoxy steht, n ist gleich 0, 1, 2, oder 3, R6 für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C1-C4)-Alkoxy oder (C1-C4)-Haloalkoxy steht, und R7 für Wasserstoff oder Halogen steht, wobei R6 und R7 nicht gleichzeitig Wasserstoff sind. Ganz besonders bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin Z für -CR7- oder -N- steht, R1 für Wasserstoff, (C1-C4)-Alkyl oder (C1-C4)-Haloalkyl steht, R2 für Wasserstoff steht, R3 für Wasserstoff steht, R4 für Wasserstoff, Halogen, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, Carboxyl oder (C1-C4)-Alkoxycarbonyl steht, R5 unabhängig voneinander für Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C2-C4)- Alkenyl oder (C2-C4)-Alkinyl steht, n ist gleich 0, 1 oder 2, R6 für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl oder (C1-C4)-Haloalkyl steht, und R7 für Wasserstoff oder Halogen steht, wobei R6 und R7 nicht gleichzeitig Wasserstoff sind. Äußerst bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin Z für -CR7- oder -N- steht, R1 für Wasserstoff, Methyl oder Trifluormethyl steht, R2 für Wasserstoff steht, R3 für Wasserstoff steht, R4 für Chlor, Brom, Methyl, Difluormethyl, Trifluormethyl, Methoxy, Carboxyl, Methoxycarbonyl oder Ethoxycarbonyl steht, R5 unabhängig voneinander für Fluor, Brom, Methyl, Vinyl oder Cyano steht, n ist gleich 0 oder 1, R6 für Wasserstoff, Fluor oder Chlor steht, und R7 für Wasserstoff oder Fluor steht, wobei R6 und R7 nicht gleichzeitig Wasserstoff sind. Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen gelten sowohl für die Endprodukte der allgemeinenFormel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangs- oder Zwischenprodukte. Diese Restedefinitionen können untereinander, also auch zwischen den angegebenen bevorzugten Bereichen beliebig kombiniert werden. Vor allem aus den Gründen der höheren herbiziden Wirkung, besseren Selektivität und/oder besseren Herstellbarkeit sind erfindungsgemäße Verbindungen der genannten allgemeinen Formel (I) oder deren Salze bzw. deren erfindungsgemäße Verwendung von besonderem Interesse, worin einzelne Reste eine der bereits genannten oder im folgenden genannten bevorzugten Bedeutungen haben, oder insbesondere solche, worin eine oder mehrere der bereits genannten oder im Folgenden genannten bevorzugten Bedeutungen kombiniert auftreten. Im Hinblick auf die erfindungsgemäßen Verbindungen werden die vorstehend und weiter unten verwendeten Bezeichnungen erläutert. Diese sind dem Fachmann geläufig und haben insbesondere die im Folgenden erläuterten Bedeutungen: Sofern nicht anders definiert, gilt generell für die Bezeichnung von chemischen Gruppen, dass die Anbindung an das Gerüst bzw. den Rest des Moleküls über das zuletzt genannte Strukturelement der betreffenden chemischen Gruppe erfolgt, d.h. beispielsweise im Falle von (C2-C8)-Alkenyloxy über das Sauerstoffatom, und im Falle von Heterocyclyl-(C1-C8)-alkyl oder R12O(O)C-(C1-C8)-Alkyl jeweils über das C-Atom der Alkylgruppe. Erfindungsgemäß steht "Alkylsulfonyl" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes Alkylsulfonyl, vorzugsweise mit 1 bis 4 Kohlenstoffatomen, z.B. (aber nicht beschränkt auf) (C1-C4)-Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1- Methylethylsulfonyl, Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl, 1,1- Dimethylethylsulfonyl. Erfindungsgemäß steht "Alkylthio" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes S-Alkyl, vorzugsweise mit 1 bis 4 Kohlenstoffatomen, wie (C1-C4)- Alkylthio, z.B. (aber nicht beschränkt auf) (C1-C4)-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1- Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio, 1,1-Dimethylethylthio. „Alkylsulfinyl (Alkyl-S(=O)-)“, soweit nicht an anderer Stelle anders definiert steht erfindungsgemäß für Alkylreste, die über -S(=O)- an das Gerüst gebunden sind, wie (C1-C4)-Alkylsulfinyl, z. B. (aber nicht beschränkt auf) (C1-C4)-Alkylsulfinyl wie Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1- Methylethylsulfinyl, Butylsulfinyl, 1-Methylpropylsulfinyl, 2-Methylpropylsulfinyl, 1,1- Dimethylethylsulfinyl. „Alkoxy“ bedeutet ein über ein Sauerstoffatom gebundenen Alkylrest, z. B. (aber nicht beschränkt auf) (C1-C4)-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2- Methylpropoxy, 1,1-Dimethylethoxy. „Cycloalkoxy“ bedeutet ein über ein Sauerstoffatom gebundenen Cycloalkylrest. „Alkylcarbonyl“ (Alkyl-C(=O)-), soweit nicht an anderer Stelle anders definiert, steht erfindungsgemäß für Alkylreste, die über -C(=O)- an das Gerüst gebunden sind, wie (C1-C4)-Alkylcarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkylcarbonylgruppe. „Alkoxycarbonyl (Alkyl-O-C(=O)-)“, soweit nicht an anderer Stelle anders definiert: Alkylreste, die über -O-C(=O)- an das Gerüst gebunden sind, wie (C1-C4)-Alkoxycarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkoxycarbonylgruppe. Die Bezeichnung "Halogen" bedeutet beispielsweise Fluor, Chlor, Brom oder Iod. Wird die Bezeichnung für einen Rest verwendet, dann bedeutet "Halogen" beispielsweise ein Fluor-, Chlor-, Brom- oder Iodatom. Erfindungsgemäß bedeutet „Alkyl“ einen geradkettigen oder verzweigten offenkettigen, gesättigten Kohlenwasserstoffrest, der gegebenenfalls ein- oder mehrfach substituiert ist und im letzteren Falle als „substituiertes Alkyl“ bezeichnet wird. Bevorzugte Substituenten sind Halogenatome, Alkoxy-, Haloalkoxy-, Cyano-, Alkylthio, Haloalkylthio-, Amino- oder Nitrogruppen, besonders bevorzugt sind Methoxy, Methyl, Fluoralkyl, Cyano, Nitro, Fluor, Chlor, Brom oder Iod. Die Vorsilbe „Bis“ schließt auch die Kombination unterschiedlicher Alkylreste ein, z. B. Methyl(Ethyl) oder Ethyl(Methyl). „Haloalkyl“, „-alkenyl“ und „-alkinyl“ bedeuten durch gleiche oder verschiedene Halogenatome, teilweise oder vollständig substituiertes Alkyl, Alkenyl bzw. Alkinyl, z.B. Monohaloalkyl (= Monohalogenalkyl) wie z. B. CH2CH2Cl, CH2CH2Br, CHClCH3, CH2Cl, CH2F; Perhaloalkyl wie z.B. CCl3, CClF2, CFCl2,CF2CClF2, CF2CClFCF3; Polyhaloalkyl wie z. B. CH2CHFCl, CF2CClFH, CF2CBrFH, CH2CF3; Der Begriff Perhaloalkyl umfasst dabei auch den Begriff Perfluoralkyl. „Haloalkoxy“ ist z.B. OCF3, OCHF2, OCH2F, OCF2CF3, OCH2CF3 und OCH2CH2Cl; entsprechendes gilt für Haloalkenyl und andere durch Halogen substituierten Reste. Der hier beispielhaft genannte Ausdruck "(C1-C4)-Alkyl" bedeutet eine Kurzschreibweise für geradkettiges oder verzweigtes Alkyl mit einem bis 4 Kohlenstoffatomen entsprechend der Bereichsangabe für C-Atome, d. h. umfasst die Reste Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methylpropyl oder tert-Butyl. Allgemeine Alkylreste mit einem größeren angegebenen Bereich von C-Atomen, z. B. "(C1-C6)-Alkyl", umfassen entsprechend auch geradkettige oder verzweigte Alkylreste mit einer größeren Zahl von C-Atomen, d. h. gemäß Beispiel auch die Alkylreste mit 5 und 6 C-Atomen. Wenn nicht speziell angegeben, sind bei den Kohlenwasserstoffresten wie Alkyl-, Alkenyl- und Alkinylresten, auch in zusammengesetzten Resten, die niederen Kohlenstoffgerüste, z.B. mit 1 bis 6 C-Atomen bzw. bei ungesättigten Gruppen mit 2 bis 6 C-Atomen, bevorzugt. Alkylreste, auch in den zusammengesetzten Resten wie Alkoxy, Haloalkyl usw., bedeuten z.B. Methyl, Ethyl, n- oder i-Propyl, n-, i-, t- oder 2-Butyl, Pentyle, Hexyle, wie n-Hexyl, i-Hexyl und 1,3-Dimethylbutyl, Heptyle, wie n-Heptyl, 1-Methylhexyl und 1,4-Dimethylpentyl; Alkenyl- und Alkinylreste haben die Bedeutung der den Alkylresten entsprechenden möglichen ungesättigten Reste, wobei mindestens eine Doppelbindung bzw. Dreifachbindung enthalten ist. Bevorzugt sind Reste mit einer Doppelbindung bzw. Dreifachbindung. Der Begriff „Alkenyl“ schließt insbesondere auch geradkettige oder verzweigte offenkettige Kohlenwasserstoffreste mit mehr als einer Doppelbindung ein, wie 1,3-Butadienyl und 1,4-Pentadienyl, aber auch Allenyl- oder Kumulenyl-reste mit einer bzw. mehreren kumulierten Doppelbindungen, wie beispielsweise Allenyl (1,2-Propadienyl) und 1,2-Butadienyl. Alkenyl bedeutet z.B. Vinyl, welches ggf. durch weitere Alkylreste substituiert sein kann, z B. (aber nicht beschränkt auf) (C2-C4)-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1- propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl. Der Begriff „Alkinyl“ schließt insbesondere auch geradkettige oder verzweigte offenkettige Kohlenwasserstoffreste mit mehr als einer Dreifachbindung oder auch mit einer oder mehreren Dreifachbindungen und einer oder mehreren Doppelbindungen ein, wie beispielsweise 1,3-Butatrienyl. (C2-C4)-Alkinyl bedeutet z.B. Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1- Methyl-2-propinyl. Der Begriff „Cycloalkyl“ bedeutet ein carbocyclisches, gesättigtes Ringsystem mit vorzugsweise 3-6 Ring-C-Atomen, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl, das gegebenenfalls weiter substituiert ist, bevorzugt durch Wasserstoff, Alkyl, Alkoxy, Cyano, Nitro, Alkylthio, Haloalkylthio, Halogen, Alkenyl, Alkinyl, Haloalkyl, AMino, Alkylamino, Bisalkylamino, Alkocycarbonyl, Hydroxycarbonyl, Arylalkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Cycloalkylaminocarbonyl. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden cyclische Systeme mit Substituenten umfasst, wobei auch Substituenten mit einer Doppelbindung am Cycloalkylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden auch mehrcyclische aliphatische Systeme umfasst, wie beispielsweise Bicyclo[1.1.0]butan-1-yl, Bicyclo[1.1.0]butan-2-yl, Bicyclo[2.1.0]pentan-1-yl, Bicyclo[1.1.1]pentan-1- yl, Bicyclo[2.1.0]pentan-2-yl, Bicyclo[2.1.0]pentan-5-yl, Bicyclo[2.1.1]hexyl, Bicyclo[2.2.1]hept-2-yl, Bicyclo[2.2.2]octan-2-yl, Bicyclo[3.2.1]octan-2-yl, Bicyclo[3.2.2]nonan-2-yl, Adamantan-1-yl und Adamantan-2-yl, aber auch Systeme wie z. B.1,1'-Bi(cyclopropyl)-1-yl, 1,1'-Bi(cyclopropyl)-2-yl. Der Ausdruck "(C3-C6)-Cycloalkyl" bedeutet eine Kurzschreibweise für Cycloalkyl mit drei bis 6 Kohlenstoffatomen entsprechend der Bereichsangabe für C-Atome. Im Falle von substituiertem Cycloalkyl werden auch spirocyclische aliphatische Systeme umfasst, wie beispielsweise Spiro[2.2]pent-1-yl, Spiro[2.3]hex-1-yl, Spiro[2.3]hex-4-yl, 3-Spiro[2.3]hex-5-yl, Spiro[3.3]hept-1-yl, Spiro[3.3]hept-2-yl. „Cycloalkenyl“ bedeutet ein carbocyclisches, nicht aromatisches, partiell ungesättigtes Ringsystem mit vorzugsweise 4-6 C-Atomen, z.B.1-Cyclobutenyl, 2-Cyclobutenyl, 1-Cyclopentenyl, 2-Cyclopentenyl, 3-Cyclopentenyl, oder 1-Cyclohexenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, 1,3-Cyclohexadienyl oder 1,4-Cyclohexadienyl, wobei auch Substituenten mit einer Doppelbindung am Cycloalkenylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Im Falle von gegebenenfalls substituiertem Cycloalkenyl gelten die Erläuterungen für substituiertes Cycloalkyl entsprechend. Der Begriff „Alkyliden“, z. B. auch in der Form (C1-C10)-Alkyliden, bedeutet den Rest eines geradkettigen oder verzweigten offenkettigen Kohlenwasserstoffrests, der über eine Zweifachbindung gebunden ist. Als Bindungsstelle für Alkyliden kommen naturgemäß nur Positionen am Grundkörper in Frage, an denen zwei H-Atome durch die Doppelbindung ersetzt werden können; Reste sind z. B. =CH2, =CH-CH3, =C(CH3)-CH3, =C(CH3)-C2H5 oder =C(C2H5)-C2H5. Cycloalkyliden bedeutet ein carbocyclischer Rest, der über eine Zweifachbindung gebunden ist. „Arylalkyl“ steht für einen über eine Alkylgruppe gebundenen Arylrest. Erfindungsgemäß steht "Haloalkylthio" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes S-Halogenalkyl, vorzugsweise mit 1 bis 4 Kohlenstoffatomen, wie (C1-C4)-Haloalkylthio, z.B. (aber nicht beschränkt auf) Trifluormethylthio, Pentafluorethylthio, Difluormethyl, 2,2-Difluoreth-1-ylthio, 2,2,2-Difluoreth-1-ylthio, 3,3,3-prop-1- ylthio. Erfindungsgemäß steht "Trialkylsilyl" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes Si-Alkyl, vorzugsweise mit 1 bis 6 Kohlenstoffatomen, wie Tri-[ (C1- C2)-alkyl]silyl, z.B. (aber nicht beschränkt auf) Trimethylsilyl, Triethylsilyl. Wenn die Verbindungen durch Wasserstoffverschiebung Tautomere bilden können, welche strukturell formal nicht durch die allgemeine Formel (I) erfasst würden, so sind diese Tautomere gleichwohl von der Definition der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) umfasst, sofern nicht ein bestimmtes Tautomer Gegenstand der Betrachtung ist. So können beispielsweise viele Carbonylverbindungen sowohl in der Ketoform wie auch in der Enolform vorliegen, wobei beide Formen durch die Definition der Verbindung der allgemeinen Formel (I) umfasst werden. Die Verbindungen der allgemeinen Formel (I) können je nach Art und Verknüpfung der Substituenten als Stereoisomere vorliegen. Die durch ihre spezifische Raumform definierten möglichen Stereoisomere, wie Enantiomere, Diastereomere, Z- und E-Isomere sind alle von der allgmeinen Formel (I) umfasst. Sind beispielsweise eine oder mehrere Alkenylgruppen vorhanden, so können Diastereomere (Z- und E- Isomere) auftreten. Sind beispielsweise ein oder mehrere asymmetrische Kohlenstoffatome vorhanden, so können Enantiomere und Diastereomere auftreten. Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen Trennmethoden erhalten. Die chromatographische Trennung kann sowohl im analytischen Maßstab zur Feststellung des Enantiomerenüberschusses bzw. des Diastereomerenüberschusses, wie auch im präparativen Maßstab zur Herstellung von Prüfmustern für die biologische Ausprüfung erfolgen. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangs- und/oder Hilfsstoffe selektiv hergestellt werden. Die Erfindung betrifft somit auch alle Stereoisomeren, die von der allgemeinen Formel (I) umfasst, jedoch nicht mit ihrer spezifischen Stereoform angegeben sind, sowie deren Gemische. Sofern die Verbindungen als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen. Sofern einzelne Verbindungen (I) nicht auf den nachstehend beschriebenen Wegen zufriedenstellend zugänglich sind, können sie durch Derivatisierung anderer Verbindungen (I) hergestellt werden. Als Isolierungs-, Reinigungs- und Stereoisomerenauftrennungsverfahren von Verbindungen der allgemeinen Formel (I) kommen Methoden in Frage, die dem Fachmann aus analogen Fällen allgemein bekannt sind, z.B. durch physikalische Verfahren wie Kristallisation, Chromatographieverfahren, vor allem Säulenchromatographie und HPLC (Hochdruckflüssigchromatographie), Destillation, gegebenenfalls unter reduziertem Druck, Extraktion und andere Verfahren, können gegebenfalls verbleibende Gemische in der Regel durch chromatographische Trennung, z.B. an chiralen Festphasen, getrennt werden. Für präparative Mengen oder im industriellen Maßstab kommen Verfahren in Frage wie Kristallisation, z.B. diastereomerer Salze, die aus den Diastereomerengemischen mit optisch aktiven Säuren und gegebenenfalls bei vorhandenen sauren Gruppen mit optisch aktiven Basen erhalten werden können. Die vorliegende Erfindung beansprucht auch Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I). Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) können unter anderem ausgehend von bekannten Verfahren hergestellt werden. Die eingesetzten und untersuchten Syntheserouten gehen dabei von kommerziell erhältlichen oder leicht herstellbaren Bausteinen aus. Die Gruppierungen R1, R2, R3, R4, R5, R6, Z und n der allgemeinen Formel (I) haben in den nachfolgenden Schemata die zuvor definierten Bedeutungen, sofern nicht beispielhafte, aber nicht einschränkende, Definitionen erfolgen. Erfindungsgemäße Verbindungen können beispielsweise nach der in Schema 1 angegebenen Methode hergestellt werden.
Figure imgf000015_0001
Schema 1. Die Isoxazoline der allgemeinen Formel (I) können über eine Alkylierung der Phenole (E-I) in Gegenwart von Basen mit dem Pyridin oder Pyrimidin (E-II), wobei LG eine Abgangsgruppe (wie zum Beispiel ein Halogen oder –SO2Me) ist, hergestellt werden. Die Base kann ein Carbonat-Salz von einem Alkali-Metall (wie zum Beispiel Natrium, Kalium oder Cäsium) sein. Die Reaktionen werden im Allgemeinen in einem organischen Lösungsmittel, wie zum Beispiel Acetonitril, Dimethylformamid, oder 1-Methyl-2-pyrrolidon, bei Temperaturen zwischen 0°C und dem Siedepunkt des Lösemittels, durchgeführt. Die Phenole der allgemeinen Formel (E-I) können über eine Cyclisierung der Chloroxime (E-IV) mit Alkenen (E-III) in Gegenwart von Basen wie zum Beispiel Natriumhydrogencarbonat oder Kaliumhydrogencarbonat hergestellt werden. Die Reaktionen werden im Allgemeinen in einem organischen Lösungsmittel, wie zum Beispiel Isopropanol oder Dimethoxyethan, bei Temperaturen zwischen 0°C und dem Siedepunkt des Lösemittels, durchgeführt. Chloroxime der allgemeinen Formel (E-IV) sind literaturbekannt und können aus den entsprechenden Oximen hergestellt werden. Solche Reaktionen sind dem Fachmann bekannt und beispielsweise in Angewandte Chemie – International Edition, 2016, 55, 8353-8357 beschrieben. Synthesebeispiele: Synthesebeispiel Nr. I-1 Synthesestufe 1: 2-(3,5-Dimethyl-4H-isoxazol-5-yl)-3-fluorphenol
Figure imgf000016_0001
Eine Mischung von 93.5 mg (10 mmol) N-Hydroxyacetimidoyl chlorid, 375 mg (2.5 mmol) 3-Fluor-2- isopropenylphenol und 495 mg (28 mmol) KHCO3 in 10 mL Dimethoxyethan werden bei 50 °C für 18 h erhitzt. Das resultierende Reaktionsgemsich wird auf Raumtemperatur abgekühlt, filtriert und mit Essigester mehrmals extrahiert. Die vereinigten organischen Phasen werden mit ges. wässrigen NaCl gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt.Durch anschließende säulenchromatographische Reinigung des resultierenden Rohproduktes konnte 2-(3,5-Dimethyl-4H- isoxazol-5-yl)-3-fluorphenol erhalten werden. Die Ausbeute entspricht 165 mg (61% der Theorie). Synthesestufe 2: 5-[2-(5-Chlorpyrimidin-2-yl)oxy-6-fluor-phenyl]-3,5-dimethyl-4H-isoxazol (Tabellenbeispiel Nr. I-1)
Figure imgf000017_0001
Eine Mischung von 165 mg (0.79 mmol) 2-(3,5-Dimethyl-4H-isoxazol-5-yl)-3-fluorphenol, 118 mg (0.79 mmol) 2,5-Dichlorpyridin und 327 mg (2.37 mmol) K2CO3 in 10 mL Acetonitril werden bei 80 °C für 18 h erhitzt. Das resultierende Reaktionsgemsich wird auf Raumtemperatur abgekühlt und eingeengt. Durch anschließende säulenchromatographische Reinigung des resultierenden Rohproduktes konnte 5- [2-(5-Chlorpyrimidin-2-yl)oxy-6-fluor-phenyl]-3,5-dimethyl-4H-isoxazol erhalten werden. Die Ausbeute entspricht 125 mg (49% der Theorie). In Analogie zu den oben angeführten und an entsprechender Stelle rezitierten Herstellungsbeispielen erhält man die nachfolgend genannten und in Tabelle 1 dargestellten Verbindungen der allgemeinen Formel (I)
Figure imgf000017_0002
Tabelle 1
Figure imgf000017_0003
Figure imgf000018_0001
Substituted 5- (2-heteroaryloxyphenyl) isoxazolines and their salts and their use as herbicidal active ingredients Description The invention relates to the technical field of crop protection agents, in particular that of herbicides for the selective control of weeds and grass weeds in crops of useful plants. This invention specifically relates to substituted 5- (2-heteroaryloxyphenyl) isoxazolines and their salts, processes for their preparation and their use as herbicides. Plant protection agents known to date for the selective control of harmful plants in crops of useful plants or active ingredients for controlling undesired vegetation sometimes have disadvantages when they are used, be it that they (a) have no or insufficient herbicidal activity against certain harmful plants, (b) too little Spectrum of harmful plants that can be controlled with an active ingredient, (c) too low selectivity in crops of useful plants and / or (d) have a toxicologically unfavorable profile. Furthermore, some active ingredients which can be used as plant growth regulators in some useful plants lead to undesirably reduced crop yields in other useful plants or are incompatible with the cultivated plant or only compatible with a narrow application rate range. Some of the known active ingredients cannot be produced economically on an industrial scale because of the difficult accessibility of precursors and reagents, or they have insufficient chemical stabilities. With other active ingredients, the effect depends too much on environmental conditions, such as weather and soil conditions. The herbicidal action of these known compounds, in particular when low amounts are used, or their compatibility with crop plants, remain in need of improvement. In WO 94/17059 various 3- (2-pyrimidinyloxyphenyl) isoxazolines are described as herbicides. In WO 2015/108779 and WO 2015/089003 various pyrimidinyloxybenzenes are described as herbicides which have an aromatic heterocyclic ring in the 2-position of benzene. In addition, WO 2009 / 0944075- (2-pyridinyloxyphenyl) isoxazolines are materially described which have an unsubstituted pyridine ring. Selected 5- (2-heteroaryloxyphenyl) isoxazolines, or their salts, and their use as herbicidal active ingredients, on the other hand, have not yet been described. Surprisingly, it has now been found that certain substituted 5- (2-heteroaryloxyphenyl) isoxazolines or their salts are particularly suitable as herbicidal active ingredients. The present invention relates to 5- (2-heteroaryloxyphenyl) isoxazolines of the general formula (I) or salts thereof substituted therewith
Figure imgf000003_0001
where Z is -CR7- or -N-, R1 is hydrogen, halogen, hydroxy, amino, cyano, nitro, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl ( C2-C4) -alkenyl, (C2-C4) -haloalkenyl, (C2-C4) -alkynyl, (C2-C4) -haloalkynyl, (C1-C4) -alkoxy, (C1-C4) -haloalkoxy, (C1- C6) -cycloalkoxy, (C1-C4) -alkoxy- (C1-C4) -alkyl, (C1-C4) -haloalkoxy- (C1-C4) -alkyl, (C1-C4) -alkylthio- (C1-C4) -alkyl, (C1-C4) -alkylsulfinyl- (C1-C4) -alkyl, (C1-C4) -alkylsulfonyl- (C1-C4) -alkyl, (C1-C4) -alkylcarbonyl, (C1-C4) -haloalkylcarbonyl , (C3-C6) -cycloalkylcarbonyl, carboxyl, (C1-C4) -alkoxycarbonyl, (C1-C4) -haloalkoxycarbonyl, (C3-C6) -cycloalkoxycarbonyl, (C1-C4) -alkylaminocarbonyl, (C2-C6) -dialkylaminocarbonyl , (C3-C6) -Cycloalkylaminocarbonyl, (C1-C4) -Alkylcarbonylamino, (C1-C4) -Haloalkylcarbonylamino, (C2-C6) -Cycloalkylcarbonylamino, (C1-C4) -alkoxycarbonylamino, (C1-C4) -Alkylaminocarbonylamino, ( C2-C6) - Dialkylaminocarbonylamino, carboxy- (C1-C4) -alkyl, (C1-C4) -alkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkoxycarbonyl- (C1-C4 ) -alkyl, (C3-C6) -cycloalkoxycarbonyl- (C1-C4) -alkyl, (C 1 -C 4 ) -alkylthio, (C 1 -C 4 ) -haloalkylthio, (C 3 -C 6 ) -cycloalkylthio, (C 1 -C 4 ) -Alkylsulphinyl, (C 1 -C 4 ) -haloalkylsulphinyl, (C 3 -C 6 ) -cycloalkylsulphinyl, (C 1 -C 4 ) -alkylsulphonyl, (C 1 -C 4 ) -haloalkylsulphonyl, (C 3 -C 6 ) -cycloalkylsulphonyl, (C 1 -C 4 ) -alkylaminosulphonyl, (C 2 -C 6 ) -dialkylaminosulphonyl or (C3-C6) -trialkylsilyl, R2 and R3 independently of one another for hydrogen, halogen, hydroxy, amino, cyano, nitro, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C2-C4) -alkenyl, (C2 -C4) -haloalkenyl, (C2-C4) -alkynyl, (C2-C4) -haloalkynyl, (C1-C4) -alkoxy, (C1-C4) -haloalkoxy, (C1-C6) -cycloalkoxy, (C1-C4 ) -Alkoxy- (C1-C4) -alkyl, (C1-C4) -haloalkoxy- (C1-C4) -alkyl, (C1-C4) -alkylthio- (C1-C4) -alkyl, (C1-C4) - Alkylsulfinyl- (C1-C4) -alkyl, (C1-C4) -alkylsulfonyl- (C1-C4) -alkyl, (C1-C4) -alkylcarbonyl, (C1-C4) -haloalkylcarbonyl, (C3-C6) -cycloalkylcarbonyl, Carboxyl, (C1-C4) -alkoxycarbonyl, (C1-C4) -haloalkoxycarbonyl, (C3-C6) -cycloalkoxycarbonyl, (C1-C4) -alkylaminocarbonyl, (C2-C6) -dialkylaminocarbonyl, (C3-C6) -cycloalkylaminocarbonyl, (C1-C4) -Alkylcarbonylamino, (C1-C4) -Haloalkylcarbonylamino, (C2-C6) - Cycloalkylcarbonylamino, (C1-C4) -Alkoxycarbonylamino, (C1-C4) -Alkylaminocarbonylamino, (C2-C6) -Dialkylaminocarbonylamino, Carboxy- (C1-C4) -alkyl, (C1-C4) -alkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkoxycarbonyl- (C1-C4) -a alkyl, (C3-C6) -cycloalkoxycarbonyl- (C1-C4) -alkyl, (C 1 -C 4 ) -alkylthio, (C 1 -C 4 ) -haloalkylthio, (C 3 -C 6 ) -cycloalkylthio, (C 1 -C 4 ) -Alkylsulfinyl, (C 1 -C 4 ) -haloalkylsulfinyl, (C 3 -C 6 ) -cycloalkylsulfinyl, (C 1 -C 4 ) -alkylsulfonyl, (C 1 -C 4 ) -haloalkylsulfonyl, (C 3 -C 6 ) -cycloalkylsulphonyl, (C 1 -C 4 ) -alkylaminosulphonyl, (C 2 -C 6 ) -dialkylaminosulphonyl or (C 3 -C 6 ) -trialkylsilyl, R4 stands for hydrogen, halogen, hydroxy, amino, cyano , Nitro, formyl, formamide, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl, (C 2 -C 4 ) -alkenyl, (C 2 -C 4 ) -haloalkenyl, (C 2 -C 4 ) -alkynyl, (C 2 -C 4 ) -haloalkynyl, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -haloalkoxy, (C 1 -C 6 ) -Cycloalkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkoxy- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -Alkylthio- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylsulfinyl- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylsulfonyl- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) - alkylcarbonyl, (C 1 -C 4 ) -haloalkylcarbonyl, (C 3 -C 6 ) - Cycloalkylcarbonyl, carboxyl, (C 1 -C 4 ) -alkoxycarbonyl, (C1-C4) -haloalkoxycarbonyl, (C3-C6) -cycloalkoxycarbonyl, (C1-C4) -alkylaminocarbonyl, (C2-C6) -dialkylaminocarbonyl, (C3-C6 ) -Cycloalkylaminocarbonyl, (C1-C4) -Alkylcarbonylamino, (C1-C4) -Haloalkylcarbonylamino, (C2-C6) - Cycloalkylcarbonylamino, (C1-C4) -Alkoxycarbonylamino, (C1-C4) -Alkylaminocarbonylamino, (C2-C6) - Dialkylaminocarbonylamino, carboxy- (C1-C4) -alkyl, (C1-C4) -alkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkoxycarbonyl- (C1-C4) -alkyl, (C3-C6) - Cycloalkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -alkylcarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkylcarbonyl- (C1-C4) -alkyl, (C3-C6) -cycloalkylcarbonyl- (C1-C4) -alkyl, cyano- (C1-C4) -alkyl, (C1-C4) -alkylthio, (C1-C4) -haloalkylthio, (C3-C6) -cycloalkylthio, (C1-C4) -alkylsulfinyl, (C1-C4) -Haloalkylsulfinyl, (C3-C6) -cycloalkylsulfinyl, (C1-C4) -alkylsulfonyl, (C1-C4) -haloalkylsulfonyl, (C3-C6) -cycloalkylsulfonyl, (C1-C4) -alkylaminosulfonyl, (C2 -C6) -dialkylaminosulfonyl or (C3-C6) - trialkylsilyl ste ht, R5 independently of one another for halogen, hydroxy, amino, cyano, nitro, formyl, formamide, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C2-C4) -alkenyl, (C2-C4) -haloalkenyl, (C2-C4) -alkynyl, (C2-C4) -haloalkynyl, (C1-C4) -alkoxy, (C1-C4) -haloalkoxy, (C1-C6) -cycloalkoxy, (C1 -C4) -alkoxy- (C1-C4) -alkyl, (C1-C4) -haloalkoxy- (C1-C4) -alkyl, (C1-C4) -alkylthio- (C1-C4) -alkyl, (C1-C4 ) -Alkylsulfinyl- (C1-C4) -alkyl, (C1-C4) -alkylsulfonyl- (C1-C4) - alkyl, (C1-C4) -alkylcarbonyl, (C1-C4) -haloalkylcarbonyl, (C3-C6) - Cycloalkylcarbonyl, carboxyl, (C1-C4) -alkoxycarbonyl, (C1-C4) -haloalkoxycarbonyl, (C3-C6) -cycloalkoxycarbonyl, (C1-C4) -alkylaminocarbonyl, (C2-C6) -dialkylaminocarbonyl, (C3-C6) - Cycloalkylaminocarbonyl, (C1-C4) -Alkylcarbonylamino, (C1-C4) -Haloalkylcarbonylamino, (C2-C6) -Cycloalkylcarbonylamino, (C1-C4) -Alkoxycarbonylamino, (C1-C4) - Alkylaminocarbonylamino, (C2-C6) -Dialkylaminocarbon Carboxy- (C1-C4) -alkyl, (C1-C4) -alkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkoxycarbonyl- (C1-C4) -alky l, (C3-C6) - cycloalkoxycarbonyl- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylthio, (C 1 -C 4 ) -haloalkylthio, (C 3 -C 6 ) -cycloalkylthio, (C 1 -C 4 ) -Alkylsulfinyl, (C 1 -C 4 ) -haloalkylsulfinyl, (C 3 -C 6 ) -cycloalkylsulfinyl, (C 1 -C 4 ) -alkylsulfonyl, (C 1 -C 4 ) -haloalkylsulfonyl, (C 3 -C 6 ) -cycloalkylsulphonyl, (C 1 -C 4 ) -alkylaminosulphonyl, (C 2 -C 6 ) -dialkylaminosulphonyl or (C 3 -C 6 ) -trialkylsilyl, n is 0, 1, 2, 3, or 4, R6 for hydrogen, halogen, cyano, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl, (C 1 -C 4 ) -Alkoxy or (C 1 -C 4 ) -haloalkoxy, and R7 is hydrogen or halogen, where R6 and R7 are not simultaneously hydrogen. The compounds of the general formula (I) can be prepared by adding a suitable inorganic or organic acid, such as, for example, mineral acids, such as, for example, HCl, HBr, H2SO4, H3PO4 or HNO3, or organic acids, e.g. B. carboxylic acids, such as formic acid, acetic acid, propionic acid, oxalic acid, lactic acid or salicylic acid or sulfonic acids, such as p-toluenesulfonic acid, to a basic group, such as amino, alkylamino, dialkylamino, piperidino, morpholino or pyridino, form salts. These salts then contain the conjugate base of the acid as an anion. Suitable substituents which are present in deprotonated form, such as, for example, sulfonic acids, certain sulfonic acid amides or carboxylic acids, can form internal salts with groups which can themselves be protonated, such as amino groups. Salt formation can also be caused by the action of a base Compounds of general formula (I) take place. Suitable bases are, for example, organic amines such as trialkylamines, morpholine, piperidine and pyridine, and ammonium, alkali or alkaline earth metal hydroxides, carbonates and hydrogen carbonates, in particular sodium and potassium hydroxide, sodium and potassium carbonate and sodium and potassium hydrogen carbonate. These salts are compounds in which the acidic hydrogen is replaced by a cation suitable for agriculture, for example metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or also ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NRaRbRcRd] +, in which Ra to Rd each independently represent an organic radical, in particular alkyl, aryl, arylalkyl or alkylaryl. Alkylsulfonium and alkylsulfoxonium salts, such as (C1-C4) -trialkylsulfonium and (C1-C4) -trialkylsulfoxonium salts, are also suitable. The substituted 5- (2-heteroaryloxyphenyl) isoxazolines of the general formula (I) according to the invention may, depending on external conditions such as pH, solvent and temperature, possibly exist in various tautomeric structures, all of which are encompassed by the general formula (I) . The compounds of the formula (I) used according to the invention and their salts are also referred to below as “compounds of the general formula (I)”. Preferred subject matter of the invention are compounds of the general formula (I) in which Z is -CR7- or -N-, R1 is hydrogen, halogen, cyano, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3- C6) -cycloalkyl, (C2-C4) -alkenyl, (C2-C4) -haloalkenyl, (C2-C4) -alkynyl or (C2-C4) -haloalkynyl, R2 and R3 independently of one another represent hydrogen, halogen, cyano, ( C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C2-C4) -alkenyl, (C2-C4) -haloalkenyl, (C2-C4) -alkynyl or (C2- C4) - Haloalkynyl, R4 stands for hydrogen, halogen, cyano, formyl, formamide, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C2-C4) -alkenyl, (C2-C4) -haloalkenyl, (C2-C4) -alkynyl, (C2-C4) -haloalkynyl, (C1-C4) -alkoxy, (C1-C4) -haloalkoxy, (C1-C6) -cycloalkoxy, (C1 -C4) -alkoxy- (C1-C4) -alkyl, (C1-C4) -haloalkoxy- (C1-C4) -alkyl, (C1-C4) -alkylthio- (C1-C4) -alkyl, (C1-C4 ) - alkylsulfinyl- (C1-C4) -alkyl, (C1-C4) -alkylsulfonyl- (C1-C4) -alkyl, (C1-C4) -alkylcarbonyl, (C1-C4) -haloalkylcarbonyl, (C3-C6) - Cycloalkylcarbonyl, carboxyl, ( C1-C4) -alkoxycarbonyl, (C1-C4) -haloalkoxycarbonyl, (C3-C6) -cycloalkoxycarbonyl, (C1-C4) -alkylaminocarbonyl, (C2-C6) -dialkylaminocarbonyl, (C3-C6) -cycloalkylaminocarbonyl, (C1-C4) -alkylcarbonylamino, (C1 -C4) -haloalkylcarbonylamino, (C2-C6) -cycloalkylcarbonylamino, (C1-C4) -alkoxycarbonylamino, (C1-C4) -alkylaminocarbonylamino, (C2-C6) -dialkylaminocarbonylamino, carboxy- (C1-C4) -alkyl, (C1 -C4) -alkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkoxycarbonyl- (C1-C4) -alkyl, (C3-C6) -cycloalkoxycarbonyl- (C1-C4) -alkyl, (C1-C4 ) -Alkylcarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkylcarbonyl- (C1-C4) -alkyl, (C3-C6) -cycloalkylcarbonyl- (C1-C4) -alkyl, cyano- (C1-C4 ) -alkyl, (C1-C4) -alkylthio, (C1-C4) - haloalkylthio, (C3-C6) -cycloalkylthio, (C1-C4) -alkylsulfinyl, (C1-C4) -haloalkylsulfinyl, (C3-C6) - Cycloalkylsulfinyl, (C1-C4) -alkylsulfonyl, (C1-C4) -haloalkylsulfonyl, (C3-C6) -cycloalkylsulfonyl, (C1-C4) -alkylaminosulfonyl, (C2-C6) -dialkylaminosulfonyl or (C3-C6) -trialkylsilyl , R5 independently of one another for halogen, hydroxy, amino, C yano, nitro, formyl, formamide, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl, (C 2 -C 4 ) -alkenyl, (C 2 -C 4 ) -haloalkenyl, (C 2 -C 4 ) -alkynyl, (C 2 -C 4 ) -haloalkynyl, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -haloalkoxy, (C 1 -C 6 ) - Cycloalkoxy, (C 1 -C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkoxy- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylthio- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylsulfinyl- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylsulfonyl- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylcarbonyl, (C 1 -C 4 ) -haloalkylcarbonyl, (C 3 -C 6 ) -cycloalkylcarbonyl, carboxyl, (C 1 -C 4 ) -alkoxycarbonyl, (C 1 -C 4 ) -haloalkoxycarbonyl, (C 3 -C 6 ) -cycloalkoxycarbonyl, (C 1 -C 4 ) -alkylaminocarbonyl, (C 2 -C 6 ) -dialkylaminocarbonyl, (C 3 -C 6 ) -cycloalkylaminocarbonyl, (C 1 -C 4 ) -Alkylcarbonylamino, (C 1 -C 4 ) -haloalkylcarbonylamino, (C 2 -C 6 ) -cycloalkylcarbonylamino, (C 1 -C 4 ) -alkoxycarbonylamino, (C 1 -C 4 ) -alkylaminocarbonylamino, (C2-C6) -dialkylaminocarbonylamino, carboxy- (C1-C4) -alky l, (C1-C4) -alkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkoxycarbonyl- (C1-C4) -alkyl, (C3-C6) -cycloalkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -Alkylthio, (C1-C4) -haloalkylthio, (C3-C6) -cycloalkylthio, (C1-C4) -alkylsulfinyl, (C1-C4) -haloalkylsulfinyl, (C3-C6) -cycloalkylsulfinyl, (C1 -C4) -Alkylsulfonyl, (C1-C4) -haloalkylsulfonyl, (C3-C6) -cycloalkylsulfonyl, (C1-C4) -alkylaminosulfonyl, (C2-C6) -dialkylaminosulfonyl or (C3-C6) -trialkylsilyl is equal to 0 , 1, 2, or 3, R6 for hydrogen, halogen, cyano, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C1-C4) -alkoxy or (C1 -C4) -haloalkoxy, and R7 represents hydrogen or halogen, where R6 and R7 are not simultaneously hydrogen. Particularly preferred subject matter of the invention are compounds of the general formula (I) in which Z is -CR7- or -N-, R1 is hydrogen, halogen, (C1-C4) -alkyl or (C1-C4) -haloalkyl, R2 and R3 independently each other for hydrogen, halogen, (C1-C4) -alkyl or (C1-C4) -haloalkyl, R4 for hydrogen, halogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, ( C 3 -C 6 ) cycloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (C 1 -C 4 ) alkoxy, carboxyl, (C 1 -C 4 ) alkoxycarbonyl , carboxy (C 1 - C 4) alkyl or (C 1 -C 4) alkoxycarbonyl (C 1 -C 4) -alkyl, R 5 independently represents halogen, amino, cyano, nitro, (C 1 - C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl, (C 2 -C 4 ) -alkenyl, (C 2 -C 4 ) -alkynyl or (C 1 - C 4 ) -alkoxy, n is 0, 1, 2, or 3, R6 is hydrogen, halogen, cyano, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl , (C1-C4) -alkoxy or (C1-C4) -haloalkoxy, and R7 is hydrogen or halogen, where R6 and R 7 are not hydrogen at the same time. Very particularly preferred subject of the invention are compounds of the general formula (I) in which Z is -CR7- or -N-, R1 is hydrogen, (C1-C4) -alkyl or (C1-C4) -haloalkyl, R2 is hydrogen, R3 is hydrogen, R4 is hydrogen, halogen, (C1-C4) -alkyl, (C1-C4) -Haloalkyl, (C1-C4) -alkoxy, carboxyl or (C1-C4) -alkoxycarbonyl, R5 independently of one another represent halogen, cyano, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C2-C4 ) - Alkenyl or (C2-C4) -alkynyl, n is 0, 1 or 2, R6 is hydrogen, halogen, cyano, (C 1 -C 4 ) -alkyl or (C 1 -C 4 ) -haloalkyl , and R7 represents hydrogen or halogen, where R6 and R7 are not simultaneously hydrogen. Extremely preferred subject of the invention are compounds of the general formula (I) in which Z is -CR7- or -N-, R1 is hydrogen, methyl or trifluoromethyl, R2 is hydrogen, R3 is hydrogen, R4 is chlorine, bromine, methyl , Difluoromethyl, trifluoromethyl, methoxy, carboxyl, methoxycarbonyl or ethoxycarbonyl, R5 independently represents fluorine, bromine, methyl, vinyl or cyano, n is 0 or 1, R6 represents hydrogen, fluorine or chlorine, and R7 represents hydrogen or fluorine, where R6 and R7 are not simultaneously hydrogen. The general or preferred radical definitions given above apply both to the end products of the general formula (I) and correspondingly to the starting materials or intermediates required in each case for the preparation. These radical definitions can be combined as desired with one another, that is to say also between the specified preferred ranges. Mainly for reasons of higher herbicidal activity, better selectivity and / or better producibility, compounds according to the invention of the general formula (I) mentioned or their salts or their use according to the invention are of particular interest in which individual radicals are one of those already mentioned or mentioned below have preferred meanings, or in particular those in which one or more of the preferred meanings already mentioned or mentioned below occur in combination. With regard to the compounds according to the invention, the terms used above and below are explained. These are familiar to the person skilled in the art and have in particular the meanings explained below: Unless otherwise defined, the general rule for the designation of chemical groups is that the connection to the framework or the rest of the molecule takes place via the last-mentioned structural element of the chemical group in question , ie for example in the case of (C2-C8) -alkenyloxy via the oxygen atom, and in the case of heterocyclyl- (C1-C8) -alkyl or R12O (O) C- (C1-C8) -alkyl in each case via the carbon atom the alkyl group. According to the invention, "alkylsulfonyl" - on its own or as part of a chemical group - stands for straight-chain or branched alkylsulfonyl, preferably having 1 to 4 carbon atoms, for example (but not limited to) (C1-C4) -Alkylsulfonyl such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl. According to the invention, "alkylthio" - on its own or as part of a chemical group - stands for straight-chain or branched S-alkyl, preferably with 1 to 4 carbon atoms, such as (C1-C4) -alkylthio, for example (but not limited to) (C1-C4 ) -Alkylthio such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio, 1,1-dimethylethylthio. "Alkylsulfinyl (alkyl-S (= O) -)", unless otherwise defined elsewhere, stands according to the invention for alkyl radicals that are bonded to the skeleton via -S (= O) -, such as (C1-C4) -alkylsulfinyl, z. B. (but not limited to) (C1-C4) -alkylsulfinyl such as methylsulfinyl, ethylsulfinyl, propylsulfinyl, 1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl, 2-methylpropylsulfinyl, 1,1-dimethylethylsulfinyl. “Alkoxy” means an alkyl radical bonded via an oxygen atom, e.g. B. (but not limited to) (C 1 -C 4 ) -alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1-dimethylethoxy. “Cycloalkoxy” means a cycloalkyl radical bonded via an oxygen atom. “Alkylcarbonyl” (alkyl-C (= O) -), unless otherwise defined, stands according to the invention for alkyl radicals which are bonded to the skeleton via -C (= O) -, such as (C 1 -C 4 ) -Alkylcarbonyl. The number of carbon atoms relates to the alkyl radical in the alkylcarbonyl group. "Alkoxycarbonyl (alkyl-OC (= O) -)", unless otherwise defined: alkyl radicals that are attached to the structure via -OC (= O) -, such as (C1-C4) -alkoxycarbonyl. The number of carbon atoms relates to the alkyl radical in the alkoxycarbonyl group. The term "halogen" means, for example, fluorine, chlorine, bromine or iodine. If the term is used for a radical, "halogen" means, for example, a fluorine, chlorine, bromine or iodine atom. According to the invention, “alkyl” means a straight-chain or branched open-chain, saturated hydrocarbon radical which is optionally mono- or polysubstituted and in the latter case is referred to as “substituted alkyl”. Preferred substituents are halogen atoms, alkoxy, haloalkoxy, cyano, alkylthio, haloalkylthio, amino or nitro groups, which are particularly preferred Methoxy, methyl, fluoroalkyl, cyano, nitro, fluorine, chlorine, bromine or iodine. The prefix “bis” also includes the combination of different alkyl radicals, e.g. B. methyl (ethyl) or ethyl (methyl). “Haloalkyl”, “-alkenyl” and “-alkynyl” mean by identical or different halogen atoms, partially or completely substituted alkyl, alkenyl or alkynyl, for example monohaloalkyl (= monohaloalkyl) such as. B. CH2CH2Cl, CH2CH2Br, CHClCH3, CH2Cl, CH2F; Perhaloalkyl such as, for example, CCl3, CClF2, CFCl2, CF2CClF2, CF2CClFCF3; Polyhaloalkyl such as e.g. B. CH2CHFCl, CF2CClFH, CF2CBrFH, CH2CF3; The term perhaloalkyl also includes the term perfluoroalkyl. “Haloalkoxy” is, for example, OCF3, OCHF2, OCH2F, OCF2CF3, OCH2CF3 and OCH2CH2Cl; the same applies to haloalkenyl and other halogen-substituted radicals. The expression "(C 1 -C 4 ) -alkyl" mentioned here by way of example means a shorthand for straight-chain or branched alkyl with one to 4 carbon atoms corresponding to the range given for carbon atoms, ie includes the radicals methyl, ethyl, 1-propyl, 2 -Propyl, 1-butyl, 2-butyl, 2-methylpropyl or tert-butyl. General alkyl radicals with a larger specified range of carbon atoms, e.g. B. "(C 1 -C 6 ) -Alkyl", accordingly also include straight-chain or branched alkyl radicals with a larger number of carbon atoms, ie according to the example also the alkyl radicals with 5 and 6 carbon atoms. Unless specifically stated, the hydrocarbon radicals such as alkyl, alkenyl and alkynyl radicals, including those in composite radicals, are preferably the lower carbon skeletons, for example with 1 to 6 carbon atoms or, in the case of unsaturated groups, with 2 to 6 carbon atoms. Alkyl radicals, including those in the composite radicals such as alkoxy, haloalkyl, etc., mean, for example, methyl, ethyl, n- or i-propyl, n-, i-, t- or 2-butyl, pentyls, hexyls such as n-hexyl, i -Hexyl and 1,3-dimethylbutyl, heptyls such as n-heptyl, 1-methylhexyl and 1,4-dimethylpentyl; Alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals corresponding to the alkyl radicals, at least one double bond or triple bond being present. Residues with a double bond or triple bond are preferred. The term “alkenyl” also includes, in particular, straight-chain or branched open-chain hydrocarbon radicals with more than one double bond, such as 1,3-butadienyl and 1,4-pentadienyl, but also allenyl or cumulenyl radicals with one or more cumulative double bonds, such as for example allenyl (1,2-propadienyl) and 1,2-butadienyl. Alkenyl means, for example, vinyl, which can optionally be substituted by further alkyl radicals, e.g. (but not limited to) (C2-C4) -alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl. The term “alkynyl” particularly also includes straight-chain or branched open-chain hydrocarbon radicals with more than one triple bond or with one or more triple bonds and one or more double bonds, such as 1,3-butatrienyl. (C2-C4) -Alkynyl means, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl. The term “cycloalkyl” means a carbocyclic, saturated ring system with preferably 3-6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which is optionally further substituted, preferably by hydrogen, alkyl, alkoxy, cyano, nitro, alkylthio , Haloalkylthio, halogen, alkenyl, alkynyl, haloalkyl, AMino, alkylamino, bisalkylamino, alkocycarbonyl, hydroxycarbonyl, arylalkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl. In the case of optionally substituted cycloalkyl, cyclic systems with substituents are included, with substituents with a double bond on the cycloalkyl radical, e.g. B. an alkylidene group such as methylidene are included. In the case of optionally substituted cycloalkyl, multicyclic aliphatic systems are also included, such as, for example, bicyclo [1.1.0] butan-1-yl, bicyclo [1.1.0] butan-2-yl, bicyclo [2.1.0] pentan-1-yl , Bicyclo [1.1.1] pentan-1-yl, bicyclo [2.1.0] pentan-2-yl, bicyclo [2.1.0] pentan-5-yl, bicyclo [2.1.1] hexyl, bicyclo [2.2.1 ] hept-2-yl, bicyclo [2.2.2] octan-2-yl, bicyclo [3.2.1] octan-2-yl, bicyclo [3.2.2] nonan-2-yl, adamantan-1-yl and adamantane -2-yl, but also systems such as B. 1,1'-Bi (cyclopropyl) -1-yl, 1,1'-Bi (cyclopropyl) -2-yl. The term “(C 3 -C 6 ) -cycloalkyl” denotes a shorthand notation for cycloalkyl with three to 6 carbon atoms, corresponding to the range given for carbon atoms. In the case of substituted cycloalkyl, spirocyclic aliphatic systems are also included, such as spiro [2.2] pent-1-yl, spiro [2.3] hex-1-yl, spiro [2.3] hex-4-yl, 3-spiro [2.3] hex-5-yl, spiro [3.3] hept-1-yl, spiro [3.3] hept-2-yl. “Cycloalkenyl” means a carbocyclic, non-aromatic, partially unsaturated ring system with preferably 4-6 C atoms, eg 1-cyclobutenyl, 2-cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, or 1-cyclohexenyl, 2-cyclohexenyl , 3-Cyclohexenyl, 1,3-Cyclohexadienyl or 1,4-Cyclohexadienyl, with substituents with a double bond on the cycloalkenyl radical, e.g. B. an alkylidene group such as methylidene are included. In the case of optionally substituted cycloalkenyl, the explanations for substituted cycloalkyl apply accordingly. The term "alkylidene", e.g. B. also in the form (C1-C10) -Alkyliden, denotes the remainder of a straight-chain or branched open-chain hydrocarbon radical which is bonded via a double bond. Naturally, only positions on the base are used as binding sites for alkylidene Question where two H atoms can be replaced by the double bond; Remnants are e.g. B. = CH2, = CH-CH3, = C (CH3) -CH3, = C (CH3) -C2H5 or = C (C2H5) -C2H5. Cycloalkylidene means a carbocyclic radical which is bonded via a double bond. “Arylalkyl” stands for an aryl radical attached via an alkyl group. According to the invention, "haloalkylthio" - on its own or as part of a chemical group - stands for straight-chain or branched S-haloalkyl, preferably with 1 to 4 carbon atoms, such as (C1-C4) -haloalkylthio, e.g. (but not limited to) trifluoromethylthio, pentafluoroethylthio, Difluoromethyl, 2,2-difluoroeth-1-ylthio, 2,2,2-difluoroeth-1-ylthio, 3,3,3-prop-1-ylthio. According to the invention, "trialkylsilyl" - on its own or as part of a chemical group - stands for straight-chain or branched Si-alkyl, preferably with 1 to 6 carbon atoms, such as tri- [(C 1 -C 2 ) -alkyl] silyl, eg (but not limited to) trimethylsilyl, triethylsilyl. If the compounds can form tautomers by hydrogen shift, which structurally formally would not be covered by the general formula (I), then these tautomers are nevertheless included in the definition of the compounds of the general formula (I) according to the invention, unless a specific tautomer is the subject of consideration is. For example, many carbonyl compounds can exist both in the keto form and in the enol form, both forms being encompassed by the definition of the compound of the general formula (I). The compounds of the general formula (I) can be present as stereoisomers, depending on the nature and linkage of the substituents. The possible stereoisomers defined by their specific spatial shape, such as enantiomers, diastereomers, Z and E isomers, are all encompassed by the general formula (I). If, for example, one or more alkenyl groups are present, diastereomers (Z and E isomers) can occur. If, for example, one or more asymmetric carbon atoms are present, enantiomers and diastereomers can occur. Stereoisomers can be obtained from the mixtures obtained during the preparation by customary separation methods. The chromatographic separation can be carried out both on an analytical scale to determine the enantiomeric excess or the diastereomeric excess, as well as on a preparative scale to produce test samples for biological testing. Likewise, stereoisomers can be selectively produced by using stereoselective reactions using optically active starting materials and / or auxiliaries. The invention thus also relates to all stereoisomers which are encompassed by the general formula (I) but are not indicated with their specific stereoform, and to mixtures thereof. If the compounds are obtained as solids, they can also be purified by recrystallization or digestion. If individual compounds (I) are not satisfactorily accessible in the ways described below, they can be prepared by derivatizing other compounds (I). Suitable isolation, purification and stereoisomer separation processes for compounds of the general formula (I) are methods which are generally known to the person skilled in the art from analogous cases, for example by physical processes such as crystallization, chromatography processes, especially column chromatography and HPLC (high pressure liquid chromatography), distillation , optionally under reduced pressure, extraction and other processes, any remaining mixtures can usually be separated by chromatographic separation, for example on chiral solid phases. For preparative quantities or on an industrial scale, processes such as crystallization, for example diastereomeric salts, which can be obtained from the diastereomeric mixtures with optically active acids and, if acidic groups are present, with optically active bases, are suitable. The present invention also claims processes for the preparation of the compounds of the general formula (I) according to the invention. The compounds of the general formula (I) according to the invention can be prepared, inter alia, starting from known processes. The synthetic routes used and investigated are based on commercially available or easily manufactured building blocks. The groupings R1, R2, R3, R4, R5, R6, Z and n of the general formula (I) have the meanings defined above in the schemes below, unless the definitions are exemplary, but not restrictive. Compounds according to the invention can be prepared, for example, by the method given in Scheme 1.
Figure imgf000015_0001
Scheme 1. The isoxazolines of the general formula (I) can be prepared via an alkylation of the phenols (EI) in the presence of bases with the pyridine or pyrimidine (E-II), where LG is a leaving group (such as a halogen or -SO2Me) . The base can be a carbonate salt of an alkali metal (such as sodium, potassium, or cesium). The reactions are generally carried out in an organic solvent, such as, for example, acetonitrile, dimethylformamide, or 1-methyl-2-pyrrolidone, at temperatures between 0 ° C. and the boiling point of the solvent. The phenols of the general formula (EI) can be prepared by cyclizing the chloroximes (E-IV) with alkenes (E-III) in the presence of bases such as, for example, sodium hydrogen carbonate or potassium hydrogen carbonate. The reactions are generally carried out in an organic solvent, such as, for example, isopropanol or dimethoxyethane, at temperatures between 0 ° C. and the boiling point of the solvent. Chloroximes of the general formula (E-IV) are known from the literature and can be prepared from the corresponding oximes. Such reactions are known to the person skilled in the art and are described, for example, in Angewandte Chemie - International Edition, 2016, 55, 8353-8357. Synthesis Examples: Synthesis Example No. I-1 Synthesis Step 1: 2- (3,5-Dimethyl-4H-isoxazol-5-yl) -3-fluorophenol
Figure imgf000016_0001
A mixture of 93.5 mg (10 mmol) N-hydroxyacetimidoyl chloride, 375 mg (2.5 mmol) 3-fluoro-2-isopropenylphenol and 495 mg (28 mmol) KHCO3 in 10 mL dimethoxyethane are heated at 50 ° C for 18 h. The resulting reaction mixture is cooled to room temperature, filtered and extracted several times with ethyl acetate. The combined organic phases are washed with sat. aqueous NaCl, dried over magnesium sulfate, filtered and concentrated. Subsequent purification of the resulting crude product by column chromatography gave 2- (3,5-dimethyl-4H-isoxazol-5-yl) -3-fluorophenol. The yield corresponds to 165 mg (61% of theory). Synthesis stage 2: 5- [2- (5-chloropyrimidin-2-yl) oxy-6-fluoro-phenyl] -3,5-dimethyl-4H-isoxazole (table example No. I-1)
Figure imgf000017_0001
A mixture of 165 mg (0.79 mmol) 2- (3,5-dimethyl-4H-isoxazol-5-yl) -3-fluorophenol, 118 mg (0.79 mmol) 2,5-dichloropyridine and 327 mg (2.37 mmol) K2CO3 in 10 mL acetonitrile are heated at 80 ° C for 18 h. The resulting reaction mixture is cooled to room temperature and concentrated. Subsequent purification of the resulting crude product by column chromatography gave 5- [2- (5-chloropyrimidin-2-yl) oxy-6-fluoro-phenyl] -3,5-dimethyl-4H-isoxazole. The yield corresponds to 125 mg (49% of theory). In analogy to the preparation examples given above and recited at the appropriate point, the compounds of the general formula (I) mentioned below and shown in Table 1 are obtained
Figure imgf000017_0002
Table 1
Figure imgf000017_0003
Figure imgf000018_0001
Figure imgf000019_0001
NMR-Daten ausgewählter Beispiele Ausgewählte detaillierte Synthesebeispiele für die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I) sind im Folgenden aufgeführt. Die 1H-NMR-spektroskopischen Daten, die für die in den nachfolgenden Abschnitten beschriebenen chemischen Beispiele angegeben sind, (400 MHz bei 1H- NMR, Lösungsmittel CDCl3 oder d6-DMSO,internerStandard:Tetramethylsilan6= 0.00ppm),wurden mit einem Gerät der Firma Bruker erhalten, und die bezeichneten Signale haben die nachfolgend aufgeführten Bedeutungen: br = breit(es); s = Singulett, d = Dublett, t = Triplett, dd = Doppeldublett, ddd = Dublett eines Doppeldubletts, m = Multiplett, q = Quartett, quint = Quintett, sext = Sextett, sept = Septett, dq = Doppelquartett, dt = Doppeltriplett. Bei Diastereomerengemischen werden entweder die jeweils signifikanten Signale beider Diastereomere oder das charakteristische Signal des Hauptdiastereomers angegeben. Die nachfolgend aufgeführten spektroskopischen Daten ausgewählter Tabellenbeispiele wurden über klassische 1H-NMR-Interpretation ausgewertet. Klassische 1H-NMR-Interpretation Beispiel Nr.1-16: 1H-NMR (400 MHz, CDCl3d , ppm) 7.89 (d, 1H), 7.56-7.52 (m, 1H), 7.49-7.47 (m, 1H), 7.41-7.37 (m, 1H), 7.31-7.27 (m, 1H), 7.12 (dd, 1H), 6.49 (t, 1H), 5.90 (dd, 1H), 3.54-3.45 (m, 1H), 3.20-3.13 (m, 1H). Beispiel Nr.1-17: 1H-NMR (400 MHz, CDCl3d , ppm) 8.11 (d, 1H), 7.69-7.66 (m, 1H), 7.48-7.46 (m, 1H), 7.40-7.36 (m, 1H), 7.27-7.25 (m, 1H), 7.07 (dd, 1H), 6.91 (d, 1H), 6.48 (t, 1H), 5.88 (dd, 1H), 3.49-3.40 (m, 1H), 3.19- 3.11 (m, 1H). Beispiel Nr.1-18: 1H-NMR (400 MHz, CDCl3d , ppm) 8.42 (s, 2H), 7.50 (dd, 1H), 7.44-7.40 (m, 1H), 7.34-7.30 (m, 1H), 7.15 (dd, 1H), 6.49 (t, 1H), 5.90 (dd, 1H), 3.52-3.45 (m, 1H), 3.17-3.10 (m, 1H). Beispiel Nr.1-19: 1H-NMR (400 MHz, CDCl3d , ppm) 8.50 (s, 2H), 7.50 (dd, 1H), 7.44-7.40 (m, 1H), 7.35-7.31 (m, 1H), 7.15 (dd, 1H), 6.49 (t, 1H), 5.88 (dd, 1H), 3.52-3.45 (m, 1H), 3.17-3.10 (m, 1H). Beispiel Nr.1-20: 1H-NMR (400 MHz, CDCl3d , ppm) 7.88 (dd, 1H), 7.55 (dd, 1H), 7.22-7.19 (m, 1H), 7.13-7.05 (m, 2H), 6.49 (t, 1H), 5.84 (dd, 1H), 3.54-3.46 (m, 1H), 3.16-3.09 (m, 1H). Beispiel Nr.1-21: 1H-NMR (400 MHz, CDCl3d , ppm) 8.50 (s, 2H), 7.23-7.20 (m, 1H), 7.12-7.09 (m, 2H), 6.49 (t, 1H), 5.83 (dd, 1H), 3.53-3.45 (m, 1H), 3.14-3.07 (m, 1H). Beispiel Nr.1-32: 1H-NMR (400 MHz, CDCl3d , ppm) 7.88 (d, 1H), 7.53 (dd, 1H), 7.37 (dd, 1H), 7.05-7.00 (m, 1H), 6.95- 6.93 (m, 1H), 6.49 (t, 1H), 6.07 (dd, 1H), 3.50-3.34 (m, 2H). Beispiel Nr.1-33: 1H-NMR (400 MHz, CDCl3d , ppm) 8.10 (d, 1H), 7.68 (dd, 1H), 7.39-7.33 (m, 1H), 7.00-6.97 (m, 1H), 6.92-6.88 (m, 2H), 6.48 (t, 1H), 6.06 (dd, 1H), 3.46-3.36 (m, 2H). Beispiel Nr.1-34: 1H-NMR (400 MHz, CDCl3d , ppm) 8.41 (s, 2H), 7.43-7.38 (m, 1H), 7.08-7.03 (m, 1H), 6.99-6.96 (m, 1H), 6.50 (t, 1H), 6.04 (dd, 1H), 3.52-3.37 (m, 2H). Beispiel Nr.1-35: 1H-NMR (400 MHz, CDCl3d , ppm) 8.49 (s, 2H), 7.44-7.38 (m, 1H), 7.09-7.04 (m, 1H), 6.99-6.96 (m, 1H), 6.50 (t, 1H), 6.03 (dd, 1H), 3.46-3.37 (m, 2H). Beispiel Nr.1-39: 1H-NMR (400 MHz, CDCl3d , ppm) 7.82 (d, 1H), 7.40-7.34 (m, 1H), 7.04-6.98 (m, 1H), 6.93-6.90 (m, 1H), 6.49 (t, 1H), 6.10 (dd, 1H), 3.57-3.35 (m, 2H). Beispiel Nr.1-41: 1H-NMR (400 MHz, CDCl3d , ppm) 8.48 (s, 2H), 7.45-7.36 (m, 2H), 7.09 (dd, 1H), 6.96 (dd, 1H), 6.17 (dd, 1H), 5.61 (dd, 1H), 5.46 (dd, 1H), 3.50-3.35 (m, 2H) Beispiel Nr.1-41: 1H-NMR (400 MHz, CDCl3d , ppm) 8.47 (s, 2H), 7.41-7.36 (m, 1H), 7.07-6.96 (m, 2H), 5.91 (dd, 1H), 3.84 (s, 3H), 3.38 (dd, 1H), 3.21 (dd, 1H). Beispiel Nr.1-45: 1H-NMR (400 MHz, CDCl36 , ppm) 8.42 (s, 2H), 7.45-7.40 (m, 1H), 7.09-6.98 (m, 2H), 6.13 (dd, 1H), 3.48-3.45 (m, 2H). Beispiel Nr.1-46: 1H-NMR (400 MHz, CDCl36 , ppm) 7.88 (d, 1H), 7.54 (dd, 1H), 7.43-7.37 (m, 1H), 7.06-7.01 (m, 1H), 6.96-6.94 (m, 1H), 6.16 (dd, 1H), 3.54-3.39 (m, 2H). Beispiel Nr.1-47: 1H-NMR (400 MHz, CDCl36 , ppm) 8.40 (s, 2H), 7.41-7.35 (m, 1H), 7.06-6.96 (m, 2H), 5.92 (dd, 1H), 3.84 (s, 3H), 3.42-3.36 (m, 1H), 3.23-3.19 (m, 1H). Beispiel Nr.1-48: 1H-NMR (400 MHz, CDCl36 , ppm) 8.48 (s, 2H), 7.87 (dd, 1H), 7.58 (dd, 1H), 7.45 (dd, 1H), 6.20 (dd, 1H), 3.64-3.48 (m, 2H). Beispiel Nr.1-50: 1H-NMR (400 MHz, CDCl3d , ppm) 8.50 (s, 2H), 7.56 (dd, 1H), 7.44-7.40 (m, 1H), 7.35-7.31 (m, 1H), 7.14 (dd, 1H), 5.80 (dd, 1H), 3.55 (dd, 1H), 3.21 (dd, 1H). Beispiel Nr.1-51: 1H-NMR (400 MHz, CDCl3d , ppm) 8.48 (s, 2H), 7.66 (dd, 1H), 7.39-7.33 (m, 2H), 7.12 (dd, 1H), 5.74 (dd, 1H), 3.86 (s, 3H), 3.28 (dd, 1H), 2.95 (dd, 1H). Beispiel Nr.1-52: 1H-NMR (400 MHz, CDCl3d , ppm) 8.41 (s, 2H), 7.66 (dd, 1H), 7.39-7.32 (m, 2H), 7.12 (dd, 1H), 5.75 (dd, 1H), 3.86 (s, 3H), 3.28 (dd, 1H), 2.95 (dd, 1H). NMR-Peak-Listenverfahren Die 1H-NMR-Daten ausgewählter Beispiele werden in Form von 1H-NMR-Peaklisten notiert. Zu jedem Signalpeak wird erst der6 -Wert in ppm und dann die Signalintensität in runden Klammern aufgeführt. Die6 -Wert – Signalintensitäts- Zahlenpaare von verschiedenen Signalpeaks werden durch Semikolons voneinander getrennt aufgelistet. Die Peakliste eines Beispieles hat daher die Form: d1 (Intensität1;d2 (Intensität2);……..;di (Intensität ;……;dn (Intensitätn) Die Intensität scharfer Signale korreliert mit der Höhe der Signale in einem gedruckten Beispiel eines NMR-Spektrums in cm und zeigt die wirklichen Verhältnisse der Signalintensitäten. Bei breiten Signalen können mehrere Peaks oder die Mitte des Signals und ihre relative Intensität im Vergleich zum intensivsten Signal im Spektrum gezeigt werden. Zur Kalibrierung der chemischen Verschiebung von 1H-NMR-Spektren benutzen wir Tetramethylsilan und/oder die chemische Verschiebung des Lösungsmittels, besondern im Falle von Spektren, die in DMSO gemessen werden. Daher kann in NMR-Peaklisten der Tetramethylsilan-Peak vorkommen, muss es aber nicht. Die Listen der 1H-NMR-Peaks sind ähnlich den klassischen 1H-NMR-Ausdrucken und enthalten somit gewöhnlich alle Peaks, die bei einer klassischen NMR-Interpretation aufgeführt werden. Darüber hinaus können sie wie klassische 1H-NMR-Ausdrucke Lösungsmittelsignale, Signale von Stereoisomeren der Zielverbindungen, die ebenfalls Gegenstand der Erfindung sind, und/oder Peaks von Verunreinigungen zeigen. Bei der Angabe von Verbindungssignalen im Delta-Bereich von Lösungsmitteln und/oder Wasser sind in unseren Listen von 1H-NMR-Peaks die gewöhnlichen Lösungsmittelpeaks, zum Beispiel Peaks von DMSO in DMSO-D6 und der Peak von Wasser, gezeigt, die gewöhnlich im Durchschnitt eine hohe Intensität aufweisen. Die Peaks von Stereoisomeren der Targetverbindungen und/oder Peaks von Verunreinigungen haben gewöhnlich im Durchschnitt eine geringere Intensität als die Peaks der Zielverbindungen (zum Beispiel mit einer Reinheit von >90%). Solche Stereoisomere und/oder Verunreinigungen können typisch für das jeweilige Herstellungsverfahren sein. Ihre Peaks können somit dabei helfen, die Reproduktion unseres Herstellungsverfahrens anhand von “Nebenprodukt-Fingerabdrücken” zu erkennen. Einem Experten, der die Peaks der Zielverbindungen mit bekannten Verfahren (MestreC, ACD- Simulation, aber auch mit empirisch ausgewerteten Erwartungswerten) berechnet, kann je nach Bedarf die Peaks der Zielverbindungen isolieren, wobei gegebenenfalls zusätzliche Intensitätsfilter eingesetzt werden. Diese Isolierung wäre ähnlich dem betreffenden Peak-Picking bei der klassischen 1H-NMR- Interpretation. Weitere Details zu 1H-NMR-Peaklisten können der Research Disclosure Database Number 564025 entnommen werden.
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000019_0001
NMR data of selected examples Selected detailed synthesis examples for the compounds of the general formula (I) according to the invention are listed below. The 1H-NMR spectroscopic data given for the chemical examples described in the following sections (400 MHz for 1H-NMR, solvent CDCl3 or d6-DMSO, internal standard: tetramethylsilane6 = 0.00ppm) were obtained using an instrument from the company Bruker obtained, and the designated signals have the following meanings: br = broad (es); s = singlet, d = doublet, t = triplet, dd = double doublet, ddd = doublet of a double doublet, m = multiplet, q = quartet, quint = quintet, sext = sextet, sept = septet, dq = double quartet, dt = double triplet. In the case of mixtures of diastereomers, either the significant signals of both diastereomers or the characteristic signal of the main diastereomer are given. The spectroscopic data of selected table examples listed below were evaluated using classic 1H-NMR interpretation. Classic 1H-NMR interpretation Example No. 1-16: 1H-NMR (400 MHz, CDCl3 d , ppm) 7.89 (d, 1H), 7.56-7.52 (m, 1H), 7.49-7.47 (m, 1H), 7.41-7.37 (m, 1H), 7.31-7.27 (m, 1H), 7.12 (dd, 1H), 6.49 (t, 1H), 5.90 (dd, 1H), 3.54-3.45 (m, 1H), 3.20- 3.13 (m, 1H). Example No.1-17: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.11 (d, 1H), 7.69-7.66 (m, 1H), 7.48-7.46 (m, 1H), 7.40-7.36 (m, 1H), 7.27-7.25 (m, 1H), 7.07 (dd, 1H), 6.91 (d, 1H), 6.48 (t, 1H), 5.88 (dd, 1H), 3.49-3.40 (m, 1H), 3.19 - 3.11 (m, 1H). Example no.1-18: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.42 (s, 2H), 7.50 (dd, 1H), 7.44-7.40 (m, 1H), 7.34-7.30 (m, 1H) , 7.15 (dd, 1H), 6.49 (t, 1H), 5.90 (dd, 1H), 3.52-3.45 (m, 1H), 3.17-3.10 (m, 1H). Example no.1-19: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.50 (s, 2H), 7.50 (dd, 1H), 7.44-7.40 (m, 1H), 7.35-7.31 (m, 1H) , 7.15 (dd, 1H), 6.49 (t, 1H), 5.88 (dd, 1H), 3.52-3.45 (m, 1H), 3.17-3.10 (m, 1H). Example No. 1-20: 1H-NMR (400 MHz, CDCl3 d , ppm) 7.88 (dd, 1H), 7.55 (dd, 1H), 7.22-7.19 (m, 1H), 7.13-7.05 (m, 2H) , 6.49 (t, 1H), 5.84 (dd, 1H), 3.54-3.46 (m, 1H), 3.16-3.09 (m, 1H). Example No. 1-21: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.50 (s, 2H), 7.23-7.20 (m, 1H), 7.12-7.09 (m, 2H), 6.49 (t, 1H) , 5.83 (dd, 1H), 3.53-3.45 (m, 1H), 3.14-3.07 (m, 1H). Example # 1-32: 1H-NMR (400 MHz, CDCl3 d , ppm) 7.88 (d, 1H), 7.53 (dd, 1H), 7.37 (dd, 1H), 7.05-7.00 (m, 1H), 6.95 - 6.93 (m, 1H), 6.49 (t, 1H), 6.07 (dd, 1H), 3.50-3.34 (m, 2H). Example No. 1-33: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.10 (d, 1H), 7.68 (dd, 1H), 7.39-7.33 (m, 1H), 7.00-6.97 (m, 1H) , 6.92-6.88 (m, 2H), 6.48 (t, 1H), 6.06 (dd, 1H), 3.46-3.36 (m, 2H). Example No. 1-34: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.41 (s, 2H), 7.43-7.38 (m, 1H), 7.08-7.03 (m, 1H), 6.99-6.96 (m, 1H), 6.50 (t, 1H), 6.04 (dd, 1H), 3.52-3.37 (m, 2H). Example No. 1-35: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.49 (s, 2H), 7.44-7.38 (m, 1H), 7.09-7.04 (m, 1H), 6.99-6.96 (m, 1H), 6.50 (t, 1H), 6.03 (dd, 1H), 3.46-3.37 (m, 2H). Example No. 1-39: 1H-NMR (400 MHz, CDCl3 d , ppm) 7.82 (d, 1H), 7.40-7.34 (m, 1H), 7.04-6.98 (m, 1H), 6.93-6.90 (m, 1H), 6.49 (t, 1H), 6.10 (dd, 1H), 3.57-3.35 (m, 2H). Example # 1-41: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.48 (s, 2H), 7.45-7.36 (m, 2H), 7.09 (dd, 1H), 6.96 (dd, 1H), 6.17 (dd, 1H), 5.61 (dd, 1H), 5.46 (dd, 1H), 3.50-3.35 (m, 2H) Example No. 1-41: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.47 (s , 2H), 7.41-7.36 (m, 1H), 7.07-6.96 (m, 2H), 5.91 (dd, 1H), 3.84 (s, 3H), 3.38 (dd, 1H), 3.21 (dd, 1H). Example # 1-45: 1H-NMR (400 MHz, CDCl 3 6, ppm) 8.42 (s, 2H), 7.45-7.40 (m, 1H), 7.09-6.98 (m, 2H), 6.13 (dd, 1H ), 3.48-3.45 (m, 2H). Example # 1-46: 1H-NMR (400 MHz, CDCl 3 6, ppm) 7.88 (d, 1H), 7.54 (dd, 1H), 7.43-7.37 (m, 1H), 7.06-7.01 (m, 1H ), 6.96-6.94 (m, 1H), 6.16 (dd, 1H), 3.54-3.39 (m, 2H). Example # 1-47: 1H-NMR (400 MHz, CDCl 3 6, ppm) 8.40 (s, 2H), 7.41-7.35 (m, 1H), 7.06-6.96 (m, 2H), 5.92 (dd, 1H ), 3.84 (s, 3H), 3.42-3.36 (m, 1H), 3.23-3.19 (m, 1H). Example No. 1-48: 1H-NMR (400 MHz, CDCl 3 6, ppm) 8.48 (s, 2H), 7.87 (dd, 1H), 7.58 (dd, 1H), 7.45 (dd, 1H), 6.20 ( dd, 1H), 3.64-3.48 (m, 2H). Example No. 1-50: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.50 (s, 2H), 7.56 (dd, 1H), 7.44-7.40 (m, 1H), 7.35-7.31 (m, 1H) , 7.14 (dd, 1H), 5.80 (dd, 1H), 3.55 (dd, 1H), 3.21 (dd, 1H). Example # 1-51: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.48 (s, 2H), 7.66 (dd, 1H), 7.39-7.33 (m, 2H), 7.12 (dd, 1H), 5.74 (dd, 1H), 3.86 (s, 3H), 3.28 (dd, 1H), 2.95 (dd, 1H). Example # 1-52: 1H-NMR (400 MHz, CDCl3 d , ppm) 8.41 (s, 2H), 7.66 (dd, 1H), 7.39-7.32 (m, 2H), 7.12 (dd, 1H), 5.75 (dd, 1H), 3.86 (s, 3H), 3.28 (dd, 1H), 2.95 (dd, 1H). NMR peak list method The 1H-NMR data of selected examples are noted in the form of 1H-NMR peak lists. For each signal peak, first the 6 value in ppm and then the signal intensity is listed in round brackets. The 6 -value - signal intensity number pairs of different signal peaks are listed separated from each other by semicolons. The peak list of an example therefore has the form: d 1 (intensity1; d2 (intensity2); …… ..; d i (intensity; ……; d n (intensityn) The intensity of sharp signals correlates with the height of the signals in a printed one Example of an NMR spectrum in cm and shows the real ratios of the signal intensities. For broad signals, several peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum can be shown. For calibration of the chemical shift of 1H-NMR- Spectra we use tetramethylsilane and / or the chemical shift of the solvent, especially in the case of spectra measured in DMSO. Therefore, the tetramethylsilane peak can appear in NMR peak lists, but does not have to. The lists of 1H-NMR peaks are similar to the classic 1H-NMR printouts and therefore usually contain all the peaks that are listed in a classic NMR interpretation. In addition, like classic 1H-NMR printouts, they can show solvent signals, signals of stereoisomers of the target compounds, which are also the subject of the invention, and / or peaks of impurities. When specifying connection signals in the delta range of solvents and / or water, our lists of 1H-NMR peaks show the usual solvent peaks, for example peaks from DMSO in DMSO-D6 and the peak from water, which are usually averaged have a high intensity. The peaks of stereoisomers of the target compounds and / or peaks of impurities usually have a lower intensity on average than the peaks of the target compounds (for example with a purity of> 90%). Such stereoisomers and / or impurities can be typical of the particular manufacturing process. Your peaks can thus help to identify the reproduction of our manufacturing process using “by-product fingerprints”. An expert who calculates the peaks of the target compounds with known methods (MestreC, ACD simulation, but also with empirically evaluated expected values) can isolate the peaks of the target compounds as required, with additional intensity filters being used if necessary. This isolation would be similar to the relevant peak picking in the classical 1H-NMR interpretation. Further details on 1H-NMR peak lists can be found in Research Disclosure Database Number 564025.
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Gegenstand der vorliegenden Erfindung ist weiterhin die Verwendung einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salzen, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (1-1) bis (1-64) und/oder deren Salze, jeweils wie oben definiert, als Herbizid und/oder Pflanzenwachstumsregulator, vorzugsweise in Kulturen von Nutz- und/oder Zierpflanzen. Gegenstand der vorliegenden Erfindung ist ferner ein Verfahren zur Bekämpfung von Schadpflanzen und/oder zur Wachstumsregulierung von Pflanzen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salzen, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (1-1) bis (1-64) und/oder deren Salze, jeweils wie oben definiert, oder - eines erfindungsgemäßen Mittels, wie nachstehend definiert, auf die (Schad)Pflanzen, (Schad)Pflanzensamen, den Boden, in dem oder auf dem die (Schad)Pflanzen wachsen, oder die Anbaufläche appliziert wird. Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Bekämpfung von unerwünschten Pflanzen, vorzugsweise in Nutzpflanzenkulturen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salzen, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (1-1) bis (1-64) und/oder deren Salze, jeweils wie oben definiert, oder - eines erfindungsgemäßen Mittels, wie nachstehend definiert, auf unerwünschte Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut der unerwünschten Pflanzen (d.h. Pflanzensamen, z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen), den Boden, in dem oder auf dem die unerwünschte Pflanzen wachsen, (z.B. den Boden von Kulturland oder Nicht-Kulturland) oder die Anbaufläche (d.h. Fläche, auf der die unerwünschte Pflanzen wachsen werden) appliziert wird. Gegenstand der vorliegenden Erfindung ist ferner auch ein Verfahren zur Bekämpfung zur Wachstumsregulierung von Pflanzen, vorzugsweise von Nutzpflanzen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salzen, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (1-1) bis (1-64) und/oder deren Salze, jeweils wie oben definiert, oder - eines erfindungsgemäßen Mittels, wie nachstehend definiert, die Pflanze, das Saatgut der Pflanze (d.h. Pflanzensamen, z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen), den Boden, in dem oder auf dem die Pflanzen wachsen, (z.B. den Boden von Kulturland oder Nicht-Kulturland) oder die Anbaufläche (d.h. Fläche, auf der die Pflanzen wachsen werden) appliziert wird. Dabei können die erfindungsgemäßen Verbindungen bzw. die erfindungsgemäßen Mittel z.B. im Vorsaat- (gegebenenfalls auch durch Einarbeitung in den Boden), Vorauflauf- und/oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Vorzugsweise werden in einem erfindungsgemäßen Verfahren zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen eine oder mehrere Verbindungen der allgemeinen Formel (I) und/oder deren Salze zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung in Kulturen von Nutzpflanzen oder Zierpflanzen eingesetzt, wobei die Nutzpflanzen oder Zierpflanzen in einer bevorzugten Ausgestaltung transgene Pflanzen sind. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze eignen sich zur Bekämpfung der folgenden Gattungen von monokotylen und dikotylen Schadpflanzen: Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dikotyle Schadpflanzen der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. Werden die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) vor dem Keimen der Schadpflanzen (Ungräser und/oder Unkräuter) auf die Erdoberfläche appliziert (Vorauflaufverfahren), so wird entweder das Auflaufen der Ungras- bzw. Unkrautkeimlinge vollständig verhindert oder diese wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab. Bei Applikation der Wirkstoffe der allgemeinen Formel (I) auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Obgleich die erfindungsgemäßen Verbindungen der allgemeinnen Formel (I) eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden Kulturpflanzen wirtschaftlich bedeutender Kulturen z.B. dikotyler Kulturen der Gattungen Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, oder monokotyler Kulturen der Gattungen Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, Triticale, Triticum, Zea, abhängig von der Struktur der jeweiligen erfindungsgemäßen Verbindung und deren Aufwandmenge nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in Pflanzenkulturen wie landwirtschaftlichen Nutzpflanzungen oder Zierpflanzungen. Darüberhinaus weisen die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) (abhängig von ihrer jeweiligen Struktur und der ausgebrachten Aufwandmenge) hervorragende wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativem Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da beispielsweise die Lagerbildung hierdurch verringert oder völlig verhindert werden kann. Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe der allgemeinen Formel (I) auch zur Bekämpfung von Schadpflanzen in Kulturen von gentechnisch oder durch konventionelle Mutagenese veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Bevorzugt bezüglich transgener Kulturen ist die Anwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz und Zierpflanzen, z.B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) auch als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind. Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Weitere besondere Eigenschaften können in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung liegen. Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen, z.B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Triticale, Hirse, Reis, Maniok und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die Verbindungen der allgemeinen Formel (I) als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind. Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden. Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind dem Fachmann bekannt. Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von Standardverfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA- Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA- Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind. Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J.11 (1992), 3219- 3227). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden. Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen. Vorzugsweise können die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, resistent sind. Bei der Anwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen. Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze als Herbizide zur Bekämpfung von Schadpflanzen in Kulturen von Nutz- oder Zierpflanzen, gegebenenfalls in transgenen Kulturpflanzen. Bevorzugt ist die Verwendung von Verbindungen der allgemeinen Formel (I) in Getreide, dabei vorzugsweise Mais, Weizen, Gerste, Roggen, Hafer, Hirse, oder Reis, im Vor- oder Nachauflauf. Bevorzugt ist auch die Verwendung von Verbindungen der allgemeinene Formel (I) in Soja im Vor- oder Nachauflauf. Die Verwendung erfindungsgemäßer Verbindungen der Formel (I) zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen schließt auch den Fall ein, bei dem einer Verbindung der allgemeinen Formel (I) oder deren Salz erst nach der Ausbringung auf der Pflanze, in der Pflanze oder im Boden aus einer Vorläufersubstanz ("Prodrug") gebildet wird. Gegenstand der Erfindung ist auch die Verwendung einer oder mehrerer Verbindungen der allgemeinen Formel (I) oder deren Salzen bzw. eines erfindungsgemäßen Mittels (wie nachstehend definiert) (in einem Verfahren) zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen, dadurch gekennzeichnet, dass man eine wirksame Menge einer oder mehreren Verbindungen der allgemeinen Formel (I) oder deren Salzen auf die Pflanzen (Schadpflanzen, gegebenenfalls zusammen mit den Nutzpflanzen) Pflanzensamen, den Boden, in dem oder auf dem die Pflanzen wachsen, oder die Anbaufläche appliziert. Gegenstand der Erfindung ist auch ein herbizides und/oder pflanzenwachstumsregulierendes Mittel, dadurch gekennzeichnet, dass das Mittel (a) eine oder mehrere Verbindungen der allgemeinen Formel (I) und/oder deren Salze enthält wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere eine oder mehrere Verbindungen der Formeln (I-1) bis (I-64) und/oder deren Salze, jeweils wie oben definiert, und (b) ein oder mehrere weitere Stoffe ausgewählt aus den Gruppen (i) und/oder (ii): (i) ein oder mehrere weitere agrochemisch wirksame Stoffe, vorzugsweise ausgewählt aus der Gruppe bestehend aus Insektiziden, Akariziden, Nematiziden, weiteren Herbiziden (d.h. solche, die nicht der oben definierten allgemeinen Formel (I) entsprechen), Fungiziden, Safenern, Düngemitteln und/oder weiteren Wachstumsregulatoren, (ii) ein oder mehrere im Pflanzenschutz übliche Formulierungshilfsmittel. Die weiteren agrochemischen wirksamen Stoffe des Bestandteils (i) eines erfindungsgemäßen Mittels sind dabei vorzugsweise ausgewählt aus der Gruppe der Stoffe, die in "The Pesticide Manual", 16th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2012 genannt sind. Ein erfindungsgemäßes herbizides oder pflanzenwachstumsregulierendes Mittel, umfasst vorzugsweise ein, zwei, drei oder mehr im Pflanzenschutz übliche Formulierungshilfsmittel (ii) ausgewählt aus der Gruppe bestehend aus Tensiden, Emulgatoren, Dispergiermitteln, Filmbildnern, Verdickungsmitteln, anorganischen Salzen, Stäubemitteln, bei 25 °C und 1013 mbar festen Trägerstoffen, vorzugsweise adsorptionsfähigen, granulierten Inertmaterialien, Netzmitteln, Antioxidationsmitteln, Stabilisatoren, Puffersubstanzen, Antischaummitteln, Wasser, organischen Lösungsmitteln, vorzugsweise bei 25 °C und 1013 mbar mit Wasser in jedem beliebigen Verhältnis mischbare organische Lösungsmittel. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, die Verbindungen der allgemeinen Formel (I) und/oder deren Salze enthalten. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen und die Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind dem Fachmann bekannt, und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, N.Y.1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y.1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesellschaft, Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl.1986. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid- Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfettsäureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitanfettsäureester. Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde. Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden. Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden. Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt. Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulaten siehe z.B. Verfahren in "Spray- Drying Handbook" 3rd ed.1979, G. Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S.8-57. Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103. Die agrochemischen Zubereitungen, vorzugsweise herbizide oder pflanzenwachstumsregulierende Mittel der vorliegenden Erfindung enthalten vorzugsweise eine Gesamtmenge von 0,1 bis 99 Gew.-%, bevorzugt 0,5 bis 95 Gew.-%, weiter bevorzugt 1 bis 90 Gew.-%, insbesondere bevorzugt 2 bis 80 Gew.-%, an Wirkstoffen der allgemeinen Formel (I) und deren Salzen. In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0,05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%. Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel. Beispiele für Formulierungshilfsmittel sind unter anderem in "Chemistry and Technology of Agrochemical Formulations", ed. D. A. Knowles, Kluwer Academic Publishers (1998) beschrieben. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) oder deren Salze können als solche oder in Form ihrer Zubereitungen (Formulierungen) mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Nematiziden, Herbiziden, Fungiziden, Safenern, Düngemitteln und/oder Wachstumsregulatoren kombiniert eingesetzt werden, z.B. als Fertigformulierung oder als Tankmischungen. Die Kombinationsformulierungen können dabei auf Basis der obengenannten Formulierungen hergestellt werden, wobei die physikalischen Eigenschaften und Stabilitäten der zu kombinierenden Wirkstoffe zu berücksichtigen sind. Als Kombinationspartner für die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat-Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat- Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II, Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. in Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 und der dort zitierten Literatur beschrieben sind. Von besonderem Interesse ist die selektive Bekämpfung von Schadpflanzen in Kulturen von Nutz- und Zierpflanzen. Obgleich die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) bereits in vielen Kulturen sehr gute bis ausreichende Selektivität aufweisen, können prinzipiell in einigen Kulturen und vor allem auch im Falle von Mischungen mit anderen Herbiziden, die weniger selektiv sind, Phytotoxizitäten an den Kulturpflanzen auftreten. Diesbezüglich sind Kombinationen erfindungsgemäßer Verbindungen (I) von besonderem Interesse, welche die Verbindungen der allgemeinen Formel (I) bzw. deren Kombinationen mit anderen Herbiziden oder Pestiziden und Safenern enthalten. Die Safener, welche in einem antidotisch wirksamen Gehalt eingesetzt werden, reduzieren die phytotoxischen Nebenwirkungen der eingesetzten Herbizide/Pestizide, z.B. in wirtschaftlich bedeutenden Kulturen wie Getreide (Weizen, Gerste, Roggen, Mais, Reis, Hirse), Zuckerrübe, Zuckerrohr, Raps, Baumwolle und Soja, vorzugsweise Getreide. Die Gewichtsverhältnisse von Herbizid(mischung) zu Safener hängt im Allgemeinen von der Aufwandmenge an Herbizid und der Wirksamkeit des jeweiligen Safeners ab und kann innerhalb weiter Grenzen variieren, beispielsweise im Bereich von 200:1 bis 1:200, vorzugsweise 100:1 bis 1:100, insbesondere 20:1 bis 1:20. Die Safener können analog den Verbindungen der allgemeinen Formel (I) oder deren Mischungen mit weiteren Herbiziden/Pestiziden formuliert werden und als Fertigformulierung oder Tankmischung mit den Herbiziden bereitgestellt und angewendet werden. Zur Anwendung werden die in handelsüblicher Form vorliegenden Herbizid- oder Herbizid-Safener- Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Äußere Bedingungen wie Temperatur, Feuchtigkeit etc. beeinflussen zu einem gewissen Teil die Aufwandmenge der Verbindungen der allgemeinen Formel (I) und/oder deren Salze. Die Aufwandmenge kann dabei innerhalb weiter Grenzen variieren. Für die Anwendung als Herbizid zur Bekämpfung von Schadpflanzen liegt die Gesamtmenge an Verbindungen der allgemeinen Formel (I) und deren Salze vorzugsweise im Bereich von 0,001 bis 10,0 kg/ha, bevorzugt im Bereich von 0,005 bis 5 kg/ha, weiter bevorzugt im Bereich von 0,01 bis 1,5 kg/ha, insbesondere bevorzugt im Bereich von 0,05 bis 1 kg/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf. Bei der Anwendung von erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salzen als Pflanzenwachstumsregulator, beispielsweise als Halmverkürzer bei Kulturpflanzen, wie sie oben genannt worden sind, vorzugsweise bei Getreidepflanzen wie Weizen, Gerste, Roggen, Triticale, Hirse, Reis oder Mais, liegt die Gesamt-Aufwandmenge vorzugsweise im Bereich von 0,001 bis 2 kg/ha, vorzugsweise im Bereich von 0,005 bis 1 kg/ha, insbesondere im Bereich von 10 bis 500 g/ha, ganz besonders bevorzugt im Bereich von 20 bis 250 g/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf. Die Applikation als Halmverkürzer kann in verschiedenen Stadien des Wachstums der Pflanzen erfolgen. Bevorzugt ist beispielsweise die Anwendung nach der Bestockung am Beginn des Längenwachstums. Alternativ kommt bei der Anwendung als Pflanzenwachstumsregulator auch die Behandlung des Saatguts in Frage, welche die unterschiedlichen Saatgutbeiz- und Beschichtungstechniken einschließt. Die Aufwandmenge hängt dabei von den einzelnen Techniken ab und kann in Vorversuchen ermittelt werden. Als Kombinationspartner für die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in erfindungsgemäßen Mitteln (z.B. Mischungsformulierungen oder im Tank-Mix) sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA- Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat-Synthase, Glutamin-Synthetase, p- Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II oder Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 16th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2012 und dort zitierter Literatur beschrieben sind. Nachfolgend werden beispielhaft bekannte Herbizide oder Pflanzenwachstumsregulatoren genannt, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, wobei diese Wirkstoffe entweder mit ihrem "common name" in der englischsprachigen Variante gemäß International Organization for Standardization (ISO) oder mit dem chemischen Namen bzw. mit der Codenummer bezeichnet sind. Dabei sind stets sämtliche Anwendungsformen wie beispielsweise Säuren, Salze, Ester sowie auch alle isomeren Formen wie Stereoisomere und optische Isomere umfaßt, auch wenn diese nicht explizit erwähnt sind. Beispiele für solche herbiziden Mischungspartner sind: Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim- sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3- methylphenyl)-5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor- potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyron, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil-butyrate, -potassium, -heptanoate und -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbromuron, chlorfenac, chlorfenac- sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlorophthalim, chlorotoluron, chlorthal-dimethyl, chlorsulfuron, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D, 2,4-D-butotyl, -butyl, - dimethylammonium, -diolamin, -ethyl, 2-ethylhexyl, -isobutyl, -isooctyl, -isopropylammonium, - potassium, -triisopropanolammonium und -trolamine, 2,4-DB, 2,4-DB-butyl, -dimethylammonium, isooctyl, -potassium und -sodium, daimuron (dymron), dalapon, dazomet, n-decanol, desmedipham, detosyl-pyrazolate (DTP), dicamba, dichlobenil, 2-(2,4-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3- one, 2-(2,5-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr- sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimetrasulfuron, dinitramine, dinoterb, diphenamid, diquat, diquat-dibromid, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, F-9600, F-5231, i.e. N-[2- Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethansulfonamid, F- 7967, i.e.3-[7-Chlor-5-fluor-2-(trifluormethyl)-1H-benzimidazol-4-yl]-1-methyl-6- (trifluormethyl)pyrimidin-2,4(1H,3H)-dion, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P- ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M- methyl, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, - dimethylammonium und -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-P-sodium, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, -dimethylammonium, - potassium, -sodium und -trimesium, H-9201, i.e. O-(2,4-Dimethyl-6-nitrophenyl)-O-ethyl- isopropylphosphoramidothioat, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron- methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e.1-(Dimethoxyphosphoryl)-ethyl-(2,4- dichlorphenoxy)acetat, imazamethabenz, Imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin- ammonium, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, ioxynil-octanoate, -potassium und sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, i.e.3-({[5-(Difluormethyl)-1- methyl-3-(trifluormethyl)-1H-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazol, ketospiradox, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, -dimethylammonium, -2-ethylhexyl, - isopropylammonium, -potassium und -sodium, MCPB, MCPB-methyl, -ethyl und -sodium, mecoprop, mecoprop-sodium, und -butotyl, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl und -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozolin, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinat, monolinuron, monosulfuron, monosulfuron-ester, MT-5950, i.e. N-[3-chlor-4-(1-methylethyl)- phenyl]-2-methylpentanamid, NGGC-011, napropamide, NC-310, i.e.4-(2,4-Dichlorbenzoyl)-1-methyl- 5-benzyloxypyrazol, neburon, nicosulfuron, nonanoic acid (Pelargonsäure), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefon, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, picloram, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron- ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, SL-261, sulcotrion, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYN-523, SYP-249, i.e.1-Ethoxy-3-methyl-1-oxobut-3-en-2-yl- 5-[2-chlor-4-(trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, i.e.1-[7-Fluor-3-oxo-4-(prop-2-in-1- yl)-3,4-dihydro-2H-1,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (Trifluoressigsäure), TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazin, terbutryn, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone- methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topramezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron-methyl, tritosulfuron, urea sulfate, vernolate, XDE-848, ZJ-0862, i.e.3,4-Dichlor-N-{2- [(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}anilin, sowie die folgenden Verbindungen:
Figure imgf000026_0001
The present invention furthermore relates to the use of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in one of the embodiments characterized as preferred or particularly preferred, in particular one or more compounds of the formulas (1 -1) to (1-64) and / or salts thereof, each as defined above, as a herbicide and / or plant growth regulator, preferably in crops of useful and / or ornamental plants. The present invention also relates to a method for controlling harmful plants and / or for regulating the growth of plants, characterized in that an effective amount of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in one of the embodiments characterized as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-64) and / or their salts, in each case as defined above, or an agent according to the invention as defined below, on the (harmful) plants, (harmful) plant seeds, the soil in which or on which the (harmful) plants grow, or the area under cultivation is applied. The present invention also relates to a method for controlling undesired plants, preferably in crops of useful plants, characterized in that an effective amount of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in one of the as preferred or particularly preferred embodiment, in particular one or more compounds of the formulas (1-1) to (1-64) and / or their salts, in each case as defined above, or an agent according to the invention, as defined below, to undesired Plants (e.g. harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), the seeds of the unwanted plants (ie plant seeds, e.g. grains, seeds or vegetative reproductive organs such as tubers or sprouts with buds), the soil in which or on which the unwanted plants grow, (e.g. the soil of cultivated land or non-cultivated land) or the cultivated area (i.e. area, on which the unwanted plants will grow) is applied. The present invention also relates to a method for controlling the growth of plants, preferably of useful plants, characterized in that an effective amount of one or more compounds of the general formula (I) and / or their salts, as defined above, preferably in one of the embodiments characterized as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-64) and / or their salts, in each case as defined above, or an agent according to the invention as defined below, the plant, the seed of the plant (i.e. plant seeds, e.g. grains, seeds or vegetative reproductive organs such as tubers or parts of shoots with buds), the soil in or on which the plants grow (e.g. the soil of cultivated land or non-cultivated land) or the cultivation area (ie area on which the plants will grow) is applied. The compounds according to the invention or the agents according to the invention can be applied, for example, by pre-sowing (if appropriate also by incorporation into the soil), pre-emergence and / or post-emergence methods. Some representatives of the monocotyledonous and dicotyledonous weed flora which can be used to control the compounds according to the invention, without the mentioning of them being intended to imply a restriction to certain species, may be mentioned individually. In a method according to the invention for controlling harmful plants or for regulating the growth of plants, one or more compounds of the general formula (I) and / or their salts are preferably used for controlling harmful plants or for regulating growth in crops of useful plants or ornamentals, the useful plants or ornamentals in a preferred embodiment are transgenic plants. The compounds of the general formula (I) according to the invention and / or their salts are suitable for combating the following genera of monocotyledonous and dicotyledonous harmful plants: Monocotyledonous harmful plants of the genera: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Rottbo, Monochoria, Pohalia, Phalaris, Paspalum, Sagleum, Pohalis, Phleittum, Phleittum, Phleittum, Phalaris, Rottbo Scirpus, Setaria, Sorghum. Dicot harmful plants of the genera: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia , Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio , Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. If the compounds of the general formula (I) according to the invention are applied to the surface of the earth (pre-emergence method) before the harmful plants (weeds and / or weeds) germinate, either the emergence of the weed or weed seedlings is completely prevented or they grow to the cotyledon stage , but then stop growing and finally die off completely after three to four weeks. When the active ingredients of the general formula (I) are applied to the green parts of the plant by the post-emergence method, growth stops after the treatment and the harmful plants remain in the growth stage present at the time of application or die after a certain time, so that in this way one for the Weed competition harmful to crops is eliminated very early and sustainably. Although the compounds of the general formula (I) according to the invention have excellent herbicidal activity against monocotyledon and dicotyledon weeds, crop plants of economically important crops, for example dicotyledon crops of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledon cultures of the genera Allium, Ananas, Asparagus, Panicum Oryza, Hordeum , Saccharum, Secale, Sorghum, Triticale, Triticum, Zea, depending on the structure of the respective compound according to the invention and the amount applied, are only insignificantly damaged or not at all. For these reasons, the present compounds are very suitable for the selective control of undesired vegetation in crops such as useful agricultural crops or ornamental crops. In addition, the compounds of the general formula (I) according to the invention (depending on their particular structure and the amount applied) have excellent growth-regulatory properties in crop plants. They intervene in a regulating manner in the plant's own metabolism and can thus be used to specifically influence plant constituents and to facilitate harvesting, for example by triggering desiccation and stunted growth. Furthermore, they are also suitable for the general control and inhibition of undesired vegetative growth without killing the plants. Inhibition of vegetative growth plays a major role in many monocotyledon and dicotyledon crops, since it can reduce or completely prevent storage, for example. Because of their herbicidal and plant growth regulatory properties, the active compounds of the general formula (I) can also be used for controlling harmful plants in crops of plants modified by genetic engineering or by conventional mutagenesis. The transgenic plants are generally distinguished by particularly advantageous properties, for example by resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses. Other special properties relate to the crop in terms of quantity, quality, shelf life, composition and special ingredients. Thus, transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known. With regard to transgenic crops, preference is given to using the compounds of the general formula (I) according to the invention and / or their salts in economically important transgenic crops of useful and ornamental plants, for example of cereals such as wheat, barley, rye, oats, millet, rice and maize or else Cultures of sugar beet, cotton, soy, canola, potato, tomato, pea and other vegetables. The compounds of the general formula (I) according to the invention can preferably also be used as herbicides in crops of useful plants which are resistant or have been made resistant by genetic engineering to the phytotoxic effects of the herbicides. Owing to their herbicidal and plant growth regulatory properties, the compounds of the general formula (I) according to the invention can also be used for controlling harmful plants in crops of known or genetically modified plants which are yet to be developed. The transgenic plants are generally distinguished by particularly advantageous properties, for example by resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses. Other special properties relate to the crop in terms of quantity, quality, shelf life, composition and special ingredients. Thus, transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known. Other special properties can be tolerance or resistance to abiotic stressors such as heat, cold, drought, salt and ultraviolet radiation. The use of the compounds of general formula (I) according to the invention or their salts in economically important transgenic crops of useful and ornamental plants, for example of cereals such as wheat, barley, rye, oats, triticale, millet, rice, cassava and maize, is preferred Cultures of sugar beet, cotton, soy, canola, potato, tomato, pea and other vegetables. The compounds of the general formula (I) can preferably be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or which have been made resistant by genetic engineering. Conventional ways of producing new plants that have modified properties compared to previously occurring plants consist, for example, in classic breeding processes and the creation of mutants. Alternatively, new plants with modified properties can be produced using genetic engineering. Numerous molecular biological techniques with which new transgenic plants with modified properties can be produced are known to the person skilled in the art. For such genetic manipulations, nucleic acid molecules can be introduced into plasmids which allow mutagenesis or a sequence change by recombination of DNA sequences. With the help of standard procedures, for example, base exchanges can be carried out, partial sequences removed or natural ones or synthetic sequences can be added. In order to connect the DNA fragments to one another, adapters or linkers can be attached to the fragments. The production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, one sense RNA to achieve a cosuppression effect, or by expressing at least one appropriately constructed ribozyme that specifically cleaves transcripts of the gene product mentioned above. For this purpose, on the one hand, DNA molecules can be used that include the entire coding sequence of a gene product including any flanking sequences that may be present, as well as DNA molecules that only include parts of the coding sequence, these parts having to be long enough to be in the cells to bring about an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but which are not completely identical. When nucleic acid molecules are expressed in plants, the synthesized protein can be localized in any desired compartment of the plant cell. In order to achieve the localization in a certain compartment, for example, the coding region can be linked to DNA sequences which ensure the localization in a certain compartment. Such sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J.11 (1992), 3219-3227). The expression of the nucleic acid molecules can also take place in the organelles of the plant cells. The transgenic plant cells can be regenerated into whole plants using known techniques. In principle, the transgenic plants can be plants of any plant species, ie both monocotyledonous and dicotyledonous plants. Thus, transgenic plants can be obtained which have altered properties through overexpression, suppression or inhibition of homologous (= natural) genes or gene sequences or the expression of heterologous (= foreign) genes or gene sequences. The compounds of the general formula (I) according to the invention can preferably be used in transgenic crops which are effective against growth substances such as dicamba or against herbicides, the essential plant enzymes, e.g. acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydoxyphenylpyruvate dioxygenases (HPPD ) inhibit, respectively against herbicides from the Group of sulfonylureas, the glyphosate, glufosinate or benzoylisoxazole and analogous active substances are resistant. When the compounds of the general formula (I) according to the invention are used in transgenic crops, in addition to the effects on harmful plants that can be observed in other crops, there are often effects that are specific to the application in the respective transgenic crop, for example a modified or specially expanded weed spectrum, that can be combated, changed application rates that can be used for the application, preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants. The invention therefore also relates to the use of the compounds of the general formula (I) according to the invention and / or salts thereof as herbicides for controlling harmful plants in crops of useful or ornamental plants, optionally in transgenic crops. Preference is given to using compounds of the general formula (I) in cereals, preferably maize, wheat, barley, rye, oats, millet or rice, pre- or post-emergence. Pre- or post-emergence use of compounds of the general formula (I) in soy is also preferred. The use of compounds of the formula (I) according to the invention for combating harmful plants or for regulating the growth of plants also includes the case in which a compound of the general formula (I) or its salt is only used after application to the plant, in the plant or in the Soil is formed from a precursor substance ("prodrug"). The invention also relates to the use of one or more compounds of the general formula (I) or their salts or an agent according to the invention (as defined below) (in a process) for controlling harmful plants or for regulating the growth of plants, characterized in that one an effective amount of one or more compounds of the general formula (I) or their salts are applied to the plants (harmful plants, optionally together with the useful plants), plant seeds, the soil in which or on which the plants grow, or the area under cultivation. The invention also relates to a herbicidal and / or plant growth-regulating agent, characterized in that the agent (A) contains one or more compounds of the general formula (I) and / or their salts as defined above, preferably in one of the embodiments characterized as preferred or particularly preferred, in particular one or more compounds of the formulas (I-1) to ( I-64) and / or their salts, in each case as defined above, and (b) one or more further substances selected from groups (i) and / or (ii): (i) one or more further agrochemically active substances, preferably selected from the group consisting of insecticides, acaricides, nematicides, further herbicides (ie those which do not correspond to the general formula (I) defined above), fungicides, safeners, fertilizers and / or further growth regulators, (ii) one or more in crop protection common formulation auxiliaries. The further agrochemically active substances of component (i) of an agent according to the invention are preferably selected from the group of substances listed in "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012. A herbicidal or plant growth regulating agent according to the invention preferably comprises one, two, three or more formulation auxiliaries (ii) which are customary in crop protection and selected from the group consisting of surfactants, emulsifiers, dispersants, film formers, thickeners, inorganic salts, dusting agents, at 25 ° C and 1013 mbar solid carriers, preferably adsorptive, granulated inert materials, wetting agents, antioxidants, stabilizers, buffer substances, antifoams, water, organic solvents, preferably organic solvents which are miscible with water in any ratio at 25 ° C and 1013 mbar. The compounds of the general formula (I) according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules. The invention therefore also relates to herbicidal and plant growth-regulating agents which contain compounds of the general formula (I) and / or their salts. The compounds of the general formula (I) according to the invention and / or their salts can be formulated in various ways, depending on the prevailing biological and / or chemico-physical parameters. Possible formulation options include, for example: Wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions, suspension concentrates (SC), dispersions based on oil or water, oil-miscible solutions, capsule suspensions (CS), dusts (DP), pickling agents, granulates for litter and soil application, granulates (GR) in the form of micro, spray, lift and adsorption granulates, water-dispersible granulates ( WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes. These individual formulation types and the formulation auxiliaries such as inert materials, surfactants, solvents and other additives are known to the person skilled in the art and are described, for example, in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell NJ, Hv Olphen , "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, NY; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, NY 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood NJ; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., NY 1964; Schönfeldt, "Grenzflächenactive Äthylenoxidaddukte", Wiss. Publishing company, Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Volume 7, C. Hanser Verlag Munich, 4th edition 1986. Wettable powders are preparations that are uniformly dispersible in water which, in addition to the active ingredient, besides a diluent or inert substance, also ionic and / or nonionic surfactants (wetting agents, dispersants), e.g. polyoxyethylated alkylphenols, polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkanesulfonates, sodium ligninsulfonates, alkylbenzenesulfonates , 2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium, dibutylnaphthalene sulfonic acid sodium or oleoylmethyltaurin acid sodium. To produce the wettable powders, the herbicidally active ingredients are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air jet mills, and simultaneously or subsequently mixed with the formulation auxiliaries. Emulsifiable concentrates are produced by dissolving the active ingredient in an organic solvent, e.g. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and / or nonionic surfactants (emulsifiers). Examples of emulsifiers that can be used are: alkylarylsulphonic acid calcium salts such as calcium dodecylbenzenesulphonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers such as sorbitan oxyethylene fatty acid esters such as sorbitan fatty acid esters such as sorbitan fatty acid esters or sorbitan oxyethylene fatty acid esters, for example sorbitan oxyethylene fatty acid esters. Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth. Suspension concentrates can be water or oil based. They can be produced, for example, by wet grinding using commercially available bead mills and, if necessary, addition of surfactants, such as those already listed above for the other types of formulation. Emulsions, for example oil-in-water emulsions (EW), can be prepared, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic solvents and optionally surfactants, such as those already listed above for the other types of formulation. Granules can either be produced by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils, to the surface of carrier materials such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules - if desired as a mixture with fertilizers. Water-dispersible granules are generally produced by the customary processes such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material. For the production of plate, fluidized bed, extruder and spray granules, see, for example, the method in "Spray-Drying Handbook" 3rd ed.1979, G. Goodwin Ltd., London; JE Browning, "Agglomeration", Chemical and Engineering 1967, pp. 147 ff; Perry's Chemical Engineer's Handbook, 5th Ed., McGraw-Hill, New York 1973, pp. 8-57. For further details on the formulation of crop protection agents see, for example, GC Klingman, “Weed Control as a Science”, John Wiley and Sons, Inc., New York, 1961, pages 81-96 and JD Freyer, SA Evans, “Weed Control Handbook”, 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pp. 101-103. The agrochemical preparations, preferably herbicidal or plant growth regulating agents of the present invention preferably contain a total amount of 0.1 to 99% by weight, preferably 0.5 to 95% by weight, more preferably 1 to 90% by weight, particularly preferably 2 to 80% by weight, of active ingredients of the general formula (I) and their salts. In wettable powders, the active ingredient concentration is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of customary formulation components. In the case of emulsifiable concentrates, the active ingredient concentration can be about 1 to 90, preferably 5 to 80% by weight. Dust-like formulations contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, sprayable solutions contain about 0.05 to 80, preferably 2 to 50% by weight of active ingredient. In the case of water-dispersible granules, the active ingredient content depends in part on whether the active compound is liquid or solid and which granulating aids, fillers, etc. are used. In the case of the water-dispersible granules, the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight. In addition, the active ingredient formulations mentioned contain, if appropriate, the respective customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity influencing agents. Examples of formulation auxiliaries are described, inter alia, in "Chemistry and Technology of Agrochemical Formulations", ed. DA Knowles, Kluwer Academic Publishers (1998). The compounds of the general formula (I) according to the invention or their salts can be used as such or in the form of their preparations (formulations) combined with other pesticidally active substances, such as insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and / or growth regulators e.g. as a ready-to-use formulation or as tank mixes. The combination formulations can be prepared on the basis of the formulations mentioned above, taking into account the physical properties and stabilities of the active ingredients to be combined. Combination partners for the compounds of the general formula (I) according to the invention in mixture formulations or in the tank mix are, for example, known active ingredients which act on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate- Synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen oxidase, can be used, as they are for example in Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 and the literature cited there. The selective control of harmful plants in crops of useful and ornamental plants is of particular interest. Although the compounds of the general formula (I) according to the invention already have very good to sufficient selectivity in many crops, phytotoxicities can in principle occur in the crop plants in some crops and especially in the case of mixtures with other herbicides which are less selective. In this regard, combinations of compounds (I) according to the invention which contain the compounds of the general formula (I) or their combinations with other herbicides or pesticides and safeners are of particular interest. The safeners, which are used in an antidoteic content, reduce the phytotoxic side effects of the herbicides / pesticides used, for example in economically important crops such as grain (wheat, barley, rye, maize, rice, millet), sugar beet, sugar cane, rape, cotton and soy, preferably grain. The weight ratio of herbicide (mixture) to safener generally depends on the amount of herbicide applied and the effectiveness of the respective safener and can vary within wide limits, for example in the range from 200: 1 to 1: 200, preferably 100: 1 to 1: 100, in particular 20: 1 to 1:20. The safeners can be formulated analogously to the compounds of the general formula (I) or their mixtures with other herbicides / pesticides and are provided and used as a finished formulation or tank mix with the herbicides. For use, the herbicide or herbicide-safener formulations in commercially available form are diluted, if appropriate, in the customary manner, for example in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules using water. Preparations in dust form, soil granules or granules as well as sprayable solutions are usually no longer diluted with other inert substances before use. External conditions such as temperature, humidity etc. influence to a certain extent the application rate of the compounds of the general formula (I) and / or their salts. The application rate can vary within wide limits. For use as a herbicide for combating harmful plants, the total amount of compounds of the general formula (I) and their salts is preferably in the range from 0.001 to 10.0 kg / ha, preferably in the range from 0.005 to 5 kg / ha, more preferably in Range from 0.01 to 1.5 kg / ha, particularly preferably in the range from 0.05 to 1 kg / ha. This applies to both pre-emergence and post-emergence use. When using compounds of the general formula (I) according to the invention and / or their salts as plant growth regulators, for example as stalk shorteners in crop plants as mentioned above, preferably in cereal plants such as wheat, barley, rye, triticale, millet, rice or maize , the total application rate is preferably in the range from 0.001 to 2 kg / ha, preferably in the range from 0.005 to 1 kg / ha, in particular in the range from 10 to 500 g / ha, very particularly preferably in the range from 20 to 250 g / ha. This applies to both pre-emergence and post-emergence use. The application as a stalk shortener can take place in different stages of the growth of the plants. For example, use after tillering at the beginning of the growth in length is preferred. Alternatively, when used as a plant growth regulator, the treatment of the seed, which includes the different seed dressing and coating techniques, is also possible. The application rate depends on the individual techniques and can be determined in preliminary tests. Combination partners for the compounds of the general formula (I) according to the invention in agents according to the invention (e.g. mixed formulations or in a tank mix) are, for example, known active ingredients which act on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate -3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II or protoporphyrinogen oxidase, can be used, such as those from Weed Research 26 (1986) 441-445 or "The Pesticide Manual ", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 and the literature cited there. Known herbicides or plant growth regulators that can be combined with the compounds according to the invention are mentioned below by way of example, these active ingredients either with their "common name" in the English-language variant according to the International Organization for Standardization (ISO) or with the chemical name or code number are designated. This always includes all application forms such as acids, salts, esters and also all isomeric forms such as stereoisomers and optical isomers, even if these are not explicitly mentioned. Examples of such herbicidal mixture partners are: Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-6- (4-chloro- 2-fluoro-3-methylphenyl) -5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor- potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsubutazolin, beflazolin, ben- ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyrone, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bromynilacil, bromobutide, bromoxyn-potassium, bromobutide, bromofenoxim- , heptanoates and octanoates, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butraline, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbromuron, chlorfenac, chlorfenac-, chlorfenprop, chlorflurenol, chlorimuronazon, chlorofuran-sodium, chlorimuronazon-azone ethyl, chlorophthalim, chlorotoluron, chlorthal-dimethyl, chlorsulfuron, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulamyan, clopyralid, cloransuluramide, methyl cycloate, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D, 2,4-D-butotyl, -butyl, - dimethylammonium, -diolamine, -ethyl, 2-ethylhexyl, -isobutyl, - isooctyl, isopropylammonium, potassium, triisopropanolammonium and trolamine, 2,4-DB, 2,4-DB-butyl, -dimethylammonium, isooctyl, -potassium and -sodium, daimuron (dymron), dalapon, dazomet, n- decanol, desmedipham, detosyl-py razolate (DTP), dicamba, dichlobenil, 2- (2,4-dichlorobenzyl) -4,4-dimethyl-1,2-oxazolidin-3-one, 2- (2,5-dichlorobenzyl) -4,4-dimethyl -1,2-oxazolidin-3-one, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr- sodium, dimefuron, dimepiperate, dimethenamidethachlor, , dimethenamid-P, dimetrasulfuron, dinitramine, dinoterb, diphenamid, diquat, diquat-dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethiofenine, ethofumesoxate, ethoxyulfuron, ethoxyfen, ethofumesoxate, ethoxy-methyl, ethiofenine, ethofumesoxate, ethoxy-methyl, ethiofenine, ethofumesoxate, ethoxy-methyl , etobenzanid, F-9600, F-5231, ie N- [2- chloro-4-fluoro-5- [4- (3-fluoropropyl) -4,5-dihydro-5-oxo-1H-tetrazole-1- yl] phenyl] ethanesulfonamide, F-7967, ie3- [7-chloro-5-fluoro-2- (trifluoromethyl) -1H-benzimidazol-4-yl] -1-methyl-6- (trifluoromethyl) pyrimidine-2 , 4 (1H, 3H) -dione, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, f entrazamide, flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenpyron, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, - dimethylammonium and -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, fluroxidyrone, sulfuron, sodium fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-P-sodium, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate- ammonium, isopropylammonium, diammonium, dimethylammonium, potassium, sodium and trimesium, H-9201, ie O- (2,4-dimethyl-6-nitrophenyl) -O-ethyl isopropylphosphoramidothioate, halauxifen, halauxifen-methyl , halosafen, halosulfur on, halosulfuron-methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, ie1- (dimethoxyphosphoryl) -ethyl- (2,4 - dichlorophenoxy) acetate, imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyrlamon, imazodosulfuron, iazethapyr-indazifonium, i-azodosulfuron, iazethapyron, -methyl-sodium, ioxynil, ioxynil-octanoate, -potassium and sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, ie3 - ({[5- (difluoromethyl) -1-methyl-3- (trifluoromethyl) -1H-pyrazol-4-yl] methyl} sulfonyl) -5, 5-dimethyl-4,5-dihydro-1,2-oxazole, ketospiradox, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, -dimethylammonium, -2-ethylhexyl, -isopropylammonium, -potassium and -sodium, MCPB, MCPB -methyl, -ethyl and -sodium, mecoprop, mecoprop-sodium, and -butotyl, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl and -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozoline, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metsuron, metsulfuron, metsulfuron, monetsulfuros, monoxuron, metrolin, methylsulfuron, monoxuron, methylsulfuron, monoxuron, methylsulfuron, metazachlor, metazosulfuron, methabenzthiazuron, methyl sulfuron, monetsulfuron, metsulfuron, metsulfuron, metsulfuron, metsulfuron, monetsulfuron, methylsulfuron, monetsulfuron, metazosulfuron, methabenzthiazuron, methabenzthiazuron, metazosulfuron, methabenzthiazuron, methylsulfuron, monetsulfuron, metrolin -ester, MT-5950, ie N- [3-chloro-4- (1-methylethyl) phenyl] -2-methylpentanamide, NGGC-011, napropamide, NC-310, ie4- (2,4-dichloro benzoyl) -1-methyl- 5-benzyloxypyrazole, neburon, nicosulfuron, nonanoic acid (pelargonic acid), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasfluorfen, paraquatloride, oxasulfuron, oxaziclomefon, paraquatloride, oxasulfuron , pebulate, pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, picloram, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodynizop, propachaquilane, propachaquiline, propoxydim, prometon, prodynizop, propoxydim, prometon, prodynizop propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazulfotole, pyrazolynate (pyrazolynate, pyzambenzoxy), pyrazosulfuron, pyrambenzoxy , pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, surethonoxacilazine, simetryn, simetrynox, saflufenacilazine, 261, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron,, SYN-523, SYP-249, ie1-ethoxy-3-methyl-1-oxobut-3-en-2-yl- 5- [2-chloro- 4- (trifluoromethyl) phenoxy] -2-nitrobenzoate, SYP-300, ie1- [7-fluoro-3-oxo-4- (prop-2-yn-1-yl) -3,4-dihydro-2H-1 , 4-benzoxazin-6-yl] -3-propyl-2-thioxoimidazolidine-4,5-dione, 2,3,6-TBA, TCA (trifluoroacetic acid), TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil , terbucarb, terbumetone, terbuthylazine, terbutryn, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topramezone, methyl-tribenuron-tribenuron, triazo-sulphon, trifia-sulphon, trifia-sulphurone, trifia-sulphurone, trifia-sulphurone, tri-fia-sulphurone, triazon-methyl, trifoxydim, thiencarbazone, thiencarbazone-methyl , triclopyr, trietazine, trif loxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron-methyl, tritosulfuron, urea sulfate, vernolate, XDE-848, ZJ-0862, ie3,4-dichloro-N- {2- [(4,6-dimethoxypyrimidine 2-yl) oxy] benzyl} aniline, as well as the following compounds:
Figure imgf000041_0001
Beispiele für Pflanzenwachstumsregulatoren als mögliche Mischungspartner sind: Acibenzolar, acibenzolar-S-methyl, 5-Aminolävulinsäure, ancymidol, 6-benzylaminopurine, Brassinolid, Catechin, chlormequat chloride, cloprop, cyclanilide, 3-(Cycloprop-1-enyl)propionsäure, daminozide, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal- dipotassium, -disodium, und mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4- indol-3-ylbutyric acid, isoprothiolane, probenazole, Jasmonsäure, Jasmonsäuremethylester, maleic hydrazide, mepiquat chloride, 1-methylcyclopropene, 2-(1-naphthyl)acetamide, 1-naphthylacetic acid, 2- naphthyloxyacetic acid, nitrophenolate-mixture, 4-Oxo-4[(2-phenylethyl)amino]buttersäure, paclobutrazol, N-phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmone, Salicylsäure, Strigolacton, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P. Ebenfalls als Kombinationspartner für die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) kommen beispielsweise die folgenden Safener in Frage: S1) Verbindungen aus der Gruppe heterocyclischer Carbonsäurederivate: S1a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (S1a), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäure, 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (S1-1) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; S1b) Derivate der Dichlorphenylpyrazolcarbonsäure (S1b), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-methylpyrazol-3-carbonsäureethylester (S1-2), 1-(2,4-Dichlorphenyl)-5-isopropylpyrazol-3-carbonsäureethylester (S1-3), 1-(2,4-Dichlorphenyl)-5-(1,1-dimethyl-ethyl)pyrazol-3-carbonsäureethylester (S1-4) und verwandte Verbindungen, wie sie in EP-A-333131 und EP-A-269806 beschrieben sind; S1c) Derivate der 1,5-Diphenylpyrazol-3-carbonsäure (S1c), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S1-5), 1-(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (S1-6) und verwandte Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; S1d) Verbindungen vom Typ der Triazolcarbonsäuren (S1d), vorzugsweise Verbindungen wie Fenchlorazol(-ethylester), d.h.1-(2,4-Dichlorphenyl)-5-trichlormethyl-(1H)-1,2,4-triazol-3- carbonsäureethylester (S1-7), und verwandte Verbindungen, wie sie in EP-A-174562 und EP-A-346620 beschrieben sind; S1e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure, oder der 5,5- Diphenyl-2-isoxazolin-3-carbonsäure(S1e), vorzugsweise Verbindungen wie 5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester (S1-8) oder 5-Phenyl-2-isoxazolin-3-carbonsäureethylester (S1-9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw.5,5-Diphenyl-2-isoxazolin-carbonsäure (S1-10) oder 5,5-Diphenyl-2-isoxazolin-3-carbonsäureethylester (S1-11) ("Isoxadifen-ethyl") oder -n-propylester (S1-12) oder 5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3-carbon- säureethylester (S1-13), wie sie in der Patentanmeldung WO-A-95/07897 beschrieben sind. S2) Verbindungen aus der Gruppe der 8-Chinolinoxyderivate (S2): S2a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise (5-Chlor-8-chinolinoxy)essigsäure-(1-methylhexyl)-ester ("Cloquintocet-mexyl") (S2-1), (5-Chlor-8-chinolinoxy)essigsäure-(1,3-dimethyl-but-1-yl)-ester (S2-2), (5-Chlor-8-chinolinoxy)essigsäure-4-allyl-oxy-butylester (S2-3), (5-Chlor-8-chinolinoxy)essigsäure-1-allyloxy-prop-2-ylester (S2-4), (5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5), (5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6), (5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7), (5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-1-ethylester (S2-8), (5-Chlor-8-chinolinoxy)essigsäure-2-oxo-prop-1-ylester (S2-9) und verwandte Verbindungen, wie sie in EP-A-86750, EP-A-94349 und EP-A-191736 oder EP-A-0492366 beschrieben sind, sowie (5-Chlor-8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; S2b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester, (5-Chlor-8-chinolinoxy)malonsäurediallylester, (5-Chlor-8-chinolinoxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0582198 beschrieben sind. S3) Wirkstoffe vom Typ der Dichloracetamide (S3), die häufig als Vorauflaufsafener (bodenwirksame Safener) angewendet werden, wie z. B. "Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1), "R-29148" (3-Dichloracetyl-2,2,5-trimethyl-1,3-oxazolidin) der Firma Stauffer (S3-2), "R-28725" (3-Dichloracetyl-2,2,-dimethyl-1,3-oxazolidin) der Firma Stauffer (S3-3), "Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazin) (S3-4), "PPG-1292" (N-Allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG Industries (S3-5), "DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem (S3-6), "AD-67" oder "MON 4660" (3-Dichloracetyl-1-oxa-3-aza-spiro[4,5]decan) der Firma Nitrokemia bzw. Monsanto (S3-7), "TI-35" (1-Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) oder "BAS145138" oder "LAB145138" (S3-9) ((RS)-1-Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[1,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10), sowie dessen (R)-Isomer (S3-11). S4) Verbindungen aus der Klasse der Acylsulfonamide (S4): S4a) N-Acylsulfonamide der Formel (S4a) und deren Salze wie sie in der WO-A-97/45016 beschrieben sind,
Figure imgf000043_0001
worin RA1 (C1-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch vA Substituenten aus der Gruppe Halogen, (C1-C4)Alkoxy, (C1-C6)Haloalkoxy und (C1- C4)Alkylthio und im Falle cyclischer Reste auch durch (C1-C4)Alkyl und (C1-C4)Haloalkyl substituiert sind; RA2 Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3; mA 1 oder 2; vA ist 0, 1, 2 oder 3 bedeuten; S4b) Verbindungen vom Typ der 4-(Benzoylsulfamoyl)benzamide der Formel (S4b) und deren Salze, wie sie in der WO-A-99/16744 beschrieben sind,
Figure imgf000044_0003
worin RB1, RB2 unabhängig voneinander Wasserstoff, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, (C3- C6)Alkenyl, (C3-C6)Alkinyl, RB3 Halogen, (C1-C4)Alkyl, (C1-C4)Haloalkyl oder (C1-C4)Alkoxy und mB 1 oder 2 bedeuten, z.B. solche worin RB1 = Cyclopropyl, RB2 = Wasserstoff und (RB3) = 2-OMe ist ("Cyprosulfamide", S4-1), RB1 = Cyclopropyl, RB2 = Wasserstoff und (RB3) = 5-Cl-2-OMe ist (S4-2), RB1 = Ethyl, RB2 = Wasserstoff und (RB3) = 2-OMe ist (S4-3), RB1 = Isopropyl, RB2 = Wasserstoff und (RB3) = 5-Cl-2-OMe ist (S4-4) und RB1= Isopropyl, RB2 = Wasserstoff und (RB3) = 2-OMe ist (S4-5); S4c) Verbindungen aus der Klasse der Benzoylsulfamoylphenylharnstoffe der Formel (S4c), wie sie in der EP-A-365484 beschrieben sind,
Figure imgf000044_0001
worin R 1 2 C , RC unabhängig voneinander Wasserstoff, (C1-C8)Alkyl, (C3-C8)Cycloalkyl, (C3- C6)Alkenyl, (C3-C6)Alkinyl, R 3 C Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3 und mC 1 oder 2 bedeuten; beispielsweise 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3-methylharnstoff, 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylharnstoff, 1-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylharnstoff; S4d) Verbindungen vom Typ der N-Phenylsulfonylterephthalamide der Formel (S4d) und deren Salze, die z.B. bekannt sind aus CN 101838227,
Figure imgf000044_0002
worin R 4 D Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3; mD 1 oder 2; R 5 D Wasserstoff, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5- C6)Cycloalkenyl bedeutet. S5) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen Carbonsäurederivate (S5), z.B. 3,4,5-Triacetoxybenzoesäureethylester, 3,5-Dimethoxy-4-hydroxybenzoesäure, 3,5- Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure, wie sie in der WO-A-2004/084631, WO-A-2005/015994, WO-A- 2005/016001 beschrieben sind. S6) Wirkstoffe aus der Klasse der 1,2-Dihydrochinoxalin-2-one (S6), z.B. 1-Methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-on, 1-Methyl-3-(2-thienyl)-1,2-dihydro- chinoxalin-2-thion, 1-(2-Aminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on-hydrochlorid, 1-(2-Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on, wie sie in der WO- A-2005/112630 beschrieben sind. S7) Verbindungen aus der Klasse der Diphenylmethoxyessigsäurederivate (S7), z.B. Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr.41858-19-9) (S7-1), Diphenylmethoxyessigsäureethylester oder Diphenylmethoxyessigsäure wie sie in der WO-A- 98/38856 beschrieben sind. S8) Verbindungen der Formel (S8), wie sie in der WO-A-98/27049 beschrieben sind,
Figure imgf000045_0001
worin die Symbole und Indizes folgende Bedeutungen haben: RD1 ist Halogen, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, RD2 ist Wasserstoff oder (C1-C4)Alkyl, RD3 ist Wasserstoff, (C1-C8)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; oder deren Salze, nD ist eine ganze Zahl von 0 bis 2. S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B. 1,2-Dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr.: 219479-18- 2), 1,2-Dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr. 95855-00-8), wie sie in der WO-A-1999/000020 beschrieben sind. S10) Verbindungen der Formeln (S10a) oder (S10b), wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind,
Figure imgf000046_0001
worin RE1 Halogen, (C1-C4)Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3 YE, ZE unabhängig voneinander O oder S, nE eine ganze Zahl von 0 bis 4, RE2 (C1-C16)Alkyl, (C2-C6)Alkenyl, (C3-C6)Cycloalkyl, Aryl; Benzyl, Halogenbenzyl, RE3 Wasserstoff oder (C1-C6)Alkyl bedeuten. S11) Wirkstoffe vom Typ der Oxyimino-Verbindungen (S11), die als Saatbeizmittel bekannt sind, wie z. B. "Oxabetrinil" ((Z)-1,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (S11-1), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, "Fluxofenim" (1-(4-Chlorphenyl)-2,2,2-trifluor-1-ethanon-O-(1,3-dioxolan-2-ylmethyl)-oxim) (S11-2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und "Cyometrinil" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (S11-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist. S12) Wirkstoffe aus der Klasse der Isothiochromanone (S12), wie z.B. Methyl-[(3-oxo-1H-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr.205121-04-6) (S12-1) und verwandte Verbindungen aus WO-A-1998/13361. S13) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (1,8-Naphthalindicarbonsäureanhydrid) (S13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist, "Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S13-2), das als Safener für Pretilachlor in gesätem Reis bekannt ist, "Flurazole" (Benzyl-2-chlor-4-trifluormethyl-1,3-thiazol-5-carboxylat) (S13-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist, "CL 304415" (CAS-Reg.Nr.31541-57-8) (4-Carboxy-3,4-dihydro-2H-1-benzopyran-4-essigsäure) (S13-4) der Firma American Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist, "MG 191" (CAS-Reg.Nr.96420-72-3) (2-Dichlormethyl-2-methyl-1,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist, "MG 838" (CAS-Reg.Nr.133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia "Disulfoton" (O,O-Diethyl S-2-ethylthioethyl phosphordithioat) (S13-7), "Dietholate" (O,O-Diethyl-O-phenylphosphorothioat) (S13-8), "Mephenate" (4-Chlorphenyl-methylcarbamat) (S13-9). S14) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an Kulturpflanzen wie Reis aufweisen, wie z. B. "Dimepiperate" oder "MY-93" (S-1-Methyl-1-phenylethyl-piperidin-1-carbothioat), das als Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist, "Daimuron" oder "SK 23" (1-(1-Methyl-1-phenylethyl)-3-p-tolyl-harnstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist, "Cumyluron" = "JC-940" (3-(2-Chlorphenylmethyl)-1-(1-methyl-1-phenyl-ethyl)harnstoff, siehe JP-A-60087270), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "CSB" (1-Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr.54091-06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist. S15) Verbindungen der Formel (S15) oder deren Tautomere,
Figure imgf000047_0001
wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind, worin R 1 H einen (C1-C6)Haloalkylrest bedeutet und R 2 H Wasserstoff oder Halogen bedeutet und R 3 H , R 4 H unabhängig voneinander Wasserstoff, (C1-C16)Alkyl, (C2-C16)Alkenyl oder (C2-C16)Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, (C1-C4)Alkylthio, (C1-C4)Alkylamino, Di[(C1-C4)alkyl]-amino, [(C1-C4)Alkoxy]- carbonyl, [(C1-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)Cycloalkyl, (C4-C6)Cycloalkenyl, (C3-C6)Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, (C1-C4)Alkylthio, (C1-C4)Alkylamino, Di[(C1- C4)alkyl]-amino, [(C1-C4)Alkoxy]-carbonyl, [(C1-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder RH3 (C1-C4)-Alkoxy, (C2-C4)Alkenyloxy, (C2-C6)Alkinyloxy oder (C2-C4)Haloalkoxy bedeutet und RH4 Wasserstoff oder (C1-C4)-Alkyl bedeutet oder RH3 und RH4 zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (C1- C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy und (C1-C4)Alkylthio substituiert ist, bedeutet. S16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z. B. (2,4-Dichlorphenoxy)essigsäure (2,4-D), (4-Chlorphenoxy)essigsäure, (R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop), 4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB), (4-Chlor-o-tolyloxy)essigsäure (MCPA), 4-(4-Chlor-o-tolyloxy)buttersäure, 4-(4-Chlorphenoxy)buttersäure, 3,6-Dichlor-2-methoxybenzoesäure (Dicamba), 1-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl). Bevorzugte Safener in Kombination mit den erfindungsgemäßen Verbindungend der allgemeinen Formel (I) und/oder deren Salze, insbesondere mit den Verbindungen der Formeln (1-1) bis (1-64) und/oder deren Salze sind: Cloquintocet-mexyl, Cyprosulfamid, Fenchlorazol-ethylester, Isoxadifen- ethyl, Mefenpyr-diethyl, Fenclorim, Cumyluron, S4-1 und S4-5, und besonders bevorzugte Safener sind: Cloquintocet-mexyl, Cyprosulfamid, Isoxadifen-ethyl und Mefenpyr-diethyl. Biologische Beispiele A. Herbizide Wirkung im Nachauflauf bei 320 g/ha Samen von mono- bzw. dikotylen Unkrautpflanzen wurden in Kunststofftöpfen in sandigem Lehmboden ausgelegt (Doppelaussaaten mit jeweils einer Spezies mono- bzw. dikotyler Unkrautpflanzen pro Topf), mit Erde abgedeckt und im Gewächshaus unter kontrollierten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat wurden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden als wässrige Suspension bzw. Emulsion, unter Zusatz von 0,5% Additiv, mit einer Wasseraufwandmenge von umgerechnet 600 Liter pro Hektar, auf die grünen Pflanzenteile appliziert. Nach ca.3 Wochen Standzeit der Versuchspflanzen im Gewächshaus, unter optimalen Wachstumsbedingungen, wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen. In den nachstehenden Tabllen A1 bis A10 sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Schadpflanzen und einer Aufwandmenge entsprechend 320 g/ha, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle A1: Nachauflaufwirkung gegen Alopecurus myosuroides (ALOMY)
Figure imgf000049_0001
Tabelle A2: Nachauflaufwirkung gegen Digitaria sanguinalis (DIGSA)
Figure imgf000050_0001
Tabelle A3: Nachauflaufwirkung gegen Poa annua (POAAN)
Figure imgf000050_0002
Tabelle A4: Nachauflaufwirkung gegen Abutilon theophrasti (ABUTH)
Figure imgf000051_0001
Figure imgf000041_0001
Examples of plant growth regulators as possible mixing partners are: acibenzolar, acibenzolar-S-methyl, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, brassinolide, catechin, chlormequat chloride, cloprop, cyclanilide, 3- (cycloprop-1-enyl) propionic acid, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal- dipotassium, -disodium, and mono (N, N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic, acid, indol-3-acetic acid (IAA), 4- indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, jasmonic acid methyl ester, maleic hydrazide, mepiquat chloride, 1-methylcyclopropene, 2- (1-naphthyl) acetamide, 1-naphthylacetic acid , 2- naphthyloxyacetic acid, nitrophenolate-mixture, 4-Oxo-4 [(2-phenylethyl) amino] butyric acid, paclobutrazole, N-phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmone, salicylic acid, strigolactone, tecnazene, thidontanol, triacentanol, t rinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P. The following safeners, for example, also come into consideration as combination partners for the compounds of the general formula (I) according to the invention: S1) compounds from the group of heterocyclic carboxylic acid derivatives: S1a) compounds of the dichlorophenylpyrazoline-3-carboxylic acid type (S1a), preferably compounds such as 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid, 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline- 3-carboxylic acid ethyl ester (S1-1) ("Mefenpyr-diethyl"), and related compounds, as described in WO-A-91/07874; S1b) Derivatives of dichlorophenylpyrazole carboxylic acid (S1b), preferably compounds such as ethyl 1- (2,4-dichlorophenyl) -5-methylpyrazole-3-carboxylate (S1-2), 1- (2,4-dichlorophenyl) -5-isopropylpyrazole-3 ethyl carboxylate (S1-3), Ethyl 1- (2,4-dichlorophenyl) -5- (1,1-dimethyl-ethyl) pyrazole-3-carboxylate (S1-4) and related compounds as described in EP-A-333131 and EP-A-269806 are; S1c) derivatives of 1,5-diphenylpyrazole-3-carboxylic acid (S1c), preferably compounds such as 1- (2,4-dichlorophenyl) -5-phenylpyrazole-3-carboxylic acid ethyl ester (S1-5), 1- (2-chlorophenyl) -5-phenylpyrazole-3-carboxylic acid methyl ester (S1-6) and related compounds as described, for example, in EP-A-268554; S1d) Compounds of the triazolecarboxylic acid type (S1d), preferably compounds such as fenchlorazole (ethyl ester), ie 1- (2,4-dichlorophenyl) -5-trichloromethyl- (1H) -1,2,4-triazole-3-carboxylic acid ethyl ester ( S1-7), and related compounds as described in EP-A-174562 and EP-A-346620; S1e) Compounds of the 5-benzyl or 5-phenyl-2-isoxazoline-3-carboxylic acid type, or of the 5,5-diphenyl-2-isoxazoline-3-carboxylic acid (S1e), preferably compounds such as 5- (2, 4-dichlorobenzyl) -2-isoxazoline-3-carboxylic acid ethyl ester (S1-8) or 5-phenyl-2-isoxazoline-3-carboxylic acid ethyl ester (S1-9) and related compounds, as described in WO-A-91/08202 , or 5,5-diphenyl-2-isoxazoline-carboxylic acid (S1-10) or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid ethyl ester (S1-11) ("isoxadifen-ethyl") or -n-propyl ester (S1-12) or 5- (4-fluorophenyl) -5-phenyl-2-isoxazoline-3-carboxylic acid ethyl ester (S1-13), as described in patent application WO-A-95/07897. S2) compounds from the group of 8-quinolinoxy derivatives (S2): S2a) compounds of the 8-quinolinoxyacetic acid type (S2a), preferably (5-chloro-8-quinolinoxy) acetic acid (1-methylhexyl) ester ("Cloquintocet- mexyl ") (S2-1), (5-chloro-8-quinolinoxy) acetic acid (1,3-dimethyl-but-1-yl) ester (S2-2), (5-chloro-8-quinolinoxy) acetic acid-4-allyl-oxy-butyl ester (S2-3), (5-chloro-8-quinolinoxy) acetic acid-1-allyloxy-prop-2-yl ester (S2-4), (5-chloro-8-quinolinoxy) ethyl acetate (S2-5), (5-chloro-8-quinolinoxy) methyl acetate (S2-6), (5-chloro-8-quinolinoxy) allyl acetate (S2-7), (5-chloro-8-quinolinoxy) acetic acid 2- (2-propylidene-iminoxy) -1-ethyl ester (S2-8), (5-chloro-8-quinolinoxy) -acetic acid 2-oxo-prop-1-yl ester (S2-9) and related compounds, such as them in EP-A-86750, EP-A-94349 and EP-A-191736 or EP-A-0492366 are described, and (5-chloro-8-quinolinoxy) acetic acid (S2-10), its hydrates and salts, for example their lithium, sodium, potassium, calcium, magnesium, aluminum, Iron, ammonium, quaternary ammonium, sulfonium, or phosphonium salts as described in WO-A-2002/34048; S2b) compounds of the (5-chloro-8-quinolinoxy) malonic acid type (S2b), preferably compounds such as (5-chloro-8-quinolinoxy) diethyl malonate, (5-chloro-8-quinolinoxy) diallyl malonate, Methyl-ethyl (5-chloro-8-quinolinoxy) malonic acid and related compounds, as described in EP-A-0582198. S3) Active ingredients of the dichloroacetamide type (S3), which are often used as pre-emergence safeners (soil-acting safeners), such as. B. "Dichlormid" (N, N-diallyl-2,2-dichloroacetamide) (S3-1), "R-29148" (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from the company Stauffer (S3-2), "R-28725" (3-dichloroacetyl-2,2, -dimethyl-1,3-oxazolidine) from Stauffer (S3-3), "Benoxacor" (4-dichloroacetyl-3,4 -dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4), "PPG-1292" (N-allyl-N - [(1,3-dioxolan-2-yl) methyl] dichloroacetamide ) from PPG Industries (S3-5), "DKA-24" (N-Allyl-N - [(allylaminocarbonyl) methyl] dichloroacetamide) from Sagro-Chem (S3-6), "AD-67" or " MON 4660 "(3-dichloroacetyl-1-oxa-3-aza-spiro [4.5] decane) from Nitrokemia or Monsanto (S3-7)," TI-35 "(1-dichloroacetyl-azepane) from the company TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) or "BAS145138" or "LAB145138" (S3-9) ((RS) -1-dichloroacetyl-3,3,8a-trimethylperhydropyrrolo [1,2- a] pyrimidin-6-one) from BASF, "Furilazol" or "MON 13900" ((RS) -3-dichloroacetyl-5- (2-furyl) -2,2-dimethyloxazolidine) (S3-10), and its (R) -isomer (S3-11). S4) Compounds from the class of acylsulfonamides (S4): S4a) N-acylsulfonamides of the formula (S4a) and their salts as described in WO-A-97/45016,
Figure imgf000043_0001
wherein R A 1 is (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, the last two radicals mentioned by v A substituents from the group consisting of halogen, (C 1 -C 4 ) alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 ) alkylthio and, in the case of cyclic radicals, also by (C 1 -C 4 ) alkyl and (C 1 -C 4 ) haloalkyl; R A 2 halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; m A 1 or 2; v A is 0, 1, 2 or 3; S4b) compounds of the 4- (benzoylsulfamoyl) benzamides type of the formula (S4b) and their salts, as described in WO-A-99/16744,
Figure imgf000044_0003
wherein R B 1, B R 2 are independently hydrogen, (C 1 -C 6) alkyl, (C 3 -C 6) cycloalkyl, (C 3 - C 6) alkenyl, (C 3 -C 6) alkynyl, R B 3 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl or (C 1 -C 4 ) alkoxy and m is B 1 or 2, for example those in which R B 1 = cyclopropyl, R B 2 = Is hydrogen and (R B 3) = 2-OMe ("Cyprosulfamide", S4-1), R B 1 = cyclopropyl, R B 2 = hydrogen and (R B 3) = 5-Cl-2-OMe is (S4 -2), R B 1 = ethyl, R B 2 = hydrogen and (R B 3) = 2-OMe is (S4-3), R B 1 = isopropyl, R B 2 = hydrogen and (R B 3) = 5-Cl-2-OMe is (S4-4) and R B 1 = isopropyl, R B 2 = hydrogen and (R B 3) = 2-OMe is (S4-5); S4c) compounds from the class of the benzoylsulfamoylphenylureas of the formula (S4c), as described in EP-A-365484,
Figure imgf000044_0001
wherein R 1 2 C, RC independently of one another are hydrogen, (C1-C8) alkyl, (C3-C8) cycloalkyl, (C3-C6) alkenyl, (C3-C6) alkynyl, R 3 C halogen, (C1-C4) alkyl , (C1-C4) alkoxy, CF3 and mC are 1 or 2; for example 1- [4- (N-2-methoxybenzoylsulfamoyl) phenyl] -3-methylurea, 1- [4- (N-2-methoxybenzoylsulfamoyl) phenyl] -3,3-dimethylurea, 1- [4- (N-4 , 5-dimethylbenzoylsulfamoyl) phenyl] -3-methylurea; S4d) compounds of the N-phenylsulfonylterephthalamide type of the formula (S4d) and their salts, which are known, for example, from CN 101838227,
Figure imgf000044_0002
wherein R 4 D halogen, (C1-C4) alkyl, (C1-C4) alkoxy, CF3; mD 1 or 2; R 5 D is hydrogen, (C1-C6) alkyl, (C3-C6) cycloalkyl, (C2-C6) alkenyl, (C2-C6) alkynyl, (C5-C6) cycloalkenyl. S5) Active ingredients from the class of the hydroxyaromatics and the aromatic-aliphatic carboxylic acid derivatives (S5), for example ethyl 3,4,5-triacetoxybenzoate, 3,5-dimethoxy-4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydroxysalicylic acid, 4-fluorosalicyclic acid , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001. S6) Active ingredients from the class of 1,2-dihydroquinoxalin-2-ones (S6), e.g. 1-methyl-3- (2-thienyl) -1,2-dihydroquinoxalin-2-one, 1-methyl-3- ( 2-thienyl) -1,2-dihydro-quinoxalin-2-thione, 1- (2-aminoethyl) -3- (2-thienyl) -1,2-dihydro-quinoxalin-2-one hydrochloride, 1- ( 2-methylsulfonylaminoethyl) -3- (2-thienyl) -1,2-dihydro-quinoxalin-2-one, as described in WO-A-2005/112630. S7) Compounds from the class of diphenylmethoxyacetic acid derivatives (S7), for example diphenylmethoxyacetic acid methyl ester (CAS Reg.Nr.41858-19-9) (S7-1), diphenylmethoxyacetic acid ethyl ester or diphenylmethoxyacetic acid as described in WO-A-98/38856. S8) compounds of the formula (S8) as described in WO-A-98/27049,
Figure imgf000045_0001
where the symbols and indices have the following meanings: R D 1 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy , R D 2 is hydrogen or (C 1 -C 4 ) alkyl, R D 3 is hydrogen, (C 1 -C 8 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or Aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or their salts, nD is an integer from 0 to 2. S9) Active ingredients from the class of the 3- (5-tetrazolylcarbonyl) -2-quinolones (S9), for example 1,2-dihydro-4-hydroxy-1-ethyl -3- (5-tetrazolylcarbonyl) -2-quinolone (CAS-Reg.Nr .: 219479-18- 2), 1,2-dihydro-4-hydroxy-1-methyl-3- (5-tetrazolyl-carbonyl) -2-quinolone (CAS Reg. No. 95855-00-8), as described in WO-A-1999/000020. S10) compounds of the formulas (S10a) or (S10b), as described in WO-A-2007/023719 and WO-A-2007/023764,
Figure imgf000046_0001
wherein R E 1 halogen, (C 1 -C 4 ) alkyl, methoxy, nitro, cyano, CF 3 , OCF 3 Y E , Z E independently of one another O or S, n E is an integer from 0 to 4, R E 2 (C 1 -C 16 ) alkyl, (C 2 -C 6 ) alkenyl, (C 3 -C 6 ) cycloalkyl, aryl; Benzyl, halobenzyl, R E 3 are hydrogen or (C 1 -C 6 ) alkyl. S11) Active ingredients of the type of oxyimino compounds (S11), which are known as seed dressings, such as. B. "Oxabetrinil" ((Z) -1,3-Dioxolan-2-ylmethoxyimino (phenyl) acetonitrile) (S11-1), which is known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim" (1- (4-chlorophenyl) -2,2,2-trifluoro-1-ethanone-O- (1,3-dioxolan-2-ylmethyl) oxime) (S11-2), which is used as a seed dressing safener for millet against damage from Metolachlor is known, and "Cyometrinil" or "CGA-43089" ((Z) -Cyanomethoxyimino (phenyl) acetonitrile) (S11-3), which is known as a seed dressing safener for millet against damage from metolachlor. S12) Active ingredients from the class of isothiochromanones (S12), such as methyl - [(3-oxo-1H-2-benzothiopyran-4 (3H) -ylidene) methoxy] acetate (CAS Reg.No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361. S13) One or more compounds from group (S13): "Naphthalic anhydride" (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), which is known as a seed dressing safener for maize against damage from thiocarbamate herbicides, "Fenclorim" (4.6 -Dichlor-2-phenylpyrimidine) (S13-2) which is known as a safener for pretilachlor in sown rice, "Flurazole" (benzyl-2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13 -3), which is known as a seed dressing safener for millet against damage from alachlor and metolachlor, "CL 304415" (CAS-Reg.Nr.31541-57-8) (4-Carboxy-3,4-dihydro-2H- 1-benzopyran-4-acetic acid) (S13-4) from American Cyanamid, which is known as a safener for maize against damage by imidazolinones, "MG 191" (CAS Reg.Nr.96420-72-3) (2- Dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as a safener for maize, "MG 838" (CAS-Reg.Nr.133993-74-5) (2-propenyl 1-oxa-4-azaspiro [4.5] decane-4-carbodithioate) (S13-6) from Nitrokemia "Disulfoton" (O , O-Diethyl S-2-ethylthioethyl phosphorodithioate) (S13-7), "Dietholate" (O, O-Diethyl-O-phenylphosphorothioate) (S13-8), "Mephenate" (4-chlorophenyl-methylcarbamate) (S13- 9). S14) Active ingredients which, in addition to a herbicidal action against harmful plants, also have a safener effect on crop plants such as rice, such as. B. "Dimepiperate" or "MY-93" (S-1-methyl-1-phenylethyl-piperidine-1-carbothioate), which is known as a safener for rice against damage by the herbicide Molinate, "Daimuron" or "SK 23" (1- (1-Methyl-1-phenylethyl) -3-p-tolyl-urea), which is known as a safener for rice against damage by the herbicide imazosulfuron, "Cumyluron" = "JC-940" (3- (2- Chlorophenylmethyl) -1- (1-methyl-1-phenyl-ethyl) urea, see JP-A-60087270), which is known as a safener for rice against damage of some herbicides, "Methoxyphenone" or "NK 049" (3.3 '-Dimethyl-4-methoxy-benzophenone), which is known as a safener for rice against the damage of some herbicides, "CSB" (1-bromo-4- (chloromethylsulfonyl) benzene) from Kumiai, (CAS Reg.Nr.54091- 06-4), which is known as a safener against damage from some herbicides in rice. S15) compounds of the formula (S15) or their tautomers,
Figure imgf000047_0001
as described in WO-A-2008/131861 and WO-A-2008/131860, in which R 1 H is a (C1-C6) haloalkyl radical and R 2 H is hydrogen or halogen and R 3 is H, R 4 is H. independently of one another hydrogen, (C1-C16) alkyl, (C2-C16) alkenyl or (C 2 -C 16 ) alkynyl, where each of the last-mentioned 3 radicals is unsubstituted or by one or more radicals from the group halogen, hydroxy, cyano, ( C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, (C 1 -C 4 ) alkylthio, (C 1 -C 4 ) alkylamino, di [(C 1 -C 4 ) alkyl] amino, [ (C 1 -C 4 ) alkoxy] carbonyl, [(C 1 -C 4 ) haloalkoxy] carbonyl, (C 3 -C 6 ) cycloalkyl that is unsubstituted or substituted, phenyl that is unsubstituted or substituted, and heterocyclyl that is unsubstituted or substituted, is substituted, or (C3-C6) cycloalkyl, (C4-C6) cycloalkenyl, (C3-C6) cycloalkyl condensed on one side of the ring with a 4 to 6-membered saturated or unsaturated carbocyclic ring, or (C4-C6) cycloalkenyl , which is condensed on one side of the ring with a 4 to 6-membered saturated or unsaturated carbocyclic ring, each of the last-mentioned 4 radicals being unsubstituted or by one or more radicals from the group consisting of halogen, hydroxy, cyano, (C1-C4) alkyl , (C1-C4) haloalkyl, (C1-C4) alkoxy, (C1-C4) haloalkoxy, (C1-C4) alkylthio, (C1-C4) alkylamino, di [(C1-C4) alkyl] -amino, [( C1-C4) alkoxy] carbonyl, [(C1-C4) haloalkoxy] carbonyl, (C3-C6) cycloalkyl that is unsubstituted or substituted, phenyl that is unsubstituted or substituted, and heterocyclyl that is unsubstituted or substituted, is substituted, or R H 3 is (C 1 -C 4 ) alkoxy, (C 2 -C 4 ) alkenyloxy, (C 2 -C 6 ) alkynyloxy or (C 2 -C 4 ) haloalkoxy and R H 4 is hydrogen or (C 1 -C 4 ) -alkyl or R H 3 and R H 4 together with the directly bonded N atom denote a four- to eight-membered heterocyclic ring which, in addition to the N atom, also contains further hetero ring atoms, preferably up to two further hetero ring atoms from the group N, O and S and may include unsubstituted or substituted by one or more radicals from the group halogen, cyano, nitro, (C 1-4 C) alkyl, (C 1 -C 4) haloalkyl, (C 1 -C 4) Alkoxy, (C 1 -C 4 ) haloalkoxy and (C 1 -C 4 ) alkylthio is substituted. S16) Active ingredients that are primarily used as herbicides, but also have a safener effect on crops, e.g. B. (2,4-Dichlorophenoxy) acetic acid (2,4-D), (4-chlorophenoxy) acetic acid, (R, S) -2- (4-chloro-o-tolyloxy) propionic acid (Mecoprop), 4- ( 2,4-dichlorophenoxy) butyric acid (2,4-DB), (4-chloro-o-tolyloxy) acetic acid (MCPA), 4- (4-chloro-o-tolyloxy) butyric acid, 4- (4-chlorophenoxy) butyric acid , 3,6-dichloro-2-methoxybenzoic acid (Dicamba), 1- (ethoxycarbonyl) ethyl-3,6-dichloro-2-methoxybenzoate (lactidichloro-ethyl). Preferred safeners in combination with the compounds according to the invention of the general formula (I) and / or their salts, in particular with the compounds of the formulas (1-1) to (1-64) and / or their salts are: cloquintocet-mexyl, cyprosulfamide, Fenchlorazole-ethyl ester, isoxadifen-ethyl, mefenpyr-diethyl, fenclorim, cumyluron, S4-1 and S4-5, and particularly preferred safeners are: cloquintocet-mexyl, cyprosulfamide, isoxadifen-ethyl and mefenpyr-diethyl. Biological Examples A. Post-emergence herbicidal action at 320 g / ha Seeds of monocotyledonous or dicotyledonous weed plants were placed in plastic pots in sandy loam soil (double sowing with one species of mono- or dicotyledonous weed plants per pot), covered with soil and placed in the greenhouse grown under controlled growth conditions. 2 to 3 weeks after sowing, the test plants were treated in the single-leaf stage. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were applied to the green parts of the plant as an aqueous suspension or emulsion, with the addition of 0.5% additive, with a water application rate of 600 liters per hectare . After the test plants had stood in the greenhouse for about 3 weeks, under optimal growth conditions, the effect of the preparations was rated visually in comparison to untreated controls. For example, 100% activity means = plants have died, 0% activity = like control plants. Tables A1 to A10 below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and an application rate corresponding to 320 g / ha, which were obtained according to the aforementioned test procedure. Table A1: Post-emergence effects against Alopecurus myosuroides (ALOMY)
Figure imgf000049_0001
Table A2: Post-emergence effects against Digitaria sanguinalis (DIGSA)
Figure imgf000050_0001
Table A3: Post-emergence effects against Poa annua (POAAN)
Figure imgf000050_0002
Table A4: Post-emergence effects against Abutilon theophrasti (ABUTH)
Figure imgf000051_0001
Tabelle A5: Nachauflaufwirkung gegen Amaranthus retroflexus (AMARE)
Figure imgf000052_0001
Tabelle A6: Nachauflaufwirkung gegen Bassia scoparia (KCHSC)
Figure imgf000053_0001
Tabelle A7: Nachauflaufwirkung gegen Stellaria media (STEME)
Figure imgf000054_0001
Table A5: Post-emergence effect against Amaranthus retroflexus (AMARE)
Figure imgf000052_0001
Table A6: Post-emergence effects against Bassia scoparia (KCHSC)
Figure imgf000053_0001
Table A7: Post-emergence effects against Stellaria media (STEME)
Figure imgf000054_0001
Tabelle A8: Nachauflaufwirkung gegen Veronica persica (VERPE)
Figure imgf000055_0001
Tabelle A9: Nachauflaufwirkung gegen Echinochloa crus-galli (ECHCG)
Figure imgf000056_0001
Tabelle A10: Nachauflaufwirkung gegen Setaria viridis (SETVI)
Figure imgf000056_0002
Wie die Ergebnisse der Tabellen A1-A10 beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen Nr.1-2, 1-3, 1-4, 1-5, 1-6, 1-9, 1-10, 1-12, 1-13, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-21, 1-22, 1-32, 1-33, 1-34, 1-35, 1-37, 1-38, 1-39, 1-40, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1-49, 1-51 und 1-52 bei Behandlung im Nachauflauf eine sehr gute herbizide Wirksamkeit gegen die Schadpflanzen Alopecurus myosuroides (ALOMY), Digitaria sanguinalis (DIGSA), Poa annua (POAAN), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE), Bassia scoparia (KCHSC), Stellaria media (STEME), Veronica persica (VERPE), Echinochloa crus-galli (ECHCG) und Setaria viridis (SETVI) bei einer Aufwandmenge von 320 g Aktivsubstanz pro Hektar auf. B. Herbizide Wirkung im Vorauflauf bei 320 g/ha Samen von mono- und dikotylen Unkrautpflanzen wurden in Kunststofftöpfen, in sandigem Lehmboden, ausgelegt (Doppelaussaaten mit jeweils eine Spezies mono- bzw. dikotyler Unkrautpflanzen pro Topf) und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden dann als wässrige Suspension bzw. Emulsion, unter Zusatz von 0,5% Additiv, mit einer Wasseraufwandmenge von umgerechnet 600 Liter pro Hektar auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung wurden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Nach ca.3 Wochen wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen in Prozentwerten bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen. In nachstehenden Tabellen B1 bis B12 sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Schadpflanzen und einer Aufwandmenge entsprechend 320 g/ha, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle B1: Vorauflaufwirkung gegen Alopecurus myosuroides (ALOMY)
Figure imgf000057_0001
Table A8: Post-emergence effects against Veronica persica (VERPE)
Figure imgf000055_0001
Table A9: Post-emergence effects against Echinochloa crus-galli (ECHCG)
Figure imgf000056_0001
Table A10: Post-emergence effects against Setaria viridis (SETVI)
Figure imgf000056_0002
As the results in Tables A1-A10 show by way of example, compounds No. 1-2, 1-3, 1-4, 1-5, 1-6, 1-9, 1-10, 1-12, 1 according to the invention have -13, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-21, 1-22, 1-32, 1-33, 1-34, 1-35 , 1-37, 1-38, 1-39, 1-40, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1 -49, 1-51 and 1-52 with post-emergence treatment a very good herbicidal activity against the harmful plants Alopecurus myosuroides (ALOMY), Digitaria sanguinalis (DIGSA), Poa annua (POAAN), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE ), Bassia scoparia (KCHSC), Stellaria media (STEME), Veronica persica (VERPE), Echinochloa crus-galli (ECHCG) and Setaria viridis (SETVI) at an application rate of 320 g of active ingredient per hectare. B. Herbicidal pre-emergence effect at 320 g / ha. Seeds of monocotyledon and dicotyledon weed plants were laid out in plastic pots in sandy loam soil (double sowing with one species of monocotyledon or dicotyledon weed plants per pot) and covered with soil. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were then applied to the surface of the covering soil as an aqueous suspension or emulsion, with the addition of 0.5% additive, with a water application rate of 600 liters per hectare applied. After the treatment, the pots were placed in the greenhouse and under good growing conditions for the test plants kept. After about 3 weeks, the effect of the preparations was rated visually in percentage values in comparison with untreated controls. For example, 100% activity means = plants have died, 0% activity = like control plants. Tables B1 to B12 below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and an application rate corresponding to 320 g / ha, which were obtained in accordance with the aforementioned test procedure. Table B1: Pre-emergence effects against Alopecurus myosuroides (ALOMY)
Figure imgf000057_0001
Tabelle B2: Vorauflaufwirkung gegen Digitaria sanguinalis (DIGSA)
Figure imgf000058_0001
Table B2: Pre-emergence effects against Digitaria sanguinalis (DIGSA)
Figure imgf000058_0001
Tabelle B3: Vorauflaufwirkung gegen Echinochloa crus-galli (ECHCG)
Figure imgf000059_0001
Tabelle B4: Vorauflaufwirkung gegen Lolium rigidum (LOLRI)
Figure imgf000059_0002
Table B3: Pre-emergence effects against Echinochloa crus-galli (ECHCG)
Figure imgf000059_0001
Table B4: Pre-emergence effect against Lolium rigidum (LOLRI)
Figure imgf000059_0002
Tabelle B5: Vorauflaufwirkung gegen Poa annua (POAAN)
Figure imgf000060_0001
Table B5: Pre-emergence effects against Poa annua (POAAN)
Figure imgf000060_0001
Tabelle B6: Vorauflaufwirkung gegen Setaria viridis (SETVI)
Figure imgf000061_0001
Tabelle B7: Vorauflaufwirkung gegen Abutilon theophrasti (ABUTH)
Figure imgf000061_0002
Tabelle B8: Vorauflaufwirkung gegen Amaranthus retroflexus (AMARE)
Figure imgf000062_0001
Tabelle B9: Vorauflaufwirkung gegen Bassia scoparia (KCHSC)
Figure imgf000063_0001
Table B6: Pre-emergence effects against Setaria viridis (SETVI)
Figure imgf000061_0001
Table B7: Pre-emergence effects against Abutilon theophrasti (ABUTH)
Figure imgf000061_0002
Table B8: Pre-emergence effect against Amaranthus retroflexus (AMARE)
Figure imgf000062_0001
Table B9: Pre-emergence effects against Bassia scoparia (KCHSC)
Figure imgf000063_0001
Tabelle B10: Vorauflaufwirkung gegen Matricaria inodora (MATIN)
Figure imgf000064_0001
Table B10: Pre-emergence effects against Matricaria inodora (MATIN)
Figure imgf000064_0001
Tabelle B11: Vorauflaufwirkung gegen Stellaria media (STEME)
Figure imgf000065_0001
Table B11: Pre-emergence effects against Stellaria media (STEME)
Figure imgf000065_0001
Tabelle B12: Vorauflaufwirkung gegen Veronica persica (VERPE)
Figure imgf000066_0001
Wie die Ergebnisse der Tabellen B1-B12 beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen Nr. 1-2, 1-3, 1-4, 1-5, 1-6, 1-9, 1-12, 1-13, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-21, 1-22, 1-32, 1-33, 1-34, 1-35, 1-37, 1-38, 1-39, 1-40, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1-49, 1-51 und 1-52 bei Behandlung im Vorauflauf eine sehr gute herbizide Wirksamkeit gegen die Schadpflanzen Alopecurus myosuroides (ALOMY), Digitaria sanguinalis (DIGSA), Echinochloa crus-galli (ECHCG), Lolium rigidum (LOLRI), Poa annua (POAAN), Setaria viridis (SETVI), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE), Bassia scoparia (KCHSC), Matricaria inodora (MATIN), Stellaria media (STEME) und Veronica persica (VERPE) bei einer Aufwandmenge von 320 g Aktivsubstanz pro Hektar auf. C. Herbizide Wirkung im Nachauflauf bei 80 g/ha Samen von mono- bzw. dikotylen Unkrautpflanzen wurden in Kunststoff- oder organischen Pflanztöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter kontrollierten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat wurden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden dann als wässrige Suspension bzw. Emulsion unter Zusatz von 0,5% Additiv mit einer Wasseraufwandmenge von umgerechnet 600 l/ha auf die grünen Pflanzenteile gesprüht. Nach ca.3 Wochen Standzeit der Versuchspflanzen im Gewächshaus, unter optimalen Wachstumsbedingungen, wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen. In nachstehenden Tabellen C1 bis C7 sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Schadpflanzen und einer Aufwandmenge entsprechend 80 g/ha, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle C1 : Nachauflaufwirkung gegen Setaria viridis (SETVI)
Figure imgf000067_0001
Tabelle C2 : Nachauflaufwirkung gegen Abutilon theophrasti (ABUTH)
Figure imgf000067_0002
Tabelle C3 : Nachauflaufwirkung gegen Amaranthus retroflexus (AMARE)
Figure imgf000067_0003
Tabelle C4 : Nachauflaufwirkung gegen Pharbitis purpurea (PHBPU)
Figure imgf000068_0001
Tabelle C5 : Nachauflaufwirkung gegen Polygonum convolvulus (POLCO)
Figure imgf000068_0002
Tabelle C6 : Nachauflaufwirkung gegen Viola tricolor (VIOTR)
Figure imgf000068_0003
Tabelle C7 : Nachauflaufwirkung gegen Veronica persica (VERPE)
Figure imgf000068_0004
Wie die Ergebnisse der Tabellen C1-C7 beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen Nr.1-3, 1-4, 1-9, 1-19 und 1-35 bei Behandlung im Nachauflauf eine sehr gute herbizide Wirksamkeit gegen die Schadpflanzen Setaria viridis (SETVI), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE), Pharbitis purpurea (PHBPU), Polygonum convolvulus (POLCO), Viola tricolor (VIOTR) und Veronica persica (VERPE) bei einer Aufwandmenge von 80 g Aktivsubstanz pro Hektar auf. D. Herbizide Wirkung im Vorauflauf bei 80 g/ha Samen von mono- bzw. dikotylen Unkrautpflanzen wurden in Kunststoff- oder organischen Pflanztöpfen ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden dann als wässrige Suspension bzw. Emulsion unter Zusatz von 0,5% Additiv mit einer Wasseraufwandmenge von umgerechnet 600 l/ha auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung wurden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Nach ca.3 Wochen wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen in Prozentwerten bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen. In nachstehenden Tabellen D1 bis D9 sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Schadpflanzen und einer Aufwandmenge entsprechend 80 g/ha, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle D1 : Vorauflaufwirkung gegen Alopecurus myosuroides (ALOMY)
Figure imgf000069_0001
Tabelle D2 : Vorauflaufwirkung gegen Avena fatua (AVEFA)
Figure imgf000069_0002
Tabelle D3 : Vorauflaufwirkung gegen Digitaria sanguinalis (DIGSA)
Figure imgf000069_0003
Tabelle D4 : Vorauflaufwirkung gegen Setaria viridis (SETVI)
Figure imgf000070_0001
Tabelle D5 : Vorauflaufwirkung gegen Abutilon theophrasti (ABUTH)
Figure imgf000070_0002
Tabelle D6 : Vorauflaufwirkung gegen Amaranthus retroflexus (AMARE)
Figure imgf000070_0003
Tabelle D7 : Vorauflaufwirkung gegen Polygonum convolvulus (POLCO)
Figure imgf000070_0004
Tabelle D8 : Vorauflaufwirkung gegen Viola tricolor (VIOTR)
Figure imgf000071_0001
Tabelle D9 : Vorauflaufwirkung gegen Veronica persica (VERPE)
Figure imgf000071_0002
Wie die Ergebnisse der Tabellen D1-D9 beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen Nr.1-3, 1-4, 1-9, 1-19 und 1-35 bei Behandlung im Vorauflauf eine sehr gute herbizide Wirksamkeit gegen die Schadpflanzen Alopecurus myosuroides (ALOMY), Avena fatua (AVEFA), Digitaria sanguinalis (DIGSA), Setaria viridis (SETVI), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE), Polygonum convolvulus (POLCO), Viola tricolor (VIOTR) und Veronica persica (VERPE) bei einer Aufwandmenge von 80 g Aktivsubstanz pro Hektar auf.
Table B12: Pre-emergence effects against Veronica persica (VERPE)
Figure imgf000066_0001
As the results of Tables B1-B12 show by way of example, the compounds according to the invention no. 1-2, 1-3, 1-4, 1-5, 1-6, 1-9, 1-12, 1-13, 1 -15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-21, 1-22, 1-32, 1-33, 1-34, 1-35, 1-37 , 1-38, 1-39, 1-40, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1-49, 1 -51 and 1-52 with pre-emergence treatment a very good herbicidal activity against the harmful plants Alopecurus myosuroides (ALOMY), Digitaria sanguinalis (DIGSA), Echinochloa crus-galli (ECHCG), Lolium rigidum (LOLRI), Poa annua (POAAN), Setaria viridis (SETVI), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE), Bassia scoparia (KCHSC), Matricaria inodora (MATIN), Stellaria media (STEME) and Veronica persica (VERPE) at an application rate of 320 g of active ingredient per hectare on. C. Post-emergence herbicidal activity at 80 g / ha Seeds of monocotyledonous and dicotyledonous weed plants were laid out in plastic or organic plant pots in sandy loam soil, covered with soil and grown in the greenhouse under controlled growth conditions. 2 to 3 weeks after sowing, the test plants were treated in the single-leaf stage. The compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC) were then sprayed onto the green parts of the plant as an aqueous suspension or emulsion with the addition of 0.5% additive with a water application rate of the equivalent of 600 l / ha. After the test plants had stood in the greenhouse for about 3 weeks, under optimal growth conditions, the effect of the preparations was rated visually in comparison to untreated controls. For example, 100% activity means = plants have died, 0% activity = like control plants. Tables C1 to C7 below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and an application rate corresponding to 80 g / ha, which were obtained according to the aforementioned test procedure. Table C1: Post-emergence effects against Setaria viridis (SETVI)
Figure imgf000067_0001
Table C2: Post-emergence effects against Abutilon theophrasti (ABUTH)
Figure imgf000067_0002
Table C3: Post-emergence effects against Amaranthus retroflexus (AMARE)
Figure imgf000067_0003
Table C4: Post-emergence effects against Pharbitis purpurea (PHBPU)
Figure imgf000068_0001
Table C5: Post-emergence effect against Polygonum convolvulus (POLCO)
Figure imgf000068_0002
Table C6: Post-emergence effects against Viola tricolor (VIOTR)
Figure imgf000068_0003
Table C7: Post-emergence effects against Veronica persica (VERPE)
Figure imgf000068_0004
As the results in Tables C1-C7 show by way of example, the compounds Nos. 1-3, 1-4, 1-9, 1-19 and 1-35 according to the invention, when treated post-emergence, have a very good herbicidal activity against the harmful plants Setaria viridis (SETVI), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE), Pharbitis purpurea (PHBPU), Polygonum convolvulus (POLCO), Viola tricolor (VIOTR) and Veronica persica (VERPE) at an application rate of 80 g of active ingredient per hectare. D. Pre-emergence herbicidal action at 80 g / ha. Seeds of monocotyledonous or dicotyledon weed plants were placed in plastic or organic plant pots and covered with soil. The compounds according to the invention, formulated in the form of wettable powders (WP) or emulsion concentrates (EC), were then applied to the surface of the covering soil as an aqueous suspension or emulsion with the addition of 0.5% additive with a water application rate of the equivalent of 600 l / ha. After the treatment, the pots were placed in the greenhouse and kept under good growth conditions for the test plants. After about 3 weeks, the effect of the preparations was rated visually in percentage values in comparison with untreated controls. For example, 100% activity means = plants have died, 0% activity = like control plants. Tables D1 to D9 below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and an application rate corresponding to 80 g / ha, which were obtained in accordance with the aforementioned test procedure. Table D1: Pre-emergence effects against Alopecurus myosuroides (ALOMY)
Figure imgf000069_0001
Table D2: Pre-emergence effects against Avena fatua (AVEFA)
Figure imgf000069_0002
Table D3: Pre-emergence effects against Digitaria sanguinalis (DIGSA)
Figure imgf000069_0003
Table D4: Pre-emergence effects against Setaria viridis (SETVI)
Figure imgf000070_0001
Table D5: Pre-emergence effects against Abutilon theophrasti (ABUTH)
Figure imgf000070_0002
Table D6: Pre-emergence effect against Amaranthus retroflexus (AMARE)
Figure imgf000070_0003
Table D7: Pre-emergence effect against Polygonum convolvulus (POLCO)
Figure imgf000070_0004
Table D8: Pre-emergence effects against Viola tricolor (VIOTR)
Figure imgf000071_0001
Table D9: Pre-emergence effects against Veronica persica (VERPE)
Figure imgf000071_0002
As the results of Tables D1-D9 show by way of example, the compounds Nos. 1-3, 1-4, 1-9, 1-19 and 1-35 according to the invention have very good herbicidal activity against the harmful plants Alopecurus myosuroides when treated pre-emergence (ALOMY), Avena fatua (AVEFA), Digitaria sanguinalis (DIGSA), Setaria viridis (SETVI), Abutilon theophrasti (ABUTH), Amaranthus retroflexus (AMARE), Polygonum convolvulus (POLCO), Viola tricolor (VIOTR) and Veronica persica (VERPE ) at an application rate of 80 g of active ingredient per hectare.

Claims

Patentansprüche 1. Substituierte 5-(2-Heteroaryloxyphenyl)isoxazoline der allgemeinen Formel (I) oder deren Salze
Figure imgf000072_0001
Z für -CR7- oder -N- steht, R1 für Wasserstoff, Halogen, Hydroxy, Amino, Cyano, Nitro, (C1-C4)-Alkyl, (C1-C4)- Haloalkyl, (C3-C6)-Cycloalkyl (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C6)-Cycloalkoxy, (C1- C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)-Alkylthio- (C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)- Cycloalkoxycarbonyl, (C1-C4)-Alkylaminocarbonyl, (C2-C6)-Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)- Haloalkylcarbonylamino, (C2-C6)-Cycloalkylcarbonylamino, (C1-C4)- Alkoxycarbonylamino, (C1-C4)-Alkylaminocarbonylamino, (C2-C6)- Dialkylaminocarbonylamino, Carboxy-(C1-C4)-alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)- alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxycarbonyl- (C1-C4)-alkyl, (C1-C4)-Alkylthio, (C1-C4)-Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)- Alkylsulfonyl, (C1-C4)-Haloalkylsulfonyl, (C3-C6)-Cycloalkylsulfonyl, (C1-C4)- Alkylaminosulfonyl, (C2-C6)-Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl steht, R2 und R3unabhängig voneinander für Wasserstoff, Halogen, Hydroxy, Amino, Cyano, Nitro, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl (C2-C4)-Alkenyl, (C2-C4)- Haloalkenyl, (C2-C4)-Alkinyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)- Haloalkoxy, (C1-C6)-Cycloalkoxy, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy- (C1-C4)-alkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)- Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)- Alkylaminocarbonyl, (C2-C6)-Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)- Cycloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino, (C1-C4)- Alkylaminocarbonylamino, (C2-C6)-Dialkylaminocarbonylamino, Carboxy-(C1-C4)- alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)- alkyl, (C3-C6)-Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylthio, (C1-C4)- Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)-Haloalkylsulfonyl, (C3-C6)- Cycloalkylsulfonyl, (C1-C4)-Alkylaminosulfonyl, (C2-C6)-Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl stehen, R4 für Wasserstoff, Halogen, Hydroxy, Amino, Cyano, Nitro, Formyl, Formamid, (C1-C4)- Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C6)- Cycloalkoxy, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)- Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl- (C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)- Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)-Alkylaminocarbonyl, (C2-C6)- Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)-Cycloalkylcarbonylamino, (C1-C4)- Alkoxycarbonylamino, (C1-C4)-Alkylaminocarbonylamino, (C2-C6)- Dialkylaminocarbonylamino, Carboxy-(C1-C4)-alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)- alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxycarbonyl- (C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkylcarbonyl-(C1-C4)- alkyl, (C3-C6)-Cycloalkylcarbonyl-(C1-C4)-alkyl, Cyano-(C1-C4)-alkyl, (C1-C4)- Alkylthio, (C1-C4)-Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)- Haloalkylsulfonyl, (C3-C6)-Cycloalkylsulfonyl, (C1-C4)-Alkylaminosulfonyl, (C2-C6)- Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl steht, R5 unabhängig voneinander für Halogen, Hydroxy, Amino, Cyano, Nitro, Formyl, Formamid, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Haloalkenyl, (C2-C4)-Alkinyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)- Haloalkoxy, (C1-C6)-Cycloalkoxy, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy- (C1-C4)-alkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)- Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)-Alkylaminocarbonyl, (C2-C6)-Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)- Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)- Cycloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino, (C1-C4)- Alkylaminocarbonylamino, (C2-C6)-Dialkylaminocarbonylamino, Carboxy-(C1-C4)- alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)- alkyl, (C3-C6)-Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylthio, (C1-C4)- Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)-Haloalkylsulfonyl, (C3-C6)- Cycloalkylsulfonyl, (C1-C4)-Alkylaminosulfonyl, (C2-C6)-Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl steht, n ist gleich 0, 1, 2, 3, oder 4, R6 für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C1-C4)-Alkoxy oder (C1-C4)-Haloalkoxy steht, R7 für Wasserstoff oder Halogen steht, und wobei R6 und R7 nicht gleichzeitig Wasserstoff sind. 2. Verbindung der allgemeinen Formel (I) nach Anspruch 1oder deren Salze, worin Z für -CR7- oder -N- steht, R1 für Wasserstoff, Halogen, (C1-C4)-Alkyl oder (C1-C4)-Haloalkyl steht, R2 und R3unabhängig voneinander für Wasserstoff, Halogen, (C1-C4)-Alkyl oder (C1-C4)- Haloalkyl stehen, R4 für Wasserstoff, Halogen, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, (C1-C4)-Alkoxy, Carboxyl, (C1-C4)-Alkoxycarbonyl, Carboxy-(C1-C4)-alkyl oder (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl steht, R5 unabhängig voneinander für Halogen, Amino, Cyano, Nitro, (C1-C4)-Alkyl, (C1-C4)- Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl oder (C1-C4)-Alkoxy steht, n ist gleich 0, 1,
Claims 1. Substituted 5- (2-heteroaryloxyphenyl) isoxazolines of the general formula (I) or their salts
Figure imgf000072_0001
Z stands for -CR7- or -N-, R1 for hydrogen, halogen, hydroxy, amino, cyano, nitro, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -Cycloalkyl (C 2 -C 4 ) -alkenyl, (C 2 -C 4 ) -haloalkenyl, (C 2 -C 4 ) -alkynyl, (C 2 -C 4 ) -haloalkynyl, (C 1 -C 4 ) -Alkoxy, (C 1 -C 4 ) -haloalkoxy, (C 1 -C 6 ) -cycloalkoxy, (C 1 -C4) -alkoxy- (C1-C4) -alkyl, (C1-C4) -haloalkoxy- ( C1-C4) -alkyl, (C1-C4) -alkylthio- (C1-C4) -alkyl, (C1-C4) -alkylsulfinyl- (C1-C4) -alkyl, (C1-C4) -alkylsulfonyl- (C1- C4) -alkyl, (C1-C4) -alkylcarbonyl, (C1-C4) -haloalkylcarbonyl, (C3-C6) -cycloalkylcarbonyl, carboxyl, (C1-C4) -alkoxycarbonyl, (C1-C4) -haloalkoxycarbonyl, (C3- C6) - Cycloalkoxycarbonyl, (C1-C4) -Alkylaminocarbonyl, (C2-C6) -Dialkylaminocarbonyl, (C3-C6) -Cycloalkylaminocarbonyl, (C1-C4) -Alkylcarbonylamino, (C1-C4) - Haloalkylcarbonylamino, (C2-C6) -Cycloalkylcarbonylamino, (C1-C4) - alkoxycarbonylamino, (C1-C4) -alkylaminocarbonylamino, (C2-C6) - dialkylaminocarbonylamino, carboxy- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkoxycarbonyl- ( C. 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkoxycarbonyl- (C 1 -C 4 ) -alkyl, (C 3 -C 6 ) -cycloalkoxycarbonyl- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -Alkylthio, (C 1 -C 4 ) -haloalkylthio, (C 3 -C 6 ) -cycloalkylthio, (C 1 -C 4 ) -alkylsulfinyl, (C 1 -C 4 ) -haloalkylsulfinyl, (C 3 -C 6 ) -Cycloalkylsulfinyl, (C 1 -C 4 ) -alkylsulfonyl, (C1-C4) -haloalkylsulfonyl, (C3-C6) -cycloalkylsulfonyl, (C1-C4) -alkylaminosulfonyl, (C2-C6) -dialkylaminosulfonyl or (C3-C6) -Trialkylsilyl, R2 and R3 independently of one another for hydrogen, halogen, hydroxy, amino, cyano, nitro, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 - C 6 ) cycloalkyl (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, (C 2 -C 4 ) alkynyl, (C 2 -C 4 ) haloalkynyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, (C 1 -C 6 ) cycloalkoxy, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkyl, (C 1 -C 4 ) -haloalkoxy- (C1-C4) -alkyl, (C1-C4) -alkylthio- (C1-C4) -alkyl, (C1-C4) -alkylsulfinyl- (C1-C4) -alkyl, (C1-C4) -alkylsulfonyl- (C1 -C4) -alkyl, (C1-C4) -alkylcarbonyl, (C1-C4) -haloalkylcarbonyl, (C3-C6) -cycloalkylcarbonyl, carboxyl, (C1-C4) -alkoxycarbonyl, (C1-C4) -haloalkoxycarbonyl, (C3 -C6) -Cycloalkoxycarbonyl, (C1-C4) -alkylaminocarbonyl, (C2-C6) -dialkylaminocarbonyl, (C3-C6) -cycloalkylaminocarbonyl, (C1-C4) -alkylcarbonylamino, (C1-C4) -haloalkylcarbonylamino, (C2-C6 ) - Cycloalkylcarbonylamino, (C1-C4) -alkoxycarbonylamino, (C1-C4) -alkylaminocarbonylamino, (C2-C6) -dialkylaminocarbonylamino, carboxy- (C1-C4) -alkyl, (C1-C4) -alkoxycarbonyl- (C1-C4 ) -alkyl, (C1-C4) -haloalkoxycarbonyl- (C1-C4) -alkyl, (C3-C6) -cycloalkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -alkylthio, (C1-C4) - Haloalkylthio, (C3-C6) -cycloalkylthio, (C1-C4) -alkylsulfinyl, (C1-C4) -haloalkylsulfinyl, (C3-C6) -cycloalkylsulfinyl, (C1-C4) -alkylsulfonyl, (C1-C4) -haloalkylsulfonyl, (C3-C6) - Cycloalkylsulfonyl, (C 1 -C 4 ) -Alkylaminosulfonyl, (C 2 -C 6 ) -dialkyla minosulfonyl or (C 3 -C 6) are trialkylsilyl, R4 is hydrogen, halogen, hydroxy, amino, cyano, nitro, formyl, formamide, (C 1 -C 4) - alkyl, (C 1 -C 4) -haloalkyl , (C 3 -C 6 ) cycloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, (C 2 -C 4 ) alkynyl, (C 2 -C 4 ) haloalkynyl , (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, (C 1 -C 6 ) cycloalkoxy, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkyl , (C 1 -C 4 ) -haloalkoxy- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylthio- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylsulfinyl - (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylsulphonyl- (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylcarbonyl, (C 1 -C 4 ) -haloalkylcarbonyl , (C 3 -C 6 ) - cycloalkylcarbonyl, carboxyl, (C 1 -C 4 ) -alkoxycarbonyl, (C 1 -C 4 ) -haloalkoxycarbonyl, (C 3 -C 6 ) -cycloalkoxycarbonyl, (C 1 -C 4 ) -Alkylaminocarbonyl, (C 2 -C 6 ) - Dialkylaminocarbonyl, (C3-C6) -Cycloalkylaminocarbonyl, (C1-C4) -Alkylcarbonylamino, (C1-C4) -haloalkylcarbonylamino, (C2-C6) -Cycloalkylcarbonylamino, (C1-C4) - alkoxycarbonylamino, (C1-C4) -alky laminocarbonylamino, (C2-C6) - dialkylaminocarbonylamino, carboxy- (C1-C4) -alkyl, (C1-C4) -alkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkoxycarbonyl- (C1-C4) - alkyl, (C3-C6) -cycloalkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -alkylcarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkylcarbonyl- (C1-C4) -alkyl, (C3-C6) -Cycloalkylcarbonyl- (C1-C4) -alkyl, cyano- (C1-C4) -alkyl, (C1-C4) -alkylthio, (C1-C4) -haloalkylthio, (C3-C6) -cycloalkylthio, (C1-C4) -Alkylsulfinyl, (C1-C4) -haloalkylsulfinyl, (C3-C6) -cycloalkylsulfinyl, (C1-C4) -alkylsulfonyl, (C1-C4) -haloalkylsulfonyl, (C3-C6) -cycloalkylsulfonyl, (C1 -C4) -Alkylaminosulfonyl, (C2-C6) -dialkylaminosulfonyl or (C3-C6) -Trialkylsilyl, R5 independently of one another represents halogen, hydroxy, amino, cyano, nitro, formyl, formamide, (C1-C4) -alkyl, ( C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C2-C4) -alkenyl, (C2-C4) -haloalkenyl, (C2-C4) -alkynyl, (C2-C4) -haloalkynyl, (C1-C4) -alkoxy, (C1-C4) -haloalkoxy, (C1-C6) -cycloalkoxy, (C1 -C4) -alkoxy- (C1-C4) -alkyl, (C1-C4) -haloalkoxy- (C1-C4) -alkyl, (C1-C4) -alkylthio- (C1-C4) -alkyl, (C1-C4 ) -Alkylsulfinyl- (C1-C4) -alkyl, (C1-C4) -alkylsulfonyl- (C1-C4) -alkyl, (C1-C4) -alkylcarbonyl, (C1-C4) -haloalkylcarbonyl, (C3-C6) - Cycloalkylcarbonyl, carboxyl, (C1-C4) -alkoxycarbonyl, (C1-C4) - haloalkoxycarbonyl, (C3-C6) -cycloalkoxycarbonyl, (C1-C4) -alkylaminocarbonyl, (C2-C6) -dialkylaminocarbonyl, (C3-C6) - Cycloalkylaminocarbonyl, (C1-C4) - alkylcarbonylamino, (C1-C4) -haloalkylcarbonylamino, (C2-C6) - cycloalkylcarbonylamino, (C1-C4) -alkoxycarbonylamino, (C1-C4) - alkylaminocarbonylamino, (C2-C6) -dialkylaminocarbonylamino Carboxy- (C1-C4) -alkyl, (C1-C4) -alkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -haloalkoxycarbonyl- (C1-C4) -alkyl, (C3-C6) -cycloalkoxycarbonyl- (C1-C4) -alkyl, (C1-C4) -alkylthio, (C1-C4) -haloalkylthio, (C 3 -C 6 ) -cycloalkylthio, (C 1 -C 4 ) -alkylsulfinyl, (C 1 -C 4 ) -Haloalkylsulfinyl, (C 3 -C 6 ) -cycloalkylsulfinyl, (C 1 -C 4 ) -alkylsulfonyl, (C 1 -C 4 ) -haloalkylsulfonyl, (C 3 -C 6 ) -cycloalkylsulfonyl, (C 1 -C 4 ) -Alkylaminosulfonyl, (C 2 -C 6 ) -dialkylaminosulfonyl or (C 3 -C 6 ) -Trialkylsilyl, n is 0, 1, 2, 3, or 4, R6 is hydrogen, halogen, cyano, (C 1 - C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 ) -cycloalkyl, (C 1 -C 4 ) -alkoxy or (C 1 -C 4 ) -haloalkoxy, R7 represents hydrogen or halogen, and where R6 and R7 are not simultaneously hydrogen. 2. A compound of the general formula (I) according to claim 1 or its salts, in which Z is -CR7- or -N-, R1 is hydrogen, halogen, (C1-C4) -alkyl or (C1-C4) -haloalkyl, R2 and R3 independently of one another represent hydrogen, halogen, (C1-C4) -alkyl or (C1-C4) -haloalkyl, R4 for hydrogen, halogen, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C2-C4) -alkenyl, (C2-C4) -alkynyl, (C1-C4 ) -Alkoxy, carboxyl, (C1-C4) -alkoxycarbonyl, carboxy- (C1-C4) -alkyl or (C1-C4) -alkoxycarbonyl- (C1-C4) -alkyl, R5 independently of one another represents halogen, amino, cyano , Nitro, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C2-C4) -alkenyl, (C2-C4) -alkynyl or (C1-C4) -alkoxy stands, n is equal to 0, 1,
2, oder 3, R6 für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C1-C4)-Alkoxy oder (C1-C4)-Haloalkoxy steht, R7 für Wasserstoff oder Halogen steht, und wobei R6 und R7 nicht gleichzeitig Wasserstoff sind. 2, or 3, R6 represents hydrogen, halogen, cyano, (C1-C4) -alkyl, (C1-C4) -haloalkyl, (C3-C6) -cycloalkyl, (C 1 -C 4 ) -alkoxy or (C 1 -C 4 ) -haloalkoxy, R7 is hydrogen or halogen, and where R6 and R7 are not simultaneously hydrogen.
3. Verbindung der allgemeinen Formel (I) nach Anspruch 1 oder deren Salze, worin Z für -CR7- oder -N- steht, R1 für Wasserstoff, Methyl oder Trifluormethyl steht, R2 für Wasserstoff steht, R3 für Wasserstoff steht, R4 für Chlor, Brom, Methyl, Difluormethyl, Trifluormethyl, Methoxy, Carboxyl, Methoxycarbonyl oder Ethoxycarbonyl steht, R5 unabhängig voneinander für Fluor, Brom, Methyl, Vinyl oder Cyano steht, n ist gleich 0 oder 1, R6 für Wasserstoff, Fluor oder Chlor steht, und R7 für Wasserstoff oder Fluor steht, und wobei R6 und R7 nicht gleichzeitig Wasserstoff sind. 3. A compound of the general formula (I) according to claim 1 or its salts, in which Z is -CR7- or -N-, R1 is hydrogen, methyl or trifluoromethyl, R2 is hydrogen, R3 is hydrogen, R4 is chlorine , Bromine, methyl, difluoromethyl, trifluoromethyl, methoxy, carboxyl, methoxycarbonyl or ethoxycarbonyl, R5 is independently fluorine, bromine, methyl, vinyl or cyano, n is 0 or 1, R6 stands for hydrogen, fluorine or chlorine, and R7 stands for hydrogen or fluorine, and where R6 and R7 are not simultaneously hydrogen.
4. Herbizide Mittel, gekennzeichnet durch einen herbizid wirksamen Gehalt an mindestens einer Verbindung der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 3. 4. Herbicidal compositions, characterized by a herbicidally active content of at least one compound of the general formula (I) according to any one of claims 1 to 3.
5. Herbizide Mittel nach Anspruch 4 in Mischung mit Formulierungshilfsmitteln. 5. Herbicidal compositions according to claim 4 in a mixture with formulation auxiliaries.
6. Herbizide Mittel nach Anspruch 4 oder 5 enthaltend mindestens einen weiteren pestizid wirksamen Stoff aus der Gruppe Insektizide, Akarizide, Herbizide, Fungizide, Safener und Wachstumsregulatoren. 6. Herbicidal compositions according to claim 4 or 5 containing at least one further pesticidally active substance from the group consisting of insecticides, acaricides, herbicides, fungicides, safeners and growth regulators.
7. Herbizide Mittel nach Anspruch 6 enthaltend einen Safener. 7. Herbicidal compositions according to claim 6 containing a safener.
8. Herbizide Mittel nach Anspruch 7 enthaltend Cyprosulfamid, Cloquintocet-mexyl, Mefenpyr- diethyl oder Isoxadifen-ethyl. 8. Herbicidal agents according to claim 7 containing cyprosulfamide, cloquintocet-mexyl, mefenpyr- diethyl or isoxadifen-ethyl.
9. Herbizide Mittel nach einem der Ansprüche 4 bis 8 enthaltend ein weiteres Herbizid. 9. Herbicidal agents according to one of claims 4 to 8 containing a further herbicide.
10. Verfahren zur Bekämpfung unerwünschter Pflanzen, dadurch gekennzeichnet, daß man eine wirksame Menge mindestens einer Verbindung der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 3 oder eines herbiziden Mittels nach einem der Ansprüche 4 bis 9 auf die Pflanzen oder auf den Ort des unerwünschten Pflanzenwachstums appliziert. 10. A method for combating unwanted plants, characterized in that an effective amount of at least one compound of the general formula (I) according to any one of claims 1 to 3 or a herbicidal composition according to any one of claims 4 to 9 on the plants or on the site of unwanted plant growth.
11. Verwendung von Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 3 oder von herbiziden Mitteln nach einem der Ansprüche 4 bis 9 zur Bekämpfung unerwünschter Pflanzen. 11. Use of compounds of the general formula (I) according to any one of claims 1 to 3 or of herbicidal compositions according to any one of claims 4 to 9 for combating undesirable plants.
12. Verwendung nach Anspruch 11, dadurch gekennzeichnet, daß die Verbindungen der allgemeinen Formel (I) zur Bekämpfung unerwünschter Pflanzen in Kulturen von Nutzpflanzen eingesetzt werden. 12. Use according to claim 11, characterized in that the compounds of the general formula (I) are used for combating undesired plants in crops of useful plants.
13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, daß die Nutzpflanzen transgene Nutzpflanzen sind. 13. Use according to claim 12, characterized in that the useful plants are transgenic useful plants.
PCT/EP2020/072465 2019-08-13 2020-08-11 Substituted (2-heteroaryloxyphenyl)isoxazolines and salts thereof and their use as herbicidal active substances WO2021028421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19191498 2019-08-13
EP19191498.5 2019-08-13

Publications (1)

Publication Number Publication Date
WO2021028421A1 true WO2021028421A1 (en) 2021-02-18

Family

ID=67620334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/072465 WO2021028421A1 (en) 2019-08-13 2020-08-11 Substituted (2-heteroaryloxyphenyl)isoxazolines and salts thereof and their use as herbicidal active substances

Country Status (1)

Country Link
WO (1) WO2021028421A1 (en)

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0086750A2 (en) 1982-02-17 1983-08-24 Ciba-Geigy Ag Use of quinoline derivatives in the protection of crop plants
EP0094349A2 (en) 1982-05-07 1983-11-16 Ciba-Geigy Ag Use of quinoline derivatives for the protection of cultivated plants
JPS6087270A (en) 1983-09-26 1985-05-16 バイエル・アクチエンゲゼルシヤフト 1,3-diaryl-5-methylene-perhydropyrimidin-2-one
EP0174562A2 (en) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Plant protecting agents based on 1,2,4 - triazole derivatives as well as 1,2,4-triazole derivatives
EP0191736A2 (en) 1985-02-14 1986-08-20 Ciba-Geigy Ag Use of quinoline derivatives for the protection of crop plants
EP0268554A2 (en) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenyl pyrazole-3-carbonic-acid derivatives for the protection of cultured plants
EP0269806A1 (en) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazole carbonic acid derivatives, their preparation and use as plant growth regulators and antidotes
EP0333131A1 (en) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Plant protective agent based on pyrazolecarboxylic acid derivatives
EP0346620A1 (en) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft Plant protection agents containing 1,2,4-triazole derivatives, and the 1,2,4-triazole derivatives
EP0365484A1 (en) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoyl phenyl ureas
WO1991007874A1 (en) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazolines for the protection of crops against herbicides
WO1991008202A1 (en) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazolines, method of preparation thereof, and their use as plant-protection agents
EP0492366A2 (en) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH New 5-chloroquinolin-8-oxyalkanecarbonic acid derivatives, process for their preparation and their use as antidotes for herbicides
EP0582198A2 (en) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituted (hetero-)aryle compounds, process for their preparation, those containing compositions and their use as safeners
WO1994017059A1 (en) 1993-01-29 1994-08-04 Nippon Soda Co., Ltd. Heterocyclic derivative
WO1995007897A1 (en) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituted isoxazolines, process for producing them, agents containing them and their use as safeners
WO1997045016A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Novel n-acyl sulphonamides, novel mixtures of herbicides and antidotes and their use
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (en) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Novel 2-fluoroacrylic acid derivatives, novel mixtures of herbicides and antidotes and the use thereof
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (en) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolyl carbonyl)-2-quinolones and products for protecting useful plants containing the same
WO1999016744A1 (en) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoyl benzoic acid amides, plant protection agents containing said acylsulfamoyl benzoic acid amides, and method for producing the same
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2004084631A1 (en) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Use of aromatic hydroxy compounds as safeners
WO2005015994A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Use of aromatic compounds as safeners
WO2005016001A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener based on aromatic-aliphatic carboxylic acid derivatives
WO2005112630A1 (en) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Quinoxalin-2-one derivatives crop protection agents comprising the same and method for production and use therof
WO2007023719A1 (en) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reducing chemical injury and herbicide composition with reduced chemical injury
WO2007023764A1 (en) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reduction of harmful effect of herbicide and herbicide composition having reduced harmful effect
WO2008131861A1 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Use of pyridine-2-oxy-3-carbonamides as safeners
WO2008131860A2 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridonecarboxamides crop protection agents containing the same method for production and use thereof
WO2009094407A2 (en) 2008-01-25 2009-07-30 E. I. Du Pont De Nemours And Company Fungicidal amides
CN101838227A (en) 2010-04-30 2010-09-22 孙德群 Safener of benzamide herbicide
WO2015089003A1 (en) 2013-12-10 2015-06-18 E. I. Du Pont De Nemours And Company Herbicidal substituted pyrimidinyloxy benzene compounds
WO2015108779A1 (en) 2014-01-16 2015-07-23 E. I. Du Pont De Nemours And Company Pyrimidinyloxy benzene derivatives as herbicides

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0086750A2 (en) 1982-02-17 1983-08-24 Ciba-Geigy Ag Use of quinoline derivatives in the protection of crop plants
EP0094349A2 (en) 1982-05-07 1983-11-16 Ciba-Geigy Ag Use of quinoline derivatives for the protection of cultivated plants
JPS6087270A (en) 1983-09-26 1985-05-16 バイエル・アクチエンゲゼルシヤフト 1,3-diaryl-5-methylene-perhydropyrimidin-2-one
EP0174562A2 (en) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Plant protecting agents based on 1,2,4 - triazole derivatives as well as 1,2,4-triazole derivatives
EP0191736A2 (en) 1985-02-14 1986-08-20 Ciba-Geigy Ag Use of quinoline derivatives for the protection of crop plants
EP0269806A1 (en) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazole carbonic acid derivatives, their preparation and use as plant growth regulators and antidotes
EP0268554A2 (en) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenyl pyrazole-3-carbonic-acid derivatives for the protection of cultured plants
EP0333131A1 (en) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Plant protective agent based on pyrazolecarboxylic acid derivatives
EP0346620A1 (en) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft Plant protection agents containing 1,2,4-triazole derivatives, and the 1,2,4-triazole derivatives
EP0365484A1 (en) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoyl phenyl ureas
WO1991008202A1 (en) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazolines, method of preparation thereof, and their use as plant-protection agents
WO1991007874A1 (en) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazolines for the protection of crops against herbicides
EP0492366A2 (en) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH New 5-chloroquinolin-8-oxyalkanecarbonic acid derivatives, process for their preparation and their use as antidotes for herbicides
EP0582198A2 (en) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituted (hetero-)aryle compounds, process for their preparation, those containing compositions and their use as safeners
WO1994017059A1 (en) 1993-01-29 1994-08-04 Nippon Soda Co., Ltd. Heterocyclic derivative
WO1995007897A1 (en) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituted isoxazolines, process for producing them, agents containing them and their use as safeners
WO1997045016A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Novel n-acyl sulphonamides, novel mixtures of herbicides and antidotes and their use
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (en) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Novel 2-fluoroacrylic acid derivatives, novel mixtures of herbicides and antidotes and the use thereof
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (en) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolyl carbonyl)-2-quinolones and products for protecting useful plants containing the same
WO1999016744A1 (en) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoyl benzoic acid amides, plant protection agents containing said acylsulfamoyl benzoic acid amides, and method for producing the same
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2004084631A1 (en) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Use of aromatic hydroxy compounds as safeners
WO2005015994A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Use of aromatic compounds as safeners
WO2005016001A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener based on aromatic-aliphatic carboxylic acid derivatives
WO2005112630A1 (en) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Quinoxalin-2-one derivatives crop protection agents comprising the same and method for production and use therof
WO2007023719A1 (en) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reducing chemical injury and herbicide composition with reduced chemical injury
WO2007023764A1 (en) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reduction of harmful effect of herbicide and herbicide composition having reduced harmful effect
WO2008131861A1 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Use of pyridine-2-oxy-3-carbonamides as safeners
WO2008131860A2 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridonecarboxamides crop protection agents containing the same method for production and use thereof
WO2009094407A2 (en) 2008-01-25 2009-07-30 E. I. Du Pont De Nemours And Company Fungicidal amides
CN101838227A (en) 2010-04-30 2010-09-22 孙德群 Safener of benzamide herbicide
WO2015089003A1 (en) 2013-12-10 2015-06-18 E. I. Du Pont De Nemours And Company Herbicidal substituted pyrimidinyloxy benzene compounds
WO2015108779A1 (en) 2014-01-16 2015-07-23 E. I. Du Pont De Nemours And Company Pyrimidinyloxy benzene derivatives as herbicides

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Chemistry and Technology of Agrochemical Formulations", 1998, KLUWER ACADEMIC PUBLISHERS
"Database", Database accession no. 564025
"Spray-Drying Handbook", 1979, G. GOODWIN LTD.
"The British Crop Protection Council und the Royal Soc. of Chemistry", 2012, article "The Pesticide Manual"
"The Pesticide Manual", 2012, THE BRITISH CROP PROTECTION COUNCIL UND THE ROYAL SOC. OF CHEMISTRY
ANGEWANDTE CHEMIE - INTERNATIONAL EDITION, vol. 55, 2016, pages 8353 - 8357
BRAUN ET AL., EMBO J., vol. 11, 1992, pages 3219 - 3227
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 133993-74-5
G.C. KLINGMAN: "Weed Control as a Science", 1961, JOHN WILEY AND SONS, INC., pages: 81 - 96
H.V. OLPHEN: "Handbook of Insecticide Dust Diluents and Carriers", 1963, J. WILEY & SONS
J.D. FREYERS.A. EVANS: "Weed Control Handbook", 1968, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 101 - 103
J.E. BROWNING: "Chemical and Engineering", 1967, article "Agglomeration", pages: 147 ff
PERRY: "Chemical Engineer's Handbook", 1973, MCGRAW-HILL, pages: 8 - 57
SCHÖNFELDT: "Grenzflächenaktive Äthylenoxidaddukte", 1976, WISS. VERLAGSGESELLSCHAFT
SISLEYWOOD: "Encyclopedia of Surface Active Agents", 1964, CHEM. PUBL. CO. INC.
WEED RESEARCH, vol. 26, 1986, pages 441 - 445

Similar Documents

Publication Publication Date Title
WO2018228985A1 (en) Herbicidally active 3-phenylisoxazoline-5-carboxamides of tetrahydro and dihydrofuran carboxylic acids and esters
EP2831050B1 (en) 5-amino pyrimidine derivatives and use thereof for combating undesired plant growth
WO2012080187A1 (en) 6-(2-aminophenyl)picolinates and their use as herbicides
EP3810589A1 (en) Substituted 2-heteroaryloxypyridines and salts thereof and their use as herbicidal agents
WO2019219587A1 (en) 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
WO2020245044A1 (en) 1-phenyl-5-azinyl pyrazolyl-3-oxyalkyl acids and their use for controlling undesired plant growth
WO2020193474A1 (en) Substituted 2-heteroarylaminobenzenes and the salts thereof and their use as herbicidal agents
EP4172153A1 (en) Substituted heteroaryloxypyridines, the salts thereof and their use as herbicidal agents
EP3898612B1 (en) Substituted pyridinyloxybenzenes, their salts and use of said compounds as herbicidal agents
WO2020187627A1 (en) Novel 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-3-pyrrolin-2-ones and their use as herbicides
WO2020002087A1 (en) Substituted 3-heteroaryloxypyridines and salts thereof and their use as herbicidal agents
WO2019228788A1 (en) 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
WO2021028421A1 (en) Substituted (2-heteroaryloxyphenyl)isoxazolines and salts thereof and their use as herbicidal active substances
EP3606915A1 (en) 2-amino-5-oxyalkyl-pyrimidine derivatives and their use for controlling undesired plant growth
WO2021028419A1 (en) Substituted 3-(2-heteroaryloxyphenyl)isoxazolines and salts thereof and their use as herbicidal active substances
WO2020245097A1 (en) Substituted pyridinyloxypyridines and salts thereof and use thereof as herbicidal agents
EP3747868A1 (en) Substituted phenoxypyridines, their salts and use of said compounds as herbicidal agents
EP3747867A1 (en) Substituted pyridinyloxyanilines, their salts and use of said compounds as herbicidal agents
EP4288418A1 (en) Substituted (2-heteroaryloxyphenyl)sulfonates, salts thereof and their use as herbicidal agents
WO2023186690A1 (en) Substituted 2-aminoazines and salts thereof, and use thereof as herbicidal active substances
WO2023186691A1 (en) Substituted 2-c-azines and salts thereof, and use thereof as herbicidal active substances
EP3720853A1 (en) 3-amino-[1,2,4]-triazole derivatives and their use for controlling undesired plant growth
WO2023274869A1 (en) 3-(4-alkenyl-phenyl)-3-pyrrolino-2-ones and their use as herbicides
WO2022194843A1 (en) Substituted 1,2,4-thiadiazoles, salts thereof and their use as herbicidally active substances
WO2022253700A1 (en) Specifically substituted pyrroline-2-ones and their use as herbicides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20764004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20764004

Country of ref document: EP

Kind code of ref document: A1