WO2023274869A1 - 3-(4-alkenyl-phenyl)-3-pyrrolino-2-ones and their use as herbicides - Google Patents

3-(4-alkenyl-phenyl)-3-pyrrolino-2-ones and their use as herbicides Download PDF

Info

Publication number
WO2023274869A1
WO2023274869A1 PCT/EP2022/067333 EP2022067333W WO2023274869A1 WO 2023274869 A1 WO2023274869 A1 WO 2023274869A1 EP 2022067333 W EP2022067333 W EP 2022067333W WO 2023274869 A1 WO2023274869 A1 WO 2023274869A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
alkoxy
halo
methyl
plants
Prior art date
Application number
PCT/EP2022/067333
Other languages
German (de)
French (fr)
Inventor
Guido Bojack
Andreas REMBIAK
Alfred Angermann
Hartmut Ahrens
Estella BUSCATO
Lars ARVE
Hendrik Helmke
Elisabeth ASMUS
Elmar Gatzweiler
Birgit BOLLENBACH-WAHL
Jan Dittgen
Anu Bheemaiah MACHETTIRA
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Publication of WO2023274869A1 publication Critical patent/WO2023274869A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/382-Pyrrolones
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • A01N43/38Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P13/00Herbicides; Algicides

Definitions

  • the present invention relates to new herbicidally active 3-phenylpyrrolin-2-ones of the general formula (I) or agrochemically acceptable salts thereof , and their use for controlling weeds and grass weeds in crops.
  • the compound class of the 3-phenylpyrrolin-2-ones and their production and use as herbicides are well known from the prior art.
  • bicyclic 3-phenylpyrrolin-2-one derivatives EP0355599A1, EP415211A2 and JP-A-12-053670
  • substituted monocyclic 3-phenylpyrrolin-2-one derivatives EP0377893A2 and EP0442077A2 with herbicidal, insecticidal or fungicidal effect described.
  • 4-Alkinyl-substituted-3-phenylpyrrolin-2-ones with herbicidal action are also known from WO 96/82395, WO 98/05638, WO 01/74770, WO 15/032702, WO 15/040114, WO 17/060203 or WO 19/219587 known.
  • the effectiveness of these herbicides against harmful plants depends on numerous parameters, for example the application rate used, the form of preparation (formulation), the harmful plants to be controlled in each case, the spectrum of harmful plants, the climatic and soil conditions and the duration of the effect or the degradation rate of the herbicide.
  • the present invention therefore relates to new substituted 3-phenylpyrrolin-2-ones of the general formula (I), or an agrochemically acceptable salt thereof, wherein R 1 is (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy, halo(C 1 -C 6 )-alkoxy, (C 1 -C 4 )- alkoxy-(C 1 -C 4 )-alkyl, halo-(C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, (C 1 - C 6 alkoxy(C 1 -C 4 )alkoxy, halo(C 1 -C 6 )alkoxy(C 2 -C 4 )alkoxy, (C 3 -C 6 )cycloalkyl, (C C 2 -C 6 )alkenyloxy, halo-(C 2 -
  • Alkyl means saturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms, for example (C 1 -C 6 )-alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1 ,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl,1-methylpentyl, 2 -methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1 - Ethy
  • Haloalkyl means straight-chain or branched alkyl groups, some or all of the hydrogen atoms in these groups being replaced by halogen atoms, for example (C 1 -C 2 )haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, Difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2- chloro,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and 1,1,1-triflu
  • Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a double bond in any position, for example (C 2 -C 6 )-alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1- butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3- methyl-2-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3- methyl-2-butenyl, 1-methyl-3-butenyl, 2-
  • Alkynyl means straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a triple bond in any position, for example C 2 -C 6 - alkynyl such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2- Butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 3-methyl-1-butynyl, 1-methyl-2-butynyl, 1-methyl- 3-butynyl, 2-methyl-3-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-methyl-1-
  • Cycloalkyl means a carbocyclic, saturated ring system with preferably 3-8 ring C atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • cyclic systems with substituents are included, with substituents having a double bond on the cycloalkyl radical, e.g. an alkylidene group such as methylidene.
  • Alkoxy means saturated, straight-chain or branched alkoxy radicals having the specified number of carbon atoms, for example (C 1 -C 6 )-alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1 -dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy , 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2 -ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy
  • Alkoxy substituted by halogen means straight-chain or branched alkoxy radicals having the specified number of carbon atoms, it being possible for some or all of the hydrogen atoms in these groups to be replaced by halogen atoms as mentioned above, for example (C 1 -C 2 )haloalkoxy such as chloromethoxy, bromomethoxy, Dichloromethoxy, Trichloromethoxy, Fluoromethoxy, Difluoromethoxy, Trifluoromethoxy, Chlorofluoromethoxy, Dichlorofluoromethoxy, Chlorodifluoromethoxy, 1-Chloroethoxy, 1-Bromomethoxy, 1-Fluoroethoxy, 2-Fluoroethoxy, 2,2-Difluoroethoxy, 2,2,2-Trifluoroethoxy, 2- chloro-2-fluoroethoxy, 2-chloro-1,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,
  • the compounds of the formula (I) can be present as geometric and/or optical isomers or isomer mixtures of varying composition. For example--depending on the linkage of the substituent R.sup.1 --both enantiomers and cis/trans isomers can occur. The latter are defined as follows:
  • the present invention relates both to the pure isomers or tautomers and to the tautomer and isomer mixtures, their preparation and use, and compositions containing them.
  • compounds of the formula (I) although both the pure compounds and, if appropriate, mixtures with different proportions of isomeric and tautomeric compounds are meant.
  • the compounds according to the invention are generally defined by the formula (I).
  • R 1 is (C 1 -C 6 )-alkyl, halogen-(C 1 - C 6 )alkyl, (C 1 -C 6 )alkoxy, halo-(C 1 -C 6 )alkoxy, (C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, halo- (C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, (C 1 -C 6 )alkoxy-(C 2 -C 4 )alkoxy, halo-(C 1 -C 6 )- alkoxy-(C 2 -C 4 )alkoxy, (C 3 -C 6 )cycloalkyl, (C 2 -C 6 )alkenyloxy, halo-(C 2 -C 6 )alkyl
  • R 2 is hydrogen, (C 1 -C 6 )-alkyl, (C 1 -C 4 )-alkoxy-(C 2 -C 4 )-alkyl , halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 6 )alkenyl or (C 2 -C 6 )alkynyl, (C 1 -C 4 ) -alkoxy or halo(C 1 -C 4 )alkoxy,
  • X is (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, ( C 1 -C 6 )alkoxy, halo(C 1 -C 6 )alkoxy, bromo, chloro or fluoro,
  • R 1 is (C 1 -C 6 )-alkyl, (C 1 -C 6 )-alkoxy, halogeno-(C 1 -C 6 )-alkoxy, (C 1 -C 4 )alkoxy(C 1 -C 4 )alkyl or (C 1 -C 6 )alkoxy(C 2 -C 4 )alkoxy
  • R 2 is hydrogen, (C 1 -C 4 )- alkyl, methoxyethyl, ethoxyethyl, halo(C 1 -C 2 )alkyl, cyclopropyl, (C 2 -C 4 )alkenyl, (C 2 -C 4 )alkynyl
  • X is (C 1 -C 6 ) -alkyl, halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 1
  • R 1 is methoxy, ethoxy or methoxyethoxy
  • R 2 is hydrogen or methyl
  • X is methyl, ethyl, bromine or chlorine
  • Y is methyl, ethyl or methoxy
  • R 10 is hydrogen
  • R 11 is methyl or trifluoromethyl
  • R 12 is hydrogen
  • G is hydrogen, a leaving group L or a cation E, where L is one of the following radicals wherein R 3 is methyl, ethyl, i-propyl or t-butyl, R 4 is methyl or ethyl, E is a sodium ion or a potassium ion.
  • Examples of possible leaving groups U are halogen atoms such as chlorine, bromine or iodine, and alkylsulfone ester groups such as, for example, triflate, mesylate or nonaflate.
  • Examples of possible leaving groups Z are magnesium chloride, magnesium bromide, zinc chloride, a trialkyltin radical, carboxyl and boronic acid radicals such as —B(OH) 2 or —B(Oalkyl) 2 .
  • Pd 0 complexes in particular are very well suited as catalysts, and in many cases the addition of Cu (I) salts can also be very advantageous.
  • Ligands such as 1,4-bis(diphenylphosphino)butane can also be used.
  • the methodology described is prior art and is also known from the relevant literature under the keywords “palladium-catalyzed cross-coupling”, “Negishi, Suzuki, Stille or Kumada coupling”.
  • the precursors of the general formula (II) can, in analogy to known processes, for example by reacting an amino acid ester of the general formula (VI) in which R 1 , R 2 and R 9 have the meaning described above, with a phenylacetic acid of the general formula ( VII) in which X, Y, R 10 , R 11 and R 12 have the meaning described above, if appropriate by adding a dehydrating agent and if appropriate in the presence of a suitable solvent or diluent.
  • Amino esters of the general formula (VI) are known from the literature, for example from WO 2006/000355.
  • the preparation of the phenylacetic acids of the general formula (VII) is described in more detail below.
  • a further variant for the preparation of precursors of the general formula (II) consists, inter alia, in that a compound with the general formula (VIII) in which R 1 , R 2 , R 9 , X, Y and U has the meaning given above have, according to the cross-coupling methodology already described with a compound of the general formula (V) in which Z, R 10 , R 11 and R 12 has the meaning given above, reacts:
  • the required precursors of the general formula (VII) can be obtained, for example, by reacting a compound of the general formula (IX) in which X, Y and U are as defined above and R 13 is hydrogen, alkyl, preferably methyl or ethyl is, according to the cross-coupling methodology already described with a compound of the general formula (
  • Precursors of the general formula (XI), in turn, can be obtained from commercially available aminonitrophenols by common standard methods such as bromination and/or alkylation.
  • the present invention also relates to compounds of the formula (XII) in which the radicals have the following meanings: X is methyl, ethyl, bromo or chloro Y is methyl, ethyl or methoxy R 10 is hydrogen R 11 is methyl or trifluoromethyl R 12 is hydrogen R 13 is hydrogen, methyl or ethyl.
  • the compounds of the formula (I) (and/or salts thereof) according to the invention have excellent herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous annual harmful plants.
  • the subject matter of the present invention is therefore also a method for controlling unwanted plants or for regulating the growth of plants, preferably in plant cultures, in which one or more compound(s) according to the invention are applied to the plants (e.g. harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), the seeds (e.g. grains, seeds or vegetative propagation organs such as tubers or shoot parts with buds) or the area on which the plants grow (e.g.
  • the compounds according to the invention can be applied, for example, before sowing (possibly also by incorporation into the soil), pre-emergence or post-emergence.
  • some representatives of the monocotyledonous and dicotyledonous weed flora that can be controlled by the compounds according to the invention may be mentioned by way of example, without the naming of a restriction to specific species being intended.
  • the compounds according to the invention are applied to the surface of the soil before germination, either the emergence of the weed seedlings is completely prevented or the weeds grow up to the cotyledon stage, but then stop growing.
  • the active ingredients are applied to the green parts of the plant post-emergence, growth stops after the treatment and the harmful plants remain in the growth stage present at the time of application or die off completely after a certain time, so that in this way weed competition that is harmful to the crop plants occurs very early and is permanently eliminated.
  • the compounds according to the invention can have selectivities in useful crops and can also be used as non-selective herbicides.
  • the active compounds can also be used to control harmful plants in crops of known or genetically modified plants that are still to be developed.
  • the transgenic plants are generally characterized by particularly advantageous properties, for example resistance to certain active ingredients used in agriculture, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern, for example, the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known.
  • Other special properties are tolerance or resistance to abiotic stressors such as heat, cold, drought, salt and ultraviolet radiation.
  • the compounds of the formula (I) can be used as herbicides in crops of crops which are resistant to the phytotoxic effects of the herbicides or have been made genetically resistant.
  • Conventional ways of producing new plants that have modified properties compared to previously existing plants include, for example, classical breeding methods and the generation of mutants.
  • new plants with modified properties can be produced using genetic engineering methods (see, for example, EP 0221044, EP 0131624). For example, in several cases, genetic engineering modifications of crop plants have been described for the purpose of modifying the starch synthesized in the plants (e.g.
  • WO 92/011376 A WO 92/014827 A, WO 91/019806 A
  • transgenic crop plants which are active against certain herbicides of the glufosinate ( See, for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92/000377 A) or sulfonylureas (EP 0257993 A, US Pat . corn or soybean with the trade name or designation Optimum TM GAT TM (Glyphosate ALS Tolerant).
  • nucleic acid molecules can be introduced into plasmids, which allow mutagenesis or sequence modification by recombination of DNA sequences.
  • base exchanges can be made, partial sequences can be removed or natural or synthetic sequences can be added.
  • Adapters or linkers can be attached to the fragments for connecting the DNA fragments to one another, see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed.
  • Plant cells with reduced activity of a gene product can be produced, for example, by expressing at least one corresponding antisense RNA, one sense RNA to achieve a cosuppression effect, or expression at least a suitably engineered ribozyme that specifically cleaves transcripts of the above gene product.
  • DNA molecules can be used which include the entire coding sequence of a gene product, including any flanking sequences present, as well as DNA molecules which only include parts of the coding sequence, these parts having to be long enough to enter the cells produce an antisense effect.
  • DNA sequences which have a high degree of homology to the coding sequences of a gene product but are not completely identical.
  • the synthesized protein can be located in any compartment of the plant cell.
  • the coding region can be linked to DNA sequences, for example, which ensure localization in a specific compartment.
  • Such sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J.11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J.1 (1991), 95-106).
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated into whole plants using known techniques.
  • the compounds (I) according to the invention can preferably be used in transgenic cultures which act against growth substances such as 2,4-D, dicamba or against herbicides which contain essential plant enzymes such as acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosate, glufosinate or benzoylisoxazoles and analogous active substances, or to any combination of these active substances.
  • ALS acetolactate synthases
  • EPSP synthases glutamine synthases
  • HPPD hydroxyphenylpyruvate dioxygenases
  • the compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosate and glufosinate, glyphosate and sulfonylureas or imidazolinones.
  • the compounds of the invention in transgenic crops such.
  • B. corn or soybean with the trade name or designation OptimumTM GATTM (Glyphosate ALS Tolerant) can be used.
  • the active compounds according to the invention are used in transgenic cultures, in addition to the effects observed in other cultures against harmful plants, there are often effects that are specific to the application in the respective transgenic culture, for example a modified or specially expanded spectrum of weeds that can be controlled Application rates that can be used for the application, preferably good combinability with the herbicides to which the transgenic crop is resistant, and influencing the growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules.
  • the invention therefore also relates to herbicidal and plant growth-regulating compositions which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and/or chemico-physical parameters are given. Examples of possible formulations are: wettable powder (WP), water-soluble powder (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for spreading and floor application, granules (GR) in the form of micro, spray, lift - and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.
  • WP
  • Combination partners for the compounds of the general formula (I) in mixture formulations or in the tank mix are, for example, known active ingredients which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, Glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen oxidase are based or act as plant growth regulators, as they are known, for example, from Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 14th edition, The British Crop Protection Council and the Royal Soc.
  • Known herbicides or plant growth regulators which can be combined with compounds of the general formula (I) include the following active ingredients (the compounds are identified either by the "common name” according to the International Organization for Standardization (ISO) or by the chemical name or denoted by the code number) and always include all application forms such as acids, salts, esters and isomers such as stereoisomers and optical isomers.
  • dicamba-biproamine dicamba-N,N-bis(3-aminopropyl)methylamine, dicamba-butotyl, dicamba-choline, dicamba-diglycolamine, dicamba-dimethylammonium, dicamba diethanolamine ammonium, dicamba diethyl ammonium, dicamba isopropyl ammonium, dicamba methyl, dicamba monoethanolamine, dicamba olamine, dicamba potassium, dicamba sodium, dicamba triethanolamine), dichlobenil, 2-(2,4-dichlorobenzyl)-4 ,4-dimethyl-1,2-oxazolidin-3-one, 2-(2,5-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, dichloroprop, dichloropropbutotyl, dichloropropdimethylammonium , dichloroprop-etexyl, dichloroprop-ethyl
  • Abscisic acid and related analogues [e.g. (2Z,4E)-5-[6-ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4- dienoic acid, methyl (2Z,4E)-5-[6-ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoate, (2Z,4E)-3-ethyl-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)penta-2,4-dienoic acid, (2E,4E) -5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-dienoic acid, methyl (2E,4
  • COs (2S,3R)-2-(3,4-dihydroxyphenyl)-3,4 -dihydro-2H-chromene-3,5,7-triol), chitooligosaccharides (CO; COs differ from LCOs in that they lack the fatty acid side chain characteristic of LCOs.
  • COs sometimes referred to as N acetylchitooligosaccharides, are also composed of GlcNAc units but have side chains that distinguish them from chitin molecules [(C 8 H13NO5)n, CAS No.1398-61-4] and chitosan molecules [ (C 5 H 11 NO 4 ) n , CAS No.9012-76-4]), Chitin-Like Compounds, Chlormequat chloride, Cloprop, Cyclanilide, 3-(Cycloprop-1-enyl)propionic acid, 1-[2-( 4-cyano-3,5- dicyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1-[2-(4-cyano-3-cyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1-cyclopropenylmethanol, daminozide, dazomet, dazomet sodium, n-decanol, dikegu
  • LCO lipochitooligosaccharides
  • Nod or Nod factors symbiotic nodulation signals
  • Myc factors consist of an oligosaccharide backbone of ⁇ -1,4-linked N-acetyl-D-glucosamine residues (“GlcNAc”) with an N-linked fatty acid side chain fused to the non-reducing end
  • GlcNAc N-acetyl-D-glucosamine residues
  • LCOs differ in the number of GlcNAc units in the backbone structure, in the length and degree of saturation of the fatty acid chain, and in the substitution of the reducing and non-reducing sugar units), linoleic acid or its derivatives, linolenic acid or its derivatives, Maleic hydrazide, mepiquat chloride, mepiquat pentaborate, 1-methylcyclopropene, 3-methylcyclopropene, methoxyvin
  • Safeners which can be used in combination with the compounds of the formula (I) according to the invention and optionally in combinations with other active ingredients such as insecticides, acaricides, herbicides, fungicides as listed above, are preferably selected from the group consisting of: S1) compounds of the formula (S1), where the symbols and indices have the following meanings: n A is a natural number from 0 to 5, preferably 0 to 3; R A 1 is halo, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, nitro or halo(C 1 -C 4 )alkyl; WA is an unsubstituted or substituted divalent heterocyclic radical from the group of saturated or aromatic five-membered ring heterocycles having 1 to 3 hetero ring atoms from the group N and O, where at least one N atom and at most one O atom is contained in the ring, preferably one remainder from the group ( WA 1 ) to ( WA 4 ),
  • RB 1 is halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, nitro or halo(C 1 -C 4 )alkyl
  • nB is a natural number from 0 to 5, preferably 0 to 3
  • RB 2 is ORB 3 , SRB 3 or NRB 3 RB 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected via the N Atom is connected to the carbonyl group in (S2) and is unsubstituted or substituted by radicals from the group (C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkoxy or optionally substituted phenyl, preferably a radical of the formula ORB 3 , NHRB 4 or N(CH3)
  • RC 1 is (C 1 -C 4 )-alkyl, halo-(C 1 -C 4 )-alkyl, (C 2 -C 4 )-alkenyl, halo-(C 2 - C 4 ) alkenyl, (C 3 -C 7 ) cycloalkyl, preferably dichloromethyl;
  • R C2 , R C3 which are identical or different, are hydrogen, (C1 -C4 )alkyl, (C2 -C4 ) alkenyl, (C2 -C4 ) alkynyl , halogeno- ( C1 -C C 4 )alkyl, halo(C 2 -C 4 )alkenyl, (C 1 -C 4 )alkylcarbamoyl(C 1 -C 4 )alkyl, (C 2 -C 4 )alken
  • AD is SO 2 -NRD 3 -CO or CO-NRD 3 -SO 2
  • X D is CH or N
  • R D 1 is CO-NR D 5 R D 6 or NHCO-R D 7
  • RD 2 is halo, halo(C 1 -C 4 )alkyl, halo(C 1 -C 4 )alkoxy, nitro, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy , (C 1 -C 4 )alkylsulfonyl, (C 1 -C 4 )alkoxycarbonyl or (C 1 -C 4 )alkylcarbonyl;
  • RD 3 is hydrogen, (C 1 -C 4 )alkyl, (C 2 -C 4 )alkenyl or (C 2 -C 4 )alkyn
  • RD 7 is (C 1 -C 6 )-alkyl, (C 3 -C 6 )-cycloalkyl, the last 2 radicals mentioned being replaced by vD substituents from the group consisting of halogen, (C 1 -C 4 )-alkoxy, halogen-(C C1-C6) -alkoxy and (C1-C4) -alkylthio and, in the case of cyclic radicals, also (C1-C4) -alkyl and halo- (C1-C4)-alkyl; RD 4 halo, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, CF 3 ; mD 1 or 2; v D is 0, 1, 2 or 3; and acylsulfamoylbenzoic acid amides, for example of the following formula (S4 b ), which are known, for example, from
  • S5 Active ingredients from the class of hydroxyaromatics and aromatic-aliphatic carboxylic acid derivatives (S5), for example ethyl 3,4,5-triacetoxybenzoate, 3,5-dimethoxy-4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydroxysalicylic acid, 4-fluorosalicylic acid , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001.
  • S6 Active ingredients from the class of 1,2-dihydroquinoxalin-2-ones (S6), for example 1-methyl-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, 1-methyl-3-( 2-thienyl)-1,2-dihydroquinoxaline-2-thione, 1-(2-aminoethyl)-3-(2-thienyl)-1,2-dihydro-quinoxalin-2-one hydrochloride, 1-(2- Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, as described in WO-A-2005/112630.
  • R E 1 , R E 2 are independently halogen, (C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkoxy, halogen- (C 1 -C 4 ) -alkyl, (C 1 -C 4 )alkylamino, di(C 1 -C 4 )alkylamino, nitro;
  • AE is COORE 3 or COSRE 4 RE 3 ,
  • RE 4 are independently hydrogen, (C 1 -C 4 )alkyl, (C 2 -C 6 )alkenyl, (C 2 -C 4 )alkynyl, cyanoalkyl, halogen -(C 1 -C 4 )-alkyl, phenyl, nitrophenyl, benzyl, halobenzyl, pyridinylalkyl and alky
  • Phenyl optionally substituted phenoxy, R F 2 hydrogen or (C 1 -C 4 )-alkyl R F 3 hydrogen, (C 1 -C 8 )-alkyl, (C 2 -C 4 )-alkenyl, (C 2 - C 4 )--alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or their salts, preferably compounds in which X is F CH, nF is an integer from 0 to 2, RF 1 is halogen, (C 1 -C 4 )-alkyl, halogeno-(C 1 -C 4 )-alkyl, (C C 1 -C 4 )alkoxy, halo(C 1 -C 4 )alkoxy, RF 2 hydrogen or (C 1 -C 4 )alkyl,
  • S9 Active substances from the class of 3-(5-tetrazolylcarbonyl)-2-quinolones (S9), for example 1,2-dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-quinolone (CAS -Reg.Nr.219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-quinolone (CAS Reg.Nr.95855-00- 8) as described in WO-A-1999/000020.
  • S10a Compounds of the formula ( S10a ) or ( S10b ) as described in WO-A-2007/023719 and WO-A-2007/023764
  • R G 1 is halogen, (C 1 -C 4 )-alkyl, methoxy, nitro, cyano, CF 3 , OCF 3 YG, ZG is independently O or S
  • nG is an integer from 0 to 4
  • RG 2 (C 1 -C 16 )alkyl, (C 2 -C 6 )alkenyl, (C 3 -C 6 )cycloalkyl, aryl; benzyl, halobenzyl, RG 3 is hydrogen or (C 1 -C 6 )alkyl.
  • S11 Active substances of the type of oxyimino compounds (S11), which are known as seed dressings, such as. B.
  • Oxabetrinil ((Z)-1,3-dioxolan-2-ylmethoxyimino(phenyl)acetonitrile) (S11-1) known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim” (1- (4-Chlorophenyl)-2,2,2-trifluoro-1-ethanone-O-(1,3-dioxolan-2-ylmethyl)-oxime) (S11-2) used as a seed dressing safener for sorghum against damage from metolachlor, and "Cyometrinil” or “CGA-43089” ((Z)-cyanomethoxyimino(phenyl)acetonitrile) (S11-3), which is known as a seed dressing safener for sorghum against damage from metolachlor.
  • S12 Active ingredients from the class of isothiochromanone (S12), such as methyl [(3-oxo-1H-2-benzothiopyran-4(3H)-ylidene)methoxy]acetate (CAS Reg. No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361.
  • S12 isothiochromanone
  • S13 One or more compounds from group (S13): "Naphthalic anhydride” (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), known as a seed dressing safener for corn against damage from thiocarbamate herbicides, "Fenclorim” (4.6 -dichloro-2-phenylpyrimidine) (S13-2), known as a safener for pretilachlor in seeded rice, "Flurazole” (Benzyl 2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13-3) known as a seed dressing safener for sorghum against damage from alachlor and metolachlor, "CL 304415” (CAS-Reg.Nr.31541-57-8) (4-carboxy-3,4-dihydro-2H-1-benzopyran-4-acetic acid) (S13-4) from American Cyanamid, used as a safener for corn against Damage caused by imidazol
  • R H 1 is a halo-(C 1 -C 6 )-alkyl radical and R H 2 is hydrogen or halogen and RH 3 , RH 4 are independently hydrogen, (C 1 -C 16 )-alkyl, (C 2 -C 16 )-alkenyl or (C 2 -C 16 )-alkynyl, each of the latter 3 radicals being unsubstituted or substituted by one or more radicals from the group halogen, hydroxy, cyano, (C 1 -C 4 )alkoxy, halo-(C 1 -C 4 )alkoxy, (C 1 -C 4 )alkylthio, (C 1 -C 4 )alkylamino , di[(C 1 -C 4 )alkyl]amino, [
  • Wettable powders are preparations that are uniformly dispersible in water and which, in addition to the active ingredient, contain a diluent or inert substance as well as ionic and/or non-ionic surfactants (wetting agents, dispersing agents), e.g.
  • the herbicidal active ingredients are finely ground, for example in conventional apparatus such as hammer mills, blower mills and air jet mills, and mixed simultaneously or subsequently with the formulation auxiliaries.
  • Emulsifiable concentrates are obtained by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling Aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and / or non-ionic surfactants (emulsifiers).
  • organic solvent for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling
  • Aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and / or non-ionic surfactants (emulsifiers).
  • alkylarylsulfonic acid calcium salts such as calcium dodecylbenzenesulfonate or nonionic emulsifiers
  • fatty acid polyglycol esters alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as sorbitan fatty acid esters or polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan fatty acid esters .
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and optionally adding surfactants, such as those already listed above for the other types of formulation.
  • Emulsions for example oil-in-water emulsions (EW) can be prepared, for example, using stirrers, colloid mills and/or static mixers using aqueous organic solvents and, if appropriate, surfactants, such as those already listed above for the other types of formulation.
  • Granules can be produced either by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, eg polyvinyl alcohol, sodium polyacrylic acid or mineral oils, to the surface of carriers such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules--if desired in a mixture with fertilizers. Water-dispersible granules are usually produced without solid inert material by conventional methods such as spray drying, fluidized bed granulation, pan granulation, mixing with high-speed mixers and extrusion.
  • adhesives eg polyvinyl alcohol, sodium polyacrylic acid or mineral oils
  • the agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of compounds according to the invention.
  • the active substance concentration is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of customary formulation components.
  • the active substance concentration can be about 1 to 90% by weight, preferably 5 to 80% by weight.
  • Formulations in dust form contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, and sprayable solutions contain about 0.05 to 80% by weight, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is in liquid or solid form and on the granulation aids, fillers, etc. used.
  • the active substance content is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned optionally contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity affecting agents.
  • Combinations with other pesticidally active substances such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and/or growth regulators, can also be produced on the basis of these formulations, for example in the form of a ready-to-use formulation or as a tank mix.
  • the formulations which are in commercial form, are diluted, if appropriate, in a customary manner, for example with water in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules. Preparations in the form of dust, ground or granulated granules and sprayable solutions are usually not diluted with other inert substances before use.
  • the required application rate of the compounds of the formula (I) and their salts varies with the external conditions such as temperature, humidity, the type of herbicide used, etc.
  • Carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients are mixed or combined for better applicability, especially for application to plants or parts of plants or seeds.
  • the carrier which may be solid or liquid, is generally inert and should be agriculturally useful.
  • Suitable solid or liquid carriers are: for example ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and ground synthetic minerals such as finely divided silica, aluminum oxide and natural or synthetic silicates, resins, waxes , solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such excipients can also be used.
  • ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth
  • ground synthetic minerals such as finely divided silica, aluminum oxide and natural or synthetic silicates, resins, waxes , solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such excipients can also be used.
  • Suitable solid carriers for granules are: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules made from inorganic and organic flours and granules made from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks.
  • Suitable liquefied gaseous diluents or carriers are liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants such as halogenated hydrocarbons, and butane, propane, nitrogen and carbon dioxide.
  • Adhesives such as carboxymethylcellulose, natural and synthetic polymers in powder, granular or latic form, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations. Further additives can be mineral and vegetable oils. If water is used as an extender, for example, organic solvents can also be used as auxiliary solvents.
  • Essential liquid solvents are: aromatics such as xylene, toluene or alkyl naphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols , such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • aromatics such as xylene, toluene or alkyl naphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene or dichloromethane
  • aliphatic hydrocarbons
  • the agents according to the invention can also contain other components, such as surface-active substances.
  • Suitable surface-active substances are emulsifiers and/or foam-forming agents, dispersants or wetting agents with ionic or non-ionic properties or mixtures of these surface-active substances.
  • Examples include salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of compounds containing sulfates, sulfonates and phosphates, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates, protein hydrolysates, lignin sulfite waste liquor and methyl cellulose.
  • the presence of a surfactant is necessary when one of the active ingredients and/or one of the inert carriers is not water-soluble and when the application is in water.
  • the proportion of surface-active substances is between 5 and 40 percent by weight of the agent according to the invention.
  • Dyes such as inorganic pigments, eg iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90% Active ingredient, most preferably between 10 and 70 percent by weight.
  • the active ingredients or agents according to the invention can be used as such or depending on their respective physical and / or chemical properties in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold mist concentrates, hot mist concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seeds, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, foams, pastes , Pesticide Coated Seeds, Suspension Concentrates, Suspension Emulsion Concentrates, Soluble Concentrates, Suspensions, Wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for seed
  • the formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one customary extender, solvent or diluent, emulsifier, dispersant and/or binder or fixative, wetting agent, water repellent, if appropriate Siccatives and UV stabilizers and optionally dyes and pigments, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and other processing aids.
  • the agents according to the invention include not only formulations which are already ready for use and which can be applied to the plant or the seed using a suitable apparatus, but also commercial concentrates which have to be diluted with water before use.
  • the active ingredients according to the invention can be used as such or in their (commercially available) formulations and in the use forms prepared from these formulations as a mixture with other (known) active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , fertilizers, safeners or semiochemicals are present.
  • active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , fertilizers, safeners or semiochemicals are present.
  • the treatment according to the invention of the plants and parts of plants with the active ingredients or agents is carried out directly or by acting on their environment, living space or storage space according to the usual treatment methods, for example by immersion, spraying, spraying, sprinkling, evaporation, Atomizing, misting, (spreading) scattering, foaming, brushing, brushing, pouring (drenching), drip irrigation and with propagation material, especially seeds, also by dry dressing, wet dressing, slurry dressing, encrusting, single or multi-layer coating, etc. It it is also possible to apply the active ingredients using the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil.
  • transgenic seed As also described below, the treatment of transgenic seed with the active ingredients or agents according to the invention is of particular importance.
  • the heterologous gene in transgenic seeds can originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • This heterologous gene preferably originates from Bacillus sp., the gene product having an effect against the corn borer (European corn borer) and/or western corn rootworm.
  • the heterologous gene is particularly preferably derived from Bacillus thuringiensis.
  • the agent according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is preferably treated in a state in which it is so stable that no damage occurs during the treatment.
  • the seed can be treated at any time between harvesting and sowing.
  • seeds are used which have been separated from the plant and freed from cobs, husks, stalks, husk, wool or pulp.
  • seed can be used that has been harvested, cleaned and dried to a moisture content of less than 15% by weight.
  • seed can also be used which, after drying, has been treated with water, for example, and then dried again.
  • the agent according to the invention when treating the seed, care must be taken to ensure that the amount of the agent according to the invention and/or other additives applied to the seed is chosen such that the germination of the seed is not impaired or the resulting plant is not damaged. This is particularly important for active ingredients that can have phytotoxic effects when applied in certain quantities.
  • the agents according to the invention can be applied directly, ie without containing further components and without having been diluted. As a rule, it is preferable to apply the agents to the seed in the form of a suitable formulation. Suitable formulations and methods for seed treatment are known to the person skilled in the art and are described, for example, in the following documents: US Pat. No. 4,272,417 A, US Pat. No. 4,245,432 A, US Pat A2.
  • the active compounds according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also ULV formulations.
  • These formulations are prepared in a known manner by mixing the active ingredients with customary additives, such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • customary additives such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • Suitable dyes which can be present in the seed-dressing formulations which can be used according to the invention are all dyes customary for such purposes.
  • Both pigments which are sparingly soluble in water and dyes which are soluble in water can be used here. Examples which may be mentioned are the dyes known under the names Rhodamine B, CI Pigment Red 112 and CI Solvent Red 1.
  • Suitable wetting agents which can be present in the seed-dressing formulations which can be used according to the invention are all the wetting-promoting substances which are customary for the formulation of agrochemical active ingredients. Alkyl naphthalene sulfonates, such as diisopropyl or diisobutyl naphthalene sulfonates, can preferably be used.
  • Suitable dispersants and/or emulsifiers which can be present in the seed-dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemically active compounds.
  • Nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can preferably be used.
  • Suitable nonionic dispersants include, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are, in particular, lignin sulfonates, polyacrylic acid salts and aryl sulfonate-formaldehyde condensates.
  • All foam-inhibiting substances customary for the formulation of agrochemical active substances can be present as foam-inhibiting agents in the seed-dressing formulations which can be used according to the invention. Silicone defoamers and magnesium stearate can preferably be used. All substances which can be used for such purposes in agrochemical agents can be present as preservatives in the seed dressing formulations which can be used according to the invention. Examples include dichlorophene and benzyl alcohol hemiformal.
  • Secondary thickeners which can be present in the seed-dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silicic acid are preferred. Suitable adhesives which can be present in the mordant formulations which can be used according to the invention are all the customary binders which can be used in mordants. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as preferred.
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of all kinds, including seed of transgenic plants.
  • the active compounds according to the invention are suitable for the protection of plants and plant organs, for increasing crop yields and improving the quality of crops, while being well tolerated by plants, favorable toxicity to warm-blooded animals and good environmental compatibility. They can preferably be used as crop protection agents.
  • plants which can be treated according to the invention corn, soybeans, cotton, Brassica oilseeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. (field) mustard) and Brassica carinata, rice, Wheat, sugar beet, sugarcane, oats, rye, barley, sorghum, triticale, flax, vines and various fruits and vegetables from various botanical taxa such as Rosaceae sp. (e.g.
  • pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds and peaches and berries such as strawberries), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for example banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceae sp., Sterculiceae sp., Rutaceae sp.
  • Solanaceae sp. for example tomatoes, potatoes, peppers, aubergines
  • Liliaceae sp. Compositae sp.
  • Compositae sp. e.g. lettuce, artichoke and chicory - including root chicory, endive or common chicory
  • Umbelliferae sp. for example carrot, parsley, celery and celeriac
  • Cucurbitaceae sp. e.g. cucumber - including gherkin, squash, watermelon, gourd and melons
  • Alliaceae sp. e.g. leeks and onions
  • Cruciferae sp. e.g.
  • plant species and plant varieties occurring in the wild or obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and parts thereof are treated.
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and parts thereof are treated.
  • the term "parts” or “parts of plants” or “plant parts” has been explained above.
  • Plants of the plant varieties that are commercially available or in use are particularly preferably treated according to the invention.
  • Plant varieties are plants with new properties (“traits”) that have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques. This can be varieties, races, organic and genotypes.
  • the treatment method according to the invention can be used for the treatment of genetically modified organisms (GMOs), e.g. As plants or seeds can be used.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene means essentially a gene that is provided or assembled outside of the plant and which, when introduced into the nuclear genome, the chloroplast genome or the mitochondrial genome of the transformed plant, confers new or improved agronomic or other traits by producing a trait of interest protein or polypeptide, or that it downregulates or turns off another gene(s) present in the plant (e.g., using antisense technology, cosuppression technology, or RNA interference [RNAi] technology).
  • RNAi RNA interference
  • a heterologous gene that is present in the genome is also called a transgene.
  • a transgene that is defined by its specific presence in the plant genome is referred to as a transformation or transgenic event.
  • the treatment according to the invention can also lead to superadditive (“synergistic”) effects.
  • Plants and plant cultivars which are preferably treated according to the invention include all plants which have genetic material which confers on these plants particularly advantageous, useful traits (whether this has been achieved by breeding and/or biotechnology).
  • Such plants are typically produced by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent).
  • the hybrid seed is typically harvested from the male-sterile plants and sold to propagators.
  • Male-sterile plants can sometimes (e.g., in corn) be produced by detasseling (ie, mechanically removing the male reproductive organs or male flowers); however, it is more common that male sterility is due to genetic determinants in the plant genome. In this case, particularly when the desired product to be harvested from the hybrid plants is the seed, it is usually desirable to ensure male fertility in hybrid plants containing the genetic determinants responsible for male sterility , will be completely restored.
  • Genetic determinants of male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) have been described for Brassica species, for example. However, genetic determinants of male sterility can also be located in the nuclear genome.
  • CMS cytoplasmic male sterility
  • Male-sterile plants can also be obtained using plant biotechnology methods such as genetic engineering. A particularly useful means of producing male-sterile plants is described in WO 89/10396, where for example a ribonuclease such as a barnase is selectively expressed in the tapetum cells in the stamens.
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering which can be treated according to the invention are herbicide-tolerant plants, ie plants which have been made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation or by selection from plants containing a mutation conferring such herbicide tolerance.
  • Herbicide tolerant plants are, for example, glyphosate tolerant plants, ie plants which have been made tolerant to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate using a variety of methods.
  • glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., 1992, Curr.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate acetyltransferase enzyme. Glyphosate tolerant plants can also be obtained by selecting plants containing naturally occurring mutations of the genes mentioned above. Plants expressing EPSPS genes conferring glyphosate tolerance are described. Plants harboring other genes conferring glyphosate tolerance, eg, decarboxylase genes, are described. Other herbicide-resistant plants are, for example, plants which have been made tolerant to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme that detoxifies the herbicide or a mutant of the enzyme glutamine synthase that is resistant to inhibition.
  • a potent detoxifying enzyme is, for example, an enzyme encoding a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described.
  • Other herbicide-tolerant plants are also plants that have been made tolerant to the herbicides that inhibit the enzyme hydroxyphenylpyruvate dioxygenase (HPPD).
  • HPPD hydroxyphenylpyruvate dioxygenase
  • the hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted into homogentisate.
  • Plants that are tolerant to HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutated or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 or US 6,768,044.
  • Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes encoding certain enzymes that allow the formation of homogentisate despite inhibition of the native HPPD enzyme by the HPPD inhibitor.
  • plants are described in WO 99/34008 and WO 02/36787.
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding a prephenate dehydrogenase enzyme in addition to a gene encoding an HPPD-tolerant enzyme, as in WO 2004/024928 is described.
  • plants can be made even more tolerant to HPPD inhibitors by inserting a gene into their genome that codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as CYP450 enzymes (see WO 2007/103567 and WO 2008/150473 ).
  • Other herbicide resistant plants are plants that have been made tolerant to acetolactate synthase (ALS) inhibitors.
  • ALS acetolactate synthase
  • ALS inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy(thio)benzoates and/or sulfonylaminocarbonyltriazolinone herbicides.
  • ALS also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • sulfonylurea and imidazolinone tolerant plants are also described.
  • Other plants that are tolerant to imidazolinones and/or sulfonylureas can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide, or by mutation breeding (cf. e.g. for soybean US 5,084,082, for rice WO 97/41218, for sugar beet US 5,773,702 and WO 99/057965, for lettuce US 5,198,599 or for sunflower WO 01/065922).
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering which can also be treated according to the invention are tolerant to abiotic stressors.
  • Such plants can be obtained by genetic transformation or by selection from plants containing a mutation conferring such stress resistance.
  • Particularly useful stress tolerant plants include the following: a. Plants containing a transgene capable of reducing the expression and/or activity of the poly(ADP-ribose) polymerase (PARP) gene in the plant cells or plants. b. Plants which contain a stress tolerance-promoting transgene which is able to reduce the expression and/or activity of the genes of the plants or plant cells which code for PARG; c.
  • PARP poly(ADP-ribose) polymerase
  • nicotinamidase nicotinate phosphoribosyltransferase
  • nicotinic acid mononucleotide adenyltransferase nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyltransferase.
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, have an altered quantity, quality and/or shelf life of the harvested product and/or altered properties of certain components of the harvested product, such as: 1) Transgenic plants that synthesize a modified starch which, in terms of their chemical-physical properties, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the Gel strength, the starch grain size and / or starch grain morphology compared to the synthesized starch in wild-type plant cells or - plants is changed, so that this modified starch is better suited for certain applications.
  • a modified starch which, in terms of their chemical-physical properties, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the Gel strength, the star
  • Transgenic plants that synthesize non-starch carbohydrate polymers, or non-starch carbohydrate polymers whose properties are altered compared to wild-type plants without genetic modification. Examples are plants that produce polyfructose, especially of the inulin and levan types, plants that produce alpha-1,4-glucans, plants that produce alpha-1,6-branched alpha-1,4-glucans and plants that produce alternans. 3) Transgenic plants that produce hyaluronan. 4) Transgenic plants or hybrid plants such as onions with certain properties such as "high soluble solids content", low pungency (LP) and/or long storage (LS). ).
  • LP low pungency
  • LS long storage
  • Plants or plant varieties which can also be treated according to the invention are plants such as cotton plants with altered fiber properties.
  • Such plants can be obtained by genetic transformation or by selection from plants containing a mutation conferring such altered fiber properties; these include: a) plants such as cotton plants which contain an altered form of cellulose synthase genes, b) plants such as cotton plants which contain an altered form of rsw2 or rsw3 homologous nucleic acids such as cotton plants with an increased expression of sucrose phosphate synthase; c) plants such as cotton plants with an increased expression of sucrose synthase; d) Plants such as cotton plants in which the timing of gating of the plasmodesmata at the base of the fiber cell is altered, e.g.
  • plants such as cotton plants with fibers with altered reactivity, e.g. B. by expression of the N-acetylglucosamine transferase gene, including nodC, and chitin synthase genes.
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering) which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered properties of the oil composition.
  • Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered oil properties; these include: a) plants such as oilseed rape which produce oil with a high oleic acid content; b) Plants such as oilseed rape that produce oil with a low linolenic acid content. c) Plants such as oilseed rape that produce oil with a low saturated fatty acid content.
  • Plants or plant varieties which can be obtained by methods of plant biotechnology, such as genetic engineering
  • plants which can also be treated according to the invention are plants such as potatoes which are virus-resistant, for example to potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), or which are resistant to diseases such as late blight (potato late blight) (e.g. RB gene), or which show reduced cold-induced sweetness (carrying the genes Nt-Inh, II-INV) or which have the dwarf Show phenotype (gene A-20 oxidase).
  • viruses which are virus-resistant, for example to potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), or which are resistant to diseases such as late blight (potato late blight) (e.g. RB gene), or which show reduced cold-induced sweetness (carrying the genes Nt-Inh, II-INV) or which have the dwarf Show phenotype (gene A-20 oxidas
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering
  • plants which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered seed shattering properties.
  • Such plants can be obtained by genetic transformation or by selection from plants containing a mutation conferring such altered traits and include plants such as oilseed rape with delayed or reduced seed set.
  • Particularly useful transgenic plants that can be treated according to the invention are plants with transformation events or combinations of transformation events which are the subject of issued or pending petitions in the USA with the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA). are for non-regulated status.
  • APIS Animal and Plant Health Inspection Service
  • USDA United States Department of Agriculture
  • Transgenic phenotype the trait imparted to the plant by the transformation event.
  • Transformation event or line the name of the event or events (sometimes referred to as line(s)) for which non-regulated status is requested.
  • APHIS Documente various documents published by APHIS regarding the petition or which can be obtained by APHIS on request.
  • Particularly useful transgenic plants which can be treated according to the invention are plants having one or more genes coding for one or more toxins are the transgenic plants sold under the following trade names: YIELD GARD ® (for example maize, cotton, soybeans), KnockOut ® (e.g. corn), BiteGard ® (e.g. corn), BT-Xtra ® (e.g.
  • Herbicide tolerant crops to mention are, for example, corn varieties, cotton varieties and soybean varieties sold under the following trade names: Roundup Ready ® (glyphosate tolerance, e.g. corn, cotton, soybean), Liberty Link ® (phosphinotricin tolerance, e.g. canola) , IMI ® (imidazolinone tolerance) and SCS ® (sylphonylurea tolerance), for example corn.
  • Roundup Ready ® glyphosate tolerance, e.g. corn, cotton, soybean
  • Liberty Link ® phosphinotricin tolerance, e.g. canola
  • IMI ® imidazolinone tolerance
  • SCS ® sylphonylurea tolerance
  • Examples D1.2, S1.2, P1.2, Q1.2, Q3.2, Q3.10 and Q4.2 are not according to the invention and are for comparison only.
  • NMR peak list method The 1H NMR data of selected examples are recorded in the form of 1H NMR peak lists. For each signal peak, first the ⁇ value in ppm and then the signal intensity is listed in round brackets. The ⁇ value - signal intensity number pairs from different signal peaks are listed separated by semicolons.
  • the peak list of an example therefore has the form: ⁇ 1 (intensity 1 ) ; ⁇ 2 (intensity 2 );........; ⁇ i (intensityi ) ; whil; ⁇ n (intensity n )
  • the intensity of sharp signals correlates with the height of the signals in a printed example of an NMR spectrum in cm and shows the real ratios of the signal intensities. For broad signals, multiple peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum can be shown.
  • To calibrate the chemical shift of 1H NMR spectra we use tetramethylsilane and/or the chemical shift of the solvent, especially in the case of spectra measured in DMSO.
  • the tetramethylsilane peak can therefore appear in NMR peak lists, but it does not have to.
  • the listings of 1H NMR peaks are similar to the classic 1H NMR printouts and thus usually include all peaks listed in a classic NMR interpretation.
  • they can show signals from solvents, signals from stereoisomers of the target compounds, which are also the subject of the invention, and/or peaks from impurities.
  • the usual solvent peaks for example peaks from DMSO in DMSO-D6 and the peak from water, are shown in our lists of 1H NMR peaks, which usually average have a high intensity.
  • the peaks of stereoisomers of the target compounds and/or peaks of impurities usually have on average a lower intensity than the peaks of the target compounds (e.g. with a purity of >90%). Such stereoisomers and/or impurities can be typical of the particular production process. Their peaks can thus help identify the reproduction of our manufacturing process using “by-product fingerprints”.
  • An expert who calculates the peaks of the target compounds with known methods can isolate the peaks of the target compounds as required, with additional intensity filters being used if necessary. This isolation would be similar to the peak picking involved in classical 1H NMR interpretation. Further details on 1H-NMR peak lists can be found in Research Disclosure Database Number 564025.
  • Example D1.1 3- ⁇ 2-Chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl ⁇ -4-hydroxy-8-methoxy-1-azaspiro[4.5] dec-3-en-2-one 5.70 g (13.91 mmol) of methyl 1-(2- ⁇ 2-chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl ⁇ acetamido)-4-methoxycyclohexanecarboxylate were added dissolved in 100 ml dimethylformamide and cooled to 0°C. A total of 3.12 g (27.81 mmol) of potassium t-butoxide were then added in portions over the course of 10 minutes.
  • Example Q4.1 ⁇ 2-Chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl ⁇ acetic acid
  • Step 1 Methyl-(2-chloro-6-methoxy-4- nitrophenyl acetate 6.10 g (59.2 mmol) tert-butyl nitrite and 5.97 g (44.4 mmol) copper(II) chloride were suspended in 60 ml acetonitrile and cooled to 0°C. Then 40.20 g (415 mmol) of vinylidene chloride were slowly added dropwise and the mixture was stirred for a further 1 h before it was heated to 40.degree.
  • Step 5 Methyl ⁇ 2-chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl ⁇ acetate
  • Example Q3.1 A solution of 7.80 g (30.62 mmol) methyl [2-chloro-6-methoxy-4-(prop-1-en-1-yl)phenyl]acetate and 0.79 g (3.06 mmol) bis(acetonitrile)palladium (II) chloride in 61 ml of methylene chloride was stirred at room temperature for 4 h. The reaction mixture was diluted with diethyl ether, filtered through Celite and washed with a little diethyl ether.
  • Step 6 ⁇ 2-Chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl ⁇ acetic acid
  • 7.20 g (28.27 mmol) of methyl ⁇ 2-chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl ⁇ acetate was added 3.97 g (70.67 mmol) of potassium hydroxide and heated under reflux for 3 hours.
  • a dust is obtained by mixing 10 parts by weight of a compound of the formula (I) and/or salts thereof and 90 parts by weight of talcum as an inert substance and comminuting in a hammer mill.
  • a water-dispersible, wettable powder is obtained by mixing 25 parts by weight of a compound of the formula (I) and/or salts thereof, 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurine mixes as wetting and dispersing agent and grinds in a pin mill.
  • a dispersion concentrate that is easily dispersible in water is obtained by mixing 20 parts by weight of a compound of the formula (I) and/or salts thereof with 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO ) and 71 parts by wt.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I) and/or salts thereof, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
  • a water-dispersible granulate is obtained by adding 75 parts by weight of a compound of the formula (I) and/or salts thereof, 10 parts by weight of calcium lignosulfonate, 5 parts by weight of sodium lauryl sulfate, 3 parts by weight of polyvinyl alcohol and 7 parts by weight Mixes parts of kaolin, grinds it in a pin mill and granulates the powder in a fluidized bed by spraying on water as the granulating liquid.
  • a water-dispersible granulate is also obtained by adding 25 parts by weight of a compound of the formula (I) and/or salts thereof, 5 parts by weight of 2,2' dinaphthylmethane 6,6' sodium disulphonate, 2 parts by weight sodium oleoylmethyltaurine, 1 part by weight polyvinyl alcohol, 17 parts by weight calcium carbonate and 50 parts by weight water in a colloid mill and precomminuted, then on a Bead mill grinds and the resulting suspension is atomized in a spray tower using a single-component nozzle and dried.
  • Seeds of monocotyledonous or dicotyledonous weeds or crop plants are placed in sandy loam soil in wood fiber pots, covered with soil and grown in the greenhouse under good growth conditions. 2 to 3 weeks after After sowing, the test plants are treated in the one-leaf stage.
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), are then sprayed onto the green parts of the plant as an aqueous suspension or emulsion at a water application rate of the equivalent of 600 to 800 l/ha with the addition of 0.2% wetting agent .
  • Table 5a Post-emergence effect at 20g/ha against LOLRI in %
  • Table 5b Post-emergence effect at 80g/ha against LOLRI in %
  • Table 6a Post-emergence effect at 20g/ha against MATIN in %
  • Table 6b Post-emergence effect at 80g/ha against MATIN in %
  • Table 7a Post-emergence effect at 20g/ha against PHBPU in %
  • Table 7b Post-emergence effect at 80g/ha against PHBPU in %
  • Table 8a Post-emergence effect at 20g/ha against POLCO in %
  • Table 8b Post-emergence effect at 80g/ha against POLCO in %
  • Table 9a Post-emergence effect at 20g/ha against SETVI in %
  • Table 9b Post-emergence effect at 80g/ha against SETVI in %
  • Table 10a Post-emergence effect at 20g/ha against VERPE in %
  • Table 10b Post-emergence effect at 80g/ha against VERPE in %
  • Table 11a Post-emergence effect at 20g/ha against VIOTR in %
  • Table 11b Post-emergence effect at 80g/ha against VIOTR in %
  • the compounds according to the invention have good post-emergence herbicidal activity against a broad spectrum of weed grasses and weeds.
  • the examples listed show an 80-100% effect against, among other things, Abutylon threophrasti, Alopecurus myosuroides, Amaranthus retroflexus, Echinochloa crus-galli, Lolium rigidum, Matricaria inodora, Pharbitis purpurea, Polygonum convolvulus, Setaria viridis, Veronica persica and Viola tricolor.
  • the compounds according to the invention are therefore suitable for post-emergence control of undesired plant growth.
  • Seeds of monocotyledonous or dicotyledonous weed plants or crop plants are laid out in sandy loam soil in wood fiber pots and covered with soil.
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), are then applied to the surface of the covering soil as an aqueous suspension or emulsion with a water application rate of the equivalent of 600 to 800 l/ha with the addition of 0.2% wetting agent applied. After treatment, the pots are placed in the greenhouse and maintained under good growth conditions for the test plants.
  • WP wettable powders
  • EC emulsion concentrates
  • Table 14a Pre-emergence effect at 80g/ha against AMARE in %
  • Table 14b Pre-emergence effect at 320g/ha against AMARE in %
  • Table 15a Pre-emergence effect at 80g/ha against AVEFA in %
  • Table 15b Pre-emergence effect at 320g/ha against AVEFA in %
  • Table 16a Pre-emergence effect at 80g/ha against ECHCG in %
  • Table 16b Pre-emergence effect at 320g/ha against ECHCG in %
  • Table 17a Pre-emergence effect at 80g/ha against LOLRI in %
  • Table 17b Pre-emergence effect at 320g/ha against LOLRI in %
  • Table 18a Pre-emergence effect at 80g/ha against MATIN in %
  • Table 18b Pre-emergence effect at 320g/ha against MATIN in %
  • Table 19a Pre-emergence effect at 80g/ha against PHBPU in %
  • Table 19b Pre-emergence effect at 320g/ha against PHBPU in %
  • Table 20a Pre-emergence effect at 80g/ha against POLCO in %
  • Table 20b Pre-emergence effect at 320g/ha against POLCO in %
  • Table 21a Pre-emergence effect at 80g/ha against SETVI in %
  • Table 21b Pre-emergence effect at 320g/ha against SETVI in %
  • Table 22a Pre-emergence effect at 80g/ha against VERPE in %
  • Table 22b Pre-emergence effect at 320g/ha against VERPE in %
  • Table 23a Pre-emergence effect at 80g/ha against VIOTR in %
  • Table 23b Pre-emergence effect at 320g/ha against VIOTR in %
  • the compounds according to the invention have a good pre-emergence herbicidal activity against a broad spectrum of weed grasses and weeds.
  • the compounds each show an 80-100% activity against, inter alia, Abutylon threophrasti, Alopecurus myosuroides, Amaranthus retroflexus, Avena fatua, Echinochloa crusgalli, Lolium rigidum, Matricaria inodora, Pharbitis purpurea, Polygonum convolvulus, Setaria viridis, Veronica persica and Viola tricolor.
  • the compounds according to the invention are therefore suitable in the pre-emergence method for combating undesired plant growth.

Abstract

The invention relates to new herbicidally active 3-(4-(E)-alkenyl-phenyl)-3-pyrrolino-2-ones according to general formula (I) or to agrochemically acceptable salts thereof and to their use for controlling weeds and weed grasses in crops of useful plants. (I).

Description

Neue 3-(4-Alkenyl-phenyl)-3-pyrrolin-2-one und deren Verwendung als Herbizide Beschreibung Die vorliegende Erfindung betrifft neue herbizid wirksame 3-Phenylpyrrolin-2-one gemäß der allgemeinen Formel (I) oder agrochemisch akzeptable Salze davon, sowie deren Verwendung zur Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen. Die Verbindungsklasse der 3-Phenylpyrrolin-2-one sowie deren Herstellung und Verwendung als Herbizide sind aus dem Stand der Technik wohl bekannt. Darüber hinaus sind aber auch zum Beispiel bicyclische 3-Phenylpyrrolin-2-on-Derivate (EP0355599A1, EP415211A2 und JP-A-12-053670) sowie substituierte monocyclische 3- Phenylpyrrolin-2-on-Derivate (EP0377893A2 und EP0442077A2) mit herbizider, insektizider oder fungizider Wirkung beschrieben. 4-Alkinyl-substituierte-3-Phenylpyrrolin-2-one mit herbizider Wirkung sind ferner aus WO 96/82395, WO 98/05638, WO 01/74770, WO 15/032702, WO 15/040114, WO 17/060203 oder WO 19/219587 bekannt. Die Wirksamkeit dieser Herbizide gegen Schadpflanzen ist von zahlreichen Parametern abhängig, beispielsweise von der verwendeten Aufwandmenge, der Zubereitungsform (Formulierung), den jeweils zu bekämpfenden Schadpflanzen, dem Schadpflanzenspektrum, den Klima- und Bodenverhältnissen sowie der Dauer der Wirkung bzw. der Abbaugeschwindigkeit des Herbizids. Zahlreiche Herbizide aus der Gruppe der 3-Phenylpyrrolin-2-one erfordern, um eine ausreichende herbizide Wirkung zu entfalten, hohe Aufwandmengen und/oder sie haben ein zu schmales Unkrautspektrun, was deren Anwendung ökonomisch unattraktiv macht. Es besteht daher der Bedarf an alternativen Herbiziden, die verbesserte Eigenschaften aufweisen sowie ökonomisch attraktiv und gleichzeitig effizient sind. Aufgabe der vorliegenden Erfindung ist folglich die Bereitstellung von neuen Verbindungen, die die genannten Nachteile nicht aufweisen. Es wurde nun gefunden, dass (E)-konfigurierte 4-Alkenyl-3-Phenylpyrrolin-2-one besonders vorteilhafte Eigenschaften aufweisen. Die vorliegende Erfindung betrifft daher neue substituierte 3-Phenylpyrrolin-2-one der allgemeinen Formel (I),
Figure imgf000003_0001
oder ein agrochemisch akzeptables Salz davon, wobei R1 (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C1-C6)-Alkoxy, Halogen-(C1-C6)-alkoxy, (C1-C4)- Alkoxy-(C1-C4)-alkyl, Halogen- (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-Alkoxy-(C1-C4)- alkoxy, Halogen-(C1-C6)-alkoxy-(C2-C4)-alkoxy, (C3-C6)-Cycloalkyl, (C2-C6)-Alkenyloxy, Halogen-(C2-C6)-alkenyloxy, (C2-C6)-Alkinyloxy oder Cyano-(C1-C6)-alkoxy ist, R2 Wasserstoff, (C1-C6)-Alkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkyl-(C1-C4)-alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)- Alkoxy oder Halogen-(C1-C6)-alkoxy ist, X (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy, Brom, Chlor oder Fluor ist, Y (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy ist, R10 Wasserstoff, R11 Fluor, (C1-C6)-Alkyl oder Halogen-(C1-C6)-alkyl ist, R12 Wasserstoff, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000003_0002
worin R3 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C1-C4)-alkyl ist, R4 (C1-C4)-Alkyl ist, R5 (C1-C4)-Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, (C1- C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, (C1-C4)-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl ist, R6, R6‘ unabhängig voneinander Methoxy oder Ethoxy ist, R7, R8 jeweils unabhängig voneinander Methyl, Ethyl, Phenyl ist, oder gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten 5-, 6- oder 7-gliedrigen Ring bilden, wobei ein Ringkohlenstoffatom gegebenenfalls durch ein Sauerstoff- oder Schwefelatom ersetzt sein kann, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)-Alkyl oder (C3-C7)- Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion ist, beispielsweise Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4-Diazabicyclo[1.1.2]octane (DABCO) oder 1,5- Diazabicyclo[4.3.0]undec-7-en (DBU), ein heteroaromatisches Ammoniumkation ist, beispielsweise jeweils protoniertes Pyridin, 2-Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Dimethylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1,2-Dimethylimidazol, 1,3-Dimethylimidazolium- methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion steht. Alkyl bedeutet gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. (C1-C6)-Alkyl wie Methyl, Ethyl, Propyl, 1- Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2- Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2- Dimethylpropyl,1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethyl- butyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3- Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl- 1-methylpropyl und 1-Ethyl-2-methylpropyl. Halogenalkyl bedeutet geradkettige oder verzweigte Alkylgruppen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome ersetzt sein können, z.B. (C1- C2)-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1- Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor- 2-fluorethyl, 2-Chlor,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und 1,1,1-Trifluorprop-2-yl. Alkenyl bedeutet ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. (C2-C6)-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl- 1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2- Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2- Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl- 1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl- 4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2- butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3- butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3- butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1- butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl- 1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2- propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl. Alkinyl bedeutet geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2-C6- Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl (oder Propargyl), 1-Butinyl, 2-Butinyl, 3-Butinyl, 1- Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 3-Methyl-1-butinyl, 1-Methyl-2- butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1- Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 3-Methyl-1-pentinyl, 4-Methyl-1-pentinyl, 1- Methyl-2-pentinyl, 4-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 2-Methyl-3-pentinyl, 1-Methyl-4- pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3- butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl. Cycloalkyl bedeutet ein carbocyclisches, gesättigtes Ringsystem mit vorzugsweise 3-8 Ring- C-Atomen, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden cyclische Systeme mit Substituenten umfasst, wobei auch Substituenten mit einer Doppelbindung am Cycloalkylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Alkoxy bedeutet gesättigte, geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. (C1-C6)-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1- Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, Pentoxy, 1- Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 2,2-Di-methylpropoxy, 1-Ethylpropoxy, Hexoxy, 1,1-Dimethylpropoxy, 1,2-Dimethylpropoxy,1-Methylpentoxy, 2-Methylpentoxy, 3- Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy und 1-Ethyl-2-methyl- propoxy. Durch Halogen substitiertes Alkoxy bedeutet geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. (C1-C2)-Halogenalkoxy wie Chlormethoxy, Brommethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlorfluormethoxy, Dichlor- fluormethoxy, Chlordifluormethoxy, 1-Chlorethoxy, 1-Bromethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-1,2-difluorethoxy, 2,2- Dichlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluor-ethoxy und 1,1,1-Trifluorprop-2-oxy. Die Verbindungen der Formel (I) können als geometrische und/oder optische Isomere oder Isomerengemische in unterschiedlicher Zusammensetzung vorliegen. Beispielsweise können - abhängig von der Verknüpfung des Substituenten R1 - sowohl Enantiomere als auch cis-/trans- Isomere auftreten. Letztere sind folgendermaßen definiert:
Figure imgf000006_0001
The present invention relates to new herbicidally active 3-phenylpyrrolin-2-ones of the general formula (I) or agrochemically acceptable salts thereof , and their use for controlling weeds and grass weeds in crops. The compound class of the 3-phenylpyrrolin-2-ones and their production and use as herbicides are well known from the prior art. In addition, however, bicyclic 3-phenylpyrrolin-2-one derivatives (EP0355599A1, EP415211A2 and JP-A-12-053670) and substituted monocyclic 3-phenylpyrrolin-2-one derivatives (EP0377893A2 and EP0442077A2) with herbicidal, insecticidal or fungicidal effect described. 4-Alkinyl-substituted-3-phenylpyrrolin-2-ones with herbicidal action are also known from WO 96/82395, WO 98/05638, WO 01/74770, WO 15/032702, WO 15/040114, WO 17/060203 or WO 19/219587 known. The effectiveness of these herbicides against harmful plants depends on numerous parameters, for example the application rate used, the form of preparation (formulation), the harmful plants to be controlled in each case, the spectrum of harmful plants, the climatic and soil conditions and the duration of the effect or the degradation rate of the herbicide. Numerous herbicides from the group of 3-phenylpyrrolin-2-ones require high application rates in order to develop an adequate herbicidal action and/or they have too narrow a weed spectrum, which makes their use economically unattractive. There is therefore a need for alternative herbicides which have improved properties and are economically attractive and efficient at the same time. The object of the present invention is therefore to provide new compounds which do not have the disadvantages mentioned. It has now been found that (E)-configured 4-alkenyl-3-phenylpyrrolin-2-ones have particularly advantageous properties. The present invention therefore relates to new substituted 3-phenylpyrrolin-2-ones of the general formula (I),
Figure imgf000003_0001
or an agrochemically acceptable salt thereof, wherein R 1 is (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy, halo(C 1 -C 6 )-alkoxy, (C 1 -C 4 )- alkoxy-(C 1 -C 4 )-alkyl, halo-(C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, (C 1 - C 6 alkoxy(C 1 -C 4 )alkoxy, halo(C 1 -C 6 )alkoxy(C 2 -C 4 )alkoxy, (C 3 -C 6 )cycloalkyl, (C C 2 -C 6 )alkenyloxy, halo-(C 2 -C 6 )alkenyloxy, (C 2 -C 6 )alkynyloxy or cyano-(C 1 -C 6 )alkoxy, R 2 is hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 4 )alkoxy(C 1 -C 4 )alkyl, halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, ( C 3 -C 6 cycloalkyl(C 1 -C 4 )alkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl, (C 1 -C 6 )alkoxy or halogen -(C 1 -C 6 )alkoxy, X is (C 1 -C 6 )alkyl, halo-(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 1 -C 6 )alkyl 6 )-alkoxy, halo-(C 1 -C 6 )-alkoxy, bromine, chlorine or fluorine, Y is (C 1 -C 6 )-alkyl, halo-(C 1 -C 6 )-alkyl, (C 3 -C 6 cycloalkyl, (C 1 -C 6 )alkoxy, halo(C 1 -C 6 )alkoxy , R 10 is hydrogen, R 11 is fluorine, (C 1 -C 6 )-alkyl or halo(C 1 -C 6 )-alkyl, R 12 is hydrogen, G is hydrogen, a leaving group L or a cation E, where L is one of the following radicals
Figure imgf000003_0002
wherein R 3 is (C 1 -C 4 )alkyl or (C 1 -C 3 )alkoxy-(C 1 -C 4 )alkyl, R 4 is (C 1 -C 4 )alkyl, R 5 (C 1 -C 4 )-alkyl, an unsubstituted phenyl or a mono- or poly-halogen, (C 1 - C 4 )-alkyl, (C 1 -C 4 )-haloalkyl, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 )haloalkoxy, nitro or cyano-substituted phenyl, R 6 , R 6 ' is independently methoxy or ethoxy, R 7, R 8 are each independently methyl, ethyl, phenyl, or together form a saturated 5-, 6- or 7-membered ring with the nitrogen atom to which they are attached, wherein a ring carbon atom may optionally be replaced by an oxygen or sulfur atom, E is an alkali metal ion, an ionic equivalent of an alkaline earth metal, an ionic equivalent of aluminum , an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion in which optionally one, two, three or all four hydrogen atoms are replaced by identical or different radicals from the groups (C 1 -C 10 )-alkyl or ( C 3 -C 7 )- cycloalkyl, each independently substituted one or more times by fluorine, chlorine, bromine, cyano, hydroxy or interrupted by one or more oxygen or sulfur atoms, is a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion, for example morpholinium, thiomorpholinium, piperidinium, pyrrolidinium or each protonated 1,4-diazabicyclo[1.1.2]octane (DABCO) or 1,5-diazabicyclo[4.3.0]undec-7-ene (DBU), is a heteroaromatic ammonium cation, for example protonated pyridine, 2-methylpyridine, 3 -Methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 5-ethyl-2-methylpyridine, collidine, pyrrole, imidazole, quinoline, quinoxaline, 1,2-dimethylimidazole, 1 ,3-dimethylimidazolium methyl sulfate or also a trimethylsulfonium ion. Alkyl means saturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms, for example (C 1 -C 6 )-alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1 ,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl,1-methylpentyl, 2 -methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1 - Ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl. Haloalkyl means straight-chain or branched alkyl groups, some or all of the hydrogen atoms in these groups being replaced by halogen atoms, for example (C 1 -C 2 )haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, Difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2- chloro,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and 1,1,1-trifluoroprop-2-yl. Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a double bond in any position, for example (C 2 -C 6 )-alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1- butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3- methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl-2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl- 1-pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2- pentenyl, 4-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1, 1-dimethyl-2-butenyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl-1-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1, 3-dimethyl-1-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-3-butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 2, 3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 3,3-dimethyl-1-butenyl, 3,3-dimethyl-2-butenyl, 1-ethyl-1-butenyl, 1-ethyl- 2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1- ethyl-1-methyl-2-propenyl, 1-ethyl-2-methyl-1-propenyl and 1-ethyl-2-methyl-2-propenyl. Alkynyl means straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a triple bond in any position, for example C 2 -C 6 - alkynyl such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2- Butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 3-methyl-1-butynyl, 1-methyl-2-butynyl, 1-methyl- 3-butynyl, 2-methyl-3-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-methyl-1-pentynyl, 4-methyl-1-pentynyl, 1-methyl-2-pentynyl, 4-methyl-2-pentynyl, 1-methyl-3-pentynyl, 2-methyl-3-pentynyl, 1- methyl-4-pentynyl, 2-methyl-4-pentynyl, 3-methyl-4-pentynyl, 1,1-dimethyl-2-butynyl, 1,1-dimethyl-3-butynyl, 1,2-dimethyl-3- butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1-butynyl, 1-ethyl-2-butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl and 1-ethyl- 1-methyl-2-propynyl. Cycloalkyl means a carbocyclic, saturated ring system with preferably 3-8 ring C atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. In the case of optionally substituted cycloalkyl, cyclic systems with substituents are included, with substituents having a double bond on the cycloalkyl radical, e.g. an alkylidene group such as methylidene. Alkoxy means saturated, straight-chain or branched alkoxy radicals having the specified number of carbon atoms, for example (C 1 -C 6 )-alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1 -dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy , 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2 -ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy and 1-ethyl-2-methylpropoxy. Alkoxy substituted by halogen means straight-chain or branched alkoxy radicals having the specified number of carbon atoms, it being possible for some or all of the hydrogen atoms in these groups to be replaced by halogen atoms as mentioned above, for example (C 1 -C 2 )haloalkoxy such as chloromethoxy, bromomethoxy, Dichloromethoxy, Trichloromethoxy, Fluoromethoxy, Difluoromethoxy, Trifluoromethoxy, Chlorofluoromethoxy, Dichlorofluoromethoxy, Chlorodifluoromethoxy, 1-Chloroethoxy, 1-Bromomethoxy, 1-Fluoroethoxy, 2-Fluoroethoxy, 2,2-Difluoroethoxy, 2,2,2-Trifluoroethoxy, 2- chloro-2-fluoroethoxy, 2-chloro-1,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoro-ethoxy and 1,1,1-trifluoroprop-2-oxy. The compounds of the formula (I) can be present as geometric and/or optical isomers or isomer mixtures of varying composition. For example--depending on the linkage of the substituent R.sup.1 --both enantiomers and cis/trans isomers can occur. The latter are defined as follows:
Figure imgf000006_0001
Figure imgf000007_0001
Die gegebenfalls bei der Synthese anfallenden Isomerengemische können mit den üblichen technischen Methoden getrennt werden. Sowohl die reinen Isomeren bzw. Tautomere als auch die Tautomeren- und Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als auch gegebenenfalls Gemische mit unterschiedlichen Anteilen an isomeren und tautomeren Verbindungen gemeint sind. Die erfindungsgemäßen Verbindungen sind durch die Formel (I) allgemein definiert. Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formeln aufgeführten Reste werden im Folgenden erläutert: Bevorzugt sind Verbindungen der allgemeinen Formel (I), in denen R1 (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C1-C6)-Alkoxy, Halogen-(C1-C6)-alkoxy, (C1-C4)- Alkoxy-(C1-C4)-alkyl, Halogen-(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-Alkoxy-(C2-C4)- alkoxy, Halogen-(C1-C6)-alkoxy-(C2-C4)-alkoxy, (C3-C6)-Cycloalkyl, (C2-C6)-Alkenyloxy, Halogen-(C2-C6)-alkenyloxy, (C2-C6)-Alkinyloxy oder Cyano-(C1-C6)-alkoxy ist, R2 Wasserstoff, (C1-C6)-Alkyl, (C1-C4)-Alkoxy-(C2-C4)-alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)- Cycloalkyl, (C2-C6)-Alkenyl oder (C2-C6)-Alkinyl, (C1-C4)-Alkoxy oder Halogen-(C1-C4)- alkoxy ist, X (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy, Brom, Chlor oder Fluor ist, Y (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy ist, R10 Wasserstoff, R11 Fluor, (C1-C6)-Alkyl oder Halogen-(C1-C6)-alkyl ist, R12 Wasserstoff, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000008_0001
worin R3 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C1-C4)-alkyl ist, R4 (C1-C4)-Alkyl ist, R5 (C1-C4)-Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, (C1- C4)-Alkyl, (C1-C4)-Haloalkyl oder (C1-C4)-Alkoxy substituiertes Phenyl ist, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)-Alkyl oder (C3-C7)- Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion ist, beispielsweise Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4-Diazabicyclo[1.1.2]octane (DABCO) oder 1,5- Diazabicyclo[4.3.0]undec-7-en (DBU), ein heteroaromatisches Ammoniumkation ist, beispielsweise jeweils protoniertes Pyridin, 2-Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Dimethylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1,2-Dimethylimidazol, 1,3-Dimethylimidazolium- methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion steht. Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in denen R1 (C1-C6)-Alkyl, (C1-C6)-Alkoxy, Halogen-(C1-C6)-alkoxy, (C1-C4)-Alkoxy-(C1-C4)-alkyl oder (C1-C6)-Alkoxy-(C2-C4)-alkoxy ist, R2 Wasserstoff, (C1-C4)-Alkyl, Methoxyethyl , Ethoxyethyl, Halogen-(C1-C2)-alkyl, Cyclopropyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, ist, X (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy, Brom, Chlor oder Fluor ist, Y (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl oder (C1-C6)-Alkoxy ist, R10 Wasserstoff ist, R11 (C1-C6)-Alkyl oder Halogen-(C1-C6)-alkyl ist, R12 Wasserstoff ist G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000009_0001
worin R3 (C1-C4)-Alkyl oder (C1-C2)-Alkoxy-(C1-C2)-Alkyl ist, R4 (C1-C4)-Alkyl ist, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)-Alkyl oder (C3-C7)- Cycloalkyl. Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in denen R1 Methoxy, Ethoxy oder Methoxyethoxy ist, R2 Wasserstoff oder Methyl ist, X Methyl, Ethyl, Brom oder Chlor ist, Y Methyl, Ethyl oder Methoxy ist, R10 Wasserstoff ist, R11 Methyl oder Trifluoromethyl ist, R12 Wasserstoff ist, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000010_0001
worin R3 Methyl, Ethyl, i-Propyl oder t-Butyl ist, R4 Methyl oder Ethyl ist, E ein Natriumion oder ein Kaliumion ist. Die Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) ist im Prinzip bekannt bzw. kann in Anlehnung an literaturbekannte Verfahren erfolgen, beispielsweise indem man a) eine Verbindung der allgemeinen Formel (II),
Figure imgf000010_0002
in welcher R1, R2, X, Y, R10, R11 und R12 die oben angegebenen Bedeutungen haben und R9 für Alkyl, bevorzugt für Methyl oder Ethyl, steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels, mit einer geeigneten Base unter formaler Abspaltung der Gruppe R9OH cyclisiert, oder b) eine Verbindung der allgemeinen Formel (Ia),
Figure imgf000010_0003
in der R1, R2, X, Y, R10, R11 und R12 die oben angegebenen Bedeutungen haben, beispielsweise mit einer Verbindung der allgemeinen Formel (III), Hal-L (III) in der L die oben angegebene Bedeutung hat und Hal für ein Halogen, vorzugsweise Chlor oder Brom oder auch eine Sulfonsäuregruppe stehen kann, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels sowie einer geeigneten Base, zur Reaktion bringt oder (c) indem man Verbindungen der allgemeinen Formel (IV),
Figure imgf000011_0001
in der R1, R2, G, X und Y die oben angegebenen Bedeutungen haben und U für eine geeignete Abgangsgruppe steht, mit einem geeigneten Alkenyl-Reagenz der allgemeinen Formel (V),
Figure imgf000011_0002
in der Z für eine geeignete Abgangsgruppe steht und R10, R11 und R12 die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart geeigneter Katalysatoren und einer geeigneten Base, umsetzt. Als Abgangsgruppe U kommen beispielsweise Halogenatome wie Chlor, Brom oder Iod, Alkylsulfonestergruppen wie beispielsweise Triflat, Mesylat oder Nonaflat in Betracht. Als Abgangsgruppe Z kommen beispielsweise Magnesiumchlorid, Magnesiumbromid, Zinkchlorid, ein Trialkylzinnrest, Carboxyl sowie Boronsäure-Reste wie -B(OH)2 oder –B(OAlkyl)2 in Betracht. Als Katalysatoren sind insbesondere Pd0 Komplexe sehr gut geeignet, wobei in vielen Fällen auch der Zusatz von Cu(I)-Salzen sehr vorteilhaft sein kann. Auch Liganden wie etwa 1,4- Bis(diphenylphosphino)butan können verwendet werden.
Figure imgf000011_0003
Die beschriebene Methodik ist Stand der Technik und im Übrigen auch unter dem Stichwort "Palladium-katalysierte Kreuzkupplung", " Negishi-, Suzuki-, Stille- oder Kumada-Kupplung" einschlägig literaturbekannt. Die Vorstufen der allgemeinen Formel (II) können in Analogie zu bekannten Verfahren, beispielsweise durch Umsetzung eines Aminosäureesters der allgemeinen Formel (VI), in der R1, R2 und R9 die oben beschriebene Bedeutung haben, mit einer Phenylessigsäure der allgemeinen Formel (VII), in der X, Y, R10, R11 und R12 die oben beschriebene Bedeutung haben, gegebenenfalls durch Zusatz eines wasserentziehenden Mittels und gegebenenfalls in Anwesenheit eines geeigneten Lösungs- bzw. Verdünnungsmittels, hergestellt werden.
Figure imgf000012_0001
Aminoester der allgemeinen Formel (VI) sind literaturbekannt, beispielsweise aus WO 2006/000355. Die Herstellung der Phenylessigsäuren der allgemeinen Formel (VII) ist unten näher beschrieben. Eine weitere Variante zur Herstellung von Vorstufen der allgemeinen Formel (II) besteht unter anderem auch darin, dass man eine Verbindung mit der allgemeinen Formel (VIII), in der R1, R2, R9 X, Y und U die oben angegebene Bedeutung haben, nach der bereits beschriebenen Kreuzkupplungs-Methodik mit einer Verbindung der allgemeinen Formel (V), in der Z, R10, R11 und R12 die oben angegebene Bedeutung hat, umsetzt:
Figure imgf000012_0002
Die benötigten Vorstufen der allgemeinen Formel (VII) können beispielsweise erhalten werden, indem man eine Verbindung mit der allgemeinen Formel (IX), in der X, Y und U die oben angegebene Bedeutung haben und R13 für Wasserstoff, Alkyl, bevorzugt für Methyl- oder Ethyl steht, nach der bereits beschriebenen Kreuzkupplungs-Methodik mit einer Verbindung der allgemeinen Formel (V), in der Z, R10, R11 und R12 die oben angegebene Bedeutung hat, zur Reaktion bringt:
Figure imgf000013_0001
Steht R13 für Alkyl, bevorzugt für Methyl- oder Ethyl, können die benötigten Vorstufen der allgemeinen Formel (VII) durch eine Spaltung des Esters der allgemeinen Formel (XII), in der X,Y, R10, R11 und R12 die oben angegebene Bedeutung hat, nach Standardmethoden erhalten werden:
Figure imgf000013_0002
Die benötigten Vorstufen der allgemeinen Formel (IX) können zum Beispiel erhalten werden, indem man nach literaturbekannten Verfahren eine Acetateinheit in Verbindungen der allgemeinen Formel (XI), in der X, Y und U die oben angegebene Bedeutung haben, einführt. Dies kann beispielsweise analog zu den in WO 05/44796 oder in WO 10/115780 oder in WO19/219587 beschriebenen Verfahren durch Meerwein-Arylierung eines Anilins der allgemeinen Formel (XI) mit Vinylidenchlorid gefolgt von einer Hydrolyse oder Alkoholyse der Zwischenverbindung (X) geschehen:
Figure imgf000013_0003
Daneben sind auch weitere alternative Herstellungsverfahren bekannt, wie zum Beispiel die Einführung von Malonsäureestern in Halogenaromaten, wie sie zum Beispiel in WO 15/032702 beschrieben sind. Diese Phenylmalonsäureester lassen sich nach Derivatisierung in der 4-Position verseifen und zur gewünschten Phenylessigsäure der allgemeinen Formel (VII) decarboxylieren. Vorstufen der allgemeinen Formel (XI) wiederum können durch gängige Standardmethoden wie Bromierung und/oder Alkylierung aus kommerziell erhältlichen Aminonitrophenolen erhalten werden. Gegenstand der vorliegenden Erfindung sind desweiteren Verbindungen der Formel (XII), worin die Reste folgende Bedeutungen aufweisen:
Figure imgf000014_0001
X ist Methyl, Ethyl, Brom oder Chlor Y ist Methyl, Ethyl oder Methoxy R10 ist Wasserstoff R11 ist Methyl oder Trifluoromethyl R12 ist Wasserstoff R13 ist Wasserstoff, Methyl oder Ethyl. Die erfindungsgemäßen Verbindungen der Formel (I) (und/oder deren Salze), imfolgenden zusammen als „erfindungsgemäße Verbindungen“ bezeichnet, weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen auf. Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, vorzugsweise in Pflanzenkulturen, worin eine oder mehrere erfindungsgemäße Verbindung(en) auf die Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut (z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen) oder die Fläche, auf der die Pflanzen wachsen (z.B. die Anbaufläche), ausgebracht werden. Dabei können die erfindungsgemäßen Verbindungen z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den Boden), Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im Einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein. Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Die erfindungsgemäßen Verbindungen können in Nutzkulturen Selektivitäten aufweisen und können auch als nichtselektive Herbizide eingesetzt werden. Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten in der Agrarindustrie verwendeten Wirkstoff , vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Weitere besondere Eigenschaften liegen in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung. Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen, Die Verbindungen der Formel (I) können als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht wurden. Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z.B. EP 0221044, EP 0131624). Beschrieben wurden beispielsweise in mehreren Fällen gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z.B. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z.B. EP 0242236 A, EP 0242246 A) oder Glyphosate (WO 92/000377 A) oder der Sulfonylharnstoffe (EP 0257993 A, US 5,013,659) oder gegen Kombinationen oder Mischungen dieser Herbizide durch „gene stacking“ resistent sind, wie transgenen Kulturpflanzen z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung OptimumTM GATTM (Glyphosate ALS Tolerant). - transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis-Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP 0142924 A, EP 0193259 A). - transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/013972 A). - gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder Sekundärstoffen z.B. neuen Phytoalexinen, die eine erhöhte Krankheitsresistenz verursachen (EP 0309862 A, EP 0464461 A) - gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und höhere Stresstoleranz aufweisen (EP 0305398 A) - transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine produzieren („molecular pharming“) - transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere Qualitat auszeichnen - transgene Kulturpflanzen die sich durch eine Kombinationen z.B. der o. g. neuen Eigenschaften auszeichnen („gene stacking“) Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. I. Potrykus und G. Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg. oder Christou, "Trends in Plant Science" 1 (1996) 423-431). Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA- Sequenzen erlauben. Mit Hilfe von Standardverfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996 Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense- RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense- Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind. Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA- Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J.11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J.1 (1991), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden. Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen. Vorzugsweise können die erfindungsgemäßen Verbindungen (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B.2,4-D, Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, oder gegen beliebige Kombinationen dieser Wirkstoffe, resistent sind. Besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen eingesetzt werden, die gegen eine Kombination von Glyphosaten und Glufosinaten, Glyphosaten und Sulfonylharnstoffen oder Imidazolinonen resistent sind. Ganz besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen wie z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung OptimumTM GATTM (Glyphosate ALS Tolerant) eingesetzt werden. Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen. Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der Formel (I) als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen. Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, welche die erfindungsgemäßen Verbindungen enthalten. Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl.1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed.1979, G. Goodwin Ltd. London. Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y., C. Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y.1963, McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J., Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y.1964, Schönfeldt, "Grenzflächenaktive Äthylenoxid-addukte", Wiss. Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl.1986. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Wirkstoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Als Kombinationspartner für die Verbindungen der allgemeinen Formel (I) in Mischungsformulierungen oder im Tank Mix sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat-Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat- Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II, Protoporphyrinogen-Oxidase beruhen oder als Pflanzenwuchsregulatoren wirken, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 14th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2006 und dort zitierter Literatur beschrieben sind. Als bekannte Herbizide oder Pflanzenwachstumsregulatoren, die mit Verbindungen der allgemeinen Formel (I) kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (die Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen oder mit der Codenummer bezeichnet) und umfassen stets sämtliche Anwendungsformen wie Säuren, Salze, Ester und Isomere wie Stereoisomere und optische Isomere. Dabei sind beispielhaft eine und zum Teil auch mehrere Anwendungsformen genannt: Acetochlor, Acifluorfen, Acifluorfen-methyl, Acifluorfen-Natrium, Aclonifen, Alachlor, Allidochlor, Alloxydim, Alloxydim-Natrium, Ametryn, Amicarbazon, Amidochlor, Amidosulfuron, 4-Amino-3-chlor-6-(4-chlor-2-fluor-3-methylphenyl)-5-fluorpyridin-2-carbonsäure, Aminocyclopyrachlor, Aminocyclopyrachlor-Kalium, Aminocyclopyrachlor-methyl, Aminopyralid, Aminopyralid-dimethylammonium, Aminopyralid-tripromine, Amitrol, Ammoniumsulfamate, Anilofos, Asulam, Asulam-Kalium, Asulam-Natrium, Atrazin, Azafenidin, Azimsulfuron, Beflubutamid, (S)-(-)-Beflubutamid, Beflubutamid-M, Benazolin, Benazolin-ethyl, Benazolin- dimethylammonium, Benazolin-Klaium, Benfluralin, Benfuresate, Bensulfuron, Bensulfuron- methyl, Bensulid, Bentazon, Bentazon-Natrium, Benzobicyclon, Benzofenap, Bicyclopyrone, Bifenox, Bilanafos, Bilanafos-Natium, Bipyrazone, Bispyribac, Bispyribac-Natium, Bixlozon, Bromacil, Bromacil-lithium, Bromacil-Natrium, Bromobutid, Bromofenoxim, Bromoxynil, Bromoxynilbutyrat, Bromoxynil Kalium, Bromoxynil-heptanoat und Bromoxynil-octanoat, Busoxinon, Butachlor, Butafenacil, Butamifos, Butenachlor, Butralin, Butroxydim, Butylat, Cafenstrol, Cambendichlor, Carbetamide, Carfentrazon, Carfentrazon-Ethyl, Chloramben, Chloramben-ammonium, Chloramben-diolamin, Chlroamben-methyl, Chloramben- methylammonium, Chloramben-Natium, Chlorbromuron, Chlorfenac, Chlorfenac-ammonium, Chlorfenac-Natium, Chlorfenprop, Chlorfenprop-methyl, Chlorflurenol, Chlorflurenol-methyl, Chloridazon, Chlorimuron, Chlorimuron-ethyl, Chlorophthalim, Chlorotoluron, Chlorsulfuron, Chlorthal, Chlorthal-dimethyl, Chlorthal-monomethyl, Cinidon, Cinidon-ethyl, Cinmethylin, exo- (+)-Cinmethylin, d.h. (1R,2S,4S)-4-isopropyl-1-methyl-2-[(2-methylbenzyl)oxy]-7- oxabicyclo[2.2.1]heptan, exo-(-)-Cinmethylin, d.h. (1R,2S,4S)-4-isopropyl-1-methyl-2-[(2- methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptan, Cinosulfuron, Clacyfos, Clethodim, Clodinafop, Clodinafop-ethyl, Clodinafop-propargyl, Clomazon, Clomeprop, Clopyralid, Clopyralid-methyl, Clopyralid-olamin, Clopyralid-Kalium, Clopyralid-tripomin, Cloransulam, Cloransulam-methyl, Cumyluron, Cyanamide, Cyanazine, Cycloat, Cyclopyranil, Cyclopyrimorat, Cyclosulfamuron, Cycloxydim, Cyhalofop, Cyhalofop-butyl, Cyprazin, 2,4-D (sowie die Ammonium, Butotyl, Butyl, Cholin, Diethylammonium, Dimethylammonium, Diolamin, Doboxyl, Dodecylammonium, Etexyl, Ethyl, 2-Ethylhexyl, Heptylammonium, Isobutyl, Isooctyl, Isopropyl, Isopropylammonium, Lithium, Meptyl, Methyl, Kalium, Tetradecylammonium, Triethylammonium, Triisopropanolammonium, Tripromin and Trolamin Salze davon), 2,4-DB, 2,4-DB-butyl, 2,4-DB- Dimethylammonium, 2,4-DB-isooctyl, 2,4-DB-Kalium und 2,4-DB-Natrium, Daimuron (Dymron), Dalapon, Dalapon-Calcium, Dalapon-Magnesium, Dalapon-Natium, Dazomet, Dazomet-Natrium, n-Decanol, 7-Deoxy-D-sedoheptulose, Desmedipham, Detosyl-pyrazolat (DTP), Dicamba und seine Salze (z.B. Dicamba-biproamin, Dicamba-N,N-Bis(3-aminopropyl)methylamin, Dicamba-butotyl, Dicamba-cholin, Dicamba-Diglycolamin, Dicamba-Dimethylammonium, Dicamba- Diethanolaminemmonium, Dicamba-Diethylammonium, Dicamba-isopropylammonium, Dicamba- methyl, Dicamba-monoethanolamin, Dicamba-olamin, Dicamba-Kalium, Dicamba-Natium, Dicamba-Triethanolamin), Dichlobenil, 2-(2,4-Dichlorbenzyl)-4,4-dimethyl-1,2-oxazolidin-3-on, 2- (2,5-Dichlorbenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, Dichlorprop, Dichlorprop-butotyl, Dichlorprop-Dimethylammonium, Dichhlorprop-etexyl, Dichlorprop-ethylammonium, Dichlorprop-isoctyl, Dichlorprop-methyl, Dichlorprop-Kalium, Dichlorprop-Natrium, Dichlorprop- P, Dichlorprop-P-Dimethylammonium, Dichlorprop-P-etexyl, Dichlorprop-P-Kalium, Dichlorprop- Natrium, Diclofop, Diclofop-methyl, Diclofop-P, Diclofop-P-methyl, Diclosulam, Difenzoquat, Difenzoquat-metilsulfate, Diflufenican, Diflufenzopyr, Diflufenzopyr-Natrium, Dimefuron, Dimepiperate, Dimesulfazet, Dimethachlor, Dimethametryn, Dimethenamid, Dimethenamid-P, Dimetrasulfuron, Dinitramine, Dinoterb, Dinoterb-Acetate, Diphenamid, Diquat, Diquat-Dibromid, Diquat-Dichloride, Dithiopyr, Diuron, DNOC, DNOC-Ammonium, DNOC-Kalium, DNOC- Natrium, Endothal, Endothal-Diammonium, Endothal-Dikalium, Endothal-Dinatrium, Epyrifenacil (S-3100), EPTC, Esprocarb, Ethalfluralin, Ethametsulfuron, Ethametsulfuron-Methyl, Ethiozin, Ethofumesate, Ethoxyfen, Ethoxyfen-Ethyl, Ethoxysulfuron, Etobenzanid, F-5231, d.h. N-[2-Chlor- 4-fluor-5-[4-(3-fluorpropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethansulfonamid, F-7967, i.e.3-[7-Chlor-5-fluor-2-(trifluormethyl)-1H-benzimidazol-4-yl]-1-methyl-6- (trifluormethyl)pyrimidin-2,4(1H,3H)-dion, Fenoxaprop, Fenoxaprop-P, Fenoxaprop-Ethyl, Fenoxaprop-P-Ethyl, Fenoxasulfone, Fenpyrazone, Fenquinotrione, Fentrazamid, Flamprop, Flamprop-Isoproyl, Flamprop-Methyl, Flamprop-M-Isopropyl, Flamprop-M-Methyl, Flazasulfuron, Florasulam, Florpyrauxifen, Florpyrauxifen-benzyl, Fluazifop, Fluazifop-Butyl, Fluazifop-Methyl, Fluazifop-P, Fluazifop-P-Butyl, Flucarbazone, Flucarbazone-Natrium, Flucetosulfuron, Fluchloralin, Flufenacet, Flufenpyr, Flufenpyr-Ethyl, Flumetsulam, Flumiclorac, Flumiclorac- Pentyl, Flumioxazin, Fluometuron, Flurenol, Flurenol-Butyl, -Dimethylammonium und -Methyl, Fluoroglycofen, Fluoroglycofen-Ethyl, Flupropanat, Flupropanat-Natrium, Flupyrsulfuron, Flupyrsulfuron-Methyl, Flupyrsulfuron-Methyl-Natrium, Fluridon, Flurochloridon, Fluroxypyr, Fluroxypyr-Butometyl, Fluroxypyr-Meptyl, Flurtamon, Fluthiacet, Fluthiacet-Methyl, Fomesafen, Fomesafen-Natrium, Foramsulfuron, Foramsulfuron-Natrium, Fosamine, Fosamine-Ammonium, Glufosinat, Glufosinat-Ammonium, Glufosinat-Natrium, L-Glufosinat-Ammonium, L-Glufosinat- Natrium, Glufosinat-P-Natrium, Glufosinat-P-Ammonium, Glyphosat, Glyphosat-Ammonium, Glyphosat Isopropylammonium, Glyphosat Diammonium, Glyphosat-Dimethylammonium, Glyphosat-Kalium, Glyphosat-Natrium, Glyphosat-Sesquinatrium und Glyphosat-Trimesium, H- 9201, d.h. O-(2,4-Dimethyl-6-nitrophenyl)-O-ethyl-isopropylphosphoramidothioat, Halauxifen, Halauxifen-methyl, Halosafen, Halosulfuron, Halosulfuron-Methyl, Haloxyfop, Haloxyfop-P, Haloxyfop-Ethoxyethyl, Haloxyfop-P-Ethoxyethyl, Haloxyfop-Methyl, Haloxyfop-P-Methyl, Haloxifop-Natrium, Hexazinon, HNPC-A8169, i.e. Prop-2-yn-1-yl (2S)-2-{3-[(5-tert-butylpyridin- 2-yl)oxy]phenoxy}propanoat, HW-02, d.h.1-(Dimethoxyphosphoryl)-ethyl-(2,4- dichlorphenoxy)acetat, Hydantocidin, Imazamethabenz, Imazamethabenz-Methyl, Imazamox, Imazamox-Ammonium, Imazapic, Imazapic-Ammonium, Imazapyr, Imazapyr- Isopropylammonium, Imazaquin, Imazaquin-Ammonium, Imazaquin-Methyl, Imazethapyr, Imazethapyr-Ammonium, Imazosulfuron, Indanofan, Indaziflam, Iodosulfuron, Iodosulfuron- Methyl, Iodosulfuron-Methyl-Natrium, Ioxynil, Ioxynil-Lithium, -Octanoat, -Kalium und Natrium, Ipfencarbazon, Isoproturon, Isouron, Isoxaben, Isoxaflutole, Karbutilat, KUH-043, d.h.3-({[5- (Difluormethyl)-1-methyl-3-(trifluormethyl)-1H-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5- dihydro-1,2-oxazol, Ketospiradox, Ketospiradox-Kalium, Lactofen, Lenacil, Linuron, MCPA, MCPA-Butotyl, -Butyl, -Dimethylammonium, -Diolamin, -2-Ethylhexyl, -Ethyl, -Isobutyl, Isoctyl, -Isopropyl, -Isopropylammonium, -Methyl, Olamin, -Kalium, –Natrium und -Trolamin, MCPB, MCPB-Methyl, Ethyl und -Natrium, Mecoprop, Mecoprop-Butotyl, Mecoprop- dimethylammonium, Mecoprop-Diolamin, Mecoprop-Etexyl, Mecoprop-Ethadyl, Mecoprop- Isoctyl, Mecoprop-Methyl, Mecoprop-Kalium, Mecoprop-Natrium, und Mecoprop-Trolamin, Mecoprop-P, Mecoprop-P-Butotyl, -Dimethylammonium, -2-Ethylhexyl und -Kalium, Mefenacet, Mefluidid, Mefluidid-Diolamin, Mefluidid-Kalium, Mesosulfuron, Mesosulfuron-Methyl, Mesosulfuron-Natrium, Mesotrion, Methabenzthiazuron, Metam, Metamifop, Metamitron, Metazachlor, Metazosulfuron, Methabenzthiazuron, Methiopyrsulfuron, Methiozolin, Methyl isothiocyanat, Metobromuron, Metolachlor, S-Metolachlor, Metosulam, Metoxuron, Metribuzin, Metsulfuron, Metsulfuron-Methyl, Molinat, Monolinuron, Monosulfuron, Monosulfuron-Methyl, MT-5950, d.h. N-[3-Chlor-4-(1-methylethyl)-phenyl]-2-methylpentanamid, NGGC-011, Napropamid, NC-310, i.e.4-(2,4-Dichlorbenzoyl)-1-methyl-5-benzyloxypyrazol, NC-656, i.e. 3- [(Isopropylsulfonyl)methyl]-N-(5-methyl-1,3,4-oxadiazol-2-yl)-5-(trifluormethyl)[1,2,4]triazolo- [4,3-a]pyridin-8-carboxamid, Neburon, Nicosulfuron, Nonansäure (Pelargonsäure), Norflurazon, Ölsäure (Fettsäuren), Orbencarb, Orthosulfamuron, Oryzalin, Oxadiargyl, Oxadiazon, Oxasulfuron, Oxaziclomefone, Oxyfluorfen, Paraquat, Paraquat-dichlorid, Paraquat-Dimethylsulfat, Pebulat, Pendimethalin, Penoxsulam, Pentachlorphenol, Pentoxazon, Pethoxamid, Petroleumöl, Phenmedipham, Phenmedipham-Ethyl, Picloram, Picloram-dimethylammonium, Picloram-Etexyl, Picloram-Isoctyl, Picloram-Methyl, Picloram-Olamin, Picloram-Kalium, Picloram- Triethylammonium, Picloram-Tripromin, Picloram-Trolamin, Picolinafen, Pinoxaden, Piperophos, Pretilachlor, Primisulfuron, Primisulfuron-Methyl, Prodiamine, Profoxydim, Prometon, Prometryn, Propachlor, Propanil, Propaquizafop, Propazine, Propham, Propisochlor, Propoxycarbazone, Propoxycarbazone-Natrium, Propyrisulfuron, Propyzamid, Prosulfocarb, Prosulfuron, Pyraclonil, Pyraflufen, Pyraflufen-Ethyl, Pyrasulfotol, Pyrazolynat (Pyrazolat), Pyrazosulfuron, Pyrazosulfuron-Ethyl, Pyrazoxyfen, Pyribambenz, Pyribambenz-Isopropyl, Pyribambenz-Propyl, Pyribenzoxim, Pyributicarb, Pyridafol, Pyridat, Pyriftalid, Pyriminobac, Pyriminobac-Methyl, Pyrimisulfan, Pyrithiobac, Pyrithiobac-Natrium, Pyroxasulfon, Pyroxsulam, Quinclorac, Quinclorac-Dimethylammonium, Quinclorac-Methyl, Quinmerac, Quinoclamin, Quizalofop, Quizalofop-Ethyl, Quizalofop-P, Quizalofop-P-Ethyl, Quizalofop-P-Tefuryl, QYM201, i.e.1-{2- Chlor-3-[(3-cyclopropyl-5-hydroxy-1-methyl-1H-pyrazol-4-yl)carbonyl]-6-(trifluormethyl)phe- nyl}piperidin-2-on, Rimsulfuron, Saflufenacil, Sethoxydim, Siduron, Simazine, Simetryn, SL-261, Sulcotrione, Sulfentrazone, Sulfometuron, Sulfometuron-Methyl, Sulfosulfuron, , SYP-249, d.h.1- Ethoxy-3-methyl-1-oxobut-3-en-2-yl-5-[2-chlor-4-(trifluormethyl)phenoxy]-2-nitrobenzoat, SYP- 300, i.e.1-[7-Fluor-3-oxo-4-(prop-2-in-1-yl)-3,4-dihydro-2H-1,4-benzoxazin-6-yl]-3-propyl-2- thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (Trichloressigsäure) und seine Salze, z.B. TCA- ammonium, TCA-Calcium, TCA-Ethyl, TCA-Magnesium, TCA-Natrium, Tebuthiuron, Tefuryltrione, Tembotrion, Tepraloxydim, Terbacil, Terbucarb, Terbumeton, Terbuthylazine, Terbutryn, Tetflupyrolimet, Thaxtomin, Thenylchlor, Thiazopyr, Thiencarbazone, Thiencarbazon- Methyl, Thifensulfuron, Thifensulfuron-Methyl, Thiobencarb, Tiafenacil, Tolpyralat, Topramezon, Tralkoxydim, Triafamon, Tri-allat, Triasulfuron, Triaziflam, Tribenuron, Tribenuron-Methyl, Triclopyr, Triclopyr-Butotyl, Triclopyr-Cholin, Triclopyr-Ethyl, Triclopyr-Triethylammonium, Trietazine, Trifloxysulfuron, Trifloxysulfuron-Natrium, Trifludimoxazin, Trifluralin, Triflusulfuron, Triflusulfuron-Methyl, Tritosulfuron, Harnstoffsulfat, Vernolat, XDE-848, ZJ-0862, d.h.3,4-Dichlor-N-{2-[(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}anilin, 3-(2-Chlor-4-fluor-5-(3- methyl-2,6-dioxo-4-trifluormethyl-3,6-dihydropyrimidin-1(2H)-yl)phenyl)-5-methyl-4,5- dihydroisoxazole-5-carbonsäureethylester, Ethyl-[(3-{2-chlor-4-fluor-5-[3-methyl-2,6-dioxo-4- (trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]phenoxy}pyridin-2-yl)oxy]acetat, 3-Chlor-2-[3- (difluormethyl)isoxazolyl-5-yl]phenyl-5-chlorpyrimidin-2-ylether, 2-(3,4-Dimethoxyphenyl)-4-[(2- hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-6-methylpyridazine-3(2H)-on, 2-({2-[(2- Methoxyethoxy)methyl]-6-methylpyridin-3-yl}carbonyl)cyclohexane-1,3-dion, (5-Hydroxy-1- methyl-1H-pyrazol-4-yl)(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)methanon, 1-Methyl-4-[(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)carbonyl]-1H-pyrazol- 5-yl propan-1-sulfonat, 4-{2-Chlor-3-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4- (methylsulfonyl)benzoyl}-1-methyl-1H-pyrazol-5-yl-1,3-dimethyl-1H-pyrazol-4-carboxylat; Cyanomethyl-4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2-carboxylat, Prop-2-yn-1- yl 4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2-carboxylat, Methyl-4-amino-3-chlor- 5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2-carboxylat, 4-Amino-3-chlor-5-fluor-6-(7-fluor-1H- indol-6-yl)pyridin-2-carbonsäure, Benzyl-4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6- yl)pyridin-2-carboxylat, Ethyl-4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2- carboxylat, Methyl-4-amino-3-chlor-5-fluor-6-(7-fluor-1-isobutyryl-1H-indol-6-yl)pyridin-2- carboxylat, Methyl 6-(1-acetyl-7-fluor-1H-indol-6-yl)-4-amino-3-chlor-5-fluorpyridin-2-carboxylat, Methyl-4-amino-3-chlor-6-[1-(2,2-dimethylpropanoyl)-7-fluor-1H-indol-6-yl]-5-fluorpyridin-2- carboxylat, Methyl-4-amino-3-chlor-5-fluor-6-[7-fluor-1-(methoxyacetyl)-1H-indol-6-yl]pyridin-2- carboxylat, Kalium 4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2-carboxylat, Natrium-4-amino-3-chlor-5-fluor-6-(7-fluor-1H-indol-6-yl)pyridin-2-carboxylat, Butyl-4-amino-3- chlor-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridin-2-carboxylat, 4-Hydroxy-1-methyl-3-[4- (trifluoromethyl)pyridin-2-yl]imidazolidin-2-on, 3-(5-tert-butyl-1,2-oxazol-3-yl)-4-hydroxy-1- methylimidazolidin-2-on, 3-[5-Chlor-4-(trifluormethyl)pyridin-2-yl]-4-hydroxy-1- methylimidazolidin-2-on, 4-Hydroxy-1-methoxy-5-methyl-3-[4-(trifluormethyl)pyridin-2- yl]imidazolidin-2-on, 6-[(2-Hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1,5-dimethyl-3-(2- methylphenyl)chinazolin-2,4(1H,3H)-dion, 3-(2,6-Dimethylphenyl)-6-[(2-hydroxy-6-oxocyclohex- 1-en-1-yl)carbonyl]-1-methylchinazolin-2,4(1H,3H)-dion, 2-[2-chlor-4-(methylsulfonyl)-3- (morpholin-4-ylmethyl)benzoyl]-3-hydroxycyclohex-2-en-1-on, 1-(2-carboxyethyl)-4-(pyrimidin-2- yl)pyridazin-1-iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), 1-(2- Carboxyethyl)-4-(pyridazin-3-yl)pyridazin-1-iumsalz (mit passenden Anionen wie z.B. Chlorid, Acetat oder Trifluoracetat), 4-(Pyrimidin-2-yl)-1-(2-sulfoethyl)pyridazin-1-ium salz iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), 4-(Pyridazin-3-yl)-1-(2- sulfoethyl)pyridazin-1-iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), 1-(2-Carboxyethyl)-4-(1,3-thiazol-2-yl)pyridazin-1-iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), 1-(2-Carboxyethyl)-4-(1,3-thiazol-2- yl)pyridazin-1-ium salz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), Methyl (2R)-2-{[(E)-({2-chlor-4-fluor-5-[3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6- dihydropyrimidin-1(2H)-yl]phenyl}methyliden)amino]oxy}propanoat, (E)-2- (Trifluormethyl)benzaldehyde O-{2,6-bis[(4,6-dimethoxypyrimidin-2-yl)oxy]benzoyl}oxim, 2- Fluor-N-(5-methyl-1,3,4-oxadiazol-2-yl)-3-[(R)-propylsulfinyl]-4-(trifluormethyl)benzamid, (2R)- 2-[(4-Amino-3,5-dichlor-6-fluor-2-pyridyl)oxy]propancarbonsäure. Abscisinsäure und verwandte Analoga [z.B. (2Z,4E)-5-[6-Ethynyl-1-hydroxy-2,6-dimethyl-4- oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-diensäure, methyl-(2Z,4E)-5-[6-ethynyl-1-hydroxy-2,6- dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoat, (2Z,4E)-3-ethyl-5-(1-hydroxy- 2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)penta-2,4-diensäure, (2E,4E)-5-(1-hydroxy-2,6,6- trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-diensäure, methyl (2E,4E)-5-(1- hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-dienoat, (2Z,4E)-5- (2-hydroxy-1,3-dimethyl-5-oxobicyclo[4.1.0]hept-3-en-2-yl)-3-methylpenta-2,4-diensäure], Acibenzolar, Acibenzolar-S-methyl, S-Adenosylhomocystein, Allantoin, 2- Aminoethoxyvinylglycin (AVG), Aminooxyessigsäure and verwandte Ester [z.B. (Isopropyliden)- aminooxyessigsäure-2-(methoxy)-2-oxoethylester, (Isopropyliden)-aminooxyessigsäure-2- (hexyloxy)-2-oxoethylester, (Cyclohexyliden)-aminooxyessigsäure-2-(isopropyloxy)-2- oxoethylester], 1-Aminocycloprop-1-ylcarbonsäure N-Methyl-1-aminocyclopropyl-1-carbonsäure, 1-Aminocyclopropyl-1-carbonsäureamid, substituierte 1-Aminocyclopropyl-1-carbonsäurederivate wie sie in DE3335514, EP30287, DE2906507 oder US5123951 beschrieben werden, 1- Aminocyclopropyl-1-hydroxamsäure, 5-Aminolevulinsäure, Ancymidol, 6-Benzylaminopurin, Bikinin, Brassinolid, Brassinolide-ethyl, L-Canalin, Catechin und catechine (z.B. (2S,3R)-2-(3,4- Dihydroxyphenyl)-3,4-dihydro-2H-chromen-3,5,7-triol), Chitooligosaccharides (CO; COs unterscheiden sich von LCOs dadurch, daß ihnen die für LCOs charakteristische Fettsäureseitenkette fehlt. COs, in manchen Fällen als N Acetylchitooligosaccharide bezeichnet, sind auch aus GlcNAc-Einheiten aufgebaut, aber haben Seitenketten, durch die sie sich von Chitinmolekülen unterscheiden [(C8H13NO5)n, CAS No.1398-61-4] und Chitosan Moleküle [(C5H11NO4)n, CAS No.9012-76-4]), Chitin-artige Verbindungen, Chlormequat chloride, Cloprop, Cyclanilide, 3-(Cycloprop-1-enyl)propionsäure, 1-[2-(4-Cyano-3,5- dicyclopropylphenyl)acetamido]cyclohexancarbonsäure, 1-[2-(4-Cyano-3- cyclopropylphenyl)acetamido]cyclohexancarbonsäure, 1-Cyclopropenylmethanol, Daminozid, Dazomet, Dazomet-Natrium, n-Decanol, Dikegulac, Dikegulac-Natrium, Endothal, Endothal-di- Kalium, di-Natrium, und mono(N,N-dimethylalkylammonium), Ethephon, 1- Ethylcyclopropen,Flumetralin, Flurenol, Flurenol-butyl, Flurenol-methyl, Flurprimidol, Forchlorfenuron, Gibberellinsäure, Inabenfid, Indol-3-essigsäure (IAA), 4-Indol-3-ylbuttersäure, Isoprothiolan, Probenazole, Jasmonsäure, Jasmonsäureester oder andere Derivate (z.B. Jasmonsäuremethylester, Jasmonsäureethylester), Lipochitooligosaccharide (LCO, in manchen Fällen auch als Symbiotische Nodulationssignale (Nod oder Nod Faktoren) oder als Myc Faktoren bezeichnet, bestehen aus einem Oligosacchariderückgrat aus β-l,4 verknüpften N-Acetyl-D- Glucosaminresten (“GlcNAc”) mit einer N-verknüpften Fettsäureseitenkette, die am nicht reduzierenden Ende ankondensiert ist. Wie aus der Literatur zu entnehmen ist, unterscheiden sich LCOs in der Zahl an GlcNAc-EInheiten in der Rückgratstruktur, in der Länge und dem Sättigungsgrad der Fettsäurekette sowie in der Substitution der reduzierenden und nicht- reduzierenden Zuckereinheiten), Linoleinsäure oder ihre Derivate, Linolensäure oder ihre Derivate, Maleinsäurehydrazid, Mepiquatchlorid, Mepiquatpentaborat, 1-Methylcyclopropen, 3- Methylcyclopropen, Methoxyvinylglycin (MVG), 3’-Methylabscisinsäure, 1-(4-Methylphenyl)-N- (2-oxo-1-propyl-1,2,3,4-tetrahydrochinolin-6-yl)methansulfonamid und verwandte substituierte (Tetrahydrochinolin-6-yl)methansulfonamide, (3E,3αR,8βS)-3-({[(2R)-4-Methyl-5-oxo-2,5- dihydrofuran-2-yl]oxy}methylen)-3,3α,4,8β-tetrahydro-2H-indeno[1,2-b]furan-2-on und verwandte Laktone wie sie in EP2248421 beschrieben sind, 2-(1-Naphthyl)acetamid, 1-Naphthylessigsäure, 2- Naphthyloxyessigsäure, Nitrophenolatmischung, 4-Oxo-4[(2-phenylethyl)amino]buttersäure, Paclobutrazol, 4-Phenylbuttersäure and ihre Salze (z.B. Natrium-4-phenylbutanoat, Kalium-4- phenylbutanoat), Phenylalanine, N-Phenylphthalamsäure, Prohexadione, Prohexadion-Calcium, , 1- n-Propylcyclopropen, Putrescin, Prohydrojasmon, Rhizobitoxin, Salicylsäure und Salicyclsäuremethylester, Sarcosin, Natriumcycloprop-1-en-1-ylacetat, Natriumcycloprop-2-en-1- ylacetat, Natrium-3-(cycloprop-2-en-1-yl)propanoat, Natrium-3-(cycloprop-1-en-1-yl)propanoat, Sidefungin, Spermidin, Spermine, Strigolactone, Tecnazene, Thidiazuron, Triacontanol, Trinexapac, Trinexapac-ethyl, Tryptophan, Tsitodef, Uniconazol, Uniconazol-P, 2-Fluoro-N-(3- methoxyphenyl)-9H-purin-6-amin. Safener, die in Kombination mit den erfindungsgemäßen Verbindungen der Formel (I) und ggf. in Kombinationen mit weiteren Wirkstoffen wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden wie oben aufgelistet, eingesetzt werden können, sind vorzugsweise ausgewählt aus der Gruppe bestehend aus: S1) Verbindungen der Formel (S1),
Figure imgf000027_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: nA ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; RA 1 ist Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, Nitro oder Halogen-(C1-C4)-alkyl; WA ist ein unsubstituierter oder substituierter divalenter heterocyclischer Rest aus der Gruppe der teilungesättigten oder aromatischen Fünfring-Heterocyclen mit 1 bis 3 Heteroringatomen aus der Gruppe N und O, wobei mindestens ein N-Atom und höchstens ein O-Atom im Ring enthalten ist, vorzugsweise ein Rest aus der Gruppe (WA 1) bis (WA 4),
Figure imgf000027_0002
mA ist 0 oder 1; RA 2 ist ORA 3, SRA 3 oder NRA 3RA 4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S1) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)-Alkyl, (C1-C4)-Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORA3, NHRA4 oder N(CH3)2, insbesondere der Formel ORA3; RA 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen; RA 4 ist Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Alkoxy oder substituiertes oder unsubstituiertes Phenyl; RA5 ist H, (C1-C8)-Alkyl, Halogen-(C1-C8)-alkyl, (C1-C4)-Alkoxy-(C1-C8)-alkyl, Cyano oder COORA9, worin RA9 Wasserstoff, (C1-C8)-Alkyl, Halogen-(C1-C8)-alkyl, (C1-C4)-Alkoxy-(C1-C4)- alkyl, (C1-C6)-Hydroxyalkyl, (C3-C12)-Cycloalkyl oder Tri-(C1-C4)-alkyl-silyl ist; RA 6, RA 7, RA 8 sind gleich oder verschieden Wasserstoff, (C1-C8)-Alkyl, Halogen-(C1-C8)-alkyl, (C3- C12)-Cycloalkyl oder substituiertes oder unsubstituiertes Phenyl; vorzugsweise: a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (S1a), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäure, 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (S1-1) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; b) Derivate der Dichlorphenylpyrazolcarbonsäure (S1b), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-methyl-pyrazol-3-carbonsäureethylester (S1-2), 1-(2,4-Dichlorphenyl)-5-isopropyl-pyrazol-3-carbonsäureethylester (S1-3), 1-(2,4-Dichlorphenyl)-5-(1,1-dimethyl-ethyl)pyrazol-3-carbonsäureethyl-ester (S1-4) und verwandte Verbindungen, wie sie in EP-A-333131 und EP-A-269806 beschrieben sind; c) Derivate der 1,5-Diphenylpyrazol-3-carbonsäure (S1c), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S1-5), 1-(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (S1-6) und verwandte Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; d) Verbindungen vom Typ der Triazolcarbonsäuren (S1d), vorzugsweise Verbindungen wie Fenchlorazol(-ethylester), d.h.1-(2,4-Dichlorphenyl)-5-trichlormethyl-(1H)-1,2,4-triazol-3-carbon- säureethylester (S1-7), und verwandte Verbindungen wie sie in EP-A-174562 und EP-A-346620 beschrieben sind; e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure oder der 5,5-Diphenyl-2-isoxazolin-3-carbonsäure (S1e), vorzugsweise Verbindungen wie 5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester (S1-8) oder 5-Phenyl-2-isoxazolin-3- carbonsäureethylester (S1-9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw.5,5-Diphenyl-2-isoxazolin-3-carbonsäure (S1-10) oder 5,5-Diphenyl-2-isoxazolin-3- carbonsäureethylester (S1-11) ("Isoxadifen-ethyl") oder -n-propylester (S1-12) oder der 5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3-carbonsäureethylester (S1-13), wie sie in der Patentanmeldung WO-A-95/07897 beschrieben sind. S2) Chinolinderivate der Formel (S2),
Figure imgf000029_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: RB1 ist Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, Nitro oder Halogen-(C1-C4)-alkyl; nB ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; RB2 ist ORB3, SRB3 oder NRB3RB4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S2) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)- Alkyl, (C1-C4)-Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORB3, NHRB4 oder N(CH3)2, insbesondere der Formel ORB3; RB3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen; RB 4 ist Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Alkoxy oder substituiertes oder unsubstituiertes Phenyl; TB ist eine (C1 oder C2)-Alkandiylkette, die unsubstituiert oder mit einem oder zwei (C1- C4)Alkylresten oder mit [(C1-C3)-Alkoxy]-carbonyl substituiert ist; vorzugsweise: a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise (5-Chlor-8-chinolinoxy)essigsäure-(1-methylhexyl)ester ("Cloquintocet-mexyl") (S2-1), (5-Chlor-8-chinolinoxy)essigsäure-(1,3-dimethyl-but-1-yl)ester (S2-2), (5-Chlor-8-chinolinoxy)essigsäure-4-allyloxy-butylester (S2-3), (5-Chlor-8-chinolinoxy)essigsäure-1-allyloxy-prop-2-ylester (S2-4), (5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5), (5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6), (5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7), (5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-1-ethylester (S2-8), (5-Chlor-8- chinolinoxy)essigsäure-2-oxo-prop-1-ylester (S2-9) und verwandte Verbindungen, wie sie in EP-A-86750, EP-A-94349 und EP-A-191736 oder EP-A-0492366 beschrieben sind, sowie (5- Chlor-8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester, (5-Chlor-8-chinolinoxy)malonsäurediallylester, (5-Chlor-8-chinolin- oxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0582198 beschrieben sind. S3) Verbindungen der Formel (S3)
Figure imgf000030_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: RC1 ist (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C2-C4)-Alkenyl, Halogen-(C2-C4)-alkenyl, (C3-C7)- Cycloalkyl, vorzugsweise Dichlormethyl; RC 2, RC 3 sind gleich oder verschieden Wasserstoff, (C1-C4)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)- Alkinyl, Halogen-(C1-C4)-alkyl, Halogen-(C2-C4)-alkenyl, (C1-C4)-Alkylcarbamoyl-(C1-C4)-alkyl, (C2-C4)-Alkenylcarbamoyl-(C1-C4)-alkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, Dioxolanyl-(C1-C4)-alkyl, Thiazolyl, Furyl, Furylalkyl, Thienyl, Piperidyl, substituiertes oder unsubstituiertes Phenyl, oder RC2 und RC3 bilden zusammen einen substituierten oder unsubstituierten heterocyclischen Ring, vorzugsweise einen Oxazolidin-, Thiazolidin-, Piperidin-, Morpholin-, Hexahydropyrimidin- oder Benzoxazinring; vorzugsweise: Wirkstoffe vom Typ der Dichloracetamide, die häufig als Vorauflaufsafener (bodenwirksame Safener) angewendet werden, wie z. B. "Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1), "R-29148" (3-Dichloracetyl-2,2,5-trimethyl-1,3-oxazolidin) der Firma Stauffer (S3-2), "R-28725" (3-Dichloracetyl-2,2,-dimethyl-1,3-oxazolidin) der Firma Stauffer (S3-3), "Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazin) (S3-4), "PPG-1292" (N-Allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG Industries (S3-5), "DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem (S3-6), "AD-67" oder "MON 4660" (3-Dichloracetyl-1-oxa-3-aza-spiro[4,5]decan) der Firma Nitrokemia bzw. Monsanto (S3-7), "TI-35" (1-Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) oder "BAS145138" oder "LAB145138" (S3-9) ((RS)-1-Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[1,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10); sowie dessen (R)-Isomer (S3-11). S4) N-Acylsulfonamide der Formel (S4) und ihre Salze,
Figure imgf000031_0001
worin die Symbole und Indizes folgende Bedeutungen haben: AD ist SO2-NRD3-CO oder CO-NRD3-SO2 XD ist CH oder N; RD 1 ist CO-NRD 5RD 6 oder NHCO-RD 7; RD2 ist Halogen, Halogen-(C1-C4)-alkyl, Halogen-(C1-C4)-alkoxy, Nitro, (C1-C4)-Alkyl, (C1-C4)- Alkoxy, (C1-C4)-Alkylsulfonyl, (C1-C4)-Alkoxycarbonyl oder (C1-C4)-Alkylcarbonyl; RD3 ist Wasserstoff, (C1-C4)-Alkyl, (C2-C4)-Alkenyl oder (C2-C4)-Alkinyl; RD4 ist Halogen, Nitro, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, Halogen-(C1-C4)-alkoxy, (C3-C6)- Cycloalkyl, Phenyl, (C1-C4)-Alkoxy, Cyano, (C1-C4)-Alkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)- Alkylsulfonyl, (C1-C4)-Alkoxycarbonyl oder (C1-C4)-Alkylcarbonyl; RD5 ist Wasserstoff, (C1-C6)-Alkyl, (C3-C6)-Cycloalkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C5- C6)-Cycloalkenyl, Phenyl oder 3- bis 6-gliedriges Heterocyclyl enthaltend vD Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wobei die sieben letztgenannten Reste durch vD Substituenten aus der Gruppe Halogen, (C1-C6)-Alkoxy, Halogen-(C1-C6)-alkoxy, (C1-C2)- Alkylsulfinyl, (C1-C2)-Alkylsulfonyl, (C3-C6)-Cycloalkyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)- Alkylcarbonyl und Phenyl und im Falle cyclischer Reste auch (C1-C4)-Alkyl und Halogen-(C1-C4)- alkyl substituiert sind; RD 6 ist Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl oder (C2-C6)-Alkinyl, wobei die drei letztgenannten Reste durch vD Reste aus der Gruppe Halogen, Hydroxy, (C1-C4)-Alkyl, (C1-C4)- Alkoxy und (C1-C4)-Alkylthio substituiert sind, oder RD5 und RD6 gemeinsam mit dem dem sie tragenden Stickstoffatom einen Pyrrolidinyl- oder Piperidinyl-Rest bilden; RD7 ist Wasserstoff, (C1-C4)-Alkylamino, Di-(C1-C4)-alkylamino, (C1-C6)-Alkyl, (C3-C6)- Cycloalkyl, wobei die 2 letztgenannten Reste durch vD Substituenten aus der Gruppe Halogen, (C1- C4)-Alkoxy, Halogen-(C1-C6)-alkoxy und (C1-C4)-Alkylthio und im Falle cyclischer Reste auch (C1-C4)-Alkyl und Halogen-(C1-C4)-alkyl substituiert sind; nD ist 0, 1 oder 2; mD ist 1 oder 2; vD ist 0, 1, 2 oder 3; davon bevorzugt sind Verbindungen vom Typ der N-Acylsulfonamide, z.B. der nachfolgenden Formel (S4a), die z. B. bekannt sind aus WO-A-97/45016
Figure imgf000032_0001
worin RD7 (C1-C6)-Alkyl, (C3-C6)-Cycloalkyl, wobei die 2 letztgenannten Reste durch vD Substituenten aus der Gruppe Halogen, (C1-C4)-Alkoxy, Halogen-(C1-C6)-alkoxy und (C1-C4)-Alkylthio und im Falle cyclischer Reste auch (C1-C4)-Alkyl und Halogen-(C1-C4)-alkyl substituiert sind; RD4 Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, CF3; mD 1 oder 2; vD ist 0, 1, 2 oder 3 bedeutet; sowie Acylsulfamoylbenzoesäureamide, z.B. der nachfolgenden Formel (S4b), die z.B. bekannt sind aus WO-A-99/16744,
Figure imgf000033_0001
z.B. solche worin RD 5 = Cyclopropyl und (RD 4) = 2-OMe ist ("Cyprosulfamide", S4-1), RD5 = Cyclopropyl und (RD4) = 5-Cl-2-OMe ist (S4-2), RD5 = Ethyl und (RD4) = 2-OMe ist (S4-3), RD5 = Isopropyl und (RD4) = 5-Cl-2-OMe ist (S4-4) und RD5 = Isopropyl und (RD4) = 2-OMe ist (S4-5). sowie Verbindungen vom Typ der N-Acylsulfamoylphenylharnstoffe der Formel (S4c), die z.B. bekannt sind aus der EP-A-365484,
Figure imgf000033_0002
worin RD8 und RD9 unabhängig voneinander Wasserstoff, (C1-C8)-Alkyl, (C3-C8)-Cycloalkyl, (C3-C6)- Alkenyl, (C3-C6)-Alkinyl, RD4 Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, CF3 mD 1 oder 2 bedeutet; beispielsweise 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3-methylharnstoff, 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylharnstoff, 1-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylharnstoff, sowie N-Phenylsulfonylterephthalamide der Formel (S4d), die z.B. bekannt sind aus CN 101838227,
Figure imgf000034_0001
z.B. solche worin RD4 Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, CF3; mD 1 oder 2; RD5 Wasserstoff, (C1-C6)-Alkyl, (C3-C6)-Cycloalkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C5-C6)- Cycloalkenyl bedeutet. S5) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen Carbonsäurederivate (S5), z.B. 3,4,5-Triacetoxybenzoesäureethylester, 3,5-Dimethoxy-4-hydroxybenzoesäure, 3,5- Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure, wie sie in der WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001 beschrieben sind. S6) Wirkstoffe aus der Klasse der 1,2-Dihydrochinoxalin-2-one (S6), z.B. 1-Methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-on, 1-Methyl-3-(2-thienyl)-1,2-dihydrochinoxalin- 2-thion, 1-(2-Aminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on-hydrochlorid, 1-(2- Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on, wie sie in der WO-A- 2005/112630 beschrieben sind. S7) Verbindungen der Formel (S7),wie sie in der WO-A-1998/38856 beschrieben sind
Figure imgf000035_0001
worin die Symbole und Indizes folgende Bedeutungen haben: RE 1, RE 2 sind unabhängig voneinander Halogen, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, Halogen- (C1-C4)-alkyl, (C1-C4)-Alkylamino, Di-(C1-C4)-Alkylamino, Nitro; AE ist COORE3 oder COSRE4 RE3, RE4 sind unabhängig voneinander Wasserstoff, (C1-C4)-Alkyl, (C2-C6)-Alkenyl, (C2-C4)- Alkinyl, Cyanoalkyl, Halogen-(C1-C4)-alkyl, Phenyl, Nitrophenyl, Benzyl, Halobenzyl, Pyridinylalkyl und Alkylammonium, nE1 ist 0 oder 1 nE2, nE3 sind unabhängig voneinander 0, 1 oder 2, vorzugsweise: Diphenylmethoxyessigsäure, Diphenylmethoxyessigsäureethylester, Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr.41858-19-9) (S7-1). S8) Verbindungen der Formel (S8),wie sie in der WO-A-98/27049 beschrieben sind
Figure imgf000035_0002
worin XF CH oder N, nF für den Fall, dass XF=N ist, eine ganze Zahl von 0 bis 4 und für den Fall, dass XF=CH ist, eine ganze Zahl von 0 bis 5 , RF1 Halogen, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-alkoxy, Nitro, (C1-C4)-Alkylthio, (C1-C4)-Alkylsulfonyl, (C1-C4)-Alkoxycarbonyl, ggf. substituiertes. Phenyl, ggf. substituiertes Phenoxy, RF 2 Wasserstoff oder (C1-C4)-Alkyl RF 3 Wasserstoff, (C1-C8)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)--Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; bedeuten, oder deren Salze, vorzugsweise Verbindungen worin XF CH, nF eine ganze Zahl von 0 bis 2 , RF1 Halogen, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-alkoxy, RF2 Wasserstoff oder (C1-C4)-Alkyl, RF3 Wasserstoff, (C1-C8)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist, bedeuten, oder deren Salze. S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B. 1,2-Dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr.219479-18-2), 1,2-Dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr.95855-00-8), wie sie in der WO-A-1999/000020 beschrieben sind. S10) Verbindungen der Formeln (S10a) oder (S10b) wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind
Figure imgf000007_0001
Any mixtures of isomers obtained in the synthesis can be separated using the customary industrial methods. The present invention relates both to the pure isomers or tautomers and to the tautomer and isomer mixtures, their preparation and use, and compositions containing them. For the sake of simplicity, however, reference is always made below to compounds of the formula (I), although both the pure compounds and, if appropriate, mixtures with different proportions of isomeric and tautomeric compounds are meant. The compounds according to the invention are generally defined by the formula (I). Preferred substituents or ranges of the radicals listed in the formulas mentioned above and below are explained below: Preference is given to compounds of the general formula (I) in which R 1 is (C 1 -C 6 )-alkyl, halogen-(C 1 - C 6 )alkyl, (C 1 -C 6 )alkoxy, halo-(C 1 -C 6 )alkoxy, (C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, halo- (C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, (C 1 -C 6 )alkoxy-(C 2 -C 4 )alkoxy, halo-(C 1 -C 6 )- alkoxy-(C 2 -C 4 )alkoxy, (C 3 -C 6 )cycloalkyl, (C 2 -C 6 )alkenyloxy, halo-(C 2 -C 6 )alkenyloxy, (C 2 -C 6 ). )-alkynyloxy or cyano-(C 1 -C 6 )-alkoxy, R 2 is hydrogen, (C 1 -C 6 )-alkyl, (C 1 -C 4 )-alkoxy-(C 2 -C 4 )-alkyl , halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 6 )alkenyl or (C 2 -C 6 )alkynyl, (C 1 -C 4 ) -alkoxy or halo(C 1 -C 4 )alkoxy, X is (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, ( C 1 -C 6 )alkoxy, halo(C 1 -C 6 )alkoxy, bromo, chloro or fluoro, Y is (C 1 -C 6 )-alkyl, halo-(C 1 -C 6 )-alkyl, (C 3 -C 6 )-cycloalkyl, (C 1 -C 6 )-alkoxy, halo-(C 1 -C 6 )-alkoxy, R 10 is hydrogen, R 11 is fluorine, (C 1 -C 6 )-alkyl or halo-(C 1 -C 6 )-alkyl, R 12 is hydrogen, G is hydrogen, a leaving group L, or a cation E, where L is one of the following radicals
Figure imgf000008_0001
wherein R 3 is (C 1 -C 4 )alkyl or (C 1 -C 3 )alkoxy(C 1 -C 4 )alkyl, R 4 is (C 1 -C 4 )alkyl, R 5 is ( C 1 -C 4 )-alkyl, an unsubstituted phenyl or one substituted one or more times by halogen, (C 1 -C 4 )-alkyl, (C 1 -C 4 )-haloalkyl or (C 1 -C 4 )-alkoxy Phenyl is E, an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion in which optionally one, two, three or all four hydrogen atoms are replaced by the same or different Radicals from the groups (C 1 -C 10 )-alkyl or (C 3 -C 7 )-cycloalkyl which are each independently substituted one or more times by fluorine, chlorine, bromine, cyano, hydroxy or by one or more oxygen - or sulfur atoms may be interrupted, is a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion, for example morpholinium, thiomorph holinium, piperidinium, pyrrolidinium or respectively protonated 1,4-diazabicyclo[1.1.2]octane (DABCO) or 1,5-diazabicyclo[4.3.0]undec-7-ene (DBU), is a heteroaromatic ammonium cation, for example respectively protonated Pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 5-ethyl-2-methylpyridine, collidine, pyrrole, imidazole, quinoline, quinoxaline, 1,2-dimethylimidazole, 1,3-dimethylimidazolium methyl sulfate or also a trimethylsulfonium ion. Particular preference is given to compounds of the general formula (I) in which R 1 is (C 1 -C 6 )-alkyl, (C 1 -C 6 )-alkoxy, halogeno-(C 1 -C 6 )-alkoxy, (C 1 -C 4 )alkoxy(C 1 -C 4 )alkyl or (C 1 -C 6 )alkoxy(C 2 -C 4 )alkoxy, R 2 is hydrogen, (C 1 -C 4 )- alkyl, methoxyethyl, ethoxyethyl, halo(C 1 -C 2 )alkyl, cyclopropyl, (C 2 -C 4 )alkenyl, (C 2 -C 4 )alkynyl, X is (C 1 -C 6 ) -alkyl, halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 1 -C 6 )alkoxy, halo(C 1 -C 6 )alkoxy, bromo, chloro or fluorine is Y is (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl or (C 1 -C 6 )alkoxy, R 10 is hydrogen, R 11 is (C 1 -C 6 )alkyl or halo(C 1 -C 6 )alkyl, R 12 is hydrogen, G is hydrogen, a leaving group L, or a cation E, where L is one of the following radicals
Figure imgf000009_0001
wherein R 3 is (C 1 -C 4 )alkyl or (C 1 -C 2 )alkoxy(C 1 -C 2 )alkyl, R 4 is (C 1 -C 4 )alkyl, E is an alkali metal ion , an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion in which optionally one, two, three or all four hydrogen atoms have been replaced by identical or different radicals from groups (C C 1 -C 10 )alkyl or (C 3 -C 7 )cycloalkyl. Very particular preference is given to compounds of the general formula (I) in which R 1 is methoxy, ethoxy or methoxyethoxy, R 2 is hydrogen or methyl, X is methyl, ethyl, bromine or chlorine, Y is methyl, ethyl or methoxy, R 10 is hydrogen, R 11 is methyl or trifluoromethyl, R 12 is hydrogen, G is hydrogen, a leaving group L or a cation E, where L is one of the following radicals
Figure imgf000010_0001
wherein R 3 is methyl, ethyl, i-propyl or t-butyl, R 4 is methyl or ethyl, E is a sodium ion or a potassium ion. The preparation of the compounds of the general formula (I) according to the invention is known in principle or can be carried out in accordance with processes known from the literature, for example by a) a compound of the general formula (II),
Figure imgf000010_0002
in which R 1 , R 2 , X, Y, R 10 , R 11 and R 12 have the meanings given above and R 9 is alkyl, preferably methyl or ethyl, optionally in the presence of a suitable solvent or diluent, with a suitable base with formal elimination of the group R 9 OH cyclized, or b) a compound of the general formula (Ia),
Figure imgf000010_0003
in which R 1 , R 2 , X, Y, R 10 , R 11 and R 12 have the meanings given above, for example with a compound of the general formula (III), Hal-L (III) in which L has the meaning given above and Hal can represent a halogen, preferably chlorine or bromine or a sulfonic acid group, if appropriate in the presence of a suitable solvent or diluent and a suitable base, or (c) by reacting compounds of general formula (IV),
Figure imgf000011_0001
in which R 1 , R 2 , G, X and Y have the meanings given above and U represents a suitable leaving group, with a suitable alkenyl reagent of general formula (V),
Figure imgf000011_0002
in which Z stands for a suitable leaving group and R 10 , R 11 and R 12 has the meaning given above, if appropriate in the presence of suitable catalysts and a suitable base. Examples of possible leaving groups U are halogen atoms such as chlorine, bromine or iodine, and alkylsulfone ester groups such as, for example, triflate, mesylate or nonaflate. Examples of possible leaving groups Z are magnesium chloride, magnesium bromide, zinc chloride, a trialkyltin radical, carboxyl and boronic acid radicals such as —B(OH) 2 or —B(Oalkyl) 2 . Pd 0 complexes in particular are very well suited as catalysts, and in many cases the addition of Cu (I) salts can also be very advantageous. Ligands such as 1,4-bis(diphenylphosphino)butane can also be used.
Figure imgf000011_0003
The methodology described is prior art and is also known from the relevant literature under the keywords “palladium-catalyzed cross-coupling”, “Negishi, Suzuki, Stille or Kumada coupling”. The precursors of the general formula (II) can, in analogy to known processes, for example by reacting an amino acid ester of the general formula (VI) in which R 1 , R 2 and R 9 have the meaning described above, with a phenylacetic acid of the general formula ( VII) in which X, Y, R 10 , R 11 and R 12 have the meaning described above, if appropriate by adding a dehydrating agent and if appropriate in the presence of a suitable solvent or diluent.
Figure imgf000012_0001
Amino esters of the general formula (VI) are known from the literature, for example from WO 2006/000355. The preparation of the phenylacetic acids of the general formula (VII) is described in more detail below. A further variant for the preparation of precursors of the general formula (II) consists, inter alia, in that a compound with the general formula (VIII) in which R 1 , R 2 , R 9 , X, Y and U has the meaning given above have, according to the cross-coupling methodology already described with a compound of the general formula (V) in which Z, R 10 , R 11 and R 12 has the meaning given above, reacts:
Figure imgf000012_0002
The required precursors of the general formula (VII) can be obtained, for example, by reacting a compound of the general formula (IX) in which X, Y and U are as defined above and R 13 is hydrogen, alkyl, preferably methyl or ethyl is, according to the cross-coupling methodology already described with a compound of the general formula (V) in which Z, R 10 , R 11 and R 12 has the meaning given above, brings to the reaction:
Figure imgf000013_0001
If R 13 is alkyl, preferably methyl or ethyl, the required precursors of general formula (VII) can be obtained by cleavage of the ester of general formula (XII) in which X, Y, R 10 , R 11 and R 12 are has the meaning given above, can be obtained by standard methods:
Figure imgf000013_0002
The required precursors of the general formula (IX) can be obtained, for example, by introducing an acetate unit into compounds of the general formula (XI) in which X, Y and U have the meaning given above, using methods known from the literature. This can be done, for example, analogously to the processes described in WO 05/44796 or in WO 10/115780 or in WO19/219587 by Meerwein arylation of an aniline of general formula (XI) with vinylidene chloride followed by hydrolysis or alcoholysis of the intermediate compound (X). :
Figure imgf000013_0003
In addition, other alternative preparation processes are also known, such as, for example, the introduction of malonic acid esters into haloaromatics, as described, for example, in WO 15/032702. After derivatization in the 4-position, these phenylmalonic acid esters can be hydrolyzed and decarboxylated to give the desired phenylacetic acid of the general formula (VII). Precursors of the general formula (XI), in turn, can be obtained from commercially available aminonitrophenols by common standard methods such as bromination and/or alkylation. The present invention also relates to compounds of the formula (XII) in which the radicals have the following meanings:
Figure imgf000014_0001
X is methyl, ethyl, bromo or chloro Y is methyl, ethyl or methoxy R 10 is hydrogen R 11 is methyl or trifluoromethyl R 12 is hydrogen R 13 is hydrogen, methyl or ethyl. The compounds of the formula (I) (and/or salts thereof) according to the invention, collectively referred to below as “compounds according to the invention”, have excellent herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous annual harmful plants. The subject matter of the present invention is therefore also a method for controlling unwanted plants or for regulating the growth of plants, preferably in plant cultures, in which one or more compound(s) according to the invention are applied to the plants (e.g. harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), the seeds (e.g. grains, seeds or vegetative propagation organs such as tubers or shoot parts with buds) or the area on which the plants grow (e.g. the area under cultivation). The compounds according to the invention can be applied, for example, before sowing (possibly also by incorporation into the soil), pre-emergence or post-emergence. Specifically, some representatives of the monocotyledonous and dicotyledonous weed flora that can be controlled by the compounds according to the invention may be mentioned by way of example, without the naming of a restriction to specific species being intended. Monocotyledonous weeds of the genera: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata , Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dicotyledonous weeds of the genera: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis , Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio , Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. If the compounds according to the invention are applied to the surface of the soil before germination, either the emergence of the weed seedlings is completely prevented or the weeds grow up to the cotyledon stage, but then stop growing. When the active ingredients are applied to the green parts of the plant post-emergence, growth stops after the treatment and the harmful plants remain in the growth stage present at the time of application or die off completely after a certain time, so that in this way weed competition that is harmful to the crop plants occurs very early and is permanently eliminated. The compounds according to the invention can have selectivities in useful crops and can also be used as non-selective herbicides. Because of their herbicidal and plant growth-regulating properties, the active compounds can also be used to control harmful plants in crops of known or genetically modified plants that are still to be developed. The transgenic plants are generally characterized by particularly advantageous properties, for example resistance to certain active ingredients used in agriculture, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses. Other special properties concern, for example, the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients. Thus, transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known. Other special properties are tolerance or resistance to abiotic stressors such as heat, cold, drought, salt and ultraviolet radiation. Preference is given to using the compounds of the formula (I) according to the invention or their salts in economically important transgenic crops of crops and ornamental plants. The compounds of the formula (I) can be used as herbicides in crops of crops which are resistant to the phytotoxic effects of the herbicides or have been made genetically resistant. Conventional ways of producing new plants that have modified properties compared to previously existing plants include, for example, classical breeding methods and the generation of mutants. Alternatively, new plants with modified properties can be produced using genetic engineering methods (see, for example, EP 0221044, EP 0131624). For example, in several cases, genetic engineering modifications of crop plants have been described for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgenic crop plants which are active against certain herbicides of the glufosinate ( See, for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92/000377 A) or sulfonylureas (EP 0257993 A, US Pat . corn or soybean with the trade name or designation Optimum TM GAT TM (Glyphosate ALS Tolerant). - Transgenic crop plants, such as cotton, with the ability to produce Bacillus thuringiensis toxins (Bt toxins), which make the plants resistant to certain pests (EP 0142924 A, EP 0193259 A). - Transgenic crop plants with modified fatty acid composition (WO 91/013972 A). - genetically modified crop plants with new ingredients or secondary substances, such as new phytoalexins, which cause increased disease resistance (EP 0309862 A, EP 0464461 A) - genetically modified plants with reduced photorespiration, which have higher yields and higher stress tolerance (EP 0305398 A) - transgenic Crop plants that produce pharmaceutically or diagnostically important proteins (“molecular pharming”) - transgenic crop plants that are characterized by higher yields or better quality - transgenic crop plants that are characterized by a combination of, for example, the new properties mentioned above (“gene stacking”) Numerous molecular biological Techniques with which new transgenic plants with modified properties can be produced are known in principle; see eg I. Potrykus and G. Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg. or Christou, "Trends in Plant Science" 1 (1996) 423-431). For such genetic engineering manipulations, nucleic acid molecules can be introduced into plasmids, which allow mutagenesis or sequence modification by recombination of DNA sequences. With the help of standard methods, for example, base exchanges can be made, partial sequences can be removed or natural or synthetic sequences can be added. Adapters or linkers can be attached to the fragments for connecting the DNA fragments to one another, see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker "Gene und Klone", VCH Weinheim 2nd edition 1996 Plant cells with reduced activity of a gene product can be produced, for example, by expressing at least one corresponding antisense RNA, one sense RNA to achieve a cosuppression effect, or expression at least a suitably engineered ribozyme that specifically cleaves transcripts of the above gene product. For this purpose, on the one hand, DNA molecules can be used which include the entire coding sequence of a gene product, including any flanking sequences present, as well as DNA molecules which only include parts of the coding sequence, these parts having to be long enough to enter the cells produce an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product but are not completely identical. When nucleic acid molecules are expressed in plants, the synthesized protein can be located in any compartment of the plant cell. However, in order to achieve localization in a specific compartment, the coding region can be linked to DNA sequences, for example, which ensure localization in a specific compartment. Such sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J.11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J.1 (1991), 95-106). The expression of the nucleic acid molecules can also take place in the organelles of the plant cells. The transgenic plant cells can be regenerated into whole plants using known techniques. In principle, the transgenic plants can be plants of any desired plant species, ie both monocotyledonous and dicotyledonous plants. It is thus possible to obtain transgenic plants which have modified properties as a result of overexpression, suppression or inhibition of homologous (=natural) genes or gene sequences or expression of heterologous (=foreign) genes or gene sequences. The compounds (I) according to the invention can preferably be used in transgenic cultures which act against growth substances such as 2,4-D, dicamba or against herbicides which contain essential plant enzymes such as acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosate, glufosinate or benzoylisoxazoles and analogous active substances, or to any combination of these active substances. The compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosate and glufosinate, glyphosate and sulfonylureas or imidazolinones. Very particularly preferably, the compounds of the invention in transgenic crops such. B. corn or soybean with the trade name or designation OptimumTM GATTM (Glyphosate ALS Tolerant) can be used. When the active compounds according to the invention are used in transgenic cultures, in addition to the effects observed in other cultures against harmful plants, there are often effects that are specific to the application in the respective transgenic culture, for example a modified or specially expanded spectrum of weeds that can be controlled Application rates that can be used for the application, preferably good combinability with the herbicides to which the transgenic crop is resistant, and influencing the growth and yield of the transgenic crop plants. The invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants. The compounds according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules. The invention therefore also relates to herbicidal and plant growth-regulating compositions which contain the compounds according to the invention. The compounds according to the invention can be formulated in various ways, depending on which biological and/or chemico-physical parameters are given. Examples of possible formulations are: wettable powder (WP), water-soluble powder (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for spreading and floor application, granules (GR) in the form of micro, spray, lift - and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes. These individual formulation types are known in principle and are described, for example, in: Winnacker-Kuchler, "Chemical Technology", Volume 7, C. Hanser Verlag Munich, 4th edition 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, NY , 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed.1979, G. Goodwin Ltd. London. The necessary formulation aids such as inert materials, surfactants, solvents and other additives are also known and are described, for example, in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell NJ, Hv Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, NY, C. Marsden, "Solvents Guide", 2nd Ed., Interscience, NY1963, McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood NJ, Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., NY1964, Schönfeldt, "Interface-active ethylene oxide adducts", Wiss. Verlagsgesellschaft., Stuttgart 1976, Winnacker-Küchler, "Chemical Technology", Volume 7, C. Hanser Verlag Munich, 4th edition 1986. On the basis of these formulations, it is also possible to produce combinations with other active ingredients, such as, for example, insecticides, acaricides, herbicides, fungicides, and also with safeners, fertilizers and/or growth regulators, for example in the form of a ready-to-use formulation or as a tank mix. Combination partners for the compounds of the general formula (I) in mixture formulations or in the tank mix are, for example, known active ingredients which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, Glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen oxidase are based or act as plant growth regulators, as they are known, for example, from Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 14th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2006 and references cited therein. Known herbicides or plant growth regulators which can be combined with compounds of the general formula (I) include the following active ingredients (the compounds are identified either by the "common name" according to the International Organization for Standardization (ISO) or by the chemical name or denoted by the code number) and always include all application forms such as acids, salts, esters and isomers such as stereoisomers and optical isomers. One and sometimes also several application forms are mentioned as examples: acetochlor, acifluorfen, acifluorfen-methyl, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3- chloro-6-(4-chloro-2-fluoro-3-methylphenyl)-5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, aminopyralid-dimethylammonium, aminopyralid-tripromine, amitrole, ammonium sulfamates, Anilofos, Asulam, Asulam Potassium, Asulam Sodium, Atrazine, Azafenidin, Azimsulfuron, Beflubutamide, (S)-(-)-Beflubutamide, Beflubutamide-M, Benazoline, Benazoline-ethyl, Benazoline-dimethylammonium, Benazoline-Klaium, Benfluralin, Benfuresate, Bensulfuron, Bensulfuron-methyl, Bensulide, Bentazone, Bentazone-sodium, Benzobicyclon, Benzofenap, Bicyclopyrone, Bifenox, Bilanafos, Bilanafos-Natium, Bipyrazone, Bispyribac, Bispyribac-Natium, Bixlozon, Bromacil, Bromacil-lithium, Bromacil-Natri um, bromobutide, bromofenoxime, bromoxynil, bromoxynil butyrate, bromoxynil potassium, bromoxynil heptanoate and bromoxynil octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butraline, butroxydim, butylate, cafenstrol, cambendichlor, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben , chloramben ammonium, chloramben diolamine, chlroamben methyl, chloramben methyl ammonium, chloramben natium, chlorbromuron, chlorfenac, chlorfenac ammonium, chlorfenac natium, chlorfenprop, chlorfenprop methyl, chlorflurenol, chlorflurenol methyl, Chloridazon, chlorimuron, chlorimuron-ethyl, chlorophthalim, chlorotoluron, chlorsulfuron, chlorthal, chlorthal-dimethyl, chlorthal-monomethyl, cinidon, cinidon-ethyl, cinmethyline, exo-(+)-cinmethyline, ie (1R,2S,4S)-4 -isopropyl-1-methyl-2-[(2-methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptane, exo-(-)-cinmethyline, ie (1R,2S,4S)-4-isopropyl-1 -methyl-2-[(2-methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptane, Cinosulfuron, Clacyfos, Clethodim, Clodinafop, Clodinafop-ethyl, Clodinafop-propargyl, Clomazon, Clomeprop, Clopyralid, Clopyralid-methyl, Clopyralid olamine, clopyralid potassium, clopyralid tripomine, cloransulam, cloransulam methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D (as well as the Ammonium, Butotyl, Butyl, Choline, Diethylammonium, Dimethylammonium, Diolamine, Doboxyl, Dodecylammonium, Etexyl, Ethyl, 2-Ethylhexyl, Heptylammonium, Isobutyl, Isooctyl, Isopropyl, Isopropylammonium, Lithium, Meptyl , methyl, potassium, tetradecylammonium, triethylammonium, triisopropanolammonium, tripromine and trolamine salts thereof), 2,4-DB, 2,4-DB-butyl, 2,4-DB-dimethylammonium, 2,4-DB-isooctyl, 2, 4-DB Potassium and 2,4-DB Sodium, Daimuron (Dymron), Dalapon, Dalapon Calcium, Dalapon Magnesium, Dalapon Sodium, Dazomet, Dazomet Sodium, n-Decanol, 7-Deoxy-D-sedoheptulose , desmedipham, detosyl-pyrazolate (DTP), dicamba and its salts (e.g. dicamba-biproamine, dicamba-N,N-bis(3-aminopropyl)methylamine, dicamba-butotyl, dicamba-choline, dicamba-diglycolamine, dicamba-dimethylammonium, dicamba diethanolamine ammonium, dicamba diethyl ammonium, dicamba isopropyl ammonium, dicamba methyl, dicamba monoethanolamine, dicamba olamine, dicamba potassium, dicamba sodium, dicamba triethanolamine), dichlobenil, 2-(2,4-dichlorobenzyl)-4 ,4-dimethyl-1,2-oxazolidin-3-one, 2-(2,5-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, dichloroprop, dichloropropbutotyl, dichloropropdimethylammonium , dichloroprop-etexyl, dichloroprop-ethylammoni um, Dichloroprop-isoctyl, Dichloroprop-methyl, Dichloroprop-potassium, Dichloroprop-sodium, Dichlorprop- P, Dichloroprop-P-dimethylammonium, Dichloroprop-P-etexyl, Dichloroprop-P-potassium, Dichloroprop- sodium, Diclofop, Diclofop-methyl, Diclofop-P, Diclofop-P-methyl, Diclosulam, Difenzoquat, Difenzoquat-metilsulfate, Diflufenican, Diflufenzopyr, Diflufenzopyr Sodium, Dimefuron, Dimepiperate, Dimesulfazet, Dimethachlor, Dimethametryn, Dimethenamid, Dimethenamid-P, Dimetrasulfuron, Dinitramine, Dinoterb, Dinoterb- Acetate, Diphenamide, Diquat, Diquat-Dibromide, Diquat-Dichloride, Dithiopyr, Diuron, DNOC, DNOC-Ammonium, DNOC-Potassium, DNOC- Sodium, Endothal, Endothal-Diammonium, Endothal-Dipotassium, Endothal-Disodium, Epyrifenacil (S- 3100), EPTC, Esprocarb, Ethalfluralin, Ethametsulfuron, Ethametsulfuron-Methyl, Ethiozine, Ethofumesate, Ethoxyfen, Ethoxyfen-Ethyl, Ethoxysulfuron, Etobenzanide, F-5231 ie N-[2-Chloro-4-fluoro-5-[4- (3-fluoropropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethanesulfonamide, F-7967, ie3-[7-Chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6- (trifluoromethyl)pyrimidine-2,4(1H,3H)-dione, Fenoxaprop, Fenoxaprop-P, Fenoxaprop-Ethyl, Fenoxaprop-P-Ethyl, Fenoxasulfone, Fenpyrazone, Fenquinotrione, Fentrazamid, Flamprop, Flamprop-Isoproyl, Flamprop-Methyl, Flamprop-M-Isopropyl, Flamprop-M-Methyl, Flazasulfuron, Florasulam, Florpyrauxifen, Florpyrauxifen-Benzyl, Fluazifop, Fluazifop-Butyl, Fluazifop-Methyl, Fluazifop-P, Fluazifop-P-Butyl, Flucarbazone, Flucarbazone-Sodium, Flucetosulfuron, Fluchloraline, Flufenacet, Flufenpyr, Flufenpyr-Ethyl, Flumetsulam, Flumiclorac, Flumiclorac-Pentyl, Flumioxazine, Fluometuron, Flurenol, Flurenol-Butyl, -dimethylammonium and -methyl, Fluoroglycofen, Fluoroglycofen-Ethyl, Flupropanate, Flupropanate-Sodium, Flupyrsulfuron, Flupyrsulfuron- Methyl, Flupyrsulfuron Methyl Sodium, Fluridone, Flurochloridone, Fluroxypyr, Fluroxypyr Butometyl, Fluroxypyr Meptyl, Flurtamon, Fluthiacet, Fluthiacet Methyl, Fomesafen, Fomesafen Sodium, Foramsulfuron, Foramsulfuron Sodium, Fosamine, Fosamine Ammonium, Glufosin at, glufosinate ammonium, glufosinate sodium, L-glufosinate ammonium, L-glufosinate sodium, glufosinate P sodium, glufosinate P ammonium, glyphosate, glyphosate ammonium, glyphosate isopropylammonium, glyphosate diammonium, glyphosate dimethylammonium, Glyphosate Potassium, Glyphosate Sodium, Glyphosate Sesquinodium and Glyphosate Trimesium, H-9201 ie O-(2,4-dimethyl-6-nitrophenyl)-O-ethyl isopropylphosphoramidothioate, Halauxifen, Halauxifen-methyl, Halosafen, Halosulfuron , Halosulfuron-Methyl, Haloxyfop, Haloxyfop-P, Haloxyfop-Ethoxyethyl, Haloxyfop-P-Ethoxyethyl, Haloxyfop-Methyl, Haloxyfop-P-Methyl, Haloxifop-Sodium, Hexazinone, HNPC-A8169, ie Prop-2-yn-1- yl (2S)-2-{3-[(5-tert-butylpyridin-2-yl)oxy]phenoxy}propanoate, HW-02, dh1-(dimethoxyphosphoryl)ethyl-(2,4-dichlorophenoxy)acetate, hydantocidin , imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr- isopropylammonium, imazaquin, imazaquin-ammonium, imazaquin-methyl, imazethapyr, Imazethapyr Ammonium, Imazosulfuron, Indanofan, Indaziflam, Iodosulfuron, Iodosulfuron Methyl, Iodosulfuron Methyl Sodium, Ioxynil, Ioxynil Lithium, -Octanoate, -Potassium and Sodium, Ipfencarbazone, Isoproturon, Isouron, Isoxaben, Isoxaflutole, Karbutylate, KUH- 043, dh3-({[5-(Difluoromethyl)-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1, 2-oxazole, ketospiradox, ketospiradox potassium, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, -butyl, -dimethylammonium, -diolamine, -2-ethylhexyl, -ethyl, -isobutyl, isoctyl, -isopropyl, -isopropylammonium, -methyl, olamine, -potassium, -sodium and -trolamine, MCPB, MCPB-methyl, ethyl and -sodium, mecoprop, mecoprop-butotyl, mecoprop-dimethylammonium, mecoprop-diolamine, mecoprop-etexyl, mecoprop-ethadyl, mecoprop-isoctyl , Mecoprop-Methyl, Mecoprop-Potassium, Mecoprop-Sodium, and Mecoprop-Trolamine, Mecoprop-P, Mecoprop-P-Butotyl, -Dimethylammonium, -2-Ethylhexyl and -Potassium, Mefenacet, Mefluidide, Mefluidide-Diolamine, Mefluidide Potassium, Mesosulfuron, Mesosulfuron Methyl, Mesosulfuron sodium, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozoline, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monolinuron , Monosulfuron, Monosulfuron-Methyl, MT-5950, ie N-[3-Chloro-4-(1-methylethyl)-phenyl]-2-methylpentanamide, NGGC-011, Napropamide, NC-310, ie4-(2,4 -Dichlorobenzoyl)-1-methyl-5-benzyloxypyrazole, NC-656, ie 3-[(Isopropylsulfonyl)methyl]-N-(5-methyl-1,3,4-oxadiazol-2-yl)-5-(trifluoromethyl )[1,2,4]triazolo-[4,3-a]pyridine-8-carboxamide, neburon, nicosulfuron, nonanoic acid (pelargonic acid), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron , Oxaziclomefone, Oxyfluorfen, Paraquat, Paraquat Dichloride, Paraquat Dimethyl Sulfate, Pebulate, Pendimethalin, Penoxsulam, Pentachlorophenol, Pentoxazone, Pethoxamide, Petroleum Oil, Phenmedipham, Phenme dipham ethyl, picloram, picloram dimethylammonium, picloram etexyl, picloram isoctyl, picloram methyl, picloram olamine, picloram potassium, picloram triethylammonium, picloram tripromine, picloram trolamin, picolinafen, pinoxaden, piperophos, pretilachlor, Primisulfuron, Primisulfuron-Methyl, Prodiamine, Profoxydim, Prometon, Prometryn, Propachlor, Propanil, Propaquizafop, Propazine, Propham, Propisochlor, Propoxycarbazone, Propoxycarbazone-Sodium, Propyrisulfuron, Propyzamide, Prosulfocarb, Prosulfuron, Pyraclonil, Pyraflufen, Pyraflufen-Ethyl, Pyrasulfotol, Pyrazolynate (Pyrazolate), Pyrazosulfuron, Pyrazosulfuron Ethyl, Pyrazoxyfen, Pyribambenz, Pyribambenz Isopropyl, Pyribambenz Propyl, Pyribenzoxim, Pyributicarb, Pyridafol, Pyridate, Pyriftalid, Pyriminobac, Pyriminobac Methyl, Pyrimisulfan, Pyrithiobac, Pyrithiobac Sodium, Pyroxasulfone, Pyroxsulam , quinclorac, quinclorac dimethylammonium, quinclorac methyl, quinmerac, quinoclamine, quizalofop, quizalofop ethyl, quizalofop P, quizalofop -P-Ethyl, Quizalofop-P-Tefuryl, QYM201, ie1-{2-Chloro-3-[(3-cyclopropyl-5-hydroxy-1-methyl-1H-pyrazol-4-yl)carbonyl]-6-( trifluoromethyl)phenyl}piperidin-2-one, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, SL-261, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYP-249, dh1-ethoxy-3 -methyl 1-oxobut-3-en-2-yl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate, SYP-300, ie1-[7-fluoro-3-oxo-4 -(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidine-4,5-dione, 2,3, 6-TBA, TCA (trichloroacetic acid) and its salts, e.g. TCA-ammonium, TCA-calcium, TCA-ethyl, TCA-magnesium, TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumetone, terbuthylazine, terbutryn , Tetflupyrolimet, Thaxtomin, Thenylchlor, Thiazopyr, Thiencarbazone, Thiencarbazone-Methyl, Thifensulfuron, Thifensulfuron-Methyl, Thiobencarb, Tiafenacil, Tolpyralate, Topramezone, Tralkoxydim, Triafamon, Tri-allate, Trias ulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-choline, triclopyr-ethyl, triclopyr-triethylammonium, Trietazine, Trifloxysulfuron, Trifloxysulfuron Sodium, Trifludimoxazine, Trifluralin, Triflusulfuron, Triflusulfuron Methyl, Tritosulfuron, Urea Sulfate, Vernolate, XDE-848, ZJ-0862, dh3,4-Dichloro-N-{2-[(4,6-dimethoxypyrimidine -2-yl)oxy]benzyl}aniline, 3-(2-Chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydropyrimidine-1(2H)- yl)phenyl)-5-methyl-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester, Ethyl [(3-{2-chloro-4-fluoro-5-[3-methyl-2,6-dioxo-4-( trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]phenoxy}pyridin-2-yl)oxy]acetate, 3-chloro-2-[3-(difluoromethyl)isoxazolyl-5-yl]phenyl-5- chloropyrimidin-2-yl ether, 2-(3,4-dimethoxyphenyl)-4-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-6-methylpyridazine-3(2H)-one, 2-({2-[(2-Methoxyethoxy)methyl]-6-methylpyridin-3-yl}carbonyl)cyclohexane-1,3-dione, (5-Hydroxy-1-methyl-1H-pyrazol-4-yl) (3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)methanone, 1-methyl-4-[(3,3,4-trimethyl-1,1 -dioxido-2,3-dihydro-1-benzothiophen-5-yl)carbonyl]-1H -pyrazol- 5-ylpropane-1-sulfonate, 4-{2-Chloro-3-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4-(methylsulfonyl)benzoyl}-1- methyl 1H-pyrazol-5-yl-1,3-dimethyl-1H-pyrazole-4-carboxylate; Cyanomethyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridin-2-carboxylate, prop-2-yn-1-yl 4-amino-3- chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H- indol-6-yl)pyridine-2-carboxylate, 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indole-6-yl)pyridine-2-carboxylic acid, benzyl-4-amino -3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridin-2-carboxylate, ethyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro -1H-indol-6-yl)pyridin-2-carboxylate, Methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1-isobutyryl-1H-indol-6-yl)pyridin- 2-carboxylate, methyl 6-(1-acetyl-7-fluoro-1H-indol-6-yl)-4-amino-3-chloro-5-fluoropyridine-2-carboxylate, methyl 4-amino-3-chloro -6-[1-(2,2-dimethylpropanoyl)-7-fluoro-1H-indol-6-yl]-5-fluoropyridine-2-carboxylate, methyl 4-amino-3-chloro-5-fluoro-6 -[7-fluoro-1-(methoxyacetyl)-1H-indol-6-yl]pyridin-2-carboxylate, potassium 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indole- 6-yl)pyridine-2-carboxylate, sodium 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyride yn-2-carboxylate, butyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, 4-hydroxy-1-methyl-3 -[4-(trifluoromethyl)pyridin-2-yl]imidazolidin-2-one, 3-(5-tert-butyl-1,2-oxazol-3-yl)-4-hydroxy-1-methylimidazolidin-2-one , 3-[5-Chloro-4-(trifluoromethyl)pyridin-2-yl]-4-hydroxy-1-methylimidazolidin-2-one, 4-Hydroxy-1-methoxy-5-methyl-3-[4-( trifluoromethyl)pyridin-2-yl]imidazolidin-2-one, 6-[(2-Hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1,5-dimethyl-3-(2-methylphenyl) quinazoline-2,4(1H,3H)-dione, 3-(2,6-dimethylphenyl)-6-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1-methylquinazoline- 2,4(1H,3H)-dione, 2-[2-chloro-4-(methylsulfonyl)-3-(morpholin-4-ylmethyl)benzoyl]-3-hydroxycyclohex-2-en-1-one, 1- (2-carboxyethyl)-4-(pyrimidin-2- yl)pyridazin-1-ium salt (with suitable anions such as chloride, acetate or trifluoroacetate), 1-(2- carboxyethyl)-4-(pyridazin-3-yl) pyridazin-1-ium salt (with suitable anions such as chloride, acetate or trifluoroacetate), 4-(pyrimidin-2-yl)-1-(2-sulfoethy l)pyridazin-1-ium salt (with suitable anions such as chloride, acetate or trifluoroacetate), 4-(pyridazin-3-yl)-1-(2-sulfoethyl)pyridazin-1-ium salt (with suitable anions such as chloride, acetate or trifluoroacetate), 1-(2 -carboxyethyl)-4-(1,3-thiazol-2-yl)pyridazin-1-ium salt (with suitable anions such as chloride, acetate or trifluoroacetate), 1-(2-carboxyethyl)-4-(1,3- thiazol-2- yl)pyridazin-1-ium salt (with suitable anions such as chloride, acetate or trifluoroacetate), methyl (2R)-2-{[(E)-({2-chloro-4-fluoro-5- [3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]phenyl}methylidene)amino]oxy}propanoate, (E)-2-(trifluoromethyl)benzaldehyde O-{2,6-bis[(4,6-dimethoxypyrimidin-2-yl)oxy]benzoyl}oxime, 2-Fluoro-N-(5-methyl-1,3,4-oxadiazol-2-yl)- 3-[(R)-propylsulfinyl]-4-(trifluoromethyl)benzamide, (2R)-2-[(4-amino-3,5-dichloro-6-fluoro-2-pyridyl)oxy]propanecarboxylic acid. Abscisic acid and related analogues [e.g. (2Z,4E)-5-[6-ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4- dienoic acid, methyl (2Z,4E)-5-[6-ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoate, (2Z,4E)-3-ethyl-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)penta-2,4-dienoic acid, (2E,4E) -5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-dienoic acid, methyl (2E,4E)-5 -(1-Hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-dienoate, (2Z,4E)-5-(2 -hydroxy-1,3-dimethyl-5-oxobicyclo[4.1.0]hept-3-en-2-yl)-3-methylpenta-2,4-dienoic acid], acibenzolar, acibenzolar-S-methyl, S-adenosylhomocysteine , Allantoin, 2-aminoethoxyvinylglycine (AVG), aminooxyacetic acid and related esters [e.g. (isopropylidene)-aminooxyacetic acid 2-(methoxy)-2-oxoethyl ester, (isopropylidene)-aminooxyacetic acid 2-(hexyloxy)-2-oxoethyl ester, (cyclohexylidene )-aminooxyacetic acid 2-(isopropyloxy)-2-oxoethyl ester], 1-amino cycloprop-1-ylcarboxylic acid N-methyl-1-aminocyclopropyl-1-carboxylic acid, 1-aminocyclopropyl-1-carboxamide, substituted 1-aminocyclopropyl-1-carboxylic acid derivatives as described in DE3335514, EP30287, DE2906507 or US5123951, 1-aminocyclopropyl- 1-hydroxamic acid, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, bikinin, brassinolide, brassinolide-ethyl, L-canalin, catechin and catechins (e.g. (2S,3R)-2-(3,4-dihydroxyphenyl)-3,4 -dihydro-2H-chromene-3,5,7-triol), chitooligosaccharides (CO; COs differ from LCOs in that they lack the fatty acid side chain characteristic of LCOs. COs, sometimes referred to as N acetylchitooligosaccharides, are also composed of GlcNAc units but have side chains that distinguish them from chitin molecules [(C 8 H13NO5)n, CAS No.1398-61-4] and chitosan molecules [ (C 5 H 11 NO 4 ) n , CAS No.9012-76-4]), Chitin-Like Compounds, Chlormequat chloride, Cloprop, Cyclanilide, 3-(Cycloprop-1-enyl)propionic acid, 1-[2-( 4-cyano-3,5- dicyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1-[2-(4-cyano-3-cyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1-cyclopropenylmethanol, daminozide, dazomet, dazomet sodium, n-decanol, dikegulac, dikegulac sodium, endothal, endothal- di-potassium, di-sodium, and mono(N,N-dimethylalkylammonium), ethephon, 1-ethylcyclopropene,flumetralin, flurenol, flurenol-butyl, flurenol-methyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid ( IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, jasmonic acid ester or other derivatives (e.g. jasmonic acid methyl ester, jasmonic acid ethyl ester), lipochitooligosaccharides (LCO, sometimes also referred to as symbiotic nodulation signals (Nod or Nod factors) or as Myc factors , consist of an oligosaccharide backbone of β-1,4-linked N-acetyl-D-glucosamine residues (“GlcNAc”) with an N-linked fatty acid side chain fused to the non-reducing end As per the litera ture, LCOs differ in the number of GlcNAc units in the backbone structure, in the length and degree of saturation of the fatty acid chain, and in the substitution of the reducing and non-reducing sugar units), linoleic acid or its derivatives, linolenic acid or its derivatives, Maleic hydrazide, mepiquat chloride, mepiquat pentaborate, 1-methylcyclopropene, 3-methylcyclopropene, methoxyvinylglycine (MVG), 3'-methylabscisic acid, 1-(4-methylphenyl)-N-(2-oxo-1-propyl-1,2,3,4 -tetrahydroquinolin-6-yl)methanesulfonamide and related substituted (tetrahydroquinolin-6-yl)methanesulfonamides, (3E,3αR,8βS)-3-({[(2R)-4-methyl-5-oxo-2,5-dihydrofuran -2-yl]oxy}methylene)-3,3α,4,8β-tetrahydro-2H-indeno[1,2-b]furan-2-one and related lactones as described in EP2248421, 2-(1- Naphthyl)acetamide, 1-naphthylacetic acid, 2-naphthyloxyacetic acid, nitrophenolate mixture, 4-oxo-4[(2-phenylethyl)amino]butyric acid, paclobutrazol, 4-phenylbutyric acid and its salts (e.g. Nat rium 4-phenylbutanoate, potassium 4-phenylbutanoate), phenylalanine, N-phenylphthalamic acid, prohexadione, prohexadione calcium, , 1- n-propylcyclopropene, putrescine, prohydrojasmone, rhizobitoxin, salicylic acid and methyl salicylate, sarcosine, sodium cycloprop-1-en- 1-yl acetate, sodium cycloprop-2-en-1-yl acetate, sodium 3-(cycloprop-2-en-1-yl)propanoate, sodium 3-(cycloprop-1-en-1-yl)propanoate, sidefungin, Spermidine, Spermine, Strigolactone, Tecnazene, Thidiazuron, Triacontanol, Trinexapac, Trinexapac-ethyl, Tryptophan, Tsitodef, Uniconazole, Uniconazole-P, 2-Fluoro-N-(3-methoxyphenyl)-9H-purine-6-amine. Safeners, which can be used in combination with the compounds of the formula (I) according to the invention and optionally in combinations with other active ingredients such as insecticides, acaricides, herbicides, fungicides as listed above, are preferably selected from the group consisting of: S1) compounds of the formula (S1),
Figure imgf000027_0001
where the symbols and indices have the following meanings: n A is a natural number from 0 to 5, preferably 0 to 3; R A 1 is halo, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, nitro or halo(C 1 -C 4 )alkyl; WA is an unsubstituted or substituted divalent heterocyclic radical from the group of saturated or aromatic five-membered ring heterocycles having 1 to 3 hetero ring atoms from the group N and O, where at least one N atom and at most one O atom is contained in the ring, preferably one remainder from the group ( WA 1 ) to ( WA 4 ),
Figure imgf000027_0002
mA is 0 or 1; R A 2 is OR A 3 , SR A 3 or NRA 3 R A 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected via the N atom to the carbonyl group in (S1) and is unsubstituted or substituted by radicals from the group (C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkoxy or optionally substituted phenyl, preferably a radical of the formula ORA 3 , NHRA 4 or N(CH3)2, in particular of the formula ORA 3 ; R A 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 carbon atoms; R A 4 is hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy or substituted or unsubstituted phenyl; RA 5 is H, (C 1 -C 8 )alkyl, halo(C 1 -C 8 )alkyl, (C 1 -C 4 )alkoxy(C 1 -C 8 )alkyl, cyano or COORA 9 wherein RA 9 is hydrogen, (C 1 -C 8 )alkyl, halo-(C 1 -C 8 )alkyl, (C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, ( C 1 -C 6 hydroxyalkyl, (C 3 -C 12 )cycloalkyl or tri-(C 1 -C 4 )alkylsilyl; RA 6 , RA 7 , RA 8 are identical or different and are hydrogen, ( C 1 -C 8 )alkyl, halo- ( C 1 -C 8 )alkyl, (C 3 -C 12 )cycloalkyl or substituted ones or unsubstituted phenyl; preferably: a) compounds of the dichlorophenylpyrazoline-3-carboxylic acid type ( S1a ), preferably compounds such as 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylic acid, 1 -(2,4-Dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylic acid ethyl ester (S1-1) ("mefenpyr-diethyl"), and related compounds as described in WO-A -91/07874; b ) Derivatives of dichlorophenylpyrazolecarboxylic acid (S1b), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-methylpyrazole-3-carboxylate (S1-2), 1-(2,4-dichlorophenyl)-5- isopropyl-pyrazole-3-carboxylic acid ethyl ester (S1-3), 1-(2,4-dichlorophenyl)-5-(1,1-dimethyl-ethyl)pyrazole-3-carboxylic acid ethyl ester (S1-4) and related compounds, as described in EP-A-333131 and EP-A-269806; c) Derivatives of 1,5-diphenylpyrazole-3-carboxylic acid ( S1c ), preferably compounds such as 1-(2,4-dichlorophenyl)-5-phenylpyrazole-3-carboxylic acid ethyl ester (S1-5), 1-(2-chlorophenyl methyl )-5-phenylpyrazole-3-carboxylate (S1-6) and related compounds such as are described in EP-A-268554; d) compounds of the triazole carboxylic acid type (S1 d ), preferably compounds such as fenchlorazole (ethyl ester), ie 1-(2,4-dichlorophenyl)-5-trichloromethyl-(1H)-1,2,4-triazole-3-carbon - acid ethyl ester (S1-7), and related compounds as described in EP-A-174562 and EP-A-346620; e) compounds of the type 5-benzyl- or 5-phenyl-2-isoxazoline-3-carboxylic acid or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid (S1 e ), preferably compounds such as 5-(2, 4-Dichlorobenzyl)-2-isoxazoline-3-carboxylic acid ethyl ester (S1-8) or 5-phenyl-2-isoxazoline-3-carboxylic acid ethyl ester (S1-9) and related compounds as described in WO-A-91/08202 , or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid (S1-10) or ethyl 5,5-diphenyl-2-isoxazoline-3-carboxylate (S1-11) ("isoxadifen-ethyl") or -n -propyl ester (S1-12) or ethyl 5-(4-fluorophenyl)-5-phenyl-2-isoxazoline-3-carboxylate (S1-13), as described in Patent Application WO-A-95/07897. S2) quinoline derivatives of the formula (S2),
Figure imgf000029_0001
where the symbols and indices have the following meanings: RB 1 is halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, nitro or halo(C 1 -C 4 )alkyl; nB is a natural number from 0 to 5, preferably 0 to 3; RB 2 is ORB 3 , SRB 3 or NRB 3 RB 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected via the N Atom is connected to the carbonyl group in (S2) and is unsubstituted or substituted by radicals from the group (C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkoxy or optionally substituted phenyl, preferably a radical of the formula ORB 3 , NHRB 4 or N(CH3) 2 , in particular of the formula ORB 3 ; RB 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 carbon atoms; R B 4 is hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy or substituted or unsubstituted phenyl; TB is a (C 1 or C 2 )alkanediyl chain which is unsubstituted or substituted with one or two (C 1 -C 4 )alkyl groups or with [(C 1 -C 3 )alkoxy]carbonyl; preferably: a) compounds of the type 8-quinolinoxyacetic acid ( S2a ), preferably (5-chloro-8-quinolinoxy)acetic acid (1-methylhexyl) ester ("cloquintocet-mexyl") (S2-1), (5- 1,3-dimethylbut-1-yl chloro-8-quinolinoxy)acetate (S2-2), 4-allyloxybutyl (5-chloro-8-quinolinoxy)acetate (S2-3), (5-Chloro-8-quinolinoxy)acetic acid 1-allyloxy-prop-2-yl ester (S2-4), (5-Chloro-8-quinolinoxy)acetic acid ethyl ester (S2-5), (5-Chloro-8-quinolinoxy)acetic acid methyl ester (S2-6), (5-Chloro-8-quinolinoxy)acetic acid allyl ester (S2-7), (5-Chloro-8-quinolinoxy)acetic acid 2-(2-propylidene- iminoxy)-1-ethyl ester (S2-8), (5-Chloro-8-quinolinoxy)acetic acid 2-oxo-prop-1-yl ester (S2-9) and related compounds as described in EP-A-86750, EP-A-94349 and EP-A-191736 or EP-A-0492366 are described, and (5-chloro-8-quinolinoxy)acetic acid (S2-10), its hydrates and salts, for example its lithium, sodium, potassium -, calcium, magnesium, aluminum, iron, ammonium, quaternary ammonium, sulfonium or phosphonium salts as described in WO-A-2002/34048; b) Compounds of the type of (5-chloro-8-quinolinoxy)malonic acid (S2 b ), preferably compounds such as (5-chloro-8-quinolinoxy)malonic acid diethyl ester, (5-chloro-8-quinolinoxy)malonic acid diallyl ester, (5-chloro -8-quinolinoxy)malonic acid methyl ethyl ester and related compounds as described in EP-A-0582198. S3) Compounds of formula (S3)
Figure imgf000030_0001
where the symbols and indices have the following meanings: RC 1 is (C 1 -C 4 )-alkyl, halo-(C 1 -C 4 )-alkyl, (C 2 -C 4 )-alkenyl, halo-(C 2 - C 4 ) alkenyl, (C 3 -C 7 ) cycloalkyl, preferably dichloromethyl; R C2 , R C3 , which are identical or different, are hydrogen, (C1 -C4 )alkyl, (C2 -C4 ) alkenyl, (C2 -C4 ) alkynyl , halogeno- ( C1 -C C 4 )alkyl, halo(C 2 -C 4 )alkenyl, (C 1 -C 4 )alkylcarbamoyl(C 1 -C 4 )alkyl, (C 2 -C 4 )alkenylcarbamoyl(C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy(C 1 -C 4 )alkyl, dioxolanyl(C 1 -C 4 )alkyl, thiazolyl, furyl, furylalkyl, thienyl, piperidyl, substituted or unsubstituted phenyl, or RC 2 and RC 3 together form a substituted or unsubstituted heterocyclic ring, preferably an oxazolidine, thiazolidine, piperidine, morpholine, hexahydropyrimidine or benzoxazine ring; preferably: active ingredients of the dichloroacetamide type, which are often used as pre-emergence safeners (soil-acting Safener) are applied, such. B. "Dichlormide" (N,N-Diallyl-2,2-dichloroacetamide) (S3-1), "R-29148" (3-Dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from the company Stauffer (S3-2), "R-28725" (3-dichloroacetyl-2,2-dimethyl-1,3-oxazolidine) from Stauffer (S3-3), "Benoxacor" (4-dichloroacetyl-3,4 -dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4), "PPG-1292" (N-allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloroacetamide ) from PPG Industries (S3-5), "DKA-24" (N-allyl-N-[(allylaminocarbonyl)methyl]-dichloroacetamide) from Sagro-Chem (S3-6), "AD-67" or " MON 4660" (3-dichloroacetyl-1-oxa-3-aza-spiro[4,5]decane) from Nitrokemia or Monsanto (S3-7), "TI-35" (1-dichloroacetyl-azepan) from the company TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonone) or "BAS145138" or "LAB145138" (S3-9) ((RS)-1-Dichloroacetyl-3,3,8a-trimethylperhydropyrrolo[1,2- a]pyrimidin-6-one) from BASF, "Furilazol" or "MON 13900" ((RS)-3-dichloroacetyl-5-(2-furyl)-2,2-dimethyloxazolidine) (S3-10); and its (R)-isomer (S3-11). S4) N-acylsulfonamides of the formula (S4) and their salts,
Figure imgf000031_0001
wherein the symbols and indices have the following meanings: AD is SO 2 -NRD 3 -CO or CO-NRD 3 -SO 2 X D is CH or N; R D 1 is CO-NR D 5 R D 6 or NHCO-R D 7 ; RD 2 is halo, halo(C 1 -C 4 )alkyl, halo(C 1 -C 4 )alkoxy, nitro, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy , (C 1 -C 4 )alkylsulfonyl, (C 1 -C 4 )alkoxycarbonyl or (C 1 -C 4 )alkylcarbonyl; RD 3 is hydrogen, (C 1 -C 4 )alkyl, (C 2 -C 4 )alkenyl or (C 2 -C 4 )alkynyl; RD 4 is halo, nitro, (C 1 -C 4 )alkyl, halo(C 1 -C 4 )alkyl, halo(C 1 -C 4 )alkoxy, (C 3 -C 6 )cycloalkyl , phenyl, (C 1 -C 4 )alkoxy, cyano, (C 1 -C 4 )alkylthio, (C 1 -C 4 )alkylsulphinyl, (C 1 -C 4 )- alkylsulfonyl, (C 1 -C 4 )alkoxycarbonyl or (C 1 -C 4 )alkylcarbonyl; RD 5 is hydrogen, (C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl, (C5-C 6 ). )-cycloalkenyl, phenyl or 3- to 6-membered heterocyclyl containing v D heteroatoms from the group consisting of nitrogen, oxygen and sulphur, the last seven radicals being replaced by v D substituents from the group consisting of halogen, (C 1 -C 6 )-alkoxy, Halo(C 1 -C 6 )alkoxy, (C 1 -C 2 )alkylsulphinyl, (C 1 -C 2 )alkylsulfonyl, (C 3 -C 6 )cycloalkyl, (C 1 -C 4 )- alkoxycarbonyl, (C 1 -C 4 )-alkylcarbonyl and phenyl and, in the case of cyclic radicals, also (C 1 -C 4 )-alkyl and halo-(C 1 -C 4 )-alkyl; R D 6 is hydrogen, (C 1 -C 6 )-alkyl, (C 2 -C 6 )-alkenyl or (C 2 -C 6 )-alkynyl, the last three radicals mentioned being replaced by v D radicals from the group halogen, Hydroxy, (C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkoxy and (C 1 -C 4 )-alkylthio are substituted, or RD 5 and RD 6 together with the nitrogen atom carrying them a pyrrolidinyl or form a piperidinyl residue; RD 7 is hydrogen, (C 1 -C 4 )alkylamino, di-(C 1 -C 4 )alkylamino, (C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, where the 2nd last-mentioned radicals by v D substituents from the group consisting of halogen, (C 1 -C 4 )alkoxy, halo-(C 1 -C 6 )alkoxy and (C 1 -C 4 )alkylthio and, in the case of cyclic radicals, also (C C 1 -C 4 )alkyl and halo(C 1 -C 4 )alkyl; nD is 0, 1 or 2; mD is 1 or 2; vD is 0, 1, 2 or 3; Of these, preference is given to compounds of the N-acylsulfonamide type, for example of the formula ( S4a ) below, which, for. B. are known from WO-A-97/45016
Figure imgf000032_0001
in which RD 7 is (C 1 -C 6 )-alkyl, (C 3 -C 6 )-cycloalkyl, the last 2 radicals mentioned being replaced by vD substituents from the group consisting of halogen, (C 1 -C 4 )-alkoxy, halogen-(C C1-C6) -alkoxy and (C1-C4) -alkylthio and, in the case of cyclic radicals, also (C1-C4) -alkyl and halo- (C1-C4)-alkyl; RD 4 halo, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, CF 3 ; mD 1 or 2; v D is 0, 1, 2 or 3; and acylsulfamoylbenzoic acid amides, for example of the following formula (S4 b ), which are known, for example, from WO-A-99/16744,
Figure imgf000033_0001
eg those in which R D 5 = cyclopropyl and (R D 4 ) = 2-OMe ("Cyprosulfamide", S4-1), RD 5 = cyclopropyl and (RD 4 ) = 5-Cl-2-OMe is (S4- 2), RD 5 = ethyl and (RD 4 ) = 2-OMe is (S4-3), RD 5 = isopropyl and (RD 4 ) = 5-Cl-2-OMe is (S4-4) and RD 5 = is isopropyl and (RD 4 ) = 2-OMe (S4-5). and compounds of the N-acylsulfamoylphenylurea type of the formula (S4 c ), which are known, for example, from EP-A-365484,
Figure imgf000033_0002
wherein RD 8 and RD 9 are independently hydrogen, (C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkyl, (C 3 -C 6 )alkenyl, (C 3 -C 6 )alkynyl, RD 4 is halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, CF 3 mD 1 or 2; for example 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3-methylurea, 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylurea, 1-[4-(N-4 ,5-dimethylbenzoylsulfamoyl)phenyl]-3-methylurea, and N-phenylsulfonylterephthalamides of the formula (S4 d ), which are known, for example, from CN 101838227,
Figure imgf000034_0001
eg those in which RD 4 is halogen, (C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkoxy, CF 3 ; mD 1 or 2; RD 5 hydrogen, (C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl, (C 5 -C 6 ). )-cycloalkenyl. S5) Active ingredients from the class of hydroxyaromatics and aromatic-aliphatic carboxylic acid derivatives (S5), for example ethyl 3,4,5-triacetoxybenzoate, 3,5-dimethoxy-4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydroxysalicylic acid, 4-fluorosalicylic acid , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001. S6) Active ingredients from the class of 1,2-dihydroquinoxalin-2-ones (S6), for example 1-methyl-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, 1-methyl-3-( 2-thienyl)-1,2-dihydroquinoxaline-2-thione, 1-(2-aminoethyl)-3-(2-thienyl)-1,2-dihydro-quinoxalin-2-one hydrochloride, 1-(2- Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, as described in WO-A-2005/112630. S7) Compounds of formula (S7) as described in WO-A-1998/38856
Figure imgf000035_0001
in which the symbols and indices have the following meanings: R E 1 , R E 2 are independently halogen, (C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkoxy, halogen- (C 1 -C 4 ) -alkyl, (C 1 -C 4 )alkylamino, di(C 1 -C 4 )alkylamino, nitro; AE is COORE 3 or COSRE 4 RE 3 , RE 4 are independently hydrogen, (C 1 -C 4 )alkyl, (C 2 -C 6 )alkenyl, (C 2 -C 4 )alkynyl, cyanoalkyl, halogen -(C 1 -C 4 )-alkyl, phenyl, nitrophenyl, benzyl, halobenzyl, pyridinylalkyl and alkylammonium, n E 1 is 0 or 1 n E 2, n E 3 are independently 0, 1 or 2, preferably: diphenylmethoxyacetic acid, Diphenylmethoxyacetic acid ethyl ester, Diphenylmethoxyacetic acid methyl ester (CAS Reg.No.41858-19-9) (S7-1). S8) Compounds of formula (S8) as described in WO-A-98/27049
Figure imgf000035_0002
wherein XF is CH or N, n F is an integer from 0 to 4 when X is F =N and an integer from 0 to 5 when X is F =CH, RF 1 halo, (C 1 -C 4 )alkyl, halo(C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, halo(C 1 -C 4 )alkoxy, nitro, (C 1 -C 4 )alkylthio, (C 1 -C 4 )alkylsulfonyl, (C 1 -C 4 )alkoxycarbonyl, optionally substituted. Phenyl, optionally substituted phenoxy, R F 2 hydrogen or (C 1 -C 4 )-alkyl R F 3 hydrogen, (C 1 -C 8 )-alkyl, (C 2 -C 4 )-alkenyl, (C 2 - C 4 )--alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or their salts, preferably compounds in which X is F CH, nF is an integer from 0 to 2, RF 1 is halogen, (C 1 -C 4 )-alkyl, halogeno-(C 1 -C 4 )-alkyl, (C C 1 -C 4 )alkoxy, halo(C 1 -C 4 )alkoxy, RF 2 hydrogen or (C 1 -C 4 )alkyl, RF 3 hydrogen, (C 1 -C 8 )alkyl, (C C 2 -C 4 )-alkenyl, (C 2 -C 4 )-alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of Halogen and alkoxy is substituted, or salts thereof. S9) Active substances from the class of 3-(5-tetrazolylcarbonyl)-2-quinolones (S9), for example 1,2-dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-quinolone (CAS -Reg.Nr.219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-quinolone (CAS Reg.Nr.95855-00- 8) as described in WO-A-1999/000020. S10) Compounds of the formula ( S10a ) or ( S10b ) as described in WO-A-2007/023719 and WO-A-2007/023764
Figure imgf000037_0001
worin RG 1 Halogen, (C1-C4)-Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3 YG, ZG unabhängig voneinander O oder S, nG eine ganze Zahl von 0 bis 4, RG2 (C1-C16)-Alkyl, (C2-C6)-Alkenyl, (C3-C6)-Cycloalkyl, Aryl; Benzyl, Halogenbenzyl, RG3 Wasserstoff oder (C1-C6)-Alkyl bedeutet. S11) Wirkstoffe vom Typ der Oxyimino-Verbindungen (S11), die als Saatbeizmittel bekannt sind, wie z. B. "Oxabetrinil" ((Z)-1,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (S11-1), das als Saatbeiz- Safener für Hirse gegen Schäden von Metolachlor bekannt ist, "Fluxofenim" (1-(4-Chlorphenyl)-2,2,2-trifluor-1-ethanon-O-(1,3-dioxolan-2-ylmethyl)-oxim) (S11-2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und "Cyometrinil" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (S11-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist. S12) Wirkstoffe aus der Klasse der Isothiochromanone (S12), wie z.B. Methyl-[(3-oxo-1H-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr.205121-04-6) (S12-1) und verwandte Verbindungen aus WO-A-1998/13361. S13) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (1,8-Naphthalindicarbonsäureanhydrid) (S13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist, "Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S13-2), das als Safener für Pretilachlor in gesätem Reis bekannt ist, "Flurazole" (Benzyl-2-chlor-4-trifluormethyl-1,3-thiazol-5-carboxylat) (S13-3), das als Saatbeiz- Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist, "CL 304415" (CAS-Reg.Nr.31541-57-8) (4-Carboxy-3,4-dihydro-2H-1-benzopyran-4-essigsäure) (S13-4) der Firma American Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist, "MG 191" (CAS-Reg.Nr.96420-72-3) (2-Dichlormethyl-2-methyl-1,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist, "MG 838" (CAS-Reg.Nr.133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia, "Disulfoton" (O,O-Diethyl S-2-ethylthioethyl phosphordithioat) (S13-7), "Dietholate" (O,O-Diethyl-O-phenylphosphorothioat) (S13-8), "Mephenate" (4-Chlorphenyl-methylcarbamat) (S13-9). S14) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an Kulturpflanzen wie Reis aufweisen, wie z. B. "Dimepiperate" oder "MY 93" (S-1-Methyl-1-phenylethyl-piperidin-1-carbothioat), das als Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist, "Daimuron" oder "SK 23" (1-(1-Methyl-1-phenylethyl)-3-p-tolyl-harnstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist, "Cumyluron" = "JC 940" (3-(2-Chlorphenylmethyl)-1-(1-methyl-1-phenyl-ethyl)harnstoff, siehe JP- A-60087254), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "CSB" (1-Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr.54091-06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist. S15) Verbindungen der Formel (S15) oder deren Tautomere
Figure imgf000039_0001
wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind, worin RH 1 einen Halogen-(C1-C6)-alkylrest bedeutet und RH 2 Wasserstoff oder Halogen bedeutet und RH3, RH4 unabhängig voneinander Wasserstoff, (C1-C16)-Alkyl, (C2-C16)-Alkenyl oder (C2-C16)- Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)-Alkoxy, halogen-(C1-C4)-alkoxy, (C1-C4)-Alkylthio, (C1-C4)-Alkylamino, Di[(C1-C4)-alkyl]-amino, [(C1-C4)-Alkoxy]-carbonyl, [Halogen-(C1-C4)- alkoxy]-carbonyl, (C3-C6)-Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)-Cycloalkyl, (C4-C6)-Cycloalkenyl, (C3-C6)-Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)-Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-alkoxy, (C1-C4)-Alkylthio, (C1-C4)-Alkylamino, Di[(C1-C4)-alkyl]-amino, [(C1-C4)-Alkoxy]-carbonyl, [Halogen-(C1-C4)-alkoxy]-carbonyl, (C3-C6)-Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder RH3 (C1-C4)-Alkoxy, (C2-C4)-Alkenyloxy, (C2-C6)-Alkinyloxy oder Halogen-(C2-C4)-alkoxy bedeutet und RH4 Wasserstoff oder (C1-C4)-Alkyl bedeutet oder RH3 und RH4 zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-alkoxy und (C1-C4)-Alkylthio substituiert ist, bedeutet. S16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z.B. (2,4-Dichlorphenoxy)essigsäure (2,4-D), (4-Chlorphenoxy)essigsäure, (R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop), 4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB), (4-Chlor-o-tolyloxy)essigsäure (MCPA), 4-(4-Chlor-o-tolyloxy)buttersäure, 4-(4-Chlorphenoxy)buttersäure, 3,6-Dichlor-2-methoxybenzoesäure (Dicamba), 1-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl). Besonders bevorzugte Safener sind Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-mexyl, Dichlormid und Metcamifen. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolether-sulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepoly- glykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylen- oxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfett-säureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitan-fettsäureester. Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde. Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden. Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden. Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt. Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in "Spray-Drying Handbook" 3rd ed.1979, G. Goodwin Ltd., London, J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S.8-57. Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103. Die agrochemischen Zubereitungen enthalten in der Regel 0.1 bis 99 Gew.-%, insbesondere 0.1 bis 95 Gew.-%, erfindungsgemäße Verbindungen. In Spritzpulvern beträgt die Wirkstoff-konzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0.05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasser- dispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%. Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I) und deren Salze. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 bis 5 kg/ha, weiter bevorzugt im Bereich von 0,01 bis 1,5 kg/ha, insbesondere bevorzugt im Bereich von 0,05 bis 1 kg/ha g/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf. Trägerstoff bedeutet eine natürliche oder synthetische, organische oder anorganische Substanz, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, v.a. zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der Trägerstoff, welcher fest oder flüssig sein kann, ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein. Als feste oder flüssige Trägerstoffe kommen infrage: z.B. Ammoniumsalze und natürliche Ge- steinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und natürliche oder synthetische Silikate, Harze, Wachse, feste Düngemittel, Wasser, Alkohole, besonders Butanol, organische Solventien, Mineral- und Pflanzenöle sowie Derivate hiervon. Mischungen solcher Trägerstoffe können ebenfalls verwendet werden. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organi- schen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel. Als verflüssigte gasförmige Streckmittel oder Trägerstoffe kommen solche Flüssigkeiten infrage, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe, sowie Butan, Propan, Stickstoff und Kohlendioxid. Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthe- tische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabikum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Dichlormethan, alipha- tische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Die erfindungsgemäßen Mittel können zusätzlich weitere Bestandteile enthalten, wie z.B. oberflächenaktive Stoffe. Als oberflächenaktive Stoffe kommen Emulgier- und/oder Schaum erzeugende Mittel, Dispergiermittel oder Benetzungsmittel mit ionischen oder nicht-ionischen Eigenschaften oder Mischungen dieser oberflächenaktiven Stoffe infrage. Beispiele hierfür sind Salze von Polyacrylsäure, Salze von Lignosulphonsäure, Salze von Phenolsulphonsäure oder Naphthalinsulphonsäure, Polykondensate von Ethylenoxid mit Fettalkoholen oder mit Fettsäuren oder mit Fettaminen, substituierten Phenolen (vorzugsweise Alkylphenole oder Arylphenole), Salze von Sulphobernsteinsäureestern, Taurinderivate (vorzugsweise Alkyltaurate), Phosphorsäureester von polyethoxylierten Alkoholen oder Phenole, Fettsäureester von Polyolen, und Derivate der Verbindungen enthaltend Sulphate, Sulphonate und Phosphate, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate, Eiweißhydrolysate, Lignin-Sulfitablaugen und Methyl- cellulose. Die Anwesenheit einer oberflächenaktiven Substanz ist notwendig, wenn einer der Wirkstoff und/oder einer der inerten Trägerstoffe nicht in Wasser löslich ist und wenn die Anwendung in Wasser erfolgt. Der Anteil an oberflächenaktiven Stoffen liegt zwischen 5 und 40 Gewichtsprozent des erfindungsgemäßen Mittels. Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kup- fer, Kobalt, Molybdän und Zink verwendet werden. Gegebenenfalls können auch andere zusätzliche Komponenten enthalten sein, z.B. schützende Kolloide, Bindemittel, Klebstoffe, Verdicker, thixotrope Stoffe, Penetrationsförderer, Stabilisatoren, Sequestiermittel, Komplexbildner. Im Allgemeinen können die Wirkstoffe mit jedem festen oder flüssigen Additiv, welches für Formulierungszwecke gewöhnlich verwendet wird, kombiniert werden. Im Allgemeinen enthalten die erfindungsgemäßen Mittel und Formulierungen zwischen 0,05 und 99 Gew.-%, 0,01 und 98 Gew.-%, vorzugsweise zwischen 0,1 und 95 Gew.-%, besonders bevorzugt zwischen 0,5 und 90 % Wirkstoff, ganz besonders bevorzugt zwischen 10 und 70 Gewichtsprozent. Die erfindungsgemäßen Wirkstoffe bzw. Mittel können als solche oder in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie Aerosole, Kapselsuspensionen, Kaltnebelkonzentrate, Heißnebelkonzentrate, verkapselte Granulate, Feingranulate, fließfähige Konzentrate für die Behandlung von Saatgut, gebrauchsfertige Lösungen, verstäubbare Pulver, emulgierbare Konzentrate, Öl-in-Wasser-Emulsionen, Wasser-in-Öl-Emulsio- nen, Makrogranulate, Mikrogranulate, Öl dispergierbare Pulver, Öl mischbare fließfähige Konzentrate, Öl mischbare Flüssigkeiten, Schäume, Pasten, Pestizid ummanteltes Saatgut, Suspensionskonzentrate, Suspensions-Emulsions-Konzentrate, lösliche Konzentrate, Suspensionen, Spritzpulver, lösliche Pulver, Stäubemittel und Granulate, wasserlösliche Granulate oder Tabletten, wasserlösliche Pulver für Saatgut-behandlung, benetzbare Pulver, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen eingesetzt werden. Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem üblichen Streckmittel, Lösungs- bzw. Ver- dünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Netzmittel, Wasser- Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline sowie weiteren Verarbeitungshilfsmitteln. Die erfindungsgemäßen Mittel umfassen nicht nur Formulierungen, welche bereits anwendungsfertig sind und mit einer geeigneten Apparatur auf die Pflanze oder das Saatgut ausgebracht werden können, sondern auch kommerzielle Konzentrate, welche vor Gebrauch mit Wasser verdünnt werden müssen. Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren (handelsüblichen) Formu- lierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen (bekannten) Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, Wachstumsregulatoren, Herbiziden, Düngemitteln, Safener bzw. Semiochemicals vorliegen. Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen bzw. Mitteln erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, (Ver-)Spritzen, (Ver-)Sprühen, Berieseln, Verdampfen, Zerstäuben, Vernebeln, (Ver-)Streuen, Verschäumen, Bestreichen, Ver- streichen, Gießen (drenchen), Tröpfchenbewässerung und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch Trockenbeizen, Nassbeizen, Schlämmbeizen, Inkrustieren, ein- oder mehrschichtiges Umhüllen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low- Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Wie auch weiter unten beschrieben, ist die Behandlung von transgenem Saatgut mit den erfindungs- gemäßen Wirkstoffen bzw. Mitteln von besonderer Bedeutung. Dies betrifft das Saatgut von Pflanzen, die wenigstens ein heterologes Gen enthalten, das die Expression eines Polypeptids oder Proteins mit insektiziden Eigenschaften ermöglicht. Das heterologe Gen in transgenem Saatgut kann z.B. aus Mikroorganismen der Arten Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Bevorzugt stammt dieses heterologe Gen aus Bacillus sp., wobei das Genprodukt eine Wirkung gegen den Maiszünsler (European corn borer) und/oder Western Corn Rootworm besitzt. Besonders bevorzugt stammt das heterologe Gen aus Bacillus thuringiensis. Im Rahmen der vorliegenden Erfindung wird das erfindungsgemäße Mittel alleine oder in einer ge- eigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zu- stand behandelt, in dem so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allge- meinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem Feuchtigkeitsgehalt von unter 15 Gew.-% getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde. Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge des auf das Saatgut aufgebrachten erfindungsgemäßen Mittels und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können. Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2. Die erfindungsgemäßen Wirkstoffe können in die üblichen Beizmittel-Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV-Formulierungen. Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Wirkstoffe mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konser- vierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser. Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C.I. Pigment Red 112 und C.I. Solvent Red 1 bekannten Farbstoffe. Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diisopropyl- oder Diisobutyl-naphthalin-Sulfonate. Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vorzugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tristryrylphenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Ge- eignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Arylsulfonat-Formaldehydkondensate. Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat. Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel-Formulierun- gen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal. Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formu- lierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäure- derivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure. Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose. Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art, auch von Saatgut transgener Pflanzen, eingesetzt werden. Dabei können im Zusammenwirken mit den durch Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten. Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer gibt, die jeweils gewünschte Menge an Beizmittel-For- mulierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an. Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Als Pflanzen, welche erfindungsgemäß behandelt werden können, seien folgende Hauptanbaupflanzen erwähnt: Mais, Sojabohne, Baumwolle, Brassica Ölsaaten wie Brassica napus (z.B. Canola), Brassica rapa, B. juncea (z.B. (Acker-)Senf) und Brassica carinata, Reis, Weizen Zuckerrübe, Zurckerrohr, Hafer, Roggen, Gerste, Hirse, Triticale, Flachs, Wein und verschiedene Früchte und Gemüse von verschiedenen botanischen Taxa wie z.B. Rosaceae sp. (beispielsweise Kernfrüchte wie Apfel und Birne, aber auch Steinfrüchte wie Aprikosen, Kirschen, Mandeln und Pfirsiche und Beerenfrüchte wie Erdbeeren), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (beispielsweise Bananenbäume und -plantagen), Rubiaceae sp. (beispielsweise Kaffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (beispielsweise Zitronen, Organen und Grapefruit); Solanaceae sp. (beispielsweise Tomaten, Kartoffeln, Pfeffer, Auberginen), Liliaceae sp., Compositae sp. (beispielsweise Salat, Artischocke and Chicoree – einschließlich Wurzelchicoree, Endivie oder gemeinen Chicoree), Umbelliferae sp. (beispielsweise Karrotte, Petersilie, Stangensellerie und Knollensellerie), Cucurbitaceae sp. (beispielsweise Gurke – einschließlich Gewürzgurke, Kürbis, Wassermelone, Flaschenkürbis und Melonen), Alliaceae sp. (beispielsweise Lauch und Zwiebel), Cruciferae sp. (beispielsweise Weißkohl, Rotkohl, Brokkoli, Blumenkohl, Rosenkohl, Pak Choi, Kohlrabi, Radieschen, Meerrettich, Kresse und Chinakohl), Leguminosae sp. (beispielsweise Erdnüsse, Erbsen, und Bohnen – wie z.B. Stangenbohne und Ackerbohne), Chenopodiaceae sp. (beispielsweise Mangold, Futterrübe, Spinat, Rote Rübe), Malvaceae (beispielsweise Okra), Asparagaceae (beispielsweise Spargel); Nutzpflanzen und Zierpflanzen in Garten und Wald; sowie jeweils genetisch modifizierte Arten dieser Pflanzen. Wie oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologi- sche Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflan- zensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile“ bzw. „Teile von Pflanzen“ oder „Pflanzenteile“ wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits“), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein. Das erfindungsgemäße Behandlungsverfahren kann für die Behandlung von genetisch modifizierten Organismen (GMOs), z. B. Pflanzen oder Samen, verwendet werden. Genetisch modifizierte Pflanzen (oder transgene Pflanzen) sind Pflanzen, bei denen ein heterologes Gen stabil in das Genom integriert worden ist. Der Begriff "heterologes Gen" bedeutet im wesentlichen ein Gen, das außerhalb der Pflanze bereitgestellt oder assembliert wird und das bei Einführung in das Zellkerngenom, das Chloroplastengenom oder das Mitochondriengenom der transformierten Pflanze dadurch neue oder verbesserte agronomische oder sonstige Eigenschaften verleiht, dass es ein interessierendes Protein oder Polypeptid exprimiert oder dass es ein anderes Gen, das in der Pflanze vorliegt bzw. andere Gene, die in der Pflanze vorliegen, herunterreguliert oder abschaltet (zum Beispiel mittels Antisense-Technologie, Cosuppressionstechnologie oder RNAi-Technologie [RNA Interference]). Ein heterologes Gen, das im Genom vorliegt, wird ebenfalls als Transgen bezeichnet. Ein Transgen, das durch sein spezifisches Vorliegen im Pflanzengenom definiert ist, wird als Transformations- bzw. transgenes Event bezeichnet. In Abhängigkeit von den Pflanzenarten oder Pflanzensorten, ihrem Standort und ihren Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) kann die erfindungsgemäße Behandlung auch zu überadditiven ("synergistischen") Effekten führen. So sind zum Beispiel die folgenden Effekte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen: verringerte Aufwandmengen und/oder erweitertes Wirkungsspektrum und/oder erhöhte Wirksamkeit der Wirkstoffe und Zusammensetzungen, die erfindungsgemäß eingesetzt werden können, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegenüber Trockenheit oder Wasser- oder Bodensalzgehalt, erhöhte Blühleistung, Ernteerleichterung, Reifebeschleunigung, höhere Erträge, größere Früchte, größere Pflanzenhöhe, intensiver grüne Farbe des Blatts, frühere Blüte, höhere Qualität und/oder höherer Nährwert der Ernteprodukte, höhere Zuckerkonzentration in den Früchten, bessere Lagerfähigkeit und/oder Verarbeitbarkeit der Ernteprodukte. Zu Pflanzen und Pflanzensorten, die vorzugsweise erfindungsgemäß behandelt werden, zählen alle Pflanzen, die über Erbgut verfügen, das diesen Pflanzen besonders vorteilhafte, nützliche Merkmale verleiht (egal, ob dies durch Züchtung und/oder Biotechnologie erzielt wurde). Beispiele für Nematoden-resistente Pflanzen sind z.B. folgenden US Patentanmeldungen beschrieben: 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396 und 12/497,221. Pflanzen, die erfindungsgemäß behandelt werden können, sind Hybridpflanzen, die bereits die Eigenschaften der Heterosis bzw. des Hybrideffekts exprimieren, was im Allgemeinen zu höherem Ertrag, höherer Wüchsigkeit, besserer Gesundheit und besserer Resistenz gegen biotische und abiotische Stressfaktoren führt. Solche Pflanzen werden typischerweise dadurch erzeugt, dass man eine ingezüchtete pollensterile Elternlinie (den weiblichen Kreuzungspartner) mit einer anderen ingezüchteten pollenfertilen Elternlinie (dem männlichen Kreuzungspartner) kreuzt. Das Hybridsaatgut wird typischerweise von den pollensterilen Pflanzen geerntet und an Vermehrer verkauft. Pollensterile Pflanzen können manchmal (z. B. beim Mais) durch Entfahnen (d.h. mechanischem Entfernen der männlichen Geschlechtsorgane bzw. der männlichen Blüten), produziert werden; es ist jedoch üblicher, dass die Pollensterilität auf genetischen Determinanten im Pflanzengenom beruht. In diesem Fall, insbesondere dann, wenn es sich bei dem gewünschten Produkt, da man von den Hybridpflanzen ernten will, um die Samen handelt, ist es üblicherweise günstig, sicherzustellen, dass die Pollenfertilität in Hybridpflanzen, die die für die Pollensterilität verantwortlichen genetischen Determinanten enthalten, völlig restoriert wird. Dies kann erreicht werden, indem sichergestellt wird, dass die männlichen Kreuzungspartner entsprechende Fertilitätsrestorergene besitzen, die in der Lage sind, die Pollenfertilität in Hybridpflanzen, die die genetischen Determinanten, die für die Pollensterilität verantwortlich sind, enthalten, zu restorieren. Genetische Determinanten für Pollensterilität können im Cytoplasma lokalisiert sein. Beispiele für cytoplasmatische Pollensterilität (CMS) wurden zum Beispiel für Brassica-Arten beschrieben. Genetische Determinanten für Pollensterilität können jedoch auch im Zellkerngenom lokalisiert sein. Pollensterile Pflanzen können auch mit Methoden der pflanzlichen Biotechnologie, wie Gentechnik, erhalten werden. Ein besonders günstiges Mittel zur Erzeugung von pollensterilen Pflanzen ist in WO 89/10396 beschrieben, wobei zum Beispiel eine Ribonuklease wie eine Barnase selektiv in den Tapetumzellen in den Staubblättern exprimiert wird. Die Fertilität kann dann durch Expression eines Ribonukleasehemmers wie Barstar in den Tapetumzellen restoriert werden. Pflanzen oder Pflanzensorten (die mit Methoden der Pflanzenbiotechnologie, wie der Gentechnik, erhalten werden), die erfindungsgemäß behandelt werden können, sind herbizidtolerante Pflanzen, d. h. Pflanzen, die gegenüber einem oder mehreren vorgegebenen Herbiziden tolerant gemacht worden sind. Solche Pflanzen können entweder durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Herbizidtoleranz verleiht, erhalten werden. Herbizidtolerante Pflanzen sind zum Beispiel glyphosatetolerante Pflanzen, d. h. Pflanzen, die gegenüber dem Herbizid Glyphosate oder dessen Salzen tolerant gemacht worden sind. Pflanzen können mit verschiedenen Methoden tolerant gegenüber Glyphosate gemacht werden. So können zum Beispiel glyphosatetolerante Pflanzen durch Transformation der Pflanze mit einem Gen, das für das Enzym 5-Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) kodiert, erhalten werden. Beispiele für solche EPSPS-Gene sind das AroA-Gen (Mutante CT7) des Bakterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), das CP4-Gen des Bakteriums Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol.7, 139-145), die Gene, die für eine EPSPS aus der Petunie (Shah et al., 1986, Science 233, 478-481), für eine EPSPS aus der Tomate (Gasser et al., 1988, J. Biol. Chem.263, 4280-4289) oder für eine EPSPS aus Eleusine (WO 01/66704) kodieren. Es kann sich auch um eine mutierte EPSPS handeln. Glyphosate- tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-Oxidoreduktase-Enzym kodiert. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-acetyltransferase-Enzym kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, dass man Pflanzen, die natürlich vorkommende Mutationen der oben erwähnten Gene enthalten, selektiert. Pflanzen, die EPSPS Gene, welche Glyphosate-Toleranz verleihen, exprimieren, sind beschrieben. Pflanzen, welche andere Gene, die Glyphosate-Toleranz verleihen, z.B. Decarboxylase-Gene, sind beschrieben. Sonstige herbizidresistente Pflanzen sind zum Beispiel Pflanzen, die gegenüber Herbiziden, die das Enzym Glutaminsynthase hemmen, wie Bialaphos, Phosphinotricin oder Glufosinate, tolerant gemacht worden sind. Solche Pflanzen können dadurch erhalten werden, dass man ein Enzym exprimiert, das das Herbizid oder eine Mutante des Enzyms Glutaminsynthase, das gegenüber Hemmung resistent ist, entgiftet. Solch ein wirksames entgiftendes Enzym ist zum Beispiel ein Enzym, das für ein Phosphinotricin-acetyltransferase kodiert (wie zum Beispiel das bar- oder pat- Protein aus Streptomyces-Arten). Pflanzen, die eine exogene Phosphinotricin-acetyltransferase exprimieren, sind beschrieben. Weitere herbizidtolerante Pflanzen sind auch Pflanzen, die gegenüber den Herbiziden, die das Enzym Hydroxyphenylpyruvatdioxygenase (HPPD) hemmen, tolerant gemacht worden sind. Bei den Hydroxyphenylpyruvatdioxygenasen handelt es sich um Enzyme, die die Reaktion, in der para- Hydroxyphenylpyruvat (HPP) zu Homogentisat umgesetzt wird, katalysieren. Pflanzen, die gegenüber HPPD-Hemmern tolerant sind, können mit einem Gen, das für ein natürlich vorkommendes resistentes HPPD-Enzym kodiert, oder einem Gen, das für ein mutiertes oder chimäres HPPD-Enzym kodiert, transformiert werden, wie in WO 96/38567, WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 oder US 6,768,044 beschrieben. Eine Toleranz gegenüber HPPD-Hemmern kann auch dadurch erzielt werden, dass man Pflanzen mit Genen transformiert, die für gewisse Enzyme kodieren, die die Bildung von Homogentisat trotz Hemmung des nativen HPPD-Enzyms durch den HPPD-Hemmer ermöglichen. Solche Pflanzen sind in WO 99/34008 und WO 02/36787 beschrieben. Die Toleranz von Pflanzen gegenüber HPPD-Hemmern kann auch dadurch verbessert werden, dass man Pflanzen zusätzlich zu einem Gen, das für ein HPPD-tolerantes Enzym kodiert, mit einem Gen transformiert, das für ein Prephenatdehydrogenase-Enzym kodiert, wie in WO 2004/024928 beschrieben ist. Außerdem können Pflanzen noch toleranter gegen HPPD-Hemmern gemacht werden, indem man ein Gen in ihr Genom einfügt, welches für ein Enzym kodiert, das HPPD-Hemmer metabolisiert oder abbaut, wie z.B. CYP450 Enzyme (siehe WO 2007/103567 und WO 2008/150473). Weitere herbizidresistente Pflanzen sind Pflanzen, die gegenüber Acetolactatsynthase (ALS)- Hemmern tolerant gemacht worden sind. Zu bekannten ALS-Hemmern zählen zum Beispiel Sulfonylharnstoff, Imidazolinon, Triazolopyrimidine, Pyrimidinyloxy(thio)benzoate und/oder Sulfonylaminocarbonyltriazolinon-Herbizide. Es ist bekannt, dass verschiedene Mutationen im Enzym ALS (auch als Acetohydroxysäure-Synthase, AHAS, bekannt) eine Toleranz gegenüber unterschiedlichen Herbiziden bzw. Gruppen von Herbiziden verleihen wie z.B. in Tranel und Wright (Weed Science 2002, 50, 700-712) beschrieben ist. Die Herstellung von sulfonylharnstofftoleranten Pflanzen und imidazolinontoleranten Pflanzen ist beschrieben. Weitere sulfonylharnstoff- und imidazolinontolerante Pflanzen sind auch beschrieben. Weitere Pflanzen, die gegenüber Imidazolinonen und/oder Sulfonylharnstoffen tolerant sind, können durch induzierte Mutagenese, Selektion in Zellkulturen in Gegenwart des Herbizids oder durch Mutationszüchtung erhalten werden (vgl. z.B. für Sojabohne US 5,084,082, für Reis WO 97/41218, für Zuckerrübe US 5,773,702 und WO 99/057965, für Salat US 5,198,599 oder für Sonnenblume WO 01/065922). Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind gegenüber abiotischen Stressfaktoren tolerant. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Stressresistenz verleiht, erhalten werden. Zu besonders nützlichen Pflanzen mit Stresstoleranz zählen folgende: a. Pflanzen, die ein Transgen enthalten, das die Expression und/oder Aktivität des Gens für die Poly(ADP-ribose)polymerase (PARP) in den Pflanzenzellen oder Pflanzen zu reduzieren vermag. b. Pflanzen, die ein stresstoleranzförderndes Transgen enthalten, das die Expression und/oder Aktivität der für PARG kodierenden Gene der Pflanzen oder Pflanzenzellen zu reduzieren vermag; c. Pflanzen, die ein stresstoleranzförderndes Transgen enthalten, das für ein in Pflanzen funktionelles Enzym des Nicotinamidadenindinukleotid-Salvage-Biosynthesewegs kodiert, darunter Ni- cotinamidase, Nicotinatphosphoribosyltransferase, Nicotinsäuremononukleotidadenyltransferase, Nicotinamidadenindinukleotidsynthetase oder Nicotinamidphosphoribosyltransferase. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, weisen eine veränderte Menge, Qualität und/oder Lagerfähigkeit des Ernteprodukts und/oder veränderte Eigenschaften von bestimmten Bestandteilen des Ernteprodukts auf, wie zum Beispiel: 1) Transgene Pflanzen, die eine modifizierte Stärke synthetisieren, die bezüglich ihrer chemisch- physikalischen Eigenschaften, insbesondere des Amylosegehalts oder des Amylose/Amylopektin- Verhältnisses, des Verzweigungsgrads, der durchschnittlichen Kettenlänge, der Verteilung der Seitenketten, des Viskositätsverhaltens, der Gelfestigkeit, der Stärkekorngröße und/oder Stärkekornmorphologie im Vergleich mit der synthetisierten Stärke in Wildtyppflanzenzellen oder - pflanzen verändert ist, so dass sich diese modifizierte Stärke besser für bestimmte Anwendungen eignet. 2) Transgene Pflanzen, die Nichtstärkekohlenhydratpolymere synthetisieren, oder Nichtstärkekohlenhydratpolymere, deren Eigenschaften im Vergleich zu Wildtyppflanzen ohne genetische Modifikation verändert sind. Beispiele sind Pflanzen, die Polyfructose, insbesondere des Inulin- und Levantyps, produzieren, Pflanzen, die alpha-1,4-Glucane produzieren, Pflanzen, die alpha-1,6-verzweigte alpha-1,4-Glucane produzieren und Pflanzen, die Alternan produzieren. 3) Transgene Pflanzen, die Hyaluronan produzieren. 4) Transgene Pflanzen oder Hybridpflanzen wie Zwiebeln mit bestimmten Eigenschaften wie „hohem Anteil an löslichen Feststoffen“ (‚high soluble solids content’), geringe Schärfe (‚low pungency’, LP) und/oder lange Lagerfähigkeit (‚long storage’, LS). Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Baumwollpflanzen mit veränderten Fasereigenschaften. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Fasereigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von Cellulosesynthasegenen enthalten, b) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von rsw2- oder rsw3-homologen Nukleinsäuren enthalten, wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosephos- phatsynthase; c) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosesynthase; d) Pflanzen wie Baumwollpflanzen bei denen der Zeitpunkt der Durchlaßsteuerung der Plasmodesmen an der Basis der Faserzelle verändert ist, z. B. durch Herunterregulieren der faserselektiven β-1,3-Glucanase; e) Pflanzen wie Baumwollpflanzen mit Fasern mit veränderter Reaktivität, z. B. durch Expression des N-Acetylglucosamintransferasegens, darunter auch nodC, und von Chitinsynthasegenen. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften der Ölzusammensetzung. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Öleigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Rapspflanzen, die Öl mit einem hohen Ölsäuregehalt produziere; b) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen Linolensäuregehalt produzieren. c) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen gesättigten Fettsäuregehalt produzieren. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten werden können), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Kartoffeln, welche Virus-resistent sind z.B. gegen den Kartoffelvirus Y (Event SY230 und SY233 von Tecnoplant, Argentinien), oder welche resistent gegen Krankheiten wie die Kraut- und Knollenfäule (potato late blight) (z.B. RB Gen), oder welche eine verminderte kälteinduzierte Süße zeigen (welche die Gene Nt-Inh, II-INV tragen) oder welche den Zwerg- Phänotyp zeigen (Gen A-20 Oxidase). Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften im Samenausfall (seed shattering). Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Eigenschaften verleihen, und umfassen Pflanzen wie Raps mit verzögertem oder vermindertem Samenausfall. Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit Transformationsevents oder Kombinationen von Transformationsevent, welche in den USA beim Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) Gegenstand von erteilten oder anhängigen Petitionen für den nicht-regulierten Status sind. Die Information hierzu ist jederzeit beim APHIS (4700 River Road Riverdale, MD 20737, USA) erhältlich, z.B. über die Internetseite http://www.aphis.usda.gov/brs/not_reg.html. Am Anmeldetag dieser Anmeldung waren beim APHIS die Petitionen mit folgenden Informationen entweder erteilt oder anhängig: − Petition: Identifikationsnummer der Petition. Die Technische Beschreibung des Transformationsevents kann im einzelnen Petitionsdokument erhältlich von APHIS auf der Website über die Petitionsnummer gefunden werden. Diese Beschreibungen sind hiermit per Referenz offenbart. − Erweiterung einer Petition: Referenz zu einer frühere Petition, für die eine Erweiterung oder Verlängerung beantragt wird. − Institution: Name der die Petition einreichenden Person. − Regulierter Artikel: die betroffen Pflanzenspecies. − Transgener Phänotyp: die Eigenschaft („Trait“), die der Pflanze durch das Transformationsevent verliehen wird. − Transformationevent oder -linie: der Name des oder der Events (manchmal auch als Linie(n) bezeichnet), für die der nicht-regulierte Status beantragt ist. − APHIS Documente: verschiedene Dokumente, die von APHIS bzgl. der Petition veröffentlicht warden oder von APHIS auf Anfrage erhalten werden können. Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit einem oder mehreren Genen, die für ein oder mehrere Toxine kodieren, sind die transgenen Pflanzen, die unter den folgenden Handelsbezeichnungen angeboten werden: YIELD GARD ® (zum Beispiel Mais, Baumwolle, Sojabohnen), KnockOut ® (zum Beispiel Mais), BiteGard ® (zum Beispiel Mais), BT-Xtra ® (zum Beispiel Mais), StarLink ® (zum Beispiel Mais), Bollgard ® (Baumwolle), Nucotn ® (Baumwolle), Nucotn 33B ® (Baumwolle), NatureGard ® (zum Beispiel Mais), Protecta ® und NewLeaf ® (Kartoffel). Herbizidtolerante Pflanzen, die zu erwähnen sind, sind zum Beispiel Maissorten, Baumwollsorten und Sojabohnensorten, die unter den folgenden Handelsbezeichnungen angeboten werden: Roundup Ready ® (Glyphosatetoleranz, zum Beispiel Mais, Baumwolle, Sojabohne), Liberty Link ® (Phosphinotricintoleranz, zum Beispiel Raps), IMI ® (Imidazolinontoleranz) und SCS ® (Sylfonylharnstofftoleranz), zum Beispiel Mais. Zu den herbizidresistenten Pflanzen (traditionell auf Herbizidtoleranz gezüchtete Pflanzen), die zu erwähnen sind, zählen die unter der Bezeichnung Clearfield ® angebotenen Sorten (zum Beispiel Mais). Die nachfolgenden Beispiele erläutern die vorliegende Erfindung. Die Beispiele D1.2, S1.2, P1.2, Q1.2, Q3.2, Q3.10 und Q4.2 sind nicht erfindungsgemäß und dienen nur dem Vergleich. Chemische Beispiele Bei der Auswertung von NMR-Signalen werden folgende Abkürzungen verwendet: s (Singulett), d (Dublett), t (Triplett), q (Quartett), quint (Quintett), sext (Sextett), sept (Septett), m (Multiplett), mc (Multiplett centered) NMR-Peak-Listenverfahren Die 1H-NMR-Daten ausgewählter Beispiele werden in Form von 1H-NMR-Peaklisten notiert. Zu jedem Signalpeak wird erst der δ-Wert in ppm und dann die Signalintensität in runden Klammern aufgeführt. Die δ-Wert – Signalintensitäts- Zahlenpaare von verschiedenen Signalpeaks werden durch Semikolons voneinander getrennt aufgelistet. Die Peakliste eines Beispieles hat daher die Form: δ1 (Intensität1 ); δ2 (Intensität2);……..; δi (Intensitäti);……; δn (Intensitätn) Die Intensität scharfer Signale korreliert mit der Höhe der Signale in einem gedruckten Beispiel eines NMR-Spektrums in cm und zeigt die wirklichen Verhältnisse der Signalintensitäten. Bei breiten Signalen können mehrere Peaks oder die Mitte des Signals und ihre relative Intensität im Vergleich zum intensivsten Signal im Spektrum gezeigt werden. Zur Kalibrierung der chemischen Verschiebung von 1H-NMR-Spektren benutzen wir Tetramethylsilan und/oder die chemische Verschiebung des Lösungsmittels, besondern im Falle von Spektren, die in DMSO gemessen werden. Daher kann in NMR-Peaklisten der Tetramethylsilan-Peak vorkommen, muss es aber nicht. Die Listen der 1H-NMR-Peaks sind ähnlich den klassischen 1H-NMR-Ausdrucken und enthalten somit gewöhnlich alle Peaks, die bei einer klassischen NMR-Interpretation aufgeführt werden. Darüber hinaus können sie wie klassische 1H-NMR-Ausdrucke Lösungsmittelsignale, Signale von Stereoisomeren der Zielverbindungen, die ebenfalls Gegenstand der Erfindung sind, und/oder Peaks von Verunreinigungen zeigen. Bei der Angabe von Verbindungssignalen im Delta-Bereich von Lösungsmitteln und/oder Wasser sind in unseren Listen von 1H-NMR-Peaks die gewöhnlichen Lösungsmittelpeaks, zum Beispiel Peaks von DMSO in DMSO-D6 und der Peak von Wasser, gezeigt, die gewöhnlich im Durchschnitt eine hohe Intensität aufweisen. Die Peaks von Stereoisomeren der Targetverbindungen und/oder Peaks von Verunreinigungen haben gewöhnlich im Durchschnitt eine geringere Intensität als die Peaks der Zielverbindungen (zum Beispiel mit einer Reinheit von >90%). Solche Stereoisomere und/oder Verunreinigungen können typisch für das jeweilige Herstellungsverfahren sein. Ihre Peaks können somit dabei helfen, die Reproduktion unseres Herstellungsverfahrens anhand von “Nebenprodukt-Fingerabdrücken” zu erkennen. Einem Experten, der die Peaks der Zielverbindungen mit bekannten Verfahren (MestreC, ACD- Simulation, aber auch mit empirisch ausgewerteten Erwartungswerten) berechnet, kann je nach Bedarf die Peaks der Zielverbindungen isolieren, wobei gegebenenfalls zusätzliche Intensitätsfilter eingesetzt werden. Diese Isolierung wäre ähnlich dem betreffenden Peak-Picking bei der klassischen 1H-NMR- Interpretation. Weitere Details zu 1H-NMR-Peaklisten können der Research Disclosure Database Number 564025 entnommen werden. Die Verbindungen D1.1, D1.2, D1.4, D1.6, D1.7, D1.9, D2.1, D2.2, D2.5, D2.6 und D2.7 wurden in D2O gemessen. Dafür wurde ein Tropfen NaOD zugegeben, um mit dem so generierten Natriumsalz eine bessere Löslichkeit zu erzielen und somit ein besseres Spektrum zu erhalten. Die hier charakterisierten Verbindungen sind folglich die entsprechenden Natriumsalze. Beispiel D1.1: 3-{2-Chlor-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}-4-hydroxy-8-methoxy-1-azaspiro[4.5]dec- 3-en-2-on
Figure imgf000058_0001
5.70 g (13,91 mmol) Methyl-1-(2-{2-chlor-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}acetamido)- 4-methoxycyclohexancarboxylat wurden in 100 ml Dimethylformamid gelöst und auf 0°C abgekühlt. Innerhalb von 10 min wurden daraufhin portionsweise insgesamt 3.12 g (27.81 mmol) Kalium-t-butylat zugegeben. Man ließ auf Raumtemperatur kommen, rührte 4 h nach und ließ das Reaktionsgemisch 14 h lang stehen. Die Reaktionsmischung wurde im Vakuum zur Trockne eingeengt und zur Entfernung von restlichem Dimethylformamid jeweils zweimal mit Wasser versetzt und wiederum zur Trockne eingeengt. Der Rückstand wurde dann in Wasser gelöst und durch tropfenweise Zugabe von 2N Salzsäure bis pH=6-5 ausgefällt. Der so erhaltene Feststoff wurde abgesaugt, mit wenig Wasser gewaschen und getrocknet. Man erhielt 4.80 g (88 %) der gewünschten Titelverbindung in einer Reinheit von 97%. Eine weitere Aufreinigung wurde erreicht, indem man diese Menge in ca.35ml Ethylacetat 30 min lang unter Rückfluß verrührte, auf Raumtemperatur abkühlte und den Feststoff absaugte.
Figure imgf000037_0001
where R G 1 is halogen, (C 1 -C 4 )-alkyl, methoxy, nitro, cyano, CF 3 , OCF 3 YG, ZG is independently O or S, nG is an integer from 0 to 4, RG 2 (C 1 -C 16 )alkyl, (C 2 -C 6 )alkenyl, (C 3 -C 6 )cycloalkyl, aryl; benzyl, halobenzyl, RG 3 is hydrogen or (C 1 -C 6 )alkyl. S11) Active substances of the type of oxyimino compounds (S11), which are known as seed dressings, such as. B. "Oxabetrinil" ((Z)-1,3-dioxolan-2-ylmethoxyimino(phenyl)acetonitrile) (S11-1) known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim" (1- (4-Chlorophenyl)-2,2,2-trifluoro-1-ethanone-O-(1,3-dioxolan-2-ylmethyl)-oxime) (S11-2) used as a seed dressing safener for sorghum against damage from metolachlor, and "Cyometrinil" or "CGA-43089" ((Z)-cyanomethoxyimino(phenyl)acetonitrile) (S11-3), which is known as a seed dressing safener for sorghum against damage from metolachlor. S12) Active ingredients from the class of isothiochromanone (S12), such as methyl [(3-oxo-1H-2-benzothiopyran-4(3H)-ylidene)methoxy]acetate (CAS Reg. No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361. S13) One or more compounds from group (S13): "Naphthalic anhydride" (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), known as a seed dressing safener for corn against damage from thiocarbamate herbicides, "Fenclorim" (4.6 -dichloro-2-phenylpyrimidine) (S13-2), known as a safener for pretilachlor in seeded rice, "Flurazole" (Benzyl 2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13-3) known as a seed dressing safener for sorghum against damage from alachlor and metolachlor, "CL 304415" (CAS-Reg.Nr.31541-57-8) (4-carboxy-3,4-dihydro-2H-1-benzopyran-4-acetic acid) (S13-4) from American Cyanamid, used as a safener for corn against Damage caused by imidazolinones is known, "MG 191" (CAS Reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is used as a safener known for corn, "MG 838" (CAS Reg. No. 133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decane-4-carbodithioate) (S13-6) from Nitrokemia , "Disulfoton" (O,O-diethyl S-2-ethylthioethyl phosphorodithioate) (S13-7), "Dietholate" (O,O-diethyl-O-phenyl phosphorothioate) (S13-8), "Mephenate" (4-chlorophenyl -methylcarbamate) (S13-9). S14) active ingredients which, in addition to having a herbicidal action against harmful plants, also have a safener effect on crop plants such as rice, such as, for. B. "Dimepiperate" or "MY 93" (S-1-methyl-1-phenylethyl-piperidine-1-carbothioate), which is known as a safener for rice against damage from the herbicide Molinate, "Daimuron" or "SK 23" ( 1-(1-Methyl-1-phenylethyl)-3-p-tolyl-urea), known as a rice safener against damage from the herbicide imazosulfuron, "Cumyluron" = "JC 940" (3-(2-Chlorophenylmethyl) -1-(1-methyl-1-phenyl-ethyl)urea, see JP-A-60087254) known as a safener for rice against damage from some herbicides, "methoxyphenone" or "NK 049"(3,3'- dimethyl-4-methoxy-benzophenone) known as a safener for rice against damage from some herbicides, "CSB" (1-bromo-4-(chloromethylsulfonyl)benzene) from Kumiai, (CAS Reg.No.54091-06- 4), which is known as a safener against damage from some herbicides in rice. S15) Compounds of the formula (S15) or their tautomers
Figure imgf000039_0001
as described in WO-A-2008/131861 and WO-A-2008/131860, in which R H 1 is a halo-(C 1 -C 6 )-alkyl radical and R H 2 is hydrogen or halogen and RH 3 , RH 4 are independently hydrogen, (C 1 -C 16 )-alkyl, (C 2 -C 16 )-alkenyl or (C 2 -C 16 )-alkynyl, each of the latter 3 radicals being unsubstituted or substituted by one or more radicals from the group halogen, hydroxy, cyano, (C 1 -C 4 )alkoxy, halo-(C 1 -C 4 )alkoxy, (C 1 -C 4 )alkylthio, (C 1 -C 4 )alkylamino , di[(C 1 -C 4 )alkyl]amino, [(C 1 -C 4 )alkoxy]carbonyl, [halo-(C 1 -C 4 )alkoxy]carbonyl, (C 3 - C 6 )cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted and heterocyclyl which is unsubstituted or substituted, or (C 3 -C 6 )cycloalkyl, (C 4 -C 6 ) -cycloalkenyl, (C 3 -C 6 )cycloalkyl substituted on one side of the ring with a 4 to 6 membered saturated or unsaturated carbocyclic ring is fused, or (C 4 -C 6 )-cycloalkenyl fused on one side of the ring with a 4 to 6-membered saturated or unsaturated carbocyclic ring, each of the latter 4 radicals being unsubstituted or substituted by one or more radicals from the Group halogen, hydroxy, cyano, (C 1 -C 4 )alkyl, halo(C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, halo(C 1 -C 4 )alkoxy , (C 1 -C 4 )alkylthio, (C 1 -C 4 )alkylamino, di[(C 1 -C 4 )alkyl]amino, [(C 1 -C 4 )alkoxy]carbonyl, [Halo(C 1 -C 4 )alkoxy]carbonyl, (C 3 -C 6 )cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted and heterocyclyl which is unsubstituted or substituted is, or R H 3 is (C 1 -C 4 )alkoxy, (C 2 -C 4 )alkenyloxy, (C 2 -C 6 )alkynyloxy or halo-(C 2 -C 4 )alkoxy and RH 4 is hydrogen or (C 1 -C 4 )-alkyl, or RH 3 and RH 4 together with the directly bonded N atom form a four- to eight-membered heterocyclic ring which, in addition to the N atom, also has other hetero ring atoms, preferably up to two further hetero ring atoms from the group N, O and S and which is unsubstituted or by one or more radicals from the group halogen, cyano, nitro, (C 1 -C 4 )-alkyl, halogen-(C 1 -C 4 )- alkyl, (C 1 -C 4 )alkoxy, halo-(C 1 -C 4 )alkoxy and (C 1 -C 4 )alkylthio. S16) Active substances which are primarily used as herbicides but also have a safener effect on crop plants, for example (2,4-dichlorophenoxy)acetic acid (2,4-D), (4-chlorophenoxy)acetic acid, (R,S)-2- (4-Chloro-o-tolyloxy)propionic acid (Mecoprop), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), (4-chloro-o-tolyloxy)acetic acid (MCPA), 4-(4 -Chloro-o-tolyloxy)butyric acid, 4-(4-chlorophenoxy)butyric acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 1-(ethoxycarbonyl)ethyl 3,6-dichloro-2-methoxybenzoate (lactidichloro- ethyl). Particularly preferred safeners are mefenpyr-diethyl, cyprosulfamide, isoxadifen-ethyl, cloquintocet-mexyl, dichlormide and metcamifen. Wettable powders are preparations that are uniformly dispersible in water and which, in addition to the active ingredient, contain a diluent or inert substance as well as ionic and/or non-ionic surfactants (wetting agents, dispersing agents), e.g. sodium lignosulfonate, sodium 2,2'-dinaphthylmethane-6,6'-disulfonate, sodium dibutylnaphthalenesulfonate or sodium oleoylmethyltaurine. To prepare the wettable powders, the herbicidal active ingredients are finely ground, for example in conventional apparatus such as hammer mills, blower mills and air jet mills, and mixed simultaneously or subsequently with the formulation auxiliaries. Emulsifiable concentrates are obtained by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling Aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and / or non-ionic surfactants (emulsifiers). Examples of emulsifiers that can be used are: alkylarylsulfonic acid calcium salts such as calcium dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as sorbitan fatty acid esters or polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan fatty acid esters . Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth. Suspension concentrates can be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and optionally adding surfactants, such as those already listed above for the other types of formulation. Emulsions, for example oil-in-water emulsions (EW), can be prepared, for example, using stirrers, colloid mills and/or static mixers using aqueous organic solvents and, if appropriate, surfactants, such as those already listed above for the other types of formulation. Granules can be produced either by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, eg polyvinyl alcohol, sodium polyacrylic acid or mineral oils, to the surface of carriers such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules--if desired in a mixture with fertilizers. Water-dispersible granules are usually produced without solid inert material by conventional methods such as spray drying, fluidized bed granulation, pan granulation, mixing with high-speed mixers and extrusion. For the production of disc, fluidized bed, extruder and spray granules, see, for example, methods in "Spray-Drying Handbook" 3rd ed.1979, G. Goodwin Ltd., London, JE Browning, "Agglomeration", Chemical and Engineering 1967, pages 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, pp. 8-57. For further details on the formulation of crop protection products see, for example, GC Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, pages 81-96 and JD Freyer, SA Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pages 101-103. The agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of compounds according to the invention. In wettable powders, the active substance concentration is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of customary formulation components. In the case of emulsifiable concentrates, the active substance concentration can be about 1 to 90% by weight, preferably 5 to 80% by weight. Formulations in dust form contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, and sprayable solutions contain about 0.05 to 80% by weight, preferably 2 to 50% by weight of active ingredient. In the case of water-dispersible granules, the active ingredient content depends in part on whether the active compound is in liquid or solid form and on the granulation aids, fillers, etc. used. In the case of the water-dispersible granules, the active substance content is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight. In addition, the active ingredient formulations mentioned optionally contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity affecting agents. Combinations with other pesticidally active substances, such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and/or growth regulators, can also be produced on the basis of these formulations, for example in the form of a ready-to-use formulation or as a tank mix. For use, the formulations, which are in commercial form, are diluted, if appropriate, in a customary manner, for example with water in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules. Preparations in the form of dust, ground or granulated granules and sprayable solutions are usually not diluted with other inert substances before use. The required application rate of the compounds of the formula (I) and their salts varies with the external conditions such as temperature, humidity, the type of herbicide used, etc. It can vary within wide limits, for example between 0.001 and 10.0 kg/ha or more active substance, but it is preferably between 0.005 and 5 kg/ha, more preferably im Range from 0.01 to 1.5 kg/ha, more preferably in the range from 0.05 to 1 kg/ha g/ha. This applies to both pre-emergence and post-emergence application. Carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients are mixed or combined for better applicability, especially for application to plants or parts of plants or seeds. The carrier, which may be solid or liquid, is generally inert and should be agriculturally useful. Suitable solid or liquid carriers are: for example ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and ground synthetic minerals such as finely divided silica, aluminum oxide and natural or synthetic silicates, resins, waxes , solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such excipients can also be used. Suitable solid carriers for granules are: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules made from inorganic and organic flours and granules made from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks. Suitable liquefied gaseous diluents or carriers are liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants such as halogenated hydrocarbons, and butane, propane, nitrogen and carbon dioxide. Adhesives such as carboxymethylcellulose, natural and synthetic polymers in powder, granular or latic form, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations. Further additives can be mineral and vegetable oils. If water is used as an extender, for example, organic solvents can also be used as auxiliary solvents. Essential liquid solvents are: aromatics such as xylene, toluene or alkyl naphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols , such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water. The agents according to the invention can also contain other components, such as surface-active substances. Suitable surface-active substances are emulsifiers and/or foam-forming agents, dispersants or wetting agents with ionic or non-ionic properties or mixtures of these surface-active substances. Examples include salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of compounds containing sulfates, sulfonates and phosphates, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates, protein hydrolysates, lignin sulfite waste liquor and methyl cellulose. The presence of a surfactant is necessary when one of the active ingredients and/or one of the inert carriers is not water-soluble and when the application is in water. The proportion of surface-active substances is between 5 and 40 percent by weight of the agent according to the invention. Dyes such as inorganic pigments, eg iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used. If appropriate, other additional components can also be present, for example protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, stabilizers, sequestering agents, complexing agents. In general, the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes. In general, the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90% Active ingredient, most preferably between 10 and 70 percent by weight. The active ingredients or agents according to the invention can be used as such or depending on their respective physical and / or chemical properties in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold mist concentrates, hot mist concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seeds, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, foams, pastes , Pesticide Coated Seeds, Suspension Concentrates, Suspension Emulsion Concentrates, Soluble Concentrates, Suspensions, Wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for seed treatment, wettable powders, active ingredient-impregnated natural and synthetic substances as well as fine encapsulations in polymeric substances and in coating materials for seeds, as well as ULV cold and warm fog - Formulations are used. The formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one customary extender, solvent or diluent, emulsifier, dispersant and/or binder or fixative, wetting agent, water repellent, if appropriate Siccatives and UV stabilizers and optionally dyes and pigments, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and other processing aids. The agents according to the invention include not only formulations which are already ready for use and which can be applied to the plant or the seed using a suitable apparatus, but also commercial concentrates which have to be diluted with water before use. The active ingredients according to the invention can be used as such or in their (commercially available) formulations and in the use forms prepared from these formulations as a mixture with other (known) active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , fertilizers, safeners or semiochemicals are present. The treatment according to the invention of the plants and parts of plants with the active ingredients or agents is carried out directly or by acting on their environment, living space or storage space according to the usual treatment methods, for example by immersion, spraying, spraying, sprinkling, evaporation, Atomizing, misting, (spreading) scattering, foaming, brushing, brushing, pouring (drenching), drip irrigation and with propagation material, especially seeds, also by dry dressing, wet dressing, slurry dressing, encrusting, single or multi-layer coating, etc. It it is also possible to apply the active ingredients using the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil. As also described below, the treatment of transgenic seed with the active ingredients or agents according to the invention is of particular importance. This concerns the seeds of plants which contain at least one heterologous gene which enables the expression of a polypeptide or protein with insecticidal properties. The heterologous gene in transgenic seeds can originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium. This heterologous gene preferably originates from Bacillus sp., the gene product having an effect against the corn borer (European corn borer) and/or western corn rootworm. The heterologous gene is particularly preferably derived from Bacillus thuringiensis. In the context of the present invention, the agent according to the invention is applied to the seed alone or in a suitable formulation. The seed is preferably treated in a state in which it is so stable that no damage occurs during the treatment. In general, the seed can be treated at any time between harvesting and sowing. Usually seeds are used which have been separated from the plant and freed from cobs, husks, stalks, husk, wool or pulp. For example, seed can be used that has been harvested, cleaned and dried to a moisture content of less than 15% by weight. Alternatively, seed can also be used which, after drying, has been treated with water, for example, and then dried again. In general, when treating the seed, care must be taken to ensure that the amount of the agent according to the invention and/or other additives applied to the seed is chosen such that the germination of the seed is not impaired or the resulting plant is not damaged. This is particularly important for active ingredients that can have phytotoxic effects when applied in certain quantities. The agents according to the invention can be applied directly, ie without containing further components and without having been diluted. As a rule, it is preferable to apply the agents to the seed in the form of a suitable formulation. Suitable formulations and methods for seed treatment are known to the person skilled in the art and are described, for example, in the following documents: US Pat. No. 4,272,417 A, US Pat. No. 4,245,432 A, US Pat A2. The active compounds according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also ULV formulations. These formulations are prepared in a known manner by mixing the active ingredients with customary additives, such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water. Suitable dyes which can be present in the seed-dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both pigments which are sparingly soluble in water and dyes which are soluble in water can be used here. Examples which may be mentioned are the dyes known under the names Rhodamine B, CI Pigment Red 112 and CI Solvent Red 1. Suitable wetting agents which can be present in the seed-dressing formulations which can be used according to the invention are all the wetting-promoting substances which are customary for the formulation of agrochemical active ingredients. Alkyl naphthalene sulfonates, such as diisopropyl or diisobutyl naphthalene sulfonates, can preferably be used. Suitable dispersants and/or emulsifiers which can be present in the seed-dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemically active compounds. Nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can preferably be used. Suitable nonionic dispersants include, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives. Suitable anionic dispersants are, in particular, lignin sulfonates, polyacrylic acid salts and aryl sulfonate-formaldehyde condensates. All foam-inhibiting substances customary for the formulation of agrochemical active substances can be present as foam-inhibiting agents in the seed-dressing formulations which can be used according to the invention. Silicone defoamers and magnesium stearate can preferably be used. All substances which can be used for such purposes in agrochemical agents can be present as preservatives in the seed dressing formulations which can be used according to the invention. Examples include dichlorophene and benzyl alcohol hemiformal. Secondary thickeners which can be present in the seed-dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silicic acid are preferred. Suitable adhesives which can be present in the mordant formulations which can be used according to the invention are all the customary binders which can be used in mordants. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as preferred. The seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of all kinds, including seed of transgenic plants. Additional synergistic effects can also occur in interaction with the substances formed by expression. For the treatment of seed with the seed dressing formulations which can be used according to the invention or the preparations produced therefrom by adding water, all mixing devices which can usually be used for seed dressing can be used. In detail, the dressing is carried out by placing the seed in a mixer, adding the desired amount of dressing formulation either as such or after diluting it with water and mixing until the formulation is evenly distributed on the seed . If necessary, a drying process follows. The active compounds according to the invention are suitable for the protection of plants and plant organs, for increasing crop yields and improving the quality of crops, while being well tolerated by plants, favorable toxicity to warm-blooded animals and good environmental compatibility. They can preferably be used as crop protection agents. They are active against normally sensitive and resistant species and against all or some developmental stages. The following main crops may be mentioned as plants which can be treated according to the invention: corn, soybeans, cotton, Brassica oilseeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. (field) mustard) and Brassica carinata, rice, Wheat, sugar beet, sugarcane, oats, rye, barley, sorghum, triticale, flax, vines and various fruits and vegetables from various botanical taxa such as Rosaceae sp. (e.g. pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds and peaches and berries such as strawberries), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for example banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (e.g. lemons, organs and grapefruit); Solanaceae sp. (for example tomatoes, potatoes, peppers, aubergines), Liliaceae sp., Compositae sp. (e.g. lettuce, artichoke and chicory - including root chicory, endive or common chicory), Umbelliferae sp. (for example carrot, parsley, celery and celeriac), Cucurbitaceae sp. (e.g. cucumber - including gherkin, squash, watermelon, gourd and melons), Alliaceae sp. (e.g. leeks and onions), Cruciferae sp. (e.g. white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage), Leguminosae sp. (e.g. peanuts, peas, and beans - such as pole beans and broad beans), Chenopodiaceae sp. (e.g. Swiss chard, fodder beet, spinach, beetroot), Malvaceae (e.g. okra), Asparagaceae (e.g. asparagus); useful plants and ornamental plants in garden and forest; and in each case genetically modified species of these plants. As mentioned above, all plants and parts thereof can be treated according to the invention. In a preferred embodiment, plant species and plant varieties occurring in the wild or obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and parts thereof are treated. In a further preferred embodiment, transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and parts thereof are treated. The term "parts" or "parts of plants" or "plant parts" has been explained above. Plants of the plant varieties that are commercially available or in use are particularly preferably treated according to the invention. Plant varieties are plants with new properties (“traits”) that have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques. This can be varieties, races, organic and genotypes. The treatment method according to the invention can be used for the treatment of genetically modified organisms (GMOs), e.g. As plants or seeds can be used. Genetically modified plants (or transgenic plants) are plants in which a heterologous gene has been stably integrated into the genome. The term "heterologous gene" means essentially a gene that is provided or assembled outside of the plant and which, when introduced into the nuclear genome, the chloroplast genome or the mitochondrial genome of the transformed plant, confers new or improved agronomic or other traits by producing a trait of interest protein or polypeptide, or that it downregulates or turns off another gene(s) present in the plant (e.g., using antisense technology, cosuppression technology, or RNA interference [RNAi] technology). A heterologous gene that is present in the genome is also called a transgene. A transgene that is defined by its specific presence in the plant genome is referred to as a transformation or transgenic event. Depending on the plant species or plant cultivars, their location and their growth conditions (soil, climate, vegetation period, diet), the treatment according to the invention can also lead to superadditive ("synergistic") effects. For example, they are like that The following effects are possible, which go beyond the effects that can actually be expected: reduced application rates and/or extended spectrum of activity and/or increased effectiveness of the active ingredients and compositions that can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to Drought or water or soil salinity, increased flowering, easier harvesting, accelerated ripening, higher yields, larger fruits, taller plants, more intense green leaf color, earlier flowering, higher quality and/or higher nutritional value of the harvested products, higher sugar concentration in the fruits, better storage stability and/or processability of the harvested products. Plants and plant cultivars which are preferably treated according to the invention include all plants which have genetic material which confers on these plants particularly advantageous, useful traits (whether this has been achieved by breeding and/or biotechnology). Examples of nematode-resistant plants are described in the following US patent applications: 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/191,904, /396.808, 12/166.253, 12/166.239, 12/166.124, 12/166.209, 11/762.886, 12/364.335, 11/763.947, 12/252.453, 12/209.354, 14/229 and 12/471.396 Plants that can be treated according to the invention are hybrid plants that already express the traits of heterosis or hybrid effect, which generally result in higher yield, higher vigor, better health and better resistance to biotic and abiotic stressors. Such plants are typically produced by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). The hybrid seed is typically harvested from the male-sterile plants and sold to propagators. Male-sterile plants can sometimes (e.g., in corn) be produced by detasseling (ie, mechanically removing the male reproductive organs or male flowers); however, it is more common that male sterility is due to genetic determinants in the plant genome. In this case, particularly when the desired product to be harvested from the hybrid plants is the seed, it is usually desirable to ensure male fertility in hybrid plants containing the genetic determinants responsible for male sterility , will be completely restored. This can be accomplished by ensuring that the male parents possess appropriate fertility restorer genes capable of restoring male fertility in hybrid plants containing the genetic determinants responsible for male sterility. Genetic determinants of male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) have been described for Brassica species, for example. However, genetic determinants of male sterility can also be located in the nuclear genome. Male-sterile plants can also be obtained using plant biotechnology methods such as genetic engineering. A particularly useful means of producing male-sterile plants is described in WO 89/10396, where for example a ribonuclease such as a barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expressing a ribonuclease inhibitor such as Barstar in the tapetum cells. Plants or plant varieties (obtained by methods of plant biotechnology, such as genetic engineering) which can be treated according to the invention are herbicide-tolerant plants, ie plants which have been made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation or by selection from plants containing a mutation conferring such herbicide tolerance. Herbicide tolerant plants are, for example, glyphosate tolerant plants, ie plants which have been made tolerant to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate using a variety of methods. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol.7, 139-145), the genes encoding a petunia EPSPS (Shah et al., 1986, Science 233, 478-481), for an EPSPS from tomato (Gasser et al., 1988, J. Biol. Chem. 263, 4280-4289) or for an EPSPS from eleusins (WO 01/66704). It can also be a mutated EPSPS. Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate oxidoreductase enzyme. Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate acetyltransferase enzyme. Glyphosate tolerant plants can also be obtained by selecting plants containing naturally occurring mutations of the genes mentioned above. Plants expressing EPSPS genes conferring glyphosate tolerance are described. Plants harboring other genes conferring glyphosate tolerance, eg, decarboxylase genes, are described. Other herbicide-resistant plants are, for example, plants which have been made tolerant to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate. Such plants can be obtained by expressing an enzyme that detoxifies the herbicide or a mutant of the enzyme glutamine synthase that is resistant to inhibition. Such a potent detoxifying enzyme is, for example, an enzyme encoding a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described. Other herbicide-tolerant plants are also plants that have been made tolerant to the herbicides that inhibit the enzyme hydroxyphenylpyruvate dioxygenase (HPPD). The hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted into homogentisate. Plants that are tolerant to HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutated or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 or US 6,768,044. Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes encoding certain enzymes that allow the formation of homogentisate despite inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants are described in WO 99/34008 and WO 02/36787. The tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding a prephenate dehydrogenase enzyme in addition to a gene encoding an HPPD-tolerant enzyme, as in WO 2004/024928 is described. In addition, plants can be made even more tolerant to HPPD inhibitors by inserting a gene into their genome that codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as CYP450 enzymes (see WO 2007/103567 and WO 2008/150473 ). Other herbicide resistant plants are plants that have been made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy(thio)benzoates and/or sulfonylaminocarbonyltriazolinone herbicides. It is known that various mutations in the enzyme ALS (also known as acetohydroxy acid synthase, AHAS) confer tolerance to different herbicides or groups of herbicides, as described, for example, in Tranel and Wright (Weed Science 2002, 50, 700-712). is. The manufacture of sulfonylurea tolerant plants and imidazolinone tolerant plants is described. Other sulfonylurea and imidazolinone tolerant plants are also described. Other plants that are tolerant to imidazolinones and/or sulfonylureas can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide, or by mutation breeding (cf. e.g. for soybean US 5,084,082, for rice WO 97/41218, for sugar beet US 5,773,702 and WO 99/057965, for lettuce US 5,198,599 or for sunflower WO 01/065922). Plants or plant varieties (obtained by methods of plant biotechnology, such as genetic engineering) which can also be treated according to the invention are tolerant to abiotic stressors. Such plants can be obtained by genetic transformation or by selection from plants containing a mutation conferring such stress resistance. Particularly useful stress tolerant plants include the following: a. Plants containing a transgene capable of reducing the expression and/or activity of the poly(ADP-ribose) polymerase (PARP) gene in the plant cells or plants. b. Plants which contain a stress tolerance-promoting transgene which is able to reduce the expression and/or activity of the genes of the plants or plant cells which code for PARG; c. Plants containing a stress tolerance-promoting transgene encoding an enzyme of the nicotinamide adenine dinucleotide salvage biosynthetic pathway which is functional in plants, including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyltransferase, nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyltransferase. Plants or plant varieties (obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, have an altered quantity, quality and/or shelf life of the harvested product and/or altered properties of certain components of the harvested product, such as: 1) Transgenic plants that synthesize a modified starch which, in terms of their chemical-physical properties, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the Gel strength, the starch grain size and / or starch grain morphology compared to the synthesized starch in wild-type plant cells or - plants is changed, so that this modified starch is better suited for certain applications. 2) Transgenic plants that synthesize non-starch carbohydrate polymers, or non-starch carbohydrate polymers whose properties are altered compared to wild-type plants without genetic modification. Examples are plants that produce polyfructose, especially of the inulin and levan types, plants that produce alpha-1,4-glucans, plants that produce alpha-1,6-branched alpha-1,4-glucans and plants that produce alternans. 3) Transgenic plants that produce hyaluronan. 4) Transgenic plants or hybrid plants such as onions with certain properties such as "high soluble solids content", low pungency (LP) and/or long storage (LS). ). Plants or plant varieties (obtained by methods of plant biotechnology, such as genetic engineering) which can also be treated according to the invention are plants such as cotton plants with altered fiber properties. Such plants can be obtained by genetic transformation or by selection from plants containing a mutation conferring such altered fiber properties; these include: a) plants such as cotton plants which contain an altered form of cellulose synthase genes, b) plants such as cotton plants which contain an altered form of rsw2 or rsw3 homologous nucleic acids such as cotton plants with an increased expression of sucrose phosphate synthase; c) plants such as cotton plants with an increased expression of sucrose synthase; d) Plants such as cotton plants in which the timing of gating of the plasmodesmata at the base of the fiber cell is altered, e.g. B. by down-regulating fiber-selective β-1,3-glucanase; e) plants such as cotton plants with fibers with altered reactivity, e.g. B. by expression of the N-acetylglucosamine transferase gene, including nodC, and chitin synthase genes. Plants or plant varieties (obtained by methods of plant biotechnology, such as genetic engineering) which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered properties of the oil composition. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered oil properties; these include: a) plants such as oilseed rape which produce oil with a high oleic acid content; b) Plants such as oilseed rape that produce oil with a low linolenic acid content. c) Plants such as oilseed rape that produce oil with a low saturated fatty acid content. Plants or plant varieties (which can be obtained by methods of plant biotechnology, such as genetic engineering) which can also be treated according to the invention are plants such as potatoes which are virus-resistant, for example to potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), or which are resistant to diseases such as late blight (potato late blight) (e.g. RB gene), or which show reduced cold-induced sweetness (carrying the genes Nt-Inh, II-INV) or which have the dwarf Show phenotype (gene A-20 oxidase). Plants or plant varieties (obtained by methods of plant biotechnology, such as genetic engineering) which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered seed shattering properties. Such plants can be obtained by genetic transformation or by selection from plants containing a mutation conferring such altered traits and include plants such as oilseed rape with delayed or reduced seed set. Particularly useful transgenic plants that can be treated according to the invention are plants with transformation events or combinations of transformation events which are the subject of issued or pending petitions in the USA with the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA). are for non-regulated status. Information on this is available at any time from APHIS (4700 River Road Riverdale, MD 20737, USA), eg via the website http://www.aphis.usda.gov/brs/not_reg.html. On the filing date of this application, the petitions with the following information were either issued or pending at APHIS: − Petition: identification number of the petition. The Technical Description of the Transformation Event can be found in the individual petition document available from APHIS on the website via the petition number. These descriptions are hereby disclosed by reference. − Extension of a petition: reference to a previous petition for which an extension or renewal is requested. − Institution: Name of the person submitting the petition. − Regulated article: the plant species concerned. − Transgenic phenotype: the trait imparted to the plant by the transformation event. − Transformation event or line: the name of the event or events (sometimes referred to as line(s)) for which non-regulated status is requested. − APHIS Documente: various documents published by APHIS regarding the petition or which can be obtained by APHIS on request. Particularly useful transgenic plants which can be treated according to the invention are plants having one or more genes coding for one or more toxins are the transgenic plants sold under the following trade names: YIELD GARD ® (for example maize, cotton, soybeans), KnockOut ® (e.g. corn), BiteGard ® (e.g. corn), BT-Xtra ® (e.g. corn), StarLink ® (e.g. corn), Bollgard ® (cotton), Nucotn ® (cotton), Nucotn 33B ® (cotton), NatureGard ® (e.g. corn), Protecta ® and NewLeaf ® (potato). Herbicide tolerant crops to mention are, for example, corn varieties, cotton varieties and soybean varieties sold under the following trade names: Roundup Ready ® (glyphosate tolerance, e.g. corn, cotton, soybean), Liberty Link ® (phosphinotricin tolerance, e.g. canola) , IMI ® (imidazolinone tolerance) and SCS ® (sylphonylurea tolerance), for example corn. Among the herbicide-resistant plants (plants traditionally bred for herbicide tolerance) to be mentioned are the varieties offered under the Clearfield ® name (for example maize). The following examples illustrate the present invention. Examples D1.2, S1.2, P1.2, Q1.2, Q3.2, Q3.10 and Q4.2 are not according to the invention and are for comparison only. Chemical Examples The following abbreviations are used in the evaluation of NMR signals: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet), sept (septet), m (multiplet), mc (multiplet centered) NMR peak list method The 1H NMR data of selected examples are recorded in the form of 1H NMR peak lists. For each signal peak, first the δ value in ppm and then the signal intensity is listed in round brackets. The δ value - signal intensity number pairs from different signal peaks are listed separated by semicolons. The peak list of an example therefore has the form: δ 1 (intensity 1 ) ; δ 2 (intensity 2 );……..; δ i (intensityi ) ;……; δ n (intensity n ) The intensity of sharp signals correlates with the height of the signals in a printed example of an NMR spectrum in cm and shows the real ratios of the signal intensities. For broad signals, multiple peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum can be shown. To calibrate the chemical shift of 1H NMR spectra, we use tetramethylsilane and/or the chemical shift of the solvent, especially in the case of spectra measured in DMSO. The tetramethylsilane peak can therefore appear in NMR peak lists, but it does not have to. The listings of 1H NMR peaks are similar to the classic 1H NMR printouts and thus usually include all peaks listed in a classic NMR interpretation. In addition, like classical 1H-NMR printouts, they can show signals from solvents, signals from stereoisomers of the target compounds, which are also the subject of the invention, and/or peaks from impurities. When reporting compound signals in the delta region of solvents and/or water, the usual solvent peaks, for example peaks from DMSO in DMSO-D6 and the peak from water, are shown in our lists of 1H NMR peaks, which usually average have a high intensity. The peaks of stereoisomers of the target compounds and/or peaks of impurities usually have on average a lower intensity than the peaks of the target compounds (e.g. with a purity of >90%). Such stereoisomers and/or impurities can be typical of the particular production process. Their peaks can thus help identify the reproduction of our manufacturing process using “by-product fingerprints”. An expert who calculates the peaks of the target compounds with known methods (MestreC, ACD simulation, but also with empirically evaluated expected values) can isolate the peaks of the target compounds as required, with additional intensity filters being used if necessary. This isolation would be similar to the peak picking involved in classical 1H NMR interpretation. Further details on 1H-NMR peak lists can be found in Research Disclosure Database Number 564025. Compounds D1.1, D1.2, D1.4, D1.6, D1.7, D1.9, D2.1, D2.2, D2.5, D2.6 and D2.7 were converted into D 2 O measured. For this purpose, a drop of NaOD was added in order to achieve better solubility with the sodium salt generated in this way and thus to obtain a better spectrum. The compounds characterized here are therefore the corresponding sodium salts. Example D1.1: 3-{2-Chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}-4-hydroxy-8-methoxy-1-azaspiro[4.5] dec-3-en-2-one
Figure imgf000058_0001
5.70 g (13.91 mmol) of methyl 1-(2-{2-chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}acetamido)-4-methoxycyclohexanecarboxylate were added dissolved in 100 ml dimethylformamide and cooled to 0°C. A total of 3.12 g (27.81 mmol) of potassium t-butoxide were then added in portions over the course of 10 minutes. The mixture was allowed to come to room temperature, stirred for a further 4 h and the reaction mixture was left to stand for 14 h. The reaction mixture was evaporated to dryness in vacuo and, to remove residual dimethylformamide, water was added twice in each case and again evaporated to dryness. The residue was then dissolved in water and precipitated by dropwise addition of 2N hydrochloric acid until pH=6-5. The solid thus obtained was filtered off with suction, washed with a little water and dried. 4.80 g (88%) of the desired title compound were obtained in a purity of 97%. Further purification was achieved by stirring this amount in about 35 ml of ethyl acetate under reflux for 30 min, cooling to room temperature and filtering off the solid.
Figure imgf000060_0001
Figure imgf000061_0002
Figure imgf000061_0001
Figure imgf000062_0002
Figure imgf000062_0001
Figure imgf000063_0002
Figure imgf000063_0001
Figure imgf000064_0002
Figure imgf000064_0001
Figure imgf000065_0002
Figure imgf000065_0001
Figure imgf000066_0002
Figure imgf000066_0001
Figure imgf000067_0002
Figure imgf000067_0001
Figure imgf000068_0002
Figure imgf000068_0001
Figure imgf000069_0002
Figure imgf000069_0001
Figure imgf000070_0002
Figure imgf000070_0001
Figure imgf000071_0002
Figure imgf000071_0001
Beispiel S1.1:
Figure imgf000060_0001
Figure imgf000061_0002
Figure imgf000061_0001
Figure imgf000062_0002
Figure imgf000062_0001
Figure imgf000063_0002
Figure imgf000063_0001
Figure imgf000064_0002
Figure imgf000064_0001
Figure imgf000065_0002
Figure imgf000065_0001
Figure imgf000066_0002
Figure imgf000066_0001
Figure imgf000067_0002
Figure imgf000067_0001
Figure imgf000068_0002
Figure imgf000068_0001
Figure imgf000069_0002
Figure imgf000069_0001
Figure imgf000070_0002
Figure imgf000070_0001
Figure imgf000071_0002
Figure imgf000071_0001
Example S1.1:
Natrium-3- { 2-chlor-6-methoxy-4-[(lE)-prop- 1 -en- 1 -yl]phenyl } -8-methyl-2-oxo- 1 - azaspiro[4.5]dec-3-en-4-olat
Figure imgf000072_0001
Sodium 3-{2-chloro-6-methoxy-4-[(IE)-prop-1-en-1-yl]phenyl}-8-methyl-2-oxo-1-azaspiro[4.5]dec-3 -en-4-olat
Figure imgf000072_0001
0.10 g (0.27 mmol) 3-{2-Chlor-6-methoxy-4-[(lE)-prop-l-en-l-yl]phenyl}-4-hydroxy-8-methoxy- l-azaspiro[4.5]dec-3-en-2-on wurden bei Raumtemperatur in 5 ml Methanol gelöst und mit 0.06 ml einer 25%igen methanolischen Natriummethanolat-Lösung versetzt. Nach beendeter Zugabe wurde das Reaktionsgemisch 2 h lang bei Raumtemperatur nachgerührt. 0.10 g (0.27 mmol) 3-{2-Chloro-6-methoxy-4-[(IE)-prop-1-en-1-yl]phenyl}-4-hydroxy-8-methoxy-1-azaspiro[4.5 ]dec-3-en-2-one were dissolved in 5 ml of methanol at room temperature, and 0.06 ml of a 25% strength methanolic sodium methoxide solution were added. After the addition was complete, the reaction mixture was stirred at room temperature for a further 2 h.
Nach der Entfernung des Lösungsmittels im Vakuum wurde der Rückstand bei 40°C im Vakuum getrocknet. After removing the solvent in vacuo, the residue was dried at 40°C in vacuo.
Man erhielt 0.09 g (76 %) der gewünschten Titel Verbindung. 0.09 g (76%) of the desired title compound was obtained.
Figure imgf000073_0002
Figure imgf000073_0001
Figure imgf000074_0002
Figure imgf000074_0001
Figure imgf000075_0002
Figure imgf000075_0001
Figure imgf000076_0002
Figure imgf000076_0001
Figure imgf000077_0002
Figure imgf000077_0001
Figure imgf000078_0002
Figure imgf000078_0001
Figure imgf000079_0002
Figure imgf000079_0001
Figure imgf000080_0002
Figure imgf000080_0001
Figure imgf000081_0002
Figure imgf000081_0001
Figure imgf000082_0002
Figure imgf000082_0001
Beispiel Pl.l:
Figure imgf000073_0002
Figure imgf000073_0001
Figure imgf000074_0002
Figure imgf000074_0001
Figure imgf000075_0002
Figure imgf000075_0001
Figure imgf000076_0002
Figure imgf000076_0001
Figure imgf000077_0002
Figure imgf000077_0001
Figure imgf000078_0002
Figure imgf000078_0001
Figure imgf000079_0002
Figure imgf000079_0001
Figure imgf000080_0002
Figure imgf000080_0001
Figure imgf000081_0002
Figure imgf000081_0001
Figure imgf000082_0002
Figure imgf000082_0001
Example Pl.l:
3- { 2-Chlor-6-methoxy-4-[(lE)-prop- 1 -en- 1 -yl]phenyl } -8-methyl-2-oxo- 1 -azaspiro[4.5]dec-3-en-4- ylethylcarbonat
Figure imgf000083_0001
0.40 g (1.06 mmol) 3-{2-Chlor-6-methoxy-4-[(lE)-prop-l-en-l-yl]phenyl}-4-hydroxy-8-methyl-l- azaspiro[4.5]dec-3-en-2-on wurden mit 0.22 ml Triethylamin in 14 ml Dichlormethan vorgelegt und unter Rühren auf 0°C gekühlt. Anschließend tropfte man 0.14 g (1.27 mmol) Ethylchlorformiat, gelöst in 1 ml Dichlormethan, langsam zu, ließ auf Raumtemperatur kommen und rührte 3 h bei dieser Temperatur nach. Danach wurde das Reaktionsgemisch nacheinander mit gesättigter Natriumhydrogencarbonat- Lösung und gesättigter Natriumchlorid-Lösung gewaschen, getrocknet und im Vakuum eingeengt. Die Reinigung des Rohprodukts erfolgte durch Chromatographie auf Kieselgel (Ethylacetat /n- Heptan).
3-{2-Chloro-6-methoxy-4-[(IE)-prop-1-en-1-yl]phenyl}-8-methyl-2-oxo-1-azaspiro[4.5]dec-3-ene -4-ylethyl carbonate
Figure imgf000083_0001
0.40 g (1.06 mmol) 3-{2-Chloro-6-methoxy-4-[(IE)-prop-1-en-1-yl]phenyl}-4-hydroxy-8-methyl-1-azaspiro[4.5 ]dec-3-en-2-one were introduced with 0.22 ml of triethylamine in 14 ml of dichloromethane and cooled to 0° C. with stirring. Then 0.14 g (1.27 mmol) of ethyl chloroformate, dissolved in 1 ml of dichloromethane, was slowly added dropwise, allowed to come to room temperature and stirred at this temperature for 3 h. Thereafter, the reaction mixture was washed successively with saturated sodium bicarbonate solution and saturated sodium chloride solution, dried and concentrated in vacuo. The crude product was purified by chromatography on silica gel (ethyl acetate/n-heptane).
Man erhielt 0.29 g (60 %) der gewünschten Titel Verbindung. 0.29 g (60%) of the desired title compound was obtained.
Figure imgf000084_0002
Figure imgf000084_0001
Figure imgf000085_0002
Figure imgf000085_0001
Figure imgf000086_0002
Figure imgf000086_0001
Figure imgf000087_0002
Figure imgf000087_0001
Figure imgf000088_0002
Figure imgf000088_0001
Figure imgf000089_0002
Figure imgf000089_0001
Figure imgf000090_0002
Figure imgf000090_0001
Figure imgf000091_0002
Figure imgf000091_0001
Figure imgf000092_0002
Figure imgf000092_0001
Herstellung von Ausgangsmaterialien
Figure imgf000084_0002
Figure imgf000084_0001
Figure imgf000085_0002
Figure imgf000085_0001
Figure imgf000086_0002
Figure imgf000086_0001
Figure imgf000087_0002
Figure imgf000087_0001
Figure imgf000088_0002
Figure imgf000088_0001
Figure imgf000089_0002
Figure imgf000089_0001
Figure imgf000090_0002
Figure imgf000090_0001
Figure imgf000091_0002
Figure imgf000091_0001
Figure imgf000092_0002
Figure imgf000092_0001
Production of raw materials
Beispiel Ql.l: Example Ql.l:
Methyl- 1 -(2- { 2-chlor-6-methoxy-4- [( 1 E)-prop- 1 -en- 1 -yl]phenyl } acetamido)-4- methoxycyclohexancarboxylat
Figure imgf000093_0001
Methyl 1-(2-{2-chloro-6-methoxy-4-[( 1 E)-prop-1-en-1-yl]phenyl }acetamido)-4-methoxycyclohexanecarboxylate
Figure imgf000093_0001
12.40 g (51.52 mmol) {2-Chlor-6-methoxy-4-[(lE)-prop-l-en-l-yl]phenyl}essigsäure und 13.83 g (61.82 mmol) 4-Methoxy-l-(methoxycarbonyl)cyclohexanaminiumchlorid wurden in 500 ml Tetrahydrofuran bei Raumtemperatur vorgelegt und unter Rühren mit 28.72 ml Triethylamin versetzt. Nach 5 min tropfte man insgesamt 61.34 ml einer 50%igen Lösung von Propanphosphonsäureanhydrid (T3P) in Tetrahydrofuran zu und rührte das Reaktionsgemisch 1 h bei Raumtemperatur nach. 12.40 g (51.52 mmol) of {2-chloro-6-methoxy-4-[(IE)-prop-1-en-1-yl]phenyl}acetic acid and 13.83 g (61.82 mmol) of 4-methoxy-1-(methoxycarbonyl )cyclohexanaminium chloride were placed in 500 ml of tetrahydrofuran at room temperature and treated with stirring with 28.72 ml of triethylamine. After 5 min, a total of 61.34 ml of a 50% strength solution of propanephosphonic anhydride (T3P) in tetrahydrofuran were added dropwise, and the reaction mixture was stirred at room temperature for 1 h.
Man entfernte das Lösungsmittel im Vakuum, nahm den Rückstand in Methylenchlorid auf, wusch mit gesättigter Ammoniumchlorid-Lösung, trocknete und entfernte das Lösungsmittel im Vakuum. Anschließend wurde der Rückstand säulenchromatographisch (Silicagel, Gradient Ethylacetat/n-Heptan) gereinigt. The solvent was removed in vacuo, the residue was taken up in methylene chloride, washed with saturated ammonium chloride solution and dried, and the solvent was removed in vacuo. The residue was then purified by column chromatography (silica gel, ethyl acetate/n-heptane gradient).
Man erhielt 17.30 g (80%) der gewünschten Zwischenstufe. 17.30 g (80%) of the desired intermediate were obtained.
Beispiel Ql.3: 2- { 2-Chlor-6-methoxy-4- [( 1 E)-prop- 1 -en- 1 -yl]phenyl } -N-( 1 ,4-dimethylcyclohexyl)-N-methylacetamid
Figure imgf000093_0002
Example Q1.3: 2-{2-Chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}-N-(1,4-dimethylcyclohexyl)-N-methylacetamide
Figure imgf000093_0002
0.50 g (1.22 mmol) Methyl-l-(2-{2-chlor-6-methoxy-4-[(lE)-prop-l-en-l-yl]phenyl}acetamido)-4- methoxycyclohexancarboxylat wurden in 30 ml Methylenchlorid vorgelegt und unter Rühren bei Raumtemperatur mit 1.05 g (4.87 mmol) l,8-Bis(dimethylamino)naphtalin sowie 0.63 g (4.27 mmol) Trimethyloxoniumtetrafluoroborat versetzt. Man rührte 4 h bei Raumtemperatur und ließ anschließend 3 d bei Raumtemperatur stehen. In 30 ml of methylene chloride and, while stirring at room temperature, 1.05 g (4.87 mmol) l,8-bis(dimethylamino)naphthalene and 0.63 g (4.27 mmol) Added trimethyloxonium tetrafluoroborate. The mixture was stirred at room temperature for 4 h and then left to stand at room temperature for 3 days.
Man verdünnte mit Methylenchlorid, filtrierte vom Feststoff ab, wusch das Filtrat mit 2N Salzsäure, trocknete und entfernte das Lösungsmittel im Vakuum. Anschließend wurde der Rückstand säulenchrom atographisch (Silicagel, Gradient Ethylacetat/n-Heptan) gereinigt. It was diluted with methylene chloride, the solid was filtered off, the filtrate was washed with 2N hydrochloric acid, dried and the solvent was removed in vacuo. The residue was then purified by column chromatography (silica gel, gradient ethyl acetate/n-heptane).
Man erhielt 0.09 g (16%) der gewünschten Zwischenstufe. Analog wurden folgende Zwischenstufen hergestellt: 0.09 g (16%) of the desired intermediate was obtained. The following intermediates were prepared analogously:
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001
Figure imgf000098_0001
Beispiel Q4.1: {2-Chlor-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}essigsäure Schritt 1: Methyl-(2-chlor-6-methoxy-4-nitrophenyl)acetat
Figure imgf000099_0001
6.10 g (59.2 mmol) tert-Butylnitrit und 5.97 g (44.4 mmol) Kupfer(II)-chlorid wurden in 60 ml Acetonitril suspendiert und auf 0°C gekühlt. Dann wurden 40.20 g (415 mmol) Vinylidenchlorid langsam zugetropft und 1 h nachgerüht, bevor auf 40°C erwärmt wurde. Bei dieser Temperatur wurden portionsweise insgesamt 6.00 g (29.6 mmol) 2-Chlor-6-methoxy-4-nitroanilin (CAS Registry Nummer 41956-18-7) zugegeben. Nach beendeter Zugabe wurde noch 20 h bei 40°C gerührt. Unter Eiskühlung wurde langsam mit 1M Salzsäure versetzt, mit Ethylacetat extrahiert, mit Wasser und gesättigter Kochsalzlösung gewaschen und über Natriumsulfat getrocknet und eingeengt. Man erhielt 9.40 g des Rohprodukts 1-Chlor-3-methoxy-5-nitro-2-(2,2,2-trichlorethyl)benzol, welches direkt in der folgenden Reaktion eingesetzt wurde. 9.40 g (29.5 mmol) dieses rohen Zwischenproduktes wurden in 50 ml Methanol gelöst, auf 0°C gekühlt und langsam mit 21.2 g (118.0 mmol) einer 30%igen methanolischer Natriummethanolat- Lösung versetzt. Anschließend wurde 20 h lang unter Rückfluß erhitzt. Man kühlte auf 0°C, versetzte vorsichtig mit 3.47 g (35.40 mmol) konzentrierter Schwefelsäure und erhitzte weitere 2 h bis zum vollständigen Umsatz unter Rückfluß. Nach dem Abkühlen wurde mit Wasser versetzt, mit Ethylacetat extrahiert, und die organische Phase wurde mit gesättigter Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und nach Abdestillieren des Lösungsmittel an Kieselgel mit Heptan/Essigester chromatographiert. Ausbeute 3.20 g (42% über zwei Schritte) Schritt 2: Methyl-(4-amino-2-chlor-6-methoxyphenyl)acetat
Figure imgf000099_0002
3.20 g (12.3 mmol) Methyl-(2-chlor-6-methoxy-4-nitrophenyl)acetat wurden in 40 ml eines Tetrahydrofuran-Wasser-Gemisches (V/V=4/1) gelöst und portionsweise jeweils mit insgesamt 5.27 g (98.60 mmol) festem Ammoniumchlorid gefolgt von 2.75 g (49.3 mmol) Eisenpulver versetzt. Nach beendeter Zugabe wurde die Reaktionsmischung 21 h lang bei 70°C gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur gekühlt, über Celite filtriert und mit Methanol nachgewaschen. Das Filtrat wurde im Vakuum eingeengt, der Rückstand mit Wasser und Ethylacetat aufgenommen und die Phasen getrennt. Die wäßrige Phase wurde noch mit Ethylacetat extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumhydrogencarbonat-Lösung und mit gesättigter Kochsalzlösung gewaschen, über Natriumsulfat getrocknet, filtriert und eingeengt. Man erhielt 2.50 g (85%) der gewünschten Zwischenverbindung. 1H-NMR (600 MHz, δ in ppm, CDCl3): δ = 3.70 (s, 3H), 3.75 (s, 2H), 3.80 (s, 3H), 6.15 (s, 1H), 6.35 (s, 1H) Schritt 3: Methyl-(2-chlor-4-iod-6-methoxyphenyl)acetat
Figure imgf000100_0001
Zu einer Lösung von 15 ml (170 mmol) konzentrierter Salzsäure in 50 ml Wasser wurden zwischen -5°C und 0°C insgesamt 6.50 g (28.3 mmol) Methyl-(4-amino-2-chlor-6-methoxyphenyl)acetat gegeben. Anschließend wurde eine Lösung von 2.05 g (29.7 mmol) Natriumnitrit in 10 ml Wasser tropfenweise zwischen -5°C und 0°C zugegeben und nach erfolgter Zugabe für weitere 30 min nachgerührt. Dann wurden 35 ml Ethylacetat zugegeben, bevor tropfenweise zwischen -5°C und 0°C eine Lösung von 7.05 g (42.4 mmol) Kaliumiodid in 15 ml Wasser zugegeben wurde. Nach der Zugabe wurde die Reaktionsmischung 2 h unter 0°C nachgerührt. Das Reaktionsgemisch wurde dann dreimal mit jeweils 60 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumthiosulfat-Lösung, gesättigter Natriumhydrogencarbonat-Lösung, gesättigter Kochsalz-Lösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wurde durch Chromatographie an Kieselgel (Ethylacetat/Heptan) gereinigt. Man erhielt 6.00 g (60%) des gewünschten Zwischenproduktes. 1H-NMR (600 MHz, δ in ppm, CDCl3): δ = 3.70 (s, 3H), 3.75-3.85 (m, 5H), 7.10 (s, 1H), 7.40 (s, 1H) Schritt 4: Methyl-[2-chlor-6-methoxy-4-(prop-1-en-1-yl)phenyl]acetat
Figure imgf000101_0001
0.72 g (5.29 mmol) Zinkchlorid und 0.22 g (5.29 mmol) Lithiumchlorid wurden in 8 ml Tetrahydrofuran gelöst, und die entstandene Lösung wurde auf 0°C gekühlt. Bei dieser Temperatur tropfte man unter Rühren insgesamt 10.5 ml (5.29 mmol) einer käuflichen 0.5M Lösung von 1-Propenylmagnesiumbromid in Tetrahydrofuran zu. Man ließ auf Raumtemperatur kommen, rührte 1 h nach, versetzte mit 0.20 g (0.18 mmol) Tetrakis(triphenylphosphin)palladium(0) und tropfte dann eine Lösung von 1.00 g (2.94 mmol) Methyl-(2-chlor-4-iod-6-methoxyphenyl)acetat in 2 ml Tetrahydrofuran langsam zu. Man ließ 2 h bei 70°C nachrühren. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand in Dichlormethan aufgenommen. Man wusch die organische Phase mit 1M Salzsäure und gesättigter Kochsalzlösung, trocknete und engte im Vakuum ein. Der Rückstand wurde an Kieselgel (Ethylacetat/Heptan) chromatographiert. Man erhielt 0.42 g (54%) der gewünschten Zwischenstufe. Schritt 5: Methyl-{2-chlor-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}acetat (Beispiel Q3.1)
Figure imgf000101_0002
Eine Lösung von 7.80 g (30.62 mmol) Methyl-[2-chlor-6-methoxy-4-(prop-1-en-1-yl)phenyl]acetat und 0.79 g ( 3.06 mmol) Bis-(Acetonitril)-Palladium(II)-chlorid in 61 ml Methylenchlorid wurde 4 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mit Diethylether verdünnt, über Celite filtriert und mit wenig Diethylether nachgewaschen. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand wurde an Kieselgel (Ethylacetat/Heptan) chromatographiert. Man erhielt 7.20 g (87%) der gewünschten Zwischenstufe. Schritt 6: {2-Chlor-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}essigsäure
Figure imgf000102_0001
Zu einer Lösung von 7.20 g (28.27 mmol) Methyl-{2-chlor-6-methoxy-4-[(1E)-prop-1-en-1- yl]phenyl}acetat in 150 ml 2-Propanol wurden 3.97 g (70.67 mmol) Kaliumhydroxid gegeben und unter Rückfluß 3 h lang erhitzt. Das Lösungsmittel wurde im Vakuum entfernt, man nahm in Wasser auf, kühlte auf 0°C ab und säuerte mit 2N Salzsäure auf pH=1 an. Der ausgefallene Feststoff wurde abgesaugt und im Hochvakuum getrocknet. Man erhielt 6.70 g (94%) der gewünschten Zwischenstufe. Analog wurden folgende Verbindungen hergestellt
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001
Figure imgf000098_0001
Example Q4.1: {2-Chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}acetic acid Step 1: Methyl-(2-chloro-6-methoxy-4- nitrophenyl acetate
Figure imgf000099_0001
6.10 g (59.2 mmol) tert-butyl nitrite and 5.97 g (44.4 mmol) copper(II) chloride were suspended in 60 ml acetonitrile and cooled to 0°C. Then 40.20 g (415 mmol) of vinylidene chloride were slowly added dropwise and the mixture was stirred for a further 1 h before it was heated to 40.degree. At this temperature, a total of 6.00 g (29.6 mmol) of 2-chloro-6-methoxy-4-nitroaniline (CAS registry number 41956-18-7) were added in portions. After the addition had ended, the mixture was stirred at 40° C. for a further 20 h. While cooling with ice, 1M hydrochloric acid was slowly added, extracted with ethyl acetate, washed with water and saturated sodium chloride solution, dried over sodium sulfate and concentrated. 9.40 g of the crude product 1-chloro-3-methoxy-5-nitro-2-(2,2,2-trichloroethyl)benzene were obtained, which was used directly in the following reaction. 9.40 g (29.5 mmol) of this crude intermediate were dissolved in 50 ml of methanol, cooled to 0° C. and 21.2 g (118.0 mmol) of a 30% strength methanolic sodium methoxide solution were slowly added. The mixture was then heated under reflux for 20 hours. It was cooled to 0° C., 3.47 g (35.40 mmol) of concentrated sulfuric acid were carefully added and the mixture was heated under reflux for a further 2 h until conversion was complete. After cooling, water was added and the mixture was extracted with ethyl acetate, and the organic phase was washed with saturated sodium chloride solution, dried over sodium sulfate and, after the solvent had been distilled off, chromatographed on silica gel using heptane/ethyl acetate. Yield 3.20g (42% over two steps) Step 2: Methyl (4-amino-2-chloro-6-methoxyphenyl)acetate
Figure imgf000099_0002
3.20 g (12.3 mmol) of methyl (2-chloro-6-methoxy-4-nitrophenyl) acetate were dissolved in 40 ml of a Tetrahydrofuran-water mixture (V/V=4/1) and treated in portions with a total of 5.27 g (98.60 mmol) of solid ammonium chloride followed by 2.75 g (49.3 mmol) of iron powder. After the addition was complete, the reaction mixture was stirred at 70° C. for 21 h. The reaction mixture was cooled to room temperature, filtered through Celite and washed with methanol. The filtrate was concentrated in vacuo, the residue was taken up in water and ethyl acetate and the phases were separated. The aqueous phase was extracted with ethyl acetate. The combined organic phases were washed with saturated sodium bicarbonate solution and with saturated sodium chloride solution, dried over sodium sulfate, filtered and concentrated. 2.50 g (85%) of the desired intermediate were obtained. 1H NMR (600 MHz, δ in ppm, CDCl3): δ = 3.70 (s, 3H), 3.75 (s, 2H), 3.80 (s, 3H), 6.15 (s, 1H), 6.35 (s, 1H) Step 3: Methyl (2-chloro-4-iodo-6-methoxyphenyl)acetate
Figure imgf000100_0001
A total of 6.50 g (28.3 mmol) of methyl (4-amino-2-chloro-6-methoxyphenyl) acetate were added to a solution of 15 ml (170 mmol) of concentrated hydrochloric acid in 50 ml of water between -5° C. and 0° C . A solution of 2.05 g (29.7 mmol) of sodium nitrite in 10 ml of water was then added dropwise between −5° C. and 0° C. and, after the addition was complete, stirring was continued for a further 30 min. Then 35 ml of ethyl acetate were added before a solution of 7.05 g (42.4 mmol) of potassium iodide in 15 ml of water was added dropwise between -5°C and 0°C. After the addition, the reaction mixture was stirred below 0° C. for 2 h. The reaction mixture was then extracted three times with 60 mL each of ethyl acetate. The combined organic phases were washed with saturated sodium thiosulphate solution, saturated sodium bicarbonate solution and saturated sodium chloride solution, dried over sodium sulphate and concentrated. The crude product was purified by chromatography on silica gel (ethyl acetate/heptane). 6.00 g (60%) of the desired intermediate were obtained. 1H NMR (600 MHz, δ in ppm, CDCl 3 ): δ = 3.70 (s, 3H), 3.75-3.85 (m, 5H), 7.10 (s, 1H), 7.40 (s, 1H) Step 4: Methyl [2-chloro-6-methoxy-4-(prop-1-en-1-yl)phenyl]acetate
Figure imgf000101_0001
0.72 g (5.29 mmol) of zinc chloride and 0.22 g (5.29 mmol) of lithium chloride were dissolved in 8 ml of tetrahydrofuran, and the resulting solution was cooled to 0°C. At this temperature, a total of 10.5 ml (5.29 mmol) of a commercially available 0.5M solution of 1-propenylmagnesium bromide in tetrahydrofuran were added dropwise with stirring. The mixture was allowed to come to room temperature, stirred for 1 hour, treated with 0.20 g (0.18 mmol) of tetrakis(triphenylphosphine)palladium(0) and then a solution of 1.00 g (2.94 mmol) of methyl-(2-chloro-4-iodo-) was added dropwise. 6-methoxyphenyl) acetate in 2 ml of tetrahydrofuran slowly. The mixture was subsequently stirred at 70° C. for 2 h. The solvent was removed in vacuo and the residue taken up in dichloromethane. The organic phase was washed with 1M hydrochloric acid and saturated sodium chloride solution, dried and concentrated in vacuo. The residue was chromatographed on silica gel (ethyl acetate/heptane). 0.42 g (54%) of the desired intermediate was obtained. Step 5: Methyl {2-chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}acetate (Example Q3.1)
Figure imgf000101_0002
A solution of 7.80 g (30.62 mmol) methyl [2-chloro-6-methoxy-4-(prop-1-en-1-yl)phenyl]acetate and 0.79 g (3.06 mmol) bis(acetonitrile)palladium (II) chloride in 61 ml of methylene chloride was stirred at room temperature for 4 h. The reaction mixture was diluted with diethyl ether, filtered through Celite and washed with a little diethyl ether. The solvent was removed in vacuo and the residue was chromatographed on silica gel (ethyl acetate/heptane). 7.20 g (87%) of the desired intermediate were obtained. Step 6: {2-Chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}acetic acid
Figure imgf000102_0001
To a solution of 7.20 g (28.27 mmol) of methyl {2-chloro-6-methoxy-4-[(1E)-prop-1-en-1-yl]phenyl}acetate in 150 ml of 2-propanol was added 3.97 g (70.67 mmol) of potassium hydroxide and heated under reflux for 3 hours. The solvent was removed in vacuo, taken up in water, cooled to 0°C and acidified to pH=1 with 2N hydrochloric acid. The solid which had precipitated out was filtered off with suction and dried under high vacuum. 6.70 g (94%) of the desired intermediate were obtained. The following compounds were prepared analogously
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001
Figure imgf000106_0001
A. Formulierungsbeispiele a) Ein Stäubemittel wird erhalten, indem man 10 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze und 90 Gew. Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert. b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I) und/oder deren Salze, 64 Gew. Teile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew. Teil oleoylmethyltaurinsaures Natrium als Netz und Dispergiermittel mischt und in einer Stiftmühle mahlt. c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze mit 6 Gew. Teilen Alkylphenolpolyglykolether (®Triton X 207), 3 Gew. Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew. Teilen paraffinischem Mineralöl (Siedebereich z.B. ca.255°C bis über 277° C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt. d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew. Teilen einer Verbindung der Formel (I) und/oder deren Salze, 75 Gew. Teilen Cyclohexanon als Lösungsmittel und 10 Gew. Teilen oxethyliertes Nonylphenol als Emulgator. e) Ein in Wasser dispergierbares Granulat wird erhalten indem man 75 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze, 10 Gew. Teile ligninsulfonsaures Calcium, 5 Gew. Teile Natriumlaurylsulfat, 3 Gew. Teile Polyvinylalkohol und 7 Gew. Teile Kaolin mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert. f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man 25 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze, 5 Gew. Teile 2,2' Dinaphthylmethan 6,6' disulfonsaures Natrium, 2 Gew. Teile oleoylmethyltaurinsaures Natrium, 1 Gew. Teil Polyvinylalkohol, 17 Gew. Teile Calciumcarbonat und 50 Gew. Teile Wasser auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet. B. Biologische Daten 1. Herbizide Wirkung bzw. Kulturpflanzenverträglichkeit im Nachauflauf Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen.2 bis 3 Wochen nach der Aussaat werden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha unter Zusatz von 0,2% Netzmittel auf die grünen Pflanzenteile gesprüht. Nach ca.3 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen). Unerwünschte Pflanzen / Weeds:
Figure imgf000108_0001
Tabelle 1a: Nachauflaufwirkung bei 20g/ha gegen ABUTH in %
Figure imgf000109_0001
Tabelle 1b: Nachauflaufwirkung bei 80g/ha gegen ABUTH in %
Figure imgf000109_0002
Tabelle 2a: Nachauflaufwirkung bei 20g/ha gegen ALOMY in %
Figure imgf000109_0003
Figure imgf000110_0001
Tabelle 2b: Nachauflaufwirkung bei 80g/ha gegen ALOMY in %
Figure imgf000110_0002
Figure imgf000111_0001
Tabelle 3a: Nachauflaufwirkung bei 20g/ha gegen AMARE in %
Figure imgf000111_0002
Tabelle 3b: Nachauflaufwirkung bei 80g/ha gegen AMARE in %
Figure imgf000111_0003
Tabelle 4a: Nachauflaufwirkung bei 20g/ha gegen ECHCG in %
Figure imgf000111_0004
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001
Figure imgf000106_0001
A. Formulation Examples a) A dust is obtained by mixing 10 parts by weight of a compound of the formula (I) and/or salts thereof and 90 parts by weight of talcum as an inert substance and comminuting in a hammer mill. b) A water-dispersible, wettable powder is obtained by mixing 25 parts by weight of a compound of the formula (I) and/or salts thereof, 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurine mixes as wetting and dispersing agent and grinds in a pin mill. c) A dispersion concentrate that is easily dispersible in water is obtained by mixing 20 parts by weight of a compound of the formula (I) and/or salts thereof with 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO ) and 71 parts by wt. d) An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I) and/or salts thereof, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier. e) A water-dispersible granulate is obtained by adding 75 parts by weight of a compound of the formula (I) and/or salts thereof, 10 parts by weight of calcium lignosulfonate, 5 parts by weight of sodium lauryl sulfate, 3 parts by weight of polyvinyl alcohol and 7 parts by weight Mixes parts of kaolin, grinds it in a pin mill and granulates the powder in a fluidized bed by spraying on water as the granulating liquid. f) A water-dispersible granulate is also obtained by adding 25 parts by weight of a compound of the formula (I) and/or salts thereof, 5 parts by weight of 2,2' dinaphthylmethane 6,6' sodium disulphonate, 2 parts by weight sodium oleoylmethyltaurine, 1 part by weight polyvinyl alcohol, 17 parts by weight calcium carbonate and 50 parts by weight water in a colloid mill and precomminuted, then on a Bead mill grinds and the resulting suspension is atomized in a spray tower using a single-component nozzle and dried. B. Biological data 1. Post-emergence herbicidal action or crop plant tolerance Seeds of monocotyledonous or dicotyledonous weeds or crop plants are placed in sandy loam soil in wood fiber pots, covered with soil and grown in the greenhouse under good growth conditions. 2 to 3 weeks after After sowing, the test plants are treated in the one-leaf stage. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), are then sprayed onto the green parts of the plant as an aqueous suspension or emulsion at a water application rate of the equivalent of 600 to 800 l/ha with the addition of 0.2% wetting agent . After the test plants have been standing for about 3 weeks in the greenhouse under optimal growth conditions, the effect of the preparations is scored visually in comparison to untreated controls (herbicidal effect in percent (%): 100% effect=plants have died, 0% effect=like control plants). Undesirable Plants / Weeds:
Figure imgf000108_0001
Table 1a: Post-emergence effect at 20g/ha against ABUTH in %
Figure imgf000109_0001
Table 1b: Post-emergence effect at 80g/ha against ABUTH in %
Figure imgf000109_0002
Table 2a: Post-emergence effect at 20g/ha against ALOMY in %
Figure imgf000109_0003
Figure imgf000110_0001
Table 2b: Post-emergence effect at 80g/ha against ALOMY in %
Figure imgf000110_0002
Figure imgf000111_0001
Table 3a: Post-emergence effect at 20g/ha against AMARE in %
Figure imgf000111_0002
Table 3b: Post-emergence effect at 80g/ha against AMARE in %
Figure imgf000111_0003
Table 4a: Post-emergence effect at 20g/ha against ECHCG in %
Figure imgf000111_0004
Figure imgf000112_0001
Tabelle 4b: Nachauflaufwirkung bei 80g/ha gegen ECHCG in %
Figure imgf000112_0002
Figure imgf000112_0001
Table 4b: Post-emergence effect at 80g/ha against ECHCG in %
Figure imgf000112_0002
Figure imgf000113_0001
Tabelle 5a: Nachauflaufwirkung bei 20g/ha gegen LOLRI in %
Figure imgf000113_0002
Tabelle 5b: Nachauflaufwirkung bei 80g/ha gegen LOLRI in %
Figure imgf000113_0003
Figure imgf000113_0001
Table 5a: Post-emergence effect at 20g/ha against LOLRI in %
Figure imgf000113_0002
Table 5b: Post-emergence effect at 80g/ha against LOLRI in %
Figure imgf000113_0003
Figure imgf000114_0001
Tabelle 6a: Nachauflaufwirkung bei 20g/ha gegen MATIN in %
Figure imgf000114_0002
Tabelle 6b: Nachauflaufwirkung bei 80g/ha gegen MATIN in %
Figure imgf000114_0003
Tabelle 7a: Nachauflaufwirkung bei 20g/ha gegen PHBPU in %
Figure imgf000115_0001
Tabelle 7b: Nachauflaufwirkung bei 80g/ha gegen PHBPU in %
Figure imgf000115_0002
Tabelle 8a: Nachauflaufwirkung bei 20g/ha gegen POLCO in %
Figure imgf000115_0003
Tabelle 8b: Nachauflaufwirkung bei 80g/ha gegen POLCO in %
Figure imgf000115_0004
Tabelle 9a: Nachauflaufwirkung bei 20g/ha gegen SETVI in %
Figure imgf000116_0001
Figure imgf000117_0001
Tabelle 9b: Nachauflaufwirkung bei 80g/ha gegen SETVI in %
Figure imgf000117_0002
Figure imgf000114_0001
Table 6a: Post-emergence effect at 20g/ha against MATIN in %
Figure imgf000114_0002
Table 6b: Post-emergence effect at 80g/ha against MATIN in %
Figure imgf000114_0003
Table 7a: Post-emergence effect at 20g/ha against PHBPU in %
Figure imgf000115_0001
Table 7b: Post-emergence effect at 80g/ha against PHBPU in %
Figure imgf000115_0002
Table 8a: Post-emergence effect at 20g/ha against POLCO in %
Figure imgf000115_0003
Table 8b: Post-emergence effect at 80g/ha against POLCO in %
Figure imgf000115_0004
Table 9a: Post-emergence effect at 20g/ha against SETVI in %
Figure imgf000116_0001
Figure imgf000117_0001
Table 9b: Post-emergence effect at 80g/ha against SETVI in %
Figure imgf000117_0002
Figure imgf000118_0001
Tabelle 10a: Nachauflaufwirkung bei 20g/ha gegen VERPE in %
Figure imgf000118_0002
Tabelle 10b: Nachauflaufwirkung bei 80g/ha gegen VERPE in %
Figure imgf000118_0003
Tabelle 11a: Nachauflaufwirkung bei 20g/ha gegen VIOTR in %
Figure imgf000118_0004
Tabelle 11b: Nachauflaufwirkung bei 80g/ha gegen VIOTR in %
Figure imgf000119_0001
Wie die Ergebnisse aus Tabelle 1a-11b zeigen, weisen die erfindungsgemäßen Verbindungen eine gute herbizide Nachauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf. Beispielsweise zeigen die aufgeführten Beispiele bei einer Aufwandmenge von 80 g/ha eine 80 - 100%-ige Wirkung unter anderem gegen Abutylon threophrasti, Alopecurus myosuroides, Amaranthus retroflexus, Echinochloa crus-galli, Lolium rigidum, Matricaria inodora, Pharbitis purpurea, Polygonum convolvulus, Setaria viridis, Veronica persica und Viola tricolor. Die erfindungsgemäßen Verbindungen eignen sich deshalb im Nachauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs.
Figure imgf000118_0001
Table 10a: Post-emergence effect at 20g/ha against VERPE in %
Figure imgf000118_0002
Table 10b: Post-emergence effect at 80g/ha against VERPE in %
Figure imgf000118_0003
Table 11a: Post-emergence effect at 20g/ha against VIOTR in %
Figure imgf000118_0004
Table 11b: Post-emergence effect at 80g/ha against VIOTR in %
Figure imgf000119_0001
As the results from Tables 1a-11b show, the compounds according to the invention have good post-emergence herbicidal activity against a broad spectrum of weed grasses and weeds. For example, at an application rate of 80 g/ha, the examples listed show an 80-100% effect against, among other things, Abutylon threophrasti, Alopecurus myosuroides, Amaranthus retroflexus, Echinochloa crus-galli, Lolium rigidum, Matricaria inodora, Pharbitis purpurea, Polygonum convolvulus, Setaria viridis, Veronica persica and Viola tricolor. The compounds according to the invention are therefore suitable for post-emergence control of undesired plant growth.
2. Herbizide Wirkung bzw. Kulturpflanzenverträglichkeit im Vorauflauf Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha unter Zusatz von 0,2% Netzmittel auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Die visuelle Bonitur der Schäden an den Versuchspflanzen erfolgt nach einer Versuchszeit von 3 Wochen im Vergleich zu unbehandelten Kontrollen (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen). Tabelle 12a: Vorauflaufwirkung bei 80g/ha gegen ABUTH in %
Figure imgf000120_0001
Tabelle 12b: Vorauflaufwirkung bei 320g/ha gegen ABUTH in %
Figure imgf000120_0002
Tabelle 13a: Vorauflaufwirkung bei 80g/ha gegen ALOMY in %
Figure imgf000120_0003
2. Herbicidal Action or Crop Plant Tolerance Prior to Emergence Seeds of monocotyledonous or dicotyledonous weed plants or crop plants are laid out in sandy loam soil in wood fiber pots and covered with soil. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), are then applied to the surface of the covering soil as an aqueous suspension or emulsion with a water application rate of the equivalent of 600 to 800 l/ha with the addition of 0.2% wetting agent applied. After treatment, the pots are placed in the greenhouse and maintained under good growth conditions for the test plants. The damage to the test plants is assessed visually after a test period of 3 weeks in comparison with untreated controls (herbicidal activity in percent (%): 100% activity=plants have died, 0% activity=like control plants). Table 12a: Pre-emergence effect at 80g/ha against ABUTH in %
Figure imgf000120_0001
Table 12b: Pre-emergence effect at 320g/ha against ABUTH in %
Figure imgf000120_0002
Table 13a: Pre-emergence effect at 80g/ha against ALOMY in %
Figure imgf000120_0003
Figure imgf000121_0001
Tabelle 13b: Vorauflaufwirkung bei 320g/ha gegen ALOMY in %
Figure imgf000121_0002
Figure imgf000121_0001
Table 13b: Pre-emergence effect at 320g/ha against ALOMY in %
Figure imgf000121_0002
Figure imgf000122_0001
Tabelle 14a: Vorauflaufwirkung bei 80g/ha gegen AMARE in %
Figure imgf000122_0002
Tabelle 14b: Vorauflaufwirkung bei 320g/ha gegen AMARE in %
Figure imgf000122_0003
Tabelle 15a: Vorauflaufwirkung bei 80g/ha gegen AVEFA in %
Figure imgf000123_0001
Tabelle 15b: Vorauflaufwirkung bei 320g/ha gegen AVEFA in %
Figure imgf000123_0002
Tabelle 16a: Vorauflaufwirkung bei 80g/ha gegen ECHCG in %
Figure imgf000124_0001
Tabelle 16b: Vorauflaufwirkung bei 320g/ha gegen ECHCG in %
Figure imgf000124_0002
Figure imgf000122_0001
Table 14a: Pre-emergence effect at 80g/ha against AMARE in %
Figure imgf000122_0002
Table 14b: Pre-emergence effect at 320g/ha against AMARE in %
Figure imgf000122_0003
Table 15a: Pre-emergence effect at 80g/ha against AVEFA in %
Figure imgf000123_0001
Table 15b: Pre-emergence effect at 320g/ha against AVEFA in %
Figure imgf000123_0002
Table 16a: Pre-emergence effect at 80g/ha against ECHCG in %
Figure imgf000124_0001
Table 16b: Pre-emergence effect at 320g/ha against ECHCG in %
Figure imgf000124_0002
Figure imgf000125_0001
Tabelle 17a: Vorauflaufwirkung bei 80g/ha gegen LOLRI in %
Figure imgf000125_0002
Tabelle 17b: Vorauflaufwirkung bei 320g/ha gegen LOLRI in %
Figure imgf000125_0003
Figure imgf000125_0001
Table 17a: Pre-emergence effect at 80g/ha against LOLRI in %
Figure imgf000125_0002
Table 17b: Pre-emergence effect at 320g/ha against LOLRI in %
Figure imgf000125_0003
Figure imgf000126_0001
Tabelle 18a: Vorauflaufwirkung bei 80g/ha gegen MATIN in %
Figure imgf000126_0002
Tabelle 18b: Vorauflaufwirkung bei 320g/ha gegen MATIN in %
Figure imgf000127_0001
Tabelle 19a: Vorauflaufwirkung bei 80g/ha gegen PHBPU in %
Figure imgf000127_0002
Tabelle 19b: Vorauflaufwirkung bei 320g/ha gegen PHBPU in %
Figure imgf000127_0003
Tabelle 20a: Vorauflaufwirkung bei 80g/ha gegen POLCO in %
Figure imgf000127_0004
Tabelle 20b: Vorauflaufwirkung bei 320g/ha gegen POLCO in %
Figure imgf000128_0001
Tabelle 21a: Vorauflaufwirkung bei 80g/ha gegen SETVI in %
Figure imgf000128_0002
Tabelle 21b: Vorauflaufwirkung bei 320g/ha gegen SETVI in %
Figure imgf000128_0003
Figure imgf000126_0001
Table 18a: Pre-emergence effect at 80g/ha against MATIN in %
Figure imgf000126_0002
Table 18b: Pre-emergence effect at 320g/ha against MATIN in %
Figure imgf000127_0001
Table 19a: Pre-emergence effect at 80g/ha against PHBPU in %
Figure imgf000127_0002
Table 19b: Pre-emergence effect at 320g/ha against PHBPU in %
Figure imgf000127_0003
Table 20a: Pre-emergence effect at 80g/ha against POLCO in %
Figure imgf000127_0004
Table 20b: Pre-emergence effect at 320g/ha against POLCO in %
Figure imgf000128_0001
Table 21a: Pre-emergence effect at 80g/ha against SETVI in %
Figure imgf000128_0002
Table 21b: Pre-emergence effect at 320g/ha against SETVI in %
Figure imgf000128_0003
Figure imgf000129_0001
Tabelle 22a: Vorauflaufwirkung bei 80g/ha gegen VERPE in %
Figure imgf000129_0002
Tabelle 22b: Vorauflaufwirkung bei 320g/ha gegen VERPE in %
Figure imgf000130_0001
Tabelle 23a: Vorauflaufwirkung bei 80g/ha gegen VIOTR in %
Figure imgf000130_0002
Tabelle 23b: Vorauflaufwirkung bei 320g/ha gegen VIOTR in %
Figure imgf000130_0003
Wie die Ergebnisse aus der Tabelle 12a-23b zeigen, weisen die erfindungsgemäßen Verbindungen eine gute herbizide Vorauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf. Beispielsweise zeigen die Verbindungen bei einer Aufwandmenge von 80 g/ha jeweils eine 80 - 100%-ige Wirkung unter anderem gegen Abutylon threophrasti, Alopecurus myosuroides, Amaranthus retroflexus, Avena fatua, Echinochloa crus- galli, Lolium rigidum, Matricaria inodora, Pharbitis purpurea, Polygonum convolvulus, Setaria viridis, Veronica persica und Viola tricolor. Die erfindungsgemäßen Verbindungen eignen sich deshalb im Vorauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs.
Figure imgf000129_0001
Table 22a: Pre-emergence effect at 80g/ha against VERPE in %
Figure imgf000129_0002
Table 22b: Pre-emergence effect at 320g/ha against VERPE in %
Figure imgf000130_0001
Table 23a: Pre-emergence effect at 80g/ha against VIOTR in %
Figure imgf000130_0002
Table 23b: Pre-emergence effect at 320g/ha against VIOTR in %
Figure imgf000130_0003
As the results from Tables 12a-23b show, the compounds according to the invention have a good pre-emergence herbicidal activity against a broad spectrum of weed grasses and weeds. For example, at an application rate of 80 g/ha, the compounds each show an 80-100% activity against, inter alia, Abutylon threophrasti, Alopecurus myosuroides, Amaranthus retroflexus, Avena fatua, Echinochloa crusgalli, Lolium rigidum, Matricaria inodora, Pharbitis purpurea, Polygonum convolvulus, Setaria viridis, Veronica persica and Viola tricolor. The compounds according to the invention are therefore suitable in the pre-emergence method for combating undesired plant growth.

Claims

Patentansprüche 1. 3-Phenylpyrrolin-2-one der allgemeinen Formel (I),
Figure imgf000132_0002
oder ein agrochemisch akzeptables Salz davon, wobei R1 (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C1-C6)-Alkoxy, Halogen-(C1-C6)-alkoxy, (C1-C4)- Alkoxy-(C1-C4)-alkyl, Halogen-(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-Alkoxy-(C1-C4)- alkoxy, Halogen-(C1-C6)-alkoxy-(C2-C4)-alkoxy, (C3-C6)-Cycloalkyl, (C2-C6)-Alkenyloxy, Halogen-(C2-C6)-alkenyloxy, (C2-C6)-Alkinyloxy oder Cyano-(C1-C6)-alkoxy ist, R2 Wasserstoff, (C1-C6)-Alkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkyl-(C1-C4)-alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C1-C6)- Alkoxy oder Halogen-(C1-C6)-alkoxy ist, X (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy, Brom, Chlor oder Fluor ist, Y (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy ist, R10 Wasserstoff, R11 Fluor, (C1-C6)-Alkyl oder Halogen-(C1-C6)-alkyl ist, R12 Wasserstoff, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000132_0001
worin R3 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C1-C4)-alkyl ist, R4 (C1-C4)-Alkyl ist, R5 (C1-C4)-Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C1-C4)-Alkoxy, (C1-C4)-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl ist, R6, R6‘ unabhängig voneinander Methoxy oder Ethoxy ist, R7, R8 jeweils unabhängig voneinander Methyl, Ethyl, Phenyl ist, oder gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten 5-, 6- oder 7-gliedrigen Ring bilden, wobei ein Ringkohlenstoffatom gegebenenfalls durch ein Sauerstoff- oder Schwefelatom ersetzt sein kann, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)-Alkyl oder (C3-C7)- Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion ist, beispielsweise Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4-Diazabicyclo[1.1.2]octane (DABCO) oder 1,5-Diazabicyclo[4.3.0]undec-7-en (DBU), ein heteroaromatisches Ammoniumkation ist, beispielsweise jeweils protoniertes Pyridin, 2-Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Dimethylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1,2-Dimethylimidazol, 1,3- Dimethylimidazolium-methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion steht. 2. Verbindungen der Formel (I) gemäß Anspruch 1 oder ein agrochemisch akzeptables Salz davon, worin R1 (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C1-C6)-Alkoxy, Halogen-(C1-C6)-alkoxy, (C1-C4)- Alkoxy-(C1-C4)-alkyl, Halogen-(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-Alkoxy-(C2-C4)- alkoxy, Halogen-(C1-C6)-alkoxy-(C2-C4)-alkoxy, (C3-C6)-Cycloalkyl, (C2-C6)-Alkenyloxy, Halogen-(C2-C6)-alkenyloxy, (C2-C6)-Alkinyloxy oder Cyano-(C1-C6)-alkoxy ist, R2 Wasserstoff, (C1-C6)-Alkyl, (C1-C4)-Alkoxy-(C2-C4)-alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)- Cycloalkyl, (C2-C6)-Alkenyl oder (C2-C6)-Alkinyl, (C1-C4)-Alkoxy oder Halogen-(C1-C4)- alkoxy ist, X (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy, Brom, Chlor oder Fluor ist, Y (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy ist, R10 Wasserstoff, R11 Fluor, (C1-C6)-Alkyl oder Halogen-(C1-C6)-alkyl ist, R12 Wasserstoff, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000134_0001
worin R3 (C1-C4)-Alkyl oder (C1-C3)-Alkoxy-(C1-C4)-alkyl ist, R4 (C1-C4)-Alkyl ist, R5 (C1-C4)-Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl oder (C1-C4)-Alkoxy substituiertes Phenyl ist, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)-Alkyl oder (C3-C7)- Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion ist, beispielsweise Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4-Diazabicyclo[1.1.2]octane (DABCO) oder 1,5-Diazabicyclo[4.3.0]undec-7-en (DBU), ein heteroaromatisches Ammoniumkation ist, beispielsweise jeweils protoniertes Pyridin, 2-Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Dimethylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1,
Claims 1. 3-phenylpyrrolin-2-ones of the general formula (I),
Figure imgf000132_0002
or an agrochemically acceptable salt thereof, wherein R 1 is (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl, (C 1 -C 6 )alkoxy, halo(C 1 -C 6 )-alkoxy, (C 1 -C 4 )- alkoxy-(C 1 -C 4 )-alkyl, halo-(C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, (C 1 - C 6 alkoxy(C 1 -C 4 )alkoxy, halo(C 1 -C 6 )alkoxy(C 2 -C 4 )alkoxy, (C 3 -C 6 )cycloalkyl, (C C 2 -C 6 )alkenyloxy, halo-(C 2 -C 6 )alkenyloxy, (C 2 -C 6 )alkynyloxy or cyano-(C 1 -C 6 )alkoxy, R 2 is hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 4 )alkoxy(C 1 -C 4 )alkyl, halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, ( C 3 -C 6 cycloalkyl(C 1 -C 4 )alkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl, (C 1 -C 6 )alkoxy or halogen -(C 1 -C 6 )alkoxy, X is (C 1 -C 6 )alkyl, halo-(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 1 -C 6 )alkyl 6 )-alkoxy, halo-(C 1 -C 6 )-alkoxy, bromine, chlorine or fluorine, Y is (C 1 -C 6 )-alkyl, halo-(C 1 -C 6 )-alkyl, (C 3 -C 6 )cycloalkyl, (C 1 -C 6 )alkoxy, halo-(C 1 -C 6 )alkoxy, R 10 is hydrogen, R 11 is fluorine, (C 1 -C 6 )alkyl or halo(C 1 -C 6 )alkyl, R 12 is hydrogen, G is hydrogen, a leaving group L or a cation E, where L is one of the following residues
Figure imgf000132_0001
wherein R 3 is (C 1 -C 4 )alkyl or (C 1 -C 3 )alkoxy(C 1 -C 4 )alkyl, R 4 is (C 1 -C 4 )alkyl, R 5 is (C C 1 -C 4 )-alkyl, an unsubstituted phenyl or a mono- or polysubstituted halogen, (C 1 -C 4 )-alkyl, (C 1 -C 4 )-haloalkyl, (C 1 -C 4 )-alkoxy, ( C 1 -C 4 )-haloalkoxy, nitro or cyano-substituted phenyl, R 6 , R 6 'is independently methoxy or ethoxy, R 7, R 8 are each independently methyl, ethyl, phenyl, or together with the nitrogen atom, to which they are attached form a saturated 5-, 6- or 7-membered ring wherein a ring carbon atom may optionally be replaced by an oxygen or sulfur atom, E is an alkali metal ion, an ionic equivalent of an alkaline earth metal, an ionic equivalent of aluminum, an ionic equivalent of a Transition metal, a magnesium-halogen cation or an ammonium ion, in which optionally one, two, three or all four hydrogen atoms are replaced by identical or different radicals from d en groups (C 1 -C 10 ) alkyl or (C 3 -C 7 ) - cycloalkyl, each independently mono- or poly-substituted by fluorine, chlorine, bromine, cyano, hydroxy or by one or more oxygen or Sulfur atoms can be interrupted, is a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion, for example morpholinium, thiomorpholinium, piperidinium, pyrrolidinium or in each case protonated 1,4-diazabicyclo[1.1.2]octane (DABCO) or 1,5-diazabicyclo[4.3. 0]undec-7-ene (DBU), is a heteroaromatic ammonium cation, e.g. protonated pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, respectively , 5-ethyl-2-methylpyridine, collidine, pyrrole, imidazole, quinoline, quinoxaline, 1,2-dimethylimidazole, 1,3-dimethylimidazolium methyl sulfate or also a trimethylsulfonium ion. 2. Compounds of formula (I) according to claim 1 or an agrochemically acceptable salt thereof, wherein R 1 is (C 1 -C 6 )-alkyl, halo-(C 1 -C 6 )-alkyl, (C 1 -C 6 ) -Alkoxy, halo-(C 1 -C 6 )alkoxy, (C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, halo-(C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, (C 1 -C 6 )alkoxy-(C 2 -C 4 )alkoxy, halo-(C 1 -C 6 )alkoxy-(C 2 -C 4 )alkoxy, ( C 3 -C 6 )cycloalkyl, (C 2 -C 6 )alkenyloxy, halo-(C 2 -C 6 )alkenyloxy, (C 2 -C 6 )alkynyloxy or cyano-(C 1 -C 6 ) -alkoxy is R 2 is hydrogen, (C 1 -C 6 )alkyl, (C 1 -C 4 )alkoxy(C 2 -C 4 )alkyl, halo(C 1 -C 6 )alkyl, (C 3 - C 6 )cycloalkyl, (C 2 -C 6 )alkenyl or (C 2 -C 6 )alkynyl, (C 1 -C 4 )alkoxy or halo-(C 1 -C 4 )alkoxy, X (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 1 -C 6 )alkoxy, halo(C 1 -C 6 ). )-alkoxy, bromo, chloro or fluoro, Y is (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 1 -C 6 ). )-alkoxy, halo-(C 1 -C 6 )-alkoxy, R 10 is hydrogen, R 11 is fluorine, (C 1 -C 6 )-alkyl or halo-(C 1 -C 6 )-alkyl, R 12 hydrogen, G is hydrogen, a leaving group L or a cation E, where L is one of the following radicals
Figure imgf000134_0001
wherein R 3 is (C 1 -C 4 )alkyl or (C 1 -C 3 )alkoxy(C 1 -C 4 )alkyl, R 4 is (C 1 -C 4 )alkyl, R 5 is ( C 1 -C 4 )-alkyl, an unsubstituted phenyl or one substituted one or more times by halogen, (C 1 -C 4 )-alkyl, (C 1 -C 4 )-haloalkyl or (C 1 -C 4 )-alkoxy Phenyl is E, an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion in which optionally one, two, three or all four hydrogen atoms are replaced by the same or different Radicals from the groups (C 1 -C 10 )-alkyl or (C 3 -C 7 )-cycloalkyl which are each independently substituted one or more times by fluorine, chlorine, bromine, cyano, hydroxy or by one or more oxygen - or sulfur atoms may be interrupted, is a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion, for example morpholinium, thiomorph olinium, piperidinium, pyrrolidinium or each protonated 1,4-diazabicyclo[1.1.2]octane (DABCO) or 1,5-diazabicyclo[4.3.0]undec-7-ene (DBU), is a heteroaromatic ammonium cation, for example each protonated pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 5-ethyl-2-methylpyridine, collidine, pyrrole, imidazole, quinoline, quinoxaline, 1,
2-Dimethylimidazol, 1,3- Dimethylimidazolium-methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion steht. 2-dimethylimidazole, 1,3-dimethylimidazolium methyl sulfate or also a trimethylsulfonium ion.
3. Verbindungen der Formel (I) gemäß Anspruch 1 oder 2 oder ein agrochemisch akzeptables Salz davon, worin R1 (C1-C6)-Alkyl, (C1-C6)-Alkoxy, Halogen-(C1-C6)-alkoxy, (C1-C4)-Alkoxy-(C1-C4)-alkyl oder (C1-C6)-Alkoxy-(C2-C4)-alkoxy ist, R2 Wasserstoff, (C1-C4)-Alkyl, Methoxyethyl , Ethoxyethyl, Halogen-(C1-C2)-alkyl, Cyclopropyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, ist, X (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, Halogen-(C1- C6)-alkoxy, Brom, Chlor oder Fluor ist, Y (C1-C6)-Alkyl, Halogen-(C1-C6)-alkyl oder (C1-C6)-Alkoxy ist, R10 Wasserstoff ist, R11 (C1-C6)-Alkyl oder Halogen-(C1-C6)-alkyl ist, R12 Wasserstoff ist G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000135_0001
worin R3 (C1-C4)-Alkyl oder (C1-C2)-Alkoxy-(C1-C2)-Alkyl ist, R4 (C1-C4)-Alkyl ist, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen (C1-C10)-Alkyl oder (C3-C7)- Cycloalkyl.
3. Compounds of formula (I) according to claim 1 or 2 or an agrochemically acceptable salt thereof, wherein R 1 is (C 1 -C 6 )-alkyl, (C 1 -C 6 )-alkoxy, halo-(C 1 -C 6 )-alkoxy, (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl or (C 1 -C 6 )-alkoxy-(C 2 -C 4 )-alkoxy, R 2 is hydrogen, (C 1 -C 4 )alkyl, methoxyethyl, ethoxyethyl, halo-(C 1 -C 2 )alkyl, cyclopropyl, (C 2 -C 4 )alkenyl, (C 2 -C 4 )alkynyl, X (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 1 -C 6 )alkoxy, halo(C 1 -C 6 ) 6 )-alkoxy, bromo, chloro or fluoro, Y is (C 1 -C 6 )alkyl, halo(C 1 -C 6 )alkyl or (C 1 -C 6 )alkoxy, R 10 is hydrogen , R 11 is (C 1 -C 6 )-alkyl or halo(C 1 -C 6 )-alkyl, R 12 is hydrogen, G is hydrogen, a leaving group L or a cation E, where L is one of the following radicals
Figure imgf000135_0001
wherein R 3 is (C 1 -C 4 )alkyl or (C 1 -C 2 )alkoxy(C 1 -C 2 )alkyl, R 4 is (C 1 -C 4 )alkyl, E is an alkali metal ion , an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion in which optionally one, two, three or all four hydrogen atoms have been replaced by identical or different radicals from groups (C C 1 -C 10 )alkyl or (C 3 -C 7 )cycloalkyl.
4. Verbindungen der Formel (I) mach einem der Ansprüche 1 bis 3 oder ein agrochemisch akzeptables Salz davon, worin R1 Methoxy, Ethoxy oder Methoxyethoxy ist, R2 Wasserstoff oder Methyl ist, X Methyl, Ethyl, Brom oder Chlor ist, Y Methyl, Ethyl oder Methoxy ist, R10 Wasserstoff ist, R11 Methyl oder Trifluoromethyl ist, R12 Wasserstoff ist, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000136_0001
worin R3 Methyl, Ethyl, i-Propyl oder t-Butyl ist, R4 Methyl oder Ethyl ist, E ein Natriumion oder ein Kaliumion ist.
4. Compounds of formula (I) as claimed in any one of claims 1 to 3, or an agrochemically acceptable salt thereof, wherein R 1 is methoxy, ethoxy or methoxyethoxy, R 2 is hydrogen or methyl, X is methyl, ethyl, bromo or chloro, Y R 10 is hydrogen, R 11 is methyl or trifluoromethyl, R 12 is hydrogen, G is hydrogen, a leaving group L or a cation E, where L is one of the following radicals
Figure imgf000136_0001
wherein R 3 is methyl, ethyl, i-propyl or t-butyl, R 4 is methyl or ethyl, E is a sodium ion or a potassium ion.
5. Verfahren zur Herstellung der Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon gemäß einem der Ansprüche 1 bis 4, indem man a) eine Verbindung der allgemeinen Formel (II), 5. A process for the preparation of the compounds of formula (I) or an agrochemically acceptable salt thereof according to any one of claims 1 to 4 by a) a compound of general formula (II),
Figure imgf000137_0001
in welcher R1, R2, X, Y, R10, R11 und R12 wie in einem der Ansprüche 1 bis 4 definiert sind und R9 für Alkyl steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels, mit einer geeigneten Base unter formaler Abspaltung der Gruppe R9OH cyclisiert, oder b) eine Verbindung der allgemeinen Formel (Ia),
Figure imgf000137_0003
in der R1, R2, X, Y, R10, R11 und R12 wie in einem der Ansprüche 1 bis 4 definiert sind, mit einer Verbindung der allgemeinen Formel (III), Hal-L (III) in der L die oben angegebene Bedeutung hat und Hal für ein Halogen, oder eine Sulfonsäuregruppe stehen kann, in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels sowie einer geeigneten Base, zur Reaktion bringt oder (c) indem man Verbindungen der allgemeinen Formel (IV),
Figure imgf000137_0002
in der R1, R2, G, X und Y wie in einem der Ansprüche 1 bis 4 definiert sind und U für eine geeignete Abgangsgruppe steht, mit einem geeigneten Alkenyl-Reagenz der allgemeinen Formel (V),
Figure imgf000138_0001
in der Z für eine geeignete Abgangsgruppe steht und R10, R11 und R12 wie in einem der Ansprüche 1 bis 4 definiert sind, gegebenenfalls in Gegenwart geeigneter Katalysatoren und einer geeigneten Base, umsetzt.
Figure imgf000138_0002
in welcher X, Y, R10, R11 und R12 wie in einem der Ansprüche 1 bis 4 definiert sind. 7. Verbindungen der Formel (XII),
Figure imgf000139_0001
in welcher X, Y, R10, R11 und R12 wie in einem der Ansprüche 1 bis 4 definiert sind. 8. Agrochemisches Mittel, enthaltend a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, und b) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe. 9. Agrochemisches Mittel, enthaltend a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, b) einen oder mehrere von Komponente a) verschiedene agrochemische Wirkstoffe, und optional c) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe. 10. Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, wobei eine wirksame Menge mindestens einer Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, auf die Pflanzen, das Saatgut oder die Fläche, auf der die Pflanzen wachsen, appliziert wird. 11. Verwendung von Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, als Herbizide oder Pflanzenwachstumsregulatoren. 12. Verwendung nach Anspruch 11, wobei die Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung in Pflanzenkulturen eingesetzt werden. 13. Verwendung nach Anspruch 12, wobei die Kulturpflanzen transgene oder nicht transgene Kulturpflanzen sind.
Figure imgf000137_0001
in which R 1 , R 2 , X, Y, R 10 , R 11 and R 12 are as defined in any one of claims 1 to 4 and R 9 is alkyl, optionally in the presence of a suitable solvent or diluent, with a suitable Base cyclized with formal elimination of the group R 9 OH, or b) a compound of the general formula (Ia),
Figure imgf000137_0003
in which R 1 , R 2 , X, Y, R 10 , R 11 and R 12 are as defined in any one of claims 1 to 4, with a compound of general formula (III), Hal-L (III) in the L has the meaning given above and Hal can represent a halogen or a sulfonic acid group, in the presence of a suitable solvent or diluent and a suitable base, or (c) by reacting compounds of the general formula (IV),
Figure imgf000137_0002
in which R 1 , R 2 , G, X and Y are as defined in any one of claims 1 to 4 and U represents a suitable leaving group, with a suitable alkenyl reagent of general formula (V),
Figure imgf000138_0001
in which Z is a suitable leaving group and R 10 , R 11 and R 12 are as defined in any one of claims 1 to 4, optionally in the presence of suitable catalysts and a suitable base.
Figure imgf000138_0002
in which X, Y, R 10 , R 11 and R 12 are as defined in any one of claims 1 to 4. 7. Compounds of formula (XII),
Figure imgf000139_0001
in which X, Y, R 10 , R 11 and R 12 are as defined in any one of claims 1 to 4. 8. An agrochemical composition containing a) at least one compound of the formula (I) or an agrochemically acceptable salt thereof, as defined in one or more of claims 1 to 4, and b) auxiliaries and additives customary in crop protection. 9. An agrochemical composition containing a) at least one compound of the formula (I) or an agrochemically acceptable salt thereof, as defined in one or more of claims 1 to 4, b) one or more agrochemical active ingredients other than component a), and optionally c) auxiliaries and additives customary in crop protection. 10. A method for controlling unwanted plants or for regulating the growth of plants, wherein an effective amount of at least one compound of formula (I) or an agrochemically acceptable salt thereof, as defined in one or more of claims 1 to 4, on the plants, the Seed or the area on which the plants are growing is applied. 11. Use of compounds of formula (I) or an agrochemically acceptable salt thereof as defined in one or more of claims 1 to 4 as herbicides or plant growth regulators. 12. Use according to claim 11, where the compounds of the formula (I) or an agrochemically acceptable salt thereof are used for controlling harmful plants or for regulating growth in plant cultures. 13. Use according to claim 12, wherein the crop plants are transgenic or non-transgenic crop plants.
PCT/EP2022/067333 2021-06-29 2022-06-24 3-(4-alkenyl-phenyl)-3-pyrrolino-2-ones and their use as herbicides WO2023274869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21182250 2021-06-29
EP21182250.7 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023274869A1 true WO2023274869A1 (en) 2023-01-05

Family

ID=76707986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/067333 WO2023274869A1 (en) 2021-06-29 2022-06-24 3-(4-alkenyl-phenyl)-3-pyrrolino-2-ones and their use as herbicides

Country Status (1)

Country Link
WO (1) WO2023274869A1 (en)

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906507A1 (en) 1979-02-20 1980-08-28 Bayer Ag Plant growth regulating compsn. - contg. alpha amino cyclo:alkanoic acid derivs., e.g. for dwarfing cereals
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
EP0030287A1 (en) 1979-11-29 1981-06-17 Bayer Ag 1-Aminocyclopropanecarboxylic acid derivatives, methods for their production, their use as plant-growth regulators and compositions containing such derivatives
EP0086750A2 (en) 1982-02-17 1983-08-24 Ciba-Geigy Ag Use of quinoline derivatives in the protection of crop plants
EP0094349A2 (en) 1982-05-07 1983-11-16 Ciba-Geigy Ag Use of quinoline derivatives for the protection of cultivated plants
EP0131624A1 (en) 1983-01-17 1985-01-23 Monsanto Co Plasmids for transforming plant cells.
DE3335514A1 (en) 1983-09-30 1985-04-18 Bayer Ag, 5090 Leverkusen 1-METHYLAMINO-CYCLOPROPAN-1-CARBONIC ACID DERIVATIVES
JPS6087254A (en) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The Novel urea compound and herbicide containing the same
EP0142924A2 (en) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insect resistant plants
EP0174562A2 (en) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Plant protecting agents based on 1,2,4 - triazole derivatives as well as 1,2,4-triazole derivatives
EP0191736A2 (en) 1985-02-14 1986-08-20 Ciba-Geigy Ag Use of quinoline derivatives for the protection of crop plants
EP0193259A1 (en) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifying plants by genetic engineering to combat or control insects
EP0221044A1 (en) 1985-10-25 1987-05-06 Monsanto Company Novel plant vectors
EP0242236A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
EP0257993A2 (en) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0268554A2 (en) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenyl pyrazole-3-carbonic-acid derivatives for the protection of cultured plants
EP0269806A1 (en) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazole carbonic acid derivatives, their preparation and use as plant growth regulators and antidotes
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
EP0305398A1 (en) 1986-05-01 1989-03-08 Honeywell Inc Multiple integrated circuit interconnection arrangement.
EP0309862A1 (en) 1987-09-30 1989-04-05 Bayer Ag Stilbene synthase gene
EP0333131A1 (en) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Plant protective agent based on pyrazolecarboxylic acid derivatives
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
EP0346620A1 (en) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft Plant protection agents containing 1,2,4-triazole derivatives, and the 1,2,4-triazole derivatives
EP0355599A1 (en) 1988-08-20 1990-02-28 Bayer Ag 3-Aryl-pyrrolidine-2,4-diones
EP0365484A1 (en) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoyl phenyl ureas
EP0377893A2 (en) 1989-01-07 1990-07-18 Bayer Ag 3-Aryl-pyrrolidine-2,4-dione derivatives
EP0415211A2 (en) 1989-09-01 1991-03-06 Bayer Ag 3-Aryl-pyrrolidin-2,4-dione derivatives
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1991008202A1 (en) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazolines, method of preparation thereof, and their use as plant-protection agents
WO1991007874A1 (en) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazolines for the protection of crops against herbicides
EP0442077A2 (en) 1990-02-14 1991-08-21 Bayer Ag 3-Aryl-pyrrolidine-2,4-dione derivatives as insecticides and herbicides
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
EP0464461A2 (en) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase gene of grapevine
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
US5123951A (en) 1986-03-31 1992-06-23 Rhone-Poulenc Nederland B.V. Synergistic plant growth regulator compositions
EP0492366A2 (en) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH New 5-chloroquinolin-8-oxyalkanecarbonic acid derivatives, process for their preparation and their use as antidotes for herbicides
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
EP0582198A2 (en) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituted (hetero-)aryle compounds, process for their preparation, those containing compositions and their use as safeners
WO1995007897A1 (en) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituted isoxazolines, process for producing them, agents containing them and their use as safeners
WO1996038567A2 (en) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Dna sequence of a gene of hydroxy-phenyl pyruvate dioxygenase and production of plants containing a gene of hydroxy-phenyl pyruvate dioxygenase and which are tolerant to certain herbicides
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997045016A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Novel n-acyl sulphonamides, novel mixtures of herbicides and antidotes and their use
WO1998005638A2 (en) 1996-08-05 1998-02-12 Bayer Aktiengesellschaft 2- and 2,5-substituted phenylketoenols
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (en) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Novel 2-fluoroacrylic acid derivatives, novel mixtures of herbicides and antidotes and the use thereof
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (en) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolyl carbonyl)-2-quinolones and products for protecting useful plants containing the same
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
WO1999016744A1 (en) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoyl benzoic acid amides, plant protection agents containing said acylsulfamoyl benzoic acid amides, and method for producing the same
WO1999024585A1 (en) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Mutated hydroxy-phenyl pyruvate dioxygenase, dna sequence and method for obtaining herbicide-tolerant plants containing such gene
WO1999034008A1 (en) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Method for enzymatic preparation of homogentisate
WO1999057965A1 (en) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylurea-tolerant sugar beet mutants
JP2000053670A (en) 1998-08-10 2000-02-22 Ube Ind Ltd Alkoxymethylfranone derivative and pest control agent
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001074770A1 (en) 2000-04-03 2001-10-11 Bayer Cropscience Ag C2 phenyl-substituted cyclic keto-enols used as pesticides and herbicides
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2002036787A2 (en) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Herbicide-tolerant plants through bypassing metabolic pathway
WO2002046387A2 (en) 2000-12-07 2002-06-13 Syngenta Limited Plant derived hydroxy phenyl pyruvate dioxygenases (hppd) resistant against triketone herbicides and transgenic plants containing these dioxygenases
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2004024928A2 (en) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Transformed plants with enhanced prenylquinone biosynthesis
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
WO2004084631A1 (en) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Use of aromatic hydroxy compounds as safeners
WO2005015994A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Use of aromatic compounds as safeners
WO2005016001A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener based on aromatic-aliphatic carboxylic acid derivatives
WO2005044796A1 (en) 2003-11-05 2005-05-19 Bayer Cropscience Aktiengesellschaft 2-halogen-6-alkyl-phenyl substituted spirocyclic tetramic acid derivatives
WO2005112630A1 (en) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Quinoxalin-2-one derivatives crop protection agents comprising the same and method for production and use therof
WO2006000355A1 (en) 2004-06-25 2006-01-05 Bayer Cropscience Aktiengesellschaft 3'-alkoxy spirocyclic tetramic and tetronic acids
WO2007023764A1 (en) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reduction of harmful effect of herbicide and herbicide composition having reduced harmful effect
WO2007023719A1 (en) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reducing chemical injury and herbicide composition with reduced chemical injury
WO2007103567A2 (en) 2006-03-09 2007-09-13 E. I. Dupont De Nemours & Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
WO2008131860A2 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridonecarboxamides crop protection agents containing the same method for production and use thereof
WO2008131861A1 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Use of pyridine-2-oxy-3-carbonamides as safeners
WO2008150473A2 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
WO2009144079A1 (en) 2008-04-14 2009-12-03 Bayer Bioscience N.V. New mutated hydroxyphenylpyruvate dioxygenase, dna sequence and isolation of plants which are tolerant to hppd inhibitor herbicides
CN101838227A (en) 2010-04-30 2010-09-22 孙德群 Safener of benzamide herbicide
WO2010115780A1 (en) 2009-04-08 2010-10-14 Syngenta Participations Ag Spiroheterocyclic pyrrolidine dione derivatives used as pesticides
EP2248421A1 (en) 2009-05-07 2010-11-10 GMI - Gregor-Mendel-Institut für Molekulare Pflanzenbiologie GmbH Accumulation of biomass in plants
WO2015032702A1 (en) 2013-09-06 2015-03-12 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl- phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015040114A1 (en) 2013-09-20 2015-03-26 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl-phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2017060203A1 (en) 2015-10-06 2017-04-13 Bayer Cropscience Aktiengesellschaft New alkynyl-substituted 3-phenylpyrrolidine-2,4-diones and use thereof as herbicides
WO2019219587A1 (en) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
WO2021204884A1 (en) * 2020-04-09 2021-10-14 Bayer Aktiengesellschaft 3-(4-alkenyl-phenyl)-3-pyrrolin-2-ones and their use as herbicides

Patent Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906507A1 (en) 1979-02-20 1980-08-28 Bayer Ag Plant growth regulating compsn. - contg. alpha amino cyclo:alkanoic acid derivs., e.g. for dwarfing cereals
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
EP0030287A1 (en) 1979-11-29 1981-06-17 Bayer Ag 1-Aminocyclopropanecarboxylic acid derivatives, methods for their production, their use as plant-growth regulators and compositions containing such derivatives
EP0086750A2 (en) 1982-02-17 1983-08-24 Ciba-Geigy Ag Use of quinoline derivatives in the protection of crop plants
EP0094349A2 (en) 1982-05-07 1983-11-16 Ciba-Geigy Ag Use of quinoline derivatives for the protection of cultivated plants
EP0131624A1 (en) 1983-01-17 1985-01-23 Monsanto Co Plasmids for transforming plant cells.
EP0142924A2 (en) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insect resistant plants
DE3335514A1 (en) 1983-09-30 1985-04-18 Bayer Ag, 5090 Leverkusen 1-METHYLAMINO-CYCLOPROPAN-1-CARBONIC ACID DERIVATIVES
JPS6087254A (en) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The Novel urea compound and herbicide containing the same
EP0174562A2 (en) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Plant protecting agents based on 1,2,4 - triazole derivatives as well as 1,2,4-triazole derivatives
EP0193259A1 (en) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifying plants by genetic engineering to combat or control insects
EP0191736A2 (en) 1985-02-14 1986-08-20 Ciba-Geigy Ag Use of quinoline derivatives for the protection of crop plants
EP0221044A1 (en) 1985-10-25 1987-05-06 Monsanto Company Novel plant vectors
EP0242236A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
EP0242246A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
US5123951A (en) 1986-03-31 1992-06-23 Rhone-Poulenc Nederland B.V. Synergistic plant growth regulator compositions
EP0305398A1 (en) 1986-05-01 1989-03-08 Honeywell Inc Multiple integrated circuit interconnection arrangement.
EP0257993A2 (en) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0269806A1 (en) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazole carbonic acid derivatives, their preparation and use as plant growth regulators and antidotes
EP0268554A2 (en) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenyl pyrazole-3-carbonic-acid derivatives for the protection of cultured plants
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0309862A1 (en) 1987-09-30 1989-04-05 Bayer Ag Stilbene synthase gene
EP0333131A1 (en) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Plant protective agent based on pyrazolecarboxylic acid derivatives
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
EP0346620A1 (en) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft Plant protection agents containing 1,2,4-triazole derivatives, and the 1,2,4-triazole derivatives
EP0355599A1 (en) 1988-08-20 1990-02-28 Bayer Ag 3-Aryl-pyrrolidine-2,4-diones
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
EP0365484A1 (en) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoyl phenyl ureas
EP0377893A2 (en) 1989-01-07 1990-07-18 Bayer Ag 3-Aryl-pyrrolidine-2,4-dione derivatives
EP0415211A2 (en) 1989-09-01 1991-03-06 Bayer Ag 3-Aryl-pyrrolidin-2,4-dione derivatives
WO1991008202A1 (en) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazolines, method of preparation thereof, and their use as plant-protection agents
WO1991007874A1 (en) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazolines for the protection of crops against herbicides
EP0442077A2 (en) 1990-02-14 1991-08-21 Bayer Ag 3-Aryl-pyrrolidine-2,4-dione derivatives as insecticides and herbicides
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
EP0464461A2 (en) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase gene of grapevine
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
EP0492366A2 (en) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH New 5-chloroquinolin-8-oxyalkanecarbonic acid derivatives, process for their preparation and their use as antidotes for herbicides
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
EP0582198A2 (en) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituted (hetero-)aryle compounds, process for their preparation, those containing compositions and their use as safeners
WO1995007897A1 (en) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituted isoxazolines, process for producing them, agents containing them and their use as safeners
WO1996038567A2 (en) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Dna sequence of a gene of hydroxy-phenyl pyruvate dioxygenase and production of plants containing a gene of hydroxy-phenyl pyruvate dioxygenase and which are tolerant to certain herbicides
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997045016A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Novel n-acyl sulphonamides, novel mixtures of herbicides and antidotes and their use
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998005638A2 (en) 1996-08-05 1998-02-12 Bayer Aktiengesellschaft 2- and 2,5-substituted phenylketoenols
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (en) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Novel 2-fluoroacrylic acid derivatives, novel mixtures of herbicides and antidotes and the use thereof
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (en) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolyl carbonyl)-2-quinolones and products for protecting useful plants containing the same
WO1999016744A1 (en) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoyl benzoic acid amides, plant protection agents containing said acylsulfamoyl benzoic acid amides, and method for producing the same
WO1999024585A1 (en) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Mutated hydroxy-phenyl pyruvate dioxygenase, dna sequence and method for obtaining herbicide-tolerant plants containing such gene
WO1999024586A1 (en) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Chimeric hydroxy-phenyl pyruvate dioxygenase, dna sequence and method for obtaining plants containing such a gene, with herbicide tolerance
WO1999034008A1 (en) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Method for enzymatic preparation of homogentisate
WO1999057965A1 (en) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylurea-tolerant sugar beet mutants
JP2000053670A (en) 1998-08-10 2000-02-22 Ube Ind Ltd Alkoxymethylfranone derivative and pest control agent
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001074770A1 (en) 2000-04-03 2001-10-11 Bayer Cropscience Ag C2 phenyl-substituted cyclic keto-enols used as pesticides and herbicides
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2002036787A2 (en) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Herbicide-tolerant plants through bypassing metabolic pathway
WO2002046387A2 (en) 2000-12-07 2002-06-13 Syngenta Limited Plant derived hydroxy phenyl pyruvate dioxygenases (hppd) resistant against triketone herbicides and transgenic plants containing these dioxygenases
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
WO2004024928A2 (en) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Transformed plants with enhanced prenylquinone biosynthesis
WO2004084631A1 (en) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Use of aromatic hydroxy compounds as safeners
WO2005015994A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Use of aromatic compounds as safeners
WO2005016001A1 (en) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener based on aromatic-aliphatic carboxylic acid derivatives
WO2005044796A1 (en) 2003-11-05 2005-05-19 Bayer Cropscience Aktiengesellschaft 2-halogen-6-alkyl-phenyl substituted spirocyclic tetramic acid derivatives
WO2005112630A1 (en) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Quinoxalin-2-one derivatives crop protection agents comprising the same and method for production and use therof
WO2006000355A1 (en) 2004-06-25 2006-01-05 Bayer Cropscience Aktiengesellschaft 3'-alkoxy spirocyclic tetramic and tetronic acids
WO2007023719A1 (en) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reducing chemical injury and herbicide composition with reduced chemical injury
WO2007023764A1 (en) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reduction of harmful effect of herbicide and herbicide composition having reduced harmful effect
WO2007103567A2 (en) 2006-03-09 2007-09-13 E. I. Dupont De Nemours & Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
WO2008131860A2 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridonecarboxamides crop protection agents containing the same method for production and use thereof
WO2008131861A1 (en) 2007-04-30 2008-11-06 Bayer Cropscience Ag Use of pyridine-2-oxy-3-carbonamides as safeners
WO2008150473A2 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
WO2009144079A1 (en) 2008-04-14 2009-12-03 Bayer Bioscience N.V. New mutated hydroxyphenylpyruvate dioxygenase, dna sequence and isolation of plants which are tolerant to hppd inhibitor herbicides
WO2010115780A1 (en) 2009-04-08 2010-10-14 Syngenta Participations Ag Spiroheterocyclic pyrrolidine dione derivatives used as pesticides
EP2248421A1 (en) 2009-05-07 2010-11-10 GMI - Gregor-Mendel-Institut für Molekulare Pflanzenbiologie GmbH Accumulation of biomass in plants
CN101838227A (en) 2010-04-30 2010-09-22 孙德群 Safener of benzamide herbicide
WO2015032702A1 (en) 2013-09-06 2015-03-12 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl- phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015040114A1 (en) 2013-09-20 2015-03-26 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl-phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2017060203A1 (en) 2015-10-06 2017-04-13 Bayer Cropscience Aktiengesellschaft New alkynyl-substituted 3-phenylpyrrolidine-2,4-diones and use thereof as herbicides
WO2019219587A1 (en) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
WO2021204884A1 (en) * 2020-04-09 2021-10-14 Bayer Aktiengesellschaft 3-(4-alkenyl-phenyl)-3-pyrrolin-2-ones and their use as herbicides

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
"Gene Transfer to Plants, Springer Lab Manual", 1995, SPRINGER VERLAG
"The Pesticide Manual", 2006, THE BRITISH CROP PROTECTION COUNCIL AND THE ROYAL SOC. OF CHEMISTRY
BARRY ET AL., CURR. TOPICS PLANT PHYSIOL., vol. 7, 1992, pages 139 - 145
BRAUN ET AL., EMBO J., vol. 11, 1992, pages 3219 - 3227
CAS , no. 9012-76-4
CAS, no. 133993-74-5
CHRISTOU, TRENDS IN PLANT SCIENCE, vol. 1, 1996, pages 423 - 431
COMAI ET AL., SCIENCE, vol. 221, 1983, pages 370 - 371
G.C. KLINGMAN: "Weed Control as a Science", 1961, JOHN WILEY AND SONS, INC., pages: 81 - 96
GASSER ET AL., J. BIOL. CHEM., vol. 263, 1988, pages 4280 - 4289
H.V. OLPHEN: "Handbook of Insecticide Dust Diluents and Carriers", 1963, J. WILEY & SONS
J.D. FREYERS.A. EVANS: "Weed Control Handbook", 1968, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 101 - 103
J.E. BROWNING: "Agglomeration", CHEMICAL AND ENGINEERING, 1967, pages 147
K. MARTENS: "Spray Drying'' Handbook", 1979, G. GOODWIN LTD.
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHÖNFELDT: "Grenzflächenaktive Äthylenoxid-addukte", 1976, WISS. VERLAGSGESELL.
SHAH ET AL., SCIENCE, vol. 233, 1986, pages 478 - 481
SISLEYWOOD: "Encyclopedia of Surface Active Agents", 1964, CHEM. PUBL. CO. INC.
SONNEWALD ET AL., PLANT J., vol. 1, 1991, pages 95 - 106
TRANELWRIGHT, WEED SCIENCE, vol. 50, 2002, pages 700 - 712
WADE VAN VALKENBURG: "Perry's Chemical Engineer's Handbook", 1973, MARCEL DEKKER, pages: 8 - 57
WEED RESEARCH, vol. 26, 1986, pages 441 - 445
WINNACKER: "Gene und Klone", 1996, VCH WEINHEIM
WOLTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 846 - 850
YE ZHI-YONG ET AL: "Microwave-Assisted Extraction/Dispersive Liquid-Liquid Microextraction Coupled with DSI-GC-IT/MS for Analysis of Essential Oil from Three Species of Cardamom", vol. 77, no. 3-4, 1 February 2014 (2014-02-01), DE, pages 347 - 358, XP055862342, ISSN: 0009-5893, Retrieved from the Internet <URL:https://link.springer.com/content/pdf/10.1007/s10337-013-2608-2.pdf> DOI: 10.1007/s10337-013-2608-2 *

Similar Documents

Publication Publication Date Title
EP3638665A1 (en) Herbicidally active 3-phenylisoxazoline-5-carboxamides of tetrahydro and dihydrofuran carboxylic acids and esters
EP3793977A1 (en) 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
EP3975720A1 (en) 1-phenyl-5-azinyl pyrazolyl-3-oxyalkyl acids and their use for controlling undesired plant growth
WO2019219584A1 (en) New spiro cyclohexyl pyrrolin-2-ones and their use as herbicides
EP3853219B1 (en) Herbicidally active substituted phenylpyrimidine hydrazides
WO2022084278A1 (en) 1-(pyridyl)-5-azinylpyrazole derivatives, and their use for control of undesired plant growth
WO2020187627A1 (en) Novel 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-3-pyrrolin-2-ones and their use as herbicides
WO2021204884A1 (en) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-ones and their use as herbicides
WO2019228788A1 (en) 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
WO2019228787A1 (en) Specifically substituted 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-ones and their use as herbicides
WO2023274869A1 (en) 3-(4-alkenyl-phenyl)-3-pyrrolino-2-ones and their use as herbicides
EP3898612B1 (en) Substituted pyridinyloxybenzenes, their salts and use of said compounds as herbicidal agents
WO2022253700A1 (en) Specifically substituted pyrroline-2-ones and their use as herbicides
WO2020187628A1 (en) Specifically substituted 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-ones and their use as herbicides
WO2020187623A1 (en) Specifically substituted 3-(2-halogen-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-ones and to the use thereof as herbicides
WO2020187626A1 (en) Specifically substituted 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-ones and their use as herbicides
WO2020187629A1 (en) 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-substituted 5-spirocyclohexyl-3-pyrrolin-2-ones and their use as herbicides
WO2023280772A1 (en) N-(1,3,4-oxadiazol-2-yl)phenylcarboxamides as herbicides
WO2024078871A1 (en) 1-pyridyl-5-phenylpyrazolyl-3-oxy- and -3-thioalkyl acids and derivatives and their use for controlling undesired plant growth
EP4358718A1 (en) (1,4,5-trisubstituted-1h-pyrazole-3-yl)oxy-2-alkoxy alkyl acids and their derivatives, their salts and their use as herbicidal agents
WO2019219588A1 (en) Specifically substituted 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-ones and their use as herbicides
WO2023099381A1 (en) (1,4,5-trisubstituted-1h-pyrazole-3-yl)oxy-2-alkoxythio alkyl acids and derivatives thereof, their salts and their use as herbicidal active agents
WO2019219585A1 (en) New 3-(4-alkynyl-6-alkoxy-2-chlorophenyl)-3-pyrrolin-2-ones and their use as herbicides
WO2021209486A1 (en) Specifically substituted pyrroline-2-ones and their use as herbicides
WO2019233862A1 (en) Herbicidally active substituted phenylpyrimidines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22737467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE