EP4288418A1 - Substituted (2-heteroaryloxyphenyl)sulfonates, salts thereof and their use as herbicidal agents - Google Patents

Substituted (2-heteroaryloxyphenyl)sulfonates, salts thereof and their use as herbicidal agents

Info

Publication number
EP4288418A1
EP4288418A1 EP22703589.6A EP22703589A EP4288418A1 EP 4288418 A1 EP4288418 A1 EP 4288418A1 EP 22703589 A EP22703589 A EP 22703589A EP 4288418 A1 EP4288418 A1 EP 4288418A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
cycloalkyl
general formula
methyl
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22703589.6A
Other languages
German (de)
French (fr)
Inventor
Michael Charles MCLEOD
Ralf Braun
Stefan Schnatterer
Dirk Schmutzler
Anna Maria REINGRUBER
Birgit BOLLENBACH-WAHL
Jan Dittgen
Elmar Gatzweiler
Mohan PADMANABAN
Sina ROTH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP4288418A1 publication Critical patent/EP4288418A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • C07D213/6432-Phenoxypyridines; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/34One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/18Oxygen or sulfur atoms

Definitions

  • Substituted (2-heteroaryloxyphenyl)sulfonates and their salts and their use as herbicidally active compounds Description
  • the invention relates to the technical field of crop protection agents, in particular that of herbicides for the selective control of weeds and weed grasses in crops of useful plants. Specifically, this invention relates to substituted (2-heteroaryloxyphenyl)sulfonates and their salts, processes for their preparation and their use as herbicides.
  • Previously known crop protection agents for the selective control of harmful plants in crops of useful plants or active ingredients for controlling unwanted plant growth sometimes have disadvantages when they are used, be it that they (a) have no or insufficient herbicidal action against certain harmful plants, (b) too little Spectrum of harmful plants that can be controlled with an active ingredient, (c) have insufficient selectivity in crops of useful plants and/or (d) have a toxicologically unfavorable profile.
  • some active compounds which can be used as plant growth regulators in some useful plants lead to undesirably reduced crop yields in other useful plants or are not compatible with the crop plant or only in a narrow application rate range.
  • WO 2017/011288 describes various pyrimidinyloxybenzenes as herbicides which carry an ether group in the 2-position of the benzene.
  • the present invention relates to substituted (2-heteroaryloxyphenyl)sulfonates of the general formula (I) or their salts wherein R 1 is (C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkyl, (C 3 -C 6 )cycloalkyl, (C 3 -C 6 )halocycloalkyl, (C 2 -C 6 )- alkenyl, (C 2 -C 6 )-haloalkenyl, (C 3 -C 6 )-cycloalkenyl, (C 3 -C 6 )-halocycloalkenyl, (C 2 -C 6 )-alkynyl, (C 2 -C 6 ).
  • R 2 and R 3 independently of one another are hydrogen, halogen, hydroxy, amino, cyano, nitro, formyl, formamide, ( C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 4 )alkenyl, (C 2 -C 4 )alkynyl, (C 2 -C 4 )haloalkenyl, (C 2 -C 4 ).
  • R 4 represents hydrogen, halogen, cyano, nitro, (C 1 -C 4 )-alkyl or (C 1 - C 4 )haloalkyl
  • X is N or CR 5
  • Y is N or CH
  • R 5 is hydrogen, halogen or cyano.
  • the compounds of general formula (I) can be synthesized by addition of a suitable inorganic or organic acid, such as mineral acids such as HCl, HBr, H 2 SO 4 , H 3 PO 4 or HNO 3 , or organic acids, eg. B. carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid, lactic acid or salicylic acid or sulfonic acids such as p-toluenesulfonic acid to a basic group such as amino, alkylamino, dialkylamino, piperidino, morpholino or pyridino. These salts then contain the conjugate base of the acid as an anion.
  • a suitable inorganic or organic acid such as mineral acids such as HCl, HBr, H 2 SO 4 , H 3 PO 4 or HNO 3
  • organic acids eg. B.
  • carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid
  • Suitable substituents which are in deprotonated form can form inner salts with groups which in turn can be protonated, such as amino groups. Salt formation can also take place by the action of a base on compounds of the general formula (I).
  • Suitable bases are, for example, organic amines such as trialkylamines, morpholine, piperidine and pyridine and ammonium, alkali or alkaline earth metal hydroxides, carbonates and bicarbonates, in particular sodium and potassium hydroxide, sodium and potassium carbonate and sodium and potassium bicarbonate.
  • salts are compounds in which the acidic hydrogen is replaced by an agriculturally suitable cation, for example metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or else ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NR a R b R c R d ] + , in which R a to R d each independently represent an organic radical, in particular alkyl, aryl, arylalkyl or alkylaryl.
  • an agriculturally suitable cation for example metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or else ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NR a R b R c R d ] + , in which R a to R d each independently represent an organic radical, in particular
  • alkylsulfonium and alkylsulfoxonium salts such as (C 1 -C 4 )-trialkylsulfonium and (C 1 -C 4 )-trialkylsulfoxonium salts.
  • the heteroaryloxypyridines of the general formula (I) substituted according to the invention may possibly be present in various tautomeric structures, all of which are encompassed by the general formula (I).
  • the compounds of the formula (I) used according to the invention and their salts are referred to below as "compounds of the general formula (I)".
  • a preferred subject of the invention are compounds of the general formula (I) in which R 1 is (C 1 -C 6 )-alkyl, (C 1 -C 6 )-haloalkyl, (C 3 -C 6 )-cycloalkyl, (C 3 -C 6 )halocycloalkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )haloalkenyl, (C 2 -C 6 )alkynyl, (C 2 -C 6 )haloalkynyl, (C 3 -C 6 )cycloalkyl(C 1 -C 4 )alkyl, (C 3 -C 6 )halocycloalkyl(C 1 -C 4 ) alkyl , ( C 1 -C 4 )alkyl(C 3 -C 4 )alkyl 6 )cycloalkyl, (C 1 -C 4 )haloalkyl-(C 3
  • a particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 is (C 1 -C 6 )-alkyl, (C 1 -C 6 )-haloalkyl, (C 3 -C 6 )-cycloalkyl, (C 2 - C 6 ) alkenyl, (C 2 -C 6 ) haloalkenyl, (C 2 -C 6 ) alkynyl, (C 2 -C 6 ) haloalkynyl, (C 3 -C 6 ) cycloalkyl-(C 1 - C 4 )alkyl, (C 1 -C 4 )alkoxy(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy(C 1 -C 4 )alkyl, (C 2 - C 6 )cyanoalkyl, (C 1 -C 4 )alkylthio-(C 1 -C 4 )alkyl
  • a very particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 is (C 1 -C 5 )-alkyl, (C 1 -C 5 )-haloalkyl, (C 3 -C 6 )-cycloalkyl, (C 2 -C 5 )alkenyl, (C 2 -C 5 )haloalkenyl, (C 3 -C 6 )cycloalkyl-(C 1 -C 4 )alkyl, (C 3 -C 6 )halocycloalkyl-(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 ) alkoxy (C 1 -C 4 ) alkyl or (C 2 C 6 ) cyanoalkyl, R 2 and
  • Extremely preferred subject matter of the invention are compounds of the general formula (I) in which R 1 is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl, isopentyl, chloromethyl, 1-Chloroprop-3-yl, 1-Chlorobut-4-yl, 1,1,1-Trifluoroeth-2-yl, 1,1,1-Trifluoroprop-3-yl, 1,1,1-Trifluorobut-4- yl, cyclopropyl, cyclopentyl, cyclopropylmethyl, 1-methoxyeth-2-yl, prop-2-en-1-yl, vinyl, but-3-en-1-yl, 4,4-difluorobutyl, trifluoro-but-3- enyl, 4,4,5,5,5-pentafluoropentyl, 3,3-dichloroallyl or 2-(2,2-
  • radicals given above in general or in preferred ranges apply both to the end products of the general formula (I) and correspondingly to the starting materials or intermediates required in each case for the preparation. These radical definitions can be combined with one another, ie also between the specified preferred ranges, as desired.
  • inventive compounds of general formula (I) or their salts or their inventive use of particular interest wherein individual radicals have the preferred meanings already mentioned or mentioned below, or in particular those in which one or more of the preferred meanings already mentioned or mentioned below occur in combination.
  • alkylsulfonyl on its own or as part of a chemical group—is straight-chain or branched alkylsulfonyl, preferably having 1 to 4 carbon atoms, for example (but not limited to) (C 1 -C 4 )-alkylsulfonyl such as methylsulfonyl, ethylsulfonyl, propylsulfonyl , 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl.
  • alkylthio - alone or as part of a chemical group - for straight-chain or branched S-alkyl, preferably having 1 to 4 carbon atoms, such as (C 1 -C 4 ) - alkylthio, for example (but not limited to) (C C 1 -C 4 )-alkylthio such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio, 1,1-dimethylethylthio.
  • (but not limited to) (C 1 -C 4 )-alkylsulphinyl such as methylsulphinyl, ethylsulphinyl, propylsulphinyl, 1-methylethylsulphinyl, butylsulphinyl, 1-methylpropylsulphinyl, 2-methylpropylsulphinyl, 1,1-dimethylethylsulphinyl.
  • Alkoxy means an alkyl radical bonded through an oxygen atom, e.g. B.
  • the number of carbon atoms refers to the alkyl radical in the alkylcarbonyl group.
  • the number of carbon atoms refers to the alkyl radical in the alkylaminocarbonyl group.
  • the number of carbon atoms refers to the alkyl radical in the alkylaminocarbonylamino group.
  • the number of carbon atoms refers to the alkyl radical in the alkoxycarbonyl group.
  • the number of carbon atoms refers to the alkyl radical in the alkoxycarbonylamino group.
  • the number of carbon atoms refers to the alkyl radical in the alkylcarbonyloxy group.
  • the number of carbon atoms refers to the alkyl radical in the alkylcarbonylamino group.
  • halogen means, for example, fluorine, chlorine, bromine or iodine. When the term is used for a radical, "halo" means, for example, fluoro, chloro, bromo or iodo.
  • alkyl means a straight-chain or branched, open-chain, saturated hydrocarbon radical which is optionally mono- or polysubstituted and, in the latter case, is referred to as “substituted alkyl”.
  • Preferred substituents are halogen atoms, alkoxy, haloalkoxy, cyano, alkylthio, haloalkylthio, amino or nitro groups, particularly preferred are methoxy, fluoroalkyl, cyano, nitro, fluorine, chlorine, bromine or iodine.
  • the prefix "bis” also includes the combination of different alkyl radicals, e.g. methyl(ethyl) or ethyl(methyl).
  • Dihaloalkyl such as CHF 2 , CHCl 2 ; perhaloalkyl such as CF 3 , CCl 3 , CClF 2 , CBrF 2 , CFCl 2 , CF 2 CClF 2 , CF 2 CClFCF 3 ; polyhaloalkyl such as e.g. B. CH2 CHFCl , CF2 CClFH , CF2 CBrFH , CH2 CF3 ;
  • perhaloalkyl also includes the term perfluoroalkyl.
  • Haloalkoxy includes, for example, OCF 3 , OCHF 2 , OCH 2 F, OCF 2 CF 3 , OCH 2 CF 3 and OCH 2 CH 2 Cl; the same applies to haloalkenyl and other radicals substituted by halogen.
  • the expression "(C 1 -C 4 )-alkyl” mentioned here as an example means an abbreviation for straight-chain or branched alkyl with one to 4 carbon atoms corresponding to the range specified for C-atoms, ie includes the radicals methyl, ethyl, 1-propyl, 2 -propyl, 1-butyl, 2-butyl, 2-methylpropyl or tert-butyl.
  • hydrocarbon radicals such as alkyl, alkenyl and alkynyl radicals, including in composite radicals
  • Alkyl radicals including in the compound radicals such as alkoxy, haloalkyl, etc., mean, for example, methyl, ethyl, n- or i-propyl, n-, i-, t- or 2-butyl, pentyl, hexyl, such as n-hexyl, i -hexyl and 1,3-dimethylbutyl;
  • Alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals corresponding to the alkyl radicals, with at least one double bond or triple bond being present. Residues with a double bond or triple bond are preferred.
  • alkenyl also includes in particular straight-chain or branched open-chain hydrocarbon radicals with more than one double bond, such as 1,3-butadienyl and 1,4-pentadienyl, but also allenyl or cumulenyl radicals with one or more cumulative double bonds, such as for example allenyl (1,2-propadienyl) and 1,2-butadienyl.
  • Alkenyl means, for example, vinyl, which can optionally be substituted by further alkyl radicals, for example (but not limited to) (C 2 -C 4 )-alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1- butenyl, 2-butenyl, 3-butenyl, 1-methyl-1- propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl.
  • alkynyl also includes in particular straight-chain or branched open-chain hydrocarbon radicals with more than one triple bond or with one or more triple bonds and one or more double bonds, such as 1,3-butatrienyl.
  • (C 2 -C 4 )-Alkinyl means, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl.
  • cycloalkyl means a carbocyclic, saturated ring system preferably having 3-6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which is optionally further substituted, preferably by hydrogen, alkyl, alkoxy, cyano, nitro, alkylthio , haloalkylthio, halogen, alkenyl, alkynyl, haloalkyl, amino, alkylamino, bisalkylamino, alcocycarbonyl, hydroxycarbonyl, arylalkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl.
  • cyclic systems with substituents are included, with substituents having a double bond on the cycloalkyl radical, e.g. an alkylidene group such as methylidene.
  • polycyclic aliphatic systems are also included, such as bicyclo[1.1.0]butan-1-yl, bicyclo[1.1.0]butan-2-yl, bicyclo[2.1.0]pentan-1-yl , bicyclo[1.1.1]pentan-1-yl, bicyclo[2.1.0]pentan-2-yl, bicyclo[2.1.0]pentan-5-yl and bicyclo[2.1.1]hexyl, but also systems such as e.g . B. 1,1'-Bi(cyclopropyl)-1-yl, 1,1'-Bi(cyclopropyl)-2-yl.
  • (C 3 -C 6 )-cycloalkyl means an abbreviation for cycloalkyl having three to 6 carbon atoms, corresponding to the range given for C atoms.
  • substituted cycloalkyl spirocyclic aliphatic systems are also included, such as spiro[2.2]pent-1-yl, spiro[2.3]hex-1-yl, spiro[2.3]hex-4-yl, 3-spiro[2.3] hex-5-yl.
  • Cycloalkenyl means a carbocyclic, non-aromatic, partially unsaturated ring system preferably having 4-6 carbon atoms, for example 1-cyclobutenyl, 2-cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, or 1-cyclohexenyl, 2-cyclohexenyl , 3-cyclohexenyl, 1,3-cyclohexadienyl or 1,4-cyclohexadienyl, with substituents having a double bond on the cycloalkenyl radical, e.g. an alkylidene group such as methylidene.
  • haloalkylthio alone or as part of a chemical group - for straight-chain or branched S-haloalkyl, preferably having 1 to 4 carbon atoms, such as (C 1 -C 4 ) -haloalkylthio, for example (but not limited to) trifluoromethylthio, pentafluoroethylthio, difluoromethyl, 2,2-difluoroeth-1-ylthio, 2,2,2-difluoroeth-1-ylthio, 3,3,3-prop-1-ylthio.
  • Halocycloalkyl means by identical or different halogen atoms, such as. B. F, Cl and Br, or by haloalkyl, such as. B. trifluoromethyl or difluoromethyl partially or fully substituted cycloalkyl, eg 1-fluorocycloprop-1-yl, 2-fluorocycloprop-1-yl, 2,2-difluorocycloprop-1-yl, 1-fluorocyclobut-1-yl, 1-trifluoromethylcycloprop-1 -yl, 2-trifluoromethylcycloprop-1-yl, 1-chlorocycloprop-1-yl, 2-chlorocycloprop-1-yl, 2,2-dichlorocycloprop-1-yl, 3,3-difluorocyclobutyl.
  • "trialkylsilyl" - alone or as part of a chemical group - is straight-chain or branched Si-alkyl, preferably having 1 to 6 carbon atoms, such as tri-[(C 1 -C 2 )-alkyl]silyl, for example (but not limited to) trimethylsilyl, triethylsilyl. If there is a collective term for a substituent, e.g. B.
  • (C 1 -C 4 ) alkyl at the end of a composite substituent such as (C 3 -C 6 ) -cycloalkyl- (C 1 -C 4 ) alkyl, so the standing at the beginning of the component compound substituents, for example (C 3 -C 6 )-cycloalkyl, mono- or polysubstituted, identically or differently and independently with the last substituent, in the present example (C 1 -C 4 )-alkyl.
  • the definition of collective terms also applies to these collective terms in compound substituents.
  • the compounds of the general formula (I) can be present as stereoisomers.
  • the possible stereoisomers defined by their specific spatial form, such as enantiomers, diastereomers, Z and E isomers, are all encompassed by the general formula (I). If, for example, one or more alkenyl groups are present, diastereomers (Z and E isomers) can occur. For example, if one or more asymmetric carbon atoms are present, enantiomers and diastereomers can occur.
  • Stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods.
  • the chromatographic separation can be used both on an analytical scale to determine the enantiomeric excess or of the excess of diastereomers, as well as on a preparative scale for the production of test specimens for biological testing.
  • stereoisomers can be prepared selectively by using stereoselective reactions using optically active starting materials and/or auxiliaries.
  • the invention thus also relates to all stereoisomers which are covered by the general formula (I) but are not specified with their specific stereo form, and mixtures thereof. If the compounds are obtained as solids, they can also be purified by recrystallization or digestion. If individual compounds (I) are not satisfactorily accessible by the routes described below, they can be prepared by derivatizing other compounds (I).
  • Suitable methods for isolating, purifying and separating stereoisomers of compounds of the general formula (I) are methods which are generally known to the person skilled in the art from analogous cases, for example by physical methods such as crystallization, chromatographic methods, especially column chromatography and HPLC (high pressure liquid chromatography), distillation , optionally under reduced pressure, extraction and other methods, any remaining mixtures can usually be separated by chromatographic separation, for example on chiral solid phases.
  • processes such as crystallization, for example diastereomeric salts, which can be obtained from the diastereomeric mixtures with optically active acids and, if acidic groups are present, with optically active bases are suitable.
  • the present invention also claims processes for preparing the compounds of general formula (I) according to the invention.
  • the compounds of the general formula (I) according to the invention can be prepared, inter alia, starting from known processes.
  • the synthetic routes used and investigated are based on commercially available or easily manufacturable building blocks.
  • the groups R 1 , R 2 , R 3 , R 4 , X and Y of the general formula (I) have the previously defined meanings in the schemes below, unless exemplary, but non-limiting, definitions are given.
  • Compounds of the general formula (I) according to the invention can be prepared, for example, by the method given in Scheme 1.
  • the (2-heteroaryloxyphenyl)sulfonates of the general formula (I) can be prepared via a reaction of the phenols (EI) with sulfonyl chlorides (E-II) in the presence of bases.
  • the base can be an amine base (such as 1-methylimidazole or triethylamine).
  • the reactions are generally carried out in an organic solvent such as dichloroethane or acetonitrile at temperatures between 0°C and the boiling point of the solvent.
  • the phenols of the general formula (EI) can be prepared via an alkylation of the 1,2-dihydroxybenzenes (E-III) in the presence of bases with the pyridine, pyrimidine or pyrazine (E-IV), where LG is a leaving group (Scheme 2).
  • Scheme 2 The base can be a carbonate salt of an alkali metal (such as sodium, potassium or cesium), or an amine base (such as NN-diisopropylethylamine).
  • the reactions are generally carried out in an organic solvent such as acetonitrile, butyronitrile, dimethylformamide, or chlorobenzene at temperatures between 0°C and the boiling point of the solvent.
  • the phenols (E-1) can be synthesized as described in Scheme 3:
  • the oxidation reactions of the methoxybenzaldehyde derivatives can be carried out with m-chloroperoxybenzoic acid in dichloromethane under standard reaction conditions.
  • the intermediate can be treated with methanol and an amine base, such as triethylamine, tributylamine, or N,N-diisopropylethylamine.
  • the phenol obtained (E-VI) can be arylated as described in Scheme 2 after evaporation of the solvents.
  • the phenol derivative EI suitable for the sulfonation can then be obtained by reaction with, for example, boron tribromide in DCM, boron trichloride or hydrogen bromide (Scheme 3).
  • the resulting reaction mixture was concentrated, diluted with 100 mL of dichloromethane and a mixture of saturated NaHCO 3 /saturated Na 2 S 2 O 3 solution 1:1 (1 ⁇ 200 mL) and then extracted several times with dichloromethane. The combined organic phases were washed with water and saturated NaCl solution, dried over magnesium sulfate, filtered and concentrated.
  • the intermediate was dissolved in 60 mL of methanol and triethylamine was added. The mixture was stirred at room temperature for 48 hours and thereafter constricted. 2-Methoxy-3-methylphenol could be isolated by subsequent purification by column chromatography (gradient acetone/heptane) of the resulting crude product. The yield was 3.45 g (89% of theory).
  • Example No. I-1 1H-NMR (400MHz, CDCl 3 ⁇ , ppm) 8.49 (s, 2H), 7.50-7.32 (m, 4H), 3.17 (s, 3H).
  • Example No. I-2 1H-NMR (400MHz, d6-DMSO ⁇ , ppm) 8.79 (s, 2H), 7.52 - 7.37 (m, 4H), 3.70 (tr, 2H), 3.60 (tr, 2H) , 2.14 (m, 2H).
  • Example No. I-1 1H-NMR (400MHz, CDCl 3 ⁇ , ppm) 8.49 (s, 2H), 7.50-7.32 (m, 4H), 3.17 (s, 3H).
  • Example No. I-2 1H-NMR (400MHz, d6-DMSO ⁇ , ppm) 8.79 (s, 2H), 7.52 - 7.37 (m, 4H), 3.70 (tr, 2H), 3.60 (tr, 2H) , 2.14
  • I-7 1 H-NMR (400 MHz, d6-DMSO ⁇ , ppm) 8.79 (s, 2H), 7.51 - 7.37 (m, 4H), 3.39 (d, 2H), 2.10 (m, 1H ), 0.98 (d, 6H).
  • Example No. I-8 1 H-NMR (400 MHz, d6-DMSO ⁇ , ppm) 8.79 (s, 2H), 7.55 - 7.38 (m, 4H), 3.85 (m, 2H), 2.81 (m, 2H ).
  • Example No. I-9 1 H-NMR (400MHz, d6-DMSO ⁇ , ppm) 8.79 (s, 2H), 7.56-7.39 (m, 4H), 5.57 (s, 2H).
  • Example No. I-10 1 H-NMR (400 MHz, d6-DMSO ⁇ , ppm) 8.79 (s, 2H), 7.52 - 7.38 (m, 4H), 3.63 (tr, 2H), 2.41 (m, 2H ), 1.88 (m, 2H).
  • Example No. I-11 1 H-NMR (400 MHz, d6-DMSO ⁇ , ppm) 8.79 (s, 2H), 7.35 - 7.26 (m, 3H), 3.69 (m, 4H), 2.36 (s, 3H ), 2.13 (m, 2H).
  • I-12 1 H-NMR (400 MHz, d6-DMSO ⁇ , ppm) 8.78 (s, 2H), 7.36 – 7.29 (m, 3H), 3.70 tr, 2H), 3.59 (tr, 2H) , 2.16 (s, 3H), 2.10 (m, 2H).
  • Example No. I-13 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.50 (s, 2H), 7.33 – 7.18 (m, 3H), 3.70 (m, 2H), 3.50 (m, 2H) , 2.40 (m, 2H).
  • I-16 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.49 (s, 2H), 7.52 - 7.30 (m, 4H), 3.30 (qu, 2H), 1.45 (tr, 3H) .
  • Example No. I-17 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.47 (s, 2H), 7.27 (m, 1H), 7.11 (m, 1H), 6.96 (m, 1H), 3.79 (s, 3H), 3.28 (m, 2H), 1.84 (m, 2H), 1.45 (m, 2H), 0.93 tr, 3H).
  • I-31 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.50 (s, 2H), 7.58-7.56 (m, 1H), 7.35-7.25 (m, 2H), 3.77-3.73 ( m, 2H), 2.87 – 2.78 (m, 2H).
  • Example No. I-32 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.59 (s, 2H), 7.43-7.41 (m, 1H), 7.35-7.28 (m, 2H), 3.73-3.69 ( m, 2H), 2.84 – 2.78 (m, 2H).
  • I-33 1 H NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.58 (s, 2H), 7.30 – 7.28 (m, 1H), 7.21 – 7.16 (m, 2H), 3.70 – 3.66 ( m, 2H), 2.80 – 2.73 (m, 2H), 2.45 (s, 3H).
  • Example No. I-34 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.58 (s, 2H), 7.43-7.41 (m, 1H), 7.34-7.25 (m, 2H), 3.60-3.56 ( m, 2H), 2.38 – 2.31 (m, 2H), 2.25 – 2.19 (m, 2H).
  • I-36 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.49 (s, 2H), 7.51-7.48 (m, 1H), 7.39-7.30 (m, 3H), 5.91-5.83 ( m, 1H), 5.49 – 5.44 (m, 2H), 4.01 – 3.99 (m, 2H).
  • Example No. I-37 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.48 (s, 2H), 7.49 - 7.41 (m, 1H), 7.41 - 7.27 (m, 3H), 6.73 (dd, 1H), 6.30 (dd, 1H), 6.13 (dd, 1H).
  • I-40 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.59 (s, 2H), 7.39 - 7.33 (m, 1H), 7.20 - 7.15 (m, 2H), 3.63 - 3.59 ( m, 2H), 2.83–2.77 (m, 2H).
  • Example No. I-41 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.58 (s, 2H), 7.37-7.32 (m, 1H), 7.20-7.13 (m, 2H), 3.50-3.47 ( m, 2H), 2.38 – 2.31 (m, 2H), 2.25 – 2.19 (m, 2H).
  • I-42 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.42 (s, 2H), 7.37 - 7.32 (m, 1H), 7.19 - 7.13 (m, 2H), 3.51 - 3.47 ( m, 2H), 2.38–2.31 (m, 2H), 2.24–2.19 (m, 2H).
  • Example No. I-43 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.43 (s, 2H), 7.58-7.55 (m, 1H), 7.35-7.33 (m, 1H), 7.29-7.25 ( m, 1H), 3.77–3.73 (m, 2H), 2.84–2.78 (m, 2H).
  • I-52 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.50 (s, 2H), 7.34 - 7.30 (m, 1H), 7.18 - 7.12 (m, 2H), 3.88 - 3.85 ( m, 2H), 3.69 – 3.66 (m, 2H), 3.36 (s, 3H).
  • Example No. I-53 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.51 (s, 2H), 7.37 - 7.32 (m, 1H), 7.19 - 7.13 (m, 2H), 3.59 (d, 2H), 2.95 – 2.73 (m, 3H), 2.54 – 2.42 (m, 2H).
  • I-60 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 7.81 (s, 1H), 7.51 (d, 1H), 7.37 - 7.25 (m, 4H), 3.68 (tr, 2H) , 3.44 (tr, 2H), 2.42 – 2.32 (m, 2H).
  • Example No. I-61 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.80 (s, 1H), 8.33 (d, 1H), 7.51 – 7.26 (m, 4H), 3.66 (tr, 2H) , 3.44 (tr, 2H), 2.38 – 2.33 (m, 2H).
  • I-81 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.50 (s, 2H), 7.65 - 7.62 (m, 2H), 7.52 - 7.48 (m, 1H), 3.62 (tr, 2H), 2.42 – 2.23 (m, 4H).
  • Example No. I-82 1 H-NMR (400 MHz, CDCl 3 ⁇ , ppm) 8.51 (s, 2H), 7.66-7.63 (m, 2H), 7.53-7.49 (m, 1H), 3.77-3.73 ( m, 2H), 2.89 – 2.82 (m, 2H).
  • the present invention further relates to the use of one or more compounds of the general formula (I) and/or salts thereof, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular of one or more compounds of the formulas (1 -1) to (1-90) and/or salts thereof, each as defined above, as a herbicide and/or plant growth regulator, preferably in crops of useful and/or ornamental plants.
  • the present invention also relates to a method for controlling harmful plants and/or for regulating the growth of plants, characterized in that an effective amount - of one or more compounds of the general formula (I) and/or salts thereof, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-90) and/or their salts, each as defined above, or - an agent according to the invention, as defined below, applied to the (harmful) plants, (harmful) plant seeds, the soil in or on which the (harmful) plants grow, or the area under cultivation.
  • an effective amount - of one or more compounds of the general formula (I) and/or salts thereof, as defined above preferably in one of the configurations identified as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-90) and/or their salts, each as defined above, or - an agent according to the invention, as defined below, applied to the (harmful) plants, (harmful) plant
  • the present invention also provides a method for controlling unwanted plants, preferably in crops of useful plants, characterized in that an effective amount - one or more compounds of the general formula (I) and/or salts thereof, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1- 90) and / or salts thereof, each as defined above, or - an agent according to the invention, as defined below, on unwanted plants (e.g.
  • harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants
  • the seeds of the unwanted plants ie plant seeds, e.g Grains, seeds or vegetative propagating organs such as tubers or shoot parts with buds
  • the soil in or on which the undesirable plants grow e.g. the soil of cultivated land or non-cultivated land
  • the cultivated area ie area on which the undesired plants will grow
  • the present invention also relates to a method for controlling the growth regulation of plants, preferably useful plants, characterized in that an effective amount - of one or more compounds of the general formula (I) and/or their salts, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-90) and/or their salts, each as defined above, or - an agent according to the invention, as defined below, the plant, the seeds of the plant (ie plant seeds, e.g. grains, seeds or vegetative propagating organs such as tubers or shoot parts with buds), the soil in or on which the plants grow (e.g.
  • the soil of cultivated land or non-cultivated land) or the area under cultivation ie area where the plants will grow
  • the compounds according to the invention or the compositions according to the invention can be applied, for example, before sowing (if appropriate also by incorporation into the soil), pre-emergence and/or post-emergence.
  • some representatives of the monocotyledonous and dicotyledonous weed flora may be mentioned by way of example, which can be controlled by the compounds according to the invention, without the naming of a restriction to specific species.
  • one or more compounds of the general formula (I) and/or salts thereof are preferably used for controlling harmful plants or for regulating growth in crops of useful plants or ornamental plants, the useful plants or ornamental plants being transgenic plants in a preferred embodiment.
  • the compounds of the general formula (I) according to the invention and/or their salts are suitable for controlling the following genera of monocotyledonous and dicotyledonous harmful plants: monocotyledonous harmful plants of the genera: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.
  • the compounds of the general formula (I) according to the invention are applied to the surface of the soil before the harmful plants (grasses and/or weeds) germinate (pre-emergence method), then either the emergence of the weed or weed seedlings is completely prevented or they grow up to the cotyledon stage , but then stop growing and finally die off completely after three to four weeks.
  • the active ingredients of the general formula (I) are applied to the green parts of the plant post-emergence, growth stops after the treatment and the harmful plants remain in the growth stage present at the time of application or die off completely after a certain time, so that in this way a Weed competition that is harmful to crops is eliminated very early and sustainably.
  • the compounds of the general formula (I) according to the invention have excellent herbicidal activity against monocotyledon and dicotyledonous weeds, crop plants of economically important crops, for example dicotyledonous crops of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledonous cultures of the genera Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, triticale, triticum, zea, only insignificantly or not at all damaged, depending on the structure of the respective compound according to the invention and the amount applied.
  • the present compounds are very suitable for the selective control of undesired plant growth in crops such as agricultural crops or ornamental plants.
  • the compounds of the general formula (I) according to the invention (depending on their particular structure and the application rate applied) have excellent growth-regulating properties in crop plants. They intervene to regulate the plant's own metabolism and can therefore be used to specifically influence plant constituents and to facilitate harvesting, for example by triggering desiccation and growth stunted growth.
  • they are also suitable for the general control and inhibition of undesired vegetative growth without killing the plants. Inhibition of vegetative growth plays a major role in many monocotyledonous and dicotyledonous crops, since this can reduce or completely prevent the formation of beds.
  • the active compounds of the general formula (I) can also be used for controlling harmful plants in crops of plants modified by genetic engineering or by conventional mutagenesis.
  • the transgenic plants are generally distinguished by particularly advantageous properties, for example resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern, for example, the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known.
  • transgenic crops With regard to transgenic crops, the use of the compounds of the general formula (I) according to the invention and/or their salts in economically important transgenic crops of useful and ornamental plants, for example cereals such as wheat, barley, rye, oats, millet, rice and corn, is preferred Sugar beet, cotton, soybean, canola, potato, tomato, pea and other vegetable crops.
  • the compounds of the general formula (I) according to the invention can preferably also be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or have been made resistant by genetic engineering.
  • the compounds of the general formula (I) according to the invention can also be used for combating harmful plants in crops of known genetically modified plants or those still to be developed.
  • the transgenic plants are generally distinguished by particularly advantageous properties, for example resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern, for example, the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known.
  • the use of the compounds of the general formula (I) according to the invention or their salts in economically important transgenic crops of useful and ornamental plants for example cereals such as wheat, barley, rye, oats, triticale, millet, rice, cassava and corn, is preferred Sugar beet, cotton, soybean, canola, potato, tomato, pea and other vegetable crops.
  • the compounds of the general formula (I) can preferably be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or have been made resistant by genetic engineering.
  • new plants with modified properties can be created using genetic engineering methods. Numerous molecular biological techniques with which new transgenic plants with modified properties can be produced are known to the person skilled in the art.
  • nucleic acid molecules can be introduced into plasmids, which allow mutagenesis or sequence modification by recombination of DNA sequences. With the help of standard methods, for example, base exchanges can be made, partial sequences can be removed or natural or synthetic sequences can be added.
  • adapters or linkers can be attached to the fragments.
  • the production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, a sense RNA to achieve a co-suppression effect or the expression of at least one correspondingly constructed ribozyme which specifically cleaves transcripts of the above gene product.
  • DNA molecules can be used which include the entire coding sequence of a gene product, including any flanking sequences present, as well as DNA molecules which only include parts of the coding sequence, these parts having to be long enough to enter the cells produce an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product but are not completely identical.
  • the synthesized protein can be located in any compartment of the plant cell.
  • the coding region can, for example, be linked to DNA sequences which ensure localization in a specific compartment.
  • sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J.11 (1992), 3219-3227).
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated into whole plants using known techniques. In principle, the transgenic plants can be plants of any desired plant species, ie both monocotyledonous and dicotyledonous plants.
  • the compounds of the general formula (I) according to the invention can preferably be used in transgenic cultures which are active against growth substances, such as dicamba or against herbicides, the essential plant enzymes, eg acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS), hydroxyphenylpyruvate dioxygenases (HPPD ), or inhibit protoporphyrinogen oxidase (PPO), or are resistant to herbicides from the group of sulfonylureas, glyphosate, glufosinate or benzoylisoxazoles and analogous active substances.
  • the essential plant enzymes eg acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS), hydroxyphenylpyruvate dioxygenases (HPPD ), or inhibit protoporphyrinogen oxidase (PPO), or are resistant to herbicides from the group of sulfonylureas
  • the compounds of the general formula (I) according to the invention are used in transgenic cultures, in addition to the effects observed in other cultures against harmful plants, there are often effects which are specific to the application in the respective transgenic culture, for example, a modified or specially expanded spectrum of weeds that can be controlled, modified application rates that can be used for the application, preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compounds of the general formula (I) according to the invention and/or their salts as herbicides for controlling harmful plants in crops of useful or ornamental plants, optionally in transgenic crop plants.
  • cereals preferably corn, wheat, barley, rye, oats, millet or rice
  • pre- or post-emergence is also preferred.
  • the use of compounds of the formula (I) according to the invention for controlling harmful plants or for regulating the growth of plants also includes the case in which a compound of the general formula (I) or its salt is only applied after application to the plant, in the plant or in the Soil is formed from a precursor substance ("prodrug").
  • the invention also relates to the use of one or more compounds of the general formula (I) or salts thereof or an agent according to the invention (as defined below) (in a method) for controlling harmful plants or for regulating the growth of plants, characterized in that applying an effective amount of one or more compounds of the general formula (I) or their salts to the plants (harmful plants, optionally together with the useful plants), plant seeds, the soil in which or on which the plants grow, or the area under cultivation.
  • the invention also relates to a herbicidal and/or plant growth-regulating composition, characterized in that the composition (a) contains one or more compounds of the general formula (I) and/or salts thereof as defined above, preferably in one of the preferred or particularly preferred embodiment, in particular one or more compounds of the formulas (I-1) to (I-90) and / or their salts, each as defined above, and (b) one or more other substances selected from groups (i) and/or (ii): (i) one or more other agrochemically active substances, preferably selected from the group consisting of insecticides, acaricides, nematicides, other herbicides (ie those which do not correspond to the general formula (I) defined above), fungicides, safeners, fertilizers and/or other growth regulators, (ii) one or more formulation auxiliaries customary in crop protection.
  • the composition (a) contains one or more compounds of the general formula (I) and/or salts thereof as defined above, preferably in one of the preferred
  • a herbicidal or plant growth-regulating agent according to the invention preferably comprises one, two, three or more formulation auxiliaries (ii) customary in crop protection selected from the group consisting of surfactants, emulsifiers, dispersants, film formers, thickeners, inorganic salts, dusts, at 25 ° C and 1013 mbar solid carriers, preferably adsorptive, granulated inert materials, wetting agents, antioxidants, stabilizers, buffer substances, antifoams, water, organic solvents, preferably organic solvents miscible with water in any desired ratio at 25° C.
  • formulation auxiliaries customary in crop protection selected from the group consisting of surfactants, emulsifiers, dispersants, film formers, thickeners, inorganic salts, dusts, at 25 ° C and 1013 mbar solid carriers, preferably adsorptive, granulated inert materials, wetting agents, antioxidants, stabilizers, buffer substances, antifoams, water,
  • the compounds of the general formula (I) according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules.
  • the invention therefore also relates to herbicidal and plant growth-regulating compositions which contain compounds of the general formula (I) and/or salts thereof.
  • the compounds of the general formula (I) according to the invention and/or their salts can be formulated in various ways, depending on the given biological and/or chemico-physical parameters.
  • WP wettable powder
  • SP water-soluble powder
  • EC emulsifiable concentrates
  • EW emulsions
  • SC suspension concentrates
  • SC oil- or water-based dispersions
  • CS capsule suspensions
  • DP dusts
  • dressings granules for spreading and floor application
  • granules GR
  • WG water-dispersible granules
  • SG water-soluble granules
  • Wettable powders are evenly water-dispersible preparations which, in addition to the active ingredient and a diluent or inert substance, also contain ionic and/or nonionic surfactants (wetting agents, dispersing agents), e.g , 2,2'-dinaphthylmethane-6,6'-sodium disulfonate, sodium dibutylnaphthalenesulfonate or sodium oleoylmethyltaurine.
  • ionic and/or nonionic surfactants e.g , 2,2'-dinaphthylmethane-6,6'-sodium disulfonate, sodium dibutylnaphthalenesulfonate or sodium oleoylmethyltaurine.
  • the herbicidal active ingredients are finely ground, for example in conventional apparatus such as hammer mills, blower mills and air jet mills, and mixed simultaneously or subsequently with the formulation auxiliaries.
  • Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents, with the addition of one or more ionic and/or nonionic surfactants (emulsifiers).
  • alkylarylsulfonic acid calcium salts such as cadodecylbenzenesulfonate or nonionic emulsifiers
  • fatty acid polyglycol esters alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as sorbitan fatty acid esters or polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan fatty acid esters.
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and optionally adding surfactants, such as those already listed above for the other types of formulation.
  • Emulsions for example oil-in-water emulsions (EW) can be prepared, for example, using stirrers, colloid mills and/or static mixers using aqueous organic solvents and, if appropriate, surfactants, such as those already listed above for the other types of formulation.
  • Granules can be produced either by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, eg polyvinyl alcohol, sodium polyacrylic acid or mineral oils, to the surface of carriers such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules--if desired in a mixture with fertilizers. Water-dispersible granules are usually produced without solid inert material by conventional methods such as spray drying, fluidized bed granulation, pan granulation, mixing with high-speed mixers and extrusion.
  • adhesives eg polyvinyl alcohol, sodium polyacrylic acid or mineral oils
  • the agrochemical preparations, preferably herbicidal or plant growth-regulating agents, of the present invention preferably contain a total amount of 0.1 to 99% by weight, preferably 0.5 to 95% by weight, more preferably 1 to 90% by weight, particularly preferably 2 to 80% by weight of active substances of the general formula (I) and their salts.
  • the active substance concentration is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of customary formulation components.
  • the active substance concentration can be about 1 to 90% by weight, preferably 5 to 80% by weight.
  • Formulations in dust form contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, and sprayable solutions contain about 0.05 to 80% by weight, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is in liquid or solid form and on the granulation aids, fillers, etc. used.
  • the active substance content is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned optionally contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity affecting agents. Examples of formulation aids are described inter alia in "Chemistry and Technology of Agrochemical Formulations", ed. DA Knowles, Kluwer Academic Publishers (1998).
  • the compounds of the general formula (I) according to the invention or their salts can be used as such or in the form of their preparations (formulations) combined with other pesticidally active substances such as insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and/or growth regulators be, for example as a ready-to-use formulation or as tank mixes.
  • pesticidally active substances such as insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and/or growth regulators be, for example as a ready-to-use formulation or as tank mixes.
  • the combination formulations can be produced on the basis of the abovementioned formulations, taking into account the physical properties and stability of the active ingredients to be combined.
  • Combination partners for the compounds of the general formula (I) according to the invention in mixture formulations or in a tank mix are, for example, known active ingredients which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate Synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen oxidase can be used, as described, for example, in Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc.
  • the safeners which are used in an antidote effective content, reduce the phytotoxic side effects of the herbicides/pesticides used, for example in economically important crops such as cereals (wheat, barley, rye, corn, rice, millet), sugar beets, sugar cane, rapeseed, cotton and soybeans, preferably cereals.
  • the weight ratio of herbicide (mixture) to safener generally depends on the amount of herbicide applied and the effectiveness of the respective safener and can vary within wide limits, for example in the range from 200:1 to 1:200, preferably 100:1 to 1: 100, especially 20:1 to 1:20.
  • the safeners can be formulated analogously to the compounds of the general formula (I) or mixtures thereof with other herbicides/pesticides and provided and used as a ready-to-use formulation or tank mix with the herbicides.
  • the herbicide or herbicide-safener formulations which are in commercial form, are optionally diluted in the customary manner, for example with water for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules. Preparations in the form of dust, ground or granulated granules and sprayable solutions are usually not diluted with other inert substances before use. External conditions such as temperature, humidity etc.
  • the application rate of the compounds of the general formula (I) and/or their salts can vary within wide limits.
  • the total amount of compounds of the general formula (I) and their salts is preferably in the range from 0.001 to 10.0 kg/ha, preferably in the range from 0.005 to 5 kg/ha, more preferably in In the range from 0.01 to 1.5 kg/ha, particularly preferably in the range from 0.05 to 1 kg/ha. This applies to both pre-emergence and post-emergence application.
  • the total application rate is preferably in the range from 0.001 to 2 kg/ha, preferably in the range from 0.005 to 1 kg/ha, in particular in the range from 10 to 500 g/ha, very particularly preferably in the range from 20 to 250 g/ha Ha.
  • the application as a stalk shortener can take place at different stages of the growth of the plants. For example, application after tillering at the start of growth in length is preferred.
  • the treatment of the seed can also be considered, which includes the different seed dressing and coating techniques.
  • the application rate depends on the individual techniques and can be determined in preliminary tests.
  • mixture formulations or in the tank mix are, for example, known active substances which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate -3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II or protoporphyrinogen oxidase can be used, as for example from Weed Research 26 (1986) 441-445 or "The Pesticide Manual ", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 and the literature cited there.
  • herbicides or plant growth regulators that can be combined with the compounds according to the invention are mentioned below by way of example, these active ingredients being identified either by their "common name" in the English-language variant according to the International Organization for Standardization (ISO) or by the chemical name or by the code number are designated. This always includes all application forms such as acids, salts, esters and also all isomeric forms such as stereoisomers and optical isomers, even if they are not explicitly mentioned.
  • herbicidal mixing partners are: acetochlor, acifluorfen, acifluorfen-methyl, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-6-( 4-chloro-2-fluoro-3-methylphenyl)-5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, aminopyralid- dimethylammonium, aminopyralid-tripromine, amitrole, ammoniumsulfamate, anilofos, asulam, asulam-potassium, asulam sodium, atrazine, azafenidin, azimsulfuron, beflubutamid, (S)-
  • plant growth regulators as possible mixing partners are: abscisic acid, acibenzolar, acibenzolar-S-methyl, 1-aminocyclopro-1-yl carboxylic acid and their derivatives, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, bikinin, brassinolide, brassinolide-ethyl, catechin, chitooligosaccharides, chitinous compounds, chlormequat chloride, cloprop, cyclanilide, 3-(cycloprop-1-enyl)propionic acid, daminozide, dazomet, dazomet-sodium, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl
  • S1a Compounds of the dichlorophenylpyrazoline-3-carboxylic acid type ( S1a ), preferably compounds such 1-(2,4-Dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylic acid, 1-(2,4-Dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2- pyrazoline-3-carboxylic acid ethyl ester (S1-1) ("mefenpyr-diethyl”), and related compounds as described in WO-A-91/07874; S1b ) Derivatives of dichlorophenylpyrazolecarboxylic acid ( S1b ), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5
  • S2 a Compounds from the group of 8-quinolinoxy derivatives (S2): S2 a ) Compounds of the 8-quinolinoxyacetic acid type (S2 a ), preferably (5-chloro-8-quinolinoxy)acetic acid (1-methylhexyl) ester ("Cloquintocet-mexyl") (S2-1), (5-Chloro-8-quinolinoxy)acetic acid (1,3-dimethylbut-1-yl) ester (S2-2), (5-Chloro-8-quinolinoxy)acetic acid 4-allyl-oxy-butyl ester (S2-3), (5-Chloro-8-quinolinoxy)acetic acid 1-allyloxy-prop-2-yl ester (S2-4), Ethyl (5-chloro-8-quinolinoxy)acetate (S2-5), Methyl (5-chloro-8-quinolinoxy)acetate (S2-6), Allyl (5-chloro-8-quinolinoxy)a
  • S3 Active substances of the type of dichloroacetamide (S3), which are often used as pre-emergence safeners (soil-effective safeners), such as.
  • B. "Dichlormide” (N,N-Diallyl-2,2-dichloroacetamide) (S3-1), “R-29148” (3-Dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from the company Stauffer (S3-2), "R-28725" (3-dichloroacetyl-2,2-dimethyl-1,3-oxazolidine) from Stauffer (S3-3), "Benoxacor” (4-dichloroacetyl-3,4 -dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4), "PPG-1292” (N-allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloroacetamide ) from PPG Industries (
  • S4a N-acylsulfonamides of the formula ( S4a ) and salts thereof as described in WO-A-97/45016, in which RA 1 (C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, the last 2 radicals mentioned being replaced by vA substituents from the group consisting of halogen, (C 1 -C 4 )alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 )alkylthio and, in the case of cyclic radicals, also by (C 1 -C 4 )alkyl and (C 1 -C 4 )haloalkyl; R A 2 halo, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, CF 3; mA 1 or 2; v A is 0,
  • Active ingredients from the class of hydroxyaromatics and aromatic-aliphatic carboxylic acid derivatives (S5) for example ethyl 3,4,5-triacetoxybenzoate, 3,5-dimethoxy-4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydroxysalicylic acid, 4-fluorosalicylic acid , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001.
  • S6 Active ingredients from the class of 1,2-dihydroquinoxalin-2-ones (S6), for example 1-methyl-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, 1-methyl-3-( 2-thienyl)-1,2-dihydro-quinoxaline-2-thione, 1-(2-aminoethyl)-3-(2-thienyl)-1,2-dihydro-quinoxalin-2-one hydrochloride, 1-( 2-Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydro-quinoxalin-2-one, as described in WO-A-2005/112630.
  • S7 Compounds from the class of diphenylmethoxyacetic acid derivatives (S7), for example methyl diphenylmethoxyacetate (CAS Reg. No. 41858-19-9) (S7-1), ethyl diphenylmethoxyacetate or diphenylmethoxyacetic acid as described in WO-A-98/38856.
  • R D 1 is halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, (C 1 -C 4 )alkoxy, (C 1 -C 4 )haloalkoxy
  • R D 2 is hydrogen or (C 1 -C 4 )alkyl
  • R D 3 is hydrogen, (C 1 -C 8 )alkyl, (C 2 -C 4 )alkenyl, (C 2 -C 4 )alkynyl, or Aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or salts thereof, n D is an integer from 0 to 2.
  • Active ingredients from the class of 3-(5-tetrazolylcarbonyl)-2-quinolones for example 1,2-dihydro-4-hydroxy-1- ethyl-3-(5-tetrazolylcarbonyl)-2-quinolone (CAS Reg. No.: 219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl )-2-quinolone (CAS Reg. No. 95855-00-8) as described in WO-A-1999/000020.
  • S11 Active substances of the type of oxyimino compounds (S11), which are known as seed dressings, such as.
  • B. "Oxabetrinil” ((Z)-1,3-dioxolan-2-ylmethoxyimino(phenyl)acetonitrile) (S11-1) known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim” (1- (4-Chlorophenyl)-2,2,2-trifluoro-1-ethanone-O-(1,3-dioxolan-2-ylmethyl)-oxime) (S11-2) used as a seed dressing safener for sorghum against damage from metolachlor is known, and "Cyometrinil” or “CGA-43089” ((Z)-cyanomethoxyimino(phenyl)acetonitrile) (S11-3), known as a seed dressing safener for millet against damage from metolachlor.
  • S12 Active ingredients from the class of isothiochromanone (S12), such as methyl [(3-oxo-1H-2-benzothiopyran-4(3H)-ylidene)methoxy]acetate (CAS Reg. No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361.
  • S12 isothiochromanone
  • S13 One or more compounds from group (S13): "Naphthalic anhydride” (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), known as a seed dressing safener for corn against damage from thiocarbamate herbicides, "Fenclorim” (4.6 -Dichloro-2-phenylpyrimidine) (S13-2), known as a safener for pretilachlor in seeded rice, "Flurazole” (benzyl 2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13 -3) known as a seed dressing safener for millet against damage from alachlor and metolachlor, "CL 304415” (CAS Reg.No.31541-57-8) (4-carboxy-3,4-dihydro-2H- 1-benzopyran-4-acetic acid) (S13-4) from American Cyanamid, which is known as a safener for corn against damage from imidazolin
  • Preferred safeners in combination with the compounds of the general formula (I) according to the invention and/or their salts, in particular with the compounds of the formulas (I-1) to (I-90) and/or their salts are: cloquintocet-mexyl, cyprosulfamide , fenchlorazol-ethyl ester, isoxadifen-ethyl, mefenpyr-diethyl, fenclorim, cumyluron, S4-1 and S4-5, and particularly preferred safeners are: cloquintocet-mexyl, cyprosulfamide, isoxadifen-ethyl and mefenpyr-diethyl.
  • Pre-emergence herbicidal activity Seeds of mono- and dicotyledonous weed plants were placed in plastic pots in sandy loam soil (double sowing with one species of monocotyledonous or dicotyledonous weed plants per pot) and covered with soil.
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were then applied to the surface of the covering soil as an aqueous suspension or emulsion, with the addition of 0.5% additive, with a water application rate of the equivalent of 600 liters per hectare applied. After treatment, the pots were placed in the greenhouse and maintained under good growing conditions for the test plants.
  • WP wettable powders
  • EC emulsion concentrates
  • Tables A1a to A12c below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and at an application rate corresponding to 1280 g/ha and below, which were obtained according to the test procedure mentioned above.
  • Table A1a Pre-emergence effect at 80g/ha against ABUTH in %
  • Table A1b Pre-emergence effect at 320g/ha against ABUTH in %
  • Table A1c Pre-emergence effect at 1280g/ha against ABUTH in %
  • Table A2a Pre-emergence effect at 320g/ha against ALOMY in %
  • Table A2b Pre-emergence effect at 1280g/ha against ALOMY in %
  • Table A3a Pre-emergence effect at 80g/ha against DIGSA in %
  • Table A4a Pre-emergence effect at 80g/ha against ECHCG in %
  • Table A4b Pre-emergence effect at 320g/ha against ECHCG in %
  • Table A5c Pre-emergence effect at 1280g/ha against KCHSC in %
  • Table A6a Pre-emergence effect at 320g/ha against LOLRI in %
  • Table A6b Pre-emergence effect at 1280g/ha against LOLRI in %
  • Table A7a Pre-emergence effect at 320g/ha against MATIN in %
  • Table A7b Pre-emergence effect at 1280g/ha against MATIN in %
  • Table A8a Pre-emergence effect at 80g/ha against POAAN in %
  • Table A8b Pre-emergence effect at 320g/ha against POAAN in %
  • Table A8c Pre-emergence effect at 1280g/ha against POAAN in %
  • Table A9b Pre-emergence effect at 320g/ha against SETVI in %
  • Table A9c Pre-emergence effect at 1280g/ha against SETVI in %
  • Table A10b Pre-emergence effect at 320g/ha against STEME in %
  • Table A10c Pre-emergence effect at 1280g/ha against STEME in %
  • Table A12c Pre-emergence effect at 1280g/ha against AMARE in %
  • the compounds of the formula I according to the invention have very good herbicidal activity against the harmful plants Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Echinochloa crus when treated pre-emergence -galli (ECHCG), Bassia scoparia (KCHSC), Lolium rigidum (LOLRI), Poa annua (POAAN), Setaria viridis (SETVI), Stellaria media (STEME) and Veronica persica (VERPE) at an application rate of 1280 g and below active substance per hectare.
  • ABUTH Abutilon theophrasti
  • Alopecurus myosuroides ALOMY
  • Echinochloa crus when treated pre-emergence -galli Echinochloa crus when treated pre-emergence -galli (ECHCG
  • Table B1b Post-emergence effect at 320g/ha against ABUTH in %
  • Table B1c Post-emergence effect at 1280g/ha against ABUTH in %
  • Table B2a Post-emergence effect at 320g/ha against ALOMY in %
  • Table B2b Post-emergence effect at 1280g/ha against ALOMY in %
  • Table B3a Post-emergence effect at 320g/ha against DIGSA in %
  • Table B3b Post-emergence effect at 1280g/ha against DIGSA in %
  • Table B4a Post-emergence effect at 80g/ha against ECHCG in %
  • Table B4b Post-emergence effect at 320g/ha against ECHCG in %
  • Table B5b Post-emergence effect at 320g/ha against KCHSC in %
  • Table B5c Post-emergence effect at 1280g/ha against KCHSC in %
  • Table B6a Post-emergence effect at 320g/ha against LOLRI in %
  • Table B6b Post-emergence effect at 1280g/ha against LOLRI in %
  • Table B7a Post-emergence effect at 320g/ha against MATIN in %
  • Table B7b Post-emergence effect at 1280g/ha against MATIN in %
  • Table B8a Post-emergence effect at 80g/ha against POAAN in %
  • Table B8b Post-emergence effect at 320g/ha against POAAN in %
  • Table B10b Post-emergence effect at 320g/ha against STEME in %
  • Table B10c Post-emergence effect at 1280g/ha against STEME in %
  • Table B12a Post-emergence effect at 80g/ha against AMARE in %
  • Table B12b Post-emergence effect at 320g/ha against AMARE in %
  • Table B12c Post-emergence effect at 1280g/ha against AMARE in %
  • the compounds of the formula I according to the invention have very good herbicidal activity against the harmful plants Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Echinochloa crus when treated post-emergence -galli (ECHCG), Bassia scoparia (KCHSC), Lolium rigidum (LOLRI), Poa annua (POAAN), Setaria viridis (SETVI), Stellaria media (STEME) and Veronica persica (VERPE) at an application rate of 1280 g and below active substance per hectare.
  • ABUTH Abutilon theophrasti
  • Alopecurus myosuroides ALOMY
  • Echinochloa crus when treated post-emergence -galli Echinochloa crus when treated post-emergence -galli (ECHCG
  • Tables C1a to C14b below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and at an application rate corresponding to 320 g/ha and below obtained according to the aforesaid test protocol.
  • Table C1a Pre-emergence effect at 80g/ha against ABUTH in %
  • Table C1b Pre-emergence effect at 320g/ha against ABUTH in %
  • Table C 2 a Pre-emergence effect at 80g/ha against ALOMY in %
  • Table C 2 b Pre-emergence effect at 320g/ha against ALOMY in %
  • Table C 5 a Pre-emergence effect at 80g/ha against DIGSA in %
  • Table C5b Pre-emergence effect at 320g/ha against DIGSA in %
  • Table C6a Pre-emergence effect at 80g/ha against ECHCG in %
  • Table C6b Pre-emergence effect at 320g/ha against ECHCG in %
  • Table C7a Pre-emergence effect at 80g/ha against LOLRI in %
  • Table C7b Pre-emergence effect at 320g/ha against LOLRI in %
  • Table C8a Pre-emergence effect at 80g/ha against MATIN in %
  • Table C8b Pre-emergence effect at 320g/ha against MATIN in %
  • Table C9a Pre-emergence effect at 80g/ha against PHBPU in %
  • Table C9b Pre-emergence effect at 320g/ha against PHBPU in %
  • Table C 1 0a Pre-emergence effect at 80g/ha against POLCO in %
  • Table C 1 1a Pre-emergence effect at 80g/ha against SETVI in %
  • Table C11b Pre-emergence effect at 320g/ha against SETVI in %
  • Table C12a Pre-emergence effect at 80g/ha against VERPE in %
  • Table C12b Pre-emergence effect at 320g/ha against VERPE in %
  • Table C13a Pre-emergence effect at 80g/ha against VIOTR in %
  • Table C13b Pre-emergence effect at 320g/ha against VIOTR in %
  • Table C14a Pre-emergence effect at 80g/ha against KCHSC in %
  • Table C14b Pre-emergence effect at 320g/ha against KCHSC in %
  • the compounds of the formula I according to the invention have very good herbicidal activity against the harmful plants Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Avena fatua when treated pre-emergence (AVEFA), Digitaria sanguinalis (DIGSA), Echinochloa crus-galli (ECHCG), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Matricaria inodora (MATIN), Pharbitis purpurea (PHBPU), Polygonum convolvulus (POLCO), Setaria viridis (SETVI), Veronica persica (VERPE) and Viola tricolor (VIOTR) at an application rate of 320
  • Tables D1a to D5b below show the effects of selected compounds of the general formula (I) according to Table 1 on various useful plants and at an application rate corresponding to 320 g/ha and below obtained according to the aforesaid test protocol.
  • Table D1a Pre-emergence effect at 80g/ha against ORYSA in %
  • Table D1b Pre-emergence effect at 320g/ha against ORYSA in %
  • Table D2a Pre-emergence effect at 80g/ha against ZEAMX in %
  • Table D2b Pre-emergence effect at 320g/ha against ZEAMX in %
  • Table D3a Pre-emergence effect at 80g/ha against TRZAS in %
  • Table D3b Pre-emergence effect at 320g/ha against TRZAS in %
  • Table D4a Pre-emergence effect at 80g/ha against GLXMA in %
  • Table D4b Pre-emergence effect at 320g/ha against GLXMA in %
  • Table D5a Pre-emergence effect at 80g/ha against BRSNW in %
  • Table D5b Pre-emergence effect at 320g/ha against BRSNW in %
  • the compounds of the formula I according to the invention have little or no harmful effect on useful plants such as Triticum aestivum (TRZAS), Zea Mays (ZEAMX), Oryza sativa (ORYSA), Glycine when treated pre-emergence max (GLXMA) and Brassica napus (BRSNW).
  • Tables E1a to E12b below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and an application rate corresponding to 320 g/ha and below , which were obtained according to the test procedure mentioned above.
  • Table E2a Post-emergence effect at 80g/ha against ALOMY in %
  • Table E2b Post-emergence effect at 320g/ha against ALOMY in %
  • Table E3a Post-emergence effect at 80g/ha against AMARE in %
  • Table E4b Post-emergence effect at 320g/ha against DIGSA in %
  • Table E5a Post-emergence effect at 80g/ha against ECHCG in %
  • Table E6a Post-emergence effect at 80g/ha against LOLRI in %
  • Table E6b Post-emergence effect at 320g/ha against LOLRI in %
  • Table E7a Post-emergence effect at 80g/ha against PHBPU in %
  • Table E7b Post-emergence effect at 320g/ha against PHBPU in %
  • Table E9a Post-emergence effect at 80g/ha against SETVI in %
  • Table E9b Post-emergence effect at 320g/ha against SETVI in %
  • Table E10a Post-emergence effect at 80g/ha against VERPE in %
  • Table E10b Post-emergence effect at 320g/ha against VERPE in %
  • Table E12a Post-emergence effect at 80g/ha against KCHSC in %
  • Table E12b Post-emergence effect at 320g/ha against KCHSC in %
  • the compounds of the formula I according to the invention have very good herbicidal activity against the harmful plants Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Digitaria sanguinalis when treated post-emergence (DIGSA), Echinochloa crus-galli (ECHCG), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Pharbitis purpurea (PHBPU), Polygonum convolvulus (POLCO), Setaria viridis (SETVI), Veronica persica (VERPE) and Viola tricolor (VIOTR) at an application rate of 320 g and below active substance per hectare.
  • ABUTH Abutilon theophrasti
  • Alopecurus myosuroides ALOMY
  • Tables F1a to F4 below show the effects of selected compounds of the general formula (I) according to Table 1 on various useful plants and an application rate corresponding to 320 g/ha and below, which were obtained according to the test procedure mentioned above.
  • Table F1a Post-emergence at 80g/ha against ORYSA in %
  • Table F1b Post-emergence effect at 320g/ha against ORYSA in %
  • Table F2a Post-emergence effect at 80g/ha against ZEAMX in %
  • Table F2b Post-emergence effect at 320g/ha against ZEAMX in %
  • Table F3a Post-emergence effect at 80g/ha against TRZAS in %
  • Table F4 Post-emergence effect at 80g/ha against GLXMA in %
  • the compounds of the formula I according to the invention have little or no harmful effect on crops such as Triticum aestivum (TRZAS), Zea Mays (ZEAMX), Oryza sativa (ORYSA) and Glycine when treated post-emergence max (GLXMA) on.
  • crops such as Triticum aestivum (TRZAS), Zea Mays (ZEAMX), Oryza sativa (ORYSA) and Glycine when treated post-emergence max (GLXMA) on.

Abstract

The invention relates to substituted (2-heteroaryloxyphenyl)sulfonates of general formula (I) and to the use thereof as herbicides, in particular for controlling weeds and/or weed grasses in crops of useful plants and/or as plant growth regulators for influencing the growth of crops of useful plants. The present invention further relates to herbicidal and/or plant growth-regulating agents comprising one or more compounds of general formula (I).

Description

Substituierte (2-Heteroaryloxyphenyl)sulfonate, sowie deren Salze und ihre Verwendung als herbizide Wirkstoffe Beschreibung Die Erfindung betrifft das technische Gebiet der Pflanzenschutzmittel, insbesondere das der Herbizide zur selektiven Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen. Speziell betrifft diese Erfindung substituierte (2-Heteroaryloxyphenyl)sulfonate, sowie deren Salze, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide. Bisher bekannte Pflanzenschutzmittel zur selektiven Bekämpfung von Schadpflanzen in Nutzpflanzenkulturen oder Wirkstoffe zur Bekämpfung von unerwünschtem Pflanzenwuchs weisen bei ihrer Anwendung teilweise Nachteile auf, sei es, dass sie (a) keine oder aber eine unzureichende herbizide Wirkung gegen bestimmte Schadpflanzen, (b) ein zu geringes Spektrum der Schadpflanzen, das mit einem Wirkstoff bekämpft werden kann, (c) zu geringe Selektivität in Nutzpflanzenkulturen und/oder (d) ein toxikologisch ungünstiges Profil besitzen. Weiterhin führen manche Wirkstoffe, die als Pflanzenwachstumsregulatoren bei einigen Nutzpflanzen eingesetzt werden können, bei anderen Nutzpflanzen zu unerwünscht verminderten Ernteerträgen oder sind mit der Kulturpflanze nicht oder nur in einem engen Aufwandmengenbereich verträglich. Einige der bekannten Wirkstoffe lassen sich wegen schwer zugänglicher Vorprodukte und Reagenzien im industriellen Maßstab nicht wirtschaftlich herstellen oder besitzen nur unzureichende chemische Stabilitäten. Bei anderen Wirkstoffen hängt die Wirkung zu stark von Umweltbedingungen, wie Wetter- und Bodenverhältnissen ab. Die herbizide Wirkung dieser bekannten Verbindungen, insbesondere bei niedrigen Aufwandmengen, bzw. deren Verträglichkeit gegenüber Kulturpflanzen bleiben verbesserungswürdig. In WO 2017/011288 sind verschiedene Pyrimidinyloxybenzole als Herbizide beschrieben, die in der 2- Position des Benzols eine Ether-Gruppe tragen. Daneben werden in den Schriften WO 2016/196606 und WO2016/010731 weitere Pyrimidinyloxybenzole und in den Schriften WO2020/002087 und WO2020/002085 Heteroaryloxypyridine als Herbizide beschrieben. Heteroaryloxybenzole, die in der 2-Position des Benzols mit einer Sulfonat-Gruppe substituiert sind, und deren Salze sind dagegen noch nicht beschrieben. Überraschenderweise wurde nun gefunden, dass (2-Heteroaryloxyphenyl)sulfonate und/oder deren Salze als herbizide Wirkstoffe besonders gut geeignet sind. Gegenstand der vorliegenden Erfindung sind damit substituierte (2-Heteroaryloxyphenyl)sulfonate der allgemeinen Formel (I) oder deren Salze worin R1 für (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Halocycloalkyl, (C2-C6)- Alkenyl, (C2-C6)-Haloalkenyl, (C3-C6)-Cycloalkenyl, (C3-C6)-Halocycloalkenyl, (C2-C6)- Alkinyl, (C2-C6)-Haloalkinyl, (C3-C6)-Cycloalkyl-(C1-C4)-alkyl, (C3-C6)-Halocycloalkyl-(C1- C4)-alkyl, (C1-C4)-Alkyl-(C3-C6)-cycloalkyl, (C1-C4)-Haloalkyl-(C3-C6)-cycloalkyl, (C1-C4)- Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxy-(C1-C4)-alkyl, (C2-C4)-Alkenyloxy-(C1-C4)-alkyl, (C2-C4)-Haloalkenyloxy-(C1-C4)-alkyl, (C3-C6)- Cycloalkenyloxy-(C1-C4)-alkyl, (C2-C6)-Cyanoalkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)- Haloalkylthio-(C1-C4)-alkyl oder (C3-C6)-Cycloalkylthio-(C1-C4)-alkyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, Halogen, Hydroxy, Amino, Cyano, Nitro, Formyl, Formamid, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C2-C4)- Alkinyl, (C2-C4)-Haloalkenyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C3-C6)-Cycloalkoxy, (C2-C4)-Alkenyloxy, (C1-C4)-Alkinyloxy, (C1-C4)-Alkylthio, (C1-C4)- Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)-Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)-Alkylsulfonyl, (C1-C4)-Haloalkylsulfonyl, (C3-C6)- Cycloalkylsulfonyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)- Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)- alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, (C1-C4)- Alkylcarbonyloxy, (C1-C4)-Haloalkylcarbonyloxy, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)- Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)-Alkylaminocarbonyl, (C2-C6)- Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)-Cycloalkylcarbonylamino, (C1-C4)- Alkoxycarbonylamino, (C1-C4)-Alkylaminocarbonylamino, (C2-C6)- Dialkylaminocarbonylamino, Carboxy-(C1-C4)-alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylaminosulfonyl, (C2-C6)-Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl stehen, R4 für Wasserstoff, Halogen, Cyano, Nitro, (C1-C4)-Alkyl oder (C1-C4)-Haloalkyl steht, X für N oder CR5 steht, Y für N oder CH steht, und R5 für Wasserstoff, Halogen oder Cyano steht. Die Verbindungen der allgemeinen Formel (I) können durch Anlagerung einer geeigneten anorganischen oder organischen Säure, wie beispielsweise Mineralsäuren, wie beispielsweise HCl, HBr, H2SO4, H3PO4 oder HNO3, oder organische Säuren, z. B. Carbonsäuren, wie Ameisensäure, Essigsäure, Propionsäure, Oxalsäure, Milchsäure oder Salicylsäure oder Sulfonsäuren, wie zum Beispiel p- Toluolsulfonsäure, an eine basische Gruppe, wie z.B. Amino, Alkylamino, Dialkylamino, Piperidino, Morpholino oder Pyridino, Salze bilden. Diese Salze enthalten dann die konjugierte Base der Säure als Anion. Geeignete Substituenten, die in deprotonierter Form, wie z.B. Sulfonsäuren, bestimmte Sulfonsäureamide oder Carbonsäuren, vorliegen, können innere Salze mit ihrerseits protonierbaren Gruppen, wie Aminogruppen bilden. Salzbildung kann auch durch Einwirkung einer Base auf Verbindungen der allgemeinen Formel (I) erfolgen. Geeignete Basen sind beispielsweise organische Amine, wie Trialkylamine, Morpholin, Piperidin und Pyridin sowie Ammonium-, Alkali- oder Erdalkalimetallhydroxide, -carbonate und -hydrogencarbonate, insbesondere Natrium- und Kaliumhydroxid, Natrium- und Kaliumcarbonat und Natrium- und Kaliumhydrogencarbonat. Diese Salze sind Verbindungen, in denen der azide Wasserstoff durch ein für die Landwirtschaft geeignetes Kation ersetzt wird, beispielsweise Metallsalze, insbesondere Alkalimetallsalze oder Erdalkalimetallsalze, insbesondere Natrium- und Kaliumsalze, oder auch Ammoniumsalze, Salze mit organischen Aminen oder quartäre Ammoniumsalze, zum Beispiel mit Kationen der Formel [NRaRbRcRd]+, worin Ra bis Rd jeweils unabhängig voneinander einen organischen Rest, insbesondere Alkyl, Aryl, Arylalkyl oder Alkylaryl darstellen. Infrage kommen auch Alkylsulfonium- und Alkylsulfoxoniumsalze, wie (C1-C4)-Trialkylsulfonium- und (C1-C4)-Trialkylsulfoxoniumsalze. Die erfindungsgemäß substituierten Heteroaryloxypyridine der allgemeinen Formel (I) können in Abhängigkeit von äußeren Bedingungen, wie pH-Wert, Lösungsmittel und Temperatur eventuell in verschiedenen tautomeren Strukturen vorliegen, die alle von der allgemeinen Formel (I) umfasst sind. Im Folgenden werden die erfindungsgemäß verwendeten Verbindungen der Formel (I) und ihre Salze als "Verbindungen der allgemeinen Formel (I)" bezeichnet. Bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin R1 für (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Halocycloalkyl, (C2-C6)- Alkenyl, (C2-C6)-Haloalkenyl, (C2-C6)-Alkinyl, (C2-C6)-Haloalkinyl, (C3-C6)-Cycloalkyl-(C1- C4)-alkyl, (C3-C6)-Halocycloalkyl-(C1-C4)-alkyl, (C1-C4)-Alkyl-(C3-C6)-cycloalkyl, (C1-C4)- Haloalkyl-(C3-C6)-cycloalkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxy-(C1-C4)-alkyl, (C2-C4)-Alkenyloxy-(C1-C4)-alkyl, (C2-C6)-Cyanoalkyl, (C1- C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Haloalkylthio-(C1-C4)-alkyl oder (C3-C6)-Cycloalkylthio- (C1-C4)-alkyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, Halogen, Hydroxy, Cyano, Nitro, Formyl, Formamid, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C1-C4)- Alkoxy, (C1-C4)-Haloalkoxy, (C2-C4)-Alkenyloxy, (C1-C4)-Alkylthio, (C1-C4)-Haloalkylthio, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino oder (C3-C6)-Trialkylsilyl stehen, R4 für Wasserstoff, Halogen, Cyano, Nitro, (C1-C4)-Alkyl oder (C1-C4)-Haloalkyl steht, X für N oder CR5 steht, Y für N oder CH steht, und R5 für Wasserstoff, Halogen oder Cyano steht. Besonders bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin R1 für (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C6)-Alkenyl, (C2-C6)- Haloalkenyl, (C2-C6)-Alkinyl, (C2-C6)-Haloalkinyl, (C3-C6)-Cycloalkyl-(C1-C4)-alkyl, (C1-C4)- Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C2-C6)-Cyanoalkyl, (C1-C4)- Alkylthio-(C1-C4)-alkyl, (C1-C4)-Haloalkylthio-(C1-C4)-alkyl, (C3-C6)-Halocycloalkyl-(C1-C4)- alkyl, oder (C3-C6)-Cycloalkoxy-(C1-C4)-alkyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C4)-Alkylthio oder (C1-C4)-Haloalkylthio stehen, R4 für Wasserstoff, Halogen, Cyano, Nitro, Methyl oder Trifluormethyl steht, X für N oder CR5 steht, Y für N oder CH steht, und R5 für Wasserstoff, Halogen oder Cyano steht. Ganz besonders bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin R1 für (C1-C5)-Alkyl, (C1-C5)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C5)-Alkenyl, (C2-C5)- Haloalkenyl, (C3-C6)-Cycloalkyl-(C1-C4)-alkyl, (C3-C6)-Halocycloalkyl-(C1-C4)-alkyl, (C3-C6)- Cycloalkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl oder (C2C6)-Cyanoalkyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, Halogen, Cyano, (C1-C2)-Alkyl, (C1-C2)-Haloalkyl, Vinyl, (C1-C2)-Alkoxy oder (C1-C2)-Haloalkoxy stehen, R4 für Wasserstoff, Halogen, Nitro, Cyano oder Trifluormethyl steht, X für N oder CR5 steht, Y für N oder CH steht, und R5 für Wasserstoff Halogen oder Cyano steht. Äußerst bevorzugter Erfindungsgegenstand sind Verbindungen der allgemeinen Formel (I), worin R1 für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, n-Pentyl, iso-Pentyl, Chlormethyl, 1-Chlorprop-3-yl, 1-Chlorbut-4-yl, 1,1,1-Trifluoreth-2-yl, 1,1,1-Trifluorprop-3-yl, 1,1,1-Trifluorbut-4-yl, Cyclopropyl, Cyclopentyl, Cyclopropylmethyl, 1-Methoxyeth-2-yl, Prop- 2-en-1-yl, Vinyl, But-3-en-1-yl, 4,4-Difluorbutyl, Trifluor-but-3-enyl, 4,4,5,5,5- Pentafluorpentyl, 3,3-Dichlor-allyl oder 2-(2,2-Dichlorcyclopropyl)ethan-1-yl, (3,3- Difluorcyclobutan)methan-1-yl, Tetrahydrofuran-2-ylmethyl, (2,2-Dichlorcyclopropyl)methyl, 3-(Trifluor-methoxy)propyl oder 3-Cyanopropyl steht, R2 für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl oder Methoxy steht, R3 für Wasserstoff, Fluor oder Methyl steht, R4 für Fluor, Chlor, Brom, Nitro, Cyano oder Trifluormethyl steht, X für N, C-H C-F oder C-CN steht, und Y für N oder CH steht. Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen gelten sowohl für die Endprodukte der allgemeinenFormel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangs- oder Zwischenprodukte. Diese Restedefinitionen können untereinander, also auch zwischen den angegebenen bevorzugten Bereichen beliebig kombiniert werden. Vor allem aus den Gründen der höheren herbiziden Wirkung, besseren Selektivität und/oder besseren Herstellbarkeit sind erfindungsgemäße Verbindungen der genannten allgemeinen Formel (I) oder deren Salze bzw. deren erfindungsgemäße Verwendung von besonderem Interesse, worin einzelne Reste eine der bereits genannten oder im folgenden genannten bevorzugten Bedeutungen haben, oder insbesondere solche, worin eine oder mehrere der bereits genannten oder im Folgenden genannten bevorzugten Bedeutungen kombiniert auftreten. Im Hinblick auf die erfindungsgemäßen Verbindungen werden die vorstehend und weiter unten verwendeten Bezeichnungen erläutert. Diese sind dem Fachmann geläufig und haben insbesondere die im Folgenden erläuterten Bedeutungen: Sofern nicht anders definiert, gilt generell für die Bezeichnung von chemischen Gruppen, dass die Anbindung an das Gerüst bzw. den Rest des Moleküls über das zuletzt genannte Strukturelement der betreffenden chemischen Gruppe erfolgt, d.h. beispielsweise im Falle von (C1-C4)-Alkoxy über das Sauerstoffatom, und im Falle von Carboxy-(C1-C4)-alkyl oder (C1-C4)-Alkoxy-(C1-C4)-alkyl jeweils über das C-Atom der Alkylgruppe. Erfindungsgemäß steht "Alkylsulfonyl" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes Alkylsulfonyl, vorzugsweise mit 1 bis 4 Kohlenstoffatomen, z.B. (aber nicht beschränkt auf) (C1-C4)-Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1- Methylethylsulfonyl, Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl, 1,1- Dimethylethylsulfonyl. Erfindungsgemäß steht "Alkylthio" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes S-Alkyl, vorzugsweise mit 1 bis 4 Kohlenstoffatomen, wie (C1-C4)- Alkylthio, z.B. (aber nicht beschränkt auf) (C1-C4)-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1- Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio, 1,1-Dimethylethylthio. „Alkylsulfinyl (Alkyl-S(=O)-)“, soweit nicht an anderer Stelle anders definiert steht erfindungsgemäß für Alkylreste, die über -S(=O)- an das Gerüst gebunden sind, wie (C1-C4)-Alkylsulfinyl, z. B. (aber nicht beschränkt auf) (C1-C4)-Alkylsulfinyl wie Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1- Methylethylsulfinyl, Butylsulfinyl, 1-Methylpropylsulfinyl, 2-Methylpropylsulfinyl, 1,1- Dimethylethylsulfinyl. „Alkoxy“ bedeutet ein über ein Sauerstoffatom gebundenen Alkylrest, z. B. (aber nicht beschränkt auf) (C1-C4)-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2- Methylpropoxy, 1,1-Dimethylethoxy. „Alkylcarbonyl“ (Alkyl-C(=O)-), soweit nicht an anderer Stelle anders definiert, steht erfindungsgemäß für Alkylreste, die über -C(=O)- an das Gerüst gebunden sind, wie (C1-C4)-Alkylcarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkylcarbonylgruppe. „Alkylaminocarbonyl“ (Alkyl-NH-C(=O)-), soweit nicht an anderer Stelle anders definiert, steht erfindungsgemäß für Alkylreste, die über -NH-C(=O)- mit dem Kohlenstoff an das Gerüst gebunden sind, wie (C1-C4)-Alkylaminocarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkylaminocarbonylgruppe. „Alkylaminocarbonylamino“ (Alkyl-NH-C(=O)-NH), soweit nicht an anderer Stelle anders definiert, steht erfindungsgemäß für Alkylreste, die über -NH-C(=O)-NH- mit dem Stickstoff an das Gerüst gebunden sind, wie (C1-C4)-Alkylaminocarbonylamino. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkylaminocarbonylaminogruppe. „Alkoxycarbonyl (Alkyl-O-C(=O)-)“, soweit nicht an anderer Stelle anders definiert: Alkylreste, die über -O-C(=O)- an das Gerüst gebunden sind, wie (C1-C4)-Alkoxycarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkoxycarbonylgruppe. „Alkoxycarbonylamino“ (Alkyl-O-C(=O)-NH), soweit nicht an anderer Stelle anders definiert: Alkylreste, die über -O-C(=O)-NH mit dem Stickstoff an das Gerüst gebunden sind, wie (C1-C4)- Alkoxycarbonylamino. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkoxycarbonylaminogruppe. „Alkylcarbonyloxy“ (Alkyl-C(=O)-O-), soweit nicht an anderer Stelle anders definiert: Alkylreste, die über eine Carbonyloxygruppe (-C(=O)-O-) mit dem Sauerstoff an das Gerüst gebunden sind, wie (C1- C4)-Alkylcarbonyloxy. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkylcarbonyloxygruppe. „Alkylcarbonylamino“ (Alkyl-C(=O)-NH-), soweit nicht an anderer Stelle anders definiert: Alkylreste, die über eine Carbonylaminogruppe (-C(=O)-NH-) mit dem Stickstoff an das Gerüst gebunden sind, wie (C1-C4)-Alkylcarbonylamino. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkylcarbonylaminogruppe. Die Bezeichnung "Halogen" bedeutet beispielsweise Fluor, Chlor, Brom oder Iod. Wird die Bezeichnung für einen Rest verwendet, dann bedeutet "Halogen" beispielsweise ein Fluor-, Chlor-, Brom- oder Iodatom. Erfindungsgemäß bedeutet „Alkyl“ einen geradkettigen oder verzweigten offenkettigen, gesättigten Kohlenwasserstoffrest, der gegebenenfalls ein- oder mehrfach substituiert ist und im letzteren Falle als „substituiertes Alkyl“ bezeichnet wird. Bevorzugte Substituenten sind Halogenatome, Alkoxy-, Haloalkoxy-, Cyano-, Alkylthio, Haloalkylthio-, Amino- oder Nitrogruppen, besonders bevorzugt sind Methoxy, Fluoralkyl, Cyano, Nitro, Fluor, Chlor, Brom oder Iod. Die Vorsilbe „Bis“ schließt auch die Kombination unterschiedlicher Alkylreste ein, z. B. Methyl(Ethyl) oder Ethyl(Methyl). „Haloalkyl“, „-alkenyl“ und „-alkinyl“ bedeuten durch gleiche oder verschiedene Halogenatome, teilweise oder vollständig substituiertes Alkyl, Alkenyl bzw. Alkinyl, z.B. Monohaloalkyl (= Monohalogenalkyl) wie z. B. CH2CH2Cl, CH2CH2Br, CHClCH3, CH2Cl, CH2F; Dihaloalkyl (= Dihalogenalkyl) wie z.B. CHF2, CHCl2; Perhaloalkyl wie z.B. CF3, CCl3, CClF2, CBrF2, CFCl2, CF2CClF2, CF2CClFCF3; Polyhaloalkyl wie z. B. CH2CHFCl, CF2CClFH, CF2CBrFH, CH2CF3; Der Begriff Perhaloalkyl umfasst dabei auch den Begriff Perfluoralkyl. „Haloalkoxy“ ist z.B. OCF3, OCHF2, OCH2F, OCF2CF3, OCH2CF3 und OCH2CH2Cl; entsprechendes gilt für Haloalkenyl und andere durch Halogen substituierten Reste. Der hier beispielhaft genannte Ausdruck "(C1-C4)-Alkyl" bedeutet eine Kurzschreibweise für geradkettiges oder verzweigtes Alkyl mit einem bis 4 Kohlenstoffatomen entsprechend der Bereichsangabe für C-Atome, d. h. umfasst die Reste Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methylpropyl oder tert-Butyl. Wenn nicht speziell angegeben, sind bei den Kohlenwasserstoffresten wie Alkyl-, Alkenyl- und Alkinylresten, auch in zusammengesetzten Resten, die niederen Kohlenstoffgerüste, z.B. mit 1 bis 6 C-Atomen bzw. bei ungesättigten Gruppen mit 2 bis 6 C-Atomen, bevorzugt. Alkylreste, auch in den zusammengesetzten Resten wie Alkoxy, Haloalkyl usw., bedeuten z.B. Methyl, Ethyl, n- oder i-Propyl, n-, i-, t- oder 2-Butyl, Pentyle, Hexyle, wie n-Hexyl, i-Hexyl und 1,3-Dimethylbutyl; Alkenyl- und Alkinylreste haben die Bedeutung der den Alkylresten entsprechenden möglichen ungesättigten Reste, wobei mindestens eine Doppelbindung bzw. Dreifachbindung enthalten ist. Bevorzugt sind Reste mit einer Doppelbindung bzw. Dreifachbindung. Der Begriff „Alkenyl“ schließt insbesondere auch geradkettige oder verzweigte offenkettige Kohlenwasserstoffreste mit mehr als einer Doppelbindung ein, wie 1,3-Butadienyl und 1,4-Pentadienyl, aber auch Allenyl- oder Kumulenyl-reste mit einer bzw. mehreren kumulierten Doppelbindungen, wie beispielsweise Allenyl (1,2-Propadienyl) und 1,2-Butadienyl. Alkenyl bedeutet z.B. Vinyl, welches ggf. durch weitere Alkylreste substituiert sein kann, z B. (aber nicht beschränkt auf) (C2-C4)-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1- propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl. Der Begriff „Alkinyl“ schließt insbesondere auch geradkettige oder verzweigte offenkettige Kohlenwasserstoffreste mit mehr als einer Dreifachbindung oder auch mit einer oder mehreren Dreifachbindungen und einer oder mehreren Doppelbindungen ein, wie beispielsweise 1,3-Butatrienyl. (C2-C4)-Alkinyl bedeutet z.B. Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1- Methyl-2-propinyl. Der Begriff „Cycloalkyl“ bedeutet ein carbocyclisches, gesättigtes Ringsystem mit vorzugsweise 3-6 Ring-C-Atomen, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl, das gegebenenfalls weiter substituiert ist, bevorzugt durch Wasserstoff, Alkyl, Alkoxy, Cyano, Nitro, Alkylthio, Haloalkylthio, Halogen, Alkenyl, Alkinyl, Haloalkyl, Amino, Alkylamino, Bisalkylamino, Alkocycarbonyl, Hydroxycarbonyl, Arylalkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Cycloalkylaminocarbonyl. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden cyclische Systeme mit Substituenten umfasst, wobei auch Substituenten mit einer Doppelbindung am Cycloalkylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden auch mehrcyclische aliphatische Systeme umfasst, wie beispielsweise Bicyclo[1.1.0]butan-1-yl, Bicyclo[1.1.0]butan-2-yl, Bicyclo[2.1.0]pentan-1-yl, Bicyclo[1.1.1]pentan-1- yl, Bicyclo[2.1.0]pentan-2-yl, Bicyclo[2.1.0]pentan-5-yl und Bicyclo[2.1.1]hexyl, aber auch Systeme wie z. B.1,1'-Bi(cyclopropyl)-1-yl, 1,1'-Bi(cyclopropyl)-2-yl. Der Ausdruck "(C3-C6)-Cycloalkyl" bedeutet eine Kurzschreibweise für Cycloalkyl mit drei bis 6 Kohlenstoffatomen entsprechend der Bereichsangabe für C-Atome. Im Falle von substituiertem Cycloalkyl werden auch spirocyclische aliphatische Systeme umfasst, wie beispielsweise Spiro[2.2]pent-1-yl, Spiro[2.3]hex-1-yl, Spiro[2.3]hex-4-yl, 3-Spiro[2.3]hex-5-yl. „Cycloalkenyl“ bedeutet ein carbocyclisches, nicht aromatisches, partiell ungesättigtes Ringsystem mit vorzugsweise 4-6 C-Atomen, z.B.1-Cyclobutenyl, 2-Cyclobutenyl, 1-Cyclopentenyl, 2-Cyclopentenyl, 3-Cyclopentenyl, oder 1-Cyclohexenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, 1,3-Cyclohexadienyl oder 1,4-Cyclohexadienyl, wobei auch Substituenten mit einer Doppelbindung am Cycloalkenylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Im Falle von gegebenenfalls substituiertem Cycloalkenyl gelten die Erläuterungen für substituiertes Cycloalkyl entsprechend. Erfindungsgemäß steht "Haloalkylthio" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes S-Halogenalkyl, vorzugsweise mit 1 bis 4 Kohlenstoffatomen, wie (C1-C4)-Haloalkylthio, z.B. (aber nicht beschränkt auf) Trifluormethylthio, Pentafluorethylthio, Difluormethyl, 2,2-Difluoreth-1-ylthio, 2,2,2-Difluoreth-1-ylthio, 3,3,3-prop-1-ylthio. „Halocycloalkyl“ bedeutet durch gleiche oder verschiedene Halogenatome, wie z. B. F, Cl und Br, oder durch Haloalkyl, wie z. B. Trifluormethyl oder Difluormethyl teilweise oder vollständig substituiertes Cycloalkyl , z.B.1-Fluorcycloprop-1-yl, 2-Fluorcycloprop-1-yl, 2,2-Difluorcycloprop-1-yl, 1- Fluorcyclobut-1-yl, 1-Trifluormethylcycloprop-1-yl, 2-Trifluormethylcycloprop-1-yl, 1-Chlor- cycloprop-1-yl, 2-Chlorcycloprop-1-yl, 2,2-Dichlorcycloprop-1-yl, 3,3-Difluorcyclobutyl. Erfindungsgemäß steht "Trialkylsilyl" - in Alleinstellung oder als Bestandteil einer chemischen Gruppe - für geradkettiges oder verzweigtes Si-Alkyl, vorzugsweise mit 1 bis 6 Kohlenstoffatomen, wie Tri-[ (C1- C2)-alkyl]silyl, z.B. (aber nicht beschränkt auf) Trimethylsilyl, Triethylsilyl. Steht ein Sammelbegriff für einen Substituenten, z. B. (C1-C4)-Alkyl, am Ende eines zusammen- gesetzten Substituenten wie z.B. bei (C3-C6)-Cycloalkyl-(C1-C4)-alkyl, so kann der am Anfang stehende Bestandteil des zusammengesetzten Substituenten, z.B. das (C3-C6)-Cycloalkyl, ein- bzw. mehrfach, gleich oder verschieden und unabhängig voneinander mit dem letzten Substituenten, im vorliegenden Beispiel (C1-C4)-Alkyl, substituiert sein. Die Definition für Sammelbegriffe solange nicht anders definiert gilt auch für diese Sammelbegriffe in zusammengesetzten Substituenten. Beispiel: Die Definition für (C1-C4)-Alkyl gilt auch für (C1-C4)- Alkyl als Bestandteil eines zusammengesetzten Substituenten wie z.B. (C3-C6)-Cycloalkyl-(C1-C4)- alkyl. Wenn die Verbindungen durch Wasserstoffverschiebung Tautomere bilden können, welche strukturell formal nicht durch die allgemeine Formel (I) erfasst würden, so sind diese Tautomere gleichwohl von der Definition der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) umfasst, sofern nicht ein bestimmtes Tautomer Gegenstand der Betrachtung ist. So können beispielsweise viele Carbonylverbindungen sowohl in der Ketoform wie auch in der Enolform vorliegen, wobei beide Formen durch die Definition der Verbindung der allgemeinen Formel (I) umfasst werden. Die Verbindungen der allgemeinen Formel (I) können je nach Art und Verknüpfung der Substituenten als Stereoisomere vorliegen. Die durch ihre spezifische Raumform definierten möglichen Stereoisomere, wie Enantiomere, Diastereomere, Z- und E-Isomere sind alle von der allgmeinen Formel (I) umfasst. Sind beispielsweise eine oder mehrere Alkenylgruppen vorhanden, so können Diastereomere (Z- und E- Isomere) auftreten. Sind beispielsweise ein oder mehrere asymmetrische Kohlenstoffatome vorhanden, so können Enantiomere und Diastereomere auftreten. Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen Trennmethoden erhalten. Die chromatographische Trennung kann sowohl im analytischen Maßstab zur Feststellung des Enantiomerenüberschusses bzw. des Diastereomerenüberschusses, wie auch im präparativen Maßstab zur Herstellung von Prüfmustern für die biologische Ausprüfung erfolgen. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangs- und/oder Hilfsstoffe selektiv hergestellt werden. Die Erfindung betrifft somit auch alle Stereoisomeren, die von der allgemeinen Formel (I) umfasst, jedoch nicht mit ihrer spezifischen Stereoform angegeben sind, sowie deren Gemische. Sofern die Verbindungen als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen. Sofern einzelne Verbindungen (I) nicht auf den nachstehend beschriebenen Wegen zufriedenstellend zugänglich sind, können sie durch Derivatisierung anderer Verbindungen (I) hergestellt werden. Als Isolierungs-, Reinigungs- und Stereoisomerenauftrennungsverfahren von Verbindungen der allgemeinen Formel (I) kommen Methoden in Frage, die dem Fachmann aus analogen Fällen allgemein bekannt sind, z.B. durch physikalische Verfahren wie Kristallisation, Chromatographieverfahren, vor allem Säulenchromatographie und HPLC (Hochdruckflüssigchromatographie), Destillation, gegebenenfalls unter reduziertem Druck, Extraktion und andere Verfahren, können gegebenfalls verbleibende Gemische in der Regel durch chromatographische Trennung, z.B. an chiralen Festphasen, getrennt werden. Für präparative Mengen oder im industriellen Maßstab kommen Verfahren in Frage wie Kristallisation, z.B. diastereomerer Salze, die aus den Diastereomerengemischen mit optisch aktiven Säuren und gegebenenfalls bei vorhandenen sauren Gruppen mit optisch aktiven Basen erhalten werden können. Die vorliegende Erfindung beansprucht auch Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I). Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) können unter anderem ausgehend von bekannten Verfahren hergestellt werden. Die eingesetzten und untersuchten Syntheserouten gehen dabei von kommerziell erhältlichen oder leicht herstellbaren Bausteinen aus. Die Gruppierungen R1, R2, R3, R4, X und Y der allgemeinen Formel (I) haben in den nachfolgenden Schemata die zuvor definierten Bedeutungen, sofern nicht beispielhafte, aber nicht einschränkende, Definitionen erfolgen. Erfindungsgemäße Verbindungen der allgemeinen Formel (I) können beispielsweise nach der in Schema 1 angegebenen Methode hergestellt werden. Substituted (2-heteroaryloxyphenyl)sulfonates and their salts and their use as herbicidally active compounds Description The invention relates to the technical field of crop protection agents, in particular that of herbicides for the selective control of weeds and weed grasses in crops of useful plants. Specifically, this invention relates to substituted (2-heteroaryloxyphenyl)sulfonates and their salts, processes for their preparation and their use as herbicides. Previously known crop protection agents for the selective control of harmful plants in crops of useful plants or active ingredients for controlling unwanted plant growth sometimes have disadvantages when they are used, be it that they (a) have no or insufficient herbicidal action against certain harmful plants, (b) too little Spectrum of harmful plants that can be controlled with an active ingredient, (c) have insufficient selectivity in crops of useful plants and/or (d) have a toxicologically unfavorable profile. Furthermore, some active compounds which can be used as plant growth regulators in some useful plants lead to undesirably reduced crop yields in other useful plants or are not compatible with the crop plant or only in a narrow application rate range. Some of the known active ingredients cannot be produced economically on an industrial scale because of the difficult access to precursors and reagents, or their chemical stability is insufficient. With other active ingredients, the effect depends too much on environmental conditions, such as weather and soil conditions. The herbicidal action of these known compounds, particularly when low application rates are used, and their compatibility with crop plants remain in need of improvement. WO 2017/011288 describes various pyrimidinyloxybenzenes as herbicides which carry an ether group in the 2-position of the benzene. In addition, the documents WO 2016/196606 and WO2016/010731 describe further pyrimidinyloxybenzenes and the documents WO2020/002087 and WO2020/002085 describe heteroaryloxypyridines as herbicides. On the other hand, heteroaryloxybenzenes which are substituted in the 2-position of the benzene with a sulfonate group and their salts have not yet been described. Surprisingly, it has now been found that (2-heteroaryloxyphenyl)sulfonates and/or salts thereof are particularly suitable as herbicidal active ingredients. The present invention relates to substituted (2-heteroaryloxyphenyl)sulfonates of the general formula (I) or their salts wherein R 1 is (C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkyl, (C 3 -C 6 )cycloalkyl, (C 3 -C 6 )halocycloalkyl, (C 2 -C 6 )- alkenyl, (C 2 -C 6 )-haloalkenyl, (C 3 -C 6 )-cycloalkenyl, (C 3 -C 6 )-halocycloalkenyl, (C 2 -C 6 )-alkynyl, (C 2 -C 6 ). )-haloalkynyl, (C 3 -C 6 )cycloalkyl-(C 1 -C 4 )alkyl, (C 3 -C 6 )halocycloalkyl-(C 1 -C 4 )alkyl, (C 1 -C 4 ) . )-alkyl-(C 3 -C 6 )-cycloalkyl, (C 1 -C 4 )-haloalkyl-(C 3 -C 6 )-cycloalkyl, (C 1 -C 4 )-alkoxy-(C 1 -C 4 ). )alkyl, (C 1 -C 4 )haloalkoxy(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkoxy(C 1 -C 4 )alkyl, (C 2 -C 4 ) . )-alkenyloxy-(C 1 -C 4 )-alkyl, (C 2 -C 4 )-haloalkenyloxy-(C 1 -C 4 )-alkyl, (C 3 -C 6 )-cycloalkenyloxy-(C 1 -C 4 ). )-alkyl, (C 2 -C 6 )-cyanoalkyl, (C 1 -C 4 )-alkylthio-(C 1 -C 4 )-alkyl, (C 1 -C 4 )-haloalkylthio-(C 1 -C 4 ). )-alkyl or (C 3 -C 6 )-cycloalkylthio-(C 1 -C 4 )-alkyl, R 2 and R 3 independently of one another are hydrogen, halogen, hydroxy, amino, cyano, nitro, formyl, formamide, ( C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 4 )alkenyl, (C 2 -C 4 )alkynyl, (C 2 -C 4 )haloalkenyl, (C 2 -C 4 ). )haloalkynyl, (C 1 -C 4 )alkoxy, (C 1 -C 4 )haloalkoxy, (C 3 -C 6 )cycloalkoxy, (C 2 -C 4 )alkenyloxy, (C 1 -C 4 ) . )-alkynyloxy, (C 1 -C 4 )-alkylthio, (C 1 -C 4 )-haloalkylthio, (C 3 -C 6 )-cycloalkylthio, (C 1 -C 4 )-alkylsulphinyl, (C 1 -C 4 ). )-haloalkylsulfinyl, (C 3 -C 6 )-cycloalkylsulfinyl, (C 1 -C 4 )-alkylsulphonyl, (C 1 -C 4 )-haloalkylsulphonyl, (C 3 -C 6 )-cycloalkylsulphonyl, (C 1 -C 4 ). )-Alkoxy(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy(C 1 -C 4 )alkyl, (C 1 -C 4 )alkylthio(C 1 -C 4 ). )-alkyl, (C 1 -C 4 )-alkylsulfinyl-(C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkylsulfonyl-(C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkylcarbonyl, (C 1 -C 4 )haloalkylcarbonyl, (C 3 -C 6 )cycloalkylcarbonyl, (C 1 -C 4 )alkylcarbonyloxy, (C 1 -C 4 )haloalkylcarbonyloxy, carboxyl, (C 1 - C 4 alkoxycarbonyl, (C 1 -C 4 )haloalkoxycarbonyl, (C 3 -C 6 )cycloalkoxycarbonyl, (C 1 -C 4 )alkylamine ocarbonyl, (C 2 -C 6 )-dialkylaminocarbonyl, (C 3 -C 6 )-cycloalkylaminocarbonyl, (C 1 -C 4 )-alkylcarbonylamino, (C 1 -C 4 )-haloalkylcarbonylamino, (C 2 -C 6 )- cycloalkylcarbonylamino, (C 1 -C 4 )- Alkoxycarbonylamino, (C 1 -C 4 )alkylaminocarbonylamino, (C 2 -C 6 )dialkylaminocarbonylamino, carboxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxycarbonyl-(C 1 -C 4 ). )alkyl, (C 1 -C 4 )haloalkoxycarbonyl(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkoxycarbonyl(C 1 -C 4 )alkyl, (C 1 -C 4 ) . )-alkylaminosulfonyl, (C 2 -C 6 )-dialkylaminosulfonyl or (C 3 -C 6 )-trialkylsilyl, R 4 represents hydrogen, halogen, cyano, nitro, (C 1 -C 4 )-alkyl or (C 1 - C 4 )haloalkyl, X is N or CR 5 , Y is N or CH, and R 5 is hydrogen, halogen or cyano. The compounds of general formula (I) can be synthesized by addition of a suitable inorganic or organic acid, such as mineral acids such as HCl, HBr, H 2 SO 4 , H 3 PO 4 or HNO 3 , or organic acids, eg. B. carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid, lactic acid or salicylic acid or sulfonic acids such as p-toluenesulfonic acid to a basic group such as amino, alkylamino, dialkylamino, piperidino, morpholino or pyridino. These salts then contain the conjugate base of the acid as an anion. Suitable substituents which are in deprotonated form, such as, for example, sulfonic acids, certain sulfonic acid amides or carboxylic acids, can form inner salts with groups which in turn can be protonated, such as amino groups. Salt formation can also take place by the action of a base on compounds of the general formula (I). Suitable bases are, for example, organic amines such as trialkylamines, morpholine, piperidine and pyridine and ammonium, alkali or alkaline earth metal hydroxides, carbonates and bicarbonates, in particular sodium and potassium hydroxide, sodium and potassium carbonate and sodium and potassium bicarbonate. These salts are compounds in which the acidic hydrogen is replaced by an agriculturally suitable cation, for example metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or else ammonium salts, salts with organic amines or quaternary ammonium salts, for example with cations of the formula [NR a R b R c R d ] + , in which R a to R d each independently represent an organic radical, in particular alkyl, aryl, arylalkyl or alkylaryl. Also suitable are alkylsulfonium and alkylsulfoxonium salts, such as (C 1 -C 4 )-trialkylsulfonium and (C 1 -C 4 )-trialkylsulfoxonium salts. Depending on external conditions such as pH, solvent and temperature, the heteroaryloxypyridines of the general formula (I) substituted according to the invention may possibly be present in various tautomeric structures, all of which are encompassed by the general formula (I). The compounds of the formula (I) used according to the invention and their salts are referred to below as "compounds of the general formula (I)". A preferred subject of the invention are compounds of the general formula (I) in which R 1 is (C 1 -C 6 )-alkyl, (C 1 -C 6 )-haloalkyl, (C 3 -C 6 )-cycloalkyl, (C 3 -C 6 )halocycloalkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )haloalkenyl, (C 2 -C 6 )alkynyl, (C 2 -C 6 )haloalkynyl, (C 3 -C 6 )cycloalkyl(C 1 -C 4 )alkyl, (C 3 -C 6 )halocycloalkyl(C 1 -C 4 ) alkyl , ( C 1 -C 4 )alkyl(C 3 -C 4 )alkyl 6 )cycloalkyl, (C 1 -C 4 )haloalkyl-(C 3 -C 6 )cycloalkyl, (C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkoxy(C 1 -C 4 )alkyl, (C 2 -C 4 )alkenyloxy(C 1 -C 4 )alkyl C 4 )alkyl, (C 2 -C 6 )cyanoalkyl, (C 1 -C 4 )alkylthio-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkylthio-(C 1 -C 4 )alkyl 4 )-alkyl or (C 3 -C 6 )-cycloalkylthio-(C 1 -C 4 )-alkyl, R 2 and R 3 independently of one another are hydrogen, halogen, hydroxy, cyano, nitro, formyl, formamide, (C C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 4 )alkenyl, (C 1 -C 4 )alkoxy, (C 1 -C 4 )haloalkoxy, (C 2 -C 4 )alkenyloxy, (C 1 -C 4 )alkylthio, (C 1 -C 4 )haloalkylthio, (C 1 -C 4 )alkoxy (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )alkylcarbonyl, (C 1 -C 4 )haloalkylcarbonyl, (C 3 -C 6 )cycloalkylcarbonyl, carboxyl, (C 1 -C 4 )alkoxycarbonyl, (C 1 -C 4 )haloalkoxycarbonyl, (C 3 -C 6 )cycloalkoxycarbonyl, (C 1 -C 4 )- alkylcarbonylamino, (C 1 -C 4 )haloalkylcarbonylamino, (C 1 -C 4 )alkoxycarbonylamino or (C 3 -C 6 )trialkylsilyl, R 4 represents hydrogen, halogen, cyano, nitro, (C 1 -C 4 )-alkyl or (C 1 -C 4 )-haloalkyl, X is N or CR 5 , Y is N or CH, and R 5 is hydrogen, halogen or cyano. A particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 is (C 1 -C 6 )-alkyl, (C 1 -C 6 )-haloalkyl, (C 3 -C 6 )-cycloalkyl, (C 2 - C 6 ) alkenyl, (C 2 -C 6 ) haloalkenyl, (C 2 -C 6 ) alkynyl, (C 2 -C 6 ) haloalkynyl, (C 3 -C 6 ) cycloalkyl-(C 1 - C 4 )alkyl, (C 1 -C 4 )alkoxy(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy(C 1 -C 4 )alkyl, (C 2 - C 6 )cyanoalkyl, (C 1 -C 4 )alkylthio-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkylthio-(C 1 -C 4 )alkyl, (C 3 - C 6 )-halocycloalkyl-(C 1 -C 4 )-alkyl, or (C 3 -C 6 )-cycloalkoxy-(C 1 -C 4 )-alkyl, R 2 and R 3 independently of one another represent hydrogen, halogen, cyano, (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 4 )alkenyl, (C 1 -C 4 )- alkoxy, (C 1 -C 4 )haloalkoxy, (C 1 -C 4 )alkylthio or (C 1 -C 4 )haloalkylthio, R 4 represents hydrogen, halogen, cyano, nitro, methyl or trifluoromethyl, X is N or CR 5 , Y is N or CH, and R 5 is water fuel, halogen or cyano. A very particularly preferred subject of the invention are compounds of the general formula (I) in which R 1 is (C 1 -C 5 )-alkyl, (C 1 -C 5 )-haloalkyl, (C 3 -C 6 )-cycloalkyl, (C 2 -C 5 )alkenyl, (C 2 -C 5 )haloalkenyl, (C 3 -C 6 )cycloalkyl-(C 1 -C 4 )alkyl, (C 3 -C 6 )halocycloalkyl-(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 ) alkoxy (C 1 -C 4 ) alkyl or (C 2 C 6 ) cyanoalkyl, R 2 and R 3 independently represent hydrogen, halogen, cyano, (C 1 -C 2 ) alkyl , (C 1 -C 2 )haloalkyl, vinyl, (C 1 -C 2 )alkoxy or (C 1 -C 2 )haloalkoxy, R 4 represents hydrogen, halogen, nitro, cyano or trifluoromethyl, X represents N or CR 5 stands, Y is N or CH, and R 5 is hydrogen, halogen or cyano. Extremely preferred subject matter of the invention are compounds of the general formula (I) in which R 1 is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl, isopentyl, chloromethyl, 1-Chloroprop-3-yl, 1-Chlorobut-4-yl, 1,1,1-Trifluoroeth-2-yl, 1,1,1-Trifluoroprop-3-yl, 1,1,1-Trifluorobut-4- yl, cyclopropyl, cyclopentyl, cyclopropylmethyl, 1-methoxyeth-2-yl, prop-2-en-1-yl, vinyl, but-3-en-1-yl, 4,4-difluorobutyl, trifluoro-but-3- enyl, 4,4,5,5,5-pentafluoropentyl, 3,3-dichloroallyl or 2-(2,2-dichlorocyclopropyl)ethan-1-yl, (3,3-difluorocyclobutane)methan-1-yl, tetrahydrofuran-2-ylmethyl, (2,2-dichlorocyclopropyl)methyl, 3-(trifluoro-methoxy)propyl or 3-cyanopropyl, R 2 is hydrogen, fluoro, chloro, bromo, cyano, methyl or methoxy, R 3 is is hydrogen, fluoro or methyl, R 4 is fluoro, chloro, bromo, nitro, cyano or trifluoromethyl, X is N, CHCF or C-CN, and Y is N or CH. The definitions of radicals given above in general or in preferred ranges apply both to the end products of the general formula (I) and correspondingly to the starting materials or intermediates required in each case for the preparation. These radical definitions can be combined with one another, ie also between the specified preferred ranges, as desired. Mainly for the reasons of higher herbicidal action, better selectivity and / or better manufacturability are inventive compounds of general formula (I) or their salts or their inventive use of particular interest, wherein individual radicals have the preferred meanings already mentioned or mentioned below, or in particular those in which one or more of the preferred meanings already mentioned or mentioned below occur in combination. With regard to the compounds according to the invention, the designations used above and below are explained. These are familiar to the person skilled in the art and have in particular the meanings explained below: Unless defined otherwise, it generally applies to the designation of chemical groups that the connection to the structure or the remainder of the molecule takes place via the last-mentioned structural element of the chemical group in question ie, for example in the case of (C 1 -C 4 )-alkoxy via the oxygen atom, and in the case of carboxy-(C 1 -C 4 )-alkyl or (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl in each case via the carbon atom of the alkyl group. According to the invention, “alkylsulfonyl”—on its own or as part of a chemical group—is straight-chain or branched alkylsulfonyl, preferably having 1 to 4 carbon atoms, for example (but not limited to) (C 1 -C 4 )-alkylsulfonyl such as methylsulfonyl, ethylsulfonyl, propylsulfonyl , 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl. According to the invention "alkylthio" - alone or as part of a chemical group - for straight-chain or branched S-alkyl, preferably having 1 to 4 carbon atoms, such as (C 1 -C 4 ) - alkylthio, for example (but not limited to) (C C 1 -C 4 )-alkylthio such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio, 1,1-dimethylethylthio. According to the invention, “alkylsulphinyl (alkyl-S(=O)-)”, unless otherwise defined elsewhere, represents alkyl radicals which are bonded to the skeleton via -S(=O)-, such as (C 1 -C 4 )- alkylsulphinyl, e.g. B. (but not limited to) (C 1 -C 4 )-alkylsulphinyl such as methylsulphinyl, ethylsulphinyl, propylsulphinyl, 1-methylethylsulphinyl, butylsulphinyl, 1-methylpropylsulphinyl, 2-methylpropylsulphinyl, 1,1-dimethylethylsulphinyl. "Alkoxy" means an alkyl radical bonded through an oxygen atom, e.g. B. (but not limited to) (C 1 -C 4 ) alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1-dimethylethoxy. According to the invention, "alkylcarbonyl" (alkyl-C(=O)-), unless otherwise defined elsewhere, represents alkyl radicals which are bonded to the skeleton via -C(=O)-, such as (C 1 -C 4 ) -alkylcarbonyl. The number of carbon atoms refers to the alkyl radical in the alkylcarbonyl group. According to the invention, “alkylaminocarbonyl” (alkyl-NH-C(=O)-), unless otherwise defined elsewhere, represents alkyl radicals which are bonded to the carbon via -NH-C(=O)- to the skeleton, such as (C 1 -C 4 )alkylaminocarbonyl. The number of carbon atoms refers to the alkyl radical in the alkylaminocarbonyl group. According to the invention, “alkylaminocarbonylamino” (alkyl-NH-C(=O)-NH) unless otherwise defined elsewhere represents alkyl radicals which are bonded to the skeleton with the nitrogen via -NH-C(=O)-NH- are such as (C 1 -C 4 )alkylaminocarbonylamino. The number of carbon atoms refers to the alkyl radical in the alkylaminocarbonylamino group. "Alkoxycarbonyl (alkyl-OC(=O)-)", unless otherwise defined elsewhere: alkyl radicals which are bonded to the skeleton via -OC(=O)-, such as (C 1 -C 4 )-alkoxycarbonyl. The number of carbon atoms refers to the alkyl radical in the alkoxycarbonyl group. "Alkoxycarbonylamino" (alkyl-OC(=O)-NH), unless otherwise defined elsewhere: alkyl radicals which are bonded to the nitrogen via -OC(=O)-NH, such as (C 1 -C 4 )- alkoxycarbonylamino. The number of carbon atoms refers to the alkyl radical in the alkoxycarbonylamino group. “Alkylcarbonyloxy” (alkyl-C(=O)-O-), unless otherwise defined elsewhere: alkyl radicals which are bonded to the skeleton with the oxygen via a carbonyloxy group (-C(=O)-O-), such as (C 1 - C 4 )alkylcarbonyloxy. The number of carbon atoms refers to the alkyl radical in the alkylcarbonyloxy group. “Alkylcarbonylamino” (alkyl-C(=O)-NH-), unless otherwise defined elsewhere: alkyl radicals which are bonded to the skeleton with the nitrogen via a carbonylamino group (-C(=O)-NH-), such as (C 1 -C 4 )alkylcarbonylamino. The number of carbon atoms refers to the alkyl radical in the alkylcarbonylamino group. The term "halogen" means, for example, fluorine, chlorine, bromine or iodine. When the term is used for a radical, "halo" means, for example, fluoro, chloro, bromo or iodo. According to the invention, “alkyl” means a straight-chain or branched, open-chain, saturated hydrocarbon radical which is optionally mono- or polysubstituted and, in the latter case, is referred to as “substituted alkyl”. Preferred substituents are halogen atoms, alkoxy, haloalkoxy, cyano, alkylthio, haloalkylthio, amino or nitro groups, particularly preferred are methoxy, fluoroalkyl, cyano, nitro, fluorine, chlorine, bromine or iodine. The prefix "bis" also includes the combination of different alkyl radicals, e.g. methyl(ethyl) or ethyl(methyl). "Haloalkyl", "-alkenyl" and "alkynyl" mean alkyl, alkenyl or alkynyl which is partially or completely substituted by the same or different halogen atoms, for example monohaloalkyl (=monohaloalkyl) such as e.g. B. CH2 CH2 Cl, CH2 CH2 Br, CHClCH3 , CH2 Cl, CH2 F; Dihaloalkyl (=dihaloalkyl) such as CHF 2 , CHCl 2 ; perhaloalkyl such as CF 3 , CCl 3 , CClF 2 , CBrF 2 , CFCl 2 , CF 2 CClF 2 , CF 2 CClFCF 3 ; polyhaloalkyl such as e.g. B. CH2 CHFCl , CF2 CClFH , CF2 CBrFH , CH2 CF3 ; The term perhaloalkyl also includes the term perfluoroalkyl. “Haloalkoxy” includes, for example, OCF 3 , OCHF 2 , OCH 2 F, OCF 2 CF 3 , OCH 2 CF 3 and OCH 2 CH 2 Cl; the same applies to haloalkenyl and other radicals substituted by halogen. The expression "(C 1 -C 4 )-alkyl" mentioned here as an example means an abbreviation for straight-chain or branched alkyl with one to 4 carbon atoms corresponding to the range specified for C-atoms, ie includes the radicals methyl, ethyl, 1-propyl, 2 -propyl, 1-butyl, 2-butyl, 2-methylpropyl or tert-butyl. Unless specifically stated, in the case of the hydrocarbon radicals such as alkyl, alkenyl and alkynyl radicals, including in composite radicals, preference is given to the lower carbon skeletons, for example having 1 to 6 carbon atoms or, in the case of unsaturated groups, having 2 to 6 carbon atoms. Alkyl radicals, including in the compound radicals such as alkoxy, haloalkyl, etc., mean, for example, methyl, ethyl, n- or i-propyl, n-, i-, t- or 2-butyl, pentyl, hexyl, such as n-hexyl, i -hexyl and 1,3-dimethylbutyl; Alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals corresponding to the alkyl radicals, with at least one double bond or triple bond being present. Residues with a double bond or triple bond are preferred. The term "alkenyl" also includes in particular straight-chain or branched open-chain hydrocarbon radicals with more than one double bond, such as 1,3-butadienyl and 1,4-pentadienyl, but also allenyl or cumulenyl radicals with one or more cumulative double bonds, such as for example allenyl (1,2-propadienyl) and 1,2-butadienyl. Alkenyl means, for example, vinyl, which can optionally be substituted by further alkyl radicals, for example (but not limited to) (C 2 -C 4 )-alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1- butenyl, 2-butenyl, 3-butenyl, 1-methyl-1- propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl. The term “alkynyl” also includes in particular straight-chain or branched open-chain hydrocarbon radicals with more than one triple bond or with one or more triple bonds and one or more double bonds, such as 1,3-butatrienyl. (C 2 -C 4 )-Alkinyl means, for example, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl. The term "cycloalkyl" means a carbocyclic, saturated ring system preferably having 3-6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which is optionally further substituted, preferably by hydrogen, alkyl, alkoxy, cyano, nitro, alkylthio , haloalkylthio, halogen, alkenyl, alkynyl, haloalkyl, amino, alkylamino, bisalkylamino, alcocycarbonyl, hydroxycarbonyl, arylalkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl. In the case of optionally substituted cycloalkyl, cyclic systems with substituents are included, with substituents having a double bond on the cycloalkyl radical, e.g. an alkylidene group such as methylidene. In the case of optionally substituted cycloalkyl, polycyclic aliphatic systems are also included, such as bicyclo[1.1.0]butan-1-yl, bicyclo[1.1.0]butan-2-yl, bicyclo[2.1.0]pentan-1-yl , bicyclo[1.1.1]pentan-1-yl, bicyclo[2.1.0]pentan-2-yl, bicyclo[2.1.0]pentan-5-yl and bicyclo[2.1.1]hexyl, but also systems such as e.g . B. 1,1'-Bi(cyclopropyl)-1-yl, 1,1'-Bi(cyclopropyl)-2-yl. The expression "(C 3 -C 6 )-cycloalkyl" means an abbreviation for cycloalkyl having three to 6 carbon atoms, corresponding to the range given for C atoms. In the case of substituted cycloalkyl, spirocyclic aliphatic systems are also included, such as spiro[2.2]pent-1-yl, spiro[2.3]hex-1-yl, spiro[2.3]hex-4-yl, 3-spiro[2.3] hex-5-yl. "Cycloalkenyl" means a carbocyclic, non-aromatic, partially unsaturated ring system preferably having 4-6 carbon atoms, for example 1-cyclobutenyl, 2-cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, or 1-cyclohexenyl, 2-cyclohexenyl , 3-cyclohexenyl, 1,3-cyclohexadienyl or 1,4-cyclohexadienyl, with substituents having a double bond on the cycloalkenyl radical, e.g. an alkylidene group such as methylidene. In the case of optionally substituted cycloalkenyl, the explanations for substituted cycloalkyl apply accordingly. According to the invention "haloalkylthio" - alone or as part of a chemical group - for straight-chain or branched S-haloalkyl, preferably having 1 to 4 carbon atoms, such as (C 1 -C 4 ) -haloalkylthio, for example (but not limited to) trifluoromethylthio, pentafluoroethylthio, difluoromethyl, 2,2-difluoroeth-1-ylthio, 2,2,2-difluoroeth-1-ylthio, 3,3,3-prop-1-ylthio. "Halocycloalkyl" means by identical or different halogen atoms, such as. B. F, Cl and Br, or by haloalkyl, such as. B. trifluoromethyl or difluoromethyl partially or fully substituted cycloalkyl, eg 1-fluorocycloprop-1-yl, 2-fluorocycloprop-1-yl, 2,2-difluorocycloprop-1-yl, 1-fluorocyclobut-1-yl, 1-trifluoromethylcycloprop-1 -yl, 2-trifluoromethylcycloprop-1-yl, 1-chlorocycloprop-1-yl, 2-chlorocycloprop-1-yl, 2,2-dichlorocycloprop-1-yl, 3,3-difluorocyclobutyl. According to the invention, "trialkylsilyl" - alone or as part of a chemical group - is straight-chain or branched Si-alkyl, preferably having 1 to 6 carbon atoms, such as tri-[(C 1 -C 2 )-alkyl]silyl, for example (but not limited to) trimethylsilyl, triethylsilyl. If there is a collective term for a substituent, e.g. B. (C 1 -C 4 ) alkyl, at the end of a composite substituent such as (C 3 -C 6 ) -cycloalkyl- (C 1 -C 4 ) alkyl, so the standing at the beginning of the component compound substituents, for example (C 3 -C 6 )-cycloalkyl, mono- or polysubstituted, identically or differently and independently with the last substituent, in the present example (C 1 -C 4 )-alkyl. Unless otherwise defined, the definition of collective terms also applies to these collective terms in compound substituents. Example: The definition of (C 1 -C 4 )-alkyl also applies to (C 1 -C 4 )-alkyl as part of a composite substituent such as (C 3 -C 6 )-cycloalkyl-(C 1 -C 4 ) - alkyl. If the compounds can form tautomers by hydrogen shift, which structurally and formally would not be covered by the general formula (I), these tautomers are nevertheless included in the definition of the compounds of the general formula (I) according to the invention, unless a specific tautomer is the subject of consideration is. For example, many carbonyl compounds can exist in both the keto form and the enol form, both forms being encompassed by the definition of the compound of general formula (I). Depending on the type and linkage of the substituents, the compounds of the general formula (I) can be present as stereoisomers. The possible stereoisomers defined by their specific spatial form, such as enantiomers, diastereomers, Z and E isomers, are all encompassed by the general formula (I). If, for example, one or more alkenyl groups are present, diastereomers (Z and E isomers) can occur. For example, if one or more asymmetric carbon atoms are present, enantiomers and diastereomers can occur. Stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods. The chromatographic separation can be used both on an analytical scale to determine the enantiomeric excess or of the excess of diastereomers, as well as on a preparative scale for the production of test specimens for biological testing. Likewise, stereoisomers can be prepared selectively by using stereoselective reactions using optically active starting materials and/or auxiliaries. The invention thus also relates to all stereoisomers which are covered by the general formula (I) but are not specified with their specific stereo form, and mixtures thereof. If the compounds are obtained as solids, they can also be purified by recrystallization or digestion. If individual compounds (I) are not satisfactorily accessible by the routes described below, they can be prepared by derivatizing other compounds (I). Suitable methods for isolating, purifying and separating stereoisomers of compounds of the general formula (I) are methods which are generally known to the person skilled in the art from analogous cases, for example by physical methods such as crystallization, chromatographic methods, especially column chromatography and HPLC (high pressure liquid chromatography), distillation , optionally under reduced pressure, extraction and other methods, any remaining mixtures can usually be separated by chromatographic separation, for example on chiral solid phases. For preparative amounts or on an industrial scale, processes such as crystallization, for example diastereomeric salts, which can be obtained from the diastereomeric mixtures with optically active acids and, if acidic groups are present, with optically active bases, are suitable. The present invention also claims processes for preparing the compounds of general formula (I) according to the invention. The compounds of the general formula (I) according to the invention can be prepared, inter alia, starting from known processes. The synthetic routes used and investigated are based on commercially available or easily manufacturable building blocks. The groups R 1 , R 2 , R 3 , R 4 , X and Y of the general formula (I) have the previously defined meanings in the schemes below, unless exemplary, but non-limiting, definitions are given. Compounds of the general formula (I) according to the invention can be prepared, for example, by the method given in Scheme 1.
Schema 1 Die (2-Heteroaryloxyphenyl)sulfonate der allgemeinen Formel (I) können über eine Reaktion der Phenole (E-I) mit Sulfonylchloride (E-II) in Gegenwart von Basen hergestellt werden. Die Base kann eine Amin-Base (wie zum Beispiel 1-Methylimidazol oder Triethylamin) sein. Die Reaktionen werden im Allgemeinen in einem organischen Lösungsmittel, wie zum Beispiel Dichlorethan oder Acetonitril, bei Temperaturen zwischen 0°C und dem Siedepunkt des Lösemittels, durchgeführt. Die Phenole der allgemeinen Formel (E-I) können über eine Alkylierung der 1,2-Dihydroxybenzole (E- III) in Gegenwart von Basen mit dem Pyridin, Pyrimidin oder Pyrazin (E-IV), wobei LG eine Abgangsgruppe ist, hergestellt werden (Schema 2). Schema 2 Die Base kann ein Carbonat-Salz von einem Alkali-Metall (wie zum Beispiel Natrium, Kalium oder Cäsium), oder eine Amin-Base (wie zum Beispiel N-N-Diisopropylethylamin) sein. Die Reaktionen werden im Allgemeinen in einem organischen Lösungsmittel, wie zum Beispiel Acetonitril, Butyronitril, Dimethylformamid, oder Chlorbenzol, bei Temperaturen zwischen 0°C und dem Siedepunkt des Lösemittels, durchgeführt. Für eine geeignete Regioselektivität können die Phenole (E-1) wie in Schema 3 beschrieben synthetisiert werden: Die Oxidationsreaktionen der Methoxybenzaldehyd-Derivate können mit m- Chlorperoxybenzoesäure in Dichlormethan unter Standardreaktionsbedingungen durchgeführt werden. Das Zwischenprodukt kann direkt nach der Aufarbeitung mit Methanol und einer Aminbase, wie zum Beispiel Triethylamin, Tributylamin, oder N,N-Diisopropylethylaminversetzt werden. Das erhaltene Phenol (E-VI) kann nach Evaporation der Lösungsmittel wie in Schema 2 beschrieben aryliert werden. Durch Reaktion mit z.B. Bortribromid in DCM, Bortrichlorid oder Bromwasserstoff kann dann das für die Sulfonierung geeignete Phenol-Derivat E-I erhalten werden (Schema 3). Synthesebeispiele Synthesebeispiel Nr. I-7: Synthesestufe 1: 2-(5-Chlorpyrimidin-2-yl)oxyphenol (= Intermediat A-01) Eine Mischung von Brenzcatechin (4,00 g, 36,3 mmol), 2,5-Dichlorpyrimidin (4,87 g, 32,7 mmol) und N-N-Diisopropylethylamin (6,96 ml, 40,0 mmol) in 15 ml Chlorbenzol wurde bei 140 °C für 9 h erhitzt. Das resultierende Reaktionsgemsich wurde auf Raumtemperatur abgekühlt, mit Wasser verdünnt und mit Essigester mehrmals extrahiert. Die vereinigten organischen Phasen wurden danach mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Durch anschließende säulenchromatographische Reinigung (Gradient Essigester/Heptan) des resultierenden Rohproduktes konnte 2-(5-Chlorpyrimidin-2-yl)oxyphenol isoliert werden. Die Ausbeute betrug 4,33 g (53% der Theorie). Synthesestufe 2: [2-(5-Chlorpyrimidin-2-yl)oxyphenyl] 2-methylpropane-1-sulfonat (= Synthesebeispiel Nr. I-7) Eine Mischung von 2-(5-Chlorpyrimidin-2-yl)oxyphenol (Intermediat A-01, 150 mg, 0,67 mmol) und 1- Methylimidazol (160 µl, 2,02 mmol) in 8 ml Dichlorethan wurde auf 0 °C abgekühlt, und Isobutansulfonylchlorid (114 µl, 0,88 mmol) zugegeben. Die Mischung wurde bei Raumtemperatur für 18 Stunden gerührt. Das resultierende Reaktionsgemsich wurde eingeengt, mit 30 ml Wasser und 4 Äquivalent 6M HCl verdünnt und anschließend mehrmals mit Essigester extrahiert. Die vereinigten organischen Phasen wurden danach über Magnesiumsulfat getrocknet, filtriert und eingeengt. Auf diese Weise konnte [2-(5-Chlorpyrimidin-2-yl)oxyphenyl] 2-methylpropane-1-sulfonat (Synthesebeispiel Nr. I-7) isoliert werden. Die Ausbeute betrug 200 mg (86% der Theorie). Synthesebeispiel Nr. I-28: Synthesestufe 1: 2-Methoxy-3-methylphenol (= Intermediat A-02) Eine Mischung von 2-Methoxy-3-methylbenzaldehyd (4,00 g, 26,6 mmol) in 80 mL Dichlormethan wurde auf 0 °C abgekühlt, und m-CPBA 77% (8,95 g, 39,9 mmol) zugegeben. Die Mischung wurde bei Raumtemperatur für 18 Stunden gerührt. Das resultierende Reaktionsgemisch wurde eingeengt, mit 100 ml Dichlormethan und einer Mischung aus gesättigter NaHCO3/gesättigter Na2S2O3-Lösung 1:1 (1 x 200mL) verdünnt und anschließend mehrmals mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit Wasser und gesättigter NaCl-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Das Zwischenprodukt wurde in 60 mL Methanol gelöst und Triethylamin zugegeben. Die Mischung wurde bei Raumtemperatur für 48 Stunden gerührt und danach eingeengt. Durch anschließende säulenchromatographische Reinigung (Gradient Aceton/Heptan) des resultierenden Rohproduktes konnte 2-Methoxy-3-methylphenol isoliert werden. Die Ausbeute betrug 3,45 g (89% der Theorie). Synthesestufe 2: 5-Chlor-2-(2-methoxy-3-methylphenoxy)pyrimidin (= Intermediat A-03) - Eine Mischung von Intermediat A02 (1,10 g, 7,96 mmol), 2,5-Dichlorpyrimidin (1,30 g, 8,75 mmol) und Kaliumcarbonat (2,75 g, 19,9 mmol) in 10 ml Dimethylformamid wurde bei 80 °C für 2 h erhitzt. Das resultierende Reaktionsgemsich wurde auf Raumtemperatur abgekühlt, mit Wasser verdünnt und mit tert-Butylmethylether mehrmals extrahiert. Die vereinigten organischen Phasen wurden danach mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Durch anschließende säulenchromatographische Reinigung (Gradient Aceton/Heptan) des resultierenden Rohproduktes konnte 5-Chlor-2-(2-methoxy-3-methylphenoxy)pyrimidin isoliert werden. Die Ausbeute betrug 1,88 g (84% der Theorie). Synthesestufe 3: 2-[(5-Chlorpyrimidin-2-yl)oxy]-6-methylphenol (= Intermediat A-04) Eine Mischung von 5-Chlor-2-(2-methoxy-3-methylphenoxy)pyrimidin A03 (1,80 g, 7,18 mmol) in 20 mL Dichlormethan wurde unter Stickstoff auf -78 °C abgekühlt und Bortribromid (1M in Dichlormethan) (21,50 ml, 21,50 mmol) vorsichtig bei -78°C zugetropft . Die Mischung wurde anschließend auf Raumtemperatur kommen lassen und bei Raumtemperatur nachgerührt. Das resultierende Reaktionsgemsich wurde mit Eiswasser verdünnt und anschließend mehrmals mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden danach mit Wasser und gesättigter NaCl-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt 2-[(5- Chlorpyrimidin-2-yl)oxy]-6-methylphenol wurde ohne weitere Aufreinigung isoliert. Die Ausbeute betrug 1,59 g (79% der Theorie). Synthesestufe 4: 2-[(5-Chlorpyrimidin-2-yl)oxy]-6-methylphenyl-4,4,4-trifluorbutan-1-sulfonat (= Synthesebeispiel Nr. I-28) Eine Mischung von 2-[(5-Chlorpyrimidin-2-yl)oxy]-6-methylphenol (Intermediat A-04, 150 mg, 0,63 mmol) und 1-Methylimidazol (202 µl, 2,53 mmol) in 5 ml Dichlorethan wurde auf 0 °C abgekühlt, und 4,4,4-Trifluorbutan-1-sulfonylchlorid (182 µl, 1,26 mmol) zugegeben. Die Mischung wurde bei Raumtemperatur für 18 Stunden gerührt. Das resultierende Reaktionsgemsich wurde eingeengt, mit 30 ml Wasser und 4 Äquivalenten 6M HCl verdünnt und anschließend mehrmals mit Essigester extrahiert. Die vereinigten organischen Phasen wurden danach über Magnesiumsulfat getrocknet, filtriert und eingeengt. Durch anschließende säulenchromatographische Reinigung (Gradient Aceton/Heptan) des resultierenden Rohproduktes konnte 2-[(5-Chlorpyrimidin-2-yl)oxy]-6-methylphenyl-4,4,4- trifluorbutan-1-sulfonat (Synthesebeispiel Nr. I-28) isoliert werden. Die Ausbeute betrug 145 mg (54% der Theorie). In Analogie zu den oben angeführten und an entsprechender Stelle rezitierten Herstellungsbeispielen erhält man die nachfolgend genannten und in Tabelle 1 dargestellten erfindungsgemäßen Verbindungen der allgemeinen Formel (I). Tabelle 1 NMR-Daten ausgewählter Beispiele Ausgewählte detaillierte Synthesebeispiele für die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I) sind im Folgenden aufgeführt. Die 1H-NMR-spektroskopischen Daten, die für die in den nachfolgenden Abschnitten beschriebenen chemischen Beispiele angegeben sind, (400 MHz bei 1H- NMR, Lösungsmittel CDCl3 oder d6-DMSO, interner Standard: Tetramethylsilan δ = 0.00 ppm), wurden mit einem Gerät der Firma Bruker erhalten, und die bezeichneten Signale haben die nachfolgend aufgeführten Bedeutungen: br = breit(es); s = Singulett, d = Dublett, t = Triplett, dd = Doppeldublett, ddd = Dublett eines Doppeldubletts, m = Multiplett, q = Quartett, quint = Quintett, sext = Sextett, sept = Septett, dq = Doppelquartett, dt = Doppeltriplett. Bei Diastereomerengemischen werden entweder die jeweils signifikanten Signale beider Diastereomere oder das charakteristische Signal des Hauptdiastereomers angegeben. Beispiel Nr. I-1: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.50 – 7.32 (m, 4H), 3.17 (s, 3H). Beispiel Nr. I-2: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.52 – 7.37 (m, 4H), 3.70 (tr, 2H), 3.60 (tr, 2H), 2.14 (m, 2H). Beispiel Nr. I-3: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.50 – 7.37 (m, 4H), 3.45 (tr, 2H), 1.70 (m, 2H), 0.94 (tr, 3H). Beispiel Nr. I-4: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.48 – 7.26 (m, 4H), 4.18 (qu, 2H). Beispiel Nr. I-5: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.77 (s, 2H), 7.52 – 7.37 (m, 4H), 3.70 (tr, 2H), 3.60 (tr, 2H), 2.14 (m, 2H). Beispiel Nr. I-6: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.51 – 7.31 (m, 4H), 3.26 (tr, 2H), 1.83 (m, 2H), 1.46 (m, 2H), 0.94 (tr, 3H). Beispiel Nr. I-7: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.51 – 7.37 (m, 4H), 3.39 (d, 2H), 2.10 (m, 1H), 0.98 (d, 6H). Beispiel Nr. I-8: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.55 – 7.38 (m, 4H), 3.85 (m, 2H), 2.81 (m, 2H). Beispiel Nr. I-9: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.56 – 7.39 (m, 4H), 5.57 (s, 2H). Beispiel Nr. I-10: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.52 – 7.38 (m, 4H), 3.63 (tr, 2H), 2.41 (m, 2H), 1.88 (m, 2H). Beispiel Nr. I-11: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.35 – 7.26 (m, 3H), 3.69 (m, 4H), 2.36 (s, 3H), 2.13 (m, 2H). Beispiel Nr. I-12: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.78 (s, 2H), 7.36 – 7.29 (m, 3H), 3.70 tr, 2H), 3.59 (tr, 2H), 2.16 (s, 3H), 2.10 (m, 2H). Beispiel Nr. I-13: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.33 – 7.18 (m, 3H), 3.70 (m, 2H), 3.50 (m, 2H), 2.40 (m, 2H). Beispiel Nr. I-14: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.82 (s, 2H), 7.52 – 7.34 (m, 3H), 3.71 (m, 4H), 2.18 (m, 2H). Beispiel Nr. I-15: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.51 – 7.37 (m, 4H), 3.65 (m, 2H), 3.56 (m, 2H), 1.81 (m, 4H). Beispiel Nr. I-16: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.52 – 7.30 (m, 4H), 3.30 (qu, 2H), 1.45 (tr, 3H). Beispiel Nr. I-17: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.47 (s, 2H), 7.27 (m, 1H), 7.11 (m, 1H), 6.96 (m, 1H), 3.79 (s, 3H), 3.28 (m, 2H), 1.84 (m, 2H), 1.45 (m, 2H), 0.93 tr, 3H). Beispiel Nr. I-18: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.48 (s, 2H), 7.52 – 7.29 (m, 4H), 3.48 (m, 1H), 1.43 (d, 6H). Beispiel Nr. I-19: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.54 – 7.28 (m, 4H), 3.72 (m, 1H), 2.08 (m, 4H), 1.76 (m, 2H), 1.63 (m, 2H). Beispiel Nr. I-20: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.52 – 7.30 (m, 4H), 3.83 (tr, 2H), 3.56 (tr, 2H), 3.36 (s, 3H). Beispiel Nr. I-21: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.48 (s, 2H), 7.50 – 7.30 (m, 4H), 2.69 (m, 1H), 1.13 (m, 4H). Beispiel Nr. I-22: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.53 – 7.28 (m, 4H), 3.24 (m, 1H), 2.06 (m, 1H), 1.64 (m, 1H), 1.42 (d, 3H), 1.02 (tr, 3H). Beispiel Nr. I-23: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.48 (s, 2H), 7.53 – 7.30 (m, 4H), 3.20 (d, 2H), 1.22 (m, 1H), 0.72 (m, 2H), 0.41 (m, 2H). Beispiel Nr. I-24: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.48 (s, 2H), 7.51 – 7.29 (m, 4H), 3.25 (m, 2H), 1.85 (m, 2H), 1.38 (m, 4H), 0.92 (m, 3H). Beispiel Nr. I-25: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.48 (s, 2H), 7.51 – 7.30 (m, 4H), 3.25 (m, 2H), 1.73 (m, 3H), 0.95 (m, 6H). Beispiel Nr. I-26: 1H-NMR (400 MHz, d6-DMSO, δ, ppm): 8.18 (s, 1H), 8.02 – 7.99 (m, 1H), 7.49 – 7.38 (m, 4H), 7.34 – 7.16 (m, 1H), 3.63 – 3.59 (m, 2H), 2.47 – 2.35 (m, 2H), 1.92 – 1.84 (m, 2H). Beispiel Nr. I-27: 1H-NMR (400 MHz, d6-DMSO, δ, ppm): 8.18 (s, 1H), 8.02 – 7.90 (m, 1H), 7.48 – 7.36 (m, 4H), 7.34 – 7.18 (m, 1H), 3.71 – 3.68 (m, 2H), 3.59 – 3.57 (m, 2H), 2.17 – 2.10 (m, 2H). Beispiel Nr. I-28: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.48 (s, 2H), 7.29 – 7.25 (m, 1H), 7.22 – 7.20 (m, 1H), 7.16 – 7.13 (m, 1H), 3.55 – 3.53 (m, 2H), 2.46 (s, 3H), 2.40 – 2.29 (m, 2H), 2.22 – 2.12 (m, 2H). Beispiel Nr. I-29: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.30 – 7.28 (m, 1H), 7.21 – 7.16 (m, 2H), 3.70 – 3.66 (m, 2H), 2.80 – 2.73 (m, 2H), 2.45 (s, 3H). Beispiel Nr. I-30: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.59 – 7.56 (m, 1H), 7.32 – 7.24 (m, 2H), 3.63 – 3.59 (m, 2H), 2.39 – 2.29 (m, 2H), 2.25 – 2.17 (m, 2H). Beispiel Nr. I-31: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.58 – 7.56 (m, 1H), 7.35 – 7.25 (m, 2H), 3.77 – 3.73 (m, 2H), 2.87 – 2.78 (m, 2H). Beispiel Nr. I-32: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.59 (s, 2H), 7.43 – 7.41 (m, 1H), 7.35 – 7.28 (m, 2H), 3.73 – 3.69 (m, 2H), 2.84 – 2.78 (m, 2H). Beispiel Nr. I-33: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.58 (s, 2H), 7.30 – 7.28 (m, 1H), 7.21 – 7.16 (m, 2H), 3.70 – 3.66 (m, 2H), 2.80 – 2.73 (m, 2H), 2.45 (s, 3H). Beispiel Nr. I-34: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.58 (s, 2H), 7.43 – 7.41 (m, 1H), 7.34 – 7.25 (m, 2H), 3.60 – 3.56 (m, 2H), 2.38 – 2.31 (m, 2H), 2.25 – 2.19 (m, 2H). Beispiel Nr. I-35: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.56 (s, 2H), 7.30 – 7.27 (m, 1H), 7.23 – 7.21 (m, 1H), 7.17 – 7.14 (m, 1H), 3.56 (tr, 2H), 2.47 (s, 3H), 2.41 – 2.30 (m, 2H), 2.21 – 2.13 (m, 2H). Beispiel Nr. I-36: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.51 – 7.48 (m, 1H), 7.39 – 7.30 (m, 3H), 5.91 – 5.83 (m, 1H), 5.49 – 5.44 (m, 2H), 4.01 – 3.99 (m, 2H). Beispiel Nr. I-37: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.48 (s, 2H), 7.49 – 7.41 (m, 1H), 7.41 – 7.27 (m, 3H), 6.73 (dd, 1H), 6.30 (dd, 1H), 6.13 (dd, 1H). Beispiel Nr. I-38: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.43 – 7.41 (m, 1H), 7.35 – 7.28 (m, 2H), 3.73 – 3.69 (m, 2H), 2.84 – 2.78 (m, 2H). Beispiel Nr. I-39: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.43 – 7.41 (m, 1H), 7.34 – 7.28 (m, 2H), 3.60 – 3.56 (m, 2H), 2.38 – 2.31 (m, 2H), 2.25 – 2.19 (m, 2H). Beispiel Nr. I-40: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.59 (s, 2H), 7.39 – 7.33 (m, 1H), 7.20 – 7.15 (m, 2H), 3.63 – 3.59 (m, 2H), 2.83– 2.77 (m, 2H). Beispiel Nr. I-41: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.58 (s, 2H), 7.37 – 7.32 (m, 1H), 7.20 – 7.13 (m, 2H), 3.50 – 3.47 (m, 2H), 2.38 – 2.31 (m, 2H), 2.25 – 2.19 (m, 2H). Beispiel Nr. I-42: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.42 (s, 2H), 7.37 – 7.32 (m, 1H), 7.19 – 7.13 (m, 2H), 3.51 – 3.47 (m, 2H), 2.38 – 2.31 (m, 2H), 2.24 – 2.19 (m, 2H). Beispiel Nr. I-43: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.43 (s, 2H), 7.58 – 7.55 (m, 1H), 7.35 – 7.33 (m, 1H), 7.29 – 7.25 (m, 1H), 3.77 – 3.73 (m, 2H), 2.84 – 2.78 (m, 2H). Beispiel Nr. I-44: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.42 (s, 2H), 7.58 – 7.56 (m, 1H), 7.33 – 7.30 (m, 1H), 7.28 – 7.24 (m, 1H), 3.63 – 3.60 (m, 2H), 2.38 – 2.31 (m, 2H), 2.24 – 2.18 (m, 2H). Beispiel Nr. I-45: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.43 (s, 2H), 7.30 – 7.28 (m, 1H), 7.21 – 7.17 (m, 2H), 3.71 – 3.67 (m, 2H), 2.80 – 2.73 (m, 2H), 2.45 (s, 3H). Beispiel Nr. I-46: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.41 (s, 2H), 7.29 – 7.25 (m, 1H), 7.22 – 7.19 (m, 1H), 7.16 – 7.14 (m, 1H), 3.58 – 3.54 (m, 2H), 2.46 (s, 3H), 2.38 – 2.31 (m, 2H), 2.19 – 2.13 (m, 2H). Beispiel Nr. I-47: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.43 (s, 2H), 7.38 – 7.33 (m, 1H), 7.18 – 7.15 (m, 2H), 3.63 – 3.59 (m, 2H), 2.83 – 2.77 (m, 2H). Beispiel Nr. I-48: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.38 – 7.34 (m, 1H), 7.19 – 7.16 (m, 2H), 3.62 – 3.59 (m, 2H), 2.84 – 2.76 (m, 2H). Beispiel Nr. I-49: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.37 – 7.33 (m, 1H), 7.19 – 7.14 (m, 2H), 3.50 – 3.47 (m, 2H), 2.38 – 2.30 (m, 2H), 2.24 – 2.19 (m, 2H). Beispiel Nr. I-50: 1H-NMR (600 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.35 – 7.31 (m, 1H), 7.18 – 7.12 (m, 2H), 5.85 – 5.78 (m, 1H), 5.18 – 5.11 (m, 2H), 3.47 – 3.44 (m, 2H), 2.68 – 2.64 (m, 2H). Beispiel Nr. I-51: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.37 – 7.32 (m, 1H), 7.19 – 7.13 (m, 2H), 3.63 – 3.55 (m, 2H), 2.21 – 2.14 (m, 2H), 1.81 – 1.76 (m, 1H), 1.71 – 1.66 (m, 1H), 1.25 – 1.20 (m, 1H). Beispiel Nr. I-52: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.34 – 7.30 (m, 1H), 7.18 – 7.12 (m, 2H), 3.88 – 3.85 (m, 2H), 3.69 – 3.66 (m, 2H), 3.36 (s, 3H). Beispiel Nr. I-53: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.37 – 7.32 (m, 1H), 7.19 – 7.13 (m, 2H), 3.59 (d, 2H), 2.95 – 2.73 (m, 3H), 2.54 – 2.42 (m, 2H). Beispiel Nr. I-54: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.36 – 7.30 (m, 1H), 7.18 – 7.11 (m, 2H), 4.41 – 4.37 (m, 1H), 3.90 – 3.85 (m, 1H), 3.80 – 3.75 (m, 1H), 3.72 – 3.67 (m, 1H), 3.53 – 3.48 (m, 1H), 2.25 – 2.17 (m, 1H), 1.98 – 1.90 (m, 2H), 1.80 – 1.71 (m, 1H). Beispiel Nr. I-55: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.36 – 7.30 (m, 1H), 7.19 – 7.12 (m, 2H), 3.50 – 3.46 (m, 2H), 1.84 – 1.78 (m, 2H), 0.86 – 0.78 (m, 1H), 0.55 – 0.50 (m, 2H), 0.17 – 0.13 (m, 2H). Beispiel Nr. I-56: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.37 – 7.31 (m, 1H), 7.19 – 7.12 (m, 2H), 6.02 – 5.74 (m, 1H), 3.49 – 3.45 (m, 2H), 2.15 – 2.02 (m, 4H). Beispiel Nr. I-57: 1H-NMR (400 MHz, d6-DMSO δ, ppm) 8.81 (s, 2H), 7.52 – 7.41 (m, 2H), 7.38 – 7.35 (m, 1H), 4.11 – 4.05 (m, 1H), 3.74 – 3.69 (m, 1H), 2.10 – 1.93 (m, 2H), 1.62 – 1.58 (m, 1H). Beispiel Nr. I-58: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.46 (s, 1H), 8.45 (d, 1H), 8.15 (d, 1H), 7.46 – 7.20 (m, 4H), 3.64 (tr, 2H), 3.43 (tr, 2H), 2.24 – 2.18 (m, 2H). Beispiel Nr. I-59: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.23 (s, 1H), 8.01 (s, 1H), 7.39 – 7.31 (m, 4H), 3.69 (tr, 2H), 3.48 (tr, 2H), 2.42 – 2.35 (m, 2H). Beispiel Nr. I-60: 1H-NMR (400 MHz, CDCl3 δ, ppm) 7.81 (s, 1H), 7.51 (d, 1H), 7.37 – 7.25 (m, 4H), 3.68 (tr, 2H), 3.44 (tr, 2H), 2.42 – 2.32 (m, 2H). Beispiel Nr. I-61: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.80 (s, 1H), 8.33 (d, 1H), 7.51 – 7.26 (m, 4H), 3.66 (tr, 2H), 3.44 (tr, 2H), 2.38 – 2.33 (m, 2H). Beispiel Nr. I-62: 1H-NMR (400 MHz, CDCl3 δ, ppm) 9.00 (s, 1H), 8.51 (d, 1H), 7.35 (d, 1H), 7.33 – 7.25 (m, 3H), 7.12 (d, 1H), 3.61 (tr, 2H), 3.37 (tr, 2H), 2.31 – 2.27 (m, 2H). Beispiel Nr. I-63: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.44 (d, 1H), 7.96 (d, 1H), 7.55 (d, 1H), 7.38 – 7.27 (m, 3H), 7.12 (d, 1H), 3.62 (tr, 2H), 3.41 (tr, 2H), 2.34 – 2.29 (m, 2H). Beispiel Nr. I-64: 1H-NMR (400 MHz, CDCl3 δ, ppm) 7.86 (d, 1H), 7.53 (d, 1H), 7.37 – 7.25 (m, 4H), 3.63 (tr, 2H), 3.43 (tr, 2H), 2.35 – 2.31 (m, 2H). Beispiel Nr. I-65: 1H-NMR (400 MHz, CDCl3 δ, ppm) 7.96 (d, 1H), 7.69 (d, 1H), 7.38 – 7.26 (m, 4H), 3.67 (tr, 2H), 3.44 (tr, 2H), 2.37 – 2.34 (m, 2H). Beispiel Nr. I-66: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.12 (s, 1H), 7.99 (s, 1H), 7.51 – 6.99 (m, 4H), 3.66 (tr, 2H), 3.48 (tr, 2H), 2.37 – 2.32 (m, 2H). Beispiel Nr. I-67: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.60 – 7.58 (m, 1H), 7.34 – 7.25 (m, 2H), 3.64 (tr, 2H), 2.35 – 2.24 (m, 4H). Beispiel Nr. I-68: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.39 – 7.33 (m, 1H), 7.21 – 7.14 (m, 2H), 3.51 (tr, 2H), 2.35 – 2.28 (m, 4H). Beispiel Nr. I-69: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.47 (s, 2H), 7.29 – 7.27 (m, 1H), 7.25 – 7.13 (m, 2H), 3.56 (tr, 2H), 2.46 (s, 3H), 2.31 – 2.19 (m, 4H). Beispiel Nr. I-70: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.38 – 7.33 (m, 1H), 7.19 – 7.13 (m, 2H), 3.62 – 3.58 (m, 2H), 3.01 – 2.92 (m, 2H). Beispiel Nr. I-71: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.48 (s, 2H), 7.29 – 7.25 (m, 1H), 7.21 – 7.14 (m, 2H), 3.70 – 3.66 (m, 2H), 2.97 – 2.80 (m, 2H), 2.46 (s, 3H). Beispiel Nr. I-72: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.58 – 7.56 (m, 1H), 7.33 – 7.24 (m, 2H), 3.76 – 3.72 (m, 2H), 3.02 – 2.93 (m, 2H). Beispiel Nr. I-73: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.43 – 7.41 (m, 1H), 7.35 – 7.27 (m, 2H), 3.72 – 3.69 (m, 2H), 3.02 – 2.94 (m, 2H). Beispiel Nr. I-74: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.29 – 7.27 (m, 1H), 7.22 – 7.14 (m, 2H), 3.66 (d, 2H), 2.90 – 2.83 (m, 3H), 2.48 – 2.42 (m, 5H). Beispiel Nr. I-75: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.58 – 7.56 (m, 1H), 7.33 – 7.23 (m, 2H), 3.72 (d, 2H), 2.90 – 2.82 (m, 3H), 2.51 – 2.46 (m, 2H). Beispiel Nr. I-76: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.49 (s, 2H), 7.30 – 7.28 (m, 1H), 7.22 – 7.15 (m, 2H), 4.11 – 4.06 (m, 1H), 3.37 – 3.31 (m, 1H), 2.47 (s, 3H), 2.09 – 2.02 (m, 1H), 1.90 – 1.85 (m, 1H), 1.58 – 1.54 (m, 1H). Beispiel Nr. I-77: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.58 – 7.56 (m, 1H), 7.33 – 7.24 (m, 2H), 4.17 – 4.12 (m, 1H), 3.44 – 3.38 (m, 1H), 2.16 – 2.08 (m, 1H), 1.90 – 1.85 (m, 1H), 1.61 – 1.59 (m, 1H). Beispiel Nr. I-78: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.65 – 7.62 (m, 1H), 7.52 – 7.48 (m, 2H), 4.14 – 4.09 (m, 1H), 3.50 – 3.44 (m, 1H), 2.21 – 2.16 (m, 1H), 1.93 – 1.89 (m, 1H), 1.63 – 1.59 (m, 1H). Beispiel Nr. I-79: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.64 – 7.62 (m, 2H), 7.51 – 7.47 (m, 1H), 3.59 (d, 2H), 2.95 – 2.84 (m, 3H), 2.56– 2.44 (m, 2H). Beispiel Nr. I-80: 1H-NMR (400 MHz, d6-DMSO δ, ppm): 8.51 (s, 2H), 7.65 – 7.61 (m, 2H), 7.51 – 7.47 (m, 1H), 3.73 – 3.69 (m, 4H), 2.50 – 2.43 (m, 2H). Beispiel Nr. I-81: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.65 – 7.62 (m, 2H), 7.52 – 7.48 (m, 1H), 3.62 (tr, 2H), 2.42 – 2.23 (m, 4H). Beispiel Nr. I-82: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.66 – 7.63 (m, 2H), 7.53 – 7.49 (m, 1H), 3.77 – 3.73 (m, 2H), 2.89 – 2.82 (m, 2H). Beispiel Nr. I-83: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.31 – 7.28 (m, 1H), 7.23 – 7.16 (m, 2H), 6.08 (tr, 1H), 4.34 (d, 2H), 2.46 (s, 3H). Beispiel Nr. I-84: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.58 – 7.56 (m, 1H), 7.33 – 7.24 (m, 2H), 6.11 (tr, 1H), 4.40 (d, 2H). Beispiel Nr. I-85: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.38 – 7.32 (m, 1H), 7.20 – 7.14 (m, 2H), 6.10 (tr, 1H), 4.27 (d, 2H). Beispiel Nr. I-86: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.42 (s, 2H), 7.37 – 7.31 (m, 1H), 7.19 – 7.13 (m, 2H), 4.14 (tr, 2H), 3.53 (tr, 2H), 2.37 – 2.31 (m, 2H). Beispiel Nr. I-87: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.48 (s, 2H), 7.29 – 7.14 (m, 3H), 4.15 (tr, 2H), 3.59 (tr, 2H), 2.47 (s, 3H), 2.33 – 2.30 (m, 2H). Beispiel Nr. I-88: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.50 (s, 2H), 7.43 – 7.40 (m, 1H), 7.34 – 7.28 (m, 2H), 4.14 (tr, 2H), 3.62 (tr, 2H), 2.36 – 2.33 (m, 2H). Beispiel Nr. I-89: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.39 – 7.33 (m, 1H), 7.20 – 7.15 (m, 2H), 3.56 (tr, 2H), 2.66 (tr, 2H), 2.37 – 2.30 (m, 2H). Beispiel Nr. I-90: 1H-NMR (400 MHz, CDCl3 δ, ppm) 8.51 (s, 2H), 7.36 – 7.32 (m, 1H), 7.19 – 7.14 (m, 2H), 4.14 (tr, 2H), 3.53 (tr, 2H), 2.36 – 2.33 (m, 2H). Gegenstand der vorliegenden Erfindung ist weiterhin die Verwendung einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salzen, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (1-1) bis (1-90) und/oder deren Salze, jeweils wie oben definiert, als Herbizid und/oder Pflanzenwachstumsregulator, vorzugsweise in Kulturen von Nutz- und/oder Zierpflanzen. Gegenstand der vorliegenden Erfindung ist ferner ein Verfahren zur Bekämpfung von Schadpflanzen und/oder zur Wachstumsregulierung von Pflanzen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salzen, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (1-1) bis (1-90) und/oder deren Salze, jeweils wie oben definiert, oder - eines erfindungsgemäßen Mittels, wie nachstehend definiert, auf die (Schad)Pflanzen, (Schad)Pflanzensamen, den Boden, in dem oder auf dem die (Schad)Pflanzen wachsen, oder die Anbaufläche appliziert wird. Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Bekämpfung von unerwünschten Pflanzen, vorzugsweise in Nutzpflanzenkulturen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salzen, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (1-1) bis (1-90) und/oder deren Salze, jeweils wie oben definiert, oder - eines erfindungsgemäßen Mittels, wie nachstehend definiert, auf unerwünschte Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut der unerwünschten Pflanzen (d.h. Pflanzensamen, z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen), den Boden, in dem oder auf dem die unerwünschte Pflanzen wachsen, (z.B. den Boden von Kulturland oder Nicht-Kulturland) oder die Anbaufläche (d.h. Fläche, auf der die unerwünschte Pflanzen wachsen werden) appliziert wird. Gegenstand der vorliegenden Erfindung ist ferner auch ein Verfahren zur Bekämpfung zur Wachstumsregulierung von Pflanzen, vorzugsweise von Nutzpflanzen, dadurch gekennzeichnet, dass eine wirksame Menge - einer oder mehrerer Verbindungen der allgemeinen Formel (I) und/oder deren Salzen, wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere einer oder mehrerer Verbindungen der Formeln (1-1) bis (1-90) und/oder deren Salze, jeweils wie oben definiert, oder - eines erfindungsgemäßen Mittels, wie nachstehend definiert, die Pflanze, das Saatgut der Pflanze (d.h. Pflanzensamen, z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen), den Boden, in dem oder auf dem die Pflanzen wachsen, (z.B. den Boden von Kulturland oder Nicht-Kulturland) oder die Anbaufläche (d.h. Fläche, auf der die Pflanzen wachsen werden) appliziert wird. Dabei können die erfindungsgemäßen Verbindungen bzw. die erfindungsgemäßen Mittel z.B. im Vorsaat- (gegebenenfalls auch durch Einarbeitung in den Boden), Vorauflauf- und/oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Vorzugsweise werden in einem erfindungsgemäßen Verfahren zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen eine oder mehrere Verbindungen der allgemeinen Formel (I) und/oder deren Salze zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung in Kulturen von Nutzpflanzen oder Zierpflanzen eingesetzt, wobei die Nutzpflanzen oder Zierpflanzen in einer bevorzugten Ausgestaltung transgene Pflanzen sind. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze eignen sich zur Bekämpfung der folgenden Gattungen von monokotylen und dikotylen Schadpflanzen: Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dikotyle Schadpflanzen der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. Werden die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) vor dem Keimen der Schadpflanzen (Ungräser und/oder Unkräuter) auf die Erdoberfläche appliziert (Vorauflaufverfahren), so wird entweder das Auflaufen der Ungras- bzw. Unkrautkeimlinge vollständig verhindert oder diese wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab. Bei Applikation der Wirkstoffe der allgemeinen Formel (I) auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Obgleich die erfindungsgemäßen Verbindungen der allgemeinnen Formel (I) eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden Kulturpflanzen wirtschaftlich bedeutender Kulturen z.B. dikotyler Kulturen der Gattungen Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, oder monokotyler Kulturen der Gattungen Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, Triticale, Triticum, Zea, abhängig von der Struktur der jeweiligen erfindungsgemäßen Verbindung und deren Aufwandmenge nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in Pflanzenkulturen wie landwirtschaftlichen Nutzpflanzungen oder Zierpflanzungen. Darüberhinaus weisen die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) (abhängig von ihrer jeweiligen Struktur und der ausgebrachten Aufwandmenge) hervorragende wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativem Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da beispielsweise die Lagerbildung hierdurch verringert oder völlig verhindert werden kann. Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe der allgemeinen Formel (I) auch zur Bekämpfung von Schadpflanzen in Kulturen von gentechnisch oder durch konventionelle Mutagenese veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Bevorzugt bezüglich transgener Kulturen ist die Anwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz und Zierpflanzen, z.B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) auch als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind. Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Weitere besondere Eigenschaften können in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung liegen. Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen, z.B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Triticale, Hirse, Reis, Maniok und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die Verbindungen der allgemeinen Formel (I) als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind. Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden. Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind dem Fachmann bekannt. Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von Standardverfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA- Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA- Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind. Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J.11 (1992), 3219- 3227). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden. Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen. Vorzugsweise können die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS), Hydoxyphenylpyruvat Dioxygenasen (HPPD), oder Protoporphyrinogen Oxidase (PPO) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, resistent sind. Bei der Anwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen. Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze als Herbizide zur Bekämpfung von Schadpflanzen in Kulturen von Nutz- oder Zierpflanzen, gegebenenfalls in transgenen Kulturpflanzen. Bevorzugt ist die Verwendung von Verbindungen der allgemeinen Formel (I) in Getreide, dabei vorzugsweise Mais, Weizen, Gerste, Roggen, Hafer, Hirse, oder Reis, im Vor- oder Nachauflauf. Bevorzugt ist auch die Verwendung von Verbindungen der allgemeinene Formel (I) in Soja im Vor- oder Nachauflauf. Die Verwendung erfindungsgemäßer Verbindungen der Formel (I) zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen schließt auch den Fall ein, bei dem eine Verbindung der allgemeinen Formel (I) oder deren Salz erst nach der Ausbringung auf der Pflanze, in der Pflanze oder im Boden aus einer Vorläufersubstanz ("Prodrug") gebildet wird. Gegenstand der Erfindung ist auch die Verwendung einer oder mehrerer Verbindungen der allgemeinen Formel (I) oder deren Salzen bzw. eines erfindungsgemäßen Mittels (wie nachstehend definiert) (in einem Verfahren) zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung von Pflanzen, dadurch gekennzeichnet, dass man eine wirksame Menge einer oder mehreren Verbindungen der allgemeinen Formel (I) oder deren Salzen auf die Pflanzen (Schadpflanzen, gegebenenfalls zusammen mit den Nutzpflanzen) Pflanzensamen, den Boden, in dem oder auf dem die Pflanzen wachsen, oder die Anbaufläche appliziert. Gegenstand der Erfindung ist auch ein herbizides und/oder pflanzenwachstumsregulierendes Mittel, dadurch gekennzeichnet, dass das Mittel (a) eine oder mehrere Verbindungen der allgemeinen Formel (I) und/oder deren Salze enthält wie oben definiert, vorzugsweise in einer der als bevorzugt bzw. besonders bevorzugt gekennzeichneten Ausgestaltung, insbesondere eine oder mehrere Verbindungen der Formeln (I-1) bis (I-90) und/oder deren Salze, jeweils wie oben definiert, und (b) ein oder mehrere weitere Stoffe ausgewählt aus den Gruppen (i) und/oder (ii): (i) ein oder mehrere weitere agrochemisch wirksame Stoffe, vorzugsweise ausgewählt aus der Gruppe bestehend aus Insektiziden, Akariziden, Nematiziden, weiteren Herbiziden (d.h. solche, die nicht der oben definierten allgemeinen Formel (I) entsprechen), Fungiziden, Safenern, Düngemitteln und/oder weiteren Wachstumsregulatoren, (ii) ein oder mehrere im Pflanzenschutz übliche Formulierungshilfsmittel. Die weiteren agrochemischen wirksamen Stoffe des Bestandteils (i) eines erfindungsgemäßen Mittels sind dabei vorzugsweise ausgewählt aus der Gruppe der Stoffe, die in "The Pesticide Manual", 16th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2012 genannt sind. Ein erfindungsgemäßes herbizides oder pflanzenwachstumsregulierendes Mittel, umfasst vorzugsweise ein, zwei, drei oder mehr im Pflanzenschutz übliche Formulierungshilfsmittel (ii) ausgewählt aus der Gruppe bestehend aus Tensiden, Emulgatoren, Dispergiermitteln, Filmbildnern, Verdickungsmitteln, anorganischen Salzen, Stäubemitteln, bei 25 °C und 1013 mbar festen Trägerstoffen, vorzugsweise adsorptionsfähigen, granulierten Inertmaterialien, Netzmitteln, Antioxidationsmitteln, Stabilisatoren, Puffersubstanzen, Antischaummitteln, Wasser, organischen Lösungsmitteln, vorzugsweise bei 25 °C und 1013 mbar mit Wasser in jedem beliebigen Verhältnis mischbare organische Lösungsmittel. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, die Verbindungen der allgemeinen Formel (I) und/oder deren Salze enthalten. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen und die Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind dem Fachmann bekannt, und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, N.Y.1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y.1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesellschaft, Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl.1986. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid- Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfettsäureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitanfettsäureester. Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde. Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden. Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden. Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt. Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulaten siehe z.B. Verfahren in "Spray- Drying Handbook" 3rd ed.1979, G. Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S.8-57. Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103. Die agrochemischen Zubereitungen, vorzugsweise herbizide oder pflanzenwachstumsregulierende Mittel der vorliegenden Erfindung enthalten vorzugsweise eine Gesamtmenge von 0,1 bis 99 Gew.-%, bevorzugt 0,5 bis 95 Gew.-%, weiter bevorzugt 1 bis 90 Gew.-%, insbesondere bevorzugt 2 bis 80 Gew.-%, an Wirkstoffen der allgemeinen Formel (I) und deren Salzen. In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0,05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%. Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel. Beispiele für Formulierungshilfsmittel sind unter anderem in "Chemistry and Technology of Agrochemical Formulations", ed. D. A. Knowles, Kluwer Academic Publishers (1998) beschrieben. Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) oder deren Salze können als solche oder in Form ihrer Zubereitungen (Formulierungen) mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Nematiziden, Herbiziden, Fungiziden, Safenern, Düngemitteln und/oder Wachstumsregulatoren kombiniert eingesetzt werden, z.B. als Fertigformulierung oder als Tankmischungen. Die Kombinationsformulierungen können dabei auf Basis der obengenannten Formulierungen hergestellt werden, wobei die physikalischen Eigenschaften und Stabilitäten der zu kombinierenden Wirkstoffe zu berücksichtigen sind. Als Kombinationspartner für die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat-Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat- Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II, Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. in Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 und der dort zitierten Literatur beschrieben sind. Von besonderem Interesse ist die selektive Bekämpfung von Schadpflanzen in Kulturen von Nutz- und Zierpflanzen. Obgleich die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) bereits in vielen Kulturen sehr gute bis ausreichende Selektivität aufweisen, können prinzipiell in einigen Kulturen und vor allem auch im Falle von Mischungen mit anderen Herbiziden, die weniger selektiv sind, Phytotoxizitäten an den Kulturpflanzen auftreten. Diesbezüglich sind Kombinationen erfindungsgemäßer Verbindungen (I) von besonderem Interesse, welche die Verbindungen der allgemeinen Formel (I) bzw. deren Kombinationen mit anderen Herbiziden oder Pestiziden und Safenern enthalten. Die Safener, welche in einem antidotisch wirksamen Gehalt eingesetzt werden, reduzieren die phytotoxischen Nebenwirkungen der eingesetzten Herbizide/Pestizide, z.B. in wirtschaftlich bedeutenden Kulturen wie Getreide (Weizen, Gerste, Roggen, Mais, Reis, Hirse), Zuckerrübe, Zuckerrohr, Raps, Baumwolle und Soja, vorzugsweise Getreide. Die Gewichtsverhältnisse von Herbizid(mischung) zu Safener hängt im Allgemeinen von der Aufwandmenge an Herbizid und der Wirksamkeit des jeweiligen Safeners ab und kann innerhalb weiter Grenzen variieren, beispielsweise im Bereich von 200:1 bis 1:200, vorzugsweise 100:1 bis 1:100, insbesondere 20:1 bis 1:20. Die Safener können analog den Verbindungen der allgemeinen Formel (I) oder deren Mischungen mit weiteren Herbiziden/Pestiziden formuliert werden und als Fertigformulierung oder Tankmischung mit den Herbiziden bereitgestellt und angewendet werden. Zur Anwendung werden die in handelsüblicher Form vorliegenden Herbizid- oder Herbizid-Safener- Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Äußere Bedingungen wie Temperatur, Feuchtigkeit etc. beeinflussen zu einem gewissen Teil die Aufwandmenge der Verbindungen der allgemeinen Formel (I) und/oder deren Salze. Die Aufwandmenge kann dabei innerhalb weiter Grenzen variieren. Für die Anwendung als Herbizid zur Bekämpfung von Schadpflanzen liegt die Gesamtmenge an Verbindungen der allgemeinen Formel (I) und deren Salze vorzugsweise im Bereich von 0,001 bis 10,0 kg/ha, bevorzugt im Bereich von 0,005 bis 5 kg/ha, weiter bevorzugt im Bereich von 0,01 bis 1,5 kg/ha, insbesondere bevorzugt im Bereich von 0,05 bis 1 kg/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf. Bei der Anwendung von erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salzen als Pflanzenwachstumsregulator, beispielsweise als Halmverkürzer bei Kulturpflanzen, wie sie oben genannt worden sind, vorzugsweise bei Getreidepflanzen wie Weizen, Gerste, Roggen, Triticale, Hirse, Reis oder Mais, liegt die Gesamt-Aufwandmenge vorzugsweise im Bereich von 0,001 bis 2 kg/ha, vorzugsweise im Bereich von 0,005 bis 1 kg/ha, insbesondere im Bereich von 10 bis 500 g/ha, ganz besonders bevorzugt im Bereich von 20 bis 250 g/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf. Die Applikation als Halmverkürzer kann in verschiedenen Stadien des Wachstums der Pflanzen erfolgen. Bevorzugt ist beispielsweise die Anwendung nach der Bestockung am Beginn des Längenwachstums. Alternativ kommt bei der Anwendung als Pflanzenwachstumsregulator auch die Behandlung des Saatguts in Frage, welche die unterschiedlichen Saatgutbeiz- und Beschichtungstechniken einschließt. Die Aufwandmenge hängt dabei von den einzelnen Techniken ab und kann in Vorversuchen ermittelt werden. Als Kombinationspartner für die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) in erfindungsgemäßen Mitteln (z.B. Mischungsformulierungen oder im Tank-Mix) sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA- Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat-Synthase, Glutamin-Synthetase, p- Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II oder Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 16th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2012 und dort zitierter Literatur beschrieben sind. Nachfolgend werden beispielhaft bekannte Herbizide oder Pflanzenwachstumsregulatoren genannt, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, wobei diese Wirkstoffe entweder mit ihrem "common name" in der englischsprachigen Variante gemäß International Organization for Standardization (ISO) oder mit dem chemischen Namen bzw. mit der Codenummer bezeichnet sind. Dabei sind stets sämtliche Anwendungsformen wie beispielsweise Säuren, Salze, Ester sowie auch alle isomeren Formen wie Stereoisomere und optische Isomere umfaßt, auch wenn diese nicht explizit erwähnt sind. Beispiele für solche herbiziden Mischungspartner sind: Acetochlor, acifluorfen, acifluorfen-methyl, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-6- (4-chloro-2-fluoro-3-methylphenyl)-5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, aminopyralid- dimethylammonium, aminopyralid-tripromine, amitrole, ammoniumsulfamate, anilofos, asulam, asulam-potassium, asulam sodium, atrazine, azafenidin, azimsulfuron, beflubutamid, (S)-(-)- beflubutamid, beflubutamid-M, benazolin, benazolin-ethyl, benazolin-dimethylammonium, benazolin- potassium, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, bentazone- sdium, benzobicyclon, benzofenap, bicyclopyrone, bifenox, bilanafos, bilanafos-sodium, bipyrazone, bispyribac, bispyribac-sodium, bixlozone, bromacil, bromacil-lithium, bromacil-sodium, bromobutide, bromofenoxim, bromoxynil, bromoxynil-butyrate, -potassium, -heptanoate und -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, cambendichlor, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chloramben-ammonium, chloramben-diolamine, chlroamben-methyl, chloramben-methylammonium, chloramben-sodium, chlorbromuron, chlorfenac, chlorfenac-ammonium, chlorfenac-sodium, chlorfenprop, chlorfenprop- methyl, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlorophthalim, chlorotoluron, chlorsulfuron, chlorthal, chlorthal-dimethyl, chlorthal-monomethyl, cinidon, cinidon-ethyl, cinmethylin, exo-(+)-cinmethylin, i.e. (1R,2S,4S)-4-isopropyl-1-methyl-2-[(2- methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptane, exo-(-)-cinmethylin, i.e. (1R,2S,4S)-4-isopropyl-1- methyl-2-[(2-methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptane, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-ethyl, clodinafop-propargyl, clomazone, clomeprop, clopyralid, clopyralid- methyl, clopyralid-olamine, clopyralid-potassium, clopyralid-tripomine, cloransulam, cloransulam- methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D (including theammonium, butotyl, -butyl, choline, diethylammonium, -dimethylammonium, -diolamine, -doboxyl, -dodecylammonium, etexyl, ethyl, 2-ethylhexyl, heptylammonium, isobutyl, isooctyl, isopropyl, isopropylammonium, lithium, meptyl, methyl, potassium, tetradecylammonium, triethylammonium, triisopropanolammonium, tripromine and trolamine salt thereof), 2,4-DB, 2,4-DB-butyl, -dimethylammonium, isooctyl, -potassium und -sodium, daimuron (dymron), dalapon, dalapon-calcium, dalapon-magnesium, dalapon-sodium, dazomet, dazomet-sodium, n-decanol, 7-deoxy-D-sedoheptulose, desmedipham, detosyl-pyrazolate (DTP), dicamba and its salts, e. g. dicamba-biproamine, dicamba-N,N-Bis(3-aminopropyl)methylamine, dicamba-butotyl, dicamba-choline, dicamba-diglycolamine, dicamba-dimethylammonium, dicamba- diethanolaminemmonium, dicamba-diethylammonium, dicamba-isopropylammonium, dicamba-methyl, dicamba-monoethanolaminedicamba-olamine, dicamba-potassium, dicamba-sodium, dicamba- triethanolamine, dichlobenil, 2-(2,4-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, 2-(2,5- dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, dichlorprop, dichlorprop-butotyl, dichlroprop- dimethylammonium, dichhlorprop-etexyl, dichlorprop-ethylammonium, dichlorprop-isoctyl, dichlorprop-methyl, dichlorprop-postassium, dichlorprop-sodium, dichlorprop-P, dichlorprop-P- dimethylammonium, dichlorprop-P-etexyl, dichlorprop-P-potassium, dichlorprop-sodium, diclofop, diclofop-methyl, diclofop-P, diclofop-P-methyl, diclosulam, difenzoquat, difenzoquat-metilsulfate, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimesulfazet, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimetrasulfuron, dinitramine, dinoterb, dinoterb-acetate, diphenamid, diquat, diquat-dibromid, diquat-dichloride, dithiopyr, diuron, DNOC, DNOC-ammonium, DNOC-potassium, DNOC-sodium, endothal, endothal-diammonium, endothal- dipotassium, endothal-disodium, Epyrifenacil (S-3100), EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, F-5231, i.e. N-[2-Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5-dihydro-5-oxo- 1H-tetrazol-1-yl]-phenyl]-ethansulfonamid, F-7967, i.e.3-[7-Chlor-5-fluor-2-(trifluormethyl)-1H- benzimidazol-4-yl]-1-methyl-6-(trifluormethyl)pyrimidin-2,4(1H,3H)-dione, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenpyrazone, fenquinotrione, fentrazamide, flamprop, flamprop-isoproyl, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, florpyrauxifen, florpyrauxifen-benzyl, fluazifop, fluazifop-butyl, fluazifop- methyl, fluazifop-P, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, -dimethylammonium und -methyl, fluoroglycofen, fluoroglycofen- ethyl, flupropanate, flupropanate-sdium, flupyrsulfuron, flupyrsulfuron-methyl, flupyrsulfuron-methyl- sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-butometyl, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, foramsulfuron sodium salt, fosamine, fosamine-ammonium, glufosinate, glufosinate-ammonium, glufosinate-sodium, L-glufosinate- ammonium, L-glufosiante-sodium, glufosinate-P-sodium, glufosinate-P-ammonium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, -dimethylammonium, -potassium, - sodium, sesquisodium and -trimesium, H-9201, i.e. O-(2,4-Dimethyl-6-nitrophenyl)-O-ethyl- isopropylphosphoramidothioat, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron- methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, haloxifop-sodium, hexazinone, HNPC-A8169, i.e. prop-2-yn-1-yl (2S)-2-{3-[(5- tert-butylpyridin-2-yl)oxy]phenoxy}propanoate, HW-02, i.e.1-(Dimethoxyphosphoryl)-ethyl-(2,4- dichlorphenoxy)acetat, hydantocidin, imazamethabenz, imazamethabenz-methyl, imazamox, imazamox- ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazaquin.methyl, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl, iodosulfuron-methyl-sodium, ioxynil, ioxynil-lithium, -octanoate, -potassium und sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, i.e.3-({[5-(Difluormethyl)-1-methyl-3-(trifluormethyl)-1H-pyrazol- 4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazol, ketospiradox, ketospiradox-potassium, lactofen, lancotrione, lenacil, linuron, MCPA, MCPA-butotyl, -butyl, -dimethylammonium, -diolamine, -2-ethylhexyl, -ethyl, -isobutyl, isoctyl, -isopropyl, -isopropylammonium, -methyl, olamine, -potassium, –sodium and -trolamine, MCPB, MCPB-methyl, -ethyl und -sodium, mecoprop, mecoprop-butotyl, mecoprop- demethylammonium, mecoprop-diolamine, mecoprop-etexyl, mecoprop-ethadyl, mecoprop- isoctyl, mecoprop-methyl, mecoprop-potassium, mecoprop-sodium, and mecoprop-trolamine, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl and -potassium, mefenacet, mefluidide, mefluidide-diolamine, mefluidide-potassium, mesosulfuron, mesosulfuron-methyl, mesosulfuron sodium salt, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozolin, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monolinuron, monosulfuron, monosulfuron-methyl, MT- 5950, i.e. N-[3-chlor-4-(1-methylethyl)-phenyl]-2-methylpentanamid, NGGC-011, napropamide, NC- 310, i.e.4-(2,4-Dichlorbenzoyl)-1-methyl-5-benzyloxypyrazol, NC-656, i.e. 3- [(isopropylsulfonyl)methyl]-N-(5-methyl-1,3,4-oxadiazol-2-yl)-5-(trifluoromethyl)[1,2,4]triazolo[4,3- a]pyridine-8-carboxamide, neburon, nicosulfuron, nonanoic acid (pelargonic acid), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, paraquat-dichloride, paraquat-dimethylsulfate, pebulate, pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, phenmedipham-ethyl, picloram, picloram-dimethylammonium, picloram-etexyl, picloram-isoctyl, picloram-methyl, picloram-olamine, picloram-potassium, picloram-triethylammonium, picloram-tripromine, picloram-trolamine, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone- sodium, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen- ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinclorac-dimethylammonium, quinclorac-methyl, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, QYM201, i.e.1-{2-chloro-3-[(3-cyclopropyl-5-hydroxy-1-methyl-1H-pyrazol-4-yl)carbonyl]-6- (trifluoromethyl)phenyl}piperidin-2-one, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, SL-261, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYP- 249, i.e.1-Ethoxy-3-methyl-1-oxobut-3-en-2-yl-5-[2-chlor-4-(trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, i.e.1-[7-Fluor-3-oxo-4-(prop-2-in-1-yl)-3,4-dihydro-2H-1,4-benzoxazin-6-yl]-3-propyl-2- thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (trichloro acetic acid) and its salts, e.g. TCA-ammonium, TCA-calcium, TCA-ethyl, TCA-magnesium, TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazine, terbutryn, tetflupyrolimet, thaxtomin, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topramezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-choline, triclopyr-ethyl, triclopyr-triethylammonium, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron-methyl, tritosulfuron, urea sulfate, vernolate, XDE-848, ZJ-0862, i.e.3,4-Dichlor-N-{2-[(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}anilin, 3-(2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydropyrimidin-1 (2H)-yl)phenyl)-5-methyl-4,5- dihydroisoxazole-5-carboxylic acid ethyl ester, ethyl-[(3-{2-chlor-4-fluor-5-[3-methyl-2,6-dioxo-4- (trifluormethyl)-3,6-dihydropyrimidin-1(2H)-yl]phenoxy}pyridin-2-yl)oxy]acetate, 3-chloro-2-[3- (difluoromethyl)isoxazolyl-5-yl]phenyl-5-chloropyrimidin-2-yl ether, 2-(3,4-dimethoxyphenyl)-4-[(2- hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-6-methylpyridazine-3(2H)-one, 2-({2-[(2- methoxyethoxy)methyl]-6-methylpyridin-3-yl}carbonyl)cyclohexane-1,3-dione, (5-hydroxy-1-methyl- 1H-pyrazol-4-yl)(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)methanone, 1-methyl- 4-[(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)carbonyl]-1H-pyrazol-5-yl propane- 1-sulfonate, 4-{2-chloro-3-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4-(methylsulfonyl)benzoyl}-1- methyl-1H-pyrazol-5-yl-1,3-dimethyl-1H-pyrazole-4-carboxylate; cyanomethyl 4-amino-3-chloro-5- fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, prop-2-yn-1-yl 4-amino-3-chloro-5-fluoro-6- (7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H- indol-6-yl)pyridine-2-carboxylate, 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2- carboxylic acid, benzyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, ethyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, methyl 4-amino-3- chloro-5-fluoro-6-(7-fluoro-1-isobutyryl-1H-indol-6-yl)pyridine-2-carboxylate, methyl 6-(1-acetyl-7- fluoro-1H-indol-6-yl)-4-amino-3-chloro-5-fluoropyridine-2-carboxylate, methyl 4-amino-3-chloro-6-[1- (2,2-dimethylpropanoyl)-7-fluoro-1H-indol-6-yl]-5-fluoropyridine-2-carboxylate, methyl 4-amino-3- chloro-5-fluoro-6-[7-fluoro-1-(methoxyacetyl)-1H-indol-6-yl]pyridine-2-carboxylate, potassium 4- amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, sodium 4-amino-3-chloro-5- fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, butyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro- 1H-indol-6-yl)pyridine-2-carboxylate, 4-hydroxy-1-methyl-3-[4-(trifluoromethyl)pyridin-2- yl]imidazolidin-2-one, 3-(5-tert-butyl-1,2-oxazol-3-yl)-4-hydroxy-1-methylimidazolidin-2-one, 3-[5- chloro-4-(trifluormethyl)pyridin-2-yl]-4-hydroxy-1-methylimidazolidin-2-one, 4-hydroxy-1-methoxy-5- methyl-3-[4-(trifluormethyl)pyridin-2-yl]imidazolidin-2-one, 6-[(2-hydroxy-6-oxocyclohex-1-en-1- yl)carbonyl]-1,5-dimethyl-3-(2-methylphenyl)quinazolin-2,4(1H,3H)-dione, 3-(2,6-dimethylphenyl)-6- [(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1-methylquinazolin-2,4(1H,3H)-dione, 2-[2-chloro-4- (methylsulfonyl)-3-(morpholin-4-ylmethyl)benzoyl]-3-hydroxycyclohex-2-en-1-one, 1-(2- carboxyethyl)-4-(pyrimidin-2-yl)pyridazin-1-ium salt (with anions such as chloride, acetate or trifluoroacetate), 1-(2-carboxyethyl)-4-(pyridazin-3-yl)pyridazin-1-ium salt (with anions such as chloride, acetate or trifluoroacetate), 4-(pyrimidin-2-yl)-1-(2-sulfoethyl)pyridazin-1-ium salt (with anions such as chloride, acetate or trifluoroacetate), 4-(pyridazin-3-yl)-1-(2-sulfoethyl)pyridazin-1-ium salt (with anions such as chloride, acetate or trifluoroacetate). Beispiele für Pflanzenwachstumsregulatoren als mögliche Mischungspartner sind: Abscisic acid, acibenzolar, acibenzolar-S-methyl, 1-aminocyclopro-1-yl carboxylic acid und deren Derivative,5-Aminolävulinsäure, ancymidol, 6-benzylaminopurine, bikinin, brassinolide, brassinolide- ethyl, catechin, chitooligosaccharides, chitinous compounds, chlormequat chloride, cloprop, cyclanilide, 3-(Cycloprop-1-enyl)propionic acid, daminozide, dazomet, dazomet-sodium, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and mono(N,N- dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurenol-methyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, Jasmonic acid oder deren Derivate (wie Jasmonic acid methyl ester), lipo-chitooligosaccharides, linoleic acid or derivatives thereof, linolenic acid oder deren Derivate, maleic hydrazide, mepiquat chloride, mepiquat pentaborate, 1-methylcyclopropene, 3’-methyl abscisic acid, 2-(1-naphthyl)acetamide, 1-naphthylacetic acid, 2- naphthyloxyacetic acid, nitrophenolate- mixture, 4-Oxo-4[(2-phenylethyl)amino]butyric acid, paclobutrazol, 4-phenylbutyric acid, N- phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmon, salicylic acid, salicylic acid methyl ester, strigolacton, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P, 2-fluoro-N-(3-methoxyphenyl)-9H-purin-6-amine. Ebenfalls als Kombinationspartner für die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) kommen beispielsweise die folgenden Safener in Frage: S1) Verbindungen aus der Gruppe heterocyclischer Carbonsäurederivate: S1a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (S1a), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäure, 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (S1-1) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; S1b) Derivate der Dichlorphenylpyrazolcarbonsäure (S1b), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-methylpyrazol-3-carbonsäureethylester (S1-2), 1-(2,4-Dichlorphenyl)-5-isopropylpyrazol-3-carbonsäureethylester (S1-3), 1-(2,4-Dichlorphenyl)-5-(1,1-dimethyl-ethyl)pyrazol-3-carbonsäureethylester (S1-4) und verwandte Verbindungen, wie sie in EP-A-333131 und EP-A-269806 beschrieben sind; S1c) Derivate der 1,5-Diphenylpyrazol-3-carbonsäure (S1c), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S1-5), 1-(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (S1-6) und verwandte Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; S1d) Verbindungen vom Typ der Triazolcarbonsäuren (S1d), vorzugsweise Verbindungen wie Fenchlorazol(-ethylester), d.h.1-(2,4-Dichlorphenyl)-5-trichlormethyl-(1H)-1,2,4-triazol-3- carbonsäureethylester (S1-7), und verwandte Verbindungen, wie sie in EP-A-174562 und EP-A-346620 beschrieben sind; S1e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure, oder der 5,5- Diphenyl-2-isoxazolin-3-carbonsäure(S1e), vorzugsweise Verbindungen wie 5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester (S1-8) oder 5-Phenyl-2-isoxazolin-3-carbonsäureethylester (S1-9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw.5,5-Diphenyl-2-isoxazolin-carbonsäure (S1-10) oder 5,5-Diphenyl-2-isoxazolin-3-carbonsäureethylester (S1-11) ("Isoxadifen-ethyl") oder -n-propylester (S1-12) oder 5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3-carbon- säureethylester (S1-13), wie sie in der Patentanmeldung WO-A-95/07897 beschrieben sind. S2) Verbindungen aus der Gruppe der 8-Chinolinoxyderivate (S2): S2a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise (5-Chlor-8-chinolinoxy)essigsäure-(1-methylhexyl)-ester ("Cloquintocet-mexyl") (S2-1), (5-Chlor-8-chinolinoxy)essigsäure-(1,3-dimethyl-but-1-yl)-ester (S2-2), (5-Chlor-8-chinolinoxy)essigsäure-4-allyl-oxy-butylester (S2-3), (5-Chlor-8-chinolinoxy)essigsäure-1-allyloxy-prop-2-ylester (S2-4), (5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5), (5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6), (5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7), (5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-1-ethylester (S2-8), (5-Chlor-8-chinolinoxy)essigsäure-2-oxo-prop-1-ylester (S2-9) und verwandte Verbindungen, wie sie in EP-A-86750, EP-A-94349 und EP-A-191736 oder EP-A-0492366 beschrieben sind, sowie (5-Chlor-8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; S2b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester, (5-Chlor-8-chinolinoxy)malonsäurediallylester, (5-Chlor-8-chinolinoxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0582198 beschrieben sind. S3) Wirkstoffe vom Typ der Dichloracetamide (S3), die häufig als Vorauflaufsafener (bodenwirksame Safener) angewendet werden, wie z. B. "Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1), "R-29148" (3-Dichloracetyl-2,2,5-trimethyl-1,3-oxazolidin) der Firma Stauffer (S3-2), "R-28725" (3-Dichloracetyl-2,2,-dimethyl-1,3-oxazolidin) der Firma Stauffer (S3-3), "Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazin) (S3-4), "PPG-1292" (N-Allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG Industries (S3-5), "DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem (S3-6), "AD-67" oder "MON 4660" (3-Dichloracetyl-1-oxa-3-aza-spiro[4,5]decan) der Firma Nitrokemia bzw. Monsanto (S3-7), "TI-34" (1-Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) oder "BAS145138" oder "LAB145138" (S3-9) ((RS)-1-Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[1,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10), sowie dessen (R)-Isomer (S3-11). S4) Verbindungen aus der Klasse der Acylsulfonamide (S4): S4a) N-Acylsulfonamide der Formel (S4a) und deren Salze wie sie in der WO-A-97/45016 beschrieben sind, worin RA1 (C1-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch vA Substituenten aus der Gruppe Halogen, (C1-C4)Alkoxy, (C1-C6)Haloalkoxy und (C1- C4)Alkylthio und im Falle cyclischer Reste auch durch (C1-C4)Alkyl und (C1-C4)Haloalkyl substituiert sind; RA 2 Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3; mA 1 oder 2; vA ist 0, 1, 2 oder 3 bedeuten; S4b) Verbindungen vom Typ der 4-(Benzoylsulfamoyl)benzamide der Formel (S4b) und deren Salze, wie sie in der WO-A-99/16744 beschrieben sind, worin RB1, RB2 unabhängig voneinander Wasserstoff, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, (C3- C6)Alkenyl, (C3-C6)Alkinyl, RB3 Halogen, (C1-C4)Alkyl, (C1-C4)Haloalkyl oder (C1-C4)Alkoxy und mB 1 oder 2 bedeuten, z.B. solche worin RB1 = Cyclopropyl, RB2 = Wasserstoff und (RB3) = 2-OMe ist ("Cyprosulfamide", S4-1), RB 1 = Cyclopropyl, RB 2 = Wasserstoff und (RB 3) = 5-Cl-2-OMe ist (S4-2), RB 1 = Ethyl, RB 2 = Wasserstoff und (RB 3) = 2-OMe ist (S4-3), RB 1 = Isopropyl, RB 2 = Wasserstoff und (RB 3) = 5-Cl-2-OMe ist (S4-4) und RB 1 = Isopropyl, RB 2 = Wasserstoff und (RB 3) = 2-OMe ist (S4-5); S4c) Verbindungen aus der Klasse der Benzoylsulfamoylphenylharnstoffe der Formel (S4c), wie sie in der EP-A-365484 beschrieben sind, worin RC1, RC2 unabhängig voneinander Wasserstoff, (C1-C8)Alkyl, (C3-C8)Cycloalkyl, (C3- C6)Alkenyl, (C3-C6)Alkinyl, RC3 Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3 und mC 1 oder 2 bedeuten; beispielsweise 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3-methylharnstoff, 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylharnstoff, 1-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylharnstoff; S4d) Verbindungen vom Typ der N-Phenylsulfonylterephthalamide der Formel (S4d) und deren Salze, die z.B. bekannt sind aus CN 101838227, worin RD 4 Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3; mD 1 oder 2; RD 5 Wasserstoff, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5- C6)Cycloalkenyl bedeutet. S5) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen Carbonsäurederivate (S5), z.B. 3,4,5-Triacetoxybenzoesäureethylester, 3,5-Dimethoxy-4-hydroxybenzoesäure, 3,5- Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure, wie sie in der WO-A-2004/084631, WO-A-2005/015994, WO-A- 2005/016001 beschrieben sind. S6) Wirkstoffe aus der Klasse der 1,2-Dihydrochinoxalin-2-one (S6), z.B. 1-Methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-on, 1-Methyl-3-(2-thienyl)-1,2-dihydro- chinoxalin-2-thion, 1-(2-Aminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on-hydrochlorid, 1-(2-Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on, wie sie in der WO- A-2005/112630 beschrieben sind. S7) Verbindungen aus der Klasse der Diphenylmethoxyessigsäurederivate (S7), z.B. Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr.41858-19-9) (S7-1), Diphenylmethoxyessigsäureethylester oder Diphenylmethoxyessigsäure wie sie in der WO-A- 98/38856 beschrieben sind. S8) Verbindungen der Formel (S8), wie sie in der WO-A-98/27049 beschrieben sind, worin die Symbole und Indizes folgende Bedeutungen haben: RD 1 ist Halogen, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, RD 2 ist Wasserstoff oder (C1-C4)Alkyl, RD 3 ist Wasserstoff, (C1-C8)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; oder deren Salze, nD ist eine ganze Zahl von 0 bis 2. S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B. 1,2-Dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr.: 219479-18- 2), 1,2-Dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr. 95855-00-8), wie sie in der WO-A-1999/000020 beschrieben sind. S10) Verbindungen der Formeln (S10a) oder (S10b), wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind, worin RE 1 Halogen, (C1-C4)Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3 YE, ZE unabhängig voneinander O oder S, nE eine ganze Zahl von 0 bis 4, RE 2 (C1-C16)Alkyl, (C2-C6)Alkenyl, (C3-C6)Cycloalkyl, Aryl; Benzyl, Halogenbenzyl, RE 3 Wasserstoff oder (C1-C6)Alkyl bedeuten. S11) Wirkstoffe vom Typ der Oxyimino-Verbindungen (S11), die als Saatbeizmittel bekannt sind, wie z. B. "Oxabetrinil" ((Z)-1,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (S11-1), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, "Fluxofenim" (1-(4-Chlorphenyl)-2,2,2-trifluor-1-ethanon-O-(1,3-dioxolan-2-ylmethyl)-oxim) (S11-2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und "Cyometrinil" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (S11-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist. S12) Wirkstoffe aus der Klasse der Isothiochromanone (S12), wie z.B. Methyl-[(3-oxo-1H-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr.205121-04-6) (S12-1) und verwandte Verbindungen aus WO-A-1998/13361. S13) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (1,8-Naphthalindicarbonsäureanhydrid) (S13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist, "Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S13-2), das als Safener für Pretilachlor in gesätem Reis bekannt ist, "Flurazole" (Benzyl-2-chlor-4-trifluormethyl-1,3-thiazol-5-carboxylat) (S13-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist, "CL 304415" (CAS-Reg.Nr.31541-57-8) (4-Carboxy-3,4-dihydro-2H-1-benzopyran-4-essigsäure) (S13-4) der Firma American Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist, "MG 191" (CAS-Reg.Nr.96420-72-3) (2-Dichlormethyl-2-methyl-1,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist, "MG 838" (CAS-Reg.Nr.133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia "Disulfoton" (O,O-Diethyl S-2-ethylthioethyl phosphordithioat) (S13-7), "Dietholate" (O,O-Diethyl-O-phenylphosphorothioat) (S13-8), "Mephenate" (4-Chlorphenyl-methylcarbamat) (S13-9). S14) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an Kulturpflanzen wie Reis aufweisen, wie z. B. "Dimepiperate" oder "MY-93" (S-1-Methyl-1-phenylethyl-piperidin-1-carbothioat), das als Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist, "Daimuron" oder "SK 23" (1-(1-Methyl-1-phenylethyl)-3-p-tolyl-harnstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist, "Cumyluron" = "JC-940" (3-(2-Chlorphenylmethyl)-1-(1-methyl-1-phenyl-ethyl)harnstoff, siehe JP-A-60087270), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "CSB" (1-Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr.54091-06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist. S15) Verbindungen der Formel (S15) oder deren Tautomere, wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind, worin RH 1 einen (C1-C6)Haloalkylrest bedeutet und RH 2 Wasserstoff oder Halogen bedeutet und RH3, RH4 unabhängig voneinander Wasserstoff, (C1-C16)Alkyl, (C2-C16)Alkenyl oder (C2-C16)Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, (C1-C4)Alkylthio, (C1-C4)Alkylamino, Di[(C1-C4)alkyl]-amino, [(C1-C4)Alkoxy]- carbonyl, [(C1-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)Cycloalkyl, (C4-C6)Cycloalkenyl, (C3-C6)Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, (C1-C4)Alkylthio, (C1-C4)Alkylamino, Di[(C1- C4)alkyl]-amino, [(C1-C4)Alkoxy]-carbonyl, [(C1-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder RH 3 (C1-C4)-Alkoxy, (C2-C4)Alkenyloxy, (C2-C6)Alkinyloxy oder (C2-C4)Haloalkoxy bedeutet und RH 4 Wasserstoff oder (C1-C4)-Alkyl bedeutet oder RH 3 und RH 4 zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (C1- C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy und (C1-C4)Alkylthio substituiert ist, bedeutet. S16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z. B. (2,4-Dichlorphenoxy)essigsäure (2,4-D), (4-Chlorphenoxy)essigsäure, (R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop), 4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB), (4-Chlor-o-tolyloxy)essigsäure (MCPA), 4-(4-Chlor-o-tolyloxy)buttersäure, 4-(4-Chlorphenoxy)buttersäure, 3,6-Dichlor-2-methoxybenzoesäure (Dicamba), 1-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl). Bevorzugte Safener in Kombination mit den erfindungsgemäßen Verbindungen der allgemeinen Formel (I) und/oder deren Salze, insbesondere mit den Verbindungen der Formeln (I-1) bis (I-90) und/oder deren Salze, sind: Cloquintocet-mexyl, Cyprosulfamid, Fenchlorazol-ethylester, Isoxadifen-ethyl, Mefenpyr-diethyl, Fenclorim, Cumyluron, S4-1 und S4-5, und besonders bevorzugte Safener sind: Cloquintocet-mexyl, Cyprosulfamid, Isoxadifen-ethyl und Mefenpyr-diethyl. Biologische Beispiele: Die folgenden Abkürzungen werden in den untenstehenden Beispielen und den Tabellen verwendet: Getestete Schadpflanzen: ABUTH: Abutilon theophrasti ALOMY: Alopecurus myosuroides AMARE Amaranthus retroflexus AVEFA: Avena fatua DIGSA: Digitaria sanguinalis ECHCG: Echinochloa crus-galli KCHSC: Kochia scoparia LOLRI: Lolium rigidum MATIN: Matricaria inodora PHBPU: Pharbitis purpurea POAAN: Poa annua POLCO: Polygonum convolvulus SETVI: Setaria viridis STEME: Stellaria media VERPE: Veronica persica VIOTR: Viola tricolor Getestete Nutzpflanzen: BRSNW: Brassica napus GLXMA: Glycine max ORYSA: Oryza sativa TRZAS: Triticum aestivum ZEAMX: Zea mays A. Herbizide Wirkung im Vorauflauf Samen von mono- und dikotylen Unkrautpflanzen wurden in Kunststofftöpfen, in sandigem Lehmboden, ausgelegt (Doppelaussaaten mit jeweils eine Spezies mono- bzw. dikotyler Unkrautpflanzen pro Topf) und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden dann als wässrige Suspension bzw. Emulsion, unter Zusatz von 0,5% Additiv, mit einer Wasseraufwandmenge von umgerechnet 600 Liter pro Hektar auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung wurden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Nach ca.3 Wochen wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen in Prozentwerten bonitiert. Beispielsweise bedeutet: 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie unbehandelte Kontrollpflanzen. In nachstehenden Tabellen A1a bis A12c sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Schadpflanzen und einer Aufwandmenge entsprechend 1280 g/ha und darunter, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle A1a: Vorauflaufwirkung bei 80g/ha gegen ABUTH in % Tabelle A1b: Vorauflaufwirkung bei 320g/ha gegen ABUTH in % Tabelle A1c: Vorauflaufwirkung bei 1280g/ha gegen ABUTH in % Scheme 1 The (2-heteroaryloxyphenyl)sulfonates of the general formula (I) can be prepared via a reaction of the phenols (EI) with sulfonyl chlorides (E-II) in the presence of bases. The base can be an amine base (such as 1-methylimidazole or triethylamine). The reactions are generally carried out in an organic solvent such as dichloroethane or acetonitrile at temperatures between 0°C and the boiling point of the solvent. The phenols of the general formula (EI) can be prepared via an alkylation of the 1,2-dihydroxybenzenes (E-III) in the presence of bases with the pyridine, pyrimidine or pyrazine (E-IV), where LG is a leaving group (Scheme 2). Scheme 2 The base can be a carbonate salt of an alkali metal (such as sodium, potassium or cesium), or an amine base (such as NN-diisopropylethylamine). The reactions are generally carried out in an organic solvent such as acetonitrile, butyronitrile, dimethylformamide, or chlorobenzene at temperatures between 0°C and the boiling point of the solvent. For appropriate regioselectivity, the phenols (E-1) can be synthesized as described in Scheme 3: The oxidation reactions of the methoxybenzaldehyde derivatives can be carried out with m-chloroperoxybenzoic acid in dichloromethane under standard reaction conditions. Directly after work-up, the intermediate can be treated with methanol and an amine base, such as triethylamine, tributylamine, or N,N-diisopropylethylamine. The phenol obtained (E-VI) can be arylated as described in Scheme 2 after evaporation of the solvents. The phenol derivative EI suitable for the sulfonation can then be obtained by reaction with, for example, boron tribromide in DCM, boron trichloride or hydrogen bromide (Scheme 3). Synthesis Examples Synthesis Example No. I-7: Synthesis Step 1: 2-(5-Chloropyrimidin-2-yl)oxyphenol (= Intermediate A-01) A mixture of catechol (4.00 g, 36.3 mmol), 2,5-dichloropyrimidine (4.87 g, 32.7 mmol) and NN-diisopropylethylamine (6.96 mL, 40.0 mmol) in 15 mL Chlorobenzene was heated at 140°C for 9 h. The resulting reaction mixture was cooled to room temperature, diluted with water and extracted several times with ethyl acetate. The combined organic phases were then washed with water, dried over magnesium sulfate, filtered and concentrated. through subsequent 2-(5-Chloropyrimidin-2-yl)oxyphenol could be isolated by column chromatographic purification (gradient ethyl acetate/heptane) of the resulting crude product. The yield was 4.33 g (53% of theory). Synthesis Step 2: [2-(5-Chloropyrimidin-2-yl)oxyphenyl] 2-methylpropane-1-sulfonate (= Synthesis Example No. I-7) A mixture of 2-(5-chloropyrimidin-2-yl)oxyphenol (Intermediate A-01, 150 mg, 0.67 mmol) and 1-methylimidazole (160 µL, 2.02 mmol) in 8 mL of dichloroethane was brought to 0° C and isobutanesulfonyl chloride (114 µl, 0.88 mmol) added. The mixture was stirred at room temperature for 18 hours. The resulting reaction mixture was concentrated, diluted with 30 ml of water and 4 equivalents of 6M HCl and then extracted several times with ethyl acetate. The combined organic phases were then dried over magnesium sulfate, filtered and concentrated. Thus, [2-(5-chloropyrimidin-2-yl)oxyphenyl] 2-methylpropane-1-sulfonate (Synthesis Example No. I-7) could be isolated. The yield was 200 mg (86% of theory). Synthesis Example No. I-28: Synthesis Step 1: 2-Methoxy-3-methylphenol (= Intermediate A-02) A mixture of 2-methoxy-3-methylbenzaldehyde (4.00 g, 26.6 mmol) in 80 mL of dichloromethane was cooled to 0 °C and m-CPBA 77% (8.95 g, 39.9 mmol) was added . The mixture was stirred at room temperature for 18 hours. The resulting reaction mixture was concentrated, diluted with 100 mL of dichloromethane and a mixture of saturated NaHCO 3 /saturated Na 2 S 2 O 3 solution 1:1 (1×200 mL) and then extracted several times with dichloromethane. The combined organic phases were washed with water and saturated NaCl solution, dried over magnesium sulfate, filtered and concentrated. The intermediate was dissolved in 60 mL of methanol and triethylamine was added. The mixture was stirred at room temperature for 48 hours and thereafter constricted. 2-Methoxy-3-methylphenol could be isolated by subsequent purification by column chromatography (gradient acetone/heptane) of the resulting crude product. The yield was 3.45 g (89% of theory). Synthesis step 2: 5-Chloro-2-(2-methoxy-3-methylphenoxy)pyrimidine (= Intermediate A-03) - A mixture of Intermediate A02 (1.10 g, 7.96 mmol), 2,5-dichloropyrimidine (1.30 g, 8.75 mmol) and potassium carbonate (2.75 g, 19.9 mmol) in 10 mL of dimethylformamide was heated at 80 °C for 2 h. The resulting reaction mixture was cooled to room temperature, diluted with water and extracted with tert-butyl methyl ether several times. The combined organic phases were then washed with water, dried over magnesium sulfate, filtered and concentrated. 5-Chloro-2-(2-methoxy-3-methylphenoxy)pyrimidine could be isolated by subsequent purification of the resulting crude product by column chromatography (gradient acetone/heptane). The yield was 1.88 g (84% of theory). Synthesis step 3: 2-[(5-chloropyrimidin-2-yl)oxy]-6-methylphenol (= intermediate A-04) A mixture of 5-chloro-2-(2-methoxy-3-methylphenoxy)pyrimidine A03 (1.80 g, 7.18 mmol) in 20 mL of dichloromethane was cooled to -78 °C under nitrogen and boron tribromide (1M in dichloromethane ) (21.50 ml, 21.50 mmol) was carefully added dropwise at -78°C. The mixture was then allowed to come to room temperature and stirred at room temperature. The resulting reaction mixture was diluted with ice water and then extracted several times with dichloromethane. The combined organic phases were then washed with water and saturated NaCl solution, dried over magnesium sulfate, filtered and concentrated 2-[(5- Chloropyrimidin-2-yl)oxy]-6-methylphenol was isolated without further purification. The yield was 1.59 g (79% of theory). Synthesis Step 4: 2-[(5-Chloropyrimidin-2-yl)oxy]-6-methylphenyl-4,4,4-trifluorobutane-1-sulfonate (= Synthesis Example No. I-28) A mixture of 2-[(5-chloropyrimidin-2-yl)oxy]-6-methylphenol (Intermediate A-04, 150 mg, 0.63 mmol) and 1-methylimidazole (202 µL, 2.53 mmol) in 5 mL of dichloroethane was cooled to 0°C and 4,4,4-trifluorobutane-1-sulfonyl chloride (182 µL, 1.26 mmol) was added. The mixture was stirred at room temperature for 18 hours. The resulting reaction mixture was concentrated, diluted with 30 ml of water and 4 equivalents of 6M HCl and then extracted several times with ethyl acetate. The combined organic phases were then dried over magnesium sulfate, filtered and concentrated. 2-[(5-Chloropyrimidin-2-yl)oxy]-6-methylphenyl-4,4,4-trifluorobutane-1-sulfonate (Synthesis Example No. I- 28) to be isolated. The yield was 145 mg (54% of theory). The compounds of the general formula (I) according to the invention mentioned below and shown in Table 1 are obtained analogously to the preparation examples given above and recited at the appropriate point. Table 1 NMR data of selected examples Selected detailed synthesis examples for the compounds of the general formula (I) according to the invention are listed below. The 1 H NMR spectroscopic data given for the chemical examples described in the following sections, (400 MHz at 1 H NMR, solvent CDCl 3 or d 6 -DMSO, internal standard: tetramethylsilane δ = 0.00 ppm), were obtained with a Bruker instrument and the indicated signals have the following meanings: br = broad(es); s = singlet, d = doublet, t = triplet, dd = double doublet, ddd = doublet of a double doublet, m = multiplet, q = quartet, quint = quintet, sext = sextet, sept = septet, dq = double quartet, dt = double triplet. In the case of mixtures of diastereomers, either the significant signals of both diastereomers or the characteristic signal of the main diastereomer are given. Example No. I-1: 1H-NMR (400MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.50-7.32 (m, 4H), 3.17 (s, 3H). Example No. I-2: 1H-NMR (400MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.52 - 7.37 (m, 4H), 3.70 (tr, 2H), 3.60 (tr, 2H) , 2.14 (m, 2H). Example No. I-3: 1H-NMR (400MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.50 - 7.37 (m, 4H), 3.45 (tr, 2H), 1.70 (m, 2H) , 0.94 (tr, 3H). Example No. I-4: 1H-NMR (400MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.48-7.26 (m, 4H), 4.18 (qu, 2H). Example No. I-5: 1H-NMR (400MHz, d6-DMSO δ, ppm) 8.77 (s, 2H), 7.52 - 7.37 (m, 4H), 3.70 (tr, 2H), 3.60 (tr, 2H) , 2.14 (m, 2H). Example No. I-6: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.51 - 7.31 (m, 4H), 3.26 (tr, 2H), 1.83 (m, 2H) , 1.46 (m, 2H), 0.94 (tr, 3H). Example No. I-7: 1 H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.51 - 7.37 (m, 4H), 3.39 (d, 2H), 2.10 (m, 1H ), 0.98 (d, 6H). Example No. I-8: 1 H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.55 - 7.38 (m, 4H), 3.85 (m, 2H), 2.81 (m, 2H ). Example No. I-9: 1 H-NMR (400MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.56-7.39 (m, 4H), 5.57 (s, 2H). Example No. I-10: 1 H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.52 - 7.38 (m, 4H), 3.63 (tr, 2H), 2.41 (m, 2H ), 1.88 (m, 2H). Example No. I-11: 1 H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.35 - 7.26 (m, 3H), 3.69 (m, 4H), 2.36 (s, 3H ), 2.13 (m, 2H). Example No. I-12: 1 H-NMR (400 MHz, d6-DMSO δ, ppm) 8.78 (s, 2H), 7.36 – 7.29 (m, 3H), 3.70 tr, 2H), 3.59 (tr, 2H) , 2.16 (s, 3H), 2.10 (m, 2H). Example No. I-13: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.33 – 7.18 (m, 3H), 3.70 (m, 2H), 3.50 (m, 2H) , 2.40 (m, 2H). Example No. I-14: 1 H-NMR (400 MHz, d6-DMSO δ, ppm) 8.82 (s, 2H), 7.52 - 7.34 (m, 3H), 3.71 (m, 4H), 2.18 (m, 2H ). Example No. I-15: 1 H-NMR (400 MHz, d6-DMSO δ, ppm) 8.79 (s, 2H), 7.51 - 7.37 (m, 4H), 3.65 (m, 2H), 3.56 (m, 2H ), 1.81 (m, 4H). Example No. I-16: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.52 - 7.30 (m, 4H), 3.30 (qu, 2H), 1.45 (tr, 3H) . Example No. I-17: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.47 (s, 2H), 7.27 (m, 1H), 7.11 (m, 1H), 6.96 (m, 1H), 3.79 (s, 3H), 3.28 (m, 2H), 1.84 (m, 2H), 1.45 (m, 2H), 0.93 tr, 3H). Example No. I-18: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.48 (s, 2H), 7.52 - 7.29 (m, 4H), 3.48 (m, 1H), 1.43 (d, 6H) . Example No. I-19: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.54 - 7.28 (m, 4H), 3.72 (m, 1H), 2.08 (m, 4H) , 1.76 (m, 2H), 1.63 (m, 2H). Example No. I-20: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.52 - 7.30 (m, 4H), 3.83 (tr, 2H), 3.56 (tr, 2H) , 3.36 (s, 3H). Example No. I-21: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.48 (s, 2H), 7.50 - 7.30 (m, 4H), 2.69 (m, 1H), 1.13 (m, 4H) . Example No. I-22: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.53 - 7.28 (m, 4H), 3.24 (m, 1H), 2.06 (m, 1H) , 1.64 (m, 1H), 1.42 (d, 3H), 1.02 (tr, 3H). Example No. I-23: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.48 (s, 2H), 7.53 – 7.30 (m, 4H), 3.20 (d, 2H), 1.22 (m, 1H) , 0.72 (m, 2H), 0.41 (m, 2H). Example No. I-24: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.48 (s, 2H), 7.51 - 7.29 (m, 4H), 3.25 (m, 2H), 1.85 (m, 2H) , 1.38 (m, 4H), 0.92 (m, 3H). Example No. I-25: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.48 (s, 2H), 7.51 – 7.30 (m, 4H), 3.25 (m, 2H), 1.73 (m, 3H) , 0.95 (m, 6H). Example No. I-26: 1 H-NMR (400 MHz, d6-DMSO, δ, ppm): 8.18 (s, 1H), 8.02-7.99 (m, 1H), 7.49-7.38 (m, 4H), 7.34 – 7.16 (m, 1H), 3.63 – 3.59 (m, 2H), 2.47 – 2.35 (m, 2H), 1.92 – 1.84 (m, 2H). Example No. I-27: 1 H-NMR (400 MHz, d6-DMSO, δ, ppm): 8.18 (s, 1H), 8.02-7.90 (m, 1H), 7.48-7.36 (m, 4H), 7.34 – 7.18 (m, 1H), 3.71 – 3.68 (m, 2H), 3.59 – 3.57 (m, 2H), 2.17 – 2.10 (m, 2H). Example No. I-28: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.48 (s, 2H), 7.29 - 7.25 (m, 1H), 7.22 - 7.20 (m, 1H), 7.16 - 7.13 ( m, 1H), 3.55 – 3.53 (m, 2H), 2.46 (s, 3H), 2.40 – 2.29 (m, 2H), 2.22 – 2.12 (m, 2H). Example No. I-29: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.30 – 7.28 (m, 1H), 7.21 – 7.16 (m, 2H), 3.70 – 3.66 ( m, 2H), 2.80 – 2.73 (m, 2H), 2.45 (s, 3H). Example No. I-30: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.59 - 7.56 (m, 1H), 7.32 - 7.24 (m, 2H), 3.63 - 3.59 ( m, 2H), 2.39 – 2.29 (m, 2H), 2.25 – 2.17 (m, 2H). Example No. I-31: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.58-7.56 (m, 1H), 7.35-7.25 (m, 2H), 3.77-3.73 ( m, 2H), 2.87 – 2.78 (m, 2H). Example No. I-32: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.59 (s, 2H), 7.43-7.41 (m, 1H), 7.35-7.28 (m, 2H), 3.73-3.69 ( m, 2H), 2.84 – 2.78 (m, 2H). Example No. I-33: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.58 (s, 2H), 7.30 – 7.28 (m, 1H), 7.21 – 7.16 (m, 2H), 3.70 – 3.66 ( m, 2H), 2.80 – 2.73 (m, 2H), 2.45 (s, 3H). Example No. I-34: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.58 (s, 2H), 7.43-7.41 (m, 1H), 7.34-7.25 (m, 2H), 3.60-3.56 ( m, 2H), 2.38 – 2.31 (m, 2H), 2.25 – 2.19 (m, 2H). Example No. I-35: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.56 (s, 2H), 7.30 – 7.27 (m, 1H), 7.23 – 7.21 (m, 1H), 7.17 – 7.14 ( m, 1H), 3.56 (tr, 2H), 2.47 (s, 3H), 2.41-2.30 (m, 2H), 2.21-2.13 (m, 2H). Example No. I-36: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.51-7.48 (m, 1H), 7.39-7.30 (m, 3H), 5.91-5.83 ( m, 1H), 5.49 – 5.44 (m, 2H), 4.01 – 3.99 (m, 2H). Example No. I-37: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.48 (s, 2H), 7.49 - 7.41 (m, 1H), 7.41 - 7.27 (m, 3H), 6.73 (dd, 1H), 6.30 (dd, 1H), 6.13 (dd, 1H). Example No. I-38: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.43-7.41 (m, 1H), 7.35-7.28 (m, 2H), 3.73-3.69 ( m, 2H), 2.84 – 2.78 (m, 2H). Example No. I-39: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.43-7.41 (m, 1H), 7.34-7.28 (m, 2H), 3.60-3.56 ( m, 2H), 2.38 – 2.31 (m, 2H), 2.25 – 2.19 (m, 2H). Example No. I-40: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.59 (s, 2H), 7.39 - 7.33 (m, 1H), 7.20 - 7.15 (m, 2H), 3.63 - 3.59 ( m, 2H), 2.83–2.77 (m, 2H). Example No. I-41: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.58 (s, 2H), 7.37-7.32 (m, 1H), 7.20-7.13 (m, 2H), 3.50-3.47 ( m, 2H), 2.38 – 2.31 (m, 2H), 2.25 – 2.19 (m, 2H). Example No. I-42: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.42 (s, 2H), 7.37 - 7.32 (m, 1H), 7.19 - 7.13 (m, 2H), 3.51 - 3.47 ( m, 2H), 2.38–2.31 (m, 2H), 2.24–2.19 (m, 2H). Example No. I-43: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.43 (s, 2H), 7.58-7.55 (m, 1H), 7.35-7.33 (m, 1H), 7.29-7.25 ( m, 1H), 3.77–3.73 (m, 2H), 2.84–2.78 (m, 2H). Example No. I-44: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.42 (s, 2H), 7.58-7.56 (m, 1H), 7.33-7.30 (m, 1H), 7.28-7.24 ( m, 1H), 3.63 – 3.60 (m, 2H), 2.38 – 2.31 (m, 2H), 2.24 – 2.18 (m, 2H). Example No. I-45: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.43 (s, 2H), 7.30 – 7.28 (m, 1H), 7.21 – 7.17 (m, 2H), 3.71 – 3.67 ( m, 2H), 2.80 – 2.73 (m, 2H), 2.45 (s, 3H). Example No. I-46: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.41 (s, 2H), 7.29 - 7.25 (m, 1H), 7.22 - 7.19 (m, 1H), 7.16 - 7.14 ( m, 1H), 3.58–3.54 (m, 2H), 2.46 (s, 3H), 2.38–2.31 (m, 2H), 2.19–2.13 (m, 2H). Example No. I-47: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.43 (s, 2H), 7.38-7.33 (m, 1H), 7.18-7.15 (m, 2H), 3.63-3.59 ( m, 2H), 2.83 – 2.77 (m, 2H). Example No. I-48: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.38-7.34 (m, 1H), 7.19-7.16 (m, 2H), 3.62-3.59 ( m, 2H), 2.84 – 2.76 (m, 2H). Example No. I-49: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.37-7.33 (m, 1H), 7.19-7.14 (m, 2H), 3.50-3.47 ( m, 2H), 2.38 – 2.30 (m, 2H), 2.24 – 2.19 (m, 2H). Example No. I-50: 1 H NMR (600 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.35 – 7.31 (m, 1H), 7.18 – 7.12 (m, 2H), 5.85 – 5.78 ( m, 1H), 5.18 – 5.11 (m, 2H), 3.47 – 3.44 (m, 2H), 2.68 – 2.64 (m, 2H). Example No. I-51: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.37-7.32 (m, 1H), 7.19-7.13 (m, 2H), 3.63-3.55 ( m, 2H), 2.21 – 2.14 (m, 2H), 1.81 – 1.76 (m, 1H), 1.71 – 1.66 (m, 1H), 1.25 – 1.20 (m, 1H). Example No. I-52: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.34 - 7.30 (m, 1H), 7.18 - 7.12 (m, 2H), 3.88 - 3.85 ( m, 2H), 3.69 – 3.66 (m, 2H), 3.36 (s, 3H). Example No. I-53: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.37 - 7.32 (m, 1H), 7.19 - 7.13 (m, 2H), 3.59 (d, 2H), 2.95 – 2.73 (m, 3H), 2.54 – 2.42 (m, 2H). Example No. I-54: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.36 – 7.30 (m, 1H), 7.18 – 7.11 (m, 2H), 4.41 – 4.37 ( m, 1H), 3.90 – 3.85 (m, 1H), 3.80 – 3.75 (m, 1H), 3.72 – 3.67 (m, 1H), 3.53 – 3.48 (m, 1H), 2.25 – 2.17 (m, 1H), 1.98 – 1.90 (m, 2H), 1.80 – 1.71 (m, 1H). Example No. I-55: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.36 – 7.30 (m, 1H), 7.19 – 7.12 (m, 2H), 3.50 – 3.46 ( m, 2H), 1.84 – 1.78 (m, 2H), 0.86 – 0.78 (m, 1H), 0.55 – 0.50 (m, 2H), 0.17 – 0.13 (m, 2H). Example No. I-56: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.37 - 7.31 (m, 1H), 7.19 - 7.12 (m, 2H), 6.02 - 5.74 ( m, 1H), 3.49 – 3.45 (m, 2H), 2.15 – 2.02 (m, 4H). Example No. I-57: 1 H-NMR (400 MHz, d6-DMSO δ, ppm) 8.81 (s, 2H), 7.52-7.41 (m, 2H), 7.38-7.35 (m, 1H), 4.11-4.05 (m, 1H), 3.74 – 3.69 (m, 1H), 2.10 – 1.93 (m, 2H), 1.62 – 1.58 (m, 1H). Example No. I-58: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.46 (s, 1H), 8.45 (d, 1H), 8.15 (d, 1H), 7.46 – 7.20 (m, 4H) , 3.64 (tr, 2H), 3.43 (tr, 2H), 2.24 – 2.18 (m, 2H). Example No. I-59: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.23 (s, 1H), 8.01 (s, 1H), 7.39 - 7.31 (m, 4H), 3.69 (tr, 2H) , 3.48 (tr, 2H), 2.42 – 2.35 (m, 2H). Example No. I-60: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 7.81 (s, 1H), 7.51 (d, 1H), 7.37 - 7.25 (m, 4H), 3.68 (tr, 2H) , 3.44 (tr, 2H), 2.42 – 2.32 (m, 2H). Example No. I-61: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.80 (s, 1H), 8.33 (d, 1H), 7.51 – 7.26 (m, 4H), 3.66 (tr, 2H) , 3.44 (tr, 2H), 2.38 – 2.33 (m, 2H). Example No. I-62: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 9.00 (s, 1H), 8.51 (d, 1H), 7.35 (d, 1H), 7.33 – 7.25 (m, 3H) , 7.12 (d, 1H), 3.61 (tr, 2H), 3.37 (tr, 2H), 2.31 – 2.27 (m, 2H). Example No. I-63: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.44 (d, 1H), 7.96 (d, 1H), 7.55 (d, 1H), 7.38 - 7.27 (m, 3H) , 7.12 (d, 1H), 3.62 (tr, 2H), 3.41 (tr, 2H), 2.34 – 2.29 (m, 2H). Example No. I-64: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 7.86 (d, 1H), 7.53 (d, 1H), 7.37 - 7.25 (m, 4H), 3.63 (tr, 2H) , 3.43 (tr, 2H), 2.35 – 2.31 (m, 2H). Example No. I-65: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 7.96 (d, 1H), 7.69 (d, 1H), 7.38 - 7.26 (m, 4H), 3.67 (tr, 2H) , 3.44 (tr, 2H), 2.37 – 2.34 (m, 2H). Example No. I-66: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.12 (s, 1H), 7.99 (s, 1H), 7.51 – 6.99 (m, 4H), 3.66 (tr, 2H) , 3.48 (tr, 2H), 2.37 – 2.32 (m, 2H). Example No. I-67: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.60-7.58 (m, 1H), 7.34-7.25 (m, 2H), 3.64 (tr, 2H), 2.35 – 2.24 (m, 4H). Example No. I-68: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.39 - 7.33 (m, 1H), 7.21 - 7.14 (m, 2H), 3.51 (tr, 2H), 2.35 – 2.28 (m, 4H). Example No. I-69: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.47 (s, 2H), 7.29 - 7.27 (m, 1H), 7.25 - 7.13 (m, 2H), 3.56 (tr, 2H), 2.46 (s, 3H), 2.31 – 2.19 (m, 4H). Example No. I-70: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.38 – 7.33 (m, 1H), 7.19 – 7.13 (m, 2H), 3.62 – 3.58 ( m, 2H), 3.01 – 2.92 (m, 2H). Example No. I-71: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.48 (s, 2H), 7.29 - 7.25 (m, 1H), 7.21 - 7.14 (m, 2H), 3.70 - 3.66 ( m, 2H), 2.97 – 2.80 (m, 2H), 2.46 (s, 3H). Example No. I-72: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.58 - 7.56 (m, 1H), 7.33 - 7.24 (m, 2H), 3.76 - 3.72 ( m, 2H), 3.02 – 2.93 (m, 2H). Example No. I-73: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.43 – 7.41 (m, 1H), 7.35 – 7.27 (m, 2H), 3.72 – 3.69 ( m, 2H), 3.02 – 2.94 (m, 2H). Example No. I-74: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.29 - 7.27 (m, 1H), 7.22 - 7.14 (m, 2H), 3.66 (d, 2H), 2.90 – 2.83 (m, 3H), 2.48 – 2.42 (m, 5H). Example No. I-75: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.58 - 7.56 (m, 1H), 7.33 - 7.23 (m, 2H), 3.72 (d, 2H), 2.90 – 2.82 (m, 3H), 2.51 – 2.46 (m, 2H). Example No. I-76: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.49 (s, 2H), 7.30 – 7.28 (m, 1H), 7.22 – 7.15 (m, 2H), 4.11 – 4.06 ( m, 1H), 3.37 – 3.31 (m, 1H), 2.47 (s, 3H), 2.09 – 2.02 (m, 1H), 1.90 – 1.85 (m, 1H), 1.58 – 1.54 (m, 1H). Example No. I-77: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.58 – 7.56 (m, 1H), 7.33 – 7.24 (m, 2H), 4.17 – 4.12 ( m, 1H), 3.44 – 3.38 (m, 1H), 2.16 – 2.08 (m, 1H), 1.90 – 1.85 (m, 1H), 1.61 – 1.59 (m, 1H). Example No. I-78: 1 H NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.65 – 7.62 (m, 1H), 7.52 – 7.48 (m, 2H), 4.14 – 4.09 ( m, 1H), 3.50 – 3.44 (m, 1H), 2.21 – 2.16 (m, 1H), 1.93 – 1.89 (m, 1H), 1.63 – 1.59 (m, 1H). Example No. I-79: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.64 - 7.62 (m, 2H), 7.51 - 7.47 (m, 1H), 3.59 (d, 2H), 2.95–2.84 (m, 3H), 2.56–2.44 (m, 2H). Example No. I-80: 1 H-NMR (400 MHz, d6-DMSO δ, ppm): 8.51 (s, 2H), 7.65 - 7.61 (m, 2H), 7.51 - 7.47 (m, 1H), 3.73 - 3.69 (m, 4H), 2.50 – 2.43 (m, 2H). Example No. I-81: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.65 - 7.62 (m, 2H), 7.52 - 7.48 (m, 1H), 3.62 (tr, 2H), 2.42 – 2.23 (m, 4H). Example No. I-82: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.66-7.63 (m, 2H), 7.53-7.49 (m, 1H), 3.77-3.73 ( m, 2H), 2.89 – 2.82 (m, 2H). Example No. I-83: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.31-7.28 (m, 1H), 7.23-7.16 (m, 2H), 6.08 (tr, 1H), 4.34 (d, 2H), 2.46 (s, 3H). Example No. I-84: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.58-7.56 (m, 1H), 7.33-7.24 (m, 2H), 6.11 (tr, 1H), 4.40 (d, 2H). Example No. I-85: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.38 - 7.32 (m, 1H), 7.20 - 7.14 (m, 2H), 6.10 (tr, 1H), 4.27 (d, 2H). Example No. I-86: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.42 (s, 2H), 7.37 - 7.31 (m, 1H), 7.19 - 7.13 (m, 2H), 4.14 (tr, 2H), 3.53 (tr, 2H), 2.37 – 2.31 (m, 2H). Example No. I-87: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.48 (s, 2H), 7.29 - 7.14 (m, 3H), 4.15 (tr, 2H), 3.59 (tr, 2H) , 2.47 (s, 3H), 2.33 – 2.30 (m, 2H). Example No. I-88: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.50 (s, 2H), 7.43 - 7.40 (m, 1H), 7.34 - 7.28 (m, 2H), 4.14 (tr, 2H), 3.62 (tr, 2H), 2.36 – 2.33 (m, 2H). Example No. I-89: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.39 - 7.33 (m, 1H), 7.20 - 7.15 (m, 2H), 3.56 (tr, 2H), 2.66 (tr, 2H), 2.37 – 2.30 (m, 2H). Example No. I-90: 1 H-NMR (400 MHz, CDCl 3 δ, ppm) 8.51 (s, 2H), 7.36 - 7.32 (m, 1H), 7.19 - 7.14 (m, 2H), 4.14 (tr, 2H), 3.53 (tr, 2H), 2.36 – 2.33 (m, 2H). The present invention further relates to the use of one or more compounds of the general formula (I) and/or salts thereof, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular of one or more compounds of the formulas (1 -1) to (1-90) and/or salts thereof, each as defined above, as a herbicide and/or plant growth regulator, preferably in crops of useful and/or ornamental plants. The present invention also relates to a method for controlling harmful plants and/or for regulating the growth of plants, characterized in that an effective amount - of one or more compounds of the general formula (I) and/or salts thereof, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-90) and/or their salts, each as defined above, or - an agent according to the invention, as defined below, applied to the (harmful) plants, (harmful) plant seeds, the soil in or on which the (harmful) plants grow, or the area under cultivation. The present invention also provides a method for controlling unwanted plants, preferably in crops of useful plants, characterized in that an effective amount - one or more compounds of the general formula (I) and/or salts thereof, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1- 90) and / or salts thereof, each as defined above, or - an agent according to the invention, as defined below, on unwanted plants (e.g. harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), the seeds of the unwanted plants (ie plant seeds, e.g Grains, seeds or vegetative propagating organs such as tubers or shoot parts with buds), the soil in or on which the undesirable plants grow (e.g. the soil of cultivated land or non-cultivated land) or the cultivated area (ie area on which the undesired plants will grow) is applied. The present invention also relates to a method for controlling the growth regulation of plants, preferably useful plants, characterized in that an effective amount - of one or more compounds of the general formula (I) and/or their salts, as defined above, preferably in one of the configurations identified as preferred or particularly preferred, in particular one or more compounds of the formulas (1-1) to (1-90) and/or their salts, each as defined above, or - an agent according to the invention, as defined below, the plant, the seeds of the plant (ie plant seeds, e.g. grains, seeds or vegetative propagating organs such as tubers or shoot parts with buds), the soil in or on which the plants grow (e.g. the soil of cultivated land or non-cultivated land) or the area under cultivation (ie area where the plants will grow) is applied. The compounds according to the invention or the compositions according to the invention can be applied, for example, before sowing (if appropriate also by incorporation into the soil), pre-emergence and/or post-emergence. Specifically, some representatives of the monocotyledonous and dicotyledonous weed flora may be mentioned by way of example, which can be controlled by the compounds according to the invention, without the naming of a restriction to specific species. In a method according to the invention for controlling harmful plants or for regulating the growth of plants, one or more compounds of the general formula (I) and/or salts thereof are preferably used for controlling harmful plants or for regulating growth in crops of useful plants or ornamental plants, the useful plants or ornamental plants being transgenic plants in a preferred embodiment. The compounds of the general formula (I) according to the invention and/or their salts are suitable for controlling the following genera of monocotyledonous and dicotyledonous harmful plants: monocotyledonous harmful plants of the genera: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dicotyledonous weeds of the genera: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis , Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio , Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. If the compounds of the general formula (I) according to the invention are applied to the surface of the soil before the harmful plants (grasses and/or weeds) germinate (pre-emergence method), then either the emergence of the weed or weed seedlings is completely prevented or they grow up to the cotyledon stage , but then stop growing and finally die off completely after three to four weeks. When the active ingredients of the general formula (I) are applied to the green parts of the plant post-emergence, growth stops after the treatment and the harmful plants remain in the growth stage present at the time of application or die off completely after a certain time, so that in this way a Weed competition that is harmful to crops is eliminated very early and sustainably. Although the compounds of the general formula (I) according to the invention have excellent herbicidal activity against monocotyledon and dicotyledonous weeds, crop plants of economically important crops, for example dicotyledonous crops of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledonous cultures of the genera Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, triticale, triticum, zea, only insignificantly or not at all damaged, depending on the structure of the respective compound according to the invention and the amount applied. For these reasons, the present compounds are very suitable for the selective control of undesired plant growth in crops such as agricultural crops or ornamental plants. In addition, the compounds of the general formula (I) according to the invention (depending on their particular structure and the application rate applied) have excellent growth-regulating properties in crop plants. They intervene to regulate the plant's own metabolism and can therefore be used to specifically influence plant constituents and to facilitate harvesting, for example by triggering desiccation and growth stunted growth. Furthermore, they are also suitable for the general control and inhibition of undesired vegetative growth without killing the plants. Inhibition of vegetative growth plays a major role in many monocotyledonous and dicotyledonous crops, since this can reduce or completely prevent the formation of beds. Because of their herbicidal and plant growth-regulating properties, the active compounds of the general formula (I) can also be used for controlling harmful plants in crops of plants modified by genetic engineering or by conventional mutagenesis. The transgenic plants are generally distinguished by particularly advantageous properties, for example resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses. Other special properties concern, for example, the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients. Thus, transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known. With regard to transgenic crops, the use of the compounds of the general formula (I) according to the invention and/or their salts in economically important transgenic crops of useful and ornamental plants, for example cereals such as wheat, barley, rye, oats, millet, rice and corn, is preferred Sugar beet, cotton, soybean, canola, potato, tomato, pea and other vegetable crops. The compounds of the general formula (I) according to the invention can preferably also be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or have been made resistant by genetic engineering. Because of their herbicidal and plant growth-regulating properties, the compounds of the general formula (I) according to the invention can also be used for combating harmful plants in crops of known genetically modified plants or those still to be developed. The transgenic plants are generally distinguished by particularly advantageous properties, for example resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses. Other special properties concern, for example, the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients. Thus, transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known. Other special properties can be tolerance or resistance to abiotic stressors such as heat, cold, drought, salt and ultraviolet radiation. The use of the compounds of the general formula (I) according to the invention or their salts in economically important transgenic crops of useful and ornamental plants, for example cereals such as wheat, barley, rye, oats, triticale, millet, rice, cassava and corn, is preferred Sugar beet, cotton, soybean, canola, potato, tomato, pea and other vegetable crops. The compounds of the general formula (I) can preferably be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or have been made resistant by genetic engineering. Conventional ways of producing new plants that have modified properties compared to previously existing plants include, for example, classical breeding methods and the generation of mutants. Alternatively, new plants with modified properties can be created using genetic engineering methods. Numerous molecular biological techniques with which new transgenic plants with modified properties can be produced are known to the person skilled in the art. For such genetic engineering manipulations, nucleic acid molecules can be introduced into plasmids, which allow mutagenesis or sequence modification by recombination of DNA sequences. With the help of standard methods, for example, base exchanges can be made, partial sequences can be removed or natural or synthetic sequences can be added. To connect the DNA fragments to one another, adapters or linkers can be attached to the fragments. The production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, a sense RNA to achieve a co-suppression effect or the expression of at least one correspondingly constructed ribozyme which specifically cleaves transcripts of the above gene product. For this purpose, on the one hand, DNA molecules can be used which include the entire coding sequence of a gene product, including any flanking sequences present, as well as DNA molecules which only include parts of the coding sequence, these parts having to be long enough to enter the cells produce an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product but are not completely identical. When nucleic acid molecules are expressed in plants, the synthesized protein can be located in any compartment of the plant cell. However, in order to achieve localization in a specific compartment, the coding region can, for example, be linked to DNA sequences which ensure localization in a specific compartment. Such sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J.11 (1992), 3219-3227). The expression of the nucleic acid molecules can also take place in the organelles of the plant cells. The transgenic plant cells can be regenerated into whole plants using known techniques. In principle, the transgenic plants can be plants of any desired plant species, ie both monocotyledonous and dicotyledonous plants. It is thus possible to obtain transgenic plants which have modified properties as a result of overexpression, suppression or inhibition of homologous (=natural) genes or gene sequences or expression of heterologous (=foreign) genes or gene sequences. The compounds of the general formula (I) according to the invention can preferably be used in transgenic cultures which are active against growth substances, such as dicamba or against herbicides, the essential plant enzymes, eg acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS), hydroxyphenylpyruvate dioxygenases (HPPD ), or inhibit protoporphyrinogen oxidase (PPO), or are resistant to herbicides from the group of sulfonylureas, glyphosate, glufosinate or benzoylisoxazoles and analogous active substances. When the compounds of the general formula (I) according to the invention are used in transgenic cultures, in addition to the effects observed in other cultures against harmful plants, there are often effects which are specific to the application in the respective transgenic culture, for example, a modified or specially expanded spectrum of weeds that can be controlled, modified application rates that can be used for the application, preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing growth and yield of the transgenic crop plants. The invention therefore also relates to the use of the compounds of the general formula (I) according to the invention and/or their salts as herbicides for controlling harmful plants in crops of useful or ornamental plants, optionally in transgenic crop plants. Preference is given to using compounds of the general formula (I) in cereals, preferably corn, wheat, barley, rye, oats, millet or rice, pre- or post-emergence. The use of compounds of the general formula (I) in soybean pre- or post-emergence is also preferred. The use of compounds of the formula (I) according to the invention for controlling harmful plants or for regulating the growth of plants also includes the case in which a compound of the general formula (I) or its salt is only applied after application to the plant, in the plant or in the Soil is formed from a precursor substance ("prodrug"). The invention also relates to the use of one or more compounds of the general formula (I) or salts thereof or an agent according to the invention (as defined below) (in a method) for controlling harmful plants or for regulating the growth of plants, characterized in that applying an effective amount of one or more compounds of the general formula (I) or their salts to the plants (harmful plants, optionally together with the useful plants), plant seeds, the soil in which or on which the plants grow, or the area under cultivation. The invention also relates to a herbicidal and/or plant growth-regulating composition, characterized in that the composition (a) contains one or more compounds of the general formula (I) and/or salts thereof as defined above, preferably in one of the preferred or particularly preferred embodiment, in particular one or more compounds of the formulas (I-1) to (I-90) and / or their salts, each as defined above, and (b) one or more other substances selected from groups (i) and/or (ii): (i) one or more other agrochemically active substances, preferably selected from the group consisting of insecticides, acaricides, nematicides, other herbicides (ie those which do not correspond to the general formula (I) defined above), fungicides, safeners, fertilizers and/or other growth regulators, (ii) one or more formulation auxiliaries customary in crop protection. The other agrochemically active substances of component (i) of a composition according to the invention are preferably selected from the group of substances that are listed in "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012. A herbicidal or plant growth-regulating agent according to the invention preferably comprises one, two, three or more formulation auxiliaries (ii) customary in crop protection selected from the group consisting of surfactants, emulsifiers, dispersants, film formers, thickeners, inorganic salts, dusts, at 25 ° C and 1013 mbar solid carriers, preferably adsorptive, granulated inert materials, wetting agents, antioxidants, stabilizers, buffer substances, antifoams, water, organic solvents, preferably organic solvents miscible with water in any desired ratio at 25° C. and 1013 mbar. The compounds of the general formula (I) according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules. The invention therefore also relates to herbicidal and plant growth-regulating compositions which contain compounds of the general formula (I) and/or salts thereof. The compounds of the general formula (I) according to the invention and/or their salts can be formulated in various ways, depending on the given biological and/or chemico-physical parameters. Examples of possible formulations are: wettable powder (WP), water-soluble powder (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for spreading and floor application, granules (GR) in the form of micro, spray, elevator - and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes. These individual formulation types and the formulation aids such as inert materials, surfactants, solvents and other additives are known to those skilled in the art and are described, for example, in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell NJ, Hv Olphen , "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, NY; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, NY1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood NJ; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., NY1964; Schönfeldt, "Interface-active ethylene oxide adducts", Wiss. Publishing company, Stuttgart 1976; Winnacker-Küchler, "Chemical Technology", Volume 7, C. Hanser Verlag Munich, 4th edition 1986. Wettable powders are evenly water-dispersible preparations which, in addition to the active ingredient and a diluent or inert substance, also contain ionic and/or nonionic surfactants (wetting agents, dispersing agents), e.g , 2,2'-dinaphthylmethane-6,6'-sodium disulfonate, sodium dibutylnaphthalenesulfonate or sodium oleoylmethyltaurine. To prepare the wettable powders, the herbicidal active ingredients are finely ground, for example in conventional apparatus such as hammer mills, blower mills and air jet mills, and mixed simultaneously or subsequently with the formulation auxiliaries. Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents, with the addition of one or more ionic and/or nonionic surfactants (emulsifiers). Examples of emulsifiers that can be used are: alkylarylsulfonic acid calcium salts such as cadodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as sorbitan fatty acid esters or polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan fatty acid esters. Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth. Suspension concentrates can be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and optionally adding surfactants, such as those already listed above for the other types of formulation. Emulsions, for example oil-in-water emulsions (EW), can be prepared, for example, using stirrers, colloid mills and/or static mixers using aqueous organic solvents and, if appropriate, surfactants, such as those already listed above for the other types of formulation. Granules can be produced either by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, eg polyvinyl alcohol, sodium polyacrylic acid or mineral oils, to the surface of carriers such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules--if desired in a mixture with fertilizers. Water-dispersible granules are usually produced without solid inert material by conventional methods such as spray drying, fluidized bed granulation, pan granulation, mixing with high-speed mixers and extrusion. For the production of disc, fluidized bed, extruder and spray granules, see, for example, methods in "Spray-Drying Handbook" 3rd ed.1979, G. Goodwin Ltd., London; JE Browning, "Agglomeration", Chemical and Engineering 1967, pp. 147ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, pp. 8-57. For further details on the formulation of crop protection products see, for example, GC Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, pages 81-96 and JD Freyer, SA Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pages 101-103. The agrochemical preparations, preferably herbicidal or plant growth-regulating agents, of the present invention preferably contain a total amount of 0.1 to 99% by weight, preferably 0.5 to 95% by weight, more preferably 1 to 90% by weight, particularly preferably 2 to 80% by weight of active substances of the general formula (I) and their salts. In wettable powders, the active substance concentration is, for example, about 10 to 90% by weight, the remainder to 100% by weight consists of customary formulation components. In the case of emulsifiable concentrates, the active substance concentration can be about 1 to 90% by weight, preferably 5 to 80% by weight. Formulations in dust form contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, and sprayable solutions contain about 0.05 to 80% by weight, preferably 2 to 50% by weight of active ingredient. In the case of water-dispersible granules, the active ingredient content depends in part on whether the active compound is in liquid or solid form and on the granulation aids, fillers, etc. used. In the case of the water-dispersible granules, the active substance content is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight. In addition, the active ingredient formulations mentioned optionally contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity affecting agents. Examples of formulation aids are described inter alia in "Chemistry and Technology of Agrochemical Formulations", ed. DA Knowles, Kluwer Academic Publishers (1998). The compounds of the general formula (I) according to the invention or their salts can be used as such or in the form of their preparations (formulations) combined with other pesticidally active substances such as insecticides, acaricides, nematicides, herbicides, fungicides, safeners, fertilizers and/or growth regulators be, for example as a ready-to-use formulation or as tank mixes. The combination formulations can be produced on the basis of the abovementioned formulations, taking into account the physical properties and stability of the active ingredients to be combined. Combination partners for the compounds of the general formula (I) according to the invention in mixture formulations or in a tank mix are, for example, known active ingredients which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate Synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen oxidase can be used, as described, for example, in Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 and the literature cited there. Of particular interest is the selective control of harmful plants in crops of useful and ornamental plants. Although the compounds of the general formula (I) according to the invention already have very good to sufficient selectivity in many crops, phytotoxicities can occur on the crop plants in principle in some crops and especially in the case of mixtures with other herbicides which are less selective. In this regard, combinations of compounds (I) according to the invention which contain the compounds of the general formula (I) or combinations thereof with other herbicides or pesticides and safeners are of particular interest. The safeners, which are used in an antidote effective content, reduce the phytotoxic side effects of the herbicides/pesticides used, for example in economically important crops such as cereals (wheat, barley, rye, corn, rice, millet), sugar beets, sugar cane, rapeseed, cotton and soybeans, preferably cereals. The weight ratio of herbicide (mixture) to safener generally depends on the amount of herbicide applied and the effectiveness of the respective safener and can vary within wide limits, for example in the range from 200:1 to 1:200, preferably 100:1 to 1: 100, especially 20:1 to 1:20. The safeners can be formulated analogously to the compounds of the general formula (I) or mixtures thereof with other herbicides/pesticides and provided and used as a ready-to-use formulation or tank mix with the herbicides. For use, the herbicide or herbicide-safener formulations, which are in commercial form, are optionally diluted in the customary manner, for example with water for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules. Preparations in the form of dust, ground or granulated granules and sprayable solutions are usually not diluted with other inert substances before use. External conditions such as temperature, humidity etc. influence to a certain extent the application rate of the compounds of the general formula (I) and/or their salts. The application rate can vary within wide limits. For use as a herbicide for controlling harmful plants, the total amount of compounds of the general formula (I) and their salts is preferably in the range from 0.001 to 10.0 kg/ha, preferably in the range from 0.005 to 5 kg/ha, more preferably in In the range from 0.01 to 1.5 kg/ha, particularly preferably in the range from 0.05 to 1 kg/ha. This applies to both pre-emergence and post-emergence application. When using compounds of the general formula (I) according to the invention and/or salts thereof as plant growth regulators, for example as stalk shorteners in crop plants such as those mentioned above, preferably in cereal plants such as wheat, barley, rye, triticale, millet, rice or corn , the total application rate is preferably in the range from 0.001 to 2 kg/ha, preferably in the range from 0.005 to 1 kg/ha, in particular in the range from 10 to 500 g/ha, very particularly preferably in the range from 20 to 250 g/ha Ha. This applies to both pre-emergence and post-emergence application. The application as a stalk shortener can take place at different stages of the growth of the plants. For example, application after tillering at the start of growth in length is preferred. Alternatively, when used as a plant growth regulator, the treatment of the seed can also be considered, which includes the different seed dressing and coating techniques. The application rate depends on the individual techniques and can be determined in preliminary tests. Combination partners for the compounds of the general formula (I) according to the invention in agents according to the invention (e.g. mixture formulations or in the tank mix) are, for example, known active substances which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate -3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II or protoporphyrinogen oxidase can be used, as for example from Weed Research 26 (1986) 441-445 or "The Pesticide Manual ", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 and the literature cited there. Known herbicides or plant growth regulators that can be combined with the compounds according to the invention are mentioned below by way of example, these active ingredients being identified either by their "common name" in the English-language variant according to the International Organization for Standardization (ISO) or by the chemical name or by the code number are designated. This always includes all application forms such as acids, salts, esters and also all isomeric forms such as stereoisomers and optical isomers, even if they are not explicitly mentioned. Examples of such herbicidal mixing partners are: acetochlor, acifluorfen, acifluorfen-methyl, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-6-( 4-chloro-2-fluoro-3-methylphenyl)-5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, aminopyralid- dimethylammonium, aminopyralid-tripromine, amitrole, ammoniumsulfamate, anilofos, asulam, asulam-potassium, asulam sodium, atrazine, azafenidin, azimsulfuron, beflubutamid, (S)-(-)- beflubutamid, beflubutamid-M, benazolin, benazolin-ethyl, benazolin-dimethylammonium, benazolin- potassium, benfluralin, benfuresate, bensulfuron, bensulfuron -methyl, bensulide, bentazone, bentazone-sdium, benzobicyclon, benzofenap, bicyclopyrone, bifenox, bilanafos, bilanafos-sodium, bipyrazone, bispyribac, bispyribac-sodium, bixlozone, bromacil, bromacil-lithium, bromacil-sodium, bromobutide, bromofenoxime, bromoxynil, bromoxynil-butyrate, -potassium, -heptanoate and -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, cambendichlor, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chloramben -ammonium, chloramben-diolamine, chlroamben-methyl, chloramben-methylammonium, chloramben-sodium, chlorbromuron, chlorfenac, chlorfenac-ammonium, chlorfenac-sodium, chlorfenprop, chlorfenprop-methyl, chlorflurenol, chlorflurenol-methyl, chlorflurenol, chlorflurenol-methyl, chloridazone, chlorimuron, chlorimuron-ethyl , chlorophthalime, chlorotoluron, chlorsulfuron, chlorthal, chlorthal-dimethyl, chlorthal-monomethyl, cinidon, cinidon-ethyl, cinmethylin, exo-(+)-cinmethylin, ie (1R,2S,4S)-4-isopropyl-1-methyl-2 -[(2-methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptanes, exo-(-)-cinmethyline, ie (1R,2S,4S)-4-isopropyl-1-methyl-2-[(2 -methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptane, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-ethyl, clodinafop-propargyl, clomazone, clomeprop, clopyralid, clopyralid-methyl, clopyralid-olamine, clopyralid-potassium, clopyralid-tripomine, cloransulam, cloransulam- methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D (including theammonium, butotyl, -butyl, choline, diethylammonium, -dimethylammonium, -diolamine, -doboxyl, -dodecylammonium, etexyl, ethyl, 2-ethylhexyl, heptylammonium, isobutyl, isooctyl, isopropyl, isopropylammonium, lithium, meptyl, methyl, potassium, te tradecylammonium, triethylammonium, triisopropanolammonium, tripromine and trolamine salt thereof), 2,4-DB, 2,4-DB-butyl, -dimethylammonium, isooctyl, -potassium and -sodium, daimuron (dymron), dalapon, dalapon-calcium, dalapon -magnesium, dalapon-sodium, dazomet, dazomet-sodium, n-decanol, 7-deoxy-D-sedoheptulose, desmedipham, detosyl-pyrazolate (DTP), dicamba and its salts, eg dicamba-biproamine, dicamba-N,N- Bis(3-aminopropyl)methylamine, dicamba-butotyl, dicamba-choline, dicamba-diglycolamine, dicamba-dimethylammonium, dicamba-diethanolaminemmonium, dicamba-diethylammonium, dicamba-isopropylammonium, dicamba-methyl, dicamba-monoethanolaminedicamba-olamine, dicamba-potassium, dicamba sodium, dicamba triethanolamine, dichlobenil, 2-(2,4-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, 2-(2,5- dichlorobenzyl)-4,4- dimethyl-1,2-oxazolidin-3-one, dichlorprop, dichlorprop-butotyl, dichroprop-dimethylammonium, dichlorprop-etexyl, dichlorprop-ethylammonium, dichlorprop-isoctyl, dichlor prop-methyl, dichlorprop-postassium, dichlorprop-sodium, dichlorprop-P, dichlorprop-P-dimethylammonium, dichlorprop-P-etexyl, dichlorprop-P-potassium, dichlorprop-sodium, diclofop, diclofop-methyl, diclofop-P, diclofop- P-methyl, diclosulam, difenzoquat, difenzoquat-metilsulfate, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimesulfazet, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimetrasulfuron, dinitramine, dinoterb, dinoterb-acetate, diphenamid, diquat, diquat-dibromide, diquat-dichloride, dithiopyr, diuron, DNOC, DNOC-ammonium, DNOC-potassium, DNOC-sodium, endothal, endothal-diammonium, endothal- dipotassium, endothal-disodium, Epyrifenacil (S-3100), EPTC, esprocarb , ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, F-5231, ie N-[2-chloro-4-fluoro-5-[4-(3-fluoropropyl)- 4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethanesulfonamide, F-7967, ie3-[7-chloro-5-f luoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop -P-ethyl, fenoxasulfone, fenpyrazone, fenquinotrione, fentrazamide, flamprop, flamprop-isoproyl, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, florpyrauxifen, florpyrauxifen-benzyl, fluazifop, fluazifop-butyl , fluazifop- methyl, fluazifop-P, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloraline, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, -dimethylammonium and -methyl, fluoroglycofen, fluoroglycofen- ethyl, flupropanate, flupropanate-sdium, flupyrsulfuron, flupyrsulfuron-methyl, flupyrsulfuron-methyl- sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-butometyl, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, foramsulfuron sodium salt, fosamine, fosamine-ammonium, glufosinate, glufosinate- ammonium, glufosinate-sodium, L-glufosinate-ammonium, L-glufosiante-sodium, glufosinate-P-sodium, glufosinate-P-ammonium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, -dimethylammonium, -potassium, -sodium , sesquisodium and -trimesium, H-9201, ie O-(2,4-dimethyl-6-nitrophenyl)-O-ethyl- isopropylphosphoramidothioate, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron- methyl, haloxyfop, haloxyfop- P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, haloxifop-sodium, hexazinone, HNPC-A8169, ie prop-2-yn-1-yl (2S)-2-{3 -[(5-tert-butylpyridin-2-yl)oxy]phenoxy}propanoate, HW-02, ie1-(dimethoxyphosphoryl)ethyl-(2,4-dichlorophenoxy)acetate, hydantocidin, imazamethabenz, imazamethabenz-methyl, imazamox, imazamox- ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazaquin.methyl, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl, iodosulfuron-methyl-sodium, ioxynil, ioxynil-lithium, -octanoate, -potassium and sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, ie3-({[5-(difluoromethyl)-1-methyl-3-(trifluoromethyl) -1H-pyrazol- 4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazole, ketospiradox, ketospiradox-potassium, lactofen, lancotrione, lenacil, linuron, MCPA, MCPA- butotyl, -butyl, -dimethyla ammonium, -diolamine, -2-ethylhexyl, -ethyl, -isobutyl, isoctyl, -isopropyl, -isopropylammonium, -methyl, olamine, -potassium, -sodium and -trolamine, MCPB, MCPB-methyl, -ethyl and -sodium, mecoprop, mecoprop-butotyl, mecoprop- demethylammonium, mecoprop-diolamine, mecoprop-etexyl, mecoprop-ethadyl, mecoprop- isoctyl, mecoprop-methyl, mecoprop-potassium, mecoprop-sodium, and mecoprop-trolamine, mecoprop-P, mecoprop-P -butotyl, -dimethylammonium, -2-ethylhexyl and -potassium, mefenacet, mefluidide, mefluidide-diolamine, mefluidide-potassium, mesosulfuron, mesosulfuron-methyl, mesosulfuron sodium salt, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozoline, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monolinuron, monosulfuron, monosulfuron-methyl, MT- 5950, ie N-[3-chloro -4-(1-methylethyl)phenyl]-2-methylpene tanamide, NGGC-011, napropamide, NC-310, ie4-(2,4-dichlorobenzoyl)-1-methyl-5-benzyloxypyrazole, NC-656, ie 3-[(isopropylsulfonyl)methyl]-N-(5-methyl -1,3,4-oxadiazol-2-yl)-5-(trifluoromethyl)[1,2,4]triazolo[4,3-a]pyridine-8-carboxamide, neburon, nicosulfuron, nonanoic acid (pelargonic acid) , norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, paraquat-dichloride, paraquat-dimethylsulfate, pebulate, pendimethalin, penoxsulam, pentachlorophenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, phenmedipham-ethyl, picloram, picloram-dimethylammonium, picloram-etexyl, picloram-isoctyl, picloram-methyl, picloram-olamine, picloram-potassium, picloram-triethylammonium, picloram -tripromine, picloram-trolamine, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide , prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen- ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriminobactalid, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinclora c-dimethylammonium, quinclorac-methyl, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, QYM201, ie1-{2-chloro-3-[(3-cyclopropyl -5-hydroxy-1-methyl-1H-pyrazol-4-yl)carbonyl]-6-(trifluoromethyl)phenyl}piperidin-2-one, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, SL-261, sulcotrione , sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYP-249, ie1-Ethoxy-3-methyl-1-oxobut-3-en-2-yl-5-[2-chloro-4-(trifluoromethyl)phenoxy] -2-nitrobenzoate, SYP-300, ie1-[7-Fluoro-3-oxo-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzoxazine-6- yl]-3-propyl-2- thioxoimidazolidine-4,5-dione, 2,3,6-TBA, TCA (trichloro acetic acid) and its salts, eg TCA-ammonium, TCA-calcium, TCA-ethyl, TCA- magnesium, TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazine, terbutryn, tetflupyrolimet, thaxtomin, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone-methyl, thifensulf uron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topramezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-choline, triclopyr-ethyl, triclopyr-triethylammonium, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazine, trifluralin, triflusulfuron, triflusulfuron-methyl, tritosulfuron, urea sulfate, vernolate, XDE-848, ZJ-0862, ie3,4-dichloro-N-{2-[(4,6- dimethoxypyrimidin-2-yl)oxy]benzyl}aniline, 3-(2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydropyrimidine-1 (2H) -yl)phenyl)-5-methyl-4,5-dihydroisoxazole-5-carboxylic acid ethyl ester, ethyl-[(3-{2-chloro-4-fluoro-5-[3-methyl-2,6-dioxo -4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]phenoxy}pyridin-2-yl)oxy]acetate, 3-chloro-2-[3-(difluoromethyl)isoxazolyl-5-yl] phenyl-5-chloropyrimidin-2-yl ether, 2-(3,4-dimethoxyphenyl)-4-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-6-methylpyridazine-3( 2H)-one, 2-({2-[(2-methoxyethoxy)methyl]-6-methylpyridin-3-yl}carbonyl)cyclohexane-1,3-dione, (5-hydroxy-1-methyl-1H-pyrazol-4-yl) (3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)methanone, 1-methyl-4-[(3,3,4-trimethyl-1,1 -dioxido-2,3-dihydro-1-benzothiophen-5-yl)carbonyl]-1H-pyrazol-5-ylpropane- 1-sulfonate, 4-{2-chloro-3-[(3,5-dimethyl- 1H-pyrazol-1-yl)methyl]-4-(methylsulfonyl)benzoyl}-1-methyl-1H-pyrazol-5-yl-1,3-dimethyl-1H-pyrazole-4-carboxylates; cyanomethyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, prop-2-yn-1-yl 4-amino-3-chloro -5-fluoro-6- (7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2 -carboxylate, 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2- carboxylic acid, benzyl 4-amino-3-chloro-5-fluoro- 6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, ethyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine -2-carboxylate, methyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1-isobutyryl-1H-indol-6-yl)pyridine-2-carboxylate, methyl 6-(1-acetyl -7-fluoro-1H-indol-6-yl)-4-amino-3-chloro-5-fluoropyridine-2-carboxylate, methyl 4-amino-3-chloro-6-[1-(2,2-dimethylpropanoyl )-7-fluoro-1H-indol-6-yl]-5-fluoropyridine-2-carboxylate, methyl 4-amino-3-chloro-5-fluoro-6-[7-fluoro-1-(methoxyacetyl)-1H -indol-6-yl]pyridine-2-carboxylate, potassium 4- amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, sodium 4- amino-3-chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)pyridine-2-carboxylate, butyl 4-amino-3-chloro-5-fluoro-6-(7-fluoro - 1H-i ndol-6-yl)pyridine-2-carboxylates, 4-hydroxy-1-methyl-3-[4-(trifluoromethyl)pyridin-2-yl]imidazolidin-2-one, 3-(5-tert-butyl-1 ,2-oxazol-3-yl)-4-hydroxy-1-methylimidazolidin-2-one, 3-[5-chloro-4-(trifluoromethyl)pyridin-2-yl]-4-hydroxy-1-methylimidazolidin-2 -one, 4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluoromethyl)pyridin-2-yl]imidazolidin-2-one, 6-[(2-hydroxy-6-oxocyclohex-1-ene -1-yl)carbonyl]-1,5-dimethyl-3-(2-methylphenyl)quinazoline-2,4(1H,3H)-dione, 3-(2,6-dimethylphenyl)-6-[(2- hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1-methylquinazoline-2,4(1H,3H)-dione, 2-[2-chloro-4-(methylsulfonyl)-3-(morpholine- 4-ylmethyl)benzoyl]-3-hydroxycyclohex-2-en-1-one, 1-(2-carboxyethyl)-4-(pyrimidin-2-yl)pyridazin-1-ium salt (with anions such as chloride, acetate or trifluoroacetate), 1-(2-carboxyethyl)-4-(pyridazin-3-yl)pyridazin-1-ium salt (with anions such as chloride, acetate or trifluoroacetate), 4-(pyrimidin-2-yl)-1 -(2-sulfoethyl)pyridazin-1-ium salt (with anions such as chloride, acetate or tri fluoroacetate), 4-(pyridazin-3-yl)-1-(2-sulfoethyl)pyridazin-1-ium salt (with anions such as chloride, acetate or trifluoroacetate). Examples of plant growth regulators as possible mixing partners are: abscisic acid, acibenzolar, acibenzolar-S-methyl, 1-aminocyclopro-1-yl carboxylic acid and their derivatives, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, bikinin, brassinolide, brassinolide-ethyl, catechin, chitooligosaccharides, chitinous compounds, chlormequat chloride, cloprop, cyclanilide, 3-(cycloprop-1-enyl)propionic acid, daminozide, dazomet, dazomet-sodium, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurenol-methyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid (IAA), 4-indole- 3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, jasmonic acid or derivatives thereof (such as jasmonic acid methyl ester), lipo-chitooligosaccharides, linoleic acid or derivatives thereof, linolenic acid or derivatives thereof, maleic hydrazide, mepiquat chl oride, mepiquat pentaborate, 1-methylcyclopropene, 3'-methyl abscisic acid, 2-(1-naphthyl)acetamide, 1-naphthylacetic acid, 2- naphthyloxyacetic acid, nitrophenolate mixture, 4-oxo-4[(2-phenylethyl) amino]butyric acid, paclobutrazol, 4-phenylbutyric acid, N-phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmon, salicylic acid, salicylic acid methyl ester, strigolactone, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P, 2-fluoro-N-(3-methoxyphenyl)-9H-purin-6-amine. The following safeners are also suitable as combination partners for the compounds of the general formula (I) according to the invention: S1) Compounds from the group of heterocyclic carboxylic acid derivatives: S1a ) Compounds of the dichlorophenylpyrazoline-3-carboxylic acid type ( S1a ), preferably compounds such 1-(2,4-Dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylic acid, 1-(2,4-Dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2- pyrazoline-3-carboxylic acid ethyl ester (S1-1) ("mefenpyr-diethyl"), and related compounds as described in WO-A-91/07874; S1b ) Derivatives of dichlorophenylpyrazolecarboxylic acid ( S1b ), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-methylpyrazole-3-carboxylate (S1-2), 1-(2,4-dichlorophenyl)-5-isopropylpyrazole Ethyl 3-carboxylate (S1-3), ethyl 1-(2,4-dichlorophenyl)-5-(1,1-dimethylethyl)pyrazole-3-carboxylate (S1-4) and related compounds as described in EP- A-333131 and EP-A-269806; S1c ) Derivatives of 1,5-diphenylpyrazole-3-carboxylic acid ( S1c ), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-phenylpyrazole-3-carboxylate (S1-5), 1-(2- chlorophenyl)-5-phenylpyrazole-3-carboxylic acid methyl ester (S1-6) and related compounds such as are described in EP-A-268554; S1 d ) Compounds of the triazole carboxylic acid type (S1 d ), preferably compounds such as fenchlorazole (ethyl ester), ie 1-(2,4-dichlorophenyl)-5-trichloromethyl-(1H)-1,2,4-triazole-3- ethyl carboxylate (S1-7), and related compounds as described in EP-A-174562 and EP-A-346620; S1 e ) Compounds of the 5-benzyl- or 5-phenyl-2-isoxazoline-3-carboxylic acid type, or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid (S1 e ), preferably compounds such as 5-( 2,4-Dichlorobenzyl)-2-isoxazoline-3-carboxylic acid ethyl ester (S1-8) or 5-phenyl-2-isoxazoline-3-carboxylic acid ethyl ester (S1-9) and related compounds as described in WO-A-91/08202 are described, or 5,5-diphenyl-2-isoxazoline-carboxylic acid (S1-10) or 5,5-diphenyl-2-isoxazoline-3-carboxylic acid ethyl ester (S1-11) ("isoxadifen-ethyl") or -n -propyl ester (S1-12) or ethyl 5-(4-fluorophenyl)-5-phenyl-2-isoxazoline-3-carboxylate (S1-13) as described in patent application WO-A-95/07897. S2) Compounds from the group of 8-quinolinoxy derivatives (S2): S2 a ) Compounds of the 8-quinolinoxyacetic acid type (S2 a ), preferably (5-chloro-8-quinolinoxy)acetic acid (1-methylhexyl) ester ("Cloquintocet-mexyl") (S2-1), (5-Chloro-8-quinolinoxy)acetic acid (1,3-dimethylbut-1-yl) ester (S2-2), (5-Chloro-8-quinolinoxy)acetic acid 4-allyl-oxy-butyl ester (S2-3), (5-Chloro-8-quinolinoxy)acetic acid 1-allyloxy-prop-2-yl ester (S2-4), Ethyl (5-chloro-8-quinolinoxy)acetate (S2-5), Methyl (5-chloro-8-quinolinoxy)acetate (S2-6), Allyl (5-chloro-8-quinolinoxy)acetate (S2-7), (5 -Chloro-8-quinolinoxy)acetic acid 2-(2-propylidene-iminoxy)-1-ethyl ester (S2-8), (5-Chloro-8-quinolinoxy)acetic acid 2-oxo-prop-1-yl ester (S2 -9) and related compounds as described in EP-A-86750, EP-A-94349 and EP-A-191736 or EP-A-0492366, as well as (5-chloro-8-quinolinoxy)acetic acid (S2- 10), their hydrates and salts, for example their lithium, sodium, potassium, calcium, magnesium, aluminum, iron, ammonium, quaternary ammonium, sulfonium or phosphonium salts as in WO-A- 2002/34048; S2b ) Compounds of the (5-chloro-8-quinolinoxy)malonic acid type ( S2b ), preferably compounds such as diethyl (5-chloro-8-quinolinoxy)malonate, diallyl (5-chloro-8-quinolinoxy)malonate, (5- Chloro-8-quinolinoxy)malonic acid methyl ethyl ester and related compounds as described in EP-A-0582198. S3) Active substances of the type of dichloroacetamide (S3), which are often used as pre-emergence safeners (soil-effective safeners), such as. B. "Dichlormide" (N,N-Diallyl-2,2-dichloroacetamide) (S3-1), "R-29148" (3-Dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from the company Stauffer (S3-2), "R-28725" (3-dichloroacetyl-2,2-dimethyl-1,3-oxazolidine) from Stauffer (S3-3), "Benoxacor" (4-dichloroacetyl-3,4 -dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4), "PPG-1292" (N-allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloroacetamide ) from PPG Industries (S3-5), "DKA-24" (N-allyl-N-[(allylaminocarbonyl)methyl]-dichloroacetamide) from Sagro-Chem (S3-6), "AD-67" or " MON 4660" (3-dichloroacetyl-1-oxa-3-aza-spiro[4,5]decane) from Nitrokemia or Monsanto (S3-7), "TI-34" (1-dichloroacetyl-azepan) from the company TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonone) or "BAS145138" or "LAB145138" (S3-9) ((RS)-1-Dichloroacetyl-3,3,8a-trimethylperhydropyrrolo[1,2- a]pyrimidin-6-one) from BASF, "Furilazol" or "MON 13900" ((RS)-3-dichloroacetyl-5-(2-furyl)-2,2-dimethyloxazolidine) (S3-10), and its (R)-isomer (S3-11). S4) Compounds from the class of acylsulfonamides (S4): S4a ) N-acylsulfonamides of the formula ( S4a ) and salts thereof as described in WO-A-97/45016, in which RA 1 (C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, the last 2 radicals mentioned being replaced by vA substituents from the group consisting of halogen, (C 1 -C 4 )alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 )alkylthio and, in the case of cyclic radicals, also by (C 1 -C 4 )alkyl and (C 1 -C 4 )haloalkyl; R A 2 halo, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, CF 3; mA 1 or 2; v A is 0, 1, 2 or 3; S4b ) compounds of the 4-(benzoylsulfamoyl)benzamide type of the formula ( S4b ) and their salts, as described in WO-A-99/16744, wherein RB 1 , RB 2 are independently hydrogen, (C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 3 -C 6 )alkenyl, (C 3 -C 6 )alkynyl, RB 3 halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl or (C 1 -C 4 )alkoxy and m B 1 or 2, for example those in which RB 1 = cyclopropyl, RB 2 = hydrogen and (RB 3 ) = 2-OMe ("Cyprosulfamide", S4-1), R B 1 = cyclopropyl, R B 2 = hydrogen and (R B 3 ) = 5-Cl-2-OMe is (S4-2), R B 1 = ethyl, R B 2 = hydrogen and (R B 3 ) = 2-OMe is (S4-3), R B 1 = isopropyl, R B 2 = hydrogen and (R B 3 ) = 5-Cl-2- OMe is (S4-4) and R B 1 = isopropyl, R B 2 = hydrogen and (R B 3 ) = 2-OMe (S4-5); S4 c ) compounds from the class of benzoylsulfamoylphenylureas of the formula (S4 c ), as described in EP-A-365484, wherein RC 1 , RC 2 independently of one another hydrogen, (C 1 -C 8 )alkyl, (C 3 -C 8 )cycloalkyl, (C 3 -C 6 )alkenyl, (C 3 -C 6 )alkynyl, RC 3 halogen, ( C 1 -C 4 alkyl, (C 1 -C 4 )alkoxy, CF 3 and mC 1 or 2; for example 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3-methylurea, 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylurea, 1-[4-(N-4 ,5-dimethylbenzoylsulfamoyl)phenyl]-3-methylurea; S4 d ) compounds of the N-phenylsulfonylterephthalamide type of the formula (S4 d ) and their salts, which are known, for example, from CN 101838227, wherein R D 4 halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, CF 3 ; mD 1 or 2; R D 5 is hydrogen, (C 1 -C 6 )alkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl, (C 5 -C 6 )cycloalkenyl . S5) Active ingredients from the class of hydroxyaromatics and aromatic-aliphatic carboxylic acid derivatives (S5), for example ethyl 3,4,5-triacetoxybenzoate, 3,5-dimethoxy-4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydroxysalicylic acid, 4-fluorosalicylic acid , 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001. S6) Active ingredients from the class of 1,2-dihydroquinoxalin-2-ones (S6), for example 1-methyl-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, 1-methyl-3-( 2-thienyl)-1,2-dihydro-quinoxaline-2-thione, 1-(2-aminoethyl)-3-(2-thienyl)-1,2-dihydro-quinoxalin-2-one hydrochloride, 1-( 2-Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydro-quinoxalin-2-one, as described in WO-A-2005/112630. S7) Compounds from the class of diphenylmethoxyacetic acid derivatives (S7), for example methyl diphenylmethoxyacetate (CAS Reg. No. 41858-19-9) (S7-1), ethyl diphenylmethoxyacetate or diphenylmethoxyacetic acid as described in WO-A-98/38856. S8) compounds of the formula (S8) as described in WO-A-98/27049, in which the symbols and indices have the following meanings: R D 1 is halogen, (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, (C 1 -C 4 )alkoxy, (C 1 -C 4 )haloalkoxy , R D 2 is hydrogen or (C 1 -C 4 )alkyl, R D 3 is hydrogen, (C 1 -C 8 )alkyl, (C 2 -C 4 )alkenyl, (C 2 -C 4 )alkynyl, or Aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, identical or different radicals from the group consisting of halogen and alkoxy; or salts thereof, n D is an integer from 0 to 2. S9) Active ingredients from the class of 3-(5-tetrazolylcarbonyl)-2-quinolones (S9), for example 1,2-dihydro-4-hydroxy-1- ethyl-3-(5-tetrazolylcarbonyl)-2-quinolone (CAS Reg. No.: 219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl )-2-quinolone (CAS Reg. No. 95855-00-8) as described in WO-A-1999/000020. S10) compounds of the formulas (S10 a ) or (S10 b ), as described in WO-A-2007/023719 and WO-A-2007/023764, where R E 1 is halogen, (C 1 -C 4 )alkyl, methoxy, nitro, cyano, CF 3 , OCF 3 Y E , ZE is independently O or S, n E is an integer from 0 to 4, R E 2 (C 1 -C 16 )alkyl, (C 2 -C 6 )alkenyl, (C 3 -C 6 )cycloalkyl, aryl; benzyl, halobenzyl, R E 3 is hydrogen or (C 1 -C 6 )alkyl. S11) Active substances of the type of oxyimino compounds (S11), which are known as seed dressings, such as. B. "Oxabetrinil" ((Z)-1,3-dioxolan-2-ylmethoxyimino(phenyl)acetonitrile) (S11-1) known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim" (1- (4-Chlorophenyl)-2,2,2-trifluoro-1-ethanone-O-(1,3-dioxolan-2-ylmethyl)-oxime) (S11-2) used as a seed dressing safener for sorghum against damage from metolachlor is known, and "Cyometrinil" or "CGA-43089" ((Z)-cyanomethoxyimino(phenyl)acetonitrile) (S11-3), known as a seed dressing safener for millet against damage from metolachlor. S12) Active ingredients from the class of isothiochromanone (S12), such as methyl [(3-oxo-1H-2-benzothiopyran-4(3H)-ylidene)methoxy]acetate (CAS Reg. No. 205121-04-6 ) (S12-1) and related compounds from WO-A-1998/13361. S13) One or more compounds from group (S13): "Naphthalic anhydride" (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), known as a seed dressing safener for corn against damage from thiocarbamate herbicides, "Fenclorim" (4.6 -Dichloro-2-phenylpyrimidine) (S13-2), known as a safener for pretilachlor in seeded rice, "Flurazole" (benzyl 2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S13 -3) known as a seed dressing safener for millet against damage from alachlor and metolachlor, "CL 304415" (CAS Reg.No.31541-57-8) (4-carboxy-3,4-dihydro-2H- 1-benzopyran-4-acetic acid) (S13-4) from American Cyanamid, which is known as a safener for corn against damage from imidazolinones, "MG 191" (CAS Reg. No. 96420-72-3) (2- Dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as a safener for corn, "MG 838" (CAS Reg. No. 133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decane-4-carbodithioate) (S13-6) from Nitrokemia "Disulfoton" (O,O-diethyl S-2-ethylthioethyl p phosphorodithioate) (S13-7), "Dietholates" (O,O-diethyl-O-phenylphosphorothioate) (S13-8), "Mephenate" (4-chlorophenyl-methylcarbamate) (S13-9). S14) active ingredients which, in addition to having a herbicidal action against harmful plants, also have a safener effect on crop plants such as rice, such as, for. B. "Dimepiperate" or "MY-93" (S-1-methyl-1-phenylethyl-piperidine-1-carbothioate), which is known as a safener for rice against damage from the herbicide Molinate, "Daimuron" or "SK 23" (1-(1-Methyl-1-phenylethyl)-3-p-tolyl-urea), known as a safener for rice against damage from the herbicide imazosulfuron, "Cumyluron" = "JC-940" (3-(2- chlorophenylmethyl)-1-(1-methyl-1-phenylethyl)urea, see JP-A-60087270) known as a safener for rice against damage from some herbicides, "methoxyphenone" or "NK 049" (3.3 '-dimethyl-4-methoxy-benzophenone) known as a safener for rice against damage from some herbicides, "CSB" (1-bromo-4-(chloromethylsulfonyl)benzene) from Kumiai, (CAS Reg.No.54091- 06-4), which is known as a safener against damage from some herbicides in rice. S15) compounds of the formula (S15) or their tautomers, as described in WO-A-2008/131861 and WO-A-2008/131860, in which R H 1 is a (C 1 -C 6 )haloalkyl radical and R H 2 is hydrogen or halogen and RH 3 , RH 4 independently of one another hydrogen, (C 1 -C 16 )alkyl, (C 2 -C 16 )alkenyl or (C 2 -C 16 )alkynyl, each of the latter 3 radicals being unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy , cyano, (C 1 -C 4 )alkoxy, (C 1 -C 4 )haloalkoxy, (C 1 -C 4 )alkylthio, (C 1 -C 4 )alkylamino, di[(C 1 -C 4 )alkyl] -amino, [(C 1 -C 4 )alkoxy]-carbonyl, [(C 1 -C 4 )haloalkoxy]-carbonyl, (C 3 -C 6 )cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted is, and heterocyclyl which is unsubstituted or substituted, or (C 3 -C 6 )cycloalkyl, (C 4 -C 6 )cycloalkenyl, (C 3 -C 6 )cycloalkyl substituted on one side of the ring with a 4 to 6-membered saturated or unsaturated carbocyclic ring is fused, or (C 4 -C 6 )cycloalkenyl fused on one side of the ring with a 4 to 6-membered saturated or unsaturated carbocyclic ring, each of the latter 4 radicals being unsubstituted or substituted by one or more radicals from the group halogen, hydroxy, cyano, ( C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, (C 1 -C 4 )alkoxy, (C 1 -C 4 )haloalkoxy, (C 1 -C 4 )alkylthio, (C 1 -C 4 ) . )alkylamino, di[(C 1 -C 4 )alkyl]amino, [(C 1 -C 4 )alkoxy]carbonyl, [(C 1 -C 4 )haloalkoxy]carbonyl, (C 3 -C 6 ) Cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted and heterocyclyl which is unsubstituted or substituted is substituted or R is H 3 (C 1 -C 4 )-alkoxy, (C 2 -C 4 ) Alkenyloxy, (C 2 -C 6 )alkynyloxy or (C 2 -C 4 )haloalkoxy and R H 4 is hydrogen or (C 1 -C 4 )-alkyl or R H 3 and R H 4 together with the directly attached N -Atom a four- to eight-membered heterocyclic ring, which in addition to the N-At om can also contain further hetero ring atoms, preferably up to two further hetero ring atoms from the group N, O and S and which is unsubstituted or substituted by one or more radicals from the group halogen, cyano, nitro, (C 1 - C 4 alkyl, (C 1 -C 4 )haloalkyl, (C 1 -C 4 )alkoxy, (C 1 -C 4 )haloalkoxy and (C 1 -C 4 )alkylthio. S16) active substances which are primarily used as herbicides but also have a safener effect on crop plants, e.g. B. (2,4-Dichlorophenoxy)acetic acid (2,4-D), (4-Chlorophenoxy)acetic acid, (R,S)-2-(4-Chloro-o-tolyloxy)propionic acid (Mecoprop), 4-( 2,4-dichlorophenoxy)butyric acid (2,4-DB), (4-chloro-o-tolyloxy)acetic acid (MCPA), 4-(4-chloro-o-tolyloxy)butyric acid, 4-(4-chlorophenoxy)butyric acid , 3,6-dichloro-2-methoxybenzoic acid (dicamba), 1-(ethoxycarbonyl)ethyl 3,6-dichloro-2-methoxybenzoate (lactidichloro-ethyl). Preferred safeners in combination with the compounds of the general formula (I) according to the invention and/or their salts, in particular with the compounds of the formulas (I-1) to (I-90) and/or their salts, are: cloquintocet-mexyl, cyprosulfamide , fenchlorazol-ethyl ester, isoxadifen-ethyl, mefenpyr-diethyl, fenclorim, cumyluron, S4-1 and S4-5, and particularly preferred safeners are: cloquintocet-mexyl, cyprosulfamide, isoxadifen-ethyl and mefenpyr-diethyl. Biological Examples: The following abbreviations are used in the examples and tables below: Harmful plants tested: ABUTH: Abutilon theophrasti ALOMY: Alopecurus myosuroides AMARE Amaranthus retroflexus AVEFA: Avena fatua DIGSA: Digitaria sanguinalis ECHCG: Echinochloa crus-galli KCHSC: Kochia scoparia LOLRI: Lolium rigidum MATIN: Matricaria inodora PHBPU: Pharbitis purpurea POAAN: Poa annua POLCO: Polygonum convolvulus SETVI: Setaria viridis STEME: Stellaria media VERPE: Veronica persica VIOTR: Viola tricolor Crops tested: BRSNW: Brassica napus GLXMA: Glycine max ORYSA: Oryza sativa TRZAS: Triticum aestivum ZEAMX: Zea mays A. Pre-emergence herbicidal activity Seeds of mono- and dicotyledonous weed plants were placed in plastic pots in sandy loam soil (double sowing with one species of monocotyledonous or dicotyledonous weed plants per pot) and covered with soil. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were then applied to the surface of the covering soil as an aqueous suspension or emulsion, with the addition of 0.5% additive, with a water application rate of the equivalent of 600 liters per hectare applied. After treatment, the pots were placed in the greenhouse and maintained under good growing conditions for the test plants. After about 3 weeks, the effect of the preparations was scored visually in percentage values in comparison to untreated controls. For example: 100% activity=plants have died, 0% activity=like untreated control plants. Tables A1a to A12c below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and at an application rate corresponding to 1280 g/ha and below, which were obtained according to the test procedure mentioned above. Table A1a: Pre-emergence effect at 80g/ha against ABUTH in % Table A1b: Pre-emergence effect at 320g/ha against ABUTH in % Table A1c: Pre-emergence effect at 1280g/ha against ABUTH in %
Tabelle A2a: Vorauflaufwirkung bei 320g/ha gegen ALOMY in % Tabelle A2b: Vorauflaufwirkung bei 1280g/ha gegen ALOMY in % Tabelle A3a: Vorauflaufwirkung bei 80g/ha gegen DIGSA in % Table A2a: Pre-emergence effect at 320g/ha against ALOMY in % Table A2b: Pre-emergence effect at 1280g/ha against ALOMY in % Table A3a: Pre-emergence effect at 80g/ha against DIGSA in %
Tabelle A3b: Vorauflaufwirkung bei 320g/ha gegen DIGSA in % Table A3b: Pre-emergence effect at 320g/ha against DIGSA in %
Tabelle A3c: Vorauflaufwirkung bei 1280g/ha gegen DIGSA in % Table A3c: Pre-emergence effect at 1280g/ha against DIGSA in %
Tabelle A4a: Vorauflaufwirkung bei 80g/ha gegen ECHCG in % Tabelle A4b: Vorauflaufwirkung bei 320g/ha gegen ECHCG in % Table A4a: Pre-emergence effect at 80g/ha against ECHCG in % Table A4b: Pre-emergence effect at 320g/ha against ECHCG in %
Tabelle A4c: Vorauflaufwirkung bei 1280g/ha gegen ECHCG in % Table A4c: Pre-emergence effect at 1280g/ha against ECHCG in %
Tabelle A5a: Vorauflaufwirkung bei 80g/ha gegen KCHSC in % Table A5a: Pre-emergence effect at 80g/ha against KCHSC in %
Tabelle A5b: Vorauflaufwirkung bei 320g/ha gegen KCHSC in % Table A5b: Pre-emergence effect at 320g/ha against KCHSC in %
Tabelle A5c: Vorauflaufwirkung bei 1280g/ha gegen KCHSC in % Tabelle A6a: Vorauflaufwirkung bei 320g/ha gegen LOLRI in % Tabelle A6b: Vorauflaufwirkung bei 1280g/ha gegen LOLRI in % Tabelle A7a: Vorauflaufwirkung bei 320g/ha gegen MATIN in % Tabelle A7b: Vorauflaufwirkung bei 1280g/ha gegen MATIN in % Tabelle A8a: Vorauflaufwirkung bei 80g/ha gegen POAAN in % Tabelle A8b: Vorauflaufwirkung bei 320g/ha gegen POAAN in % Tabelle A8c: Vorauflaufwirkung bei 1280g/ha gegen POAAN in % Table A5c: Pre-emergence effect at 1280g/ha against KCHSC in % Table A6a: Pre-emergence effect at 320g/ha against LOLRI in % Table A6b: Pre-emergence effect at 1280g/ha against LOLRI in % Table A7a: Pre-emergence effect at 320g/ha against MATIN in % Table A7b: Pre-emergence effect at 1280g/ha against MATIN in % Table A8a: Pre-emergence effect at 80g/ha against POAAN in % Table A8b: Pre-emergence effect at 320g/ha against POAAN in % Table A8c: Pre-emergence effect at 1280g/ha against POAAN in %
Tabelle A9a: Vorauflaufwirkung bei 80g/ha gegen SETVI in % Table A9a: Pre-emergence effect at 80g/ha against SETVI in %
Tabelle A9b: Vorauflaufwirkung bei 320g/ha gegen SETVI in % Tabelle A9c: Vorauflaufwirkung bei 1280g/ha gegen SETVI in % Table A9b: Pre-emergence effect at 320g/ha against SETVI in % Table A9c: Pre-emergence effect at 1280g/ha against SETVI in %
Tabelle A10a: Vorauflaufwirkung bei 80g/ha gegen STEME in % Table A10a: Pre-emergence effect at 80g/ha against STEME in %
Tabelle A10b: Vorauflaufwirkung bei 320g/ha gegen STEME in % Tabelle A10c: Vorauflaufwirkung bei 1280g/ha gegen STEME in % Table A10b: Pre-emergence effect at 320g/ha against STEME in % Table A10c: Pre-emergence effect at 1280g/ha against STEME in %
Tabelle A11a: Vorauflaufwirkung bei 80g/ha gegen VERPE in % Table A11a: Pre-emergence effect at 80g/ha against VERPE in %
Tabelle A11b: Vorauflaufwirkung bei 320g/ha gegen VERPE in % Table A11b: Pre-emergence effect at 320g/ha against VERPE in %
Tabelle A11c: Vorauflaufwirkung bei 1280g/ha gegen VERPE in % Table A11c: Pre-emergence effect at 1280g/ha against VERPE in %
Tabelle A12a: Vorauflaufwirkung bei 80g/ha gegen AMARE in % Table A12a: Pre-emergence effect at 80g/ha against AMARE in %
Tabelle A12b: Vorauflaufwirkung bei 320g/ha gegen AMARE in % Table A12b: Pre-emergence effect at 320g/ha against AMARE in %
Tabelle A12c: Vorauflaufwirkung bei 1280g/ha gegen AMARE in % Wie die Ergebnisse der Tabellen A1a-A12c beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen der Formel I bei Behandlung im Vorauflauf eine sehr gute herbizide Wirksamkeit gegen die Schadpflanzen Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Echinochloa crus-galli (ECHCG), Bassia scoparia (KCHSC), Lolium rigidum (LOLRI), Poa annua (POAAN), Setaria viridis (SETVI), Stellaria media (STEME) und Veronica persica (VERPE) bei einer Aufwandmenge von 1280 g und darunter Aktivsubstanz pro Hektar auf. B. Herbizide Wirkung im Nachauflauf Samen von mono- bzw. dikotylen Unkrautpflanzen wurden in Kunststofftöpfen in sandigem Lehmboden ausgelegt (Doppelaussaaten mit jeweils einer Spezies mono- bzw. dikotyler Unkrautpflanzen pro Topf), mit Erde abgedeckt und im Gewächshaus unter kontrollierten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat wurden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden als wässrige Suspension bzw. Emulsion, unter Zusatz von 0,5% Additiv, mit einer Wasseraufwandmenge von umgerechnet 600 Liter pro Hektar, auf die grünen Pflanzenteile appliziert. Nach ca.3 Wochen Standzeit der Versuchspflanzen im Gewächshaus, unter optimalen Wachstumsbedingungen, wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert. Beispielsweise bedeutet: 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie unbehandelte Kontrollpflanzen In den nachstehenden Tabellen B1a bis B12c sind die Wirkungen ausgewählter erfindungsgemäßer Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Schadpflanzen und einer Aufwandmenge entsprechend 1280 g/ha und darunter, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle B1a: Nachauflaufwirkung bei 80g/ha gegen ABUTH in % Table A12c: Pre-emergence effect at 1280g/ha against AMARE in % As the results in Tables A1a-A12c show by way of example, the compounds of the formula I according to the invention have very good herbicidal activity against the harmful plants Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Echinochloa crus when treated pre-emergence -galli (ECHCG), Bassia scoparia (KCHSC), Lolium rigidum (LOLRI), Poa annua (POAAN), Setaria viridis (SETVI), Stellaria media (STEME) and Veronica persica (VERPE) at an application rate of 1280 g and below active substance per hectare. B. Post-emergence herbicidal action Seeds of monocotyledonous and dicotyledonous weed plants were placed in sandy loam soil in plastic pots (double sowing with one species of monocotyledonous and dicotyledonous weed plants per pot), covered with soil and grown in the greenhouse under controlled growth conditions. 2 to 3 weeks after sowing, the test plants were treated in the one-leaf stage. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were applied to the green parts of plants as an aqueous suspension or emulsion, with the addition of 0.5% additive, with a water application rate of the equivalent of 600 liters per hectare . After the test plants had been in the greenhouse for about 3 weeks under optimal growth conditions, the effect of the preparations was scored visually in comparison with untreated controls. For example: 100% action=plants have died, 0% action=like untreated control plants. ha and below, which were obtained according to the test procedure mentioned above. Table B1a: Post-emergence effect at 80g/ha against ABUTH in %
Tabelle B1b: Nachauflaufwirkung bei 320g/ha gegen ABUTH in % Tabelle B1c: Nachauflaufwirkung bei 1280g/ha gegen ABUTH in % Table B1b: Post-emergence effect at 320g/ha against ABUTH in % Table B1c: Post-emergence effect at 1280g/ha against ABUTH in %
Tabelle B2a: Nachauflaufwirkung bei 320g/ha gegen ALOMY in % Tabelle B2b: Nachauflaufwirkung bei 1280g/ha gegen ALOMY in % Table B2a: Post-emergence effect at 320g/ha against ALOMY in % Table B2b: Post-emergence effect at 1280g/ha against ALOMY in %
Tabelle B3a: Nachauflaufwirkung bei 320g/ha gegen DIGSA in % Tabelle B3b: Nachauflaufwirkung bei 1280g/ha gegen DIGSA in % Tabelle B4a: Nachauflaufwirkung bei 80g/ha gegen ECHCG in % Tabelle B4b: Nachauflaufwirkung bei 320g/ha gegen ECHCG in % Table B3a: Post-emergence effect at 320g/ha against DIGSA in % Table B3b: Post-emergence effect at 1280g/ha against DIGSA in % Table B4a: Post-emergence effect at 80g/ha against ECHCG in % Table B4b: Post-emergence effect at 320g/ha against ECHCG in %
Tabelle B4c: Nachauflaufwirkung bei 1280g/ha gegen ECHCG in % Table B4c: Post-emergence effect at 1280g/ha against ECHCG in %
Tabelle B5a: Nachauflaufwirkung bei 80g/ha gegen KCHSC in % Table B5a: Post-emergence effect at 80g/ha against KCHSC in %
Tabelle B5b: Nachauflaufwirkung bei 320g/ha gegen KCHSC in % Tabelle B5c: Nachauflaufwirkung bei 1280g/ha gegen KCHSC in % Tabelle B6a: Nachauflaufwirkung bei 320g/ha gegen LOLRI in % Tabelle B6b: Nachauflaufwirkung bei 1280g/ha gegen LOLRI in % Tabelle B7a: Nachauflaufwirkung bei 320g/ha gegen MATIN in % Tabelle B7b: Nachauflaufwirkung bei 1280g/ha gegen MATIN in % Tabelle B8a: Nachauflaufwirkung bei 80g/ha gegen POAAN in % Tabelle B8b: Nachauflaufwirkung bei 320g/ha gegen POAAN in % Table B5b: Post-emergence effect at 320g/ha against KCHSC in % Table B5c: Post-emergence effect at 1280g/ha against KCHSC in % Table B6a: Post-emergence effect at 320g/ha against LOLRI in % Table B6b: Post-emergence effect at 1280g/ha against LOLRI in % Table B7a: Post-emergence effect at 320g/ha against MATIN in % Table B7b: Post-emergence effect at 1280g/ha against MATIN in % Table B8a: Post-emergence effect at 80g/ha against POAAN in % Table B8b: Post-emergence effect at 320g/ha against POAAN in %
Tabelle B8c: Nachauflaufwirkung bei 1280g/ha gegen POAAN in % Table B8c: Post-emergence effect at 1280g/ha against POAAN in %
Tabelle B9a: Nachauflaufwirkung bei 320g/ha gegen SETVI in % Table B9a: Post-emergence effect at 320g/ha against SETVI in %
Tabelle B9b: Nachauflaufwirkung bei 1280g/ha gegen SETVI in % Table B9b: Post-emergence effect at 1280g/ha against SETVI in %
Tabelle B10a: Nachauflaufwirkung bei 80g/ha gegen STEME in % Table B10a: Post-emergence effect at 80g/ha against STEME in %
Tabelle B10b: Nachauflaufwirkung bei 320g/ha gegen STEME in % Tabelle B10c: Nachauflaufwirkung bei 1280g/ha gegen STEME in % Table B10b: Post-emergence effect at 320g/ha against STEME in % Table B10c: Post-emergence effect at 1280g/ha against STEME in %
Tabelle B11a: Nachauflaufwirkung bei 80g/ha gegen VERPE in % Table B11a: Post-emergence effect at 80g/ha against VERPE in %
Tabelle B11b: Nachauflaufwirkung bei 320g/ha gegen VERPE in % Table B11b: Post-emergence effect at 320g/ha against VERPE in %
Tabelle B11c: Nachauflaufwirkung bei 1280g/ha gegen VERPE in % Table B11c: Post-emergence effect at 1280g/ha against VERPE in %
Tabelle B12a: Nachauflaufwirkung bei 80g/ha gegen AMARE in % Tabelle B12b: Nachauflaufwirkung bei 320g/ha gegen AMARE in % Table B12a: Post-emergence effect at 80g/ha against AMARE in % Table B12b: Post-emergence effect at 320g/ha against AMARE in %
Tabelle B12c: Nachauflaufwirkung bei 1280g/ha gegen AMARE in % Wie die Ergebnisse der Tabellen B1a-B12c beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen der Formel I bei Behandlung im Nachauflauf eine sehr gute herbizide Wirksamkeit gegen die Schadpflanzen Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Echinochloa crus-galli (ECHCG), Bassia scoparia (KCHSC), Lolium rigidum (LOLRI), Poa annua (POAAN), Setaria viridis (SETVI), Stellaria media (STEME) und Veronica persica (VERPE) bei einer Aufwandmenge von 1280 g und darunter Aktivsubstanz pro Hektar auf. C. Herbizide Wirkung im Vorauflauf Samen von mono- bzw. dikotylen Unkraut und Kulturpflanzen wurden in Kunststoff- oder organischen Pflanztöpfen ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden dann als wässrige Suspension bzw. Emulsion unter Zusatz von 0,5% Additiv mit einer Wasseraufwandmenge von umgerechnet 600 l/ha auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung wurden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Nach ca.3 Wochen wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen in Prozentwerten bonitiert. Beispielsweise bedeutet: 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie unbehandelte Kontrollpflanzen. In nachstehenden Tabellen C1a bis C14b sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Schadpflanzen und einer Aufwandmenge entsprechend 320 g/ha und darunter, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle C1a: Vorauflaufwirkung bei 80g/ha gegen ABUTH in % Tabelle C1b: Vorauflaufwirkung bei 320g/ha gegen ABUTH in % Tabelle C2a: Vorauflaufwirkung bei 80g/ha gegen ALOMY in % Tabelle C2b: Vorauflaufwirkung bei 320g/ha gegen ALOMY in % Table B12c: Post-emergence effect at 1280g/ha against AMARE in % As the results in Tables B1a-B12c show by way of example, the compounds of the formula I according to the invention have very good herbicidal activity against the harmful plants Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Echinochloa crus when treated post-emergence -galli (ECHCG), Bassia scoparia (KCHSC), Lolium rigidum (LOLRI), Poa annua (POAAN), Setaria viridis (SETVI), Stellaria media (STEME) and Veronica persica (VERPE) at an application rate of 1280 g and below active substance per hectare. C. Pre-emergence herbicidal action Seeds of monocotyledonous and dicotyledonous weeds and crop plants were placed in plastic or organic plant pots and covered with soil. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were then applied to the surface of the covering soil as an aqueous suspension or emulsion with the addition of 0.5% additive at a water application rate of the equivalent of 600 l/ha. After treatment, the pots were placed in the greenhouse and maintained under good growing conditions for the test plants. After about 3 weeks, the effect of the preparations was scored visually in percentage values in comparison to untreated controls. For example: 100% activity=plants have died, 0% activity=like untreated control plants. Tables C1a to C14b below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and at an application rate corresponding to 320 g/ha and below obtained according to the aforesaid test protocol. Table C1a: Pre-emergence effect at 80g/ha against ABUTH in % Table C1b: Pre-emergence effect at 320g/ha against ABUTH in % Table C 2 a: Pre-emergence effect at 80g/ha against ALOMY in % Table C 2 b: Pre-emergence effect at 320g/ha against ALOMY in %
Tabelle C3a: Vorauflaufwirkung bei 80g/ha gegen AMARE in % Table C 3 a: Pre-emergence effect at 80g/ha against AMARE in %
Tabelle C3b: Vorauflaufwirkung bei 320g/ha gegen AMARE in % Table C 3 b: Pre-emergence effect at 320g/ha against AMARE in %
Tabelle C4: Vorauflaufwirkung bei 320g/ha gegen AVEFA in % Table C 4 : Pre-emergence effect at 320g/ha against AVEFA in %
Tabelle C5a: Vorauflaufwirkung bei 80g/ha gegen DIGSA in % Tabelle C5b: Vorauflaufwirkung bei 320g/ha gegen DIGSA in % Tabelle C6a: Vorauflaufwirkung bei 80g/ha gegen ECHCG in % Tabelle C6b: Vorauflaufwirkung bei 320g/ha gegen ECHCG in % Table C 5 a: Pre-emergence effect at 80g/ha against DIGSA in % Table C5b: Pre-emergence effect at 320g/ha against DIGSA in % Table C6a: Pre-emergence effect at 80g/ha against ECHCG in % Table C6b: Pre-emergence effect at 320g/ha against ECHCG in %
Tabelle C7a: Vorauflaufwirkung bei 80g/ha gegen LOLRI in % Tabelle C7b: Vorauflaufwirkung bei 320g/ha gegen LOLRI in % Tabelle C8a: Vorauflaufwirkung bei 80g/ha gegen MATIN in % Tabelle C8b: Vorauflaufwirkung bei 320g/ha gegen MATIN in % Tabelle C9a: Vorauflaufwirkung bei 80g/ha gegen PHBPU in % Table C7a: Pre-emergence effect at 80g/ha against LOLRI in % Table C7b: Pre-emergence effect at 320g/ha against LOLRI in % Table C8a: Pre-emergence effect at 80g/ha against MATIN in % Table C8b: Pre-emergence effect at 320g/ha against MATIN in % Table C9a: Pre-emergence effect at 80g/ha against PHBPU in %
Tabelle C9b: Vorauflaufwirkung bei 320g/ha gegen PHBPU in % Tabelle C10a: Vorauflaufwirkung bei 80g/ha gegen POLCO in % Table C9b: Pre-emergence effect at 320g/ha against PHBPU in % Table C 1 0a: Pre-emergence effect at 80g/ha against POLCO in %
Tabelle C10b: Vorauflaufwirkung bei 320g/ha gegen POLCO in % Table C10b: Pre-emergence effect at 320g/ha against POLCO in %
Tabelle C11a: Vorauflaufwirkung bei 80g/ha gegen SETVI in % Tabelle C11b: Vorauflaufwirkung bei 320g/ha gegen SETVI in % Table C 1 1a: Pre-emergence effect at 80g/ha against SETVI in % Table C11b: Pre-emergence effect at 320g/ha against SETVI in %
Tabelle C12a: Vorauflaufwirkung bei 80g/ha gegen VERPE in % Tabelle C12b: Vorauflaufwirkung bei 320g/ha gegen VERPE in % Tabelle C13a: Vorauflaufwirkung bei 80g/ha gegen VIOTR in % Tabelle C13b: Vorauflaufwirkung bei 320g/ha gegen VIOTR in % Table C12a: Pre-emergence effect at 80g/ha against VERPE in % Table C12b: Pre-emergence effect at 320g/ha against VERPE in % Table C13a: Pre-emergence effect at 80g/ha against VIOTR in % Table C13b: Pre-emergence effect at 320g/ha against VIOTR in %
Tabelle C14a: Vorauflaufwirkung bei 80g/ha gegen KCHSC in % Tabelle C14b: Vorauflaufwirkung bei 320g/ha gegen KCHSC in % Wie die Ergebnisse der Tabellen C1a-C14b beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen der Formel I bei Behandlung im Vorauflauf eine sehr gute herbizide Wirksamkeit gegen die Schadpflanzen Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Avena fatua (AVEFA), Digitaria sanguinalis (DIGSA), Echinochloa crus-galli (ECHCG), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Matricaria inodora (MATIN), Pharbitis purpurea (PHBPU), Polygonum convolvulus (POLCO), Setaria viridis (SETVI), Veronica persica (VERPE) und Viola tricolor (VIOTR) bei einer Aufwandmenge von 320 g und darunter Aktivsubstanz pro Hektar auf. D. Vorauflaufwirkung auf Nutzpflanzen In nachstehenden Tabellen D1a bis D5b sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Nutzpflanzen und einer Aufwandmenge entsprechend 320 g/ha und darunter, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle D1a: Vorauflaufwirkung bei 80g/ha gegen ORYSA in % Tabelle D1b: Vorauflaufwirkung bei 320g/ha gegen ORYSA in % Tabelle D2a: Vorauflaufwirkung bei 80g/ha gegen ZEAMX in % Tabelle D2b: Vorauflaufwirkung bei 320g/ha gegen ZEAMX in % Tabelle D3a: Vorauflaufwirkung bei 80g/ha gegen TRZAS in % Table C14a: Pre-emergence effect at 80g/ha against KCHSC in % Table C14b: Pre-emergence effect at 320g/ha against KCHSC in % As the results in Tables C1a-C14b show by way of example, the compounds of the formula I according to the invention have very good herbicidal activity against the harmful plants Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Avena fatua when treated pre-emergence (AVEFA), Digitaria sanguinalis (DIGSA), Echinochloa crus-galli (ECHCG), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Matricaria inodora (MATIN), Pharbitis purpurea (PHBPU), Polygonum convolvulus (POLCO), Setaria viridis (SETVI), Veronica persica (VERPE) and Viola tricolor (VIOTR) at an application rate of 320 g and below active substance per hectare. D. Pre-emergence effect on useful plants Tables D1a to D5b below show the effects of selected compounds of the general formula (I) according to Table 1 on various useful plants and at an application rate corresponding to 320 g/ha and below obtained according to the aforesaid test protocol. Table D1a: Pre-emergence effect at 80g/ha against ORYSA in % Table D1b: Pre-emergence effect at 320g/ha against ORYSA in % Table D2a: Pre-emergence effect at 80g/ha against ZEAMX in % Table D2b: Pre-emergence effect at 320g/ha against ZEAMX in % Table D3a: Pre-emergence effect at 80g/ha against TRZAS in %
Tabelle D3b: Vorauflaufwirkung bei 320g/ha gegen TRZAS in % Tabelle D4a: Vorauflaufwirkung bei 80g/ha gegen GLXMA in % Tabelle D4b: Vorauflaufwirkung bei 320g/ha gegen GLXMA in % Tabelle D5a: Vorauflaufwirkung bei 80g/ha gegen BRSNW in % Tabelle D5b: Vorauflaufwirkung bei 320g/ha gegen BRSNW in % Wie die Ergebnisse der Tabellen D1a-D5b beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen der Formel I bei Behandlung im Vorauflauf keinen oder nur einen geringen Schadeffekt gegen Nutzpflanzen wie Triticum aestivum (TRZAS), Zea Mays (ZEAMX), Oryza sativa (ORYSA), Glycine max (GLXMA) and Brassica napus (BRSNW) auf. E. Herbizide Wirkung im Nachauflauf Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen wurden in Kunststoff- oder organischen Pflanztöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter kontrollierten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat wurden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen wurden dann als wässrige Suspension bzw. Emulsion unter Zusatz von 0,5% Additiv mit einer Wasseraufwandmenge von umgerechnet 600 l/ha auf die grünen Pflanzenteile gesprüht. Nach ca.3 Wochen Standzeit der Versuchspflanzen im Gewächshaus, unter optimalen Wachstumsbedingungen, wurde die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert. Beispielsweise bedeutet: 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie unbehandelteKontrollpflanzen In nachstehenden Tabellen E1a bis E12b sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Schadpflanzen und einer Aufwandmenge entsprechend 320 g/ha und darunter, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle E1a: Nachauflaufwirkung bei 80g/ha gegen ABUTH in % Tabelle E1b: Nachauflaufwirkung bei 320g/ha gegen ABUTH in % Table D3b: Pre-emergence effect at 320g/ha against TRZAS in % Table D4a: Pre-emergence effect at 80g/ha against GLXMA in % Table D4b: Pre-emergence effect at 320g/ha against GLXMA in % Table D5a: Pre-emergence effect at 80g/ha against BRSNW in % Table D5b: Pre-emergence effect at 320g/ha against BRSNW in % As the results of Tables D1a-D5b show by way of example, the compounds of the formula I according to the invention have little or no harmful effect on useful plants such as Triticum aestivum (TRZAS), Zea Mays (ZEAMX), Oryza sativa (ORYSA), Glycine when treated pre-emergence max (GLXMA) and Brassica napus (BRSNW). E. Post-emergence herbicidal action Seeds of monocotyledonous and dicotyledonous weeds and crop plants were placed in sandy loam soil in plastic or organic plant pots, covered with soil and grown in a greenhouse under controlled growth conditions. 2 to 3 weeks after sowing, the test plants were treated in the one-leaf stage. The compounds according to the invention, formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), were then sprayed onto the green parts of the plants as an aqueous suspension or emulsion with the addition of 0.5% additive at a water application rate of the equivalent of 600 l/ha. After the test plants had been in the greenhouse for about 3 weeks under optimal growth conditions, the effect of the preparations was scored visually in comparison with untreated controls. For example: 100% effect = plants have died, 0% effect = like untreated control plants Tables E1a to E12b below show the effects of selected compounds of the general formula (I) according to Table 1 on various harmful plants and an application rate corresponding to 320 g/ha and below , which were obtained according to the test procedure mentioned above. Table E1a: Post-emergence effect at 80g/ha against ABUTH in % Table E1b: Post-emergence effect at 320g/ha against ABUTH in %
Tabelle E2a: Nachauflaufwirkung bei 80g/ha gegen ALOMY in % Tabelle E2b: Nachauflaufwirkung bei 320g/ha gegen ALOMY in % Tabelle E3a: Nachauflaufwirkung bei 80g/ha gegen AMARE in % Table E2a: Post-emergence effect at 80g/ha against ALOMY in % Table E2b: Post-emergence effect at 320g/ha against ALOMY in % Table E3a: Post-emergence effect at 80g/ha against AMARE in %
Tabelle E3b: Nachauflaufwirkung bei 320g/ha gegen AMARE in % Table E3b: Post-emergence effect at 320g/ha against AMARE in %
Tabelle E4a: Nachauflaufwirkung bei 80g/ha gegen DIGSA in % Table E4a: Post-emergence effect at 80g/ha against DIGSA in %
Tabelle E4b: Nachauflaufwirkung bei 320g/ha gegen DIGSA in % Tabelle E5a: Nachauflaufwirkung bei 80g/ha gegen ECHCG in % Table E4b: Post-emergence effect at 320g/ha against DIGSA in % Table E5a: Post-emergence effect at 80g/ha against ECHCG in %
Tabelle E5b: Nachauflaufwirkung bei 320g/ha gegen ECHCG in % Table E5b: Post-emergence effect at 320g/ha against ECHCG in %
Tabelle E6a: Nachauflaufwirkung bei 80g/ha gegen LOLRI in % Tabelle E6b: Nachauflaufwirkung bei 320g/ha gegen LOLRI in % Tabelle E7a: Nachauflaufwirkung bei 80g/ha gegen PHBPU in % Tabelle E7b: Nachauflaufwirkung bei 320g/ha gegen PHBPU in % Table E6a: Post-emergence effect at 80g/ha against LOLRI in % Table E6b: Post-emergence effect at 320g/ha against LOLRI in % Table E7a: Post-emergence effect at 80g/ha against PHBPU in % Table E7b: Post-emergence effect at 320g/ha against PHBPU in %
Tabelle E8a: Nachauflaufwirkung bei 80g/ha gegen POLCO in % Table E8a: Post-emergence effect at 80g/ha against POLCO in %
Tabelle E8b: Nachauflaufwirkung bei 320g/ha gegen POLCO in % Table E8b: Post-emergence effect at 320g/ha against POLCO in %
Tabelle E9a: Nachauflaufwirkung bei 80g/ha gegen SETVI in % Tabelle E9b: Nachauflaufwirkung bei 320g/ha gegen SETVI in % Tabelle E10a: Nachauflaufwirkung bei 80g/ha gegen VERPE in % Tabelle E10b: Nachauflaufwirkung bei 320g/ha gegen VERPE in % Table E9a: Post-emergence effect at 80g/ha against SETVI in % Table E9b: Post-emergence effect at 320g/ha against SETVI in % Table E10a: Post-emergence effect at 80g/ha against VERPE in % Table E10b: Post-emergence effect at 320g/ha against VERPE in %
Tabelle E11a: Nachauflaufwirkung bei 80g/ha gegen VIOTR in % Table E11a: Post-emergence effect at 80g/ha against VIOTR in %
Tabelle E11b: Nachauflaufwirkung bei 320g/ha gegen VIOTR in % Table E11b: Post-emergence effect at 320g/ha against VIOTR in %
Tabelle E12a: Nachauflaufwirkung bei 80g/ha gegen KCHSC in % Tabelle E12b: Nachauflaufwirkung bei 320g/ha gegen KCHSC in % Wie die Ergebnisse der Tabellen E1a-E12b beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen der Formel I bei Behandlung im Nachauflauf eine sehr gute herbizide Wirksamkeit gegen die Schadpflanzen Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Digitaria sanguinalis (DIGSA), Echinochloa crus-galli (ECHCG), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Pharbitis purpurea (PHBPU), Polygonum convolvulus (POLCO), Setaria viridis (SETVI), Veronica persica (VERPE) und Viola tricolor (VIOTR) bei einer Aufwandmenge von 320 g und darunter Aktivsubstanz pro Hektar auf. F. Nachauflaufwirkung auf Nutzpflanzen In nachstehenden Tabellen F1a bis F4 sind die Wirkungen ausgewählter Verbindungen der allgemeinen Formel (I) gemäß Tabelle 1 auf verschiedene Nutzpflanzen und einer Aufwandmenge entsprechend 320 g/ha und darunter, die gemäß zuvor genannter Versuchvorschrift erhalten wurden, dargestellt. Tabelle F1a: Nachauflaufwirkung bei 80g/ha gegen ORYSA in % Tabelle F1b: Nachauflaufwirkung bei 320g/ha gegen ORYSA in % Tabelle F2a: Nachauflaufwirkung bei 80g/ha gegen ZEAMX in % Table E12a: Post-emergence effect at 80g/ha against KCHSC in % Table E12b: Post-emergence effect at 320g/ha against KCHSC in % As the results in Tables E1a-E12b show by way of example, the compounds of the formula I according to the invention have very good herbicidal activity against the harmful plants Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Digitaria sanguinalis when treated post-emergence (DIGSA), Echinochloa crus-galli (ECHCG), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Pharbitis purpurea (PHBPU), Polygonum convolvulus (POLCO), Setaria viridis (SETVI), Veronica persica (VERPE) and Viola tricolor (VIOTR) at an application rate of 320 g and below active substance per hectare. F. Post-emergence effect on useful plants Tables F1a to F4 below show the effects of selected compounds of the general formula (I) according to Table 1 on various useful plants and an application rate corresponding to 320 g/ha and below, which were obtained according to the test procedure mentioned above. Table F1a: Post-emergence at 80g/ha against ORYSA in % Table F1b: Post-emergence effect at 320g/ha against ORYSA in % Table F2a: Post-emergence effect at 80g/ha against ZEAMX in %
Tabelle F2b: Nachauflaufwirkung bei 320g/ha gegen ZEAMX in % Tabelle F3a: Nachauflaufwirkung bei 80g/ha gegen TRZAS in % Table F2b: Post-emergence effect at 320g/ha against ZEAMX in % Table F3a: Post-emergence effect at 80g/ha against TRZAS in %
Tabelle F3b: Nachauflaufwirkung bei 320g/ha gegen TRZAS in % Table F3b: Post-emergence effect at 320g/ha against TRZAS in %
Tabelle F4: Nachauflaufwirkung bei 80g/ha gegen GLXMA in % Wie die Ergebnisse der Tabellen F1a-F4 beispielhaft zeigen, weisen die erfindungsgemäßen Verbindungen der Formel I bei Behandlung im Nachauflauf keinen oder nur einen geringen Schadeffekt gegen Nutzpflanzen wie Triticum aestivum (TRZAS), Zea Mays (ZEAMX), Oryza sativa (ORYSA) und Glycine max (GLXMA) auf. Table F4: Post-emergence effect at 80g/ha against GLXMA in % As the results of Tables F1a-F4 show by way of example, the compounds of the formula I according to the invention have little or no harmful effect on crops such as Triticum aestivum (TRZAS), Zea Mays (ZEAMX), Oryza sativa (ORYSA) and Glycine when treated post-emergence max (GLXMA) on.

Claims

Patentansprüche 1. Substituierte (2-Heteroaryloxyphenyl)sulfonate der allgemeinen Formel (I) oder deren Salze worin R1 für (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Halocycloalkyl, (C2-C6)-Alkenyl, (C2-C6)-Haloalkenyl, (C3-C6)-Cycloalkenyl, (C3-C6)-Halocycloalkenyl, (C2-C6)-Alkinyl, (C2-C6)-Haloalkinyl, (C3-C6)-Cycloalkyl-(C1-C4)-alkyl, (C3-C6)- Halocycloalkyl-(C1-C4)-alkyl, (C1-C4)-Alkyl-(C3-C6)-cycloalkyl, (C1-C4)-Haloalkyl-(C3- C6)-cycloalkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C3- C6)-Cycloalkoxy-(C1-C4)-alkyl, (C2-C4)-Alkenyloxy-(C1-C4)-alkyl, (C2-C4)- Haloalkenyloxy-(C1-C4)-alkyl, (C3-C6)-Cycloalkenyloxy-(C1-C4)-alkyl, (C2-C6)- Cyanoalkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Haloalkylthio-(C1-C4)-alkyl oder (C3-C6)-Cycloalkylthio-(C1-C4)-alkyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, Halogen, Hydroxy, Amino, Cyano, Nitro, Formyl, Formamid, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)- Alkenyl, (C2-C4)-Alkinyl, (C2-C4)-Haloalkenyl, (C2-C4)-Haloalkinyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C3-C6)-Cycloalkoxy, (C2-C4)-Alkenyloxy, (C1-C4)-Alkinyloxy, (C1-C4)-Alkylthio, (C1-C4)-Haloalkylthio, (C3-C6)-Cycloalkylthio, (C1-C4)- Alkylsulfinyl, (C1-C4)-Haloalkylsulfinyl, (C3-C6)-Cycloalkylsulfinyl, (C1-C4)- Alkylsulfonyl, (C1-C4)-Haloalkylsulfonyl, (C3-C6)-Cycloalkylsulfonyl, (C1-C4)-Alkoxy- (C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Alkylsulfinyl-(C1-C4)-alkyl, (C1-C4)-Alkylsulfonyl-(C1-C4)-alkyl, (C1-C4)- Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, (C1-C4)- Alkylcarbonyloxy, (C1-C4)-Haloalkylcarbonyloxy, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)-Cycloalkoxycarbonyl, (C1-C4)- Alkylaminocarbonyl, (C2-C6)-Dialkylaminocarbonyl, (C3-C6)-Cycloalkylaminocarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C2-C6)- Cycloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino, (C1-C4)- Alkylaminocarbonylamino, (C2-C6)-Dialkylaminocarbonylamino, Carboxy-(C1-C4)- alkyl, (C1-C4)-Alkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Haloalkoxycarbonyl-(C1-C4)- alkyl, (C3-C6)-Cycloalkoxycarbonyl-(C1-C4)-alkyl, (C1-C4)-Alkylaminosulfonyl, (C2-C6)-Dialkylaminosulfonyl oder (C3-C6)-Trialkylsilyl stehen, R4 für Wasserstoff, Halogen, Cyano, Nitro, (C1-C4)-Alkyl oder (C1-C4)-Haloalkyl steht, X für N oder CR5 steht, Y für N oder CH steht, und R5 für Wasserstoff, Halogen oder Cyano steht. Claims 1. Substituted (2-heteroaryloxyphenyl) sulfonates of the general formula (I) or salts thereof wherein R 1 is (C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkyl, (C 3 -C 6 )cycloalkyl, (C 3 -C 6 )halocycloalkyl, (C 2 -C 6 )-alkenyl, (C 2 -C 6 )-haloalkenyl, (C 3 -C 6 )-cycloalkenyl, (C 3 -C 6 )-halocycloalkenyl, (C 2 -C 6 )-alkynyl, (C 2 -C 6 ). )-haloalkynyl, (C 3 -C 6 )cycloalkyl-(C 1 -C 4 )alkyl, (C 3 -C 6 )-halocycloalkyl-(C 1 -C 4 )alkyl, (C 1 -C 4 ). )-alkyl(C 3 -C 6 )cycloalkyl, (C 1 -C 4 )haloalkyl(C 3 -C 6 )cycloalkyl, (C 1 -C 4 )alkoxy(C 1 -C 4 ). )alkyl, (C 1 -C 4 )haloalkoxy(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkoxy(C 1 -C 4 )alkyl, (C 2 -C 4 ) . )-alkenyloxy-(C 1 -C 4 )alkyl, (C 2 -C 4 )-haloalkenyloxy-(C 1 -C 4 )alkyl, (C 3 -C 6 )-cycloalkenyloxy-(C 1 -C 4 ) . )-alkyl, (C 2 -C 6 )-cyanoalkyl, (C 1 -C 4 )-alkylthio-(C 1 -C 4 )-alkyl, (C 1 -C 4 )-haloalkylthio-(C 1 -C 4 ). )-alkyl or (C 3 -C 6 )-cycloalkylthio-(C 1 -C 4 )-alkyl, R 2 and R 3 independently of one another are hydrogen, halogen, hydroxy, amino, cyano, nitro, formyl, formamide, ( C 1 -C 4 )alkyl, (C 1 -C 4 ) -haloalkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 4 )alkenyl, (C 2 -C 4 )alkynyl, (C 2 -C 4 )haloalkenyl, (C 2 -C 4 ) -haloalkynyl, (C 1 -C 4 )alkoxy, (C 1 -C 4 )haloalkoxy, (C 3 -C 6 )cycloalkoxy, (C 2 -C 4 )alkenyloxy, (C 1 -C 4 ) -alkynyloxy, (C 1 -C 4 )alkylthio, (C 1 -C 4 )haloalkylthio, (C 3 -C 6 )cycloalkylthio, (C 1 -C 4 )alkylsulphinyl, (C 1 -C 4 ) -haloalkylsulfinyl, (C 3 -C 6 )cycloalkylsulfinyl, (C 1 -C 4 )alkylsulphonyl, (C 1 -C 4 )haloalkylsulphonyl, (C 3 -C 6 )cycloalkylsulphonyl, (C 1 -C 4 ) -Alkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )alkylthio-(C 1 -C 4 ) -alkyl, (C 1 -C 4 )alkylsulphinyl-(C 1 -C 4 )alkyl, (C 1 -C 4 )alkylsulfonyl-(C 1 -C 4 )alkyl, (C 1 -C 4 ) - alkylcarbonyl, (C 1 -C 4 )haloalkylcarbonyl, (C 3 -C 6 )cycloalkylcarbonyl, (C 1 -C 4 )alkylcarbonyloxy, (C 1 -C 4 )haloalkylcarbonyloxy, carboxyl, (C 1 -C 4 )alkoxycarbonyl, (C 1 -C 4 )haloalkoxycarbonyl, (C 3 -C 6 )cycloalkoxycarbonyl, (C 1 -C 4 )alkylamino carbonyl, (C 2 -C 6 )dialkylaminocarbonyl, (C 3 -C 6 )cycloalkylaminocarbonyl, (C 1 -C 4 )alkylcarbonylamino, (C 1 -C 4 )haloalkylcarbonylamino, (C 2 -C 6 )cycloalkylcarbonylamino, (C 1 -C 4 )alkoxycarbonylamino, (C 1 -C 4 )alkylaminocarbonylamino, (C 2 -C 6 )dialkylaminocarbonylamino, carboxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxycarbonyl-(C 1 -C 4 )alkyl, (C 1 -C 4 )- Haloalkoxycarbonyl(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkoxycarbonyl(C 1 -C 4 )alkyl, (C 1 -C 4 )alkylaminosulfonyl, (C 2 -C 6 )- dialkylaminosulfonyl or (C 3 -C 6 )trialkylsilyl, R 4 represents hydrogen, halogen, cyano, nitro, (C 1 -C 4 )alkyl or (C 1 -C 4 )haloalkyl, X represents N or CR 5 , Y is N or CH, and R 5 is hydrogen, halogen or cyano.
2. Verbindung der allgemeinen Formel (I) nach Anspruch 1oder deren Salze, worin R1 für (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Halocycloalkyl, (C2-C6)-Alkenyl, (C2-C6)-Haloalkenyl, (C2-C6)-Alkinyl, (C2-C6)-Haloalkinyl, (C3-C6)- Cycloalkyl-(C1-C4)-alkyl, (C3-C6)-Halocycloalkyl-(C1-C4)-alkyl, (C1-C4)-Alkyl-(C3-C6)- cycloalkyl, (C1-C4)-Haloalkyl-(C3-C6)-cycloalkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxy-(C1-C4)-alkyl, (C2-C4)- Alkenyloxy-(C1-C4)-alkyl, (C2-C6)-Cyanoalkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Haloalkylthio-(C1-C4)-alkyl oder (C3-C6)-Cycloalkylthio-(C1-C4)-alkyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, Halogen, Hydroxy, Cyano, Nitro, Formyl, Formamid, (C1-C4)-Alkyl, (C1-C4)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C2-C4)-Alkenyloxy, (C1-C4)-Alkylthio, (C1-C4)- Haloalkylthio, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1-C4)-Haloalkoxy-(C1-C4)-alkyl, (C1-C4)-Alkylcarbonyl, (C1-C4)-Haloalkylcarbonyl, (C3-C6)-Cycloalkylcarbonyl, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Haloalkoxycarbonyl, (C3-C6)- Cycloalkoxycarbonyl, (C1-C4)-Alkylcarbonylamino, (C1-C4)-Haloalkylcarbonylamino, (C1-C4)-Alkoxycarbonylamino oder (C3-C6)-Trialkylsilyl stehen, R4 für Wasserstoff, Halogen, Cyano, Nitro, (C1-C4)-Alkyl oder (C1-C4)-Haloalkyl steht, X für N oder CR5 steht, Y für N oder CH steht, und R5 für Wasserstoff, Halogen oder Cyano steht. 2. A compound of the general formula (I) as claimed in claim 1 or salts thereof, in which R 1 is (C 1 -C 6 )alkyl, (C 1 -C 6 )haloalkyl, (C 3 -C 6 )cycloalkyl, ( C 3 -C 6 )halocycloalkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )haloalkenyl, (C 2 -C 6 )alkynyl, (C 2 -C 6 )haloalkynyl, ( C 3 -C 6 )cycloalkyl-(C 1 -C 4 )alkyl, (C 3 -C 6 )halocycloalkyl-(C 1 -C 4 )alkyl, (C 1 -C 4 )alkyl-( C 3 -C 6 )cycloalkyl, (C 1 -C 4 )haloalkyl-(C 3 -C 6 )cycloalkyl, (C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, ( C 1 -C 4 )haloalkoxy-(C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkoxy-(C 1 -C 4 )alkyl, (C 2 -C 4 )alkenyloxy-( C 1 -C 4 )alkyl, (C 2 -C 6 )cyanoalkyl, (C 1 -C 4 )alkylthio-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkylthio-( C 1 -C 4 )-alkyl or (C 3 -C 6 )-cycloalkylthio-(C 1 -C 4 )-alkyl, R 2 and R 3 independently of one another represent hydrogen, halogen, hydroxy, cyano, nitro, formyl, Formamide, (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 4 )alkenyl, (C 1 -C 4 )- alkoxy, (C 1 -C 4 )haloalkoxy, (C 2 -C 4 )alkenyloxy, (C 1 -C 4 )alkylthio, (C 1 -C 4 )haloalkylthio, (C 1 -C 4 )alkoxy-(C 1 -C 4 ). C 4 )alkyl, (C 1 -C 4 )haloalkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )alkylcarbonyl, (C 1 -C 4 )haloalkylcarbonyl, (C 3 -C 6 )cycloalkylcarbonyl, carboxyl, (C 1 -C 4 )alkoxycarbonyl, (C 1 -C 4 )haloalkoxycarbonyl, (C 3 -C 6 )cycloalkoxycarbonyl, (C 1 -C 4 )alkylcarbonylamino, (C 1 -C 4 )haloalkylcarbonylamino, (C 1 -C 4 )alkoxycarbonylamino or (C 3 -C 6 )trialkylsilyl, R 4 represents hydrogen, halogen, cyano, nitro, (C 1 -C 4 )alkyl or ( C 1 -C 4 )haloalkyl, X is N or CR 5 , Y is N or CH, and R 5 is hydrogen, halogen or cyano.
3. Verbindung der allgemeinen Formel (I) nach Anspruch 1 oder deren Salze, worin R1 für (C1-C6)-Alkyl, (C1-C6)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C6)-Alkenyl, (C2-C6)- Haloalkenyl, (C2-C6)-Alkinyl, (C2-C6)-Haloalkinyl, (C3-C6)-Cycloalkyl-(C1-C4)-alkyl, (C1-C4)-Alkoxy-(C1-C4)-alkyl, (C1C4)-Haloalkoxy-(C1-C4)-alkyl, (C2-C6)-Cyanoalkyl, (C1-C4)-Alkylthio-(C1-C4)-alkyl, (C1-C4)-Haloalkylthio-(C1-C4)-alkyl, (C3-C6)- Halocycloalkyl-(C1-C4)-alkyl, oder (C3-C6)-Cycloalkoxy-(C1-C4)-alkyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, (C1-C4)- Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C4)-Alkenyl, (C1-C4)-Alkoxy, (C1-C4)-Haloalkoxy, (C1-C4)-Alkylthio oder (C1-C4)-Haloalkylthio stehen, R4 für Wasserstoff, Halogen, Cyano, Nitro, Methyl oder Trifluoromethyl steht, X für N oder CR5 steht, Y für N oder CH steht, und R5 für Wasserstoff, Halogen oder Cyano steht. 4. Verbindung der allgemeinen Formel (I) nach Anspruch 1 oder deren Salze, worin R1 für (C1-C5)-Alkyl, (C1-C5)-Haloalkyl, (C3-C6)-Cycloalkyl, (C2-C5)-Alkenyl, (C2-C5)- Haloalkenyl, (C3-C6)-Cycloalkyl-(C1-C4)-alkyl, (C3-C6)-Halocycloalkyl-(C1-C4)-alkyl, (C3-C6)-Cycloalkoxy-(C1-C4)-alkyl, (C1C4)-Haloalkoxy-(C1C4)-alkyl, (C1-C4)-Alkoxy-(C1- C4)-alkyl oder (C2-C6)-Cyanoalkyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, Halogen, Cyano, (C1-C2)-Alkyl, (C1-C2)- Haloalkyl, Vinyl, (C1-C2)-Alkoxy oder (C1-C2)-Haloalkoxy stehen, R4 für Wasserstoff, Halogen, Nitro, Cyano oder Trifluormethyl steht, X für N oder CR5 steht, Y für N oder CH steht, und R5 für Wasserstoff, Halogen oder Cyano steht. 5. Verbindung der allgemeinen Formel (I) nach Anspruch 1 oder deren Salze, worin R1 für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, n-Pentyl, iso- Pentyl, Chlormethyl, 1-Chlorprop-3-yl, 1-Chlorbut-4-yl, 1,1,1-Trifluoreth-2-yl, 1,1,1- Trifluorprop-3-yl, 1,1,1-Trifluorbut-4-yl, Cyclopropyl, Cyclopentyl, Cyclopropylmethyl, 1-Methoxyeth-2-yl, Prop-2-en-1-yl, Vinyl, But-3-en-1-yl, 4,4- Difluorbutyl, Trifluor-but-3-enyl, 4,3. A compound of the general formula (I) as claimed in claim 1 or salts thereof, in which R 1 is (C 1 -C 6 )-alkyl, (C 1 -C 6 )-haloalkyl, (C 3 -C 6 )-cycloalkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )haloalkenyl, (C 2 -C 6 )alkynyl, (C 2 -C 6 )haloalkynyl, (C 3 -C 6 )cycloalkyl (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy-(C 1 -C 4 )alkyl, ( C 2 -C 6 )cyanoalkyl, (C 1 -C 4 )alkylthio-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkylthio-(C 1 -C 4 )alkyl, ( C 3 -C 6 )halocycloalkyl(C 1 -C 4 )alkyl, or (C 3 -C 6 )cycloalkoxy(C 1 -C 4 )alkyl, R 2 and R 3 are each independently hydrogen , halogen, cyano, (C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkyl, (C 3 -C 6 )cycloalkyl, (C 2 -C 4 )alkenyl, (C 1 -C 4 )-Alkoxy, (C 1 -C 4 )haloalkoxy, (C 1 -C 4 )alkylthio or (C 1 -C 4 )haloalkylthio, R 4 represents hydrogen, halogen, cyano, nitro, methyl or trifluoromethyl is, X is N or CR 5 , Y is N or CH, and R 5 is hydrogen, halogen or cyano. 4. A compound of the general formula (I) as claimed in claim 1 or salts thereof, in which R 1 is (C 1 -C 5 )-alkyl, (C 1 -C 5 )-haloalkyl, (C 3 -C 6 )-cycloalkyl, (C 2 -C 5 )alkenyl, (C 2 -C 5 )haloalkenyl, (C 3 -C 6 )cycloalkyl-(C 1 -C 4 )alkyl, (C 3 -C 6 )halocycloalkyl (C 1 -C 4 )alkyl, (C 3 -C 6 )cycloalkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )haloalkoxy-(C 1 -C 4 )alkyl, (C 1 -C 4 )-alkoxy-(C 1 - C 4 )-alkyl or (C 2- C 6 )-cyanoalkyl, R 2 and R 3 are independently hydrogen, halogen, cyano, (C 1 -C 2 )alkyl, (C 1 -C 2 )haloalkyl, vinyl, (C 1 -C 2 )alkoxy or (C 1 - C 2 )haloalkoxy, R 4 is hydrogen, halogen, nitro, cyano or trifluoromethyl, X is N or CR 5 , Y is N or CH, and R 5 is hydrogen, halogen or cyano. 5. A compound of the general formula (I) as claimed in claim 1 or salts thereof, in which R 1 is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, n-pentyl, iso- pentyl, chloromethyl, 1-chloroprop-3-yl, 1-chlorobut-4-yl, 1,1,1-trifluoroeth-2-yl, 1,1,1-trifluoroprop-3-yl, 1,1,1- Trifluorobut-4-yl, Cyclopropyl, Cyclopentyl, Cyclopropylmethyl, 1-Methoxyeth-2-yl, Prop-2-en-1-yl, Vinyl, But-3-en-1-yl, 4,4-Difluorobutyl, Trifluoro- but-3-enyl, 4,
4,5,5,4,5,5,
5-Pentafluorpentyl, 3,3-Dichlor-allyl oder 2- (2,2-Dichlorcyclopropyl)ethan-1-yl, (3,3-Difluorcyclobutan)methan-1-yl, Tetrahydrofuran-2-ylmethyl, (2,2-Dichlorcyclopropyl)methyl, 3-(Trifluor- methoxy)propyl oder 3-Cyanopropyl steht, R2 für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl oder Methoxy steht, R3 für Wasserstoff, Fluor oder Methyl steht, R4 für Fluor, Chlor, Brom, Nitro, Cyano oder Trifluormethyl steht, X für N, C-H, C-F oder C-CN steht, und Y für N oder CH steht. 5-pentafluoropentyl, 3,3-dichloroallyl or 2-(2,2-dichlorocyclopropyl)ethan-1-yl, (3,3-difluorocyclobutan)methan-1-yl, tetrahydrofuran-2-ylmethyl, (2,2 -Dichlorocyclopropyl)methyl, 3-(trifluoromethoxy)propyl or 3-cyanopropyl, R 2 represents hydrogen, fluorine, chlorine, bromine, cyano, methyl or methoxy, R 3 represents hydrogen, fluorine or methyl, R 4 represents fluoro, chloro, bromo, nitro, cyano or trifluoromethyl, X is N, CH, CF or C-CN, and Y is N or CH.
6. Herbizide Mittel, gekennzeichnet durch einen herbizid wirksamen Gehalt an mindestens einer Verbindung der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 5. 6. Herbicidal agents, characterized by a herbicidally active content of at least one compound of the general formula (I) according to any one of claims 1 to 5.
7. Herbizide Mittel nach Anspruch 6 in Mischung mit Formulierungshilfsmitteln. 7. Herbicidal compositions according to claim 6 in a mixture with formulation auxiliaries.
8. Herbizide Mittel nach Anspruch 6 oder 7 enthaltend mindestens einen weiteren pestizid wirksamen Stoff aus der Gruppe Insektizide, Akarizide, Herbizide, Fungizide, Safener und Wachstumsregulatoren. 8. Herbicidal compositions according to Claim 6 or 7 containing at least one further pesticidally active substance from the group consisting of insecticides, acaricides, herbicides, fungicides, safeners and growth regulators.
9. Herbizide Mittel nach Anspruch 8 enthaltend einen Safener. 9. Herbicidal compositions according to claim 8 containing a safener.
10. Herbizide Mittel nach Anspruch 9 enthaltend Cyprosulfamid, Cloquintocet-mexyl, Mefenpyr- diethyl oder Isoxadifen-ethyl. 10. Herbicidal compositions according to claim 9 containing cyprosulfamide, cloquintocet-mexyl, mefenpyr-diethyl or isoxadifen-ethyl.
11. Herbizide Mittel nach einem der Ansprüche 6 bis 10 enthaltend ein weiteres Herbizid. 11. A herbicidal composition as claimed in any of claims 6 to 10 containing a further herbicide.
12. Verfahren zur Bekämpfung unerwünschter Pflanzen, dadurch gekennzeichnet, daß man eine wirksame Menge mindestens einer Verbindung der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 6 oder eines herbiziden Mittels nach einem der Ansprüche 6 bis 11 auf die Pflanzen oder auf den Ort des unerwünschten Pflanzenwachstums appliziert. 12. A method for controlling unwanted plants, characterized in that an effective amount of at least one compound of general formula (I) according to any one of claims 1 to 6 or a herbicidal composition according to any one of claims 6 to 11 on the plants or on the site of unwanted plant growth applied.
13. Verwendung von Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 6 oder von herbiziden Mitteln nach einem der Ansprüche 6 bis 11 zur Bekämpfung unerwünschter Pflanzen. 13. Use of compounds of the general formula (I) according to any one of claims 1 to 6 or of herbicidal compositions according to any one of claims 6 to 11 for controlling unwanted plants.
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß die Verbindungen der allgemeinen Formel (I) zur Bekämpfung unerwünschter Pflanzen in Kulturen von Nutzpflanzen eingesetzt werden. 14. Use according to claim 13, characterized in that the compounds of the general formula (I) are used for controlling unwanted plants in crops of useful plants.
15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, daß die Nutzpflanzen transgene Nutzpflanzen sind. 15. Use according to claim 14, characterized in that the useful plants are transgenic useful plants.
EP22703589.6A 2021-02-04 2022-01-28 Substituted (2-heteroaryloxyphenyl)sulfonates, salts thereof and their use as herbicidal agents Pending EP4288418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21155250 2021-02-04
PCT/EP2022/052021 WO2022167334A1 (en) 2021-02-04 2022-01-28 Substituted (2-heteroaryloxyphenyl)sulfonates, salts thereof and their use as herbicidal agents

Publications (1)

Publication Number Publication Date
EP4288418A1 true EP4288418A1 (en) 2023-12-13

Family

ID=74553680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22703589.6A Pending EP4288418A1 (en) 2021-02-04 2022-01-28 Substituted (2-heteroaryloxyphenyl)sulfonates, salts thereof and their use as herbicidal agents

Country Status (6)

Country Link
EP (1) EP4288418A1 (en)
JP (1) JP2024506004A (en)
CN (1) CN117043143A (en)
AU (1) AU2022218292A1 (en)
CA (1) CA3210359A1 (en)
WO (1) WO2022167334A1 (en)

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA19709A1 (en) 1982-02-17 1983-10-01 Ciba Geigy Ag APPLICATION OF QUINOLEIN DERIVATIVES TO THE PROTECTION OF CULTIVATED PLANTS.
EP0094349B1 (en) 1982-05-07 1994-04-06 Ciba-Geigy Ag Use of quinoline derivatives for the protection of cultivated plants
DE3334799A1 (en) 1983-09-26 1985-04-04 Bayer Ag, 5090 Leverkusen 1,3-DIARYL-5-METHYLENE PERHYDROPYRIMIDINE-2-ONE
DE3525205A1 (en) 1984-09-11 1986-03-20 Hoechst Ag, 6230 Frankfurt PLANT PROTECTIVE AGENTS BASED ON 1,2,4-TRIAZOLE DERIVATIVES AND NEW DERIVATIVES OF 1,2,4-TRIAZOLE
EP0191736B1 (en) 1985-02-14 1991-07-17 Ciba-Geigy Ag Use of quinoline derivatives for the protection of crop plants
DE3633840A1 (en) 1986-10-04 1988-04-14 Hoechst Ag PHENYLPYRAZOLIC CARBONIC ACID DERIVATIVES, THEIR PRODUCTION AND USE AS PLANT GROWTH REGULATORS AND SAFENERS
EP0268554B1 (en) 1986-10-22 1991-12-27 Ciba-Geigy Ag 1,5-diphenyl pyrazole-3-carbonic-acid derivatives for the protection of cultured plants
DE3808896A1 (en) 1988-03-17 1989-09-28 Hoechst Ag PLANT PROTECTION AGENTS BASED ON PYRAZOL CARBON SEA DERIVATIVES
DE3817192A1 (en) 1988-05-20 1989-11-30 Hoechst Ag PLANT-PROTECTIVE AGENTS CONTAINING 1,2,4-TRIAZOLE DERIVATIVES AND NEW DERIVATIVES OF 1,2,4-TRIAZOLE
ATE84302T1 (en) 1988-10-20 1993-01-15 Ciba Geigy Ag SULFAMOYLPHENYL UREAS.
DE3939010A1 (en) 1989-11-25 1991-05-29 Hoechst Ag ISOXAZOLINE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS A PLANT PROTECTIVE AGENT
DE3939503A1 (en) 1989-11-30 1991-06-06 Hoechst Ag NEW PYRAZOLINE FOR THE PROTECTION OF CULTURAL PLANTS AGAINST HERBICIDES
DE59108636D1 (en) 1990-12-21 1997-04-30 Hoechst Schering Agrevo Gmbh New 5-chloroquinoline-8-oxyalkanecarboxylic acid derivatives, process for their preparation and their use as antidots of herbicides
TW259690B (en) 1992-08-01 1995-10-11 Hoechst Ag
DE4331448A1 (en) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituted isoxazolines, processes for their preparation, compositions containing them and their use as safeners
DE19621522A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh New N-acylsulfonamides, new mixtures of herbicides and antidots and their use
EP0929543B1 (en) 1996-09-26 2001-10-31 Syngenta Participations AG Herbicidal composition
DE19652961A1 (en) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh New 2-fluoroacrylic acid derivatives, new mixtures of herbicides and antidots and their use
US6071856A (en) 1997-03-04 2000-06-06 Zeneca Limited Herbicidal compositions for acetochlor in rice
DE19727410A1 (en) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3- (5-tetrazolylcarbonyl) -2-quinolones and crop protection agents containing them
DE19742951A1 (en) 1997-09-29 1999-04-15 Hoechst Schering Agrevo Gmbh Acylsulfamoylbenzoic acid amides, crop protection agents containing them and process for their preparation
AR031027A1 (en) 2000-10-23 2003-09-03 Syngenta Participations Ag AGROCHEMICAL COMPOSITIONS
CA2457575C (en) * 2001-08-17 2010-12-21 Sankyo Agro Company, Limited 3-phenoxy-4-pyridazinol derivatives and herbicidal composition containing the same
RS20050691A (en) 2003-03-26 2008-04-04 BAYER CROPSCIENCE GmbH., Use of aromatic hydroxy compounds as safeners
DE10335725A1 (en) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Safener based on aromatic-aliphatic carboxylic acid derivatives
DE10335726A1 (en) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Use of hydroxyaromatics as safener
DE102004023332A1 (en) 2004-05-12 2006-01-19 Bayer Cropscience Gmbh Quinoxaline-2-one derivatives, crop protection agents containing them, and processes for their preparation and their use
WO2007023719A1 (en) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. Agent for reducing chemical injury and herbicide composition with reduced chemical injury
JPWO2007023764A1 (en) 2005-08-26 2009-02-26 クミアイ化学工業株式会社 Pesticide mitigation agent and herbicide composition with reduced phytotoxicity
EP1987718A1 (en) 2007-04-30 2008-11-05 Bayer CropScience AG Utilisation of pyridine-2-oxy-3-carbon amides as safener
EP1987717A1 (en) 2007-04-30 2008-11-05 Bayer CropScience AG Pyridon carboxamides, agents containing these but not impacting useful plants and method for their manufacture and application
CN101838227A (en) 2010-04-30 2010-09-22 孙德群 Safener of benzamide herbicide
TW201625554A (en) 2014-07-14 2016-07-16 杜邦股份有限公司 Bis(aryl)catechol derivatives as herbicides
TWI828952B (en) 2015-06-05 2024-01-11 美商艾佛艾姆希公司 Pyrimidinyloxy benzene derivatives as herbicides
RU2745802C2 (en) 2015-07-13 2021-04-01 Фмк Корпорейшн Aryloxy-pyrimidinyl esters as herbicides
CN112384507A (en) 2018-06-25 2021-02-19 拜耳公司 Substituted 4-heteroaryloxypyridines and their salts and their use as herbicides
WO2020002087A1 (en) 2018-06-25 2020-01-02 Bayer Aktiengesellschaft Substituted 3-heteroaryloxypyridines and salts thereof and their use as herbicidal agents

Also Published As

Publication number Publication date
AU2022218292A1 (en) 2023-08-17
JP2024506004A (en) 2024-02-08
CN117043143A (en) 2023-11-10
WO2022167334A1 (en) 2022-08-11
CA3210359A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2020002089A1 (en) Substituted 2-heteroaryloxypyridines and salts thereof and their use as herbicidal agents
EP2794568B1 (en) Substituted 4-cyano-3-phenyl-4-(pyridin-3-yl) butanoates, processes for their preparation and their use as herbicides and plant growth regulators
EP2693878B1 (en) Substituted (3r,4r)-4-cyan-3,4-diphenylbutanoates, method for the production thereof and use thereof as herbicides and plant growth regulators
EP4172153A1 (en) Substituted heteroaryloxypyridines, the salts thereof and their use as herbicidal agents
EP2686296A1 (en) Substituted 4-cyan-3-(2,6-difluorophenyl)-4-phenylbutanoates, method for the production thereof and use thereof as herbicides and plant growth regulators
WO2018178008A1 (en) Substituted isoxazoline-5-ones and salts thereof and use thereof as herbicidal agents
EP2934136B1 (en) Substituted 4-cyan-3-(pyridyl)-4-phenylbutanoates, method for the production thereof and uses as herbicides and plant growth regulators
EP3898612B1 (en) Substituted pyridinyloxybenzenes, their salts and use of said compounds as herbicidal agents
EP4288418A1 (en) Substituted (2-heteroaryloxyphenyl)sulfonates, salts thereof and their use as herbicidal agents
EP3810588A1 (en) Substituted 4-heteroaryloxypyridines and salts thereof and their use as herbicidal agents
EP3606915A1 (en) 2-amino-5-oxyalkyl-pyrimidine derivatives and their use for controlling undesired plant growth
EP2773614A1 (en) Substituted 4-cyano-3-phenyl-4-(pyridin-3-yl)butanoates, processes for preparation thereof and use thereof as herbicides and plant growth regulators
WO2021028419A1 (en) Substituted 3-(2-heteroaryloxyphenyl)isoxazolines and salts thereof and their use as herbicidal active substances
WO2020245097A1 (en) Substituted pyridinyloxypyridines and salts thereof and use thereof as herbicidal agents
WO2021028421A1 (en) Substituted (2-heteroaryloxyphenyl)isoxazolines and salts thereof and their use as herbicidal active substances
EP3747868A1 (en) Substituted phenoxypyridines, their salts and use of said compounds as herbicidal agents
EP3747867A1 (en) Substituted pyridinyloxyanilines, their salts and use of said compounds as herbicidal agents
WO2023186690A1 (en) Substituted 2-aminoazines and salts thereof, and use thereof as herbicidal active substances
WO2023186691A1 (en) Substituted 2-c-azines and salts thereof, and use thereof as herbicidal active substances
WO2023280772A1 (en) N-(1,3,4-oxadiazol-2-yl)phenylcarboxamides as herbicides
WO2024078906A1 (en) Substituted n-phenyluracils and salts thereof, and use thereof as herbicidal active substances
EP3720853A1 (en) 3-amino-[1,2,4]-triazole derivatives and their use for controlling undesired plant growth
EP3802516A1 (en) Herbicidally active substituted phenylpyrimidines
WO2018178014A1 (en) 4-cyclopropyl-2-oxopyrrolidine-3-carboxamide derivatives and related compounds as herbicidal plant protection agents
WO2018178010A1 (en) N-cyclopropyl-2-oxo-4-phenyl-piperidine-3-carboxamide derivatives and related compounds as herbicidal plant protection agents

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR